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Abstract—This paper proposes new scheduling and 2D place-
ment heuristics for partially dynamically reconfigurable systems.
One specific focus of this work is to deal with applications
containing hundreds of tasks grouped in a few number of
task types. Such a task graph structure is representative of
data intensive high performance applications. We present three
variations to our task management method that correspond to
three possible system scenarios: (i) possessing complete static
knowledge of task sequences, (ii) only having information on
the maximum resource requirement by any task expected to
be executed, and (iii) having no prior knowledge of any kind
about the workload. Each variant of our scheduler addresses
an architecture that best matches the needs of a particular
configuration of the system. Together they form a complete set of
techniques to serve partial dynamic reconfiguration of massively
parallel computing systems.

I. INTRODUCTION

High performance computing has become essential for
enabling many applications ranging from processing real-time
stock trades to satellite data processing and scientific discovery
in biology, astrophysics, and medicine. Traditional supercom-
puter architectures to tackle these tasks, which rely on software
programmable processors are no longer sufficient. There is an
increasing interest toward incorporating reconfigurable devices
into these systems to achieve orders of magnitude performance
enhancement while maintaining low performance per Watt
ratings [1], [2].

It is not uncommon to expect a supercomputer to efficiently
handle a diverse workload. Furthermore, several jobs of vary-
ing nature or copies of a job executing on different data sets
can be launched on these systems. Reconfigurable computing
resources in these systems would then be expected to serve
this set of concurrent tasks. An important challenge would
be to schedule this set of concurrent applications on partially
dynamically reconfigurable devices (PDRDs) while fulfilling
time and also area requirements for each of them. In this paper,
we present three variations of a task management scheme,
which performs scheduling of task requests and their physical

mapping onto a PDRD. Our proposed management scheme
has features, which are specifically designed for executing
data intensive high performance computing workloads. How-
ever, using the fundamental principles that we outline, the
management scheme could be tailored for other workloads.
Task scheduling and mapping on a partially dynamically
reconfigurable device can be compared to the classical parallel
machine scheduling. On the other hand the reconfiguration
process also introduces time overheads that have to be taken
into consideration. Specifically, there are two main issues that
have to be considered in order to achieve high performance:
module reuse and configuration prefetching. Module reuse is a
technique that allows a newly launched task to use an already
placed module with the same functionality. Configuration
prefetching is a technique that allows the task scheduler to
initiate the reconfiguration of a region of the device for a task
to be executed in future as soon as possible, hiding partially
or totally the reconfiguration time.

Our goal in this paper is to describe a management scheme
that will perform the task scheduling and module mapping
in an online environment while considering the challenges
described above. We present three variations to our task man-
agement, where we consider three levels of knowledge about
the workload: complete static knowledge of task sequences,
knowledge on the maximum resource requirement by any task
expected to be executed, and finally, no prior knowledge of
any kind. Our proposed task management algorithms incur
comparable latencies to state-of-the-art task schedulers to
perform one scheduling and physical mapping decision. At the
same time, considering the ultimate performance, measured
as the total duration of execution for a workload, of our
techniques are superior to existing schedulers. The remainder
of the paper is organized as follows. Section II introduces
the architectural model for this problem and an overview of
how this model relates to the scheduling solutions we have
developed. We present a summary of related work in Section
III. Section IV describes the proposed schedulers in details.
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Experimental results are presented in Section V, while Section
VI summarizes our conclusions.

II. DESIGN ASSUMPTIONS

In the reconfigurable architecture used to validate our ap-
proaches there are two distinct regions: a static and a recon-
figurable region. The static side includes a General Purpose
Processor used to execute the reconfiguration management
and a reconfigurator device, used to internally reconfigure the
system at runtime. The reconfigurable area can be viewed as
a set of reconfigurable slots used to map the desired modules
at different times as decided by the task scheduler. We call
these slots Reconfigurable Regions (RRs). A Reconfigurable
Region is a rectangular FPGA area where two or more tasks
are going to be placed and routed (at design time) and config-
ured (at runtime) according to the application implemented
in the reconfigurable system. A bus-based communication
infrastructure is used to support the connections between the
static and the reconfigurable areas. Starting with the general
template for the physical implementation described above we
have designed three different customizations based on different
communication paradigms. Applications are modeled as task
graphs.Each task is defined by a Reconfigurable Functional
Unit (RFU), that is, a technologically mapped netlist imple-
menting the required functionality. These are characterized by
area, reconfiguration time, and execution time. The size of the
tasks has been chosen to be no more than the 20% of the recon-
figurable area. We targeted our approach to deal with highly
parallelizable applications, like datamining applications. An
important feature of these tasks is that the execution time
is really short compared to the reconfigurtion time. Another
feature of this applications is that there are a lot of tasks doing
the same operation, and, possibly, few distinct operations.
Communication is one of the most important issue. In our
simulation model, we made the following assumptions. Tasks
communicate with each other through the static side. The
processor sends data to each task and reads back the results.
Task to task communication would lead to a larger idle time for
tasks, waiting to send results to subsequent tasks, and possibly
causing system deadlock. Saving final data on a RAM-block
inside the reconfigurable side leads to two problems: not
enough blocks could be available and the complexity due
to RAM reachability would lead to highly complex and bad
implementation results. Communication for reconfiguration
data has been embedded into the reconfiguration latency of
each RFU. Finally, communication between the static side
and the reconfigurable side is managed in different ways for
each architectural model. We will elaborate more when we
introduce each architecture.

III. RELATED WORK

Most of the work proposed in literature [3], [4] has been
done in offline optimization for reconfigurable embedded sys-
tems. Different design-time scheduling techniques have been
proposed to optimize the execution of parallel applications
demanding the use of the same limited reconfigurable resource.

However, due to the design-time nature of those approaches
they can provide promising solutions only for sets of fixed and
well known applications, which is in contrast to the dynamic
behavior of reconfigurable devices.

An approach was proposed [5] to consider the scheduling
problem of multiple applications on a runtime partial reconfig-
urable architecture in two phases: one at design-time and one
at run-time. The design-time scheduler explores the design
space for each task and generates a small set of schedules
with different energy-performance trade-offs. At run-time,
an online scheduler selects the most suitable schedule for
each task. The presented architecture uses a Network-on-
Chip (NoC) communication infrastructure, placed on the FPGA
at compile time, to allow tasks to communicate. The NoC
introduces extra overhead in communication delay, but this
has not been taken into consideration in the scheduling phase.
Furthermore, this approach cannot be applied in a context
where the applications are unknown at compile time. Other
recent scheduling techniques attempt to reduce the reconfig-
uration time overhead, while taking into consideration the
communication infrastructure, [6], [7]. One of the first attempts
to consider a scenario where several communication infrastruc-
tures, in terms of latency restrictions, can be supported was
proposed by Fekete and Gohringer [6]. Different communica-
tion solutions have been evaluated using an ILP formulation.
However, due to its high complexity this formulation cannot be
used for practical purposes in online schedulers. A complete
methodology for scheduling and placing tasks at runtime onto
partially dynamically reconfigurable FPGA-based systems was
explored in another work [7]. The scheduling problem was
presented for both the 1D and 2D models, proposing two
heuristics, the horizon and the stuffing techniques, [8], to
tackle them. The experimental results are promising. However,
the 2D approach was not validated on a real physical system,
since the Xilinx Virtex II technology was being used, which
does not accommodate 2D reconfiguration. Furthermore, no
communication delay has been taken into account. Angermeier
and Teich [9] presented a scheduling heuristic that takes the
reconfiguration overhead into account. In this study, no module
reuse is considered and the communication infrastructure has
not been fully modeled. Also, the reconfigurable architecture
has been modeled only as a 1D area, composed of a set of
slots of fixed dimension, where each task requires exactly
one slot. There are other approaches [10], [11] which try to
overcome this limitation by defining a 1D model, bus-based
communication infrastructure, where the reconfigurable area
is organized in a given number of fixed-size reconfigurable
regions. Others, assume that sufficient resources for commu-
nication are available [12], or propose to enlarge the area
assigned to a task [13], to support the communication channels
between tasks, but without defining any real communication
infrastructure. Run-time prefetch techniques [14], similar to
those used to hide the memory latency, have also been applied
to hide the reconfiguration latency. Other prefetch approaches
were proposed [?], where the scheduler has been implemented
in hardware using a list-scheduling heuristic. Hence, it can
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perform very fast online decisions (just a few clock cycles)
introducing almost no time overhead.

Our approaches exploit module reuse and configuration
prefetching in order to minimize the reconfiguration overhead.
Furthermore, both are taken into account during the online
task scheduling decision process. Most of the existing runtime
management systems do not take those features into account in
their decision processes. Some existing approaches that con-
sider module reuse and/or configuration prefetching, [14], [13],
[5], still lack the awareness of the communication latency.
To the best of our knowledge our proposed online scheduling
algorithms are the first to consider overheads associated with
reconfiguration and communication latency under a unified
framework.

IV. SCHEDULING TECHNIQUES FOR ONLINE 2D DYNAMIC
RECONFIGURATION

Based on the general template described above we devel-
oped three scheduling algorithms, and three different archi-
tectureral setup, to address each case: the Offline/online col-
laborative scheduler, Static grid scheduler, and Dynamic NoC
scheduler. Figure 1 shows the taxonomy for the architectures
associated with each scheduler.

A. Offline/Online Collaborative Scheduling

The Offline/online collaborative scheduling architecture is
most suitable for the case when the task graphs are known a
priori. In other words, for each task graph, the tasks properties,
e.g. latency, reconfiguration time, area, and the dependencies
among them are known. Also the amount of communication
between two tasks is known. In this case, we can employ a
sophisticated static task scheduling and a module placement
tool to determine the best dimensions and shapes for the RRs.
Specifically, we utilize an offline scheduler, [], to generate a
schedule for one or more task graphs, which we refer to as
the basic set to denote the representative workload. The static
schedule enables us to determine the amount of reconfigurable
resources needed by each application in the basic set and it
is also possible to determine the size of the RFU required
for each application on the target device. Next, the tasks in
the basic set are placed on the FPGA, by using a simulated
annealing approach. This placement tool tries to place a task
in an already placed RR, if it is not possible it inserts another
RR or modifies the shape of an already placed RR. Using this
static design step, the number of RRs, their sizes, and their
individual positions are determined. Ultimately, the run-time
decisions made by the online scheduler will then be at the
granularity of these statically defined RRs, mainly concerned
with inserting individual RFUs from the tasks executed on the
system at a given instance into one of these RRs.

In this particular architecture, each RR will establish a point
to point communication with the static part using bus macros.
This choice is based on the observation that in most cases
the static part has to communicate with only one RR at a
time. This is due to the fact that the processor is connected to
an On-Chip Pheriperal Bus (OPB) that can be used only for

one communication. The online scheduler will (almost) always
know where to schedule each task, hence, the communication
between the static side and the reconfigurable side will be
handled in a very effective way, without the need of adding
parallel communicator devices, e.g. switch among multiple in-
put queues. When the Offline/online collaborative scheduler is
used, a single RR may contain more than one communication
interface. The actual number of communication interfaces, for
each RR, is decided by the offline part of the scheduler, [15].
Once the initial configuration of the device has been deployed,
the second step is the actual run-time execution of tasks under
the guidance of the online scheduler.

In the following we refer to the scheduling algorithm As
Late As Possible as ALAP.

Algorithm 1: The online step (second step) of the Of-
fline/Online Collaborative Scheduling Algorithm (ATQ,
RRs)

t ← 0 ;1

repeat2

Select the element with the less ALAP time, P, from3

the ATQ ;
Remove P from the ATQ ;4

minET ←∞ ;5

ifReuse ← false ;6

repeat7

Select a reconfigurable region R from RRs ;8

if (type of R) = (type of P) then9

if ((estimated reuse time of P in R) <10

(minET)) then
minET ← estimated reuse time of P in R;11

selR ← R;12

ifReuse ← true ;13

end14

end15

if (size of R) ≥ (size of P) then16

if ((estimated end time of P in R) <17

(minET)) then
minET ← estimated end time of P in R;18

selR ← R;19

ifReuse ← false ;20

end21

end22

until no more reconfigurable regions;23

if ifReuse then24

Reuse (P, selR, t) ;25

end26

else27

Place (P, selR, t) ;28

end29

t ← t + TIMESTEP ;30

until true;31

The variable TIMESTEP in the pseudocode has been set
as the average execution time of the scheduling step obtained
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Figure 1. i) Offline/online collaborative scheduling architecture ii) static-grid scheduling architecture iii) dynamic-grid scheduling architecture

through more than ten thousand executions. The pseudocode of
the online portion for the Offline/online collaborative schedul-
ing algorithm is shown in Algorithm 1. The scheduler takes
as input the Available Task Queue (ATQ) and the list RRs of
reconfigurable regions placed during the offline phase (i.e. by
the Offline step) onto the reconfigurable side of the device.
When a task is ready to be executed it is directly inserted
into the ATQ. At each step, the scheduler selects the task
with the minimum ALAP time. Then, the scheduler first tries
to reuse a module of the same type that is already placed.
The scheduler also looks for a RR in which the selected task
can be reconfigured and executed with the smallest timing
overhead. The scheduler considers the reconfiguration and
communication delays in the following way. It makes a sweep
over all the RRs and, for each of them, it finds the first
available time when the RR can be used (where no RFUs
are pending to be executed after that time), determines when
the reconfiguration can be performed with no-preemption and
calculates the reconfiguration finish time. Considering the
reconfiguration finish time of the current RFU and the finish
time of associated parent tasks, the scheduler calculates the
amount of time needed for data transmission. It models the bus
on the static side of the FPGA and occupies it when the data
travels on it. This operation takes into account transmissions
that can be preempted: it is possible to send a big amount of
data in not sequential time steps. For example, it is possible
to send 32 bits at time 1 and other 32 bits at time 4. In
this way the bus can, actually, be multiplexed between RFUs,
increasing the throughput of the whole system. This particular
step is a unique novel feature of our proposed scheduler. Once
all the communication finish times have been calculated, the
scheduler simulates the execution of the RFU starting from the
latest communication finish time onwards by adding the RFU
execution time. At the end it simulates the communication
between the RFU and the static part, in the same way used

for the input data. With this information, the scheduler selects
the mode, reused or reconfigured, for the considered task that
allows the shortest termination time, thus, it decides in which
RR it has to be placed. This process is performed for each
task extracted from the ATQ, until ATQ is empty. One specific
focus of this work is to deal with applications containing
hundreds of tasks grouped in a few number of task types.
Such a task graph structure is representative of data intensive
high performance applications. While these tasks have a short
execution time, their reconfiguration time is usually three
orders of magnitude larger. This is due to the fact that all
the loops in the applications have been unrolled: we know
exactly the actual task graph of the applications, not a generic
one. The amount of data necessary to execute a task is of the
same order of magnitude as the execution time, since these
tasks are massively parallelized, each to work with relatively
small input sets. Therefore, each parallel instance of a task is
able to generate its result quickly.

We developed a variant to our scheduling algorithm, which
we refer to as the Stack scheduler, specifically to address
this domain. The main difference between this scheduler and
the previously described one is that, after the task with the
minimum ALAP time has been selected, the scheduler will
schedule all the other tasks of same type in ATQ, ordered by
ALAP values. Thus, multiple tasks will be scheduled at each
scheduling step. For example, let us consider the case when
ATQ contains 5 tasks of type 1 and 7 of type 2:

• Offline/online collaborative scheduling schedules only
one task each time it is executed, thus, 12 runs must
be executed;

• Stack scheduler schedules all the task of the same type
in a single run, thus, only two runs are needed.

B. Static-Grid Scheduling
The Static-Grid approach aims at addressing the case

when only the knowledge of the maximum dimension among
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all tasks is available. The reconfigurable side of the device
is partitioned, at compile time, in a homogeneous grid of
tiles. All tiles are characterized by the same size and shape:
these properties are dictated by the largest area required by
the tasks. Furthermore, when all the tasks have about the
same dimensions, e.g. with a bias of 5-10%, it performs in
the optimal way. The communication infrastructure in this
configuration is based on the Network-on-Chip paradigm, and
an irregular topology is employed. The reason is as follows.
Once a task completes its execution and boradcasts its output
data to the network, it does not need to wait for the static side
to receive this data. The logic resources occupied by this task
can be released immediately and a new task could be placed in
its place. In this way, tasks can be scheduled in a faster way,
leaving communication responsibilities entirely to the NoC.
Another advantage is that it is possible to free multiple tiles
at the same time, because they can send their data in parallel
to the network switches. The drawback of this architecture is
that in order to implement the communication infrastructure,
we need to place network switches to allow the data flow.
Each RFU needs to be connected to exactly one switch in
order to communicate. Hence, this places requirements on
placement and resource utilization. The pseudocode is shown
in Algorithm 2. The constant CELLxSWITCH contains the
number of cells the can be connected to a single switch. The
scheduler takes as input the ATQ and the grid of RRs. After
the selection of the task with the minimum ALAP time, the
scheduler schedules it by first trying to reuse a module. Oth-
erwise, the scheduler searches for a RR in which the selected
task can be reconfigured and executed as soon as possible. In
particular, every time a task has to be placed on the device, the
algorithm determines whether a new communication switch is
needed. If there is not a free tile adjacent to a switch, the task
cannot be placed safely, because it would be impossible for
it to communicate. Thus, when there are no available switch
connections, it is mandatory to insert a new one. The insertion
of a new switch does not have to delay the task for too much
time: if the time needed by a RFU to terminate its work
is less then the reconfiguration time of the switch, the task
will be scheduled on that RR. Furthermore, when the input
queue of all the placed switches are occupied, the scheduler
forces the insertion of a new switch, in order to maintain the
system responce. When a new switch is needed, the scheduler
identifies a location for the switch as well: a position with at
least three free adjacent tiles will be choosen. When three free
tiles are not available, the algorithm searches for two tiles,
and so on. This is because, based on our experiments, it is
optimal to place one neighboring switch for every three new
RRs. In this approach, switches need to be reconfigured on the
reconfigurable side, and occupy the reconfigurator device. The
Static grid scheduler evaluates the reconfiguration overhead
in the same way as the offline/online collaborative scheduler.
However, the evaluation of the communication overhead needs
to change since the communication delay within the NoC has
been modeled differently. Each network switch in the NoC
accepts multiple input queues and it sends data sequentially

Algorithm 2: Static Grid Scheduling (ATQ, RRs)

t ← 0 ;1

repeat2

Select the element with the less ALAP time, P, from3

the ATQ ;
Remove P from the ATQ ;4

minET ←∞ ;5

ifReuse ← false ;6

repeat7

Select a reconfigurable region R from RRs ;8

if (type of R) = (type of P) then9

if ((estimated reuse time of P in R) <10

(minET)) then
minET ← estimated reuse time of P in R;11

selR ← R;12

ifReuse ← true ;13

end14

end15

if ((estimated end time of P in R) < (minET))16

then
minET ← estimated end time of P in R;17

selR ← R;18

ifReuse ← false ;19

end20

until no more reconfigurable regions;21

if ifReuse then22

Reuse (P, selR, t) ;23

end24

else25

if (number of used cells > number of switches ∗26

CELLxSWITCH) then
PlaceSwitch (t) ;27

end28

Place (P, selR, t) ;29

end30

t ← t + TIMESTEP ;31

until true;32

either to the static side or to another switch. Therefore,
each RFU can immediately send its results to the switch it
is connected to. As a result, taking advantage of the NoC
structure, it is possible to hide part of the communication
latency. This is because, based on our experiments, it is
optimal to place one neighboring switch for every three new
RRs. In this approach, switches need to be reconfigured on
the reconfigurable side, and occupy the reconfigurator device.

C. Dynamic-NoC Scheduling

Whenever working with a completely flexible task manage-
ment scheme without assuming any prior knowledge about
task graphs, both the RFUs and the communication infrastruc-
ture need to be placed dynamically at runtime as decided by
the Dynamic-NoC scheduler. Each RFU needs to be connected
by switches to the static part. In order to accommodate the
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complete flexibility we utilize the NoC paradigm again. There-
fore, in order to enable communication between a new task
and the static part, the scheduler needs to place the network
switches as well. The difference between the Dynamic NoC
scheduler and the Static grid scheduler is that the complexity
of deciding where to place a RFU and a network switch
depends on the size of the reconfigurable device and not on
the number of grid cells. This is because the minimum amount
of reconfigurable area that can be reconfigured is coincident to
the one associated with the device. It is possible to increase it,
in order to make faster decisions, but still it has to be not bigger
than 1% of the FPGA: absolute flexibility is needed. In this
approach the communication and reconfiguration overheads
have been taken into account in the same way as in the Static
grid scheduler. The switch placement policy of the scheduler
is the same as well. The pseudocode is shown in Algorithm

Algorithm 3: Dynamic NoC Scheduling (ATQ)

t ← 0 ;1

repeat2

Select the element with the less ALAP time, P, from3

the ATQ ;
Remove P from the ATQ ;4

minET ←∞ ;5

repeat6

Select a reconfigurable region R from RFUs ;7

if (type of R) = (type of P) then8

if ((estimated reuse time of P in R) <9

(minET)) then
minET ← estimated reuse time of P in R;10

selR ← R;11

end12

end13

until no more reconfigurable regions;14

Find the position K that allows the minimum end15

time PT for P if PT geq minET then
Reuse (P, selR, t) ;16

end17

else18

if (number of used cells > number of switches ∗19

CELLxSWITCH) then
PlaceSwitch (t) ;20

end21

Place (P, K, t) ;22

add in RFUs the new module ;23

Remove from RFUs the modules overlapping24

with the new one
end25

t ← t + TIMESTEP ;26

until true;27

3. The scheduler takes as input just the Available Task Queue
(ATQ). At each step the scheduler selects the task with the
minimum ALAP time and then tries to reuse a module already
placed on the device. If it is not possible to exploit module

reuse, the scheduler looks for a portion of the reconfigurable
area in which it is possible to reconfigure and execute the
selected task as soon as possible. Also in this case, the
scheduler determines if another switch has to be placed on the
device. The only difference is the granularity of the placement.
In the case of the Dynamic NoC scheduler the reconfigurable
side of the device is divided in a logical grid at the granularity
of the minimum reconfigurable cells available. Therefore, the
algorithm used for the static grid placement has been modified
in order to deal with RFUs that can occupy more than one grid
cell. The scheduler searches for enough reconfigurable cells to
place the new RFU. The scheduler needs to scan all potential
cells to decide the actual reconfiguration start time for the
new RFU about to be scheduled. This process leads to a very
long scheduling time step, because at this step of the work
we perform an exhaustive search, but any serching algorithm
could be used.

V. EXPERIMENTAL RESULTS

This section presents the results obtained from the evalu-
ation of the different online scheduling techniques proposed
in this paper. The applications used to validate the proposed
approaches, have been selected from a popular data mining
benchmark suite, NU-MineBench [16]. We have experimented
with the following kernels selected from this benchmark suite:

1) variance application: it receives as input a single set of
data and calculates the mean and the variance among
the whole data set;

2) distance application: it receives as inputs two sets of
data of equal size and calculates the distance between
them;

3) variance1 application: it receives as input a single set
of data and calculates the mean and the variance among
the whole data set. The sets of operations used to built
tasks are different with respect to variance.

Each task graph contains hundreds of tasks grouped under a
few task types. Furthermore, while these tasks have a short
execution time, their reconfiguration time is usually three
orders of magnitude larger. The amount of data necessary
to execute a task is of the same order of magnitude as the
execution time, since a high number of parallel tasks work
each with a small input set. The task graphs of these applica-
tions increase in size according to the data size they have to
process: the same application could have a task graph with
either hundreds or thousands of nodes. Moreover, distance
and variance1 applications have some task types in common.
The same relation holds between variance and variance1
applications, since they share some task types, while distance
and variance applications do not have any common task type.
The experiments have been performed as simulations in a
framework that allows the complete management of a 2D
partially dynamically reconfigurable device. The framework
receives a batch as input and it starts to send the tasks with
no parents to the scheduler. Each time a task is scheduled, the
scheduler notifies the framework. If the framework finds that
all the parents of a task have been scheduled, it sends that
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task to the scheduler to be inserted into the Available Task
Queue. This is repeated until the batch is exhausted. In the
following figures and tables, we will refer to the algorithms
using the convention outlined in the following. Offline/online
collaborative scheduler will be O/OC; Stack scheduler will
be Stack; Static grid scheduler will be SG; Dynamic NoC
scheduler will be DNoC. The data and application set for the
experiments have been chosen to form a representative batch of
different task graphs of the above mentioned applications. We
took into account different orders in which the applications
may be executed in an average data mining step; thus, we
selected different orders and percentages for them, according
to a set of initial profiling information. The clock cycle has
been select to be 50 MHz for all the architectures.

A. Analysis and Relative Comparison of Proposed Approaches

The aim of this section is to present in detail the behavior
of each algorithm showing the specific cases in which each
demonstrated benefits. First of all we compare the execution
time of each scheduler. We measured the average time each
scheduler needs to perform a single schedule step, which
grows linearly with the number of available nodes in the
Available Task Queue. Table I shows the average time needed
by a single scheduling step, for a simulation involving 512
tasks.

Table I
AVERAGE TIME FOR A SCHEDULING STEP EXPRESSED IN CLOCK CYCLES

O/OC Stack SG DNoC
140 400 160 500

Figure 2 shows a comparison among our proposed algo-
rithms based on the total execution time needed to complete
a run for a batch for different sizes of batches. The Stack
scheduler outperforms other algorithms by at least one order
of magnitude. The reason is that it takes a longer schedul-
ing step time, but has the opportunity to schedule multiple
tasks together and this leads to fewer total schedule steps.
The benchmark task graphs in this particular experiment are
composed of tasks of two types, so the stack scheduler is the
most effective. The duration of one scheduling decision for
the Dynamic NoC scheduler is very long and this leads to
a high total execution time. However, there are situations in
which the Static grid scheduler does not work very well. If an
application has big tasks that need to be executed concurrently
with small tasks, it will be impossible to generate a grid that
accommodates both types of tasks efficiently. The Dynamic
Noc scheduler is still effective in this case because it manages
the whole reconfigurable side at the finest possible granularity.

Another problem that arises with the Static grid scheduler is
related to the switch dimension and the task execution times.
Each switch occupies a small amount of area, in our experi-
ment a switch corresponds to less than 4% of the total FPGA
area. Normally, this amount of area is much smaller than a
single cell, hence, a lot of space is wasted. If the execution time
of a single task is long enough and therefore comparable with
the scheduling step time, there is no possibility of executing

the needed parallel computations. There is no such problem
when using the Dynamic Noc scheduler. Table II shows the
maximum wasted area in a set of experiments with more than
100,000 tasks, to simulate a real runtime environment.

Table II
PERCENTAGE OF WASTED AREA

O/OC Stack SG DNoC
26,9% 26,9% 48,8% 0%

Another limitation on the possibility of having more concur-
rent tasks arises due to the necessity of having a communica-
tion infrastructure. Table III shows the percentage of area used
by the communication infrastructure in the same experiment.
Even in this case the Static grid scheduler uses most of the
area and the reason is still the same: a single switch occupies
an entire cell of the grid.

Table III
PERCENTAGE OF AREA USED FOR COMMUNICATION INFRASTRUCTURES

O/OC Stack SG DNoC
6% 6% 23,3% 9%

Another analysis useful to compare the real necessity for
having a fixed communication infrastructure is presented in
Table IV.

Table IV
PERCENTAGE OF TIME USED FOR COMMUNICATION

O/OC Stack SG DNoC
4,46% 90,41% 3,9% 1,2%

The data has been taken from the same experiment used
for Table II. It is possible to see that the communication
delay is a very interesting issue for the Stack scheduler. Here,
communication has a significant influence on the scheduling
decisions. In the other algorithms communication is not com-
parable with the total execution time, but still it can influence
the scheduling. When a static communication infrastructure
is used, most of the time it is idle, so most of the time
that area is wasted. This happens even with the NoC based
schedulers. Moreover, because of the reconfiguration time
needed to reconfigure a switch, it is generally not desired to
allow a switch to be removed and placed again.

B. Comparison with state-of-the-art solutions

In this section we compare our schedulers with existing
techniques in order to show their effectiveness. The considered
schedulers are: FIFO scheduler: it uses the classical FIFO
techniques to decide which task needs to be scheduled. Fur-
thermore, to enable a fair comparison we enhanced the basic
FIFO scheduler with collaborative techniques for managing
the communication and all the reconfiguration features ex-
ploited in our algorithms, i.e., communication overhead, mod-
ule reuse and configuration prefetching; FIFO Stack scheduler:
this is the stack version of the previous one using the similar
principle as our Stack scheduler; Horizon scheduler; Stuffed
scheduler.
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Figure 2 shows a comparison among our proposed algo-
rithms and the existing techniques based on the total execu-
tion time needed to complete a run. We first compare the

Figure 2. The trend of the schedule lengths for different batch sizes

performance of the algorithms that possess full knowledge
on the task graphs. These are our Offline/online collaborative
scheduler and Stack scheduler versus the FIFO scheduler. Our
Offline/online collaborative scheduler yields better results than
the FIFO scheduler because the ALAP choice exploits recon-
figuration prefetching in a more effective way. This becomes
more clear when scheduling a general application. The FIFO
stack scheduler and our Stack scheduler obtain almost always
the same results. Next, we compare the schedulers that do
not operate with full knowledge on the task graphs. Horizon
scheduler and Stuffed scheduler do not consider module reuse,
so their high execution time is due to the repeated reconfig-
urations. Each reconfiguration takes more than 1, 000 clock
cycles. The authors [8] do not consider reconfiguration time
at all and this has been the general practice in existing works
so far. Furthermore, they implicitly assume the possibility for
executing multiple reconfigurations in parallel, which is not
possible in practice. For this reason we further assumed that
the communication has zero cost for the Horizon scheduler
and Stuffed scheduler in this experiment, but still their overall
performance is significantly worse than our algorithms.

VI. CONCLUSIONS

The aim of this work is to propose novel online scheduling
techniques useful in a 2D partially dynamically reconfigurable
system scenario. Four algorithms have been developed: Of-
fline/online collaborative scheduling, Stack scheduler, Static
grid scheduler, and Dynamic NoC scheduler. In presence
of complete knowledge over the task graphs that have to
be scheduled on the system, the Offline/online collaborative
scheduling approach is the best choice. The Stack scheduler
will become the best possible choice in the case each task
graph contains a lot of tasks with few distinct types, such
as in the case of data mining applications. If at design
time, only the maximum dimension of a task is known, the
Static grid scheduler is the best choice. Finally, when no
information regarding the applications that will be executed
on the system is available, or when these applications change

very frequently during the system lifetime, or when the other
scheduling algorithms encounter their limitations, the Dynamic
NoC scheduler allows a complete freedom of placement. The
scheduling time is much higher than the other schedulers,
but the performance is still acceptable being comparable with
other state-of-the-art approaches.
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