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Abstract— In this paper we consider a class of dynamic
vehicle routing problems, in which a number of mobile
agents in the plane must visit target points generated
over time by a stochastic process. It is desired to design
motion coordination strategies in order to minimize
the expected time between the appearance of a target
point and the time it is visited by one of the agents.
We cast the problem as a spatial game in which each
agent’s objective is to maximize the expected value of
the “time spent alone” at the next target location and
show that the Nash equilibria of the game correspond to
the desired agent configurations. We propose learning-
based control strategies that, while making minimal or
no assumptions on communications between agents as
well as the underlying distribution, provide the same level
of steady-state performance achieved by the best known
decentralized strategies.

I. INTRODUCTION

A very active research area today addresses coordi-
nation of several mobile agents: groups of autonomous
robots and large-scale mobile networks are being con-
sidered for a broad class of applications.

An area of particular interest is concerned with
the generation of efficient cooperative strategies for
several mobile agents to move through a certain number
of given target points, possibly avoiding obstacles or
threats [1], [2], [3], [4], [5]. Trajectory efficiency in
these cases is understood in terms of cost for the agents:
in other words, efficient trajectories minimize the total
path length, the time needed to complete the task, or
the fuel/energy expenditure. A related problem has been
investigated as the Weapon-Target Assignment (WTA)
problem, in which mobile agents are allowed to team
up in order to enhance the probability of a favorable
outcome in a target engagement [6], [7]. In this setup,
targets locations are known and an assignment strategy
is sought that maximizes the global success rate. In a
biological setting, the closest parallel to many of these
problems is the development of foraging strategies, and
of territorial vs. gregarious behaviors [8], in which

individuals choose to identify and possibly defend a
hunting ground.

In this paper we consider a class of cooperative
motion coordination problems, to which we can refer as
dynamic vehicle routing, in which service requests are
not known a priori, but are dynamically generated over
time by a stochastic process in a geographic region of
interest. Each service request is associated to a target
point in the plane, and is fulfilled when one of a team
of mobile agents visits that point. For example, service
requests can be thought of as threats to be investigated
in a surveillance application, events to be measured in
an environmental monitoring scenario, and as informa-
tion packets to be picked up and delivered to a user in a
wireless sensor network. It is desired to design a control
strategy for the mobile agents that provably minimizes
the expected waiting time between the issuance of a
service request and its fulfillment. In other words, our
focus is on the quality of service as perceived by the
“end user,” rather than, for example, fuel economies
achieved by the mobile agents. Similar problems were
also considered in [9], [10], and decentralized strategies
were presented in [11]. This problem has connections
to the Persistent Area Denial (PAD) and area coverage
problems discussed, e.g., in [3], [12], [13], [14].

In this paper we cast a dynamic vehicle routing
problem as a spatial game in which each agent’s
objective is to maximize the expected value of the
“time spent alone” at the next target location and show
that the Nash equilibria of the game correspond to
the desired agent configurations. We propose learning-
based control strategies that, while making minimal
or no assumptions on communications between agents
as well as the underlying distribution, provide the
same level of steady-state performance achieved by
the best known decentralized strategies. In this sense,
the problem can be solved (almost) optimally without
any explicit communication between agents; in other
words, the no-communication constraint in such cases
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is not binding, and does not limit the steady-state
performance.

II. PROBLEM FORMULATION

Let Q ⊂ R2 be a convex and compact domain
on the plane; we will refer to Q as the workspace.
A stochastic process generates service requests over
time, which are associated to points in Q; these points
are also called targets. The process generating service
requests is modeled as a spatio-temporal Poisson point
process, with temporal intensity λ > 0, and an abso-
lutely continuous spatial distribution described by the
density function ϕ : Q → R+, with support Q (i.e.,
ϕ(q) > 0⇔ q ∈ Q). The spatial density function ϕ is
normalized in such a way that

∫
Q ϕ(q) dq = 1. Both λ

and ϕ are not necessarily known.
A spatio-temporal Poisson point process is a collec-

tion of functions {P : R+ → 2Q} such that, for any
t > 0, P(t) is a random collection of points in Q,
representing the service requests generated in the time
interval [0, t), and such that
• The total numbers of events generated in two dis-

joint time-space regions are independent random
variables;

• The total number of events occurring in an interval
[s, s+ t) in a measurable set S ⊆ Q that satisfies

Pr [card ((P(s+ t)− P(s)) ∩ S) = k] =

=
exp(−λt · ϕ(S))(λt · ϕ(S))k

k!
, ∀k ∈ N,

where ϕ(S) is a shorthand for
∫
S ϕ(q) dq.

Each particular function P is a realization, or trajec-
tory, of the Poisson point process. A consequence of
the properties defining Poisson processes is that the
expected number of targets generated in a measurable
region S ⊆ Q during a time interval of length ∆t is
given by:

E[card ((P(t+ ∆t)− P(t)) ∩ S)] = λ∆t · ϕ(S).

Without loss of generality, we will identify service
requests with targets points, and label them in order of
generation; in other words, given two targets ei, ej ∈
P(t), with i < j, the service request associated with
these target have been issued at times ti ≤ tj ≤ t
(since events are almost never generated concurrently,
the inequalities are in fact strict almost surely).

A service request is fulfilled when one of m
mobile agents, modeled as point masses, moves to
the target point associated with it. Let p(t) =
(p1(t), p2(t), . . . , pm(t)) ∈ Qm be a vector describing

the positions of the agents at time t. The agents are free
to move, with bounded speed, within the workspace
Q; without loss of generality, we will assume that
the maximum speed is unitary. In other words, the
dynamics of the agents are described by differential
equations of the form

ṗi(t) = ui(t), with ‖ui(t)‖ ≤ 1, ∀t ≥ 0, (1)

for each i ∈ {1, . . . ,m}. The agents are identical, and
have unlimited range and target-servicing capability.

Let Bi(t) ⊂ Q indicate the set of targets serviced by
the i-th agent up to time t. (By convention, Bi(0) = ∅,
i = 1, . . . ,m). We will assume that Bi∩Bj = ∅ if i 6= j,
i.e., that service requests are fulfilled by at most one
agent. (In the unlikely event that two or more agents
visit a target at the same time, the target is arbitrarily
assigned to one of them).

In this paper we concentrate our investigation on the
light load case, in which the target generation rate is
very small, i.e., when λ→ 0+. In that case, the agents
will spend most of the time staying idle, say at locations
π = {π1, . . . , πm} and upon the arrival of a new target
the closest one goes toward the target location.

In the limit as λ→ 0+, at most one service request
is outstanding at any given time with probability one.
In other words, new service requests are generated so
rarely that most of the time agents will be able to reach
a target and return to their reference point before a new

Consider the j-th service request, generated at time
tj . Assuming that, at tj , all agents are at their refer-
ence positions, the expected system time E[Tj ] can be
computed as

E[Tj ] =
∫
Q

min
i=1,...,m

‖pi(tj)− q‖ ϕ(q)dq.

Let Tj be the time elapsed between the issuance of
the j-th service request, and the time it is fulfilled,
and let T π := limj→∞ E[Tj ] be the system time under
policy π, i.e., the expected time a service request must
wait before being fulfilled, given that the mobile agents
follow the strategy defined by π. Note that the system
time T π can be thought of as a measure of the quality of
service, as perceived by the “user” issuing the service
requests.

At this point we can finally state our problem: we
wish to devise a loitering policy that yields a quality of
service (i.e., system time) achieving, or approximating,
the theoretical optimal performance given by

T opt = min
π
T π. (2)
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III. ON THE PROPERTIES OF THE COST FUNCTION

If all service requests are generated with the agents
at their reference positions, the average service time
(for small λ) can be evaluated as

T opt =
∫
Q

min
i=1,...,m

‖p̂∗i − q‖ ϕ(q)dq

=
m∑
i=1

∫
Vi(p∗)

‖p̂∗i − q‖ ϕ(q)dq.

The function appearing on the right hand side of
the above equation, relating the system time to the
asymptotic location of reference points, is called the
continuous multi-median function [15]. This function
admits a global minimum (in general not unique) for
all non-singular density functions ϕ, and in fact it is
known [10] that the optimal performance in terms of
system time is given by

T opt = min
p∈Qm

m∑
i=1

∫
Vi(p)
‖pi − q‖ ϕ(q)dq. (3)

In the following, we will investigate the convergence
of the reference points as new targets are generated, in
order to draw conclusions about the average system
time T in light load. In particular, we will prove
not only that the reference points converge with high
probability (as λ→ 0+) to a local critical point (more
precisely, either local minima or saddle points) for the
average system time, but also that the limiting reference
points p̂∗ are generalized medians of their respective
Voronoi regions, where

Definition 3.1 (Generalized median): The general-
ized median of a set S ⊂ Rn with respect to a density
function ϕ : S → R+ is defined as

p := arg min
p∈Rn

∫
S
‖p− q‖ϕ(q) dq.

We call the resulting Voronoi tessellation Median
Voronoi Tessellation (MVT for short), in analogy with
what is done with Centroidal Voronoi Tessellations. A
formal definition is as follows:

Definition 3.2 (Median Voronoi Tessellation): A
Voronoi tessellation V(p) = {V1(p), . . . ,Vm(p)} of a
set S ⊂ Rn is called a Median Voronoi Tessellation
of S with respect to the density function ϕ if the
ordered set of generators p is equal to the ordered
set of generalized medians of the sets in V(p) with
respect to ϕ, i.e., if

pi = arg min
s∈Rn

∫
Vi(p)
‖s−q‖ϕ(q) dq, ∀i ∈ {1, . . . ,m}.

IV. SPATIAL GAME FORMULATION IN STRATEGIC

FORM

In this section we cast the coverage problem as a
spatial game. In particular, we frame our presentation
along the works [7], [16], in which game-theoretic point
of view has been introduced in the study of coopera-
tive control and strategic coordination of decentralized
networks of multi-agents systems.

A. Game formulation in the strategic form

We first formulate the game in the strategic
form [17] as follows. Consider a scenario with the
same workspace Q, density function ϕ with support Q
and the same stochastic process for generating service
requests as described in the previous sections. We
replace the terms service requests and targets with
resources to fit better in the context of this section. The
players of the game are the m vehicles. The vehicles
are assumed to be rational autonomous decision makers
trying to maximize their own utility function. The
resources offer rewards in a continuous fashion and the
vehicles can collect these rewards by traveling to the
resource locations. Every resource offers reward at a
rate, which depends on the number of vehicles present
at its location: the reward rate is unity when there is
one vehicle and it is zero when there are more than
one vehicles. Moreover, the life of the resource ends
as soon as more than one vehicles are present at its
location. The sensing and communication capabilities
of the vehicles are as follows: (i) the location of a
resource is broadcast to all the vehicles as soon as
it is generated; similarly, every vehicle is notified as
soon as a resource ceases to exist, and (ii) there is
no explicit communication between the vehicles, i.e.,
the vehicles do not have knowledge about each other’s
position and no vehicle knows the identities of other
vehicles visiting any resource location.

This setup can be understood to be an extreme form
of congestion game [18], where the resource cannot
be shared between agents and that the resource is cut
off at the first attempt to share it. The total reward
for vehicle i from a particular resource is the time
difference between its arrival and the arrival of the next
vehicle, if i is the first vehicle to reach the location of
the resource, and zero otherwise. (Note that, since a
vehicle cannot communicate with any other vehicle, it
cannot determine if it will be the first one to reach the
resource location when the location is broadcast to it).

We focus our analysis on the light load case here,
i.e., when λ → 0+. Moreover, we assume that all
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the vehicles are present in Q at time t = 0 and
that there are no resources at time t = 0. Hence,
there will be utmost one active resource at any time
almost surely. Note that these assumptions on the initial
conditions are without any loss of generality in light
of the discussion in the earlier sections. Since our
focus is on the light load scenario, we let the strategy
space of agent i to be Q for all i ∈ {1, . . . ,m}.
Specifically, the strategy of an agent i denoted as πi
is identified with a reference point in Q which the
agent approaches in the absence of outstanding service
requests. On the generation of a resource, the agents
move directly towards its location and return back to
the reference location once the resource ceases to be
active. We will use π−i ∈ Qm−1 to denote the strategy
specification of all the agents, except agent i, i.e.,
π−i := (π1, . . . , πi−1, πi+1, . . . , πm). Hence, we may
write strategy vector π as (πi, π−i). Let Ui : Qm → R
be the utility function of vehicle i. For a given strategy
vector π, let ri(q, π) be the reward collected by agent
i for resource generated at location q ∈ Q. In light of
the discussion above, the utility function of an agent i
is defined as

Ui(πi, π−i) = Eq[ri(q, π)]. (4)

Equation (4) implies that the goal of every vehicle is
to maximize the expected value of the reward from
the next resource. With this, we complete the formal
description of the game at hand. For brevity in notation,
we use G to denote this game. We now derive a working
expression for the utility function.

As mentioned before, the reward for agent i is the
time till the arrival of the second agent at point q if
agent i is the first to reach q and zero otherwise. Since
the vehicles move at unit speed, the reward for an agent
i can be written as ri(q, π) = max{0,minj 6=i ‖πj−q‖−
‖πi − q‖}. The utility function for agent i can then be
written as

Ui(πi, π−i) = Eq[max{0,min
j 6=i
‖πj − q‖− ‖πi− q‖}] =

=
∫
Q

max{0,min
j 6=i
‖πj − q‖ − ‖πi − q‖}ϕ(q)dq. (5)

However, we know that

max{0,min
j 6=i
‖πj − q‖ − ‖πi − q‖} =

=
{

minj 6=i ‖πj − q‖ − ‖πi − q‖, if q ∈ Vi(π)
0, otherwise .

Substituting this into Equation (5), we derive the
following expression for the utility function.

Ui(πi, π−i) =
∫
Vi(π)

(min
j 6=i
‖πj − q‖ − ‖πi − q‖)ϕ(q)dq.

(6)

B. Properties of the Game

We now prove that G belongs to a class of multi-
player games called potential games. In a potential
game, the difference in the value of the utility function
for any agent for two different strategies, when the
strategies of the other agents are kept fixed, is equal
to the difference in the values of a potential function
that depends only on the strategy vector and not on
the label of any agent. The formal definition [19] is as
follows.

Definition 4.1: A finite m-player game with strat-
egy spaces {Πi}mi=1 and utility functions {Ui}mi=1 is
a potential game if, for some potential function ψ :
×i∈{1,...,m}Πi → R,

Ui(π′i, π−i)− Ui(π′′i , π−i) = ψ(π′i, π−i)− ψ(π′′i , π−i),

for every player i ∈ {1, . . . ,m}, for every π−i ∈
×j 6=iΠ and for every π′i, π

′′
i ∈ Πi.

Proposition 4.2: G is a potential game.
Proof: The expression for the utility function of

agent i, as given by Equation (6), can be rewritten as:

Ui(πi, π−i) =

=
∫
Vi(π)

min
j 6=i
‖πj−q‖ϕ(q)dq−

∫
Vi(π)

‖πi−q‖ϕ(q)dq+

+
m∑

j=1
j 6=i

∫
Vj(π)

‖πj−q‖ϕ(q)dq−
m∑

j=1
j 6=i

∫
Vj(π)

‖πj−q‖ϕ(q)dq

=
∫
Vi(π)

min
j 6=i
‖πj−q‖ϕ(q)dq+

m∑
j=1
j 6=i

∫
Vj(π)

‖πj−q‖ϕ(q)dq

−
m∑
j=1

∫
Vj(π)

‖πj − q‖ϕ(q)dq

=
∫
Vi(π)

min
j 6=i
‖πj − q‖ϕ(q)dq

+
m∑

j=1
j 6=i

∫
Vj(π)

min
k 6=i
‖πk − q‖ϕ(q)dq

−
m∑
j=1

∫
Vj(π)

‖πj − q‖ϕ(q)dq
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=
∫
Q

min
j 6=i
‖πj−q‖ϕ(q)dq−

m∑
j=1

∫
Vj(π)

‖πj−q‖ϕ(q)dq.

(7)
In the integrand of the first term in Equation (7),
minj 6=i ‖πj − q‖ is the distance from point q to the
closest among all the agents, except the ith agent. We
then consider the Voronoi partition with generators
π−i = π \ πi, and let Vj(π−i) be the corresponding
Voronoi cell belonging to agent j. Equation (7) can
then be written as

Ui(πi, π−i) =
m∑

j=1
j 6=i

∫
Vj(π−i)

‖πj − q‖ϕ(q)dq

−
m∑
j=1

∫
Vj(π)

‖πj − q‖ϕ(q)dq. (8)

Note that the first term on the right hand side of Equa-
tion (8) is independent of πi. With this observation,
consider the following potential function:

ψ(π) = −
m∑
i=1

∫
Vi(π)

‖πi − q‖ϕ(q)dq. (9)

The proposition then follows by combining Equa-
tions (8) and (9) with the definition of a potential game.

It turns out that an agent’s motive to maximize its
own utility function is aligned with the global objective
of minimizing the average system time. To formally
establish this fact, we start with a couple of definitions.
First, we extend the concept of a potential game.

Definition 4.3: A finite m-player game with strategy
spaces {Πi}mi=1 and utility functions {Ui}mi=1 is an
ordinal potential game if, for some potential function
ψ : ×i∈{1,...,m}Πi → R,

Ui(π
′

i, π−i)− Ui(π”
i , π−i) > 0

if and only if

ψ(π
′

i, π−i)− ψ(π”
i , π−i) > 0,

for every player i ∈ {1, . . . ,m}, for every π−i ∈
×j 6=iΠ and for every π′i, π

′′
i ∈ Πi.

Remark 4.4: Note that every potential game is also
an ordinal potential game.

Definition 4.5: The set of agents utilities
{Ui}i=1,...,m is aligned with the global utility Ug
if and only if the game with utility functions
{Ui}i=1,...,m is an ordinal potential game with Ug as a
potential function.

For the game G, define the global utility function to
be the negative of the average system time under policy
π, i.e., Ug(π) ≡ −T π, which can be rewritten as

Ug(π) = −
m∑
i=1

∫
Vi(π)

‖πi − q‖ϕ(q)dq. (10)

Proposition 4.6: The utility functions of the agents
in G are aligned with its global utility function.

Proof: Comparing Equation (10) with the ex-
pression of the potential function in Equation (9), we
observe that Ug(π) = ψ(π). Proposition 4.2 implies
that G is a potential game, and hence an ordinal
potential game, with ψ as the potential function. The
proposition then follows from Definition 4.5.

We now show that our utility function belongs to a
class of utility functions called Wonderful Life Utility
Functions [20].

Definition 4.7: Given a global utility function
Ug(πi, π−i), the Wonderful Life (local) utility function
is given by

Ui(πi.π−i) = Ug(πi, π−i)− Ug(π−i),

where Ug(π−i) is the global utility in absence of agent
i.

Remark 4.8: The Wonderful Life utility function
measures the marginal contribution of an agent towards
the global utility.

Proposition 4.9: The local utility function, as de-
fined in Equation (8) is a Wonderful Life utility func-
tion with respect to the global utility function defined
in Equation (10).

Proof: We refer to Equation (8) in the proof of
Proposition 4.2, where we derived an alternate expres-
sion for the local utility function. Comparing the two
terms individually with the expression for the global
utility function in Equation (10), we get that

Ui(πi, π−i) = Ug(πi, π−i)− Ug(π−i).

The proposition then follows from the definition of the
Wonderful Life utility function.

The πnc policy yields the equilibrium strategy p̂∗ =
{p̂∗1, . . . , p̂∗m} such that, for all i ∈ {1, . . . ,m}, p̂∗i is the
median of the Voronoi region Vi(p̂∗). We now state and
prove results regarding the efficiency and equilibrium
status of the p̂∗ strategy in the game theoretic setting
of this section. We first state the following definition
adapted from [7]:

Definition 4.10: A strategy π̃ is called a pure Nash
equilibrium if, for all i = {1, . . . ,m},

Ui(π̃i, π̃−i) = max
πi∈Πi

Ui(πi, π̃−i). (11)
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Moreover, a strategy π is called efficient if there is
no other strategy that yields higher utilities to all the
agents.

Proposition 4.11: The p̂∗ strategy is an efficient pure
Nash equilibrium for the game G.

Proof: For any π−i = {p−i, t−i},

p̂∗i = argminpi∈Q

∫
Vi(p)
‖pi − q‖ϕ(q)dq.

Combining this with the definition of an efficient Nash
equilibrium, one arrives at the proposition.

Remark 4.12: Note that we do not claim in Propo-
sition 4.11 that the π∗ strategy provides the unique
efficient pure Nash equilibrium for the game G. For
instance to find other efficient pure Nash equilibria
it is sufficient to modify the algorithm during the
initial phases, when the FT points are not uniquely
determined. These modifications produce different pol-
icy vectors which are anyway all efficient pure Nash
equilibria, as it is immediate to see.

In general, it is true that alignment does not prevent
pure Nash equilibria from being suboptimal from the
point of view of the global utility. Moreover, even
efficient pure Nash equilibria (i.e. pure Nash equilibria
which yield the highest utility to all agents) can be
suboptimal from the perspective of the global utility
function. Such a phenomenon is indeed what happens
in our construction.

In the earlier sections, we proved that the update
rule for the reference point which was part of both
the policies converges to p̂∗ almost surely under light
load conditions. That update rule can then be thought
of a learning algorithm for the agents to arrive at the
efficient Nash equilibrium p̂∗, even without explicit
knowledge of the history of policies played by the other
agents at every iteration.

V. LEARNING ALGORITHM

In this section, we propose a learning based control
algorithm for the spatial game G.

A. The complete information case

A similar algorithm can be given for the problem
of achieving Median Voronoi Tessellations. Indeed,
assume that the agents update generators’ locations (in
this case, the position of the generators should coincide
with the position of the agents) and weights according
to the following law.

π̇i = −
∫
Vi(π)

πi − q
‖πi − q‖

ϕ(q)dq, πi(0) ∈ Q (12)

The success of the previous strategy depends on the
fidelity of communication channels between agents. In
fact, a common theme in cooperative control is the
investigation of the effects of different communication
and information sharing protocols on the system per-
formance.

B. The limited information case

Let us begin with an informal description of a policy
πnc requiring no explicit information exchange between
agents. At any given time t, each agent computes its
own control input according to the following rule:

(i) If D(t) is not empty, move towards the nearest
outstanding target.

(ii) If D(t) is empty, move towards the point min-
imizing the average distance to targets serviced
in the past by each agent. If there is no unique
minimizer, then move to the nearest one,

where D(t) is the set of locations of the outstanding
tasks. In other words, we set

πnc(pi(t),Bi(t),D(t))

= vers(Fnc(pi(t),Bi(t),D(t))− pi(t)), (13)

where

Fnc(pi,Bi,D) =


arg min

q∈D
‖pi − q‖, if D 6= ∅,

arg min
q∈Ω

∑
e∈Bi

‖e− q‖, otherwise,

(14)
‖ · ‖ is the Euclidean norm, and

vers(v) =
{
v/‖v‖, if v 6= 0,
0 otherwise.

The convex function W : q 7→
∑

e∈B ‖q − e‖, often
called the (discrete) Weber function in the facility
location literature [15], [21] (modulo normalization by
card(B)), is not strictly convex only when the point
set B is empty—in which case we set W (·) = 0 by
convention— or contains an even number of collinear
points. In such cases, the minimizer nearest to pi in (14)
is chosen. We will call the point p∗i (t) = Fnc(·,Bi(t), ∅)
the reference point for the i-th agent at time t.

In the πnc policy, whenever one or more service
requests are outstanding, all agents will be pursuing
a target; in particular, when only one service request is
outstanding, all agents will move towards it. When the
demand queue is empty, agents will either (i) stop at
the current location, if they have visited no targets yet,
or (ii) move to their reference point, as determined by
the set of targets previously visited.
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Theorem 5.1: The system time provided by the
learning algorithm converges to a critical point (either a
saddle point or a local minimum) with high probability
as λ→ 0+.

The proof of Theorem 5.1 is reported in [22]. We
provide a brief outline of the proof here.

(i) First, we prove that the reference point of any
agent that visits an unbounded number of targets
over time converges almost surely.

(ii) Second, we prove that, if m ≥ 1 agents visit
an unbounded number of targets over time, their
reference points will converge to the generators
of a MVT almost surely, as long as agents are
able to return to their reference point infinitely
often.

(iii) Third, we prove that all agents will visit an
unbounded number of targets (this corresponds to
a property of distributed algorithms that is often
called fairness in computer science).

(iv) Finally, we prove that agents are able to return
to their reference points infinitely often with high
probability as λ→ 0+.
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