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p(A, B
Abstract—A malleable coding scheme considers not only rep- A # B

resentation length but also ease of representation update, theby

encouraging some form of recycling to convert an old codeword ‘

into a new one. We examine the trade-off between compression (X,¥)

efficiency and malleability cost, measured with a string edit X7 nE yr

distance that introduces a metric topology to the representation

domain. We characterize the achievable rates and malleability as Fig. 1. Updating, representing, and editing.

the solution of a subgraph isomorphism problem.

I. INTRODUCTION : L
o o - _our interest is in average performance rather than woss-ca
Storing information is a costly proposition. If storage i\erformance of coding schemes.

permanent, cost is determined mainly by the number of storag \jajieable coding with edit-distance cost is described in
elements required. Therefore the length of the message 'GRsater detail in [6], and we refer to this easily-accessibl

resentation is the key performance measure. In many storggement for proofs of our results. A distinct formulatioh o
systems, however, the message to be stored changes with {if@aapie coding is studied in [7].

due to updates [1], [2]. Whether changing the resistance of
a memristor, the molecular structure of DNA, or the inked [l. PROBLEM STATEMENT
characters on parchment, editing stored representatisdswo

is costly. Indeed there are fundamental thermodynamicscos} ) )
associated with editing [3]. alphabefy. Unlike most source coding problems, the alphabet

Unlike traditional source coding which is only concerne?self_'?’ rele;)/ant, not JUSftl tz_e cardinality of Sequenlcgde
with the lengths of representatiommalleable codings also rom It; an abstract set of indices Is not appropriate. lisura

concerned with minimizing the cost when changing the repri®. Measure all rates in numbers of symbols froih

sentation to match an updated message. Denoting the drigina//€ require an edit distance [8] defined for, the set of

source message as!" and the updated source message gél finite sequences of eI_eants Bf An e_xar_nple of an edit
Y, suppose that a memoryless updating progess relates _d|stan_ce is the _Levenshteln d|§tance, WhICh is constrifobeal
the two. Further denote the representation’df as A and nSertion, deletion, and substitution operations.
the representation of;* as B. The source distribution, the _De€finition 1: An edit distance d(-,-), is a function from
update process, and the representation mapping induceta j&i < V" t0 [0,00), defined by a set of edit operations. The
distribution on the representations(A, B), as depicted in €dit Operations are a symmetric relationénx V*. The edit
Fig. 1. The performance metrics of interest in malleabf¥Stance betweea € V* andb € V* is 0 if a = b and is
coding are the normalized representation lengthd) /»n and th_e minimum n_umber of edit operations needed to transform
¢(B)/n, as well as the normalized edit distance between tHento b otherwise. _ _
representationsd(A, B) /n, for some suitable edit distance We define vanable—length ?‘”fj bl_ock coding versions of our
function defined in the representation space. problem together, drawing d|st|nct|on§ only where neagssa
Our main result for this problem is a graphical character§¥mb0|s are reused to conserve notation; conte>.<t shoul@ mak
zation of achievable rates and number of editing operatiof@ings clear. Lef{(X;,Y;)}32, be a sequence of independent
The result involves the solution to the error-tolerantiaaied drawings of a pair of random variablgX’,Y), X ¢ W, Y €
subgraph isomorphism problem [4], which is essentially ¥ WhereW is a finite set angbx y (z,y) = Pr[X = z,Y =
graph embedding problem. Although graph functionals suéh The joint distribution determines the marginals; () and
as independence number and chromatic number often afigdy), s well as themodification channelpyx (y|z). If
in the solution of information theory problems, this seems the joint distribution is such that the marginals are eqtie,
be the first time that the subgraph isomorphism problem nE@dification channel is said to perforstationary updating
arisen. Moreover, this is among the first treatments of aceour Variable-length CodesA variable-length encoder and cor-
code as a mapping between metric spaces. One might wi#RPONding decoder with block length are mappingsfy :
exclusively with the Lipschitz constant of the mapping &y WW" — V* and fp : V* — W". The encoder and decoder

Consider storage medium symbols drawn from the finite

Work supported in part by an NSF Graduate Research Fellpvesid NSF 1This is equivalent to using bas®y logarithms and all logarithms should
Grants CCR-0325774 and CCF-0729069. be interpreted as such.
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define a variable-length code; we further require the ereode editing cost

decoder pair to be instantaneous.
A (variable-length) encoder-decoder is applied as follows snH(X) 1 -b)

Let (A, B) = (fe(X71), fe(¥{")), inducing random variables

A and B that are drawn from the alphabét*. Also let

(X7, Y7") = (fp(A), fp(B)). nH(Y|X) 1 —0)
Block Codes: A block encoder forX with parameters ng 4 -a)
(n,K)is a mappingffEX) : W — YK and a block encoder
for Y with parametergn, L) is a mappingfg) s Wn - pnk, 21 -d)
Two encoders are specified for block coding to allow differ- nH(X)  n gl (X)
ent levels of compression. Given these encoders, a common n(H(X) + H(Y|X)) compressed size

decoder with parameter is fp : V* — W™. The encoders
and decoder define a block code. Since there is a COMME 2 Qualitative representation of the four simple teghis of Section I1.
decoder, both codes should be in the same format. For ease of representatioH,(X) = H(Y) is assumed. The relative orderings
A (block) encoder-decoder with parametdps, K, L) is of points are based oH (Y| X) < H(X); this reflects the natural case where
. (X) Ey)’ the editing operation is of low complexity relative to theganial string.
applied as follows. Let(A,B) = (fy (X)), fp '),
inducing random variablest € V"% and B € V"". Also
let (X7, YY") = (fp(A), fp(B)). . I1l. EASILY ACHIEVED POINTS
For both variable-length and block coding, the error rate
is defined as usual. Conventional performance criteriater t
codes are the per-letter average lengths of codewords

To motivate the exposition, first consider four examples of
how one might trade off between compression and malleabil-
1 1 ity. This informal presentation is summarized in Fig. 2.

K =—-FE[{(A)] andL = —E [¢(B)], a) No compression:Taking A = X and B = Y, it
n n follows immediately thatxX’ = 1 and L = 1 and that the
where/(-) denotes the length of a sequencelin The final mgajleapility cost isM = E[d(X,Y)]. If we take the edit dis-

performance measure captures our novel concern with the q@gice to be the Hamming distance, theh= Pr[X # Y] £ ¢.
of changing the coded representation. The malleability 0s Thys the triple( K, L, M) = (1,1, ) is achievable.

the expected per-source-letter edit distance betweerpthesc b) Fully compressX? andY;": One might naively apply

M- lE[d(A B)] an optimal source code. If the updating processx is
T n ’ ' stationary, then a common instantaneous code may be used

Definition 2: Given a sourcey(X,Y) and an edit distance to asymptotically achievél = H(X) and L = H(Y); if not,

d, a triple (Ko, Lo, My) is said to beachievablefor the then some rate loss is incurred [9]. It seems, however, that
variable-length coding problem if, for arbitragy> 0, there @ large portion of the codeword must be changed—perhaps
exists (forn sufficiently large) a variable-length code withabout half the symbols—so as to represkfit

error rateA = 0, average codeword lengths < K; + ¢, c) Fully compressX{ and an increment:One might

L < Lo + ¢, and malleabilityM < Mg + e. optimally compress the update separately and append it to

Definition 3: Given a source(X,Y) and an edit distance the representation ok{'. The new representation has length
d, a triple (Ko, Lo, M,) is said to beachievablefor the block 7(H(X)+H(Y|X)) > nH(Y') bits. The extended Hamming
coding problem if, for arbitrarye > 0, there exists (for» Mmalleability cost isn H(Y|X) symbols.
sufficiently large) a block code with error rate < ¢, average d) Completely favor malleability over compression:
codeword lengthdd < K, + ¢, L < Ly + ¢, and malleability Another coding scheme (due to R. G. Gallager) dramatically
M < My +e. trades compression for malleability. The sou’€ is encoded

For the variable-length problem, the set of achievable—ratwith 2"#(*) symbols, using an indicator function to denote
malleability triples is denotey; for the block version, the which typical sequence was observed. The same strategy is
corresponding set is denotgls. It follows from the definition used to encod&?*, using2"# () symbols. Updating requires
that By, and P are closed subsets d&3 and have the substituting only two symbols wheki{* andY;* are different.
property that if (Ko, Lo, Mo) € B, then (Ko + €1, Lo + The coding schemes we develop will perform better than
€2, My + €3) € B for any ¢; > 0, i = 1,2,3. Consequently, the schemes depicted in Fig. 2.

Py andP s are completely defined by their lower boundaries,
which too are closed.

Returning to Fig. 1, for giverp(X,Y) the malleability In this section, we develop a method of coding based on
constraint defines what is achievable in terme @4, B) with  graph embedding and Gray codes. We then construct examples
the additional constraints of lossless or near losslesssmdipat show improved performance over naive schemes.
betweenX] and A, and betweery,* and B. An alternative  Before proceeding, consider some lower bounds for ar-
formulation as a mapping between two metric spadésand bitrary sourcep(X,Y). From the source coding theorems,
V* is also possible. K > H(X) and L > H(Y). Since distinct codewords must

IV. CODING WITH GRAPH EMBEDDING
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embeddable inta-fold Cartesian products of the hypercube.

Such a scheme would achieve ratesof= 3 bits andL = 3

bits. It would also achievél/ of 1 Pr[X}" # Y] since the

Cartesian product of the adjacency graph exactly represent

edit costs ofl. For eachn, this matches the lower bound

(1), and is thus optimal. Furthermore, asymptotically:irthe

Fig. 3. (a) Weighted adjacency graph for noisy typewritearatel . (b) Graph triple (K, L, M) = (3,3,0) is achievable.

embedded in 3-dimensional hypercube. Thick lines represigesethat are  Observe that embeddability into a graph where graph dis-

used in the embedding; dotted lines represent edges in thedyte that are tance corresponds to edit distance seems to be sufficient to

unused in the embedding. (c) Hypercube graph labeled withrpireflected . . L e

Gray code. guarantee good performance; we will explore this in detail i
the sequel.

Similar constructions are possible for variable-lengtes
have an edit distance of at least one, we can lower bouéhen using such codes, the appropriate edit distance might
M by assuming that minimal distance. Then edit distance ¢ the Levenshtein distance, so a minimal change code-
simply the probability of error for uncoded transmissioor F labeled Levenshtein distance graph rather than a Gray code-
n=1,M2X>> Zyewzy¢xp(l‘7y) and more generally, labeled hypercube would be used. When emb_eddmg in other

) graphs, codeword lengths must also be taken into account. If
M > 1 Z Z pla?,y}). (1) @ common Huffman code fqn).( and forpy is e.mbeddable
" rewn yrewngn £an (with matched vertex labels) in the Levenshtein graph, then
minimal K, L, and M are simultaneously achievable.

A weaker, simplified version of the bound i > L, which
is a worst-case measure. " V. GENERAL CHARACTERIZATIONS
Now we construct an example that simultaneously achievesUsing the insights garnered from the example, detailed
the rate lower bounds and the malleability lower bound (1¢haracterizations of the set of achievable rate—malliabil
Consider a memoryless, equiprobable souree with alpha- triples are obtained. For variable-length coding, resalts
betw = {®, &, o, W, W, &, T, T}, and thus expressed in terms of the solution to an error-toleranbated
H(X) = 3 bits. Consider the noisy typewriter update procesgibgraph isomorphism problem [4].
where the probability of making an error in either directien
1/4. Evidently, the bound o/ is 1/2 for n = 1. Moreover, ] i
the Y marginal is also equiprobable, with bounded by3 A vertex-attributed graph is a three-tupé = (V, E, u),
bits. whereV is the set of verticesly C V x V is the set of edges,
TakeV to be {0, 1} and develop a binary encoding schemandp : V — V* is a function assigning labels to vertices. The
using graph embedding methods. Draw a graph where e Of labels is denoteut™. _
vertices are the symbols and the edges are labeled with totaP€finition 4: Consider two vertex-attributed graptis =
transition probabilities. The result is a weighted adjagen (V(G), E(G), uc) andH = (V(H), E(H), um). ThenG is
graph, a weighted version of the adjacency graphs in [18fid to beembeddablénto H if H has a subgraph isomorphic
[11], as shown in Fig. 3(a). to G. That is, there is an injective map: V(G) — V(H)
Suppose that the edit distance is the Hamming distan€¥CN thatuc(v) = pu(4(v)) for all v € V(G) and that
Now try to embed this adjacency graph into a hypercube 6t v) € E(G) implies (¢(u), ¢(v)) € E(H). This is denoted
a given size, first considering size The adjacency graph is@SG ~ . y _ _
exactly embeddable into the hypercube, as shown in Fig. 3(b)Several graph editing operations may be defined, such as
If it were not exactly embeddable, some of the low weigtiuPstituting a vertex label, deleting a vertex, deletingdge,
edges might have to be broken. After embedding into ii@d inserting an edge. An'edlted graph is denoted through
hypercube, use the binary reflected Gray code (see [12] 4H§ OPerato£(-) corresponding to the sequence of graph edit

A. Error-Tolerant Attributed Subgraph Isomorphism

Fig. 3(c) for a description) to assign codewords throughPerations€ = (ei,...,ex). There is a cost associated with
correspondence. each sequence of graph edit operations.
Clearly the code is lossless so the error ratedis= 0. Definition 5: Given two graphg~ and H, anerror-tolerant

Since all codewords are of length clearly K = L = 3. To attribute'd' subgraph isomprphisrw from G to H is the

computeM, notice that any source symbol is perturbed to ar§PMposition of two operationg = (£, ¢) where

one of its neighbors with probability/2. Further notice that « £ is a sequence of graph edit operations such that there

the Hamming distance between neighbors in the hypercube is €xists anf(G) that satisfies (G) ~~ H.

1. ThusM = 1/2. This encoding scheme achieves the entropy « ¢¢ iS an embedding of (G) into H.

boundsH (X) and H(Y). It also achieves the = 1 lower Definition 6: The subgraph distance(G, H) is the cost of

bound for M and is thus optimal fon = 1. the minimum cost error-correcting attributed subgrapmise
Since the embedding relation is true for= 1, it is also phism from G to H.

true thatn-fold Cartesian products of the adjacency graph aiéote that in generalp(G, H) # p(H, G).
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B. Closeness Vitality graph A/e induces its own path semimetrit, ;. The cost
The subgraph isomorphism cost structure for malleab®é rémoving edge from the graphA is:

coding is based on a graph theoretic quartipseness vitality da- —d

[13]. An edge vitality index is the difference between Somewz p@,y) [dae(fp @), fo®) = da(fe(@), fo@)].

functional of a graph and that same functional of the graph T . ) .

with an edge removed. which is the following function of the associated removal
Let fi-(G) of a graphG be the sum of the distances of alPPeratione:

vertex pairs:

yew

C(e) = —E[cv(4,e)].

_ If £ is a sequence of edge removal§, then C(£) =

= d i _

fw(@) ;ﬁ; (v, w) —FE[cv(4,E)]. Putting things togethe3y, contains any point
Definition 7: The closeness vitalityev(G,r) of graph G K = H(X)+ D(px|pz) + 1,

with respect to edge is: cv(G,r) = fw(G) — fw (G/r). L=H()+ D(pyllpz) +1,

C. By Characterization M = Muin + fféiﬁz p(4,G).
We are concerned with the error-tolerant embedding of &hcreasing the block length beyond = 1 may improve
attributed, weighted source adjacency graph into the gragBrformance, which we show in the following.
induced by &’*-space edit distance. Edge deletion is the only Theorem 1:Consider a sourcep(X,Y) with associated
graph editing operation that we need. (unlabeled) weighted adjacency graghand an edit distance
First consider the delay-free caser= 1. A sourcep(X,Y)  j with associated grap@. For anyn, let 8{*™ be the set of
and an edit distancé(-, -) are given. Huffman coding prowdestrimes (K, L, M) that are computed, by allowing an arbitrary

the minimal redundancy instantaneous code and achieggice of the memoryless random variapleZ?), as follows:
expected performanc# (X) < K < H(X) + 1. Similarly,

a Huffman code fory yields H(Y) < L < H(Y)+ 1. The K = H(X) + D(px|pz) + .
rate loss for using an incorrect Huffman code is essentmlly L=HY)+ D(py|pz) + %
divergence quantity [9].. A source code may be thought of imy_ 1 PrXP £ Y]+ L min p(OV", E(A), fz).G).
terms of a random variable, hefe For a givenZ, there are " " fe€H p
several Huffman codes: those arising from different |atgi . (ach) - _ _
of the code tree and also perhaps different trees [14]. Let li8en the set of triple§3; ™ is achievable instantaneously.
denote the set of all Huffman codes f@rasH._. The theorem, proven in [6], states that error-tolerant sub-
SinceK andL are fixed by the choice o, all that remains graph isomorphism implies achievable malleability. Theica
is to determine the set of achievahilé. Let G be the graph ©f the auxiliary random variableZ is open to optimization.
induced by the edit distancé(-, ), and d its path metric. f minimal rates are desiredy; must be on the geodesic
The graphG is intrinsically labeled. Letd be the weighted connectingpx andpy. If Z is not on the geodesic, then there
adjacency graph of the sourgéX, Y), with vertices\, edges is some rate I_oss, but_ perhaps also some malleal_)ility gains.
E(A) €W x W, and labels given by a Huffman code. That Whenme isa s_tatlonary_ upda’Fe process,_the simple lower
is, A = (W, E(A), fz) for some fz € Hz. There is a path bounds might be tight to this achievable region.

semimetric,d 4, associated with the graph. Corollary 1: Consider a source as given above in Theo-

The basic problem is to solve the error-tolerant subgrap®m 1. If py|x is stationary,px = py is |V|-adic, and
isomorphism problem of embeddingjinto G. In general for Fhere IS a Huffman-labeledd for px = py that is an
n = 1, the malleability cost under edit distanée when using iS0metric subgraph of, then the block length lower bound
the source codg is (H(X),H(Y),LPr[X7 # Y]) is tight to this achievable

region for everyn, and in particular tq H(X), H(Y),0) for
M= pl,y)de(fe@), [51))- large n.
zeEW yew

. . . D. P Characterization
The smallest malleability possible is whehis a subgraph of

G and then Now we turn our attention to the block-coding problem.
' For Pp, we use a joint typicality graph rather than the
Moin = Z Zp(x,y)dA(x,y) weighted adjacency graph used fg¥,. Additionally we
TEW yeEW focus on binary block codes under Hamming edit distance, so
_ Z Z p(z,y)de(fe(2), f5(y)) we are concerned only with hypercubes rather than general

edit distance graphs. We use standard typicality notations
definitions, and arguments from [15].

For the bivariate distributiopx y-, define a square matrix

If edges inA need to broken for embedding/ increases. called thestrong joint typicality matrix Ay, as follows.
If an edgee is removed from the graphi, the resulting There is one row (and column) for each sequencéip; U

zeW yeWw
— E[fw(A)] = Pr[X £ Y],
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S[’;]é. The entry with row corresponding tef and column VI. DiscussION ANDCONCLUSIONS

corresponding toy;' receives a one ifz7,y7) is strongly e have formulated information theoretic problems mo-
jointly typical and zero otherwise. tivated by costly writing on storage media. The problems
Let us temporarily restrict to stationary updat®: = exhipit a trade-off between compression efficiency and the
{p(z,y) | p(x) = p(y)}. Asymptotically, Aty will have ap-  costs incurred when updating using random access editing.
proximately equal numbers of ones in all columns and in all or the zero-error problem, we found that the subgraph dis-
rows. Think of Af'y,, as the adjacency matrix of a graphiance between a source graph and a storage medium graph de-
where the vertices are sequences and edges connect sexjuggfgines the rate—malleability relation. Since indexgrasient
that are jointly typical with one another. for joint source channel coding, signal constellation laige
Proposition 1: Take Afy, for some source ifP as the anq this problem are similar, it is not surprising that Gray
adjacency matrix of a grapf™. The number of vertices in codes arise in each [12], [16]. All involve a transformation
the graph will satisfy of objects of one kind into objects of a new kind so that the
(1— 6)2”(H(X)_7/)) < |V(GM)| < on(H(X)+¢) distances in the two spaces are approximately equal [8].

For block coding, we found that if minimal malleability
where) — 0 asn — oo andd — 0. The degree of each costs are desired, then a rate penalty that is exponentiin
vertex, deg, will concentrate as conditional entropy of the update process must be paid. That

on(H(Y|X)~v) < deg, < on(H(Y|X)+v) is, unless the two versions of the source are very strongly
correlated (conditional entropy logarithmic in block I¢mg

wherey — 0 asn — oo andd — 0. _ ~ rate exponentially larger than entropy is needed. If weirequ
The basic topology of the strongly typical set is asymptilyc malleability M = O(1/n), then ratesk and L must be

a2nHY1X).regular graph or™(X) vertices. Graph embed- (, o).
ding ideas then yield a theorem on block coding achievagbilit ™
Theorem 2:For a sourcep(z,y) € P and the Hamming ACKNOWLEDGMENTS
edit distance, a tripl§ K, K, M = My;,) is achievable if  Discussions with V. Tarokh, R. G. Gallager, S. K. Mitter,
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