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Abstract—A malleable coding scheme considers not only rep-
resentation length but also ease of representation update, thereby
encouraging some form of recycling to convert an old codeword
into a new one. We examine the trade-off between compression
efficiency and malleability cost, measured with a string edit
distance that introduces a metric topology to the representation
domain. We characterize the achievable rates and malleability as
the solution of a subgraph isomorphism problem.

I. I NTRODUCTION

Storing information is a costly proposition. If storage is
permanent, cost is determined mainly by the number of storage
elements required. Therefore the length of the message rep-
resentation is the key performance measure. In many storage
systems, however, the message to be stored changes with time
due to updates [1], [2]. Whether changing the resistance of
a memristor, the molecular structure of DNA, or the inked
characters on parchment, editing stored representation words
is costly. Indeed there are fundamental thermodynamic costs
associated with editing [3].

Unlike traditional source coding which is only concerned
with the lengths of representations,malleable codingis also
concerned with minimizing the cost when changing the repre-
sentation to match an updated message. Denoting the original
source message asXn

1 and the updated source message as
Y n

1 , suppose that a memoryless updating processpY |X relates
the two. Further denote the representation ofXn

1 as A and
the representation ofY n

1 as B. The source distribution, the
update process, and the representation mapping induce a joint
distribution on the representations,p(A,B), as depicted in
Fig. 1. The performance metrics of interest in malleable
coding are the normalized representation lengths,ℓ(A)/n and
ℓ(B)/n, as well as the normalized edit distance between the
representations,d(A,B)/n, for some suitable edit distance
function defined in the representation space.

Our main result for this problem is a graphical characteri-
zation of achievable rates and number of editing operations.
The result involves the solution to the error-tolerant attributed
subgraph isomorphism problem [4], which is essentially a
graph embedding problem. Although graph functionals such
as independence number and chromatic number often arise
in the solution of information theory problems, this seems to
be the first time that the subgraph isomorphism problem has
arisen. Moreover, this is among the first treatments of a source
code as a mapping between metric spaces. One might work
exclusively with the Lipschitz constant of the mapping [5],but
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Fig. 1. Updating, representing, and editing.

our interest is in average performance rather than worst-case
performance of coding schemes.

Malleable coding with edit-distance cost is described in
greater detail in [6], and we refer to this easily-accessible
document for proofs of our results. A distinct formulation of
malleable coding is studied in [7].

II. PROBLEM STATEMENT

Consider storage medium symbols drawn from the finite
alphabetV. Unlike most source coding problems, the alphabet
itself is relevant, not just the cardinality of sequences drawn
from it; an abstract set of indices is not appropriate. It is natural
to measure all rates in numbers of symbols fromV.1

We require an edit distance [8] defined forV∗, the set of
all finite sequences of elements ofV. An example of an edit
distance is the Levenshtein distance, which is constructedfrom
insertion, deletion, and substitution operations.

Definition 1: An edit distance, d(·, ·), is a function from
V∗ × V∗ to [0,∞), defined by a set of edit operations. The
edit operations are a symmetric relation onV∗ ×V∗. The edit
distance betweena ∈ V∗ and b ∈ V∗ is 0 if a = b and is
the minimum number of edit operations needed to transform
a into b otherwise.

We define variable-length and block coding versions of our
problem together, drawing distinctions only where necessary.
Symbols are reused to conserve notation; context should make
things clear. Let{(Xi, Yi)}

∞
i=1 be a sequence of independent

drawings of a pair of random variables(X,Y ), X ∈ W, Y ∈
W, whereW is a finite set andpX,Y (x, y) = Pr[X = x, Y =
y]. The joint distribution determines the marginals,pX(x) and
pY (y), as well as themodification channel, pY |X(y|x). If
the joint distribution is such that the marginals are equal,the
modification channel is said to performstationary updating.

Variable-length Codes:A variable-length encoder and cor-
responding decoder with block lengthn are mappingsfE :
Wn → V∗ and fD : V∗ → Wn. The encoder and decoder

1This is equivalent to using base-|V| logarithms and all logarithms should
be interpreted as such.



define a variable-length code; we further require the encoder-
decoder pair to be instantaneous.

A (variable-length) encoder-decoder is applied as follows.
Let (A,B) = (fE(Xn

1 ), fE(Y n
1 )), inducing random variables

A and B that are drawn from the alphabetV∗. Also let
(X̂n

1 , Ŷ n
1 ) = (fD(A), fD(B)).

Block Codes: A block encoder forX with parameters
(n,K) is a mappingf (X)

E : Wn → VnK , and a block encoder
for Y with parameters(n,L) is a mappingf (Y )

E : Wn → VnL.
Two encoders are specified for block coding to allow differ-
ent levels of compression. Given these encoders, a common
decoder with parametern is fD : V∗ → Wn. The encoders
and decoder define a block code. Since there is a common
decoder, both codes should be in the same format.

A (block) encoder-decoder with parameters(n,K,L) is
applied as follows. Let(A,B) = (f

(X)
E (Xn

1 ), f
(Y )
E (Y n

1 )),
inducing random variablesA ∈ VnK and B ∈ VnL. Also
let (X̂n

1 , Ŷ n
1 ) = (fD(A), fD(B)).

For both variable-length and block coding, the error rate∆
is defined as usual. Conventional performance criteria for the
codes are the per-letter average lengths of codewords

K =
1

n
E [ℓ(A)] andL =

1

n
E [ℓ(B)] ,

whereℓ(·) denotes the length of a sequence inV∗. The final
performance measure captures our novel concern with the cost
of changing the coded representation. The malleability cost is
the expected per-source-letter edit distance between the codes:

M =
1

n
E [d(A,B)] .

Definition 2: Given a sourcep(X,Y ) and an edit distance
d, a triple (K0, L0,M0) is said to beachievable for the
variable-length coding problem if, for arbitraryǫ > 0, there
exists (for n sufficiently large) a variable-length code with
error rate∆ = 0, average codeword lengthsK ≤ K0 + ǫ,
L ≤ L0 + ǫ, and malleabilityM ≤ M0 + ǫ.

Definition 3: Given a sourcep(X,Y ) and an edit distance
d, a triple(K0, L0,M0) is said to beachievablefor the block
coding problem if, for arbitraryǫ > 0, there exists (forn
sufficiently large) a block code with error rate∆ < ǫ, average
codeword lengthsK ≤ K0 + ǫ, L ≤ L0 + ǫ, and malleability
M ≤ M0 + ǫ.

For the variable-length problem, the set of achievable rate–
malleability triples is denotedPV ; for the block version, the
corresponding set is denotedPB . It follows from the definition
that PV and PB are closed subsets ofR3 and have the
property that if (K0, L0,M0) ∈ P, then (K0 + ǫ1, L0 +
ǫ2,M0 + ǫ3) ∈ P for any ǫi ≥ 0, i = 1, 2, 3. Consequently,
PV andPB are completely defined by their lower boundaries,
which too are closed.

Returning to Fig. 1, for givenp(X,Y ) the malleability
constraint defines what is achievable in terms ofp(A,B) with
the additional constraints of lossless or near lossless maps
betweenXn

1 and A, and betweenY n
1 and B. An alternative

formulation as a mapping between two metric spacesWn and
V∗ is also possible.

a)

b)

c)

d)
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Fig. 2. Qualitative representation of the four simple techniques of Section III.
For ease of representation,H(X) = H(Y ) is assumed. The relative orderings
of points are based onH(Y |X) ≪ H(X); this reflects the natural case where
the editing operation is of low complexity relative to the original string.

III. E ASILY ACHIEVED POINTS

To motivate the exposition, first consider four examples of
how one might trade off between compression and malleabil-
ity. This informal presentation is summarized in Fig. 2.

a) No compression:Taking A = X and B = Y , it
follows immediately thatK = 1 and L = 1 and that the
malleability cost isM = E[d(X,Y )]. If we take the edit dis-
tance to be the Hamming distance, thenM = Pr[X 6= Y ] , q.
Thus the triple(K,L,M) = (1, 1, q) is achievable.

b) Fully compressXn
1 andY n

1 : One might naively apply
an optimal source code. If the updating processpY |X is
stationary, then a common instantaneous code may be used
to asymptotically achieveK = H(X) andL = H(Y ); if not,
then some rate loss is incurred [9]. It seems, however, that
a large portion of the codeword must be changed—perhaps
about half the symbols—so as to representY n

1 .
c) Fully compressXn

1 and an increment:One might
optimally compress the update separately and append it to
the representation ofXn

1 . The new representation has length
n(H(X)+H(Y |X)) ≥ nH(Y ) bits. The extended Hamming
malleability cost isnH(Y |X) symbols.

d) Completely favor malleability over compression:
Another coding scheme (due to R. G. Gallager) dramatically
trades compression for malleability. The sourceXn

1 is encoded
with 2nH(X) symbols, using an indicator function to denote
which typical sequence was observed. The same strategy is
used to encodeY n

1 , using2nH(Y ) symbols. Updating requires
substituting only two symbols whenXn

1 andY n
1 are different.

The coding schemes we develop will perform better than
the schemes depicted in Fig. 2.

IV. CODING WITH GRAPH EMBEDDING

In this section, we develop a method of coding based on
graph embedding and Gray codes. We then construct examples
that show improved performance over naive schemes.

Before proceeding, consider some lower bounds for ar-
bitrary sourcesp(X,Y ). From the source coding theorems,
K ≥ H(X) and L ≥ H(Y ). Since distinct codewords must
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Fig. 3. (a) Weighted adjacency graph for noisy typewriter channel . (b) Graph
embedded in 3-dimensional hypercube. Thick lines represent edges that are
used in the embedding; dotted lines represent edges in the hypercube that are
unused in the embedding. (c) Hypercube graph labeled with binary reflected
Gray code.

have an edit distance of at least one, we can lower bound
M by assuming that minimal distance. Then edit distance is
simply the probability of error for uncoded transmission. For
n = 1, M ≥

∑

x∈W

∑

y∈W:y 6=x p(x, y) and more generally,

M ≥
1

n

∑

xn

1
∈Wn

∑

yn

1
∈Wn:yn

1
6=xn

1

p(xn
1 , yn

1 ). (1)

A weaker, simplified version of the bound isM ≥ 1
n , which

is a worst-case measure.
Now we construct an example that simultaneously achieves

the rate lower bounds and the malleability lower bound (1).
Consider a memoryless, equiprobable sourcep(x) with alpha-
bet W = { k, K, G, g, j, J, C, }, and thus
H(X) = 3 bits. Consider the noisy typewriter update process
where the probability of making an error in either directionis
1/4. Evidently, the bound onM is 1/2 for n = 1. Moreover,
the Y marginal is also equiprobable, withL bounded by3
bits.

TakeV to be{0, 1} and develop a binary encoding scheme
using graph embedding methods. Draw a graph where the
vertices are the symbols and the edges are labeled with total
transition probabilities. The result is a weighted adjacency
graph, a weighted version of the adjacency graphs in [10],
[11], as shown in Fig. 3(a).

Suppose that the edit distance is the Hamming distance.
Now try to embed this adjacency graph into a hypercube of
a given size, first considering size3. The adjacency graph is
exactly embeddable into the hypercube, as shown in Fig. 3(b).
If it were not exactly embeddable, some of the low weight
edges might have to be broken. After embedding into the
hypercube, use the binary reflected Gray code (see [12] and
Fig. 3(c) for a description) to assign codewords through
correspondence.

Clearly the code is lossless so the error rate is∆ = 0.
Since all codewords are of length3, clearly K = L = 3. To
computeM , notice that any source symbol is perturbed to any
one of its neighbors with probability1/2. Further notice that
the Hamming distance between neighbors in the hypercube is
1. ThusM = 1/2. This encoding scheme achieves the entropy
boundsH(X) and H(Y ). It also achieves then = 1 lower
bound forM and is thus optimal forn = 1.

Since the embedding relation is true forn = 1, it is also
true thatn-fold Cartesian products of the adjacency graph are

embeddable inton-fold Cartesian products of the hypercube.
Such a scheme would achieve rates ofK = 3 bits andL = 3
bits. It would also achieveM of 1

n Pr[Xn
1 6= Y n

1 ] since the
Cartesian product of the adjacency graph exactly represents
edit costs of1. For eachn, this matches the lower bound
(1), and is thus optimal. Furthermore, asymptotically inn, the
triple (K,L,M) = (3, 3, 0) is achievable.

Observe that embeddability into a graph where graph dis-
tance corresponds to edit distance seems to be sufficient to
guarantee good performance; we will explore this in detail in
the sequel.

Similar constructions are possible for variable-length codes.
When using such codes, the appropriate edit distance might
be the Levenshtein distance, so a minimal change code-
labeled Levenshtein distance graph rather than a Gray code-
labeled hypercube would be used. When embedding in other
graphs, codeword lengths must also be taken into account. If
a common Huffman code forpX and for pY is embeddable
(with matched vertex labels) in the Levenshtein graph, then
minimal K, L, andM are simultaneously achievable.

V. GENERAL CHARACTERIZATIONS

Using the insights garnered from the example, detailed
characterizations of the set of achievable rate–malleability
triples are obtained. For variable-length coding, resultsare
expressed in terms of the solution to an error-tolerant attributed
subgraph isomorphism problem [4].

A. Error-Tolerant Attributed Subgraph Isomorphism

A vertex-attributed graph is a three-tupleG = (V,E, µ),
whereV is the set of vertices,E ⊆ V ×V is the set of edges,
andµ : V → V∗ is a function assigning labels to vertices. The
set of labels is denotedV∗.

Definition 4: Consider two vertex-attributed graphsG =
(V (G), E(G), µG) and H = (V (H), E(H), µH). ThenG is
said to beembeddableinto H if H has a subgraph isomorphic
to G. That is, there is an injective mapφ : V (G) → V (H)
such thatµG(v) = µH(φ(v)) for all v ∈ V (G) and that
(u, v) ∈ E(G) implies (φ(u), φ(v)) ∈ E(H). This is denoted
asG Ã H.

Several graph editing operations may be defined, such as
substituting a vertex label, deleting a vertex, deleting anedge,
and inserting an edge. An edited graph is denoted through
the operatorE(·) corresponding to the sequence of graph edit
operationsE = (e1, . . . , ek). There is a cost associated with
each sequence of graph edit operations.

Definition 5: Given two graphsG andH, anerror-tolerant
attributed subgraph isomorphismψ from G to H is the
composition of two operationsψ = (E , φE) where

• E is a sequence of graph edit operations such that there
exists anE(G) that satisfiesE(G) Ã H.

• φE is an embedding ofE(G) into H.

Definition 6: Thesubgraph distanceρ(G,H) is the cost of
the minimum cost error-correcting attributed subgraph isomor-
phismψ from G to H.
Note that in general,ρ(G,H) 6= ρ(H,G).
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B. Closeness Vitality

The subgraph isomorphism cost structure for malleable
coding is based on a graph theoretic quantitycloseness vitality
[13]. An edge vitality index is the difference between some
functional of a graph and that same functional of the graph
with an edge removed.

Let fW (G) of a graphG be the sum of the distances of all
vertex pairs:

fW (G) =
∑

v∈V

∑

w∈V

d(v, w).

Definition 7: The closeness vitalitycv(G, r) of graph G
with respect to edger is: cv(G, r) = fW (G) − fW (G/r).

C. PV Characterization

We are concerned with the error-tolerant embedding of an
attributed, weighted source adjacency graph into the graph
induced by aV∗-space edit distance. Edge deletion is the only
graph editing operation that we need.

First consider the delay-free case,n = 1. A sourcep(X,Y )
and an edit distanced(·, ·) are given. Huffman coding provides
the minimal redundancy instantaneous code and achieves
expected performanceH(X) ≤ K ≤ H(X) + 1. Similarly,
a Huffman code forY yields H(Y ) ≤ L ≤ H(Y ) + 1. The
rate loss for using an incorrect Huffman code is essentiallya
divergence quantity [9]. A source code may be thought of in
terms of a random variable, hereZ. For a givenZ, there are
several Huffman codes: those arising from different labelings
of the code tree and also perhaps different trees [14]. Let us
denote the set of all Huffman codes forZ asHZ .

SinceK andL are fixed by the choice ofZ, all that remains
is to determine the set of achievableM . Let G be the graph
induced by the edit distanced(·, ·), and dG its path metric.
The graphG is intrinsically labeled. LetA be the weighted
adjacency graph of the sourcep(X,Y ), with verticesW, edges
E(A) ⊆ W ×W, and labels given by a Huffman code. That
is, A = (W, E(A), fE) for somefE ∈ HZ . There is a path
semimetric,dA, associated with the graphA.

The basic problem is to solve the error-tolerant subgraph
isomorphism problem of embeddingA into G. In general for
n = 1, the malleability cost under edit distancedG when using
the source codefE is

M =
∑

x∈W

∑

y∈W

p(x, y)dG(fE(x), fE(y)).

The smallest malleability possible is whenA is a subgraph of
G, and then

Mmin =
∑

x∈W

∑

y∈W

p(x, y)dA(x, y)

=
∑

x∈W

∑

y∈W

p(x, y)dG(fE(x), fE(y))

= E[fW (A)] = Pr[X 6= Y ].

If edges inA need to broken for embedding,M increases.
If an edge ē is removed from the graphA, the resulting

graph A/ē induces its own path semimetricdA/ē. The cost
of removing edgēe from the graphA is:

∑

x,y∈W

p(x, y)
[

dA/ē(fE(x), fE(y)) − dA(fE(x), fE(y))
]

,

which is the following function of the associated removal
operatione:

C(e) = −E[cv(A, ē)].

If E is a sequence of edge removals,Ē , then C(E) =
−E[cv(A, Ē)]. Putting things together,PV contains any point

K = H(X) + D(pX‖pZ) + 1,

L = H(Y ) + D(pY ‖pZ) + 1,

M = Mmin + min
fE∈HZ

ρ(A,G).

Increasing the block length beyondn = 1 may improve
performance, which we show in the following.

Theorem 1:Consider a sourcep(X,Y ) with associated
(unlabeled) weighted adjacency graphA and an edit distance
d with associated graphG. For anyn, let P

(ach)
V be the set of

triples (K,L,M) that are computed, by allowing an arbitrary
choice of the memoryless random variablep(Zn

1 ), as follows:

K = H(X) + D(pX‖pZ) + 1
n ,

L = H(Y ) + D(pY ‖pZ) + 1
n ,

M = 1
n Pr[Xn

1 6= Y n
1 ] + 1

n min
fE∈HZn

1

ρ((Wn, E(A), fE), G).

Then the set of triplesP(ach)
V is achievable instantaneously.

The theorem, proven in [6], states that error-tolerant sub-
graph isomorphism implies achievable malleability. The choice
of the auxiliary random variableZ is open to optimization.
If minimal rates are desired,pZ must be on the geodesic
connectingpX andpY . If Z is not on the geodesic, then there
is some rate loss, but perhaps also some malleability gains.

WhenpY |X is a stationary update process, the simple lower
bounds might be tight to this achievable region.

Corollary 1: Consider a source as given above in Theo-
rem 1. If pY |X is stationary,pX = pY is |V|-adic, and
there is a Huffman-labeledA for pX = pY that is an
isometric subgraph ofG, then the block lengthn lower bound
(H(X),H(Y ), 1

n Pr[Xn
1 6= Y n

1 ]) is tight to this achievable
region for everyn, and in particular to(H(X),H(Y ), 0) for
largen.

D. PB Characterization

Now we turn our attention to the block-coding problem.
For PB , we use a joint typicality graph rather than the
weighted adjacency graph used forPV . Additionally we
focus on binary block codes under Hamming edit distance, so
we are concerned only with hypercubes rather than general
edit distance graphs. We use standard typicality notations,
definitions, and arguments from [15].

For the bivariate distributionpX,Y , define a square matrix
called thestrong joint typicality matrixAn

[XY ] as follows.
There is one row (and column) for each sequence inSn

[X]δ ∪
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Sn
[Y ]δ. The entry with row corresponding toxn

1 and column
corresponding toyn

1 receives a one if(xn
1 , yn

1 ) is strongly
jointly typical and zero otherwise.

Let us temporarily restrict to stationary update:P =
{p(x, y) | p(x) = p(y)}. Asymptotically,An

[XY ] will have ap-
proximately equal numbers of ones in all columns and in all
rows. Think of An

[XY ] as the adjacency matrix of a graph,
where the vertices are sequences and edges connect sequences
that are jointly typical with one another.

Proposition 1: Take An
[XY ] for some source inP as the

adjacency matrix of a graphGn. The number of vertices in
the graph will satisfy

(1 − δ)2n(H(X)−ψ) ≤ |V (Gn)| ≤ 2n(H(X)+ψ),

where ψ → 0 as n → ∞ and δ → 0. The degree of each
vertex, degv, will concentrate as

2n(H(Y |X)−ν) ≤ degv ≤ 2n(H(Y |X)+ν),

whereν → 0 asn → ∞ andδ → 0.
The basic topology of the strongly typical set is asymptotically
a 2nH(Y |X)-regular graph on2nH(X) vertices. Graph embed-
ding ideas then yield a theorem on block coding achievability:

Theorem 2:For a sourcep(x, y) ∈ P and the Hamming
edit distance, a triple(K,K,M = Mmin) is achievable if
Gn Ã HnK , whereHnK is the hypercube of sizenK.

Using this result, we argue that a linear increase in mal-
leability is at exponential cost in code length. A simple
counting argument leads to a condition for embeddability.

Theorem 3:For a sourcep(x, y) ∈ P, if asymptotically
Gn Ã HnK then

nK ≥ max
(

nH(X), 2nH(Y |X)
)

. (2)

The spaceSn , Sn
[X]δ ∪ Sn

[Y ]δ with the corresponding path
metric, dA induced byAn

[XY ] is a metric space. Hypercubes
with their natural path metric,dG, are also metric spaces.
Rather than requiring absolutely minimalnM , it can be noted
that M is asymptotically zero when the Lipschitz constant
associated with the mapping between the source space and
the representation space has nice properties inn.

Definition 8: A mapping between metric spacesf :
(Sn, dAn) → (VnK , dGn) is calledLipschitz continuousif

dGn(f(x1), f(x2)) ≤ CdAn(x1, x2)

for some constantC and for all x1, x2 ∈ Sn. The smallest
suchC is theLipschitz constant, Lip[f ].
We can bound the malleability of a coding scheme that only
represents sequences inSn in terms of the Lipschitz constant.

Theorem 4:For a coding schemefE that only represents
sequences inSn = Sn

[X]δ ∪ Sn
[Y ]δ,

M ≤
Lip[fE ]

n
(1 + δ diam(Gn)) ,

wherediam(·) is the graph diameter.
Results from theoretical computer science [6] and some source
coding constructions [5] may provide further characterization
of Lip[fE ].

VI. D ISCUSSION ANDCONCLUSIONS

We have formulated information theoretic problems mo-
tivated by costly writing on storage media. The problems
exhibit a trade-off between compression efficiency and the
costs incurred when updating using random access editing.

For the zero-error problem, we found that the subgraph dis-
tance between a source graph and a storage medium graph de-
termines the rate–malleability relation. Since index assignment
for joint source channel coding, signal constellation labeling,
and this problem are similar, it is not surprising that Gray
codes arise in each [12], [16]. All involve a transformation
of objects of one kind into objects of a new kind so that the
distances in the two spaces are approximately equal [8].

For block coding, we found that if minimal malleability
costs are desired, then a rate penalty that is exponential inthe
conditional entropy of the update process must be paid. That
is, unless the two versions of the source are very strongly
correlated (conditional entropy logarithmic in block length),
rate exponentially larger than entropy is needed. If we require
malleability M = O(1/n), then ratesK and L must be
Ω( 1

n2n).

ACKNOWLEDGMENTS

Discussions with V. Tarokh, R. G. Gallager, S. K. Mitter,
S. Tatikonda, and R. K. Sastry are appreciated.

REFERENCES

[1] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki, “Improving dupli-
cate elimination in storage systems,”ACM Trans. Storage, vol. 2, no. 4,
pp. 424–448, Nov. 2006.

[2] R. Burns, L. Stockmeyer, and D. D. E. Long, “In-place reconstruction
of version differences,”IEEE Trans. Knowl. Data Eng., vol. 15, no. 4,
pp. 973–984, July-Aug. 2003.

[3] C. H. Bennett,et al., “Information distance,”IEEE Trans. Inf. Theory,
vol. 44, no. 4, pp. 1407–1423, July 1998.

[4] B. T. Messmer and H. Bunke, “A new algorithm for error-tolerant
subgraph isomorphism detection,”IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 5, pp. 493–504, May 1998.

[5] A. Montanari and E. Mossel, “Smooth compression, Gallagerbound
and nonlinear sparse-graph codes,” inProc. 2008 IEEE Int. Symp. Inf.
Theory, July 2008, pp. 2474–2478.

[6] L. R. Varshney, J. Kusuma, and V. K. Goyal, “Malleable coding:
Compressed palimpsests,” arXiv:0806.4722v1 [cs.IT]., June2008.

[7] J. Kusuma, L. R. Varshney, and V. K. Goyal, “Malleable coding with
fixed segment reuse,” arXiv:0809.0737v1 [cs.IT]., Sept. 2008.

[8] G. Cormode, “Sequence distance embeddings,” Ph.D. dissertation, Uni-
versity of Warwick, Warwick, Jan. 2003.

[9] E. N. Gilbert, “Codes based on inaccurate source probabilities,” IEEE
Trans. Inf. Theory, vol. IT-17, no. 3, pp. 304–314, May 1971.

[10] C. E. Shannon, “The zero error capacity of a noisy channel,” IRE Trans.
Inf. Theory, vol. IT-2, no. 3, pp. 8–19, Sept. 1956.

[11] H. S. Witsenhausen, “The zero-error side information problem and
chromatic numbers,”IEEE Trans. Inf. Theory, vol. IT-22, no. 5, pp.
592–593, Sept. 1976.

[12] E. Agrell, J. Lassing, E. G. Ström, and T. Ottosson, “On the optimality
of the binary reflected Gray code,”IEEE Trans. Inf. Theory, vol. 50,
no. 12, pp. 3170–3182, Dec. 2004.
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