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Abstract—Over the last few years there has been an emerg-
ing interest in ultrawideband (UWB) communications in wire-
less sensor networks, mainly due to their low-complexity and
low-power consumption. In particular, auto-correlation receiver
(AcR) is a potential candidate for such applications. However,
the presence of network interference, especially interference
between uncoordinated UWB networks, will severely degrade the
performance of such receiver. In this paper, we analyze the bit
error probability performance of the AcR in the presence of UWB
interference. We model the network interference as an aggregate
UWB interference, generated by elements of uncoordinated UWB
networks scattered according to a spatial Poisson process. Our
analytical framework allows a tractable performance analysis
and still provides sufficient insight into the effect of uncoordi-
nated network interference on UWB systems.

I. INTRODUCTION

There has been an increasing interest in ultrawideband
(UWB) technology, particularly as a strong candidate for low-
power consumption sensor network applications [1], [2]. In
particular, auto-correlation receiver (AcR) has been considered
as a potential low-complexity and low-sampling rate solution
in the IEEE 802.15.4a standardization process [3]. The wide
spreading of sensor networks using UWB communications to
ensure wireless connectivity will inevitably lead to increasing
network interference (NWI), especially between uncoordinated
networks.
Since the main NWI is likely to be contributed by a few

dominant interferers at close range, the UWB NWI tends
to be heavy-tailed distributed. Moreover, with the low duty-
cycle of UWB transmissions, the interference behaves in an
impulsive behavior. This complicates the modeling of UWB
NWI since we can no longer use the Gaussian approximation
[4]–[6]. In [4]–[6], the authors do not consider or only partially
consider the spatial distribution of the interferers and the
propagation effects of the interfering signals. Furthermore, the
studies of non-coherent receiver structures are missing in these
literatures.
In modeling impulsive signals, the stable distribution pro-

vides a valuable mathematical tool, which has been proven
to be useful for modeling a wide class of impulsive noise
processes [7], [8]. In the case of NWI, it is also necessary to
account for the stochastic geometry of the interfering sources
to obtain a more accurate statistical model of the network
interference. By assuming a Poisson field of interferers, several

works have analyzed the effect of narrowband interference
on narrowband [7]–[9] and UWB systems [10], respectively.
However, to the best of our knowledge, there is hardly any
results available that analyze the effect of uncoordinated UWB
NWI, particularly, when non-coherent receiver structures are
employed.
In this paper, we analyze the bit error probability (BEP)

performance of the AcR in the presence of uncoordinated
UWB NWI. We show that multivariate stable random variables
(r.v’s) can be used to describe the statistics of the NWI. The
proposed model for the aggregate interference accounts for the
spatial distribution of the UWB interferers and the propagation
characteristics of the interference signals.
The paper is organized as follows: Section II presents

the signaling schemes, the channel model, and the receiver
structure. Section III describes the statistical characterization
of the UWB interference. The BEP analysis of AcR in the
presence of UWB NWI is given in Section IV. Numerical
results and conclusion are provided in Section V and VI,
respectively.

II. SYSTEM AND CHANNEL MODELS

The transmitted signal for user k can be decomposed into
a reference signal b(k)

r (t) and a data modulated signal b(k)
d (t)

as follows:

s(k)(t) =
∑

i

b(k)
r (t− iTs) + d

(k)
i b

(k)
d (t− iTs), (1)

where d(k)
i ∈ {−1, 1} is the ith data symbol and Ts = NsT

TR
f

is the symbol duration, such that Ns and TTR
f are the number

of pulses per symbol and the average pulse repetition period,
respectively [2]. The reference and data modulated signals are
given by

b(k)
r (t) =

Ns
2 −1∑
j=0

√
ETR

p a
(k)
j p(t− j2TTR

f − c(k)
j Tp),

b
(k)
d (t) =

Ns
2 −1∑
j=0

√
ETR

p a
(k)
j p(t− j2TTR

f − c(k)
j Tp − Tr),

where b(k)
d (t) is equal to a version of b(k)

r (t) delayed by Tr.
In TH signaling, {c(k)

j } is the pseudo-random sequence of the
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kth user, where c(k)
j is an integer in the range 0 ≤ c

(k)
j < Nh

and Nh is the maximum allowable integer shift. The bipolar
random amplitude sequence {a(k)

j } together with TH sequence
are used to mitigate interference and to support multiple
access. The term p(t) is a unit energy bandpass pulse with
duration Tp and center frequency fc. The energy of the
transmitted pulse is ETR

p = ETRs /Ns where ETRs is the symbol
energy associated with TR signaling.1 The duration of the
received UWB pulse is Tg = Tp + Td, where Td is the
maximum excess delay of the channel. We consider T r ≥ Tg

and (Nh − 1)Tp + Tr + Tg ≤ 2TTR
f , where Tr is the time

separation between each pair of data and reference pulses
to preclude intra-symbol interference (isi) and inter-symbol
interference (ISI).
The received signal can be expressed as r(t) = h(t)∗s(t)+

n(t), where h(t) is the impulse response of the channel given
by

h(t) =
L∑

l=1

hlδ(t− τl), (3)

where hl and τl are the attenuation and the delay of the lth
path component, respectively. The term n(t) is zero-mean,
white Gaussian noise with two-sided power spectral density
N0/2. As in [11], we consider a resolvable dense multipath
channel, i.e., |τl− τj | ≥ Tp, ∀l �= j, where τl = τ1+(l−1)Tp

and {hl}L
l=1 are statistically independent r.v.’s. We can express

hl = |hl| exp (jφl), where φl = 0 or π with equal probability.
The AcR first passes the received signal through an ideal
bandpass zonal filter (BPZF) with center frequency fc to
eliminate out-of-band noise [2]. If the bandwidth W of the
BPZF is large enough, then the signal spectrum will pass
through the filter undistorted. In the rest of the paper, we focus
on a single user system and we will suppress the index k for
notational simplicity. In this case, following the channel model
described above, the output of the BPZF can be written as2

r̃TR(t) (4)

=
∑

i

L∑
l=1

[hlbr(t− iTs − τl) + hldibd(t− iTs − τl)] + ñ(t),

where ñ(t) represents the noise process after the BPFZ and
the output of the AcR can be written as

ZTR =

Ns
2 −1∑
j=0

∫ j2TTR
f +Tr+cjTp+T

j2TTR
f +Tr+cjTp

r̃TR(t) r̃TR(t− Tr)dt, (5)

where the integration interval T determines the number of
multipath components (or equivalently, the amount of energy)
as well as the amount of noise captured by the receiver. 3

III. UWB INTERFERENCE
A. Multiple UWB interferers
We model the spatial distribution of the multiple UWB

interferers according to a homogeneous Poisson point process
1Note that the transmitted energy is equally allocated among Ns/2 refer-

ence pulses and Ns/2 modulated pulses.
2Note that we assume perfect symbol synchronization at the receiver.
3Note that the optimal integration interval depends on the shape of the

power delay profile and signal-to-noise ratio (SNR).

in a two-dimensional plane [9]. The probability that k nodes
lie inside region R depends only on the area AR = |R|, and
is given by [12]

P{k ∈ R} = (λAR)k

k!
e−λAR , (6)

where λ is the spatial density (in nodes per unit area).
Using our system model in Section II, the transmitted signal

from the nth UWB interferer is given by

I(n)(t) =
√
P I

∑
i

b
(n)
i

(
t− iN I

sT
I
f

)
, (7)

where b(n)
i (t) �

∑Ns
2

j=1 e
(n)
i a

(n)
j p(t− jTf − c(n)

j Tp− d(n)
i ΔI),

P I � EI
b/T

I
fN

I
s is the average power at the border of the near-

field zone of each interfering transmitter antenna, and T I
f is

the pulse repetition period average, such that it is assumed
to be the same for all UWB interferers and all interferer
signals also have the same symbol duration T I

s = T I
fN

I
s .4

Note that we intentionally write (7) to account for two pos-
sible modulations, namely binary pulse amplitude modulation
(BPAM) and binary pulse position modulation (BPPM). The
term e

(n)
i ∈ {−1, 1} is the ith data symbol for BPAM

modulation, d(n)
i ∈ {0, 1} is the ith data symbol for BPPM

modulation, and ΔI is the position modulation shift. The
jth element of the random hopping and amplitude sequences
are denoted by {c(n)

j } and {a(n)
j }, where 0 < c

(n)
j < N I

h,
N I

h is the maximum shift associated with the hopping code,
and a(n)

j ∈ {−1,+1} for all j and n. The average pulse
repetition interval is considered long enough such that isi and
ISI can be ignored. For notational convenience, we define
Ψ(n) �

{
{e(n)

i }, {c(n)
j }, {a(n)

j }, {h(n)
l }

}
.

Using the spatial model in (6), the aggregate UWB interfer-
ence signals received at the output of the BPZF of the desired
user is given by

ζ(t) =
∞∑

n=1

ζ(n)(t), (8)

and ζ(n)(t) denotes the signal from the nth UWB interferer
and it can be expressed as

ζ(n)(t) =
eσIG

(n)(
R(n)

)ν

√
P Iv(n)

(
t−D(n)

)
, (9)

where the shadowing term eσIG
(n)
follows a log-normal dis-

tribution with shadowing parameter σI and G(n) � N (0, 1).5
According to the far-field assumption, the signal power decays
as 1/(R(n))2ν , where R(n) is the distance between the nth
UWB interferer and the desired user and ν is the amplitude
loss exponent. To model time-asynchronism of the UWB
interfering signals, we define D(n) as a uniformly distributed
r.v. and v(n)(t) in (9) can be further expressed as

v(n)(t) =
∑

i

b
(n)
i (t− iN I

sT
I
f ) ∗ h(n)(t− iN I

sT
I
f ), (10)

4Furthermore, we assume that all UWB interferers use the same pulse
waveform as the desired signal and their signals are undistorted at the output
of the BPZF.
5We use N (0, σ2) to denote a Gaussian distribution with zero-mean and

variance σ2 .
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where h(n)(t) =
∑L−1

l=0 |h(n)
l |e−jφ

(n)
l δ(t−τ (n)

l ) is the channel
impulse response of the nth UWB interferer-receiver link. 6

B. AcR
Conditioning on {Ψ(n)}, {cj}, {aj}, and {hl}, it can be

shown that the probability of ZTR < 0 for d0 = +1 can be
expressed as [13]

P {YTR,1 − YTR,2 < 0} = 1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)q

(11)

Re

⎧⎨⎩exp
(−jvμYTR,1

1+jv +
jvμYTR,2

1−jv

)
jv

⎫⎬⎭ dv.

where YTR,1 and YTR,2 are two non-central chi-square dis-
tributed random variable. Using the sampling expansion the
non centrality parameters of YTR,1 and YTR,2 can be written as

μ
(UWB)
YTR,1

� 2
N0

Ns
2 −1∑
j=0

2WT∑
m=1

1
2W

[
wj,m +

ζ1,j,m + ζ2,j,m

2

]2

,

=
ETRs

N0

LCAP∑
l=1

h2
l︸ ︷︷ ︸

�μA,TR

+

Ns
2 −1∑
j=0

2WT∑
m=0

1
2N0

r21,j,m

2W︸ ︷︷ ︸
�μ

(UWB)
B,TR

+

Ns
2 −1∑
j=0

2WT∑
m=1

1
2N0

r1,j,mwj,m

2W︸ ︷︷ ︸
�μ

(UWB)
C,TR

, (12)

μ
(UWB)
YTR,2

� 2
N0

Ns
2 −1∑
j=0

2WT∑
m=0

1
2W

[
ζ2,j,m − ζ1,j,m

2

]2

=

Ns
2 −1∑
j=0

2WT∑
m=1

1
2N0

r22,j,m

2W
, (13)

where wj,m, ζ1,j,m and ζ2,j,m, for odd m (even m), are the
real (imaginary) parts of the samples of the equivalent low-
pass version of wj(t), ζ1,j(t) � ζ(t+jTf+cjTp) and ζ2,j(t) �
ζ(t+ jTf + cjTp + Tr)] respectively, sampled at Nyquist rate
W over the interval [0, T ]. where r1,j,m � ζ1,j,m + ζ2,j,m

and r2,j,m � ζ2,j,m − ζ1,j,m. From (12) to (13), it can be
observed that we still need to derive some statistical model for
the aggregate UWB interference. In the following, we define
the complex vector ζ̄1,j which composed of WT samples of
ζ(t) defined in (8). Specifically, the vector ζ̄1,j can be written
as

ζ̄1,j =
∞∑

n=1

eσIG
(n)(

R(n)
)ν v̄(n)

1,j , (14)

where v̄(n)
1,j is the vector of complex samples of the equivalent

low-pass version of v(n)(t + cjTp +jTf − D(n)), such that
v(n)

1,j,m at the sampling instant m are a sequence of i.i.d. r.v’s

6For simplicity, we consider the channels from all UWB interferers have
the same maximum excess delay TI

g .

in n. If the signal of the nth UWB interferer is present in the
sampling instant m, each sample can be written as

v(n)
1,j,m = p

(
τ (n)

)
h(n)

m

√
exp(−εI(m− T (n)))Θ(n)

m , (15)

where τ (n) � (D(n) mod Tp) is a r.v. uniformly dis-
tributed over [0, Tp), T (n) is a discrete r.v. uniformly dis-
tributed over [0, 1, . . . , L − 1], h(n)

m is a r.v. with variance
1/

∑L
l=1 exp(−εI(l)) and distributed according to the small-

scale fading, and Θ(n)
m = cos(φ(n)

m ) − j sin(φ(n)
m ) with φ(n)

m

uniformly distributed over [0, 2π).7 Considering that the com-
plex r.v. Θ(n)

m is circularly symmetric (CS), as for the case in
the presence of narrowband interference [10], ζ 1,j,m can be
described by a stable complex distribution as follows8

ζ1,j,m � Sc

(
2
ν
, 0, γUWB

)
, (16)

where ζ1,j,m is the mth complex sample of ζ̄1,j in (14)
and γUWB � λπC−1

2/νe
2σ2

I /ν2
E
{|Re{v1,j,m}|2/ν

}
, such that

E
{|Re{v1,j,m}|2/ν

}
=

T I
g

T I
f
MFP and the associated parame-

ters M,F, P are, respectively, given by

M = E

{
|h(n)

m |2/ν
}

E

{(√
exp(−εT (n))

)2/ν
}

F = En{|e(n)
i a

(n)
j |2/ν},

P = E{|p
(
τ (n)

)
|2/ν}E

{
| cos(φm)|2/ν

}
.

Note that the components of the aggregate interference vector
ζ̄1,j in (14) are identically distributed but mutually dependent
[15].9 To make our analysis tractable, we assume that the SαS
vector ζ̄1,j is spherically symmetric since spherically sym-
metric vectors have the characteristic of being sub-Gaussian,
which implies that they can be decomposed as

ζ̄1,j =
√
V Ḡ1,j , (17)

where V ∼ S(α/2, 1, cos(πα
4 )) and Ḡ1,j is a multivariate

Gaussian random vector with covariance matrix Σ̄. Unfortu-
nately, ζ1,j is spherically symmetric only for some scenario.
To ensure the spherical symmetry of the resulting aggregate
interference vector for more general scenario, we modify each
received interference signal as

v
′(n)
1,j (t) = z(n)d−α

α

WT I
f∑

m=1

G1,j,mp(t−mTp), (18)

7As suggested in [14], since the low-pass equivalent version of a signal is
complex, we considered the phase of each multipath component uniformly
distributed over [0, 2π).
8We use Sc(α, β, γ) to denote a CS stable distribution of a complex

r.v. with i.i.d. real and imaginary parts, each distributed as S(α, β, γ),
with characteristic exponent α, skewness β (i.e. β = 0 in our case),
and dispersion γ. For α �= 1 and α = 1, the associated CFs
are ψ(jv) = exp

[
−γ|jv|α

(
1− jβ jv

|jv| tan(πα
2

)
)]

and ψ(jv) =

exp
[
−γ|jv|

(
1− jβ jv

|jv| ln |jv|)
)]
, respectively. Note that in our case the

location μ of the real and imaginary r.v.’s is zero [15].
9In fact, the aggregate interference vector in (14) is symmetric alpha stable

(SαS)
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4

where dα
α = 2α/2π−1/2

(
Γ(α+1

2 )−1
)
corresponds to

E{|G1,j,m}|α}, {G1,j,m}WT I
f

m=1 is a sequence of i.i.d complex
Gaussian r.v’s with zero mean and unit variance, and

E{|z(n)|α} = T I
g

T I
f

M × F (19)

Note that each interfering UWB signal now covers the entire
frame interval T I

f and the effect of the duty cycle, channel
fading, and channel power delay profile (PDP) are captured
in the statistics of z(n), where z(n) = 0 with probability 1 −
T I

g/T
I
f . The statistics of the aggregate interference obtained

by using the interference model in (18) has been shown to be
in good agreement with the empirical statistics generated via
simulation when realistic conditions are considered.

IV. BEP ANALYSIS OF THE ACR IN THE PRESENCE OF
MULTIPLE UWB INTERFERENCE

A. Type 1 interference

We assume that Tr = n1T
I
f and Tf = n2T

I
f such that n1

and n2 (n2 > n1) are integers, respectively. For simplicity,
we consider no modulation is used and no random amplitude
sequences and hopping code sequences are used. Since the
interference vector is periodic over each interval T r for the
entire symbol, we have r1,j,m = 2

√
V (G1,j,m) and r2,j,m =

0. The non-centrality terms of the r.v.’s YTR,1 and YTR,2 for
d0 = +1 can be expressed, respectively, as

μ
(UWB)
YTR,1

=
ETRs

N0

LCAP∑
l=1

h2
l︸ ︷︷ ︸

μA,TR

+2γ2/α
UWB

P INs

2WN0
V C

(1)
1︸ ︷︷ ︸

μ
(UWB)
B,TR

+

Ns
2 −1∑
j=0

2WT∑
m=0

r1,j,mwj,m

2WN0︸ ︷︷ ︸
μ

(UWB)
C,TR

, (20)

μ
(UWB)
YTR,2

= 0, (21)

where C(1)
1 =

∑2WT
m=1 G

2
1,j,m is a central chi-square distributed

r.v. with 2WT degrees of freedom. To evaluate the BEP
performance, we can use an approximate analytical approach,
which assumes μ(UWB)

C,TR negligible compared to the other first
two terms in (20) [13]. In this case, by defining A2 � V C

(1)
1 ,

the conditional BEP can be expressed as

Pe,TR|A2 
 1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(22)

×Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
exp( P INs

2WN0

−jv
1+jv 2γ

ν
UWBA

2)

jv

⎫⎬⎭ dv.

Applying the scaling property, the r.v. A2 conditioned on
C

(1)
1 has a stable distribution with characteristic exponent

1/ν, skewness 1 and dispersion (2C (1)
1 )1/νγUWB cos

(
π
2ν

)
. As

a result, the characteristic function (CF) of A2 conditioned on
C

(1)
1 for ν > 1 is given by

ψ
A2|C(1)

1
(jv) = exp

[
−(2C(1)

1 )1/νγUWB cos
( π

2ν

)
|jv|1/ν(

1− jv

|jv| tan
( π

2ν

))]
. (23)

Using (23), we can rewrite (22) as

P
(UWB)

e,TR|C(1)
1 ,d0=+1


 1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(24)

Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
ψ

A2|C(1)
1
( P INs
2WN0

−jv
1+jv )

jv

⎫⎬⎭ dv.

Similarly for d0 = −1, the conditional BEP can be written as

P
(UWB)

e,TR|C(1)
1 ,d0=−1


 1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(25)

×Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
ψ

A2|C(1)
1
( P INs
2WN0

jv
1−jv )

jv

⎫⎬⎭ dv.

As discussed in [10], we can avoid averaging over C (1)
1 in

(24) and (25) by approximating the CF of A2. Similar to [10],
we approximate the expectation of (23) with respect to C (1)

1

and obtain

ψA2(jv) 

[
1 + ΩνγUWB cos

( π

2ν

)
|jv|1/ν (26)

×
(
1− jv

|jv| tan
( π

2ν

))]−kν

.

Using (22) and (26), we have

P
(UWB)
e,TR|d0=+1 


1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(27)

×Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
ψA2

(
P INs
2WN0

−jv
1+jv

)
jv

⎫⎬⎭ dv,

and for

P
(UWB)
e,TR|d0=−1 


1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(28)

×Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
ψA2

(
P INs
2WN0

jv
1−jv

)
jv

⎫⎬⎭ dv.

As a result, the BEP of the AcR using TR signaling with
BPAM in the presence of UWB Type 1 interference is given
by

P
(UWB)
e,TR =

1
2

(
P

(UWB)
e,TR,d0=+1 + P

(UWB)
e,TR,d0=−1

)
. (29)

B. Type 2 interference
With Type 2 interference, we still consider that the positions

of the interferers and the shadowing terms do not change
during the symbol but we remove all the other constraints
of Type 1 interference. Due to the effect of the data modula-
tion, of the hopping sequences and of the random amplitude
sequences used by the interferers, the multipath components
of each interferer signal change position and phase from
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one frame to another, even though the channel impulse re-
sponse is constant over Ts. In the following, we consider
the vector representing the aggregate interference over the
entire symbol interval to be sub-Gaussian. As a result, we
have r1,j � ζ1,j,m − ζ2,j,m �

√
V (G1,j,m − G2,j,m) and

r2,j � ζ1,j,m + ζ2,j,m =
√
V (G1,j,m +G2,j,m). We can write

the non-centrality parameters of YTR,1 and YTR,2 for d0 = +1
as

μ
(UWB)
YTR,1

=
ETRs

N0

LCAP∑
l=1

h2
l︸ ︷︷ ︸

μA,TR

+2γν
UWB

P I

2WN0
V C

(2)
1︸ ︷︷ ︸

μ
(UWB)
B,TR

+

Ns
2 −1∑
j=0

2WT∑
m=0

1
N0

r1,j,mwj,m

2W︸ ︷︷ ︸
μ

(UWB)
C,TR

, (30)

μ
(UWB)
YTR,2

= 2γν
UWB

P I

2WN0
V C

(2)
2 , (31)

where C(2)
1 =

∑Ns
2 −1

j=0

∑2WT
i=1 (G1,j,i − G2,j,i)2 and C

(2)
2 =∑Ns

2 −1
j=0

∑2WT
i=1 (G1,j,i+G2,j,i)2. Note that C

(2)
1 and C(2)

2 are
independent and follow a central chi-square distribution with
Ns
2 2WT degrees of freedom. Considering μ(UWB)

C,TR negligible
[13], the approximate BEP conditioned on C (2)

1 and C(2)
2 can

be expressed as

P
(UWB)

e,TR|C(2)
1 ,C

(2)
2


 1
2
+
1
π

∫ ∞

0

(
1

1 + v2

)qTR

(32)

×Re

⎧⎨⎩ψμTR

(
−jv
1+jv

)
ψV

(
gTR|C(2)

1 ,C
(2)
2
(jv)2γν

UWB

)
jv

⎫⎬⎭ dv,

where

gTR|C(2)
1 ,C

(2)
2
(jv)=

PI

2WN0

[
C

(2)
1

−jv
1 + jv

+ C
(2)
2

jv

1− jv
]
,

(33)

and ψV (jv) is the CF of the stable variable V . To obtain the
BEP performance of AcR in the presence of UWB Type 2
interference, we simply need to numerically average (32) over
C

(2)
1 and C(2)

2 .
V. NUMERICAL RESULTS

In this section, we evaluate the performance of AcR in the
presence of UWB MUI.10 For the desired signal, we consider
a bandpass UWB system with pulse duration Tp = 0.5 ns,
symbol interval Ts = 3200 ns, and Ns = 32. For simplicity,
Tr is set such that there is no ISI or isi in the system, i.e.,
T TRf = Tr with Tr > Tg −NhTp. We consider a TH sequence
of all ones (cj = 1 for all j) and Nh = 2. The desired
signal is affected by a dense resolvable multipath channel,
where each multipath amplitude is Nakagami distributed with
fading severity index m and average power E

{
h2

l

}
, where

E
{
h2

l

}
= E

{
h2

1

}
exp [−ε(l− 1)], for l = 1, . . . , L, are

normalized such that
∑L

l=1 E
{
h2

l

}
= 1. For simplicity, the

10Note that all results shown are based on the approximate analytical
method.
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Fig. 1. BEP of AcR in the presence of Type 1 interference for (L, ε,m) =
(32, 0, 3), (LI, εI,mI) = (32, 0, 3), T I

f = 50 ns, λ = 0.01, ν = 1.5, and
σI = 1.6 dB.
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Fig. 2. BEP comparison of AcR in the presence of Type 1 interference as
a function of WT for Eb/N0 = 20 dB, SIRT = −20 dB, (L, ε,m) =
(32, 0.4, 3), (LI, εI, mI) = (32, εI, 3), T I

f = 50 ns, λ = 0.01, ν = 1.5,
and σI = 1.6 dB.

fading severity indexm is assumed to be identical for all paths.
The average power of the first arriving multipath component
is given by E

{
h2

1

}
and ε is the channel power decay factor.

With this model, we denote the channel characteristic of the
desired signal by (L, ε,m) for convenience. For the UWB
interferers, they use the same waveform as the signal of
interest with Nakagami fading channels and severity index m I

and average power E
{|hI

l |2
}
. Like the desired UWB signals,

we denote the channel characteristic of the interference signals
by (LI, εI,mI).

A. BEP performance
1) Type 1 interference: Figure 1 compares the BEP per-

formance of AcR in the presence of Type 1 interference with
(L, ε,m) = (32, 0, 3) and (LI, εI,mI) = (32, 0, 3). In Fig.
2, the BEP performance of AcR is plotted as a function of
WT for Eb/N0 = 20dB, SIRT = −20 dB, and λ = 0.01.
It can be noticed that the interference channel PDP with
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Fig. 3. Effect of pulse repetition interval TI
f on the BEP performance of AcR

in the presence of Type 1 interference for Eb/N0 = 20 dB, SIRT = −20
dB, (L, ε,m) = (32, 0, 3), (LI, εI,mI) = (32, 0, 3), λ = 0.01, ν = 1.5,
and σI = 1.6 dB.

a higher εI results in lesser performance degradation. This
can be explained by the fact that with a steeper PDP, the
interference signal energy is effectively concentrated in fewer
multipath components and, thus leads to a lower probability
of collision. In Fig. 3, the effect of pulse repetition T I

f on the
BEP performance of AcR is plotted, respectively. From these
figures, we can clearly observe that better BEP performance
is obtained for lower repetition rate due to lower probability
of collision, given by T I

g/T
I
f .

2) Type 2 interference: The numerical results below are
obtained by averaging over many realizations of the variables
C

(2)
1 and C(2)

2 . Lastly, in Fig. 4 the performance of AcR is
compared for (L, ε,m) = (32, 0, 3), (LI, εI,mI) = (32, 0, 3),
and T I

f = 50 ns. From these figures, we see that the BEP
performance is better for Type 2 interference compared to
Type 1 interference. Furthermore, it is interesting to observe
the trade-off between pulse repetition interval T I

f and spatial
density λ. From μTR, there is an equivalent relationship
between T I

f and λ. For example, when λ doubles, T I
f should

also double in order not to increase the effect of interference.

VI. CONCLUSIONS
In this paper, we investigated the effect of uncoordinated

UWB network interference on the BEP performance of AcR.
We first derived a statistical model of the aggregate interfer-
ence based on multivariate stable distribution, which takes into
consideration the spatial distribution of the interference nodes,
the propagation characteristics of the interference signals,
and the signaling parameters of the interference systems.
Using our statistical UWB NWI model, we evaluated the
BEP performance of AcR in different types of UWB NWI.
Our proposed analytical framework allows a tractable BEP
performance analysis and still provides valuable insight into
the coexistence of UWB systems in wireless networks.
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