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ABSTRACT
It is well known that a bandlimited signal can be uniquely deter-
mined from nonuniformly spaced samples, provided that the aver-
age sampling rate exceeds the Nyquist rate. However, reconstruc-
tion of the continuous-time signal from nonuniform samples is more
difficult than from uniform samples. This paper develops and com-
pares simpler approximate methods for signal reconstruction from
nonuniform samples.

1. INTRODUCTION

The most common form of sampling used in the context of
discrete-time processing of continuous-time signals is uniform sam-
pling. For a bandwidth-limited signal x(t) whose Fourier spec-
trum contains no component at or above the frequency Ωc the well-
known Nyquist-Shannon sampling theorem states that the signal is
uniquely determined by its values at an infinite set of sample points
spaced at TN = π/Ωc apart. Specifically, x(t) is represented in terms
of its uniform samples as

x(t) =
∞

∑
k=−∞

x(kTN) ·h(t− kTN) (1)

where h(t) = sinc(π/TN · t) 1.
Various extensions of the uniform sampling theorem are well

known (see, for example Papoulis [1]). In [2] some special nonuni-
form sampling processes are examined in detail and generalized
sampling theorems are obtained. Yao and Thomas [3] discuss exten-
sions of the uniform sampling expansion and establish that a ban-
dlimited signal can be uniquely determined from nonuniform sam-
ples, provided that the average sampling rate exceeds the Nyquist
rate. However, in contrast to uniform sampling, reconstruction of
the continuous-time signal from nonuniform samples using direct
interpolation is computationally difficult. Several alternative meth-
ods for reconstruction from nonuniform samples have been pre-
viously suggested, such as iterative algorithms (e.g. [4]) which
are also computationally demanding and have potential issues of
convergence. In [5] the bandlimited assumption is replaced by a
smoothness assumption and the use of polynomial filtering for re-
construction of nonuniformly sampled signal is considered. Mar-
vasti [6] suggests a method to recover a bandlimited signal from an
nth-order-hold version of irregular samples. In [7] the transposed
Farrow structure is used for converting the nonuniformly sampled
sequence into uniform one. Papoulis [8] suggests a nonlinear trans-
formation of the nonuniform grid into a uniform grid and develops
an approximate reconstruction of a signal from its nonuniform sam-
ples. A method of designing FIR filters whose input signals are
sampled irregularly due to clock jitter is presented in [9]. Meth-
ods for reconstruction when the nonuniform sampling pattern has a
periodically recurring structure have also been proposed [10],[11].

In this paper we treat nonuniform samples as a stochastic per-
turbation from a uniform grid. With this approach, developed in

1where we use throughout the historical unnormalized definition of the
sinc function, i.e., sinc(x)=̂ sin(x)

x

section 2, the characteristic function of the perturbation error plays
a role similar to that of an anti-aliasing filter. In section 3, using the
model in section 2, several approaches are suggested and analyzed
for approximate reconstruction from nonuniform samples. These
methods, based on the uniform sampling reconstruction of eq. (1)
and its Taylor’s series expansion, lead to sinc interpolation of the
nonuniform samples treated as though they are on a uniform grid,
and alternatively sinc interpolation applied to the samples on the
nonuniform grid. In section 4 these methods are compared in terms
of their mean squared error (MSE). A generalized reconstruction
method is also proposed in section 4, which incorporates both meth-
ods of section 3 as special cases. This generalized method consists
of locating the samples randomly around the uniform grid with the
characteristics of the random perturbations designed to minimize
the reconstruction error. Section 5 suggests applying a Wiener filter
to improve the mean squared error obtained by this randomized sinc
interpolation method.

2. STOCHASTIC PERTURBATION MODEL OF
NONUNIFORM SAMPLING

We consider x(t) to be a continous-time zero-mean wide sense sta-
tionary random process with autocorrelation function Rx(τ) and
power spectral density (PSD) Sx(Ω) which is zero for |Ω| ≥ Ωc.
We denote by x̃[n] a nonuniform sequence of samples of x(t), i.e.,

x̃[n] = x(tn) (2)

where {tn} represent a nonuniform grid which we model as random
perturbations of a uniform grid , i.e.,

tn = nT +ξn . (3)

T denotes the nominal sampling interval. ξn is characterized as
an i.i.d. sequence of random variables independent of x(t) with
probability density function (pdf) fξ (ξ ) and characteristic function
Φξ (Ω) =

∫ ∞
−∞ fξ (ξ ′)e jΩξ ′dξ ′. The objective is to reconstruct x(t)

from its nonuniform samples x̃[n].
We first show that with respect to second-order statistics,

x̃[n] can equivalently be represented by the sequence z[n] in
figure (1) where the system Φξ (Ω) has frequency response
equal to the Fourier transform of fξ (ξ ) and v[n] is zero-mean
additive white noise, uncorrelated with x(t), with PSD Sv =
1

2π
∫ Ωc
−Ωc

Sx(Ω)(1−|Φξ (Ω)|2)dΩ.

x(t)
Φξ(Ω) C/D

T

z[n]

v[n]

y(t) y[n]

Figure 1: A second-order statistics model for nonuniform sampling

For the system of figure (1) it is straight forward to show that

Rz[n,n− k] =

{
1

2π
∫ Ωc
−Ωc

Sx(Ω)dΩ k = 0
1

2π
∫ Ωc
−Ωc

Sx(Ω)|Φξ (Ω)|2e jΩT kdΩ k 6= 0
(4)



and that

E (z[n]x(t)) = Rx(τ)∗ fξ (τ)|τ=nT−t . (5)

To show that eq. (4) is identical to Rx̃[n,n−k] and eq. (5) is identical
to E(x̃[n]x(t)), we evaluate the autocorrelation of x̃[n] and the cross-
correlation between x̃[n] and x(t). Specifically, with both x(tn) and
ξn as random variables, the autocorrelation function of x̃[n] is given
by,

Rx̃[n,n− k] = E {x̃[n]x̃[n− k]}=
E {x(nT +ξn)x((n− k)T +ξn−k)}=
E {Rx (kT +ξn−ξn−k)} (6)

Expressing (6) in terms of Sx(Ω) we obtain,

Rx̃[n,n− k] = E
(

1
2π

∫ Ωc

−Ωc

Sx(Ω)e jΩ(kT+ξn−ξn−k)dΩ
)

=
{

1
2π

∫ Ωc
−Ωc

Sx(Ω)dΩ k = 0
1

2π
∫ Ωc
−Ωc

Sx(Ω)|Φξ (Ω)|2e jΩT kdΩ k 6= 0
(7)

which is identical to eq. (4).
The input-output cross-correlation is given by

E (x̃[n]x(t)) = E (x(nT +ξn)x(t)) = E (Rx ((nT − t)+ξn))

=
1

2π

∫ ∞

−∞
Sx(Ω)Φξ (Ω)e jΩ(nT−t)dΩ

= Rx(τ)∗ fξ (τ)|τ=nT−t (8)

which is equivalent to the input-output cross-correlation in the sys-
tem in figure (1), i.e. to eq. (5).
Eq. (7) can also equivalently be written in terms of the continuous
autocorrelation function of x(t) as

Rx̃[k] = Rx̃[n,n− k] = Rx(t)∗ fξ (t)∗ fξ (−t)|t=kT

+
(

Rx(0)−Rx(t)∗ fξ (t)∗ fξ (−t)|t=0

)
·δ [k] . (9)

Transforming to the frequency domain, we obtain

Sx̃(e jω ) =
1
T

∞

∑
k=−∞

Sx

(
ω−2πk

T

)∣∣∣∣Φξ

(
ω−2πk

T

)∣∣∣∣
2

+
1

2π

∫ Ωc

−Ωc

Sx(Ω)
(

1−|Φξ (Ω)|2
)

dΩ (10)

Uniform sampling is a special case for which fξ (ξ ) = δ (ξ ) and
Φξ (Ω) = 1. In this case, as expected,

Sx̃(e jω ) =
1
T

∞

∑
k=−∞

Sx

(
ω−2πk

T

)
(11)

which is the power spectral density of the sequence of uniform sam-
ples x[n] = x(nT ). The effect of timing error on the power spectrum
indicated in eq. (10) was first shown by Akaike in [12].

The structure of figure (1) suggests that with respect to second-
order statistics, nonuniform sampling with stochastic perturbations
can be modeled as uniform sampling of the signal pre-filtered by the
Fourier transform of the pdf of the sampling perturbation. Corre-
spondingly, the pdf fξ (ξ ) can be designed subject to the constraints
on fξ (ξ ) as a probability density function so that Φξ (Ω) acts as an
equivalent anti-aliasing LPF in figure (1). Of course the stochastic
perturbation still manifests itself through the additive white noise
v[n] in figure (1). Thus, figure (1) suggests that aliasing can be
traded off with uncorrelated white noise by appropriate design of
the pdf of the sampling perturbation.

An interesting consequence of eq. (10) is that it offers the po-
tential in the context of nonuniform sampling to resolve whether or
not the signal has been undersampled. To illustrate, consider the
signal

x(t) = A · cos(Ω0t +θ) (12)

where θ ∼ u[−π,π] and A and Ω0 are deterministic unknown pa-
rameters. The PSD of x(t) is given by

Sx(Ω) =
πA2

2
· (δ (Ω−Ω0)+δ (Ω+Ω0)) (13)

By substituting Sx(Ω) from (13) into (10) we obtain

Sx̃(e jω ) =
1
2

A2
(

1−|Φξ (Ω0)|2
)

+
π
2

A2 · |Φξ (Ω0)|2 ·

·
∞

∑
k=−∞

(δ (ω−Ω0T −2πk)+δ (ω +Ω0T −2πk)) (14)

where the PSD of the uniformly sampled signal x[n] = x(nT ) is
given by,

Sx(e jω ) =
πA2

2
·

∞

∑
k=−∞

(δ (ω−Ω0T −2πk)+δ (ω +Ω0T −2πk))

Given Sx(e jω ), we can solve for A2 and for Ω0. However, the so-
lution for Ω0 is not unique if the sampling rate is not guaranteed
to be above the Nyquist rate. In the case of nonuniform sampling,
however, the noise floor as well as the attenuation factor depends
on the continuous frequency Ω0 through Φξ (·) which allows us to
uniquely solve for A2 and |Φξ (Ω0)|. Consequently, if sampling is
done nonuniformly, we can determine whether the signal was un-
dersampled and also the value of Ω0 for well behaved characteristic
functions.

To generalize this idea, assume that x(t) is sampled nonuni-
formly with an average rate that exceeds the Nyquist rate. Then,

Sx̃(e jπ ) = Sv =
1

2π

∫ Ωc

−Ωc

Sx(Ω)
(

1−|Φξ (Ω)|2
)

dΩ (15)

and

Sx̃(e jω )−Sx̃(e jπ ) =
1
T
·Sx

(ω
T

)∣∣∣Φξ

(ω
T

)∣∣∣
2
∀ |ω |< π (16)

Therefore, if Φξ (Ω) 6= 0 for all Ω < Ωc, then

1
2π

∫ π

−π

(
Sx̃(e jω )−Sx̃(e jπ )

)
(

1−|Φξ ( ω
T )|2

)

|Φξ ( ω
T )|2 dω = Sv (17)

Thus, comparing the left-hand side of (17) with Sx̃(e jπ ), we can tell
whether x(t) was undersampled or not.

3. APPROXIMATE RECONSTRUCTION FROM
NONUNIFORM SAMPLES

In this section we suggest several simplified but approximate ap-
proaches to reconstruction based on the model and analysis dis-
cussed in section 2. It will be assumed throughout the rest of the
paper that the average sampling rate exceeds the Nyquist rate and
consequently that the direct interpolation formula would result in
exact reconstruction. x(t) can in general be expressed in terms of
the uniform samples xk = x(kTN) through eq. (1). Consequently,
x(tn) can be expressed as

x(tn) =
∞

∑
k=−∞

xk ·h(tn− kTN) (18)



With tn = nT + ξn where T is the nominal sampling interval and
expanding eq. (18) in a Taylor’s series in tn around tn = nT we
obtain the Mth-order approximation

x̃M(tn) =
∞

∑
k=−∞

xk ·
(

M

∑
p=0

ξn
p

p!
·h(p)(nT − kTN)

)
(19)

where h(p)(t) = dph(t)
dt p .

Our basic approach is to treat the parameters xk as deterministic and
determine their values to minimize the conditional mean squared
error between x(tn) and x̃M(tn) as specified in eq. (19). Specifically,
we choose xk to minimize

E





∞

∑
n=−∞

(
x(tn)−

∞

∑
k=−∞

xk ·
M

∑
p=0

ξn
p

p!
·h(p) (nT − kTN)

)2
∣∣∣∣∣∣
{x(tn)}





Differentiating w.r.t xl and setting to zero we obtain

∞

∑
k=−∞

xk ·
M

∑
p,q=0

∞

∑
n=−∞

E
(

ξn
p+q∣∣{x(tn)}

)

p! ·q!
·h(p) (nT − kTN) ·h(q) (nT − lTN)

=
∞

∑
n=−∞

x(tn) ·
(

M

∑
p=0

E (ξn
p|{x(tn)})

p!
·h(p) (nT − lTN)

)
∀l (20)

which under the independence assumption of {ξn} and x(t) be-
comes

∞

∑
k=−∞

xk ·
M

∑
p=0

M

∑
q=0

mp+q

p! ·q!
·
(

∞

∑
n=−∞

h(p) (nT − kTN) ·h(q) (nT − lTN)

)

=
∞

∑
n=−∞

x(tn) ·
(

M

∑
p=0

mp

p!
·h(p) (nT − lTN)

)
(21)

where mp = E (ξn
p) is the pth-order moment of ξn.

Using the equality

∞

∑
n=−∞

h(p) (nT − kTN) ·h(q) (nT − lTN) =
TN

T
· (−1)q ·h(p+q) ((l− k)TN)

the left side of (21) is the convolution of xk with the sequence

c[k] =
TN

T
·

M

∑
p=0

M

∑
q=0

mp+q

p! ·q!
· (−1)q ·h(p+q) (kTN) (22)

Treating the sequence xk as uniform samples in reconstructing x(t)
will then obtain

x̂M(t) = x̂0(t)∗wM(t) (23)

x̂0(t)
T

Ωc−Ωc

WM (Ω)
x̂M (t)

∑
x(tn) · δ(t − nT )

S/I
x(tn)

T

Figure 2: Mth-order approximate reconstruction

where x̂0(t) is the optimal zeroth-order approximation,

x̂0(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t−nT ) (24)

and

WM(Ω) =
∑M

p=0
mp
p! (− jΩ)p

∑M
p=0 ∑M

q=0
mp+q
p!·q! · (−1)q · ( jΩ)p+q

|Ω|< Ωc (25)

This then corresponds to treating the nonuniform samples as being
on a uniform grid and reconstructing x(t) using the filter T ·WM(Ω).
Note that as M increases, an increasingly higher-order statistics of
ξn are needed for this optimal reconstruction.

An alternative approach to the use of the Taylor’s expansion is
to choose the coefficients in eq. (18) to minimize the conditional
mean squared error between the actual nonuniform samples and the
nonuniform samples that would result from the values xk treated on
a uniform grid, i.e. choose xk to minimize

E





∞

∑
n=−∞

(
x(tn)−

∞

∑
k=−∞

xk ·h(tn− kTN)

)2
∣∣∣∣∣∣
{x(tn)}



 (26)

This minimization results in the equations:

∞

∑
n=−∞

x(tn) ·E {h(tn− lTN)}= (27)

∞

∑
k=−∞

xk ·E
{

∞

∑
n=−∞

h(tn− kTN)h(tn− lTN)

}
∀l

By using the relation

E

{
∞

∑
n=−∞

h(tn− kTN)h(tn− lTN)

}
=

TN

T
·δ [l− k] (28)

eq. (27) becomes

∞

∑
n=−∞

x(tn) ·E {h(tn− lTN)}=
TN

T
· xl ∀l (29)

Taking the expectation on the left hand side of eq. (29) will lead to
the reconstruction suggested in (23) with M → ∞, i.e.,

WM(Ω) = Φ∗
ξ (Ω) |Ω|< Ωc (30)

As an alternative, we suggest replacing E {h(tn− lTN)} with h(tn−
lTN) in which case

x̂k =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(tn− kTN) (31)

and

x̂(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t− tn) (32)

This then corresponds to reconstruction using sinc interpolation
applied to the samples on the nonuniform grid as represented in
Fig. (3). This approximation will be referred to as nonuniform sinc
interpolation.

∑
x(tn) · δ(t − tn)

S/I
x(tn)

tn = n · T + ξn

T

Ωc

x̂(t)

−Ωc

Figure 3: Nonuniform Sinc Interpolation



4. PERFORMANCE OF UNIFORM, NONUNIFORM AND
RANDOMIZED SINC INTERPOLATION

In this section, we analyze the performance of the methods sug-
gested in the previous section with respect to their mean squared
error. We denote by eU

M(t) the error between x(t) and x̂M(t) defined
in (23). Then, it can be shown that the MSE is

σ2
eU

M
=

1
2π

∫ Ωc

−Ωc

Sx(Ω) ·
{
|1−Φξ (Ω) ·WM(Ω)|2+

+ ρ ·WM ·
(

1−|Φξ (Ω)|2
)}

dΩ (33)

where ρ = T/TN ≤ 1 and WM = 1
2Ωc

· ∫ Ωc
−Ωc

|WM(Ω)|2 dΩ. For the
uniform sinc interpolation, which corresponds to M = 0, the MSE
is

σ2
eU =

1
2π

∫ Ωc

−Ωc

Sx(Ω) ·
{
|1−Φξ (Ω)|2 +ρ ·

(
1−|Φξ (Ω)|2

)}

︸ ︷︷ ︸
=̂GU (Ω)

dΩ (34)

Similarly, denote by e 6U (t) the reconstruction error of the nonuni-
form sinc interpolation method defined in (32). Then,

σ2
e6U =

1
2π

∫ Ωc

−Ωc

Sx(Ω) ·ρ ·
(

1− 1
2Ωc

∫ Ω+Ωc

Ω−Ωc

|Φξ (Ω
′
)|2dΩ

′
)

︸ ︷︷ ︸
=̂G6U (Ω)

dΩ (35)

It can be shown and is intuitively reasonable that both the uniform
and nonnuniform sinc interpolation methods attain zero MSE if and
only if the samples had been generated uniformly, i.e., x̃[n] = x(nT ).
Also, as is clear from eqns (34),(35) the performance of both meth-
ods depends on the spectrum of the continuous-time signal x(t) as
well as on the characteristic function Φξ (Ω) of the perturbations
error, which can be designed to reduce the MSE. The MSE depends
also on the oversampling ratio r = 1/ρ = TN/T . However, while the
performance of both methods improves as r increases, only nonuni-
form sinc interpolation approaches zero MSE when r approaches
infinity. This occurs since nonuniform sinc interpolation maintains
the correct sample positions in time whereas uniform sinc interpo-
lation does not.

For the purpose of comparison between the two methods, we
consider two cases. The first is the case of small perturbations with
zero mean, for which in the region |Ω| < 2Ωc, Φξ (Ω) can be well
approximated by the second-order Taylor’s expansion

Φξ (Ω)≈ 1− 1
2

σ2
ξ Ω2 (36)

with the variance σ2
ξ of ξn assumed to be small enough relative to

T so that (36) holds. Substituting (36) into (34) and (35) yields

σ2
e 6U /σ2

eU ≈
(

1+Ωc
2/3Bx

)
(37)

where Bx denotes the bandwidth of x(t) defined as

Bx =
∫ Ωc

−Ωc

Ω2 ·
(

Sx(Ω)
∫ Ωc
−Ωc

Sx(Ω
′)dΩ′

)
dΩ (38)

We see from (37) that independent of the detailed characteristics
of the perturbation or the signal spectrum, as long as the perturba-
tions around the uniform grid are small enough so that (37) holds, it
is better to reconstruct the signal using uniform sinc interpolation,
even though uniform sinc interpolation uses only the nominal rather
than actual sampling times, and therefore uses less information than
the nonuniform sinc interpolation method.

The second case to be examined is that of uniformly distributed
peturbations, i.e.,

ξn ∼ u[−∆ξ ,∆ξ ]↔Φξ (Ω) = sinc(∆ξ Ω) (39)

For the case in which the nominal sampling rate equals the Nyquist
rate, i.e., T = TN , GU (Ω) and G 6U (Ω) defined in (34) and (35) be-
comes

GU (Ω) = 2(1− sinc(∆ξ Ω)) |Ω|< Ωc (40)

G 6U (Ω) = 1− 1
2Ωc

∫ Ω+Ωc

Ω−Ωc

sinc2(∆ξ Ω
′
)dΩ

′ |Ω|< Ωc

From (40) it follows that for ∆ξ < 0.34T ,

GU (Ω) < G 6U (Ω) ∀ |Ω|< Ωc (41)

Consequently for ∆ξ < 0.34T , uniform sinc interpolation always
achieves a lower MSE than nonuniform sinc interpolation indepen-
dent of the input spectrum. However, when ∆ξ > 0.34T , the rel-
ative performance of these two methods strongly depends on the
spectrum of the input signal.

None of the methods suggested above is universally preferable
for all signals. We next suggest a generalized method which will be
referred to as randomized sinc interpolation. This method suggests
applying sinc interpolation to the samples on the nonuniform grid
t̃n = nT +ζn, where ζn is another iid sequence of random variables
independent of x(t) and for which ζn is independent of ξk for n 6= k.
The reconstruction then takes the form

x̂(t) =
∞

∑
n=−∞

(T/TN) · x(tn) ·h(t− t̃n) (42)

T

Ωc

x̂(t)

−Ωc

∑
x̃[n]δ(t − t̃n)

S/I
x̃[n]

t̃n = n · T + ζn

Figure 4: Randomized Sinc Interpolation

The uniform sinc interpolation as well as the nonuniform sinc inter-
polation discussed above can be treated as special cases of this gen-
eralized method with ζn = 0 and ζn = ξn, respectively. Allowing ζn
to have a partial correlation with ξn is a further generalization.

Provided that the average sampling rate exceeds the Nyquist
rate, it can be shown that with respect to second-order statistics,
nonuniform sampling discussed in section 2 followed by the ran-
domized reconstruction method suggested in figure (4) is equivalent
to the following system

Φ
ξ,ζ

(Ω,−Ω)
yR(t)

ṽ(t)

zR(t)x(t)

Figure 5: A second-order statistics model for nonuniform sampling
followed by randomized sinc interpolation reconstruction

where Φξ ,ζ (Ω1,Ω2) is the joint characteristic function of ξn and
ζn, defined as the Fourier transform of their joint pdf fξ ,ζ (ξ ,ζ )
and ṽ(t) is zero-mean additive colored noise, uncorrelated with x(t),
with PSD

Sṽ(Ω) =
T
2π

∫ Ωc

−Ωc

Sx(Ω
′
)(1−|Φξ ,ζ (Ω

′
,−Ω)|2)dΩ

′ |Ω|< Ωc. (43)



The corresponding MSE of the randomized sinc interpolation
method is given by

σ2
eR =

1
2π

∫ Ωc

−Ωc

Sx(Ω) ·
{∣∣∣1−Φξ ,ζ (Ω,−Ω)

∣∣∣
2

+

+ ρ ·
[

1− 1
2Ωc

∫ Ωc

−Ωc

|Φξ ,ζ (Ω,−Ω1)|2dΩ1

]}
dΩ (44)

Designing ζn to optimize the MSE is done through the
joint characteristic function Φξ ,ζ (Ω1,Ω2) keeping the constraint
Φξ ,ζ (Ω,0) = Φξ (Ω). To illustrate, we will assume that (ξn,ζn) ∼
N(0,0,σ2

ξ ,σ2
ζ ,ρξ ζ ) and find σ2

ζ and ρξ ζ to optimize the MSE. For
the optimal solution, ρξ ζ = 1 and σζ grows with the bandwidth of
the input signal as shown in figure (6).
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Figure 6: The optimal std σζ of ζn as a function of the spread σx of
the spectrum of x(t) for σξ = 1

This can be achieved by choosing ζn = (σζ /σξ ) ·ξn. Therefore,
for low bandwidth signals, σζ = 0 and the optimal reconstruction
method is the uniform sinc interpolation. As the bandwidth of the
input signal is increased, σζ is increased and as a result the samples
are positioned closer to their original location but still with tendency
towards the uniform grid due to the optimality of this reconstruction
method.

5. WIENER FILTERING

The methods discussed in section 4 can be further improved by pre-
filtering and post-filtering as indicated in figure (7). The pre-filter
prior to sampling is used to shape the spectrum and thus reduce
the noise. Also, the discrete-time signal after sampling, x̃[n], can
be pre-processed prior to reconstruction. Finally, post-processing
of the signal x̂(t) after reconstruction can be obtained to reduce the
MSE.

Hd(e
jω)

x̃[n] ∗ hd[n]x̃[n]
C/D

tn = nT + ξn

D/C

t̃n = nT + ζn

System A

x(t) ∗ hpre(t) x̂(t)

Hpost(Ω)
x̂(t) ∗ hpost(t)

Hpre(Ω)
x(t)

A
x(t) ∗ hpre(t) x̂(t)

Figure 7: Improved Randomized Sinc Interpolation

We consider here only the design of the post-filtering Hpost(Ω).
Minimizing the MSE with respect to Hpost(Ω) will then correspond
to the use of a non-causal Wiener filter

Hpost(Ω) =
Sxx̂(Ω)
Sx̂(Ω)

(45)

where Sxx̂(Ω) = Sx(Ω) ·Φ∗
ξ ,ζ (Ω,−Ω) and

Sx̂(Ω) = Sx(Ω) ·
∣∣∣Φξ ,ζ (Ω,−Ω)

∣∣∣
2
+Sṽ(Ω) |Ω|< Ωc (46)

with Sṽ(Ω) defined in (43). Consequently,

Hpost(Ω) =
Sx(Ω) ·Φ∗

ξ ,ζ (Ω,−Ω)

Sx(Ω) · |Φξ ,ζ (Ω,−Ω)|2 +Sṽ(Ω)
|Ω|< Ωc (47)

The corresponding MSE is given by

σ2
eW =

1
2π

∫ Ωc

−Ωc

Sx(Ω) ·Sṽ(Ω)
Sx(Ω) · |Φξ ,ζ (Ω,−Ω)|2 +Sṽ(Ω)

dΩ (48)

As indicated previously, the uniform sinc interpolation corre-
ponds to the special case of ζn = 0. In this case, applying the filter
Hpost(Ω) on x̂(t) is equivalent to applying the discrete-time filter

Hd(e jω ) = Hpost

(ω
T

)
=

Sx( ω
T ) ·Φ∗

ξ ( ω
T )

Sx( ω
T ) · |Φξ ( ω

T )|2 +Sṽ(0)
|ω|< π (49)

to the nonuniform samples x̃[n] prior to the reconstruction. This
filter can be interpreted as the linear minimum mean squared error
estimator of the uniform samples x[n] from the nonuniform samples
x̃[n]. That is, the best filter to apply to the nonuniform samples prior
to the uniform sinc interpolation is one that estimates the uniform
samples.
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