
MIT Open Access Articles

Online Network Coding for Time-Division Duplexing

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lucani, Daniel E., Muriel Medard and Milica Stojanovic. "Online Network Coding for
Time-Division Duplexing." IEEE Global Communications Conference (GLOBECOM 2010), Miami,
Florida, December 6-10, 2010.

As Published: http://dx.doi.org/10.1109/GLOCOM.2010.5683892

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/60309

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0 Unported

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/60309
http://creativecommons.org/licenses/by-nc-sa/3.0/

Online Network Coding for Time-Division
Duplexing

Daniel E. Lucani
RLE, MIT

Cambridge, Massachusetts, 02139
Email: dlucani@mit.edu

Muriel Médard
RLE, MIT

Cambridge, Massachusetts, 02139
Email: medard@mit.edu

Milica Stojanovic
Northeastern University

Boston, Massachusetts, 02115
Email: millitsa@mit.edu

Abstract— We study an online random linear network coding
approach for time division duplexing (TDD) channels under
Poisson arrivals. We model the system as a bulk-service queue
with variable bulk size and with feedback, i.e., when a set of
packets are serviced at a given time, they might be reintroduced
to the queue to form part of the next service batch. We show
that there is an optimal number of coded data packets that
the sender should transmit back-to-back before stopping to
wait for an acknowledgement from the receiver. This number
depends on the latency, probability of packet erasure, degrees
of freedom at the receiver, the size of the coding window, and
the arrival rate of the Poisson process. Random network coding
is performed across a moving window of packets that depends
on the packets in the queue, design constraints on the window
size, and the feedback sent from the receiver. We study the
mean time between generating a packet at the source and it
being “seen”, but not necessarily decoded, at the receiver. We
also analyze the mean time between a decoding event and the
next, defined as the decoding of all the packets that have been
previously “seen” and those packets involved in the current
window of packets. Inherently, a decoding event implies an in-
order decoding of a batch of data packets. We present numerical
results illustrating the trade-off between mean delay and mean
time between decoding events.

I. INTRODUCTION

The study of network coding in large latency time division
duplexing (TDD) channels, i.e., when nodes can only transmit
or receive, but not both at the same time, was first considered
in Ref. [1]. This reference studied the problem of transmitting
a batch of M data packets through a link using random linear
network coding and carefully chosen feedback. The objective
was to minimize the mean time to complete transmission of
the M data packets by choosing how many coded packets to
transmit back-to-back before stopping to listen for an acknowl-
edgement. This scheme was more thoroughly characterized in
Ref. [2], [3], and extended to the cases of one-to-all broadcast
and all-to-all broadcast in [4] and [5], respectively. Ref. [6] and
[7] provide practical considerations in terms of the use of small
field sizes and a systematic approach that reduces complexity.
The assumption in these references was that the source had
M data packets in its buffer before starting transmission. We
are interested in studying what happens if there is a random
arrival of data packets to the sender.

The problem of queueing for network coding has been con-
sidered previously to account for burstiness or losses. Ref. [10]
and [11] studied a system with random linear coding, slotted

time, and a Bernoulli arrival process. Ref. [8] considered a
TDD channel, where the time is not slotted and the service
time depends on the size of the bulk of packets being sent.
Ref. [8] studied the problem of queueing for the scheme
proposed in Ref. [1], i.e., [8] considered the problem of
transmitting a batch of packets completely to the receiver and
getting an acknowledgement at the sender before starting with
the transmission of a new batch. The work of Sundararajan et
al, e.g.,[9], showed a means to operate network coding in an
online manner rather than following a batch by batch approach.
The authors used a feedback channel to report the status of
the receiver in order to provide efficient queue management
at the sender.

We extend the work of Ref. [8] to consider an online
network coding approach. This work also provides an exten-
sion to the results of [9] in the case of 1) a TDD channel
which imposes a limited feedback constraint, 2) the use of
a general service time, dependent on the number of packets
combined in a given transmission, and 3) Poisson arrivals.
Another important contribution of our work is to characterize
the time between decoding events, where a decoding event
constitutes the decoding at the receiver of all the packets
that have been involved in linear combinations up to that
moment. A decoding event implies an in-order decoding of
a batch of data packets and does not refer to the decoding
of a packet of random position in the stream of packets. We
provide heuristics for the computation of the optimal number
of coded packets to be transmitted before stopping to listen
for an acknowledgement. We present numerical results for the
mean delay of a packet and the mean time between decoding
events for different choices of the arrival rate to illustrate the
trade-off between these two metrics.

The paper is organized as follows. Section 2 presents
preliminary concepts. In Section 3, we describe the system
model and assumptions. In Section 4, we present the queueing
model of the system. In Section 5, numerical examples are
provided. Conclusions are summarized in Section 6.

II. PRELIMINARIES

We can think of packets as vectors over a finite field. Since
we focus on linear network coding, we can think of the state
of knowledge of a node as a vector space over the field.
Ref. [9] showed that with a proper use of feedback it is

possible to perform network coding in an online manner. The
authors relied on acknowledging every new degree of freedom
(dof), i.e., referring to a new dimension or independent linear
combination of the original data packets at the receiver, that
was successfully delivered to a receiver. This reference showed
that using the feedback on dof required the queue to store
a basis for a coset space with respect to the subspace of
knowledge common to all the receivers. The authors defined
a specific way of computing this basis using the notion of a
node “seeing” a data packet. Let us define this concept before
continuing.

Definition Index of a packet: For any positive integer k, the
k-th packet that arrives at the sender is said to have index k.

Definition Seeing a packet: A node is said to have “seen” an
original packet pk, with index k, if it has received enough
information to compute a linear combination of the form
(pk + q), where q is itself a linear combination involving only
packets with an index greater than that of pk, i.e., of index
greater than k. Note that decoding a packet implies seeing that
packet, which corresponds to q = 0.

In this work, we use a similar feedback scheme to that
presented in [9]. However, the TDD constraint on the channel
requires us to use feedback more sporadically, i.e., we cannot
send an acknowledgement (ACK) packet for every success-
fully received dof. Instead, we aim to determine the number
of coded packets to transmit before the sender stops to listen
for an ACK packet. This ACK packet will report the last
consecutive “seen” packet, say of index k. This allows the
sender to remove all packets with index k or less.

Note that we do not guarantee that the seen packets will
be decoded immediately, similar to the decode-when-seen
algorithm in [9]. In general, there is a delay in decoding the
data packets, because the receiver has to collect enough inde-
pendent linear combinations involving the unknown packets.
In particular, we are interested in how often a decoding event
occurs, which is defined below.

Definition Decoding event: For any positive integer k, if
random combinations at the sender have involved up to the k-
th packet, it is said that a decoding event occurs if the receiver
decodes the k-th packet and all the packets before it after a
transmission of a group of coded packets by the sender. In
other words, it constitutes the decoding at the receiver of all
the packets that were involved in random linear combinations
up to that moment.

III. SYSTEM MODEL

We consider a sender that wants to transmit information
through a link of data rate R [bps]. The channel is modeled
as a packet erasure channel with a propagation delay Tprop.
Nodes can only transmit or receive, but not both at the
same time. The sender uses random linear network coding
to generate coded data packets. The packets included in a
linear combination at a given time are determined by the ACK

λ
mK 1…

…

…

Receiver Transmitter
Large latency

TDD channel

Feedback

Fig. 1. Bulk queue model with feedback for online network coding for TDD
channels.

packets received up to that time, the packets in the queue, and
the window of coding.

We consider each data packet to be of fixed-length n bits.
The coded packets contain a coded data portion of size, n bits,
as well as a header and the random coding coefficients used in
the linear combination. Each coefficient is represented by g =
log2 q bits for encoding over a field of size q. The information
header is of size h bits. In general, the total number of bits
per packet depends on the number of packets combined. For
simplicity, we assume that the coded packet contains space for
the maximum number of coefficients allowed by the window,
i.e., K. Therefore, the number of bits in each coded packet is
h + n + gK. The duration of transmission of a coded packet
is then Tp = h+n+gK

R .
We consider that the data packets arrive to a source node

through a Poisson process with rate λ packets/s. Upon arrival,
the data packet is placed in a buffer to await encoding
and transmission to the receiver, as in Fig. 1. The buffer
forms a first-in-first-out (FIFO) queue. However, some of the
packets will be fed back to the queue because they were
not successfully delivered. That is, the ACK packet from the
receiver contains an index number that is lower than the index
of some of the packets used in the generation of the previous
batch of coded packets.

The size of the coding window of packets is variable, where
m ≤ M ≤ K. The pair (m,K) constitutes the range of the
bulk size or the size of the coding window used to perform
random linear network coding [15]. If the buffer has fewer than
m data packets, the system will wait until m packets arrive
before providing service. If the buffer contains more than K
packets, the system will service exactly K packets. Finally, if
the buffer has M packets with m ≤ M ≤ K, then the system
will service M packets.

Note that the service time depends on the number of data
packets taken from the queue at any time, i.e., the service time
distribution is general but it depends on the size of the batch
being transmitted. Thus, we can extend the bulk queueing
model with feedback developed in [14] to study this problem.

We consider that the sender can transmit coded packets
back-to-back before stopping to wait for an ACK packet of
duration Tack. The waiting time Tw constitutes the time be-
tween the sender stopping its transmission and fully receiving
the ACK packet, i.e., Tw = 2Tprop + Tack. The ACK packet
feeds back the index of the last consecutive seen data packet.
In a sense, this is also providing the number of dof that are
still required to decode successfully at the receiver if no new

packets are included in future combinations. The number of
coded packets sent back-to-back depends on the value of M ,
i.e., the number of packets that will be included in the linear
combinations.

Transmission begins after an ACK packet is received and
j ≥ m packets are in the queue. At this point, j information
packets are taken from the queue, which are encoded into
Nj ≥ j random linear coded packets, and transmitted. The
ACK informs the transmitter about the index of the last
consecutively seen packet. At this point, the source may have
received new data packets. Let’s say that i packets will be
used to generate linear combinations in the next round of
transmission. Then, the transmitter sends Ni coded packets,
and so on. If the number of packets in the queue exceeds K,
then K packets are involved in the linear combinations in the
next transmission, and NK coded packets are transmitted. The
time between a transmission of packets and receiving an ACK
packet is ti = NiTp + Tw for i = m, ...,K, for any i > K
the transmission time is tK .

IV. QUEUEING MODEL

The system model discussed in the previous section is very
similar to the bulk queueing model with feedback studied in
[14]. This bulk queueing model considers Poisson arrivals and
a general service time that depends on the bulk size. However,
we consider a minimum batch size m that could be different
from 1, which was the assumption in [14]. Also, the system
model is very similar to the bulk queue model studied in [13]
with the addition of packets having some probability of being
fed back to the queue. This work generalizes these previous
results in order to accurately analyze our proposed system. We
use a similar notation to that in [13]. The transition probability
of the number of packets in the queue is given by

P =



a
(m)
0 a

(m)
1 · · · a

(m)
K a

(m)
K+1 · · ·

: : : : : :
a
(m)
0 a

(m)
1 · · · a

(m)
K a

(m)
K+1 · · ·

a
(m+1)
0 a

(m+1)
1 · · · a

(m+1)
K a

(m+1)
K+1 · · ·

: : : : : :
a
(K)
0 a

(K)
1 · · · a

(K)
K a

(K)
K+1 · · ·

0 a
(K)
0 · · · a

(K)
K−1 a

(K)
K · · ·

0 0 a
(K)
0 · · · a

(K)
K−1 · · ·

: : : : : :


where a

(j)
k is the probability of having k arrivals plus fed back

packets during a service of type j.

A. Moment Generating Function of Transition Probabilities

The moment generating function of the transition proba-
bilities can be computed in two ways, with identical results.
The first is to consider that the new state of the queue can
be computed based on the previous state of the queue, the
packet arrivals, and packets taken out of the queue based on the
information provided by the ACK packet, i.e., qnew = qold +
A(qold)−D(qold), where qnew is the new state of the queue,

qold is the previous state of the queue, A(qold) and D(qold) are
the number of packets that arrived to the queue and were taken
out it depending on qold, respectively. Another perspective is
to consider that the new state of the queue depends on the
previous state, packet arrivals and packets being fed back to
the queue, i.e., qnew = (qold −K)+ + A(qold) + F (qold),
where F (qold) indicates the number of packets being fed
back to the queue, given that the previous state is qold, and
(X)+ = max{0, X}, as in [14]. We choose in this analysis
the former representation.

The arrivals are characterized by a Poisson distribution that
depends on the previous state of the queue. The distribution
for the packets taken out of the queue given that the queue
is in state i, the set of values of Ni’s is {Ni}, and a link of
erasure probability Pe, is given by:

P(i,{Ni},P e)(k) = (1)

(Ni
k

)(
1−Pe

Pe

)k
PeNi if 0 ≤ k < i and i ≤ K,∑Ni

a=i

(Ni
a

)(
1−Pe

Pe

)a
PeNi if k = i and i ≤ K,(NK

k

)(
1−Pe

Pe

)k
PeNK if 0 ≤ k < i and i > K,∑NK

a=K

(NK
a

)(
1−Pe

Pe

)a
PeNK if k = K and i > K,

The moment generating function of the departures is given by

M
(i)
(i,Ni,P e)

(s) =
∑k=i

k=0 eskP(i,Ni,P e)(k) = (2)∑i−1
k=0

((Ni
k

)(
1−Pe

Pe

)k
PeNi

[
esk − esi

])
+ esi. (3)

Using properties of the moment generating function and the
fact that qnew = qold + A(qold)−D(qold), then, the moment
generating function of the transition probabilities when the
system is in state i is given by

M
(i)
T (s) = eλti(es − 1)esiM

(i)
(i,Ni,P e)

(−s). (4)

B. Stationary Probabilities

Let us define

T (j)(z) =
∑∞

k=0 a
(j)
k zk =

eλti(z − 1)
[∑i−1

k=0

((Ni
k

)(
1−Pe

Pe

)k
PeNi

[
zi−k − 1

])
+ 1

]
.

as a z-transform of the transition probabilities, and note that

a
(j)
k =

1
k!

∂k

∂zk
T (j)(z)

∣∣∣
z=0

. (5)

Let us denote by Π(z) =
∑∞

i=0 πiz
i the corresponding

generating function of the stationary probabilities. Ref. [13]
showed that Π(z) can be expressed as

Π(z) = T (K)(z)
∑K

i=0 πiz
i−zKT (m)(z)

∑m
i=0 πi

T (K)(z)−zK

−
∑K

i=m+1 πiT
(i)(z)

T (K)(z)−zK
(6)

which provides an expression for Π(z) in terms of its first K+
1 coefficients π0, ..., πK . Determining these K+1 coefficients

provides a full characterization of the stationary probabilities,
similar to the result in [13].

Using the same techniques as Ref. [13], we can prove that
T (K)(z)−zK has exactly K zeros satisfying |z| ≤ 1 assuming
that T (K)(z) has a radius of convergence greater than one.
Denoting the roots as 1, z1, ..., zK−1 and assuming that they
are different, we note that the numerator of (6) has to vanish
for z1, ..., zK−1 which gives us K − 1 linear equations

T (K)(zk)
∑K

i=0 πiz
i
k − zK

k T (m)(zk)
∑m

i=0 πi

−
∑K

i=m+1 πiT
(i)(zk) = 0 (7)

for k = 1, ...K − 1. Also, the numerator vanishes trivially for
z = 1 for both the numerator and the denominator in (6).
We thus need one more linear equation. To obtain this we
use l’Hôspital’s rule to exploit the fact that Π(1) = 1. This
translates to

1 =
m∑

i=0

[
1 +

i− θm

θK −K

]
πi +

K∑
i=m+1

[
θK + i− θi

θK −K

]
πi

where we have defined ∂T (i)(z)
∂z

∣∣∣
z=1

= θi. The final linear
equation to fully characterize Π(z) is given by

(am
0 −1)π0+am

0 π1+ · · ·+am
0 πm+am+1

0 πm+1+aK
0 πK = 0.

We can use techniques developed by Ref. [16] in order to
compute the roots of T (K)(z) − zK . In fact, with a simple

solver it is sufficient to find the root of z
(
T (K)(z)

)−1/K
−

e2kiπ/K with i =
√
−1, for every value of k ∈ {0, ...,K−1},

which provides us with the K required roots.

C. Queue of Finite Capacity

The general solution requires the calculation of the roots
of T (K)(z) − zK . This can result in numerical inaccuracies
and becomes increasingly difficult when the decision variable
K assumes a larger value. For these reasons, we simplify
the problem considering that the system has a capacity of B
packets waiting to be serviced. The transition probability for
this case is

P =



a
(m)
0 a

(m)
1 · · · a

(m)
B−1 R(B − 1,m)

: : : : :
a
(m)
0 a

(m)
1 · · · a

(m)
B−1 R(B − 1,m)

a
(m+1)
0 a

(m+1)
1 · · · a

(m+1)
B−1 R(B − 1,m + 1)

: : : : :
a
(K)
0 a

(K)
1 · · · a

(K)
B−1 R(B − 1,K)

0 a
(K)
0 · · · a

(K)
B−2 R(B − 2,K)

: : : : :
· · · a

(K)
0 · · · a

(K)
B−K R(B −K, K)


where R(k, l) = 1 −

∑k
j=0 a

(l)
j . In order to compute the

stationary distribution, it suffices to solve π̄ = Pπ̄, with
π̄ = [π0, π1, ..., πB]T , under the constraint that

∑B
i=0 πi = 1.

D. Mean Delay

Let us define the mean delay E[D] of a packet as the time
that elapses since a packet arrives to the queue to the time it
is “seen” at the receiver. For this purpose, let us first define
the mean queue size as E[Q] =

∑B
i=0 iπi for the case in

which the queue capacity is B. If there is no constraint on the
capacity, we simply let B → ∞. Let us also define T(m,K)
as the transmission time for a choice of (m,K). Then,

E[T(m,K)] =

tm

m∑
i=0

πi +
K−1∑

i=m+1

tiπi + tK

B∑
i=K

πi

 ,

where
∑B

i=K πi = 1−
∑K−1

i=0 πi, and if there is no constraint
on capacity, again we let B →∞. Using Little’s law,

E[D] = E[Q]/λ + E[T(m,K)]. (8)

E. Mean Time Between Decoding Events

One of the key features of an online network coding system
is that the data packets can be seen by the receiver without
being decoded. We are interested in determining the time
between decoding events, which provides us with a metric
of the worst case of a packet being seen before it is decoded.
We analyze this for the case of m = 1 and for a finite capacity
queue, but it can be extended for a general m and for the case
of an infinite capacity queue.

The time between decoding events can be determined by
modelling the problem as an absorbing Markov chain, as in
Fig. 2. The absorption state indicates that a decoding event
occurred, and we shall considered this to be state 0. Other
states correspond to the number of packets in the queue. A
transition to the absorbing state may take place from any

other state. Let us define Pa(j|i) = e−λti (λti)
j

j! . The transition
probability matrix PA of this absorbing Markov chain is of
the form

PA =



1 0 · · · 0 0
d
(1)
0 d

(1)
1 · · · d

(1)
B−1 Rd(B − 1, 1)

: : : : : :
d
(K)
0 d

(K)
1 · · · d

(K)
B−1 Rd(B − 1,K)

d
(K)
0 0 d

(K)
1 · · · d

(K)
B−2 Rd(B − 2,K)

: : : : : :
d
(K)
0 · · · d

(K)
1 · · · d

(K)
B−K Rd(B −K, K)


where Rd(k, l) = 1−

∑k
j=0 d

(l)
j , and where we define

d
(i)
j =

j−1∑
k=max{0,j−i}

Pa(k|i)P(i,{Ni},P e)(i + k − j) (9)

for i ∈ {1, ...,K}. Finally, d
(i)
0 = P(i,{Ni},P e)(i).

The time between decoding events depends on the starting
state. The probability of starting at state i in this absorbing
Markov chain depends on the state of the queue and the fact
that the previous transmission resulted in packets being seen

M M-1 1 … M+1 …

Absorbing State (Decoding Event)

Fig. 2. Absorbing Markov chain to compute time between decoding events.

but not decoded. We determine the probability of starting in
state i by using the stationary probabilities of Section 4. Note
that every state i in Section 4, inherently contains two states:
(i, d) and (i, n), where d and n indicate if the last transmission
caused or not a decoding event, respectively. Let us define
πj,d and πj,n as the stationary probabilities associated to the
inherent states (i, d) and (i, n), where πj = πj,d + πj,n. Let
Pi,f→j,f ′ be the transition probability from state (i, f) to
state (j, f ′), with f, f ′ ∈ {d, n}. We also define Pi→j,∗ =
Pi,d→j,∗

πi,d
πi

+ Pi,s→j,∗
πi,s
πi

for ∗ ∈ {d, n} as the transition
probability from state i (or rather from both (i, d) and (i, n))
to state (j, ∗).

Let us define the time between decoding events as De. Then,
the mean time between decoding events is

E[De] =
∑
i≥1

E[De|i]πi,n (10)

where E[De|i] represents the mean time to absorption in the
Markov chain given that the system started in state i, where
the transition time is ti. Note that

πj,∗ =
∑

i,s∈{d,n} Pi,s→j,∗πi,s =
∑

i Pi→j,∗πi

(11)

for ∗ ∈ d, n. We are interested in determining πj,n. However,
Pi→j,d has a simpler characterization than Pi→j,n, given by

Pi→j,d =

{
P(i,{Ni},P e)(i)Pa(j|i) if i ≤ K,
P(i,{Ni},P e)(K)Pa(j − (i−K)|K) if i > K,

and therefore we determine πj,d through Pi→j,d, and then
determine πj,n = πj − πj,d. After some manipulations, we
can show that for j ≥ 1

πj,d = λj

j!

∑K
i=1

[
πie

−λtit
j
iP(i,{Ni},P e)(i)

]
+

∑B
i=K+1

πie
−λtK (λtK)j−(i−K)

(j−(i−K))!

[
P(i,{Ni},P e)(K)

]
e−λt1 (λt1)j

j! π0

[
P(1,{Ni},P e)(1)

]
. (12)

F. Performance Analysis

We study different schemes to illustrate the performance of
the system and its relationship to the choice of Ni’s.

1) Optimizing for Mean Delay: Computes Ni’s following
an exhaustive search method in order to minimize E[D].

2) Optimizing for Mean Time between Decoding Events:
Computes Ni’s following an exhaustive search method in order
to minimize E[De].

3) Heuristics 1: This heuristics computes Ni = b i
1−Pec.

4) Heuristics 2: This heuristics computes Ni = d i
1−Pee.

5) Heuristics 3: This heuristics computes Ni’s so that a
minimum criteria for the probability of generating a decoding
event in the next transmission is achieved. We specify ε
as the minimum acceptable probability of decoding in the
next transmission and compute Ni’s ∀i ∈ m, ...,K so that
P(i,{Ni},P e)(i) ≥ ε.

V. NUMERICAL RESULTS

This section provides numerical examples that show the
performance of our network coding scheme for different values
of arrival rate λ. We use the mean delay and mean time
between decoding events as our metrics of interest. We use a
high latency channel with packet erasure probability Pe = 0.1,
propagation time of 12.5 ms, data packets of 10, 000 bits,
g = 20 bits, a rate R = 1.5 Mbps, a header of h = 80 bits,
B = 30 packets, and the ACK packet has 100 bits.

Fig. 3 and 4 show the performance of the different schemes
in terms of mean delay and mean time between decoding
events, respectively, when the arrival rate is changed. A good
mean delay performance does not necessarily imply a poor
mean time between decoding events performance, or vice
versa. For example, Heuristics 1 for small λ shows that it is
possible to have poor performance in both metrics. Fig. 3 and
4 also illustrate that the optimal choice of Ni’s also depends
on arrival rate λ for both metrics. However, Heuristics 2 shows
a good trade-off between mean delay and mean time between
decoding events, while choosing Ni’s independently from λ.
For Heuristics 2 the mean time between decoding events is an
order of magnitude smaller than its mean delay performance,
i.e., the main contribution to the overall delay of a packet,
from being received to being decoded, is due to E[D].

Fig. 3 also illustrates that all schemes change smoothly with
λ in terms of mean delay, except the optimizing for mean time
between decoding events scheme which shows a jagged curve.
The main reason for this behavior is that the optimal values
of Ni’s in terms of E[De] change considerably with respect
to λ. For small λ, there might be numerical innacuracies in
computing the values of Ni’s that minimize E[De], due to the
very small values reported in Fig. 4. These effects translate
into a smooth change in the E[De] (Fig. 4) but non-smooth
behavior in mean delay.

Finally, note that choosing the Ni’s to increase the proba-
bility of decoding in the next transmission, as in Heuristics 3,
shows poor performance in both metrics and depends on the
choice of ε. Note that the choice of ε is not directly map into
delay performance.

VI. CONCLUSIONS

This paper provides an online network coding scheme
for time division duplexing channels with Poisson arrivals,
particularly useful for large latency scenarios. The scheme

0 5 10 15 20 25 30

0.04

0.06

0.08

0.1

0.12

0.14

0.16

λ (pkt/s)

M
ea

n
D

el
ay

(s
)

Opt. Mean Delay
Opt. Mean Time Decoding Events
Heuristic 1
Heuristic 2
Heuristic 3

Fig. 3. Mean delay of different schemes for choosing Ni’s for the case of
(m, K) = (1, 3). For Heuristics 3, ε = 0.99999.

is adaptive in nature, as it relies on a coupling of feedback
and coding. A key feature of our system is that the correct
amount of redundancy depends not only on system and
channel conditions, but also on the need to receive feedback
through the same transmission channel. Our analysis considers
a queueing model in which the window of packets M that can
be combined in any given transmission has a range of values,
say M ∈ {m, ...,K}. The system is modeled as a bulk queue
with feedback with Poisson arrivals and a general service time
that depends on the bulk size.

Numerical results suggest that the mean delay and the mean
time between decoding events are dependent on the choice
of the redundancy, in terms of the number of coded packets
that are transmitted back-to-back before stopping to receive
an ACK packet, i.e., the Ni’s. There is also a dependence on
the arrival rate λ, which is particularly evident if the Ni’s are
chosen to minimize the mean time between decoding events,
affecting both the mean delay performance and the mean time
between decoding events.

ACKNOWLEDGMENT

This work was supported in part by the NSF under grants
No. 0520075, 0831728 and CNS-0627021, by ONR MURI
Grant # N00014-07-1-0738, and subcontract # 060786 issued
by BAE Systems National Security Solutions, Inc. and sup-
ported by the Defense Advanced Research Projects Agency
(DARPA) and the Space and Naval Warfare System Center
(SPAWARSYSCEN), San Diego under Contract # N66001-
06-C-2020 (CBMANET).

REFERENCES

[1] D. E. Lucani, M. Stojanovic, M. Médard, “Random Linear Network
Coding For Time Division Duplexing: When To Stop Talking And Start
Listening”, in Proc. INFOCOM 2009, Rio de Janeiro, Brazil, Apr. 2009.

0 5 10 15 20 25 30
10

−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

λ (pkt/s)

M
ea

n
T

im
e

be
tw

ee
n

D
ec

od
in

g
E

ve
nt

s
(s

)

Opt. Mean Delay
Opt. Mean Time Decoding Events
Heuristic 1
Heuristic 2
Heuristic 3

Fig. 4. Mean time between decoding events of different schemes for choosing
Ni’s for the case of (m, K) = (1, 3).For Heuristics 3, ε = 0.99999.

[2] D. E. Lucani, M. Stojanovic, M. Médard, “Random Linear Network
Coding For Time Division Duplexing: Energy Analysis”, in Proc. ICC
2009, Dresden, Germany, Jun. 2009.

[3] D. E. Lucani, M. Médard, M. Stojanovic,“On Coding for Delay - New
Approaches Based on Network Coding in Networks with Large Latency,
in Proc. ITA Workshop, San Diego, Feb. 2009.

[4] D. E. Lucani, M. Médard, M. Stojanovic, “Broadcasting in Time-Division
Duplexing: A Random Linear Network Coding Approach”, in Proc.
NetCod’09, Lausanne, Switzerland, pp. 62-67, Jun. 2009

[5] D. E. Lucani, M. Médard, M. Stojanovic, D. R. Karger, “Sharing
Information in Time-Division Duplexing Channels: A Network Coding
Approach”, in Proc. 47th Allerton Conf. on Comm. Cont. and Comp.,
IL, USA, Sept. 2009.

[6] D. E. Lucani, M. Médard, M. Stojanovic, “Random Linear Network
Coding for Time Division Duplexing: Field Size Considerations”, in Proc.
GLOBECOM 2009, Hawaii, USA, Dec. 2009.

[7] D. E. Lucani, M. Médard, M. Stojanovic,“Systematic Network Coding
for Time Division Duplexing”, submitted to ISIT 2010.

[8] D. E. Lucani, M. Médard, M. Stojanovic,“Random Linear Network
Coding for Time Division Duplexing: Queueing Analysis,” in Proc. ISIT
2009, Seoul, Korea, Jun. 2009.

[9] J. Sundararajan, D. Shah, M. Médard, ”On Queueing for Coded Networks
- Queue Size Follows Degrees of Freedom”, In Proc. IEEE ITW 2007,
Bergen, Norway, Jul. 2007.

[10] B. Shrader, A. Ephremides, “On the Queueing Delay of a Multicast
Erasure Channel”, In Proc. IEEE ITW 2006, Oct. 2006.

[11] B. Shrader, A. Ephremides,“A Queueing Model for Random Linear
Coding”, In Proc. IEEE MILCOM, Oct. 2007.

[12] M. L. Chaudhry, J. G. C. Templeton,“A First Course in Bulk Queues”,
Wiley, 1983.

[13] S. K. Bar-Lev, M. Parlar, D. Perry, W. Stadje, F. A. Van der Duyn
Schouten, “Applications of Bulk Queues to Group Testing Models with
Incomplete Identification”, Euro. Jour. of Oper. Res., no. 183, pp. 226237,
2007.

[14] L. E. N. Delbrouck, “A Feedback Queueing System With Batch Arrivals,
Bulk Service, and Queue-Dependent Service Time,” Jour. of the Assoc.
for Comp. Mach., vol. 17, no. 2, pp. 314-323, 1970.

[15] T. Ho, M. Médard, R. Koetter, D.R. Karger, M. Effros, J. Shi, B.
Leong,“A Random Linear Network Coding Approach to Multicast”,
Trans. Info. Theory, vol. 52, no. 10, pp.4413-4430, Oct. 2006.

[16] W.B. Powell, “Stochastic Delays in Transportation Terminals: New
Results in the Theory and Application of Bulk Queues,” PhD thesis, MIT,
1981.

