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Abstract— Deep brain stimulation is an effective therapy 

for Parkinson’s disease (PD) that has enabled microelectrode 

recordings from single-unit cells in the sub-thalamic nucleus 

(STN) of the basal ganglia. This rare data is important to 

develop detailed characterizations of spiking activity to 

understand the pathophysiology of PD. Despite the point 

process nature of neuronal spiking activity, point process (PP) 

methods are not used to analyze these recordings. Therefore, 

we develop PP models using the generalized linear method to 

characterize spiking activity in 28 STN neurons in 7 PD 

patients executing a two-step motor task. In the first step of 

the task, patients could anticipate visual go cues and moved 

once prompted. In the second step of the task, go cues had a 

50% chance of appearing. If cues failed to appear, movements 

were self-initiated. The point process models provide an 

accurate summary of pathological characteristics under 

different cued conditions such as bursting, 10-30Hz 

oscillations, and fluctuations in directional tuning. In 

particular, the models show that when cues can be anticipated 

or when patients self-initiate movements (in both cases an 

internal motor plan is formed prior to movement), 

pathological neural characteristics are suppressed. In 

contrast, when cues cannot be anticipated and later appear, 

there is no suppression of pathological neural characteristics. 

Consequently, movements deteriorate.  

 

I. INTRODUCTION 

 

Deep brain stimulation (DBS) is a well established therapy 

for Parkinson’s disease that has also given 

neurophysiologists the rare opportunity to record neural 

activity in awake humans ([2][24][25]). During surgery, 

microelectrode recordings are routinely performed in order 

to confirm the location of the target nuclei. The need to 

record neural activity in order to confirm proper positioning 

of the microelectrode in the STN allows the study of neural 

activity in Parkinson’s patients during movement at no 

additional risk. 

 

Despite the point process nature of neuronal spiking 

activity, general point process (PP) methods (non-Poisson) 

have not been used to analyze these recordings with the 

exception of two recent preliminary studies performed by 
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the investigators here ([16][30]). Current analyses typically 

involve computing several statistics from spike train data to 

uncover intrinsic and extrinsic factors associated with 

spiking propensity. For example, to analyze short-term 

history dependence within a spike train inter-spike interval 

histograms are typically generated ([19][31][29]). Long-

term history dependence related to neural oscillations are 

often studied using frequency domain statistics such as the 

power spectra, which often entails transforming the spike 

train into a continuous-valued signal before computing its 

Fourier transform [19]. Furthermore, spectral analysis 

operates under the assumption that the window of spiking 

activity being transformed is stationary. Movement-related 

dependence such as directional tuning in a neuron is often 

inferred from a tuning curve which illustrates the vector 

sum of the average firing rates in each movement direction.  

 

We develop point process models to characterize neural 

spiking activity in the STN across 7 Parkinson’s patients 

executing different behavioral tasks described in the 

METHODS section below. The point process paradigm is a 

probabilistic framework that naturally takes into account the 

binary characteristics of spike train data [13].  We 

implement the point process model using generalized linear 

methods (GLM) [26] which allow us to capture the relative 

contribution of intrinsic factors (eg. short and long-term 

history effects) and extrinsic factors (eg. the impact of 

movement direction) on the probability that the neuron will 

spike at any given time-in one computation [33]. Therefore, 

we analyze modulations of bursting, oscillations and 

directional tuning simultaneously over time and study their 

relative importance in effecting spiking propensity for each 

subject group. The GLM framework also provides an 

efficient computational scheme, available in several 

software packages (eg. MATLAB, SAS), for model 

parameter estimation and a likelihood framework for 

conducting statistical inferences based on the estimated 

model [10]. 

 

Our point process (PP) models provide a summary of 

pathological characteristics such as bursting, 10-30Hz 

oscillations, and increased modulation in directional tuning 

while subjects execute three types of directed-hand 

movement tasks. In one task, the patients could anticipate 

that visual go cues would appear. In the other tasks, the go 
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cues had a 50% chance of appearing and hence patients 

could not anticipate whether a cue would appear. If it 

appeared, the movement was visually-guided else it was 

self-initiated. Our models showed that pathological activity 

such as 10-30Hz oscillations in STN was suppressed when 

patients could either anticipate cues or when they self-

initiated movements, which facilitated movement. When 

patients could not anticipate cues which then later appeared, 

STN activity failed to significantly modulate and movement 

and reaction times increased. Despite the widely accepted 

theory that visual cues improve behavior in PD patients 

([17],[23],[27] and many more), our analysis shows that it 

is not the cue itself but rather the ability to develop an 

internal motor plan (which can be facilitated by an 

anticipated cue) that suppresses abnormal neural activity 

and facilitates movements in PD patients.  

II. METHODS 

a. Subjects 

Seven patients undergoing deep brain stimulator placement 

for the treatment of PD were included in the study.  All 

patients had idiopathic PD with a Hoehn-Yahr score of 3 or 

higher and had a documented response to L-dopa 

replacement therapy.  All patients received a thorough pre-

operative neurological exam.  Exclusion criteria for surgery 

included those patients with Parkinson “plus” syndromes, 

cognitive impairment, active psychiatric disorders, or 

anatomic abnormalities on magnetic resonance imaging 

(MRI) [1].  None of the patients had undergone prior 

surgery for the treatment of PD.  Informed consent for the 

study was obtained in strict accordance with a protocol 

approved by the Institutional Review Board and the 

multidisciplinary movement disorders assessment 

committee at the Massachusetts General Hospital.  The 

decision to offer surgery was based on clinical indications 

alone, and bore no relation to the patients’ participation in 

this study.  To ensure that the patients were comfortable 

with performing the behavioral joy-stick task, they practiced 

it prior to surgery.  Subjects were able to remove their hand 

from the joystick or stop the task at any time.  At all time 

points before and during surgery, the patients had the clear 

understanding that their participation was not related to the 

surgical outcome, and that they could withdraw from the 

study at any time.  

b. Electrophysiology 

Anti-Parkinsonian medications were withheld the night 

before surgery.  No sedatives were given prior to or during 

performance of recordings.  A local anesthetic was used 

prior to the incision and burr hole placement.  The 

stereotactic localization using pre-operative MRI and 

computerized tomography, as well as general techniques of 

intraoperative microelectrode recordings have been 

described previously [1][20]. Single-unit recordings were 

made from the dorsal-lateral motor sub-territory of the STN 

based on stereotactic localization and reconstructions of the 

electrode trajectories.  The STN has characteristic high 

firing rates in comparison to the surrounding structures and 

has clear dorsal and ventral borders that are evident when 

reconstructing neuronal activity along the electrode 

trajectories.  Once within the STN, no attempt was made to 

explicitly select cells based on presence or absence of 

movement-related activity, or on whether the cells 

responded to passive and/or volitional movement.  This was 

done specifically to limit the potential for a sampling bias. 

 

We used an array of 3 tungsten microelectrodes, separated 

by 2 mm and placed in a parasagittal orientation.  The 

electrodes were advanced simultaneously in 50-micron 

increments using a motorized micro-drive (Alpha Omega; 

Nazareth, Israel). The behavioral paradigm was controlled 

by a Macintosh G4 computer using custom-made software.  

Neuronal activity was band-pass filtered (300 Hz – 6 kHz) 

and sampled at 20 kHz.  Spikes were sorted off-line using a 

standardized template-matching algorithm (Cambridge 

Electronics Design, Cambridge, England). 

 

c. Behavioral Task 

Once the microelectrodes were in the STN and stable single 

units were obtained, the subjects viewed a computer monitor 

and performed a behavioral task by moving a joystick with 

the contra-lateral hand. The joystick was mounted such that 

movements were in a horizontal orientation with the elbow 

flexed at approximately 45 degrees.  Patients performed a 

two-step sequential motor task.  Each task-set consisted of 

an anticipated-cued trial followed by an unanticipated trial.  

In the anticipated-cued trial, a central fixation spot was first 

displayed for 500 ms, after which, an array of four gray 

equally spaced circular targets would appear in the “up”, 

“right”, “down” and “left” directions.  After a variable delay 

interval ranging 500 – 1000 ms, one of the gray targets 

would turn green.  Following another variable delay interval 

ranging from 500 – 1000 ms, the central fixation spot 

would turn green indicating that the patients could move 

the joystick.  Once within the target, patients were required 

to hold the cursor stationary for another 100 ms.  The 

stimuli on the screen would then erase, and the patients 

would be allowed to return the spring-loaded joystick to its 

resting position. It is important to note that patients knew 

apriori that a go cue will appear during these trials. 

 

After completion of the anticipated-cued trial, the screen 

remained blank for 1000 ms.  This would be followed by 

one of two possible unanticipated trials.  As before, a 

fixation spot and gray circular array would appear, but 

would be followed by a go cue with 50% chance. In these 
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trials, the patients were required to move the joystick in the 

same direction as in the preceding anticipated-cued trial. If 

the patient moved and a go cue appeared afterwards or if 

the patient waited too long before moving (>= 4 seconds 

after fixation), he/she would not receive a reward. 

Therefore, patients had an incentive to wait for a possible 

go cue and if no go cue appeared within a short time period, 

self-initiated movements were made. The trials were 

pseudo-randomly interleaved in blocks such that each 

direction and trial type was presented once within each 

block, rendering a 50% chance of a go cue appearing on any 

given unanticipated trial.  All directions and trial types were 

counterbalanced such that an equal number of directions 

and trials types were tested for each cell.  Furthermore, 

variable delays for cue presentation on anticipated-cued 

trials and unanticipated trials were each timed separately.  

If patients strayed beyond the confines of a 60-wide 

invisible corridor, moved the cursor to an incorrect target, 

failed to return the joystick to its resting position or failed to 

reach the target within 4 seconds from fixation, the trial 

would abort and repeat again.  The patients were instructed 

to maintain their gaze on the central of the screen at all 

time-points during the trial. See Figure 1 for a schematic of 

two-step sequential motor task which renders three trial 

types. 
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Figure 1: Schematic of two-step sequential motor task. 

Anticipated-cued trial (Top), Unanticipated Visually-Guided trial 

(middle), Unanticipated Self-Initated trial (bottom). 

 

Table 1: Distribution of trials and recorded neurons per patient 

d. A Point Process Model of STN Dynamics 

The point process framework has proven in practice to be a 

powerful and flexible framework that is capable of modeling 

spike train activity from a diverse range of neuronal types 

and neural circuits, such as: place cells from the rat 

hippocampus [4,18]; retinal ganglion cells of the 

salamander, rabbit, and cat [23]; and neurons from the 

supplementary eye field of the macaque monkey [22].  

Inspired by a preliminary studies of co-authors here 

[16][30] , we formulate a point process model to relate the 

spiking propensity of each STN neuron to factors associated 

with movement direction and features of the neuron’s 

spiking history.  We analyze oscillations, bursting and 

directional tuning modulations across trials for three 

different trial types. 

 

A point process is a binary stochastic process defined in 

continuous time (eg. number of neuronal spikes in a given 

time interval) and is characterized entirely by the 

conditional intensity function, which is defined below [31]. 

Consider the time interval ],0( T  as the continuum, and 

events as neuronal spike times. Let 
n

tt ,...,1  denote the 

times of each neural spike such that Tttt
n

≤<<< ...0
21

 . 

Then, if )(TN  is the sample path of the associated counting 

process ( )(TN  is the number of spikes in the interval ],0( T ), 

the conditional intensity function is the following  

 

          
t

HtNttNP
Ht t

t
t

∆

=−∆+
=

→∆

)|1)()((
lim)|(

0
λ .          (1)                      

 

t
H  is the history of the sample path and that of any 

covariates up to time t , and )(tNt   is the time of the last 

spike prior to  t . Consequently,  

  

        )|],((Pr)|( tt HttinspikeobHt ∆+≈∆λ  .              (2) 

   

When ∆
 

is small, equation (2) is roughly the spiking 

propensity at any time   The well-known homogeneous 

Poisson process is a special point process in which all 

events are independent and the CIF does not dependent on 

history. Because the CIF characterizes a point process in its 

entirety, defining a model for a CIF defines a model for the 

spike train. 

 

We use Generalized linear models (GLM) [26][33] to 

characterize the CIF for each neuron.  In a GLM, the log of 

the CIF is a modeled as a linear function of parameters that 

multiply the covariates which describe the neural activity 

dependencies The GLM is an extension of the multiple 

linear regression model in which the variable being 

predicted, in this case spike times, need not be Gaussian. 

GLM also provides an efficient computational scheme for 

model parameter estimation and a likelihood framework for 

conducting statistical inferences based on the estimated 

model [10]. 

 

Specifically, we define the CIF for each neuron to be a 

function of movement direction  which corresponds to {Up, 

Right, Left and Down} and the neuron’s spiking history in 

the preceding 150 msec.  Rather than estimating the CIF 

continuously throughout the entire trial, we estimate it in 
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time windows around key epochs and at discrete time 

intervals each 1 msec in duration. We first estimate the CIF 

during the fixation period of 500msec (FX). Fixation is 

when the subject is at rest and is thus used as a baseline. We 

then estimate the CIF over 500msec windows centered at 

the target cue (TC), go cue (GC), and movement (MV) 

onsets. Figure 2 below highlights all of the time periods for 

which we estimate the CIF. 

 

�� �� ��
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�
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Figure 2: Time periods over which the CIF denoted by 

equation (3), is estimated are shaded.  

 

Going forward, we omit the superscripts denoting the epoch 

for a simpler read and express the rate function as 

 

          ),|()|(),|( θλθλθλ t
HS

t HttHt ⋅=  ,                      (3) 

 

where the component ),|( θλ t
S Ht   describes the effect of the 

behavioral stimulus (movement direction) on the neural 

response and the component ),|( θλ t
H Ht describes the effect 

of spiking history on the neural response. The units of 

),|( θλ tHt   and )|( θλ t
S  are in spikes per second and is 

dimensionless. The idea to express the CIF as a product of a 

stimulus component and a temporal or spike history is 

appealing as it allows one to assess how much each 

component contributes to the spiking propensity of the 

neuron. If spiking history is not a factor associated with 

neural response, then   will be very close to 1 for all times 

and (3) reduces to an inhomogeneous Poisson process. 

 

The model of the stimulus effect is  

     ∑=
=

4

1

)()|(log
d

dd
S

tIt ααλ               (4) 

where 





=
otherwise0

directioninismovement if t  allor 1
)(

df
tId  . 

 

The  4
1}{ =ddα  parameters measure the effects of movement 

direction on the spiking probability. For example, if 1α
e  is 

significantly larger than 432 and,,
ααα

eee during movement, 

then the probability that a neuron will spike is greater when 

the patient moves in the UP direction, indicating that the 

neuron may be tuned in the UP direction.  
 

Our model of spike history effect is 

       

)(

)(),,|(log
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 (5) 
 

where ):( ban  is the number of spikes observed in the time 

interval  [ , )a b  during the epoch. 

 

The 10
1}{ =jjβ   parameters measure the effects of spiking 

history in the previous 10 msec and therefore can capture 

refractoriness and/or bursting on the spiking probability in 

the given epoch. For example, if 1β
e   is close to zero for 

any given epoch, then for any given time t, if the neuron 

had a spike in the previous millisecond then the probability 

that it will spike again is also close to zero (due to refractory 

period). Or if 5β
e  is significantly larger than 1, then 

during fixation and for any time t, if the neuron had a spike 

5 milliseconds ago then the probability that it will spike 

again is modulated up, indicating burstiness.  

 

The  14
1}{ =kk

γ   parameters measure the effects of the spiking 

history in the previous 10 to 150 msec on the spiking 

probability, which may be associated with not only the 

neuron’s individual spiking activity but also that of its local 

neural network. For example, if 4γ
e  is significantly larger 

than 1, then for any time t during fixation if the neuron had 

one or more spikes between 40-50  milliseconds ago then 

the probability that it will spike again is modulated up, 

indicating 20-25 Hz oscillations.  

 

By combining equations (4) and (5), we see that the CIF 

may be written as 

        


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ep
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j

ep
j

d
d

ep
dt

nn

tIHt

γβ

αθλ

 (6) 

The model parameter vector =θ {
kjd γβα ,, } 

contains 28 unknown parameters (for each epoch and time 

window modeled). We compute maximum-likelihood 

estimates for θ  and 95% confidence intervals of   for each 

neuron using glmfit.m in MATLAB. 

 

The Kolmogorov-Smirov (KS) statistic, based on the time-

rescaling theorem, was used to assess model goodness-of-fit. 

The time-rescaling theorem is a well known result in 

probability theory which states that any point process with 

an integrable conditional intensity function may be 

transformed into a Poisson process with unit rate [9]. A KS 

plot, which plots the empirical cumulative distribution 

function of the transformed spike times versus the 
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cumulative distribution function of a unit rate exponential, 

is used to visualize the goodness-of-fit for each model. The 

model is better if its corresponding KS plot lies on the 45 

degree line. We computed 95% confidence bounds for the 

degree of agreement using the distribution of the KS 

statistic. 

III. RESULTS 

As mentioned above, we built point process models for 37 

STN neurons in 7 Parkinson’s patients which captured 

spiking dynamics for three trial types. At most 28 neurons 

passed our goodness-of-fit criterion which required the KS 

statistic of each model to be less than 0.05. Once the 28 

models were selected for analysis, we determined for each 

neuron and for each epoch within the trial, whether the 

neuron exhibited refractoriness, bursting, HFOs, and 

directional tuning. The neuron’s model parameters and 

their 95% confidence bounds were used to make these 

determinations as described next. 

 

First, we note that the product of the rate function for a 

given neuron and a small time interval, ∆)|( tHtλ , is 

approximately the probability that the neuron will fire in 

time interval ∆  given history of extrinsic and intrinsic 

dynamics up to time t, which is captured in tH . Then by 

virtue of equation (6), we allow the probability that each 

STN neuron will fire at some time t within an epoch to be 

modulated by movement direction (captured in α  

parameters), short-term history spiking dynamics (captured 

in β   parameters) and long-term history spiking dynamics 

(captured in  γ  parameters). 

 

Figure 3 shows an example of a single neuron’s optimal 

model parameters and their 95% confidence intervals 

during the peri-movement epoch. We highlight in Figure 3 

and discuss below how certain parameter value ranges 

indicate refractoriness, bursting, HFOs, and directional 

tuning.  

 

1. Refractoriness:  As illustrated in the second row of 

Figure 3, both the PD and primate STN neurons exhibit 

refractory periods before and after onset of movement as 

indicated by down modulation by a factor of 10 or more due 

to a spike occurring 1 msec prior to a given time t. That is, 

if a spike occurs 1 msec prior to time t, then it is very 

unlikely that another spike will occur at time t ( 1.0≤ie
β

 

for all  ie
β

 within its 95% confidence band, i=1,2,or 3). 

This is expected since after an action potential (a spike) 

occurs, some time (refractory period) must elapse before the 

neuron can again produce another action potential in 

response to a stimulus [7].  

2. Bursting: As illustrated in the second row of Figure 3, 

the PD STN neuron fires in rapid succession before and 

after movement onset as indicated by up modulation by a 

factor of 2 or more due to prevalent spiking activity 

occurring 2-10 msec prior to some time t. That is, if a spike 

occurs 2-10 msec prior to time t, then it is very likely that 

another spike will occur at time t. Formally, a neuron bursts 

if its model parameters satisfy the following: for at least one  

10,...,3,2=i , 5.1UBand1LB ≥> ii where ii
ie UBLB ≤≤ β

.
 

 

3. 10-30 Hz Oscillations: As illustrated in the third row 

first two columns of Figure 3, the PD STN neuron 

exhibits10-30 Hz oscillatory firing before and after 

movement. That is, the probability that the PD STN neuron 

will fire at a given time t is up modulated by a factor of 2 or 

more if a spike occurs 30-100 msec prior to t. Formally, a 

neuron has 10-30 Hz oscillations if its model parameters 

satisfy the following: for at least one  

10,...,3,2=i , 5.1UBand1LB ≥> ii where ii
ie UBLB ≤≤ β

.
 

 

4.  Directional Tuning: As illustrated in the first row of 

Figure 3, the PD STN neuron appears to exhibit more 

directional tuning before and after movement onset than the 

primate neuron. That is, the PD STN neuron seems more 

likely to fire in some directions than in others unlike the 

primate neuron. To quantify directional tuning, we 

performed the following test for each neuron and each time 

relative to onset (l): 

1. For each direction },,,{
*

LDRUd = , compute   

)Prob()Prob(p ,,d,d *
,*,

* ldld
ldld ee αα

αα
>=>=  for *

dd ≠ . 

Define .0p **
d,d

=  Use the Gaussian approximation for ld ,α , 

which is one of the asymptotic properties of ML estimates to 

compute  d,d
*p  (Brown et al., 2003).  

2. If 975.0pmax
d,d

4,3,2,1
*

*
≥

=d

 then neuron exhibits 

directional tuning.  

 

Figure 4 illustrates a population summary of modulations 

in bursting, beta oscillations, and directional tuning for 

each trial type. When the fractional change from baseline 

(defined to be the first 500 msec of each trial-fixation or 

FX) is statistically significant in a less pathological 

direction (i.e., decreased bursting, decreased HFOs, 

increased directional tuning), we denote it with a ‘+’ 

symbol. As shown in Figure 4, during anticipated +cue 

trials (top row), there is an increase in directional tuning 

and a decrease in beta oscillations early on during the trial 

immediately after target cue onset. After movement 

initiation, this suppression of pathological activity becomes 

more pronounced, which has been previously reported in 

studies where patients could anticipate go cues ([1] ,[34]). 

During self-initiated –cue trials (bottom row), we also see 

an increase in directional tuning and a decrease in beta 
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oscillations later on during the trial. The average reaction 

time for anticipated +cue trials is 0.69 seconds and average 

movement times for anticipated +cue trials and self-initiated 

–cue trials are 0.38 and 0.34 seconds, respectively. 

 

Interestingly, during unanticipated +cue trials (middle row), 

we did not observe significant suppression of beta 

oscillations or significant increase in directional tuning at 

any time during the trial even though cues were presented. 

Although bursting decreased right after fixation and during 

movement, motor performance deteriorated. The average 

movement and reaction times are 0.43 and 1.55 seconds, 

respectively. 

 

Figure 3: Optimal model parameters for an STN neuron during 

MV- and MV+ periods of a PD patient executing anticipated-cued 

trials before movement (left) and after movement (right). Top row 

(movement direction modulation): optimal extrinsic factors de
α  

for d=1,2,3,4 (U,R,D,L) are plotted in black lines from left to right 

and corresponding 95% confidence intervals are shaded around 

each black line in a unique color for each direction. Middle row 

(short-term history modulation): optimal short-term history factors 

ie
β  for i=1,2,…,10 are plotted in blue from right to left and the 

corresponding 95% confidence intervals are shaded in green. 

Bottom row (long-term history modulation) optimal long-term 

history factors je
γ

 for j=1,2,…,14 are plotted in blue from right to 

left and corresponding 95% confidence intervals are shaded in 

green. Note the change in time scale for bottom row. 

IV. DISCUSSION 

Two of the trial types performed, anticipated (+cue) and 

unanticipated visually-guided (+cue), were identical in 

terms of visuospatial timing and presentation (top and 

middle, Figure 1).  The only difference between these two 

task conditions was the subject’s ability to anticipate the “go 

cue” that was present in both.  This anticipatory difference, 

however, resulted in suppression of pathological oscillations 

and improvement in reaction time and movement time in 

the former compared to the latter. In contrast, in both the 

anticipated (+cue) and unanticipated self-initiated (-cue) 

conditions, we obtained similar suppression of pathological 

oscillations and improvement in behavioral measures 

despite the presence of the “go cue” (GC) in the former and 

the lack of the GC in the latter.   

 

To cue or not to cue.  These results explicitly demonstrate 

that external cues are neither necessary nor sufficient for 

motor facilitation in PD. This is consistent with the findings 

previously described by [21]. In the unanticipated self-

initiated (-cue) condition, our subjects were compelled to 

move by an impending deadline.  There is a 50% chance the 

external GC will appear at the start of each trial.  If the 

subject does not move by the end of the GC epoch, which is 

defined whether the GC is presented or not, the subject fails 

the trial and no award is received. Thus, at some point 

during the GC epoch, the subject decides to self-initiate 

movement in the absence of an external GC.  We will term 

this internal impetus to move an “internallygenerated” cue.  

In the unanticipated self-initiated trials, this “internally 

generated” cue is as effective in suppressing pathological 

oscillations and facilitating movement time as the 

anticipated external cue in the anticipated condition.  It is 

therefore likely that the internal impetus to move triggers 

the same downstream effects that dampen pathological 

activity and facilitate movement, without requiring the 

presentation of the external cue. 

 

We believe, like the external GC in the anticipated 

condition, the internally generated cue in the unanticipated 

self-initiated condition activates prefrontal cortical activity 

that leads to diminished pathological STN and basal 

ganglia coherence through well-described circuitry. The 

activation of prefrontal cortical activity during self-initiated 

movements was demonstrated in [21] as well. Although 

there is no way to determine when the internal cue was 

generated by the subject, the internal cue should be 

generated on average after the external cue would usually 

have appeared, when the subject realizes that the external 

“go cue” is not coming and an “internal cue” is necessary.  

This leads to the prediction that, if both the internal and the 

external cues result in physiological modulation via the 

same mechanism, this modulation would occur earlier in 

anticipated trials vs. unanticipated self-initiated trials. 

Indeed, we find the neurophysiological changes seen in 

HFOs and DTs with self-initiation occur on average 500 

milliseconds after those seen in anticipated trials, as we 

would have predicted. 

 

What may be critical for motor facilitation in PD is a clear 

trigger that activates a pre-existing motor plan already 

formulated in prefrontal cortex. This clear trigger can be an 

internal cue to move, and exists in the presence or absence 

of an external “go cue”.  Therefore, we hypothesize that it is 

the activation of a specific motor plan, not the presentation 

of a cue, that is the critical event that provides the cortical 
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drive that modulates the abnormal physiology of the basal 

ganglia, leading to motor facilitation.   

 

 
Figure 4: Modulations of each characteristic for each trial type. 

Anticipated-Cued Trials (top); Unanticipated Cued Trials 

(middle); Unanticipated Self-Initiated Trials (bottom).  When the 

factional change from baseline is statistically significant in a less 

pathological direction (decreased bursting, decreased HFOs, 

increased directional tuning), then we denote that with a ‘+’ 

symbol and in interesting cases note the p-value. 
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