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ABSTRACT

Dimensionality reduction algorithms have become an indispens-
able tool for working with high-dimensional data in classification.
Linear discriminant analysis (LDA) is a popular analysis technique
used to project high-dimensional data into a lower-dimensional
space while maximizing class separability. Although this technique
is widely used in many applications, it suffers from overfitting
when the number of training examples is on the same order as the
dimension of the original data space. When overfitting occurs, the
direction of the LDA solution can be dominated by low-energy noise
and therefore the solution becomes non-robust to unseen data. In
this paper, we propose a novel algorithm, energy-constrained dis-
criminant analysis (ECDA), that overcomes the limitations of LDA
by finding lower dimensional projections that maximize inter-class
separability, while also preserving signal energy. Our results show
that the proposed technique results in higher classification rates
when compared to comparable methods. The results are given in
terms of SAR image classification, however the algorithm is broadly
applicable and can be generalized to any classification problem.

Index Terms— Dimensionality reduction, discriminant anal-
ysis, machine learning, pattern recognition, principal components
analysis

1. INTRODUCTION

With continuing growth in sensor capabilities and database com-
plexity, pattern recognition applications will have to contend with
ever-increasing data dimensionality. Extracting appropriate infor-
mation from such data sets has been a long-standing problem, com-
monly referred to as the curse of dimensionality. Commonly used
approaches to mitigating this problem include linear discriminant
analysis (LDA), principal components analysis (PCA), and deriva-
tives of them [1, 2, 3, 4, 5].

Linear discriminant analysis identifies a linear transform that
projects high dimensional data into a low dimensional space subject
to a classification constraint. More specifically, LDA determines the
optimal transform that maximizes the distance between the mean of
each class while minimizing the variability within each class [2].
Consider the two-class, two-dimensional data set in Fig. 1. For this
data set, LDA identifies the optimal dimension for classification as
the vector that lies along dimension 2. Intuitively this makes sense
because the data projected along this dimension is most separable.
Unfortunately, this is a dimension of very low energy and therefore
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Fig. 1. Scatter plot of a two-dimensional, two class dataset with PCA, LDA
and ECDA directional vectors.

does not capture significant signal information. In addition, in prob-
lems where the number of data samples is on the order of the di-
mensionality of data space, LDA tends to suffer from overfitting [4].
When overfitting occurs, the direction of the LDA solution can also
be dominated by low energy noise. To avoid such problems, princi-
pal component analysis is often used.

As opposed to LDA, PCA determines a transform that maps the
high dimensional data onto the low dimensional space that preserves
most signal energy [3]. In Fig. 1, PCA identifies dimension 1 as
the dimension containing the most energy. This makes sense as the
variance of the data set is highest along this dimension. Although
this dimension captures much of the signal information, there is no
explicit classification criterion used.

Attempts to overcome the limitations of these techniques include
regularized LDA techniques [5] and PCA plus LDA [6]. In regular-
ized LDA, covariance matrices are typically diagonally loaded when
the number of training samples is scarce [5]. Although these tech-
niques have been shown to provide an improvement when the covari-
ance matrices are of low rank, the diagonal loading is often ad-hoc
making the algorithm very sensitive to the tuning parameter. PCA
plus LDA techniques use PCA as a preprocessing step before apply-
ing LDA. Although this approach can be useful when the number
of training samples is low, using PCA to completely discard lower-
energy dimensions can reduce classification performance, as we will
show later [6].

In this paper, we attempt to overcome the limitations of the ex-
isting techniques by finding optimal projections for discrimination,
subject to minimally-acceptable energy criteria. In other words,
we combine both PCA and LDA in a single algorithm, energy-
constrained discrimination analysis (ECDA), that allows the user to
take advantage of the benefits of each of the two approaches. Con-
sider the PCA, LDA, and ECDA directions in Fig. 1. The optimal
PCA projection contains very little discrimination power, whereas
the optimal LDA projection contains very little energy. ECDA is
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a reasonable compromise that maintains discrimination power with
improve robustness. We show that the proposed technique results
in improved classification rates when compared to four other ex-
isting algorithms. Although the results are given in terms of SAR
image classification, the algorithm is broadly applicable and can be
generalized to any classification problem.

This paper is organized as follows. Section 2 provides a descrip-
tion of the proposed algorithm. In Section 3 we analyze and compare
the performance of ECDA to other techniques. Section 4 provides
concluding remarks.

2. PROPOSED ALGORITHM

Consider a data set x1, . . . ,xn with n points residing in some d-
dimensional space and belonging to one of r classes. We define the
total data matrix, X, and class data matrices, Xi (1 ≤ i ≤ r), as
follows:

X = [x1, . . . ,xn] = [X1, ...,Xr], (1)

where the subset of vectors in class i (1 ≤ i ≤ r) is represented as
block matrix Xi ∈ Rd×ni . Each class i contains ni observations
with n =

∑
i ni. Define the between-class scatter matrix SB as

SB =

r∑

i=1

ni(mi − m)(mi − m)T, (2)

where m is mean of the data and mi is the mean of class i. Define
the within-class scatter matrix SW as

SW =

r∑

i=1

∑

j∈Ci

(xj − mi)(xj − mi)
T, (3)

where Ci is the set of cardinality ni containing all data vectors in
class i. It can be shown that the total scatter matrix of the data set X
is ST = SW + SB.

The goal of LDA is to find a directional vector vLDA ∈ Rd×1

such that the projection vT
LDAX maximizes the distance between

vectors of different classes (SB) while also minimizing the distance
between vectors within the same class (SW) [2]. Written explicitly,
the optimal LDA vector is defined as

vLDA = argmax
vTSBv

vTSWv
. (4)

PCA, on the other hand, preforms dimensionality reduction,
without making use of class information, by finding the vector
vPCA such that the projection vT

PCAX maximizes the total scatter
[3]. Mathematically, this is defined as:

vPCA = argmaxvTSTv. (5)

Energy-constrained discriminant analysis (ECDA) finds the op-
timal direction for discrimination, subject to energy criteria. In other
words, we seek the vector vECDA such that the projection vT

ECDAX
maximizes the separability of the data while also maintaining a
minimally-acceptable amount of energy. Written explicitly, the
optimal ECDA vector is the maximizer of

maximize
v

vTSBv

vTSWv
(6)

subject to
vT

||v||ST
v

||v|| ≥ αλPCA,

where λPCA is the principal eigenvalue of PCA, and the user-
defined parameter α ∈ [0, 1] specifies the energy constraint. It is
important to note that for α = 0 this formulation results in LDA and
for α = 1 the result is PCA. For 0 < α < 1, the proposed approach
finds robust discrimination directions that generalize better to testing
data, as will be shown later. In this analysis, we only show the pro-
cedure to find the optimal ECDA direction, however the approach
can be easily generalized to multiple ECDA directions by iteratively
removing existing ECDA directions from the data and finding new
ECDA directions from the remaining subspace.

Since the objective function in (6) is invariant with respect to
rescaling of the vector v, we can fix the denominator to an arbitrary
constant and optimize only the numerator. This allows us to trans-
form the problem of maximizing (6) into the constrained problem
shown below, in which we have added an additional constraint and
rewritten the existing constraint:

minimize
v

−vTSBv (7)

subject to vTSWv = 1,

vTSITv ≤ 0,

where SIT = [αλPCAI − ST]. The resulting formulation is a
quadratic-constrained quadratic programming (QCQP) problem.

2.1. Relaxing the Constraints

It is easy to see that the matrix SIT in (7) is generally not positive
semidefinite, thereby resulting in a nonconvex optimization prob-
lem. Although a number of methods have been used in the literature
to solve such problems [7, 8, 9], these are generally not robust and
often settle in non-optimal local minima when the dimensionality of
the problem is large. In this paper, we make use of a semidefinite
relaxation of the QCQP problem in (7) that results in a convex opti-
mization problem [10].

We use vTSv = tr(vvTS) = tr(VS) to rewrite (7) as follows:

minimize
V,v

−tr(VSB) (8)

subject to tr(VSW) ≤ 1,

tr (V [αλPCAI − ST]) ≤ 0,

V = vvT.

The formulation of the optimization problem in (8) does not change
the underlying solution, however, it allows us to better understand
the relaxation. By relaxing the final constraint from V = vvT (a
nonconvex constraint) to V − vvT � 0 (the convex constraint that
the difference matrix is positive semidefinite), the optimization cri-
teria is converted to a semidefinite programming problem. The final
formulation is:

minimize
V,v

−tr(VSB) (9)

subject to tr(VSW) ≤ 1,

tr (V [αλPCAI − ST]) ≤ 0,

V − vvT � 0.

It can be shown that this approach provides a lower bound on the
optimal solution, rather than the optimal solution [10]; however, due
to the convexity of the problem, it is guaranteed to result in a single
solution every time. Furthermore, semidefinite programming prob-
lems are well-known in the literature and there exist numerous robust
methods for obtaining solutions to such problems [10] [12]. In this
paper we make use of the well-known Matlab packages Yalmip [11]
and Sedumi [12] to solve all semidefinite programming problems.
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Fig. 2. Normalized and sorted PCA eigenvalues for a dataset containing
50 SAR images. Dotted lines shows normalized signal energy for the PCA,
LDA, and ECDA (α = 0.15) solutions.

2.2. Setting α

The α parameter in the proposed technique restricts the energy of
the principal ECDA vector to a fraction of the primary PCA vector.
More specifically, ECDA requires that the optimal discrimination
vector is found subject to the constraint that the selected direction
captures αλPCA of the data energy. For small values of α, the algo-
rithm may select low-energy dimensions for discrimination that do
not generalize very well to unseen test data. For large values of α,
the algorithm is restricted to only high-energy portions of the signal
that may be similar among different classes. As a result, we seek
an appropriate value for α that finds directions of separability and
generalizes to unseen test data.

We propose two methods for determining α. The first method
involves a cross-validation procedure over which a set of α’s from
0 to 1 are used to generate ECDA features and train a classifier. A
testing set is then used to analyze the performance of the classifier
and the α maximizing classifier performance is selected. A second,
computationally less complicated method of determining α involves
analyzing the normalized PCA eigenvalue vs. dimension plot. In
Fig. 2 we show the normalized and sorted PCA eigenvalues, λ

λPCA
,

for a dataset containing 50 SAR images. We determine a value for
α by seeking a knee in the curve of this plot. In Fig. 2, α = 0.15
seems to capture the pertinent signal energy, while excluding low-
energy noise. Notice that the PCA solution corresponds to α = 1,
whereas the LDA solution corresponds to α = 0.

3. RESULTS

In this section, we evaluate the discrimination performance of ECDA
using the public release portion of the MSTAR database of SAR im-
ages [13]. The SAR images are first pre-processed using a constant
false alarm rate (CFAR) algorithm that centers a 50 pixel x 50 pixel
frame around each target. These target images comprise a two class
scenario, namely the T-72 tank and the BMP-2 infantry fighting ve-
hicle. The data set is divided into two groups, the training set (de-
pression angle 17◦) and the testing set (depression angle 15◦). The
training set consists of relatively few examples (50) while the testing
set consists of many more (1169).

Example SAR images from this dataset are shown in Fig. 3.
The figure shows 50 pixel x 50 pixel images of two targets, one
from the class of T-72 tanks and another from the class of BMP-2
infantry fighting vehicle. The classification of these images requires

(a) (b)

Fig. 3. Sample SAR images (in dB scale) of (a) a T-72 tank and (b) a BMP-2
infantry fighting vehicle.

performing analysis in a R
2500 space. From the well-known curse of

dimensionality, it is clear that the density of the data set in this high-
dimensional space is sparse and, although the data set is represented
in R

2500, information relevant for the classification of these images
is likely to reside in a much lower-dimensional subspace. This mo-
tivates the need for dimensionality reduction.

As a first step, we do an initial dimensionality reduction us-
ing a 2-D, level-3 ‘Haar’ wavelet decomposition. This effectively
downsamples the image in order to reduce the dimensionality from
very large R

2500 to a more reasonable R
49. From these 7 pixel x 7

pixel images we compared the discrimination performance of ECDA
against the standard techniques of PCA [3], LDA [2], regularized
LDA [5], and PCA plus LDA [6].

As an alternative to evaluating ECDA using a specific classifier,
we use the Henze-Penrose (HP) divergence for measuring relative
interclass separability [14, 15]. The underlying assumption is that
independent of any particular classifier, feature sets that exhibit more
divergence (or separability) should, in general, be of greater utility
than feature sets that exhibit less divergence (or separability). For
two-class data sets with an equal number of samples in each class,
HP divergence values range from 0.5 to 1, with 0.5 implying the
classes cannot be separated and 1 implying that the two classes are
completely separable.

Using the 50 training examples we identify the 1-D optimal vec-
tors vLDA, vPCA, and vECDA according to (4), (5), and (9), respec-
tively. These vectors are then used to project the 1169 test examples
down to a single dimension. The distribution of values along this
single dimension is shown in Fig. 4. As expected, the total variance
(or spread) of the PCA projection is the largest, although the sepa-
ration between the two classes is negligible. This is due to the fact
that PCA explicitly maximizes the total scatter, while ignoring class
distinction. The LDA projection, on the other hand, captures very
little variance while also providing very little class separation. This
is because LDA overfits to low-energy noise in the training data and
therefore does not generalize to unseen test data. Finally, the ECDA
projection is a balance between the other two projections. ECDA
contains a relatively moderate amount of total variance while also
capturing class separation.

Other methods that attempt to address the above problems with
PCA and LDA are regularized LDA and PCA plus LDA. In regular-
ized LDA the within-class scatter matrix SW is modified as follows

ŜW = SW + βI, (10)

where I is the identity matrix and β is a tuning parameter. This ap-
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Fig. 4. Distributions of the test data projected along the vectors vPCA,
vLDA, and vECDA.

proach is motivated by the fact that in undersampled problems, SW

is often close to singular or ill-conditioned; diagonal loading insures
that SW has full rank. In PCA plus LDA, PCA data’s dimensionality
is first reduced by PCA to capture a minimum acceptable amount of
energy; LDA is then performed on the reduced data.

To rigorously compare the discrimination power of each of these
methods we extend the ECDA and PCA projections into multiple
dimensions; that is we find projections of the test data into an N -
dimensional subspace, where N = [1, ..., 5]. This allows us to test
the divergence of the test set for multiple dimensions. For standard
LDA and its derivatives (regularized LDA and PCA plus LDA) this
extension is not possible because the rank of the matrix S−1

W SB is
r−1, which limits the dimensionality of the projection to the number
of classes minus one [4]. In our two-class case, that dimensionality
is one.

Figure 5 shows the HP divergence as a function of dimensional-
ity. Methods with only a one-dimensional solution are shown as hor-
izontal dashed lines. LDA and PCA plus LDA result in the lowest
divergence values (0.5 and 0.62, respectively). PCA, while having
poor discrimination power in low dimensions, increases in perfor-
mance as the dimensionality increases. This can be expected be-
cause as more signal energy is captured, the additional information
improves class separability. Regularized LDA, with a β = 0.1 de-
termined through cross-validation, is able to overcome some of the
inherent problems of LDA, thereby resulting in improved perfor-
mance. It results in a divergence of 0.7 and is on par with ECDA
in one dimension. As ECDA is not limited to one dimension, it
increases in divergence as dimensionality is increased, with a maxi-
mum near 0.8.

4. CONCLUSION

In this paper, we proposed an algorithm for performing dimen-
sionality reduction based on energy and classification criteria. The
ECDA algorithm combines the benefits of both LDA and PCA to
generate low-dimensional projections that help separate the data
and also preserve its energy. Our results show that the technique
significantly outperforms LDA, PCA, regularized LDA, and PCA
plus LDA when the number of available training samples is limited.
Future work will focus on more explicit methods for determining
α that do not require cross-validation. Furthermore, techniques of
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Fig. 5. HP Divergence vs. dimensionality for ECDA, PCA, LDA, regular-
ized LDA, and PCA plus LDA. Methods with only a one-dimensional solu-
tion are shown as horizontal dashed lines (LDA, regularized LDA, and PCA
plus LDA).

lower-computational complexity for determining the optimal ECDA
vectors can help in speeding up the solution to the optimization
problem. In addition, methods for extending such a technique to
non-linear manifolds through the use of kernel functions will also
be analyzed.
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