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Abstract

Rocks of the Scandinavian Caledonides have conventionally been grouped into five main
complexes: The Autochthon and Parautochthon, the Lower Allochthon, the Middle
Allochthon, the Upper Allochthon (Seve and K6li Nappes), and the Uppermost Allochthon
(Gee, 1975). The rocks of the Singis-Nikkaluokta transect fit into these broad categories,
however intra-nappe correlations within these units along strike of the orogen are
sometimes problematic. The Singis-Nikkaluokta portion of the transect contains rocks
from the Lower K6li Nappe, the Seve Nappe, the Middle Allochthon, and the
Autochthonous-Paratochthonous Baltic Shield. In this study the rocks of the Singis-
Nikkaluokta area are described and grouped into a specific tectonostratigraphy and then
regional correlations and implications are discussed.

The deformational history of the Singis-Nikkaluokta region may be subdivided into eight
deformational events which are associated with two major tectonothermal events.
Deformations 1 and 2 are Finnmarkian, and are associated with the Late Cambrian to Early
Ordovician metamorphism of the Seve Nappe. Deformation 3 is associated with the post-
Ashgillian Scandian metamorphism of the Lower K6li Nappe. The juxtaposition of the
K6li and Seve produced the fabrics associated with the fourth deformational event.
Emplacement of the Upper Nappe Complex onto the rocks of the Baltic shield produced
structures assigned to D5, D6, and D7. The final deformational event (D8) is correlated
with late stage west vergent motion along the Seve-K6li contact.

Several samples from units within the Seve Nappe of the Singis-Nikkaluokta region
contain assemblages which allow the application of well calibrated quantitative
thermobarometers. Quantitative thermobarometry and garnet zoning profiles on Seve
quartzofeldspathic gneiss samples with appropriate assemblages yields important
constraints on the "Finnmarkian" history of the Seve Nappe of the Singis-Nikkaluokta
region. The metamorphic results from this study area include: 1) Eclogite grade rocks of
the Aurek Assemblage yield temperatures and pressures in excess of 12 kb and 7300 C. 2)
The temperatures and pressures obtained in this study for seven samples from the
Savopakte Assemblage of the Seve Nappe range from 571-766* C and 8.9-13.6 kb. When
combined with 40Ar/39Ar data these pressures correspond to burial depths of approximately
30-45 km during the Finnmarkian (490 Ma) for the outer margin of Baltica. Uplift rates of
.2-.4 mm/yr during the Finnmarkian are obtained 3) Within the Vidja Assemblage of the
Seve Nappe a pressure and temperature of 7.3±1.7 kb and 616±60* is obtained. These
conditions are consistent with the interpretation of a late Finnmarkian (450 Ma) intra-Seve
juxtaposition of the Vidja and Aurek Assemblages after approximately 20-30 km of slow
uplift from the peak pressures recorded during the early Finnmarkian. and, 4) Garnet
zoning occurs in samples whose rim equilibrium temperatures are less than 650* C.
Samples used in thermobarometry whose rim temperatures exceed 650* C do not exhibit



zoning. This is consistent with several studies which indicate that homogenization of
garnet growth zoning by intragranular volume diffusion is possible

40Ar/39Ar geothermochronology has become an indispensable tool in the analysis of
multiply deformed and metamorphosed regions. This technique is especially useful within
the Scandinavian Caledonides which experienced deformation and metamorphism as a
result of two major tectonothermal pulses during the early and middle Paleozoic. A detailed
40Ar/39Ar geochronology study of the Singis-Nikkaluokta area allows examination of the
timing of tectonothermal activity within the Lower K6li Nappe, the Seve-Koli shear zone,
the Seve Nappe, and the shear zone rocks of the Middle Allochthon. The results obtained
indicate: 1) The high grade metamorphism and associated deformation of the Seve units
was a late Cambrian to early Ordovician event (Finnmarkian) in which the rocks cooled
below the respective closure temperatures for homblende at = 490 Ma and muscovite at =
454 Ma. 2) Assuming a simple linear cooling model a cooling rate of 3-6* C/Ma. was
obtained for the older tectonothermal event. 3) There is evidence for a late stage
Finnmarkian (450 Ma.) relatively high grade shear zone separating different
tectonostratigraphic elements within the Seve. 4) The Scandian phase of deformation and
metamorphism partially reset some of the Seve hornblendes and a majority of the
muscovites which indicate that the rocks effected by the Finnmarkian event felt a second
tectonothermal pulse of more than 350* C beginning at = 430 Ma. and, 5) During the
Scandian event all of the far travelled allochthonous tectonic units were juxtaposed and the
Middle Allochthon mylonites were formed as these nappes were emplaced above the Baltic
Shield. The tectonic units of the Singis-Nikkaluokta transect were assembled prior to
regional cooling through the closure temperature of muscovite.

This study provides some of the first integrated P-T-t constraints for the evolution of the
Finnmarkian tectonothermal event within the northern Scandinavian Caledonides. While
these constraints are consistent with the models proposed by Dallmeyer and Gee (1986)
and Stephens and Gee (1989), the results obtained in this study provide some additional
constraints which need to be considered in future tectonic models. These constraints
include: 1) The metamorphic conditions obtained for the Savopakte Assemblage of the
Seve Nappe record high pressures and high temperatures during the Finnmarkian. and 2)
Constraints provided by this study indicate that Finnmarkian uplift rates of .2-.4 mm/yr
were likely for marginal Baltica after peak metamorphism. Rates of this magnitude may be
accounted for solely by slow erosion and do not require (but do not preclude) more
complex tectonic interpretations. A tectonic model provided by the Late Cenozoic thrust
belts of the Apennine Carpathian, and Hellenic systems of the mediterranean region, may
lead to new insights into the Early Paleozoic evolution of the Scandinavian Caledonides.
This modem analog is attractive for the evolution of the Caledonides because it helps
explain several salient points: 1) The overriding plate is a zone of extension allowing for
the elevation of geotherms; therefore explaining the high temperatures at high pressures
recorded within the Seve. 2) Although evidence for arc-related volcanic rocks has been
documented (Stephens and Gee, 1985), there exists no evidence within the Scandinavian
Caledonides of the volcanic arc. The Apennine model while containing arc-type volcanism
in the overlying plate, does not require the presence of a massive volcanic-arc. The arc
region is extended during its development and may be disrupted and spread across a broad
region of extension. 3) Within the Mediterranian systems the extended area is often a zone
of subsidence, thus a topographic high with associated rapid erosion rates are not
necessary. The low (.2-.4 mm/yr) uplift rates obtained in this study may be consistent with
this interpretation.

Thesis Supervisor: Dr. B.C. Burchfiel
Title: Schlumberger Professor of Geology
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Chapter 1

Introduction

The Scandinavian Caledonides are an ideal setting in which to examine the effects

of continent-continent collision at middle to deep crustal levels. They formed as a result of

the Early to Middle Paleozoic closure of Iapetus and the ensuing eastward obduction of a

complex package of oceanic and continental lithologies over the Baltic Shield. Although

the mountain range is deeply eroded, many of the obducted lithologies are preserved,

which allows for an examination of the complicated history related to orogenesis of the

different tectonic units within the Caledonides (Fig. 1-1). Broad reviews of the geology of

the Scandinavian Caledonides are discussed in Gee (1975, 1978) and within Zachrisson

(1979). Particularly comprehensive and useful are the papers discussing the

tectonostratigraphy for the central-north Scandinavian Caledonides found in Stephens et.

al. (1985) and Stephens and Gee (1989). Regional syntheses of the Arctic Swedish

Caledonides are provided by Kulling (1964, 1972). A 1: 2,000,000 tectonostratigraphic

map (Gee et. al., 1985) provides a visual overview of the areal distribution of the major

nappe units.

In general the nappes of the Scandinavian Caledonides may be grouped into three

major tectonostratigraphic elements. These include: 1) the Autochthon-Parautochthon, 2)

the Middle Allochthon, and 3) the Upper Allochthon (which is often referred to as the

Upper Nappe Complex).

The Autochthon-Parautochthon consists of a thin platform sequence of Vendian to

Early Ordovician age consisting primarily of sandstones and black shale which lie

unconformably on the Precambrian crystalline basement of the Baltic Shield. Stratigraphic

correlation of the sedimentary sequences in the Autochthon-Parautochthon with

sedimentary rocks which occur within the overlying Lower and Middle Allochthons

provide evidence for a passive margin sequence during the Cambrian which thickened to
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the west (Stephens and Gee, 1985)(Fig. 1-2). Rocks of the Autochthon-Parautochthon are

preserved within the Baltic Shield east of the present erosional front of the orogen, within

windows through the Nappe pile in the central sections of the mountain belt, and along the

west coast of Norway.

Separating the far-travelled units in the Upper Allochthon from the autochthonous

to parautochthonous rocks of Baltica is a shear zone which has been split into two main

units: the Lower Allochthon, and the Middle Allochthon. The Lower Allochthon consist

of tillites, shallow marine sandstones, quartzites, uraniferous black shales, and limestones.

This sedimentary package termed the Jimtland Supergroup (Gee, 1975) ranges from late

Proterozoic to Mid-Ordovician in age and represents the imbricated miogeoclinal wedge of

Baltica. The Middle Allochthon is composed primarily of a variably deformed package of

granitoids and sediments of Baltic affinity which have undergone in places extreme

mylonitization. The Lower Allochthon thins to the North and at the latitude of the Lofoten-

Nikkaluokta transect (68*) all rocks between the Autochthon-Parautochthon and the Upper

Allochthon have been grouped into the Middle Allochthon. To the south of our transect, in

the Akkajaure area, Bj6rklund (1985, 1989) has completed an extremely detailed

examination of the Middle Allochthon rocks. He has established that the Middle

Allochthon is composed of six rather thin, continuous slivers of sheared Baltic Shield

crystalline and sedimentary rocks. Recent mapping by Burchfiel and Royden (1986, 1987)

northwest of Akkajaure near the Tysfjord culmination indicate that some of the slivers

discussed by Bj6rklund may in fact be caused by repetition due to isoclinal folding with

fold axes parallel to S60E,the main transport direction of the nappes, which suggests some

degree of south directed movement (Burchfiel, 1989).

Rocks of the Upper Allochthon all have been derived from west of the present

Norwegian coast and consist of a complex variably metamorphosed and deformed package

which include, ophiolites, metasedimentary rocks, and metavolcanic rocks. In central and

northern Scandinavia the rocks have been divided into the Seve, K6li, and Rodingsfjallet



Figure 1-2: Pre-tectonic reconstruction of the JAmtland Supergroup Stratigraphy; from Stephens and Gee (1985)
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nappes which themselves consist of a complex package of different rock types. The

geologic and tectonic relationship within and between these nappe units and with respect to

the rocks of the Baltic Shield has been a focus of much of the recent work within the

Caledonides (e.g. Stephens and Gee, 1989; Stephens et. al. 1985; Dallmeyer and Gee,

1986; MIT transect Ph.D. dissertations: Bartley, 1980; Hodges, 1982; Crowley, 1985;

Tilke, 1986; This study). These studies have begun to decipher the complex geologic

history of the Scandinavian Caledonides and have led to new tectonic models which

incorporate the results from a wide variety of geological sub-disciplines.

A geologic examination through the Scandinavian Caledonides along a nearly 200

km transect from the Lofoten Islands in Norway eastward to Nikkaluokta in Sweden (Fig.

1-3) will be concluded with this study. This transect has been studied in a series of Ph.D.

dissertations beginning at Rice University and continuing at MIT over the past 18 years

under the supervision of Dr. Clark Burchfiel focusing on the processes that occur at lower

to mid-crustal levels during continent-continent orogenesis. The transect began with the

examinations of Tull (1972, 1977) and Hakkinen (1977) on the Caledonian effects on the

crystalline basement of VestvAg6y and western Hinn6y. These studies were followed by

the dissertations and related publications of Bartley (1980, 1981, 1982), Hodges (1982a,b,

1984, 1985), Crowley (1985), Tilke (1986), and this study, which examined the complex

relationships between and within the Upper Nappe Complex (UNC) and the contact

relations between the UNC and the basement of the Baltic Shield. These studies have all

utilized (and in some cases developed, ie Hodges and Royden, 1984; Royden and Hodges,

1984) a wide variety of techniques including: field mapping, isotope geochronology,

geochemistry, petrography, and quantitative geothermobarometry, to better constrain the

geologic history of this complex orogen.



Figure 1-3: Lofoten-Nikkaluokta transect.
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Purpose of this study

The Singis-Nikkaluokta portion of the transect represents the eastward completion

of the MIT transect to the present day erosional front of the Caledonide mountain belt. The

tectonic units represented in this area include: The Upper Allochthon (consisting of the

Lower K6li and the Seve Nappes), the Middle Allochthon, and the Autochthon-

Parautochthon. The purpose of this study includes:

1) The continuation of field mapping and structural observations to the

erosional front of the orogen combined with definition and regional

correlation of the tectonostratigraphy of the nappe units.

2) The first detailed examination of the Seve Nappe in the MIT transect

3) The application of isotope geochronology to establish timing of deformation

and metamorphism within the different nappe units.

4) Application of quantitative geothermobarometry to establish P-T conditions

within the different tectonic units.

5) Integration of the results from the objectives listed above to constrain the

geologic history of a portion of the Scandinavian Caledonides.

The nature of the Finnmarkian Orogeny within the Caledonides is a question which

may first be addressed and constrained for the transect by the rocks exposed within the

Seve Nappe in the Singis-Nikkaluokta region. The Cambro-Ordovician Finnmarkian

events are thought to be related to convergent activity that preceeded and was largely

overprinted by the Scandian events of Silurian-Devonian age. Due to a recent

reinterpretation of the type Finnmarkian (Krill and Zwaan, 1987, 1989) there has been

some debate as to what exactly should be termed Finnmarkian (Gee, 1987; Roberts et al,

1985). The definition which will be used in this study follows the usage of Stephens and

Gee (1989) which describes the Finnmarkian as relating to metamorphism and deformation

of units that were proximal to the Baltoscandian margin during Late Cambrian to Early



Ordovician time. The detailed geochronologic and thermobarometric examination of the

Seve Nappe in this study has led to an understanding of the conditions and timing of

deformation during the Finnmarkian that when coupled with results obtained for the

Scandian phase of deformation place new constraints on the understanding and modeling of

the complex polyphase nature of orogenesis within the Caledonides.

Field Methods

Field work was performed during the summers of 1985-1987. Field mapping was

done on 1:25,000 scale maps which were enlarged from the 1:100,000 topographic

Kebnekaise sheet (291) published by Statens Lantmifteriverk in 1984. The contour interval

for this map is 20 m. The field maps were compiled on a 1:25,000 mylar upon completion

of the 1987 field season with a simplified version (Plate 1) included in this dissertation.

Mapping was usually accomplished by establishing a base camp for a week to ten days

with day hikes radiating away from camp. Access into the area was either by hiking from

Nikkaluokta or by helicopter. The area is defined by Kaitumjaure to the south, to the north

by an almost 30 km valley leading west from Nikkaluokta (just south of Sweden's highest

peak, Kebnekaise-2117 m) to the Singis window, to the east by the erosional front of the

orogen, and to the west near lake Vidjajaure to the central part of the Singis window. The

physiography of the area is typically a product of glaciation with generally good (70%)

exposure. Wildlife in the area include reindeer, fox, wolverine, hare, ptarmigan and

various birds of prey including hawks, eagles and falcon.



Chapter 2

Tectonostratigraphy of the Singis-Nikkaluokta Area

The rocks of the Scandinavian Caledonides have conventionally been grouped into

five main complexes: The Autochthon and Parautochthon, the Lower Allochthon, the

Middle Allochthon, the Upper Allochthon, and the Uppermost Allochthon (Gee, 1975;

Stephens, 1985). The rocks of the Lofoton-Nikkaluokta transect fit into these broad

categories; however intra-nappe correlations within these units along strike of the orogen

are sometimes problematic. The Singis-Nikkaluokta portion of the transect contains rocks

from the Upper and Middle Allochthons as well as the Autochthonous-Paratochthonous

Baltic Shield. The tectonic units within the study area from the Upper Allochthon can also

be grouped within the tectonostratigraphic scheme first developed for the Central

Scandinavian Caledonides, which divides the Upper Allochthon into the K6li and Seve

Nappes. In this chapter the rocks of the Singis-Nikkaluokta area are described and

grouped into a specific tectonostratigraphy and then regional correlations and implications

are discussed. Figure 2-1 shows both the regional and the specific unit names for the rocks

exposed in the Singis-Nikkaluokta transect.

Upper Allochthon Units

K61i Nappe

Salka Group

The rocks of the K6li Nappe make up the structurally highest level of the

tectonostratigraphic package of the Singis-Nikkaluokta transect. Tilke (1986) assigned the

rocks in this region to the Salka Group. The Salka group consists of greenschist grade

calc-schists, graphitic schists, and chloritic psammites. Stephens (pers. comm.) notes the
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similarity of the rocks in the study area with those of the lower K6li nappes further south in

both the Padjalanta region and in the central Scandinavian Caledonides, suggesting that

these rocks may be correlated throughout the Caledonides (the same may not be said for the

rocks at structurally higher levels from the Lofoten-Nikkaluokta transect). Tilke (1986)

further subdivided the Salka Group into the Rusjka Calcareous Schist, the Rusjka Graphitic

Schist, and the Patta Quartzite.

Patta Quartzite

The Patta Quartzite was originally named by Kulling (1964) for exposures on Peak

Pattajakka which does not appear on the 1:50,000 tectonostratigraphic map (Plate 1), but

lies approximately 5 km southwest of Vidjajaure in the western part of the study area. Only

the lower 100 meters of the Patta Quartzite were examined in this study. They consist of

green to light gray foliated psammite which contains

quartz+plagioclase+chlorite+muscovite with minor amounts of biotite and Fe-oxides.

Some horizons also contain chloritoid porphyroblasts and pseudomorphs of garnet. Garnet

is also present, but mostly has undergone retrograde replacement by chlorite. The lower

contact of the Patta Quartzite with the Rusjka Schists is well defined by the more resistant

nature of the Patta Quartzite which typically forms an easily discernible ledge just above the

contact with the much less resistant schists.

Rusjka Graphitic Schist

The Rusjka Graphitic Schist (RGS) was first mapped by Kulling (1964) and named

within the study area by Tilke (1986). The RGS makes up a marker horizon which has

been mapped by Kulling (1964) from the Tometrask area 60 km to the north-northeast of

the study area to near Akkajaure approximately 20 km to the south. In the study area it

ranges from 10 to 40 meters thick. Weathered surfaces are rust coloured in outcrop, while

fresh surfaces are dark black with abundant quartz stringers. No samples were collected



from the RGS for this study; however, Tilke (1986) describes a thin-section from this unit

that consists of a well foliated quartz-muscovite-graphite-albite schist. The contact between

the underlying Rusjka Calcareous Schist and the RGS is generally marked by a bench

formed by the slightly more resistant Rusjka Calcareous Schists.

Rusjka Calcareous Schist

The Rusjka Calcareous Schist (RCS) was named by Tilke (1986) for exposures

southeast of Rusjka, a mountain just north of the northwest end of the study area. Tilke

described the unit as a heterogeneous assemblage dominated by chloritic psammite with

discontinuous lenses (up to a few hundred meters) of marble, garnet-muscovite-biotite

schists (which contain rotated garnets), garnet-homblende-calcite schist, graphitic schist

and greenschist. The RCS has a variable thickness within the study area but is

approximately 250 meters thick just south of Vidjajaure in the western part of the study area

(Plate 1). There were no marble lenses within the study area; however, in Tilke's area, the

marbles consist of gray to light brown weakly foliated ankeritic zones with dark brown

pelitic laminae (Tilke, 1986). Thin-sections of the garnet-mica schists consist

predominantly of quartz, plagioclase, muscovite, biotite,and garnet, but also include minor

amounts of chlorite and Fe-oxides. The greenschists are dark green and well foliated in

outcrop and in thin-section (Tilke, 1986) consist of porphyroblastic zoisite in a matrix of

actinolite, epidote, white mica, chlorite, and quartz. Within the study area, the RCS makes

up the hanging wall of the Rusjka fault which separates the Koli Nappe from the

underlying Seve Nappe.

Seve Nappe

The Seve Nappe within the study area consists of an assemblage of high grade

amphibolites, quartzofeldspathic gneisses, meta-gabbros with minor amounts of meta-



carbonates and quartzites. The rocks have been subdivided into three main units: The

Vidja Assemblage, the Aurek Assemblage, and the Savopakte Assemblage. This differs

slightly from the tectonostratigraphic classification of Tilke (1986) which groups all of

these units into the Aurek assemblage.

Vidja Assemblage

The Vidja Assemblage is named for the exposures of this unit on the east side of

Vidjajaure in the western part of the field area (Plate 1). It is composed of three

lithologically distinct and interlayered rock types: 1) a light grey, massive, weakly

foliated, quartzofeldspathic gneiss, 2) an orange to rust-coloured, well-foliated, more

micaceous, quartzofeldspathic gneiss, and 3) a dark green, strongly lineated amphibolite.

A few kilometers to the north, in the area mapped by Tilke (1986), there is a unit called the

Vidja Biotite Gneiss which overlies the Vidja quartzofeldspathic gneisses but is tectonically

cut out to the south by the Rusjka Fault before entering the mapped area. The Vidja

Assemblage has an approximate maximum thickness of 2000 meters within the study area;

however, the thickness varies considerably along strike because parts of this unit are

tectonically removed by the overlying Rusjka fault. Outcrop of the Vidja Assemblage

becomes more areally extensive to the south (see Kulling's map, 1964). In the following

sections the different units of the Vidja Assemblage are described from the structurally

highest to lowest levels

Vidja Amphibolite

The Vidja Amphibolite is exposed in the western part of the field area along the

stream Vidjaj&kka at the southern end of lake Vidjajaure (Plate 1). It extends

discontinuously along strike to the north through the area mapped by Tilke (1986) and is

approximately 50-100 meters thick. In outcrop it is dark green with a well-defined

lineation (N60W, Fig.2-2) and foliation. In thin section, the Vidja Amphibolite contains



Figure 2-2: N60W mineral lineation within the Vidja Amphibolite.





Figure 2-3 Well-foliated Vidja Muscovite Gneiss near Vidjajaure on the west slope of

Sangartjikka.





hornblende, plagioclase, epidote,and calcite. Tilke (1986) notes that the Vidja Amphibolite

in the area he sampled north of Vidjajaure sometimes contains garnets which are poikilitic,

porphyroclastic, and retrogressed.

Vidja Muscovite Gneiss

The Vidja Muscovite Gneiss is exposed in the western part of the study area

structurally below the Vidja Amphibolite and above the Aurek Assemblage (Plate 1). Its

basal contact with the Aurek Assemblage is very sharp and well defined by the more

resistant gneiss which typically forms ledges overlying the Aurek Assemblage

Amphibolite. Tilke (1986) grouped the Vidja Muscovite Gneiss, the Vidja

Quartzofeldspathic Gneiss (described below), and a unit he termed the Vidja Biotite Gneiss

into one unit called the Vidja Gneiss. This tectonostratigraphic classification has been

modified slightly to better distinguish the different gneiss units. Tilke (1986) described a

gradational contact between the muscovite-rich gneiss unit and the quartzofeldspathic

gneiss; however, in this study a clear contact could be mapped between the two units and it

appears that the interlayering of the muscovite-rich unit with the quartzofeldspathic gneiss

unit may be caused by large scale isoclinal folding (see structure chapter). The Vidja

Muscovite Gneiss (Fig. 2-3) is a well-foliated, orange-to rust-brown-coloured unit that

typically contains 2-3 cm muscovite porphyroblasts. In thin-section the rock consists

predominantly of quartz+plagioclase+muscovite+biotite+garnet with minor amounts of

secondary chlorite and zoisite. There are two distinct fabrics within the rock (see structure

section) with the second foliation defined by planes formed by muscovite, biotite and

occasionally chlorite. This second foliation is also associated with retrogressed and

porphyroclastic garnets which originally grew during the development of the first foliation.

The zoisite is prismatic and is present as overgrowths primarily of plagioclase, while the

chlorite is typically associated with the micas and the garnet. The intensity of the second

foliation increases toward the contact with the Rusjka Fault.



Vidja Quartzofeldspathic Gneiss

The Vidja Quartzofeldspathic Gneiss (VQG) has a maximum structural thickness of

500 meters and appears between two limbs of the Vidja Muscovite Gneiss within the

western part of the study area (Plate 1). In outcrop the VQG is light gray and in thin-

section it contains plagioclase+quartz+muscovite+biotite+garnet+kyanite with minor

amounts of Fe-oxides and zoisite. The VQG preserves relict sedimentary cross bedding

(Fig.2-4) and contains a deformed pebble conglomerate (Fig.2-5). Although the VQG is

similar to the Vidja Muscovite gneiss it may be distinguished in the field by its colour and

its lack of large muscovite porphyroblasts, and in thin-section by the presence of kyanite

and significantly less mica.

Aurek Assemblage

The Aurek Assemblage consists of garnet amphibolites surrounding high grade

meta-gabbro and associated relict eclogites. It is named for exposures on peaks Stuor and

Unna Aurek in the western part of the field area (Fig.2-6). The Aurek Assemblage has a

thickness of up to 1300 M.

Aurek Gabbro

The Aurek Gabbro constitutes the high resistant peaks of Stuor and Unna Aurek

(Plate 1). It does not extend north of the Singis window and pinches out with a series of

small scale (<100 meters) gabbro boudins encased in an amphibolite sheath (Fig.2-7). The

Aurek Gabbro is predominantly white and olive green with orange to rust-brown regions

(Fig. 2-8). The internal parts of the gabbro are massive and unfoliated whereas its external

parts are sheared and have a foliation parallel to the main regional foliation in the overlying

Vidja Gneiss. Besides having a primary igneous texture, parts of the gabbro also show an

early Caledonian fabric associated with the M1 metamorphism at eclogite grade. The Aurek



Figure 2-4: Overturned cross bedding preserved within the Vidja Quartzofeldspathic

Gneiss, on the east slope of Sangartjikka.





Figure 2-5: Stretch-pebble conglomerate with the long-axis of the deformed pebbles

oriented N60W. Photo taken on the east slope of SangartjAkka.





Figure 2-6: Upper photograph-View looking north towards Unna Aurek showing the

western-portion of the Aurek Assemblage Gabbro in contact with the

Vidja Muscovite Gneiss.

Lower photograph-View Looking north from easternmost portion of

Unna Aurek towards the Aurek Gabbro on Stuor Aurek.





Figure 2-7: Aurek Assemblage meta-gabbro boudin. View looking north at eastern

end of Sangarvagge.





Figure 2-8: Weakly foliated Aurek Gabbro from Stuor Aurek.





Gabbro contains a primary igneous cumulate layering on the scale of a few hundred meters

and in some places on a meter scale. The attitude of the cumulate layers (N50E, 60N) is

discordant to and cut by many of the Caledonian aged regional foliations. As described in

Tilke (1986), the primary igneous mineralogy of the Aurek Gabbro is a medium-grained

(1-5mm), granoblastic plagioclase-olivine-augite-magnetite gabbro. The rust weathering

ridges that make up the other part of the cumulate layering consist primarily of olivine. In

places the gabbro has been variably metamorphosed under eclogite conditions. These

regions have a very complex mineralogy which is discussed within the metamorphic

chapter. Following eclogite metamorphism the gabbro underwent amphibolite grade

metamorphism. The effects of this later metamorphism are best developed near the sheared

margins of the gabbro body. These amphibolite grade rocks of the Aurek Gabbro consist

of homblende+plagioclase+zoisite+calcite. Tilke (1986) also describes some shear zone

samples which consist of homblende+scapolite+plagioclase and garnet.

Aurek Amphibolite

The Aurek Amphibolite surrounds the Aurek Gabbro and varies from 50 to 100 m

thick. In outcrop the Aurek Amphibolite is dark black to green with minor discontinuous

small (1-10 m) lenses of gabbroic rock. The Amphibolite is well foliated and in thin-

section consists of hornblende+plagioclase+garnet+zoisite+Fe-oxides±biotite. Tilke

(1986) also reports an assemblage of actinolite+scapolite+calcite quartz+gamet. Tilke

(1986) interpreted the Aurek Assemblage as a reaction skarn (Brady, 1977) between the

mafic Aurek Gabbro lenses and the quartzofeldspathic rocks of the surrounding Vidja

gneiss. Argon geochronology (see argon chapter) suggests that the Aurek Amphibolite

may be a late Finnmarkian shear zone that juxtaposed the Vidja Gneiss and the Aurek

Gabbro.



Savotjekka Assemblage

The SavotjAkka Assemblage is named for exposures on the peak SavotjAkka in the

north-central part of the study area, just west of the Savovagge Valley (Plate 1). It

comprises much of the exposed portions of the Upper Nappe Complex within the field

area. The SavotjAkka Assemblage consists of interlayered garnet amphibolite and

quartzofeldspathic gneiss with minor discontinuous lenses of meta-gabbro and carbonate

rocks. The layering of the quartzofeldspathic gneisses within the garnet amphibolites is

both on a large (km) and small (few meters) scale. The basic mineralogy and appearance of

the units will be discussed below. The units will also be discussed in the relevant sections

in the structure, metamorphic and geochronologic chapters.

Savotjakka Amphibolites

The SavotjAkka Amphibolites (SA) are dark green to black in outcrop. The rocks

are well foliated with a general regional attitude of N10-30 0E 30*N (Fig. 2-9). The

lithology of the amphibolites is variable and ranges from hornblende+plagioclase+fe oxides

to hornblende+plagioclase+fe oxides ±garnet,biotite, epidote, zoisite, sphene and calcite.

The hornblendes are generally prismatic while garnets are porphyroblastic and sometimes

poikilitic. Samples located near the Middle Allochthon shear zones are often mylonitized

and retrogressed to greenschist grade and have a mineralogy that includes chlorite,

actinolite, epidote and porphyroclasts of garnet.

Savotjakka Quartzofeldspathic Gneiss

The Savotjakka Quartzofeldspathic Gneiss (SQG) is usually a light gray or rusty

orange colour with a well developed axial planar foliation (Fig.2-10). The gneisses are

compositionally variable and include rocks consisting primarily of

quartz+plagioclase+muscovite to rocks consisting of quartz+plagioclase+muscovite and

including some of the following minerals: garnet, biotite, epidote, zoisite, calcite, Fe-



Figure 2-9: Well-foliated garnet-amphibolite from the SavotjAkka Assemblage. View

looking northwest on the southwest slope of Liddopakte.
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Figure 2-10: Flaggy quartzofeldspathic gneiss with a NOW 25*W foliation from the

SavotjAkka Assemblage near the peak of LdipetjapetjAkka.





oxides, and sphene. Near the contact with the Middle Allochthon shear zone retrograde

chlorite is often present replacing garnet and biotite. The mineralogy and pressures and

temperatures of the SQG will be discussed in greater detail in the metamorphic chapter.

Manak Gabbro

The Manak Gabbro is named for exposures on the peak Manak in the south central

part of the area (Fig. 2-11). It is medium to coarse-grained and is white and olive green on

fresh surfaces. The Manak Gabbro is intruded by fine-grained diabase dikes. Placement

of this unit in the Upper or Middle Allochthon is somewhat problematic because while

lithologically the Manak Gabbro is quite similar to the unmetamorphosed portions of the

Aurek Gabbro it is relatively unmetamorphosed and is contained in places within rocks

which are mylonitized and appear in all ways similar to parts of the Middle Allochthon

mylonites. The Manak Gabbro has been placed in the upper allochthon in this study

because of geochronologic aurguments developed within the Argon chapter (Chapter 6)

which indicate that a muscovite collected from the Savotjakka Assemblage directly above

the Manak assemblage gives a Finnmarkian age which was not reset during the Scandian

emplacement onto the Middle Allochthon.

Middle Allochthon Units

The Middle Allochthon consists of a heterogeneous assemblage of variably

mylonitized sediments and Baltic Shield crystalline rocks. Within the study area, the

Middle Allochthon have been split into two units: the Matert Shear zone and the Paltavare

Shear Zone. The Matert Shear zone was first named by Tilke (1986) for rocks which are

exposed in the western half of the Singis window. The Paltavare Shear Zone was named

for exposures on peak Paltavare in the southeast section of the field area (plate 1). Contact

relationships between the Middle Allochthon and both the overlying and underlying units



Figure 2-11: View looking southwest of the Manak Gabbro, peak Manak in the

foreground.





Figure 2-12: Contact betwen the overlying Seve assemblage (high peak to the right of

the photograph) and the Manak Assemblage (lower peak to the left).

This package structurally overlies the Middle Allochthon. View looking

southwest towards Skartavartoh from Paikejaurasj.
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are very sharp and easily discernible in the field. Within the top few tens of meters of the

shear zone retrogressed and highly strained slivers of the Upper Allochthon are quite

common. The structural relationship between the Matert Shear Zone and the Paltavare

Shear Zone cannot be determined from field relationships. The two were differentiated

because of the greater structural thickness of the shear zone rocks in the front of the range

as well as on minor stratigraphic differences.

Matert Shear Zone

Rocks of the Matert Shear Zone along the western margin of the Singis window

(Plate 1) consist predominantly of a relatively thin (20-50 m) matrix schist that consists of

either a graphite, quartz, muscovite schist or a quartz muscovite schist, both of which may

have subordinate chlorite, epidote, calcite or apatite (Tilke 1986). The north-central part

and the eastern section of the Singis window consists of slivers of variably deformed

granitic rock containing an S-C fabric that defines an east-southeast vergent direction of

transport. In the northeast section of the Singis window, sheared discontinous slivers of

upper allochthon lithologies are incorporated within the Middle Allochthon. These slivers

consist of retrogressed amphibolite and garnet-bearing muscovite gneiss whose original

foliation has been transposed by a mylonitic foliation associated with the development of

the Middle Allochthon.

Paltavare Shear Zone

Rocks of the Paltavare Shear Zone (Plate 1) consist primarily of variably

mylonitized granitic rock with lesser amounts of mylonitized quartzite and phyllonite.

Mostly the original rock has been completely sheared and recrystallized such that field

identification of the protoloth is extremely difficult (Fig. 2-13) The granites often show

excellent examples of strain localization and may pass from unfoliated to completely

mylonitized and recrystallized within a few meters (see Fig. 3-9, in structure section).



Figure 2-13: Banded ultramylonite from the Paltavare Shear Zone of the Middle

Allochthon. Photograph taken on peak Paltavare.





Within the Paltavare Shear Zone in the north-central section of the study area (Plate 1) is a

distinctive discontinous lens of black micaceous phyllonite whith a maximun thickness of

100 meters. The quartzites are typically weakly banded and in thin-section are almost

completely recrystallized.

Autochthon-Parautochthon

Dividal Group

The Dividal Group consists of a sedimentary sequence of sandstones, siltstones,

and conglomerates of Vendian-Cambrian age that lie unconformably on the Proterozoic

basement of the Baltic Shield foreland. Thelander (1982) subdivided the Dividal Group

into two formations, the Tometrask Formation and overlying Alum Shale. In the type area

Thelander subdivided the Tornetrask Formation into six members. Tilke (1986) correlated

three of these members with rocks exposed within the MIT transect area. The three

members are: a Lower Sandstone member of quartzite, sandstone, and conglomerate, A

Red and Green siltstone member, and an Upper Sandstone member of blue-gray siltstone

and blue quartzite. In the study area these sedimentary rocks are exposed in both the

foreland and within the Singis window (Plate 1). Above the crystalline basement in the

Singis window a basal conglomerate is sometimes present. The Dividal Group rocks

within the Singis window have been tectonically folded and faulted and contain a pervasive

schistosity near the contact with the overlying Matert Shear Zone. At the eastern front of

the range only blue-gray siltstone and blue quartzite of the Upper Siltstone Member is

exposed and these rocks also have a well developed schistosity near the contact with the

Middle Allochthon mylonites (Fig. 14).



Figure 2-14: View looking north along the present day erosional front of the orogen.

The massive ledge forming rocks are composed of the Middle

Allochthon which structurly overlies sediments of the Autochthon-

Parautochthon.





Crystalline Basement

A detailed analysis of the crystalline basement rocks in the Singis-Nikkaluokta area

was not attempted in this study because: the crystalline rocks of the foreland are not

exposed in the low lying parts of the study area which are covered by tundra; and the

crystalline rocks of the Singis window have been discussed in detail by Tilke (1986).

Gunner (1981) correlated the Proterozoic rocks in the Rombak-Sjangeli window, west of

the mapped area, with the rocks in the Baltic foreland. An Rb/Sr age of 1690±90 Ma. for

rocks in the Rombak-Sjangeli window was determined by Heier and Compston (1969).

Tilke (1986) noted that greenschist alteration and strain of the basement rocks are prevalent

throughout the study area.

Regional Correlations

K61i Nappe

The greenschist grade psammites of the Salka Group may be regionally correlated

with metasedimentary rocks in the Lower Koli Nappe which contain fossils of Ashgillian

age (Kulling, 1972) in the central part of the Scandinavian Caledonides. Reconnaissance

mapping by Stephens (pers. comm.) notes the similarity of lithologies within the study area

with rocks from the Lower K61i in other regions throughout the Caledonides.

Seve Nappe

The Seve Nappe extends for more than 800 km along the strike of the Scandinavian

Caledonides and consists predominantly of a complex variably metamorphosed package of

psammitic and pelitic schists, amphibolites, dike intruded sediments and some larger mafic

igneous massifs. Many units within the Seve Nappe have been interpreted to have been

derived from the westernmost portions of the Baltoscandian Margin (Gee, 1975). Many

recent studies have focused on mapping and petrochemical analyses of mafic dike swarms



and sheeted dike complexes within the Seve which have been interpreted as being related to

initial rifting along Iapetus (Svenningsen, 1987; 1989, Andreasson, 1986; 1987, van

Roermund, 1985). Svenningsen (1989) obtained a Sm-Nd crystallization age of ca. 600

Ma for sheeted dikes found within the Sarektjakka Nappe of the Seve in the Sarek area

about 75 km south of the area in this study. This age is interpreted to be the age of Iapetus

rifting with the dikes intruding a sedimentary sequence on the western margin of Baltica.

The Seve rocks of the Singis-Nikkaluokta region contain high grade amphibolite,

paragneiss, and eclogitized meta-gabbro. Preliminary reconnaissance mapping by

Andr6asson and Gee (1989) indicates that rocks of the Kebnekaise Massif, just to the north

of the study area, contain dike swarms intruding meta-sedimentary rocks that structurally

overlie the higher grade paragneisses of the Seve units of this study. The dike-intruded

unit of the Kebnekaise area is very distinctive and can be correlated with the Sarektjakka

unit (Andreasson, 1986) which makes up part of the Sarek lens of Zachrisson and

Stephens (1984) in the Sarek area 75 km to the south. The unit structurally below the

Sarektjakka Nappe (or the Sarek Lens) in the Sarek National Park contains quartzite,

eclogites, amphibolites, and psammitic schist and has been assigned to the Mikka Nappe in

the area mapped by Svenningsen (1989). This unit is also correlated with the Juron

quartzites of Kulling (1982) which makes up part of the Vaimok lens defined by

Zachrisson and Stephens (1984). The structural position of the Seve units in this study

below the dike intruded units of the Kebnekaise massif, which are reliably correlated with

the Sarek lens, together with the presence of eclogites indicate that the Seve in the study

area may be correlated with the Vaimok lens (or Juron Quartzite of Kulling) on a regional

scale.

Middle Allochthon

The rocks of the Matert Shear Zone and Paltavare Shear Zone are lithologicaly

similar to rocks of the Akkajaure Nappe Complex described by Bj6rkland (1989) for the



excellent exposures of the Middle Allochthon near Akkajaure 30 km to the south of the

present study area. There Bjrkland has observed six variably deformed slivers of sheared

sediments and crystalline basement of Baltic affinities which may be traced more than 150

km from the Caledonian front to near the Norwegian coast.

Basement Sediments and Crystallines

The sedimentary cover rocks and the crystalline basement of the study area may

easily be correlated throughout the region with the Dividal Group of Vendian- Cambrian

age which unconformably overlies the Proterozoic basement throughout the Northern

Caledonide foreland.



Chapter 3

Caledonian Structure of the Singis-Nikkaluokta Area

Caledonian structures of the Singis-Nikkaluokta area are the products of eight

deformational events (Table 3-1) associated with two major tectonothermal events. When

presenting structural data there are several different methods from which to choose. Tilke

(1986) chose to present his data by splitting his map area into distinct structural domains

and described and classified the deformation within each domain such that he would have

AAD1 and SGD1 to represent the first deformation within the Aurek Assemblage and the

Salka Group respectfully. Other workers in the MIT transect have chosen to present their

structural data by describing the effects of each deformation on whichever units contain

evidence for that specific event. In this chapter, each of the deformational events from the

oldest to the youngest will be discussed with representative photographs and stereonet plots

given when needed.

D1: Deformation associated with eclogite-grade metamorphism.

The meta-gabbros of the Aurek Assemblage on Stuor and Unna Aurek in the

western part of the study area (Plate 1) show evidence for an early (pre-490 Ma) eclogite-

grade metamorphism and associated weak foliation with no consistent orientation which is

superimposed on the original igneous layering and texture. The eclogite metamorphism of

this unit is discussed in detail in the metamorphic chapter of this thesis. The meta-gabbro

has a lens-shaped geometry and is encased within garnet amphibolite on the margins with

several smaller boudin like bodies of gabbro within the amphibolite to the south of Stuor

Aurek. The gabbro body becomes progressively sheared towards its contact with the

surrounding garnet amphibolites.



Table 3-1 DEFORMATIONAL EVENTS IN THE SINGIS-NIKKALUOKTA AREA

D1: Deformation associated with the high grade eclogite metamorphism of the Aurek

Assemblage meta-gabbro.

D2: Deformation and associated upper amphibolite grade metamorphism within the Seve

Nappe. Main isoclinal axial planar foliation N10-25E 25W. Intersection and
mineral lineations N60W 10.

D3: Deformation and associated greenschist metamorphism within the Lower K6li
Nappe. Isoclinal axial planar foliation N20-30E 25W, mineral and intersection

lineations oriented N60W 0-10.

D4: Juxtaposition of K6li and Seve Nappes. Transposition of D2 fabric within Seve.
Sygmoidal inclusion trails within K6li garnets indicate SE directed thrusting.

D5: Emplacement of Upper Allochthon Nappe complex onto Baltic shield. Formation
of Middle Allochthon mylonites during S60E thrusting.

D6: Gentle N60W warping on both local and regional scale

D7: Late N30E warping of entire Nappe package

D8: West-vergent backfolding or normal faulting(?) along Seve-K6li contact.



D2: Dominant Deformation and Metamorphism within the Seve Nappe

The D2 event is the main foliation producing event associated with high-grade

metamorphism in the Seve Nappe. The regional foliation is axial planar to tight isoclinal

folds with a mean orientation of fold axes oriented N60W 10* to S60E 10*. Mineral and

intersection lineations are consistently parallel to these fold axes (Fig. 3-1). Isoclinal fold

axes that parallel the inferred transport direction is widely observed throughout the

Scandinavian Caledonides and other high-grade deformed regions (Bj6rklund, 1989; Tilke,

1986). Clasts in highly deformed pebble conglomerate present within the Vidja

Assemblage show elongation also parallel to the regional N60W transport direction (Fig. 2-

5). The isoclinal folding is observed on both the meter and kilometer scales. Within the

Vidja Assemblage in the western part of the study area large scale folds have been mapped

(Plate 1). The S2 foliation ranges from N20E 25W in the eastern part of the study area to

N15W 30W within the western Seve (Figs. 3-2, 3-3). The metamorphism is synkinematic

with the isoclinal folding as the minerals within the hinges of the folds show no evidence of

post-growth D2 deformation. The main foliation in the garnet amphibolites is defined by

mafic-felsic segregations, while the foliation planes in the quartzofeldspathic gneisses are

typically micaceous. Near the Singis window, in the area mapped by Tilke, the main S2

foliation (AAD1 of Tilke) has been overprinted and transposed by lower grade D4 and D5

foliations in association respectively with the juxtaposition of the Seve and K61i Nappes

and the emplacement of the Seve-K6li Nappe Complex onto the Baltic Shield (AAD2,

AAD3), such that most of the original fabric and mineralogy has been altered. From

Tilke's area near the Singis window south into the area mapped in this study, more of the

D2 fabrics are preserved; however, rocks near the Rusjka fault show a lower grade

retrogressive foliation which transposes the original S2 foliation into parallelism with the

strike of the Rusjka fault. Timing of the D2 deformation is given by Ar 40 /Ar 3 9
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geochronology (see Ar chapter) on synkinematic hornblendes that yield Early Ordovician

(Finnmarkian) ages for cooling below 5000 C.

D3: Dominant Metamorphism and Deformation within the Koli Nappe.

The S3 foliation formed within the lower K51i Nappe (Salka Group) has essentially

the same relationships to isoclinal folds and lineations as described for the D2 structures in

the Seve Nappe. The two foliations can be differentiated in the field by the lower

metamorphic grade of the synkinematic minerals of the greenschist grade Salka Group and

in the lab by Ar4 0 /Ar 3 9 geochronology which demonstrates that the greenschist

metamorphism associated with deformation of the the Lower Kli is Early Silurian in age.

The age difference is supported by the Early Ordovician ages in the Seve. Regional

stratigraphic correlation of the Lower K6li rocks with rocks which contain fossils of post-

Finnmarkian Ashgillian age (see stratigraphy chapter). The main S3 foliation has an

attitude of NO-30E 25-30W and is also axial planar to isoclinal fold axes which trend N50-

60W, parallel to associated mineral and intersection lineations.

D4: Juxtaposition of K61i and Seve Nappes

The Koli Nappe was thrust onto the Seve Nappe within the study area along the

Rusjka fault during Early Silurian time (see Ar chapter). Towards the Rusjka fault, the

rocks of the Koli Nappe become strongly affected by D4 deformation such that most of the

D3 foliation is transposed into parallelism with the foliation in the fault zone. Within the

base of the Salka Group of the Lower K51i Nappe, sygmoidal inclusion trails within garnet

indicate syntectonic garnet growth with the rotation recorded in the garnets indicating

southeast directed shear (Fig. 3-4). The underlying Vidja Gneiss of the Seve contains a

penetrative biotite grade schistosity which transposes the older S2 foliation with increasing



Figure 3-4: Garnet collected from the Seve-K6li shear zone containing sygmoidal

inclusion trails which indicate top to the right (SE) directed shear.





intensity near the contact with the Rusjka Fault (Fig. 3-5). Tilke (1986) documented a

slight increase from biotite-chlorite grade to garnet grade metamorphism of the Salka Group

rocks towards the contact with the Rusjka fault coupled with the biotite grade retrogression

of parts of the Vidja Gneiss unit of the Seve Nappe in an area just to the north of the

present study area. Tilke attributed this pairing of lower grade rocks with an increase in

metamorphism toward the fault to be related to shear heating along the Rusjka Fault.

Ar4 0/Ar 39 muscovite ages (Ar chapter, this study) for samples collected within the shear

zone give ages of 432-425 Ma.

D5: Emplacement of Upper Allochthon on Baltic Shield

The D5 deformation is related to the emplacement of the Upper Allochthon onto the

Baltic Shield concomitant with formation of the Middle Allochthon mylonites. It effects the

entire tectonostratigraphic package in the Singis-Nikkaluokta region. The Middle

Allochthon mylonites of the Matert Complex and the Paltavare Complex formed during this

event and yield Ar4 0/Ar3 9 muscovite ages of approximately 430-425 Ma.. These ages are,

within scatter, indistinguishable from those associated with the D4 juxtaposition of the

Seve and K6li Nappes; however, within the Singis Window (Plate 1) the S5 foliation

clearly transposes the S4 foliation. This D5 deformation was coaxial with both the D2

deformation which affected the Seve and the D3 which affected the K6li. Stereonet plots

(Fig. 3-6) of the S5 mylonitic foliation, which is axial planar to intrafolial isoclinal folds

(Fig. 3-7), show the mean foliation within the southern Paltavare complex to be N28E

22W and the isoclinal fold axes and both mineral and intersection lineations to be oriented

130, N55E (Fig. 3-8). The slight girdle distributed about the mean in the stereonet shown

in figure 6 is caused by later D6 gentle warping along N60E axes. The mylonitization

within the Middle Allochthon is highly variable. Figure 3-9 shows a typical Middle

Allochthon example of shear localization in which a granitoid rock of Baltic affinity ranges



Sample from the Vidja Assemblage collected near the Rusjka Fault

containing both a S2 and a later S4 biotite-grade retrogression associated

with the juxtaposition of the K6li and Seve Nappes.

Figure 3-5:
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Banded ultramylonite containing isoclinal axial planar intrafolial folds.

Fold axes have a N60W orientation.

Figure 3-7:
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Figure 3-9: Common example of strain localization within the Middle Allochthon. In

the lower portion of the photograph, asymmetric augen give a top to the

right (SE) directed shear sense.





from only weakly deformed to a completely recrystallized fine grained ultramylonite that in

places may have behaved superplastically (Fig. 3-10). The process of mylonitization in the

granitoid rocks typically begins with progressive grain size reduction involving both

cataclasis and recrystallization of the initial igneous mineralogy producing a well-foliated

rock, commonly having a well-developed quartz-feldspar aggregate lineation. Within the

Middle Allochthon of the Paltavare Complex (Plate 1) is a black micaceous phyllonitic unit

which contains abundant quartz stringers and in places floating quartzite isoclinal fold

hinges (Fig. 3-11). The asymmetry of quartz aggregate pressure shadows around quartz or

feldspar porphyroclasts indivates SE-directed shearing. The phyllonite unit contains an S-

C fabric typically defined by a shear plane and mica fish with an orientation consistent with

a southeast directed shear sense. S-C fabrics within the deformed granitoid rocks are also

quite common. Typically these consist of a shear plane defined by the mylonitic foliation

combined with a schistosity defined by the long dimensions of mica fish. An excellent

detailed description of the structural complexities within the variably deformed Middle

Allochthon mylonites of the Akkajaure-Tysfjord region to the south of the study area may

be found in Bjrklund (1989).

The rocks of the Upper Nappe Complex have been retrogressed and their original

foliations have been transposed and sheared into parallelism with the contact of the Middle

Allochthon. Figure 3-12 shows an example from just north of the Singis window where

the higher grade rocks of the Seve Amphibolite have chlorite pseudomorphs replacing

garnet and their original S2 foliation transposed into S5.

The autochthonous to parautochthonous rocks of the Singis window and those at

the Caledonian front have also been highly deformed during D5 deformation. Structural

features include SE-vergent, tight to isoclinal folds whose axes trend approximately 00,

N20E. Within the eastern half of the Singis Window, there is a basement involved thrust,

with an attitude consistant with SEE directed transport, which places the Precambrian

crystalline rocks of the Baltic Shield over autochthonous sedimentary rocks. There are also



Figure 3-10: Photomicrograph of a completely recrystallized banded mylonite from

the Middle Allochthon. Field of view is approximately 4- cm.





Figure 3-11: Phyllonite from the Paltavare complex near Kirkevarto, containing

quartz stringers and occasional floating hinges.





Figure 3-12: View looking north from the Singis window at the Seve-Middle

Allochthon contact. The upper 2/3 of the photograph consists of

retrogressed Seve, containing small chloritized garnets. The lower

portion of the photograph consists of the Middle Allochthon in which a

weak S-C fabric is observed.
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shallow-dipping (10-30*) thrusts within the sedimentary rocks in the Caledonian front.

There is a well developed S5 schistosity in the sedimentary rocks throughout the study area

that is the oldest fabric found in rocks of the Autochthon-Parautochthon.

D6: Late Gentle Warping along N60W Axes

The entire Nappe Complex in the Singis-Nikkaluokta transect has been folded by

late broad folds whose fold axes trend N40-60W. These folds range in scale from local to

regional and have steep to vertical axial planes. They are particularly well developed within

the sedimentary rocks of the Singis Window, but are common throughout the study area.

The regional-scale F6 folds often have wavelengths of more than 40 km and they are partly

responsible for the general outcrop pattern of the tectonostratigraphic elements within the

Caledonides. A good example of a regional scale D6 fold is in the Akkajaure area to the

south of the present study area, where the Middle Allochthon mylonites of the Akkajaure

Nappe Complex are exposed for over 100 km along a N60W trend along the crest of a

large regional D6 antiform.

D7: Late Warping along N30E Axes

All tectonostratigrtaphic elements within the Singis-Nikkaluokta area have been

affected by late broad F7 folds with N20-30E fold axes (Fig. 3-13) orthogonal to the

inferred transport direction of the nappe complex. These folds are associated with late-

stage shortening of the nappe complex.





D8: West vergent motion at the Seve-Koli contact

Along the Rusjka fault in the western part of the study area there is evidence for late

west-vergent motion of the tectonostratigraphically higher K6li Nappe over the lower Seve

Nappe with associated asymmetric folding and retrogression of rocks in the shear zone

(Fig. 3-14). Asymmetric quartz pressure shadows around garnet (Fig. 3-15) are consistant

with west-directed movement. A well defined mineral lineation defined by these quartz

pressure shadows has a general N70W trend. Tilke (1986) performed a Hansen Analysis

(Hansen, 1971) and found the bisectrix of the fold axes girdle trended N74W 45 for the

west-vergent movement direction on the fault. This west-vergent motion may be the result

of normal faulting due to gravitatonal collapse of the entire orogen (Tilke, 1986), however

much more work throughout the Scandinavian Caledonides is needed to confirm this

hypothesis.

Conclusions

The deformational history of the Singis-Nikkaluokta region may be subdivided into

eight deformational events. Deformations 1 and 2 are Finnmarkian, and are associated with

the Late Cambrian to Early Ordovician metamorphism of the Seve Nappe. Deformation 3

is associated with the post-Ashgillian Scandian metamorphism of the Lower Koli Nappe.

The juxtaposition of the K6li and Seve produced the fabrics associated with the fourth

deformational event. Emplacement of the Upper Nappe Complex onto the rocks of the

Baltic shield produced structures assigned to D5, D6, and D7. The final deformational

event (D8) is correlated with late stage west vergent motion along the Seve-K6i contact.



Figure 3-14: View looking north along the Seve-K6li shear zone showing the late

west-vergent folds (F8).





Figure 3-15: Quartz pressure shadows around garnet from the Seve-K6li shear zone

(upper left and lower right of photograph) consistent with top to the left

(west) shear.
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Chapter 4

Metamorphism of the Singis-Nikkaluokta Region

Introduction

Rocks of the different tectonic nappes within the Singis-Nikkaluokta region have

experienced different degrees of metamorphism ranging from lower greenschist facies to

eclogite facies. Structural relationships and 40Ar/39Ar geochronology indicate a complex

geologic history involving two major tectonothermal pulses. Much of our understanding of

the metamorphic history throughout the MIT transect in the Scandinavian Caledonides has

focused on the thermal conditions of the more recent Scandian phase of deformation and

metamorphism (Tilke, 1986; Hodges and Royden, 1984; Crowley and Spear, 1987). The

Seve rocks within the study area afford the opportunity to constrain the conditions of

metamorphism for the earlier "Finnmarkian" event.

As discussed in the tectonostratigraphic section the Seve rocks of the Singis-

Nikkaluokta region have been correlated with the Vaimok lens in the classification

proposed by Zachrisson and Stephens (1984) for the Seve in the southern Norrbotten

Caledonides. This classification splits the Seve into the uppermost Tsikkok lens, the

intermediate Sarek lens, and the lowermost Vaimok lens. Correlation of the Seve rocks

from the study area with the Vaimok lens is based both on the presence of eclogites and the

presence in both areas of underlying Seve rocks which consist predominantly of doleritic

dyke complexes. In the southern Norrbotten Caledonides Zachrisson and Stephens (1984)

term this overlying dyke bearing unit the Sarek lens. In the area studied by Svenningsen

(1987) and Andr6asson (1986a, 1987) within the Sarek National Park, nearly 80 km south

of the study area, the overlying dyke complex rocks are termed the Sarektjikka Nappe.

The dolerite dyke rocks (for which Svenningsen (1989) obtained a Sm/Nd crystallization



age of ca. 605 ma) have a rift related chemistry which indicate that portions of the Seve

represent the outer portion of the Late Precambrian rifted margin of Baltica.

Several recent studies within the allochthonous Seve Nappes have focused on the

recognition and tectonic significance of the few eclogite occurrences which have been

documented to date (Stephens and van Roermund,1984; Santallier, 1988; van Roermund,

1985, 1989; Andr6asson, 1985). These eclogites occur within both the Vaimok and the

Tsikkok lenses of the Seve Nappe Complex. Santallier (1988) obtained pressure and

temperature estimates of 650-7004C and 18-20 kb using the Ellis and Green (1979) garnet-

cinopyroxene geothermometer and the Holland (1980) albite-jadeite-quartz geobarometer

for samples from both the Tsikkok and Vaimok lenses, while Stephens and van Roermund

(1984) obtained pressures and temperatures of 610*C and a minimum of 15kb using the

garnet-clinopyroxene geothermometer (Ellis and Green) and the jadeite component in

clinopyroxene based geobarometer of Gasparik and Lindsley (1980).

Mapping within the study area conducted by Tilke and Page during the summer of

1985 identified a new eclogite locality from within the Seve Nappe located in the Aurek

Gabbro on the peaks Stuor and Unna Aurek in the western part of the study area (plate 1).

Tilke (1986) examined the complex reaction textures present within the eclogitized portions

of the Aurek Gabbro and obtained estimates for the temperature of 700-730*C and

pressures greater than 12 kb. Recent Sm/Nd results presented by Mork et. al. (1988) for

the crystallization age of Seve eclogites from the Tsikkok lens in the southern Norrbotten

Caledonides indicate an age of 505± 18 Ma for the eclogite facies metamorphism. This age

is compatible with 40Ar/39Ar thermochronology (Dallmeyer and Gee, 1986; Page, this

study) which indicate that Seve amphibolites surrounding eclogites cooled below Ar

retention temperatures for hornblende of 500*C at ca 490 Ma.

Recent studies in the Seve Nappe of the Norrbotten Caledonides have focused

primarily on: 1) Identifying and describing the different tectonostratigraphic elements

comprising the Seve (Andreasson, 1987, 1986b; Svenningsen, 1989, 1987; Stolen, 1988;



Stephens and Zachrisson, 1984); 2) deciphering the deformational history; and 3)

obtaining geochronologic age constraints (Dallmeyer and Gee, 1986; Dallmeyer et al., in

prep; Svenningsen, 1988; Mprk, 1989). Excepting the studies of the eclogite grade rocks

discussed previously, there has been very little work done towards quantifying the

temperatures and pressures of metamorphism within the different tectonostratigraphic

elements of the Seve. In trying to decipher the thermal and barometric history of a

metamorphic terrane there are several techniques which are particularly useful. Rim

thermobarometry constrains the temperatures and pressures of latest equilibrium. It is often

possible in many metamorphic samples to obtain pressure-temperature trends using either

inclusion thermobarometry (e.g., St. Onge, 1987) and/or the Gibbs' Method (Spear et al.,

1982; Spear and Selverstone, 1983). Unfortunately the samples in this study do not

contain the necessary inclusions to perform either the Gibbs' method or inclusion suite

thermobarometry.

Quantitative Rim Thermobarometry

Sample Descriptions

The nature and mineralogy of the different tectonostratigraphic elements of the

Singis-Nikkaluokta region have been discussed previously in the tectonostratigraphy

chapter. Except for the rocks of the Seve Nappe, all other units in the study area are

greenschist grade or less and contain no assemblages suitable for geothermobarometry.

Figure 4-1 shows a typical example of a quartzofeldspathic gneiss from the Seve

which contains a biotite+muscovite+plagioclase+quartz subassemblage suitable for

geothermobarometry. Minor amounts of kyanite are also found within the Seve

quartzofeldspathic gneiss (Fig. 4-2), but only rarely is kyanite found associated with

appropriate phases for geothermobarometry.



Figure 4-1 Typical example of the Savopakte Assemblage quartzofeldspathic

gneiss. Sample contains garnet+biotite+muscovite+plagioclase

assemblage suitable for geothermobarometry. Field of view

approximately 4 cm.
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Kyanite bearing sample 87-D7 from the Vidja Assemblage. Field of

view approximately 4 cm.

Figure 4-2:





Analytical Techniques

Several samples from the units within the Seve Nappe of the Singis-Nikkaluokta

region contain assemblages which allow the application of well-calibrated quantitative

thermobarometers. For the quartzofeldspathic gneisses the thermobarometers that were

chosen for this study (Table 4-1) include the garnet-biotite (GARB) geothermometer (Ferry

and Spear, 1978), the garnet-biotite-muscovite-plagioclase (GBMP) geobarometer (Ghent

and Stout, 1981; Hodges and Crowley, 1985), and the garnet-aluminum silicate-

plagioclase-quartz (GASP) geobarometer (Ghent, 1976; Newton and Haselton, 1981).

Impure phases were analyzed using a JEOL 733 Superprobe at the Massachusetts Institute

of Technology. Synthetic and natural silicate standards were used and Bence and Albee

(1968) corrections were applied by an on-line data reduction system. In each sample the

analyzed phases were either adjacent or within close proximity to each other. In order to

establish the conditions of latest equilibrium all rim analyses were performed within 3-5

microns of the grain boundary. Within each sample garnet rims were analyzed in contact

with the relevant phases, in cases where the garnet composition adjacent to biotite varied

with respect to the typical garnet rim composition the analyses from the points near biotite

were excluded from the determination of the average rim composition for the sample. The

standard deviations of the measured compositions for each phase in the thermometer and

barometer were propagated through a simultaneous solution of the thermobarometers using

a Monte Carlo technique (Hodges and McKenna, 1987) in order to determine the precision

of the calculated pressures and temperatures.

Assuming the activity composition relationships shown in Table 4-2, pressures and

temperatures were obtained for the Seve samples by simultaneously solving GARB with

GASP (on 87-D7) or GBMP (all samples). The average and standard deviations of the



TABLE 4-1. GEOTHERMOBAROMETERS

1) GB Mg3Al2Si3O12 + KFe3AlSi 3Olo(OH)2 = Fe3Al2Si3O12 + KMg3AlSi 3Olo(OH)2
garnet biotite garnet biotite

2) GBMP Fe3Al2Si 3O12 + Ca3Fe3Al2Si3O2 + KA13Si 3O10(OH)2 = 3CaAl 2Si 2O8 + KFe3AlSi3Olo(OH)2
garnet garnet muscovite plagioclase biotite

3) GASP Ca3Al2Si3O2 + Al 2SiO5 + SiO2 = 3CaAl2Si2O8
garnet kyanite quartz plagioclase

Ki = [(Apy)(Aann)]/[(Aph)(AaI)]
K2 =[(Aan)3(Aann)]/[(Amu)(Agr)(Aal)I
K3 = (Aan) 3/[(Agr)

Calibrations

1) Ferry and Spear (1978)

2) Hodges and Crowley (1985)

3) Newton and Haselton (1981)



Table 4-2: Activity-Composition Relationships

(From Hodges and Royden, 1984)

Aal= [Xal * exp[((1.5T(*K) - 3300) * (XpyXgr)) / RT(*K))]3

Apy [Xpy * exp[((3300-1.5T(*K)) * (Xgr2 + XalXgr + XgrXsp)) / RT(OK))] 3

Agr = [Xgr * exp[((3300-1.5T(*K)) * (Xpy2+ XalXpy+ XpyXsp)) / RT(*K))] 3

Aan(HC) = Xan * exp(610.34 / T(*K) - .3837)

Aan(NH) = (Xan (1+Xan )2 / 4) * exp(Xab2 (2025 + 9442 Xan)) / RT(*K)

Amu = (XkmuXalmu 2) * exp[((XnamuXaImu 2 )2 * (Wmu + 2XkmuXalmu2(Wpa - Wmu)))

RT(*K)]

Aann = (Xann)3

Aph =(Xp)3

Xal= Fe/Fe+Mg+Ca+Mn in garnet

X = Mg/Fe+Mg+Ca+Mn in garnet

Xgr = Ca/Fe+Mg+Ca+Mn in garnet

Xsp = Mn/Fe+Mg+Ca+Mn in garnet

Xan= Ca/Ca+Na+K in plagioclase

Xab = Na/Ca+Na+K in plagioclase

Xkmu= K/Ca+Na+K in muscovite

Xnamu= Na/Ca+Na+K in muscovite

Xalmu= AlVI/Fe+Mg+Mn+Ti+AVI in muscovite

Xann = Fe/Fe+Mg+Ti+AlVI in biotite

Xph = Mg/Fe+Mg+Ti+ALVI in biotite

Wpa= 2923.1 + 0.1590 P(bars) + 0.1698T(*K)

Wmu = 4650.1 + 0.1090 P(bars) + 0.3954T(*K)



compositions for minerals used in thermobarometry for each sample are given in the

appendix at the end of this chapter.

Results

Pressure and temperature estimates were obtained for eight samples from the Seve

Nappe by simultaneously solving GARB-GBMP, one of the eight samples (87-D7) also

contained kyanite (Fig. 4-3) allowing the simultaneous solution of GB-GASP as well as

GB-GBMP. Table 4-3 lists the pressures and temperatures obtained for the Seve samples

from the Singis-Nikkaluokta region. Two-sigma error ellipses of propagated microprobe

errors for the eight Seve samples are plotted on Figure 4-3. All analyzed samples come

from the Savopakte Assemblage except for 87-D7, which comes from the Vidja

Assemblage. The seven samples of the Savopakte Assemblage all give very high pressures

(>8.9 kb) and temperatures which range from 571-766* C. Vidja Assemblage sample 87-

D7 records a lower pressure of 7.3±1.7 kb and a temperature of 616±600 C.

Discussion

Although some of these samples have moderately large errors associated with their

calculated temperatures and pressures, the fact that the samples were collected from a large

area and they are all consistent with each other strengthens the interpretation that the Seve

Nappe underwent regional metamorphism under these conditions. These pressures indicate

that large portions of the Seve Nappe experienced burial depths of 27-40 Km during the

Finnmarkian orogenic event.

Sample 87-D7 contains kyanite which allows for the simultaneous solution of

GARB with either GASP or GBMP. The pressures and temperatures obtained using either

of the geobarometers are statistically indiscernible (GARB with GASP yields 615±600 and
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Table 4-3: Seve Pressure-Temperature Data

Pressure (Kb)

10.2 1.1

12.5± 1.3

1 1.2±.87

13.6t2.0

9.4t. 9

8.9t 1.5

13.2 1.8

7.3t 1.7

Temerature

655t33

Sample

85-F8

85 F17

85-F25

86-12B

86-14B

86-22B

87-C 10

87-D7

762± 49

627±22

766±75

584±34

571 51

723±68

6 16±60

('C) M



7.30±2.0 kb while GARB with GBMP yields 616±60* and 7.3±1.7kb). The results

obtained from 87-D7 have several possible interpretations:

1) The sample rims attained equilibrium and the pressures and temperature

obtained records a portion of the Vidja Assemblages P-T history. It is

conceivable that these conditions were obtained during development of a late

stage Finnmarkian (450 Ma) shear zone (discussed in Chapter 5) separating

the Aurek Assemblage and the overlying Vidja Assemblage. The regional

age for cooling through the muscovite closure temperature (3500 C) for the

Seve is approximately 440-450 Ma. If a typical regional geothermal

gradient of 15* C/km may be assumed (which would seem very reasonable

for cooling from peak metamorphic ages of 40-50 Ma previous) a depth of

20-25 km could reasonably be expected. This depth, although recording a

slightly younger time, coincides well with the pressure of 7.3 kb obtained

for the Vidja Assemblage.

2) All minerals used in thermobarometry for sample 87-D7 may not be in

equilibrium. This sample was selected for barometric analysis because it

appeared to be an equilibrium assemblage in thin section.

3) Another possibility is that Sample 87-D7 is an assemblage that obtained

equilibrium during the Scandian event (D4) which juxtaposed the Seve and

Koli Nappes and thus records conditions of burial during the amalgamation

of the Seve-K6li Nappe complex. This scenario seems unlikely given that

the grade of metamorphism exhibited by both the Lower K6li Salka Group

and the rocks in the Seve-K6li shear zone is of greenschist grade. This

possibility however should be considered in light of the late stage west-



vergent motion associated with the Seve-K6li contact and the possibility,

first proposed in this area by Tilke (1986), of a late stage normal fault

associated with gravitational collapse of the Caledonian Orogen during the

late Scandian. If the normal fault hypothesis is correct then rocks of lower

grade juxtaposed against similarly aged rocks of higher grade would be

expected.

Of the three possibilities examined here, observed data most strongly support the

first, whereby the pressures and temperatures recorded by 87-D7 record the conditions

associated with late stage Finnmarkian juxtaposition of the Vidja and Aurek Assemblages.

Clearly however, more work throughout the Caledonian Orogen within the different Seve

units and along the Seve-K5li contact is needed to fully constrain the problem.

Garnet Zoning

The implications of garnet zoning have been the basis of many metamorphic studies

(e.g. Loomis, 1983; Tracy 1976; Hollister, 1966). Garnet zoning profiles were obtained

for several samples (85-F25, 86-14B, and 87-D7, Figs. 4-4 through 4-6) from the

Savopakte and Vidja Assemblages. In all of these samples a well-defined bell-shaped

profile for the spessartine component in garnet is observed. Bell-shaped spessartine

profiles are thought to be indicative of Mn depletion occuring during garnet growth (e.g.,

Hollister, 1966). The element distribution patterns within these garnets may therefore give

information concerning the prograde or retrograde reaction history (if it may be assumed

the reactions are continuous). Several other samples used in rim thermobarometry were

analyzed for garnet zoning and were found not to be significantly zoned. Several studies

suggest that complete homogenization of millimeter scale garnets may be likely at

temperatures greater than 925 K (652* C) (Yardley, 1977; Tracy, 1982). If this is true it is
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Figure 4-5: 14B-86 Garnet Zoning
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Figure 4-6: 87-D7 Garnet Zoning
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interesting to note that all other samples in this study that do not contain zoned garnets all

have rim equilibration temperatures in excess of 6500 C. It is likely, therefore, that these

high temperature samples experienced homogenization of any original growth zonation.

The samples which do show garnet zoning give some indication of their

metamorphic history during growth. The garnet zoning profile for sample 86-14B (Fig. 4-

4) exhibits a large increase from core to rim for the grossular component, and

corresponding decreases in the almandine and pyrope components. Garnet-plagioclase

barometers are based on the fact that Ca-partitioning between the two phases is strongly

pressure dependent; as pressure increases, the anorthite component of plagioclase decreases

with a corresponding increase in the grossular component of garnet. As plagioclase and

garnet are the only two calcic phases in 86-14B, the garnet zoning exhibited in this sample

is therefore consistent with an interpretation of growth during increasing pressure. Many

geothermometers are established on the Fe-Mg exchange between phases. In garnets an

increase in pyrope with an associated decrease in almandine is indicative of growth during

increasing temperature. The garnet zoning profile for Vidja Assemblage sample 87-D7

(Fig. 4-5) exhibits a bell-shaped spessartine component profile, a relatively flat grossular

component, a general decrease in the almandine component from core to rim and a

corresponding increase in the pyrope component. The interpretation of garnet zoning

within 87-D7 is consistent with growth during increasing temperature. The garnet zoning

profile for sample 85-F25 (Fig. 4-6) shows a bell-shaped spessartine profile, a slight

decrease in core to rim for the grossular component, a large (>10 wt%) increase in

almandine, and a moderate increase in pyrope. Except for the evidence of growth zoning

provided by the spessartine component, no conclusions may be drawn from the zoning

pattern for sample 85-F25. Clearly more garnet zoning analyses are needed within the

Seve Nappe (preferably from assemblages with lower variance so the Gibbs' method may

also be employed), and will be a goal of future study in the northern Scandinavian

Caledonides.
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Conclusions

Quantitative thermobarometry and garnet zoning profiles for Seve

quartzofeldspathic gneiss samples with appropriate assemblages yields important

constraints on the "Finnmarkian" history of the Seve Nappe of the Singis-Nikkaluokta

region. The metamorphic results from this study area include:

1) Eclogite grade rocks of the Aurek Assemblage yield temperatures and

pressures in excess of 12 kb and 730* C.

2) The temperatures and pressures obtained in this study for seven samples

from the Savopakte Assemblage of the Seve Nappe range from 571-766* C

and 8.9-13.6 kb. These data imply, with 40Ar/39Ar data, burial depths of

approximately 30-40 km during the Finnmarkian (490 Ma) for the outer

margin of Baltica.

3) Sample 87-D7 from the Vidja Assemblage gives a lower pressure of

7.3±1.7 kb and a temperature of 6160 C. If this sample records an

equilibrium assemblage in the Finnmarkian, then this pressure is consistent

with the interpretation of a late Finnmarkian intra-Seve juxtaposition of the

Vidja and Aurek Assemblages (dated by an hornblende plateau age of 450

Ma., chapter 5) after approximately 40 km of slow (0.5 mm/yr) uplift.from

the pressures recorded in the early Finnmarkian.

4) Garnet zoning occurs in samples whose rim equilibrium temperature are less

than 6500 C. Samples used in thermobarometry whose rim temperatures
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exceed 650* C do not exhibit zoning. This is consistent with several studies

(Yardley,1977; Tracy, 1982) which indicate that homogenization of garnet

growth zoning by intragranular volume diffusion is possible. Three

samples have bell-shaped spessartine profiles which are indicative of

Raleigh fractionation (Hollister, 1966) during garnet growth. Sample 86-

14B from the Savopakte Assemblage has a zoning profile which is

consistent with growth during increasing pressure. Sample 87-D7

demonstrates growth during increasing temperature.

Rim equilibria, inclusion suite thermobarometry, and the Gibbs' method are all

powerful quantitative techniques that may be applied to the study of metamorphic rocks.

More detailed work throughout the Scandinavian Caledonides is needed to better constrain

the different metamorphic histories for the different tectonostratigraphic elements between

and within the major nappes. Future studies by this author plan to focus on applying the

different quantitative metamorphic techniques in combination with 4 0Ar/ 3 9A r

geochronology to the Seve Nappe to the south of the study area.
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Microprobe Data
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F25-85
BIO AVG

27283940

11.5965
16.4800
36.7303
0.0628
1.4985
0.0720
17.8253
0.0560
9.4183

93.7400

1.3276
1.4915
2.8207
0.0052
0.0866
0.0047
1.1449
0.0083
0.9225

7.8119

627±22
ST DEV

0.2579
0.3161
0.4833
0.0283
0.1705
0.0407
0.5317
0.0721
0.3297

0.7080

0.0188
0.0154
0.0223
0.0023
0.0103
0.0027
0.0429
0.0107
0.0261

0.0068

11.2±.87

AL203
S102

T102

MD

NA20
K20
CR203
TOTAL

F25-85
GNT AVG

24254142

2.8823
20.8008
37.7115
8.1943
0.0330
0.4270
29.8605

0.0143
99.9225

0.3423
1.9523
3.0035
0.6991
0.0020
0.0288
1.9886

0.0009
8.0174

65.0125
11.1875
22.8600
0.9400

F25-85
MUSC AVG
22-23,35

1.4070
31.1197
46.0897
0.0127
0.6307
0.0060
2.7357
1.1197
9.2283

92.3467

w
AL
SI
CA
TI
MN
FE

K
CR
CAT TOTAL

STDEV

0.0415
0.1644
0.1251
0.2870
0.0062
0.1275
0.2145

0.0176
0.3111

0.0042
0.0101
0.0069
0.0225
0.0004
0.0087
0.0192

0.0011
0.0048

0.5074
0.1144
0.7768
0.2801

STDEV

0.0476
0.3015
0.2280
0.0112
0.1366
0.0104
0.1657
0.1008
0.1577

0.2892

0.0047
0.0284
0.0115
0.0008
0.0070
0.0006
0.0093
0.0137
0.0128

0.0017

0.1447
2.5290
3.1782
0.0009
0.0327
0.0003
0.1578
0.1497
0.8117

7.0049



F25-85
PLAGAVG

29-3 1 ,36-38

0.0000
22.3712
62.9318
3.9987

0.1337
9.0490
0.0713

98.5567

0.0000
1.1808
2.8184
0.1919

0.0050
0.7857
0.0041

22B-86 571 ±51
MUSCAVG MUSC STDEVSTDEV

0.0000
0.4961
0.7519
0.5136

0.0752
0.3761
0.0112

0.1922

0.0000
0.0285
0.0275
0.0250

0.0028
0.0311
0.0007

1.5401
31.1148
46.9191
0.0366
0.6594
0.0000
2.5258
0.6971
9.9068

93.4000

0.1566
2.5009
3.2000
0.0027
0.0339
0.0000
0.1442
0.0922
0.8619

0.0577
0.3132
0.5298
0.0132
0.1117
0.0000
0.4338
0.0685
0.1703

0.3982

0.0067
0.0133
0.0190
0.0009
0.0060
0.0000
0.0255
0.0092
0.0137

6.9923 0.0176

8.9±1.5 22B-86
BIO AVG

9.9985
17.3735
36.7243
0.0265
2.0113
0.0385
20.3890
0.0855
8.6823

95.3275

1.1321
1.5550
2.7893
0.0022
0.1149
0.0025
1.2951
0.0126
0.8411

BIO STDEV

0.2539
0.4249
0.2094
0.0327
0.1267
0.0206
0.4630
0.0257
0.1613

0.4399

0.0229
0.0297
0.0118
0.0027
0.0078
0.0013
0.0355
0.0038
0.0120

7.7447 0.00454.9857 0.0068



22B-86
GNT STDEV PLAG AVG

22B-86
CN TAVG

2.2647
20.5558
37.9028
5.4815
0.0633
1.3140

33.4243

0.0683
101.0750

0.2689
1.9298
3.0195
0.4679
0.0038
0.0887
2.2265

0.0043
8.0092

72.9517
8.8100
15.3350
2.9050

0.1577
0.2266
0.1282
0.4454
0.0259
0.1203
0.5333

0.0123
0.4942

0.0177
0.0155
0.0082
0.0396
0.0015
0.0082
0.0301

0.0008
0.0049

0.7803
0.5805
1.3158
0.2660

0.0005
1.1921
2.7955
0.2052

0.0037
0.8168
0.0057

5.0194

PLAG STDEV

0.0075
22.9115
63.3245
4.3386

0.0993
9.5443
0.1015

100.3288

1 4B-86
GNT

63-65,73-75

0.0112
0.4445
0.5974
0.4448

0.0994
0.2713
0.0171

0.3950

0.0007
0.0239
0.0218
0.0213

0.0037
0.0216
0.0010

0.0040

2.3070
21.5132
37.7107
6.9095
0.0125
1.5760
31.1868

0.0375
101.2517

0.2719
2.0046
2.9816
0.5852
0.0008
0.1055
2.0619

0.0024
8.0137

68.1700
8.9900
19.3533
3.4867

584 ±34
ST DEV

0.1228
0.0780
0.1877
0.4063
0.0115
0.2347
0.2810

0.0183
0.1011

0.0149
0.0071
0.0107
0.0337
0.0007
0.0158
0.0206

0.0011
0.0095

0.4472
0.4553
1.1762
0.5113



9.4±.9 1 4 B - 8 6
BK) AVG

66-68,78,80-82

14 B - 8 6
MUSC

AVG69,70,83-86

1.2428
32.9545
46.6603
0.0113
0.7642
0.0257
1.6912
0.7662
10.0423

94.1600

0.1249
2.6180
3.1454
0.0008
0.0387
0.0015
0.0954
0.1001
0.8635

STDEV

0.1769
0.4092
0.2202
0.0157
0.1338
0.0251
0.2026
0.1118
0.1362

0.3889

0.0178
0.0298
0.0135
0.0011
0.0068
0.0014
0.0114
0.0145
0.0107

1 4 B - 8 6
A\G

PLAG76,77

0.0365
23.3950
62.6890
4.8385

ST DEV

0.2652
0.1405
0.3894
0.0447
0.1969
0.0299
0.3015
0.0346
0.2559

1.0293

0.0200
0.0153
0.0089
0.0036
0.0119
0.0019
0.0123
0.0050
0.0193

0.1100
9.0910
0.0800

10.2830
17.4630
36.7790
0.0583
2.3743
0.0277
19.0234
0.1154
8.6840

94.8071

1.1630
1.5616
2.7905
0.0047
0.1355
0.0018
1.2069
0.0169
0.8404

0.0041
0.7793
0.0045

5.0103 0.0039

100.2400

0.0024
1.2191
2.7718
0.2292

STDEV

0.0021
0.0849
0.1598
0.0785

0.0311
0.0127
0.0156

0.1697

0.0001
0.0019
0.0011
0.0042

0.0011
0.0028
0.0008

7.7213 0.02366.9882 0.0087



F8-85
GNT AVG

4.2638
20.5843
38.1298
3.8163
0.0678
1.4010
32.4353

0.0465
100.7450

0.5033
1.9207
3.0190
0.3237
0.0041
0.0939
2.1473

0.0029
8.0147

69.9875
16.4025
10.5475
3.0575

655±33
GNT STDEV BIO STDEV

10.2±1.1
MUSC STDEV

0.0560
0.3298
0.2291
0.0143
0.0918
0.0000
0.0612
0.0554
0.0865

F8-85
BIO AVG

12.3645
17.1851
37.0347
0.0572
1.4525
0.1120
17.4504
0.1180
8.6095

94.3836

1.3942
1.5319
2.8013
0.0046
0.0826
0.0072
1.1040
0.0173
0.8306

7.7737

0.5452
0.2336
0.4325
0.0396
0.1829
0.0378
0.6653
0.0353
0.3925

0.7535

0.0568
0.0147
0.0115
0.0032
0.0099
0.0025
0.0487
0.0051
0.0362

0.0227

0.1019
0.1153
0.1161
0.3006
0.0090
0.1976
0.3797

0.0242
0.6688

0.0112
0.0012
0.0103
0.0252
0.0006
0.0130
0.0187

0.0015
0.0095

0.7471
0.3689
0.8043
0.4073

F8-85
MUSC AVG

1.3202
32.1694
46.8610
0.0064
0.6878
0.0000
1.2422
1.2932
9.3542

92.9340

0.1338
2.5764
3.1846
0.0005
0.0352
0.0000
0.0706
0.1704
0.8110

6.9822

0.4751

0.0061
0.0144
0.0046
0.0010
0.0047
0.0000
0.0032
0.0070
0.0116

0.0087



PLAG STDEV
F8-85

PLAGAVG

0.0215
22.9170
63.0853
4.4018

0.0505
9.6250
0.0565

100.1575

0.0014
1.1948
2.7907
0.2087

0.0019
0.8255
0.0032

5.0260

0.0214
0.2796
0.8218
0.2919

0.0199
0.1633
0.0187

0.6991

0.0014
0.0176
0.0185
0.0143

0.0008
0.0146
0.0010

0.0090

F1 7-85
GNT AVG

4.1300
21.3100
37.9800
4.7300
0.4500
0.0200
32.0500
0.0000
0.0000

100.6800

0.4848
1.9784
2.9910
0.3993
0.0269
0.0015
2.1111
0.0000
0.0000

7.9929

0.7045
0.1618
0.1332
0.0005

12.5±1.3762±49
GNT ST DEV

0.0970
0.0590
0.1580
0.3580
0.0579
0.0221
0.5073
0.0000
0.0000

0.4460

0.0111
0.0078
0.0092
0.0299
0.0035
0.0015
0.0311
0.0000
0.0000

0.0093

F1 7-85
BIO AVG

10.8400
17.1600
36.2000
0.0982
0.1748
1.2930
19.4646
0.0662
8.3170

93.6134

1.2520
1.5669
2.8039
0.0082
0.0102
0.0847
1.2610
0.0100
0.8215

7.8182

STDEV

0.5800
0.4500
0.7300
0.0300
0.0162
0.4370
0.6826
0.0227
0.9826

1.2270

0.0764
0.0448
0.0371
0.0021
0.0009
0.0283
0.0464
0.0034
0.0929

0.0320



F1 7-85 F1 7-85 12B-86 766±75
MUSCAVG STDEV PLAG A\G STDEV GNTA\AG STDEV

13-14,30

1.0302 0.0396 0.0550 0.0092 1.4063 0.0709
33.8830 0.5944 24.1325 0.1641 20.8663 0.2145

46.3067 0.4045 60.9993 0.4035 37.6467 0.0964

0.0110 0.0132 5.4200 0.0560 10.7450 1.2681
0.0200 0.0176 0.0000 0.0000 0.1217 0.0492
0.5035 0.1255 0.0000 0.0000 2.3527 1.0549
1.0623 0.1499 0.0803 0.0528 27.3917 0.2014

1.6355 0.0659 8.6893 0.1490 0.0000 0.0000
8.8790 0.1240 0.0515 0.0211 0.0000 0.0000

0.0000 0.0000
93.3320 0.8349 99.4278 0.4509 100.5267 0.6363

0.1039 0.0048 0.0037 0.0006 0.1668 0.0091
2.7000 0.0218 1.2700 0.0097 1.9559 0.0062
3.1316 0.0089 2.7250 0.0073 2.9944 0.0139
0.0008 0.0010 0.2594 0.0032 0.9151 0.1011
0.0010 0.0009 0.0000 0.0000 0.0073 0.0030
0.0289 0.0075 0.0000 0.0000 0.1588 0.0719
0.0602 0.0091 0.0030 0.0020 1.8217 0.0061
0.2151 0.0072 0.7549 0.0103 0.0000 0.0000
0.7660 0.0093 0.0029 0.0012 0.0000 0.0000

0.0000 0.0000
7.0078 0.0051 5.0190 0.0049 8.0199 0.0129



13.6±2 1 2B-86
BK AVG

17,24,31 -32

6.1243
16.6968
35.2755
0.0295
3.7353
0.1748
23.8003
0.1013
9.3778

1 2B-86
RAGAVG

15-16,19,20,40,41

0.0000
23.0180
63.2148
4.3775
0.0000
0.0000
0.1128
8.9118
0.1310

99.7667

0.0000
1.2018
2.7994
0.2079

0.0042
0.7652
0.0074

STDEV

0.0000
1.0941
1.9460
0.6740

0.0547
0.3520
0.0541

0.3026

0.0000
0.0649
0.0658
0.0333

0.0020
0.0291
0.0031

1 2B-86
MUSC AVG

35-36,21 ,22

1.4113
30.4818
46.4828
0.0000
1.2390
0.0000
2.9633
0.2968
10.8985

STDEV

0.0509
0.1285
0.3120
0.0199
0.3280
0.0363
0.7251
0.0934
0.3231

0.9344

0.0048
0.0077
0.0075
0.0017
0.0203
0.0025
0.0389
0.0142
0.0293

93.7750

0.1442
2.4614
3.1850
0.0000
0.0638
0.0000
0.1698
0.0394
0.9526

7.7346 0.0242

95.3175

0.7125
1.5353
2.7524
0.0025
0.2192
0.0116
1.5527
0.0154
0.9333

STDEV

0.1536
0.2738
0.1808
0.0000
0.0654
0.0000
0.1042
0.0455
0.0312

0.2198

0.0157
0.0209
0.0113
0.0000
0.0033
0.0000
0.0060
0.0060
0.0036

7.0160 0.00414.9857 0.0385



87-C 10
GNTAVG

PTS5-9,1 2

2.53683333
20.3076667
37.8838333
8.01333333
0.04966667
1.41166667

28.9405

0.09166667
99.2366667

0.3032
1.91961667

3.0384
0.68863333

0.003
0.0959

1.94081667

723±68

0.31512246
0.2458444

0.13504728
0.35488458
0.02872397
0.21186379
0.61682696

0.01853285
0.54624781

0.03674812
0.01913493
0.01248855
0.03296821
0.00174814
0.01449869
0.03620284

13.2±1.8 87-C 10
BKAVG
EX GR4

10.9491667
16.7591667
36.5308333
0.03833333
1.99533333

0.026
19.3985

0.08316667
8.99916667

0.18034569
0.03114108
0.30802235
0.01336663
0.13693746
0.02175316
0.36898062
0.0489915

0.24828888

94.7766667 0.57881488

1.24581667
1.50746667

2.7882
0.00311667

0.1145
0.00168333

1.2381
0.0113
0.8761

0.01633725
0.00605365
0.01796975
0.00109803
0.00783837
0.00141056
0.02569685
0.0076115
0.02140252

87-C 10
MUSC AVG

ALL

1.50183333
31.3398333
46.6958333

0.023
0.98283333

0.0155
1.60616667
0.74266667
10.0421667

0.14650927
0.41841005
0.46381523
0.01335665
0.17425661
0.01950128
0.07914902
0.0619602

0.13393493

92.95 0.37094474

0.15293333
2.52323333
3.18993333
0.00168333
0.05046667
0.00091667
0.09176667

0.09835
0.87508333

0.01456745
0.04013167
0.02190823
0.0009786

0.00889644
0.00113915
0.00429216
0.00843914
0.01153732

0.00583333 0.00120277
7.99536667 0.00959847 7.78725 0.02731188 6.98426667 0.00739531

64.08
10.0116667
22.7416667
3.16666667

0.84156996
1.20385077
1.16580301
0.48006944



87-C 10
PLAG

1,3,4R,5

0
24.1474286
61.0894286
5.52671429

0.04914286
8.562

0.04185714

0
0.33109156
0.59173019
0.15324459

0.04262796
0.19089875
0.01439246

99.4157143 0.65390767

0
1.27075714
2.72777143
0.26442857

0.00185714
0.74115714

0.0024

0
0.01961469
0.0139902

0.00782447

0.0015831
0.01367892
0.00082865

5.0083 0.00541849

87.-D7
GNTAVG

4.32573333
21.3378667
38.0553333

2.1172
0.07746667

0.8772
34.3852

0.01213333
101.19

0.5085
1.98286667

3.00076
0.17884667

0.0046
0.05857333
2.26724667

6 16±60
GNT STDEV

0.26766196
0.14402424
0.22332477
0.39952118
0.22724118
0.15244306
0.38260446

0.01250638
0.43177375

0.03060577
0.00966338
0.01182194
0.03373057
0.01347575
0.01009565
0.02806154

0.00090667 0.00083364
8.00224 0.00736214

7.3±1.7 87-D7
BIO AVG

11.6609167
18.8855

36.6810833
0.003

2.52375
0.02766667
16.6934167

0.1255
9.17991667

BIOSTDEV

0.64878732
0.41972491
0.42536304
0.00712231
0.16207357
0.01715879
0.85009149
0.04193827
0.20799933

95.7825 0.41257782

1.29279167
1.65455833

2.72825
0.00023333

0.14115
0.00175833
1.03840833

0.0178
0.87090833

7.74690833

0.06776414
0.03731291
0.0277268

0.00055158
0.00934778
0.0010681
0.0565441

0.00661816
0.01751703

0.03085369

0.92208459
1.00214627
1.11877356
0.33185195

75.246
16.874
5.936
1.944



87-D7
MUSC AVG

1.37383333
32.505

46.8938333
0.018

1.28933333
0

1.22916667
0.60616667
10.2658333

87-D7
MUSC STDEV PLAG AVG

0.05447354
0.37811109
0.28616178
0.01048809
0.08407061

0
0.10475002
0.06000139
0.10100182

94.18 0.19401031

0.13786667
2.57846667

3.1564
0.00131667
0.06526667

0
0.0692

0.07908333
0.88141667

0.00567685
0.02895864
0.01739356
0.00076004
0.00429682

0
0.00593801
0.00771425
0.00910899

0.002875
23.375
63.3525

4.521625

0.05575
9.055125

0.095

100.45875

0.0001875
1.2124875
2.788275
0.2132375

0.00205
0.772625
0.0053375

PLAG STDEV

0.00813173
0.14041876
0.62348926
0.15746196

0.03286227
0.17205932
0.03636325

0.61261588

0.00053033
0.00981143
0.01226595
0.00837546

0.00119403
0.01328186
0.00206808

6.96888333 0.00738686 4.99415 0.01306478



Chapter 5

A New Empirical Garnet-Hornblende Thermometer

ABSTRACT

A new geothermometer based on the Fe-Mg exchange between garnet and

hornblende has been empirically calibrated on a data set of 21 samples containing

coexisting garnet, hornblende and biotite. Temperatures were calculated using the garnet-

biotite thermometer (Ferry and Spear, 1978) with garnet activities calculated as described in

Hodges and Spear (1982). Hornblende activities were modeled as ideal mixing on the M3

site such that Xfe-hbl = Fe2/(Fe2+Fe3+Mg+Mn+Ti) and Xmg-hbl =

Mg/(Fe2+Fe3+Mg+Mn+Ti). Ferric iron composition was estimated using the average of

maximum and minimum acceptable stoichiometric values as described in Spear and Kimball

(1984). Preliminary results of a Mossbauer study of metamorphic hornblendes indicate

that this is a more realistic assumption than assigning all Fe as Fe2, as was done in the

garnet-hornblende thermometer calibrated by Graham and Powell (1984). A simple

regression of the data set with AV = -0.0196 cal/bar to fit the equation:

LnK+(P-1)AV/RT = -AH/RT+AS/R (equ. 1)

gives values of AH =-3524.0 +/- 578.6 cal/mol and AS = -1.639+/-.67 cal/mol-k for 90%

confidence intervals with an r-squared = .812. Testing of this thermometer gives values

similar to those predicted by other geothermometers.

Introduction

The goal of many recent studies within metamorphic petrology has been the

establishment of well calibrated empirical geothermometers and geobarometers (Kohn and

Spear, 1989; Hoisch, 1989; Hammerstrom and Zen, 1988; Hodges and Crowley, 1985).
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Geothermobarometers may be calibrated either experimentally, thermochemically or

empirically. Experimental calibrations are generally considered to be the best method to

constrain a particular reaction. However, the technique is limited by several drawbacks.

First, the experimental reactions usually involve pure end member phases that are often

difficult to make and are not representative of natural systems. Second, experimental

calibrations are relatively time consuming because the reactions take a long time and have to

be done under a variety of conditions. Last, because the reactions are sluggish,

experiments are usually done at elavated temperatures thus necessitating the extrapolation of

the results to temperatures more typical of metamorphic conditions.

Thermochemical calibrations are in many ways the easiest to do because AHrx and

AS'rx may be solved for directly. Unfortunately, strict thermochemical calibrations have

only a limited use because entropy and enthalpy data is of variable quality, and for many

important phases is non-existent.

Another approach is to calibrate the reaction empirically using pressures and

temperatures obtained by some other method with the compositions of the pertinent phases.

In the empirical method the "fundamental" thermodynamic equation is set in the form:

LnK+(P-1)AV/RT = -AH/RT+AS/R

Therefore, by plotting the data on a LnK+(P-1)AV/RT vs. 1/T diagram, AS and AH may be

obtained from the slope and the y-intercept, respectively, of a line obtained from regressing

a line through the data points. Empirical calibrations are relatively straight forward,

however the results are limited by the reliabilities of the pressures and temperatures used in

calibrating the system. Other caveats which should be observed in any calibration scheme

include: 1) the system should be calibrated within conditions as near as possible to those of

intended use; 2) the equilibrium constant must be known or modeled accurately; and 3)

the reactions of interest should generally be fluid independent, otherwise, K becomes

dependent on the fugacity of the fluid phase.
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There are at present very few useful quantitative thermobarometric techniques that

may be applied to mafic metamorphic rocks. This study focuses on the calibration of a

garnet-hornblende thermometer. An empirical garnet-homblende thermometer was

calibrated by Graham and Powell (1984). The Graham and Powell thermometer was

calibrated from temperature constraints calculated using the garnet-clinopyroxene

thermometer of Ellis and Green (1979) in samples with coexisting garnet, hornblende, and

pyroxene. The new calibration presented here uses different garnet solution models and

will be calibrated on samples with coexisting garnet, hornblende, and biotite.

Temperatures for this calibration are calibrated using the garnet-biotite thermometer of

Ferry and Spear (1978) with garnet activities presented in Hodges and Spear (1982). The

range of temperatures expected for coexisting garnet and hornblende may be as low as 400-

4504 C. The Graham and Powell thermometer was calibrated within a range of 600-920*

C, whereas this new calibration was performed on samples ranging from 500* C to 7540 C,

thereby more closely approximating the temperature range for many amphibolite grade

rocks.

Just as in every empirical calibration the Graham and Powell thermometer relies on

particular assumptions. Two of the major assumptions include: 1) the assignment of all

non-ideality in the garnet-homblende system to a Ca-correction for garnet, which they

obtain by regression of

InKd = S' + H'(-1/T) + W'(-Xca,g/T)

As Graham and Powell note, the value they obtained for the correction factor is very similar

to the one used in the thermometer of Ellis and Green (1979). This should not be

surprising as the temperatures calculated for the calibration are dependent on the correction

for Ca used in the Ellis and Green thermometer; and 2) the assignment of all Fe in

hornblende to Fe2+ which will result in significant temperature over-estimates for

hornblendes with ferric contents significantly over the average of those used in the

calibration data set. The new thermometer calibrated here uses different solution models
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which may more accurately model the system, and includes a correction for the ferric

content of hornblendes. Becuase of these differences and the fact that the calibration is

against a different mineral system it is hoped that this new calibration will give more

consistent results than the previous garnet-hornblende thermometer.

Calibration

Activities

Garnet and hornblende activity models used in this study are listed in Table 5-1.

Several activity models for hornblende were tested and the model which gives the best

statistical fit asumes ideal mixing on the M3 site in homblende. A possible reason for this

may be that for within reasonable crystal chemical limits (Robinson et al, 1982) the M3 site

is not affected by Ca or Na which reside on the M4 site or Alvi which goes on the M2 site,

therefore minimizing the effects of non-ideality of these cations. The non-ideality of garnet

was modeled using the activity relationships described in Hodges and Spear (1982). The

Fe-Mg exchange reaction for garnet and hornblende may be expressed as:

ferro-pargasite pyrope .

1/4NaCa2Fe4A13Si6O22(OH)2 + 1/3Mg3Al2Si3O12=

1/4NaCa2Mg4Al3Si6O22(OH)2 + 1/3Fe3Al2Si3O12

pargasite almandine

The equilibrium constant for this reaction is:

K = (Aalm/Apy) 1/3(Apar/Afe-par) 1/4
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Table 5-1

The Fe-Mg exchange reaction for garnet and hornblende
may be written as

1/4NaCa 2Fe4A13Si 6O22(OH)2 + 1/3Mg 3A12Si 3O1 2

=1/4NaCa 2Mg4Al3Si6O22(OH)2 + 1/3Fe 3A12Si 3O1 2

The equilibrium constant for this reaction

K=(Aalm/Apy)1/ 3(Apar/Afepar) 1/4

Activities
(Aalm,Apy from Hodges and Spear(1982))
Aalm = [Xalm*exp[((1.5T-3300)*(XpyXgr))/RT)] 3

Apy =[Xpy* exp[((3300-1.5T)*(Xgr 2 + XalXgr + XgrXsp))/RT)] 3

(For ideal mixing on the M3 site)
Apar = Xmg-hbl
Afepar = Xfe-hbl

At equilibrium

LnK +(P-1V)AV4/RT = -AH*/RT + AS0/R

This equation has been fit in order to find values of AH~and
for the above reaction

AS
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Ferric Assignment

Ferric iron composition was estimated using the average of maximum and minimum

acceptable stoichiometric values (Spear and Kimball, 1984). This estimation was

considered necessary due to the rather large (1000 C) possible temperature over-estimates

inherent in assigning all iron as Fe2 + in the calculation of hornblende stoichiometries. A

M~ssbauer spectroscopy study of 16 metamorphic hornblende samples (Page, in progress)

indicates that the estimated ferric values, although not perfect, are quite good (generally

within 5% Fe3+/Fetotal) and give a much more realistic value than assigning all iron as

ferrous.

Calibration Data Set

Samples which contain coexisting garnet, hornblende, and biotite in equilibrium

were chosen both from the literature and from unpublished data (kindly provided by Jane

Selverstone, Alan Boyle, and Wendy Kirk). Table 5-2 lists the calibration data set and the

sources for this data.

Results
The samples used in the calibration were regressed to fit equation 1 (Fig. 5-1). The

results of this regression give values for AH and AS of -3524.0±289.3 and-1.385±.336

respectfully for 90% confidence intervals. Preliminary results using robust regression

approaches to examine the possible effects of non-normality of the data set indicate that

different regression techniques will not significantly effect the values of this calibration.

Uses and comparison of different regression techniques for empirical calibrations is the

focus of a paper in preparation.
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Table 5-2: Calibration Data

XPY XSP XAL

0.1533
0.1601
0.1304
0.1492
0.1625
0.1026

0.188

0.111
0.0643
0.1143

0.093
0.1244

0.1168
0.1341
0.1033

0.125
0.1011
0.0827

0.16
0.2527
0.1805

0.0508
0.1503
0.0209
0.0595

0.01
0.0408

0.029

0.086
0.2083
0.0567
0.1052
0.0572

0.0392
0.06

0.0658
0.0709
0.0863
0.157

0.0126
0.025

0.0331

0.6514
0.5523

0.713
0.6783
0.7175

0.672
0.636

0.6389
0.4843
0.6797
0.6258
0.5944

0.6306
0.6074
0.6085
0.6277
0.6153
0.5491

0.7496
0.637
0.711

XFEHBL XMGHBL

0.2793
0.3206
0.4432
0.4063
0.3324
0.5702
0.3843

0.5022
0.4166
0.5444
0.5206
0.4371

0.4088
0.3788
0.4398

0.481
0.4778
0.4534

0.4054
0.3245
0.3306

0.4849
0.5355
0.4743
0.4365
0.5272
0.4188
0.4716

0.4642
0.5376

0.431
0.426

0.5038

0.5071
0.5258
0.5243
0.4683
0.4759

0.504

0.4325
0.5721
0.5513

TEMP P

883.7
980.3
816.9

832
843.1
846.6

1028.6

816
767.2
847.8
801.3
879.3

868.8
875

832.7
882.3
800.9
781.3

836.5
1027.5

863.7

LNK T aar-hbi

1.4223
1.2376
1.5424

1.392
1.4586
1.5781
1.1436

1.5204
1.7403
1.5441
1.6241
1.3458

1.4932
1.3657
1.5418
1.4082
1.5448

1.63

1.4659
0.9935
1.4112

871
955.3
822.1
877.1
853.6
814.9

1018.4

827
756.3
823.1

793
896

843.6
888.4
798.8
874.1
816.7
788.3

844 5
1053.5

866.7

SAMPLE

JS Z3-D
Z3-N
Z3-Z

FH-10
FH-2C
PJ-8B

PM-305D

WK 268C
979A
1201

TA 160
64K180

AB 70888
70693
70895
70899
70901
70954

SP 73-29D
73-30N
73-30S

XGR

0.1444
0.1373
0.1357

0.113
0.116

0.1856
0.147

0.1641
0.243

0.1497
0.1762
0.2238

0.2134
0.1985
0.2223
0.1764
0.1973
0.2112

0.077
0.0846

0.075

T diff

12.7
25

-5.2
-45.1
-10.5

31.7
10.2

-11
10.9
24.7

8.3
-16.7

25.2
-13.4

33.9
8.2

-15.8
-7

-8
-26

-3

SAMPLE XGR XPY XSP XAL



Figure 5-1: Regression of calibration data
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Test Samples

Samples from the literature were used for comparison with other geothermometers

(Table 5-3). These samples include several which were tested by Graham and Powell

(1984). The test samples come from a variety of metamorphic regions including

amphibolites from the Post Pond Volcanics (Spear, 1982) and eclogitic garnet amphibolites

(Morgan, 1970; Ernst & dal Piaz, 1978; Sorensen, 1988). Future work will focus on

testing of this thermometer in regions where temperature constraints are known, and in

simultaneously solving this garnet-hornblende thermometer with the Garnet-hornblende-

plagioclase-quartz barometers of Kohn and Spear (1989).
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Table 5-3: Test Samples

xqr xsp xfehbi xmqhbl Pressure( ) T G-Cox T GR+PO T this CAL.

0.1881
0.0843
0.1017
0.1015

0.2343
0.2088
0.2267
0.2218
0.1978
0.2236

0.0424
0.0241
0.0422
0.0214

0.0129
0.0363
0.0263
0.0415
0.0263
0.0286

0.5052
0.4069

0.446
0.4895

0.2111
0.1621
0.3707
0.4181
0.4928
0.4053

0.3355
0.4463
0.4213
0.4303

0.7399
0.785

0.6222
0.5235
0.4291
0.5592

1058-1 0.5111 0.2402 0.2453 0.0034 0.0624 0.8719 12
1115 0.6084 0.1042 0.2706 0.0168 0.2505 0.6962 12

0.24
0.35
0.33
0.26

0.02 0.2976
0.01 0.3713
0.01 0.2863
0.02 0.3461

0.6105
0.5872
0.6666
0.5998

454
765
565
579
594
661

620
514

645
745
671
611

601
561
614
609

370
506
481
507
508
501

445
473

449
573
620
629

398
488
519
464
417
488

728
528

691
817
739
690

Sam le xalm

Spear 82
73.25a
73.25c
73.20a
73.28a

Ernst-Dal
MR0857

MR01609
MRO1611

DBL379
DBL409
DBL497

Morgan

0.6949
0.7352
0.6977
0.7139

0.6763
0.6351
0.6448
0.6576
0.7099
0.6588

0.0745
0.1565
0.1584
0.1631

0.0765
0.1198
0.1022
0.0791
0.0659

0.089

Sorensen 88
HGB

9980SC2
91480SC2

7484SC5

0.58
0.48
0.51
0.58

0.16
0.15
0.15
0.15

.qanv-ja xalm xnr X-qn xfehbl xmnhbi PressureiKbi



Chapter 6
4 0 Ar-39 Ar Geochronology

Introduction

40Ar/39Ar geothermochronology has become an indispensable tool in the analysis

of complexly deformed and metamorphosed regions (e.g. Berger, 1975; Dallmeyer, 1975;

Harrison and McDougall, 1980a,b; Sutter et al, 1985). This technique is especially useful

within the Scandinavian Caledonides becuase it commonly allows for the correction of

analyses for excess Ar components, which seem unusually common within the

Caledonides, perhaps as a result of degassing of the Precambrian Baltic Shield. The age of

metamorphism and deformation within the Caledonides ranges over much of the early and

middle Paleozoic, but the various events have been grouped into two orogenic episodes.

The earliest is a Late Cambrian to Early Ordovician event termed the Finnmarkian phase by

Sturt et al (1978). Even though recent work by Krill and Zwaan (1987) has cast doubt on

the original interpretation of the age of deformation for the type Finnmarkian in northern

Scandinavia, an early Paleozoic tectonothermal event has been firmly documented within

the allochthonous nappes of the Caledonides (Dallmeyer 1985, Dallmeyer and Gee

1986,Tilke 1986, Msrk 1988, this study). The second major event is termed the Scandian

phase and is responsible for the final metamorphism of the nappe units and emplacement of

the allochthonous nappes onto the Baltic shield. Previous studies (e.g. Dallmeyer 1985,

Dallmeyer and Gee 1986,Tilke 1986) have yielded valuable information concerning the

general polyphase nature of orogenesis within the Caledonides. With minor exceptions

(Tilke, 1986; Dallmeyer et al., 1985) most of the rocks preserving the older tectonothermal

event belong to the different tectonic units within the Seve Nappe. This study is the first

within the MIT transect to examine the tectonothermal history within the Seve in detail, and

thus affords the opportunity to examine the timing and conditions of early Paleozoic
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orogenesis and the subsequent effect the Scandian phase of metamorphism and deformation

had on these rocks. The Singis-Nikkaluokta part of the transect also allows examination of

the timing of tectonothermal activity within the lower K61i Nappe, the Seve-K6li shear

zone, and the shear zone rocks of the Middle Allochthon, and thus to better understand the

complex tectonic relationships between the different nappes. In this chapter the analytical

and statistical techniques used in this study will be discussed, followed by a presentation

and discussion of the results and their implications for the tectonic history of the Northern

Scandinavian Caledonides.

ANALYTICAL TECHNIQUES

Samples for geochronologic analysis were collected from the different

tectonostratigraphic units within the field area. Thin sections were examined from more

than sixty potential samples and the best samples were chosen for analysis. Samples that

were too fine grained, had chloritic or sericitic alteration or had abundant inclusions were

not used. The hand samples were crushed and sieved to a 0.45 to 0.25 mm size fraction,

and hornblende, muscovite, and biotite were separated using standard magnetic and heavy

liquid techniques. Final purification of the separates was achieved by hand-picking. Four

hundred milligrams of hornblende and 100 mg of mica splits were irradiated for 48 hours

along with monitors (interlaboratory standard SB-51, 246.7 Ma) in the Ford reactor at the

University of Michigan. Incremental step heating analyses were performed at the

geochronology lab at the University of Maine at Orono under the supervision of Dr. Dan

Lux. The argon extraction line at the University of Maine at Orono uses a molybdenum

crucible with radio frequency induction heating followed by gettering using Cu-CuO and

Zr-Al getters and a molecular sieve desiccant. A Nuclide 6-60-SGA 1.25 m mass

spectrometer was used for the isotopic analyses. Six to eight steps were run on micas,

while 11-17 steps were run on the homblendes. Correction factors for interfering isotopes
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were measured on CaF2 and K2S04 salts for each of the two batches. For sample batch 1

(Sept. 1986) they are: Ar (40/39) K corr. factor =0.0391, Ar (36/37) Ca corr. factor =

0.000275, Ar (39/37) Ca corr. factor = 0.000753. For sample batch 2 (April 1989) they

are: Ar (40/39) K corr. factor = 0.0347, Ar (36/37) Ca corr. factor = 0.0002572, Ar

(39/37) Ca corr. factor = 0.0007494.

Statistical Methods

McDougall and Harrison (1988) discuss the generally accepted criteria for

determination of a plateau in an age spectrum (cf. Dalrymple and Lanphere, 1974; Fleck et

al., 1977; Lanphere and Dalrymple, 1978) which include a minimum of three contiguous

steps representing a significant proportion of the the total 39Ar released with concordant

ages. Ages are concordant if they do not differ at the 95% confidence level. For reasons

of consistency the statistical methods used in this study for the isotope correlation

technique (Roddick et al, 1980) are the same as followed and discussed by Tilke (1986),

and will be briefly summarized again here. The isotope correlation technique provides a

test for the assumption that the non-radiogenic Ar component is of atmospheric

composition (40Ar/36Ar=295.5). By plotting each heating increment on a 39Ar/40Ar vs

3 6Ar/40Ar isochron plot, the nonradiogenic component of the 36Ar/40Ar ratio and the

radiogenic component (40Ar) of the 39Ar/40Ar ratio (which corresponds to the true age of

the sample, ie the intercept age) may be found by the x and y-intercepts respectively. Tilke

(1986) determined the error associated with the calculated intercept age by applying the

error regression techniques of York (1969). In order to account for the fact that there are

no replicate analyses for each individual increment, a factor of 2.5 was multiplied by the

analytical error associated with each data point used in the regression before the York

regressions were applied.
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4 0 Ar- 39 Ar Results

Introduction

Thirty-one samples were analyzed and 19 gave interpretable spectra. Rocks from

the Scandinavian Caledonides are notorious for having an excess argon problem and in this

group of samples there were 8 excess hornblendes, 3 excess biotites and 1 failed run. Of

the 19 good runs there are 4 hornblendes and 15 muscovites. Sample localities are shown

on plate 1, and the heating schedules, release spectra, and isotope correlation diagrams are

in appendices 6:1-3 respectively. Successful results are tabulated in table 6-1.

Upper Nappe Complex

K6li Nappe

Sample 87-D19 is from a muscovite-bearing, psammitic gneiss unit within the

Salka Group of Tilke (1986) from the lower K6li nappe. This sample was collected from

approximately 50 m above the contact between the Seve and K6li nappes. The release

spectra for this sample gives a slightly saddle shaped profile with a minimum at 423.8±1.5

Ma for 23.9% of the gas released while the majority of the other increments give ages of

about 430 M.

Seve-K61i Shear Zone

Two samples,87-D16 and 87-D17, from the Seve-K6li shear zone were collected

near the stream Viddjajohka in the southwest part of the field area. Both samples give

consistent ages within error. Sample 87-D16 has a plateau age defined by 59.5% of the

gas of 430.1± 2.9 Ma, while 87-D17 has a slightly saddle-shaped spectrum with a

minimum which contains 26.4% of the gas with an age of 428.8±1.0. The rest of this

spectra is relatively flat and gives ages of around 432 Ma.
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508.0±9.2 495.3±7.5
485.9±2.6 470.0±15.8
451.3±5.6 449.1±3.3

531.5±20.8
559.5±9.8 545.5±6.8
439.9±2.8 436.5±8.8

425.4±3.4
427***

433.5±2.4 428.2±6.8
430.4±3.4 426.4±3.4

425.1±4.0
458.0±3.8
430.1±2.9

431.8±3.9

451.1±3.4

MSWD

5.7
5.4
2.8
3.6
2.6
2.1

EXCESS

834.1±231.3
943.6f409.9
384.6±59.3

601.1±302.3
828.9±115.5
309.7±1 26.8

#REG

4.9 705.8±372.9
468.6±89.2

4.8 344.9±99.6

unit

Table 6-1

K/CASAMPLE

C1-87
C7-87
D8-87

16D-86
D26-86
F3-87
87-Al
28A-86
B9-87

B10-87
C1-85
10C-86
C16-87
D1 1-87
87-DI6
D17-87
D19A-85
87-D19
20D-86

85-D23M
F25-85

0.083
0.119
0.11
0.04
0.077
0.043

PHASE

HBL
HBL
HBL
HBL
HBL
HBL

MUSC
MUSC
MUSC
MUSC
MUSC
MUSC
MUSC
mSC
MUSC
MUSC
MUSC
MUSC
MUSC
MUSC
MUSC

SEW
SEVE
SEW
SEVE
SEVE
SEVE
MA

SEW
SEVE
SEVE
MA
MA
MA

SEVE
S-K SH
S-K SH

MA
KOLI
SEVE
MA

SEVE

504.8±3.5
485.8±11.4
448.6±11.0
543.0±5.7

542.3±13.4
439.7±1.8
426.8±0.7
425.0±1.1
427****

433.3±11.2
429.9±4.0
436.8±11.3
420.7±11.5
457.5±0.9
429.7±11.11
428.8±11.0
431.0±0.9
423.8±11.5
428.0±0.7
431.8±0.7
450.7±1.4



Seve Nappe

There are 4 hornblende and 6 muscovite ages from the 3 tectonostratigraphic units

within the Seve nappe.

Vidja Assemblage

Sample 87-D 11 was collected from a garnet and mica bearing quartzofeldspathic

gneiss within the Vidja assemblage near Sdnjarvdggi in the western part of the field area.

The release spectrum for this sample is slightly saddle-shaped with a near plateau age

accounting for 53.7% of the gas and giving an age of 458.0±3.0 Ma.

Aurek Assemblage

Many hornblende spectra from the Aurek assemblage were obtained.

Unfortunately, most of these samples gave uninterpretable release spectra due to an

extremely large excess argon component. Samples 86-D16, 86-D26 and 85-F12 are some

examples of these excess spectra. Tilke (1986) also was unable to obtain any meaningful

hornblende spectra from within the Aurek assemblage. The only meaningful age that was

obtained from this unit is sample 87-D8 which comes from the amphibolitic black wall

which surrounds the Aurek gabbro. This sample comes from near the contact with the

structurally overlying Vidja gneiss unit and was collected nearly 1 km to the NW of Stuor

Aurek. The release spectra for this sample defines an excellent plateau which accounts for

83.4% of the gas and gives an age of 451.1±5.9 Ma and a corresponding intercept age of

449.1±3.3 Ma.

Savotj&kka Assemblage

Three hornblende spectra were obtained from the Savotj&kka assemblage of the

Seve. Sample C1-87 is a homblende separate from a garnet-amphibolite collected near the

peak of TjilmetjAkka in the south-central part of the field area. This sample gives a near
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plateau age of 506.8±6.8 Ma for 95.2% of the gas. This sample yielded an intercept age

from a 13 point regression using the isotope correlation technique of 495.3±7.5 Ma.

Hornblende sample 87-C7 was collected nearly 3 km west of the previous sample near the

peak of LIipetjApetjAkka, and has a 3 increment plateau age of 486.8± 5.5 Ma, which

accounts for 37.2% of the gas, and an intercept age of 470.0±15.8 Ma. The third

hornblende spectrum was obtained for sample 87-F3, which was collected about 2 km

NW along the ridge from peak SavotjAkka within a garnet-amphibolite. This sample shows

a diffusive loss profile and gives a plateau age for 4 increments totalling 81.1% of the gas

of 439.9±2.8 Ma and a corresponding intercept age of 436.5±8.8 Ma.

Five muscovite spectra were also obtained from within this unit. Sample 85-F25

was collected near lake Skartajaure in the central part of the study area from within a

muscovite-bearing quartzofeldspathic gneiss about 20 m structurally above the Manak

assemblage. Although this sample yielded a saddle-shaped spectra a good two increment

near plateau accounting for 36% of the gas gave an age of 451.1±3.4 Ma. The rest of the

Seve muscovite samples all came from micaceous quartzofeldspathic gneisses and gave

ages of between 425-433 Ma. Sample 86-28A came from about 2 km NW of the small

peak Skdrtavdrdu in the central part of the study area and is approximately 120 m

structurally above the Middle Allochthon mylonites. This sample has a slightly saddle-

shaped spectra with a minima which represents 20.1% of the gas and an age of 425.0±1.1

Ma, and a near-plateau age of 425.4±3.4 Ma representing 37.7% of the gas. Sample 87-

B10 was collected at Tjapet-tjAkka in the eastern part of the study area, and is located

approximately 160 m structurally above the mylonites of the Middle Allochthon. The

release spectra for this sample shows an excess profile for the first few increments coming

down in age to a plateau which makes up 62.9% of the total gas and gave an age of

433.5±2.4 Ma. Sample 86-20D came from about 3 km due south of peak GuodekjAkka in

the NE region of the study area. The release spectrum shows a generally saddle-shaped
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spectrum with a minima giving a maximum interpreted age for the last thermal event

responsible for significant Ar. loss of 428.0±0.7 Ma.

Manak Assemblage

Sample 86-10C from the Manak assemblage was collected just north of lake

Urtejaure from within a micaceous gneiss surrounding pods of the Manak leucogabbro.

The spectrum for this sample has an excess profile in the first few increments and comes

down to a minimum age of 436.8±1.3 Ma.

Middle Allochthon Mylonites

Matert Shear Zone

The Matert shear zone rocks are located in the western part of the region above the

basement rocks of the Singis window. Four samples from this unit yielded ages which

range from 421-431 Ma. Sample 85-Cl came from the north side of the central Singis

window from a muscovite-bearing, S-C granite mylonite. The release spectrum for this

sample gave a plateau age of 430.4±3.4 Ma for three increments totalling 75.4% of the gas,

while an intercept age for a 5 point regression gives an age of 426.4±3.4 Ma. Sample

C16-87M was collected nearly 1 km NW of the southern tip of Lake Jertajaure in the west-

central part of the study area from a muscovite bearing schist just below the contact with the

overlying Seve amphibolites. This sample does not have a well defined plateau but has a

minima which accounts for 23.3% of the gas with an age of 420.7±3.4 Ma, while an

intercept age for the regression of seven points gives 425.1±4.0 Ma. Sample 85-D23 from

a similar unit as the previous sample was collected about 1 km SE of lake Jertajaure. The

release spectra for this sample also does not define a plateau but has a minima at

431.8±0.7 Ma for 21.9% of the gas, while the isotope correlation diagram defines an

intercept age of 432.0±5.5 Ma for a regression through all release points. Sample 85-D19A

is the last sample from the Matert shear zone rocks and is from a few 100 meters NE of the
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previous sample. This sample gives a good plateau age of 431.8±3.9 Ma which accounts

for 71.4% of the total gas released.

Paltavare Shear Zone

Sample 87-Al was collected nearly 2 km east of lake Paikejaurasj in the central part

of the study area from a dark micaceous phyllonitic unit. The release spectrum for this

sample does not form a plateau, but has a minimum which yields an age of 426.8i0.7 Ma.

Previous 40 Ar-3 9 Ar Geochronology

Tilke (1986) obtained 40Ar-39Ar results for 9 hornblendes, 3 muscovites and a

biotite throughout the Efjord-Singis part of the MIT transect. He interpreted his data to fall

within five major phases:

1) 500-440 Ma Finnmarkian retrograde metamorphism.

2) 430-420 Ma Scandian retrograde metamorphism and early thrusting onto the

Baltic Shield.

3) 415-410 Ma imbrication of the upper nappe complex and thrusting onto the

Baltic Shield.

4) 390-385 Ma final thrusting of the upper nappe complex onto the Baltic Shield.

5) 385-355 Ma post-thrusting uplift and cooling.

These results are from a relatively large portion of the transect (90 kim) and therefore are of

a more general nature. The relevant results and interpretations of Tilke (1986) will be

discussed in the interpretation and discussion sections to follow.
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Interpretation of 4 0 Ar-3 9Ar Results

The "art" of interpreting 40Ar-39Ar release spectra has been a subject of much

recent literature (re.McDougall and Harrison, 1988). Within this study there are several

main types of spectra represented including: excellent plateaux, excess profiles, diffusive

loss patterns, and saddle-shaped spectra. The data presented in the prior section support an

interpretation which will be discussed further in this section that two deformational and

metamorphic events occured in this part of the Caledonides.

Finnmarkian Phase

The Finnmarkian (late-Cambrian through Ordovician) event is documented within

rocks of the Seve nappe in the Singis-Nikkaluokta portion of the MIT transect.

Hornblende samples 87-C7 and 87-Cl from the SavotjAkka assemblage give ages of 485

and 495 Ma respectively for Finnmarkian retrograde cooling below the nominal closure

temperature for hornblende (Harrison, 1981) of = 500* C. Muscovite sample 85-F25 also

from the SavotjAkka assemblage gives an age of 450 Ma for retrograde cooling below the

closure temperature for muscovite (Harrison et al., 1985) of =35 0*C. Muscovite sample

87-D1 1 from the Vidja assemblage cooled below 3500 C at 458 Ma. Tilke (1986) reported

muscovite ages of 450 and 448 Ma. for samples T85-4E and T85-13B from within the

same unit. Hornblende sample 87-D8 gives an excellent plateau age of 451 Ma. This

sample is from within the amphibolitic black wall surrounding the Stuor Aurek meta-

gabbro and is interpreted to be the age of a late stage Finnmarkian shear zone which

juxtaposed the Vidja assemblage quartzofeldspathic gneisses with the gabbroic body. It is

clear from these ages that the high grade metamorphism and associated fabrics within the

Seve nappe are older than 490 Ma.. Regionally this is also substantiated by Msrk (1988)

who obtained a Sm-Nd age on an eclogite boudin of 505 Ma.
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Scandian phase

The Scandian phase of deformation variably metamorphosed deformed and

juxtaposed all of the allochthonous nappes and emplaced this complex package onto rocks

of the Baltic shield (Gee, 1975; Dallmeyer and Gee, 1985). Within the study area, all units

were effected by the Scandian phase of deformation. Sample 87-D19 from the Salka unit

of the Kbli nappe gives a maximum age of 424 Ma. Samples 87-D16 and 87-D17 from the

Seve-K6li shear zone give ages of = 430 and 429 Ma. respectively. Four of the six

muscovite samples from the Seve give good Scandian ages of between 425-433 Ma. which

indicate that the majority of the Seve rocks underwent metamorphism with temperatures in

excess of 3500 C during this event. The spectrum of hornblende sample F3-87 shows a

diffusive loss profile with a plateau of 440 Ma. This is interpreted to be a result of partial

Ar loss during the Scandian . Because the other two Seve homblende samples still retain

their Finnmarkian ages the rocks of the Seve probably did not exceed the ~ 500* C closure

temperature for a significant length of time during the Scandian; however, the partially reset

sample indicates the temperature experienced by the previously deformed and

metamorphosed Seve rocks may have been near 500* for a length of time sufficient to cause

some Ar loss. Another possible interpretation is that this sample was involved in a

Scandian dynamic recrystallization event which occured below the hornblende closure

temperature.

All five samples from the Middle Allochthon shear zone give Scandian ages of

between 421-431 Ma. Most of the spectra for these samples have slightly saddle shaped

profiles with minima which indicate the maximum age for the samples. These ages

represent the age of cooling below the muscovite closure temperature and in some cases

may be crystallization ages dating the mylonitization.
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Discussion

The results presented here compliment other recent geochronologic studies within

the northern Scandinavian Caledonides. Msrk et al. (1988) obtained 2 Sm-Nd mineral

whole-rock isochrons from eclogites within the Tsakkok and Vaimok lenses (Zachrisson

and Stephens, 1984) of the Seve Nappe in southern Norrbotten approximately 150 km

south of the present study area. The ages of these eclogites are 505±18 Ma. and 503±14

Ma. Also in Norrbotten, Dallmeyer and Gee (1986) obtained a 40Ar-39Ar homblende age

of 491 Ma. for retrograde amphiboles within eclogites and 2 phengitic muscovite ages of

436 and 444 Ma..The closure temperature for Sm/Nd varies significantly with garnet

composition from 700-480* C (Humphries and Cliff, 1982); therefore, the eclogite ages

reported by Msrk are reasonably interpreted as cooling ages from peak Finnmarkian

metamorphism or as crystallization ages. The data from the Singis-Nikkaluokta transect for

the older tectonothermal event give hornblende cooling ages of 485-495 Ma. and muscovite

cooling ages of 451-458 Ma. For closure temperatures of 500* and 350* C for hornblende

and muscovite respectively give cooling rates of between 3.3-5.6* C / Ma.

The Scandian ages recorded for samples within the K61i, Seve-K6li shear zone,

Seve, and the Middle Allochthon mylonites all overlap and fall within the range 421-431

Ma. This suggests that all of these units were juxtaposed while the temperatures were

above the blocking temperature for Ar retention of muscovite. Fortunately the structural

relationships discussed in chapter 2 allow for an understanding of the relative timing of the

deformation and metamorphism of the different tectonic units within the area. The

stratigraphic relationships discussed in chapter 1 indicate that the Salka Group of the lower

K6li nappe may be correlated with equivalent rocks = 300 km to the south in the

Bjorkvattnet area (Stephens, pers. comm.; Stephens, 1982) which contain fossils and have

a late Ordovician to early Silurian age, thus constraining the age of metamorphism and

deformation for the lower Koli into a narrow (as little as a few to 8 million years) time
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period. The younger events discussed by Tilke (1986) are not recorded in the mapped area

and may be absent from this region because the rocks were in a more eastern or shallower

part of the Scandian nappe wedge and therefore cooled earlier than rocks further west.

Conclusions

The results of a detailed 40Ar-39Ar geochronologic study of rocks from the Singis-

Nikkaluokta region of the northern Scandinavian Caledonides indicate:

1) The high grade metamorphism and associated deformation of the Seve units

was a late Cambrian to early Ordovician event (Finnmarkian) in which the

rocks cooled below the respective closure temperatures for hornblende at

490 Ma and muscovite at ~ 454 Ma.

2) Assuming a simple linear cooling model a cooling rate of 3-6* C/Ma. was

obtained for the older tectonothermal event.

3) There is evidence for a late stage Finnmarkian (450 Ma.) relatively high grade

shear zone separating the Vidja Assemblage and the Stuor Aurek meta-

gabbros.

4) The Scandian phase of deformation and metamorphism partially reset some of

the Seve hornblendes and a majority of the muscovites which indicate that the

rocks effected by the Finnmarkian event felt a second tectonothermal pulse of

more than 350* C beginning at = 430 Ma.
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5) During the Scandian event all of the far travelled allochthonous tectonic units

were juxtaposed and the Middle Allochthon mylonites were formed as these

nappes were emplaced above the Baltic Shield. The tectonic units of the

Singis-Nikkaluokta transect were assembled prior to regional cooling through

the closure temperature of muscovite. No evidence obtained from the rocks

of the Singis-Nikkaluokta region corroborate the younger tectonic events

discussed by Tilke (1986) having occurred for the rocks of this region.
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Appendix 6:1

Heating Schedules
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40AR/
39AR

37AR/ 36AR/
39AR 39AR

C1-87H J=.004083

758.3
443.3
242.42
140.91
88.66
82.71
81.26
80.36
80.7
80.89
81.42
80.5
79.46

508±9.2

3.004
3.1064
2.774
3.6717
4.8059
5.1983
5.5827
5.8053
5.8894
5.8793
5.8898
5.9126
5.9624

0.7992
0.4706
0.1849
0.0962
0.0236
0.0196
0.0098
0.0067
0.0058
0.0063
0.0053
0.0037
0.0039

40AR/ 37AR/ 36AR/
39AR 39AR 39AR

B7-87H J=.004076

729.41
482.05
377.01
247.86
154
108.99
90.97
83.65
80.45
78.98
77.91
77.9
78.95
78.04

6.0801
7.2524
5.157
3.3644
3.4118
3.8095
4.0764
4.1584
4.1611
4.1573
4.135
4.097
3.9985
3.7519

0.5891
0.4877
0.3684
0.2212
0.0944
0.0404
0.016
0.0101
0.0085
0.0066
0.0072
0.0088
0.0122
0.0131

87-Cl

MO.ES
39AR

(E-14)

0.8
0.8
1
1.1
2.4
4.4
7.6
15.8
16.1
18.6
17.6
22.3
103.9

212.6

87-C7

MO.ES
39AR

(E-14)

0.5
0.6
0.8
1.2
2.7
6.9
14.6
27.6
44.9
53.7
49
39.8
22.3
34.2

298.7

39AR %40AR K /
%TOTAL RAD Ok

0.4
0.4
0.5
0.5
1.1
2.1
3.6
7.5
7.6
8.8
8.3
10.5
48.9

100

68.9
68.7
77.5
80
92.5
93.4
96.9
98
98.4
98.2
98.6
99.2
99.1

0.1627
0.1574
0.1763
0.1331
0.1016
0.0939
0.0874
0.084
0.0828
0.083
0.0828
0.0825
0.0818

39AR %40AR K/
%TOTAL RAD 0k

0.2
0.2
0.3
0.4
0.9
2.3
4.9
9.2
15
18
16.4
13.3
7.5
11.5

100

76.2
70.2
71.2
73.7
82
89.3
95.1
96.8
97.2
97.9
97.6
97
95.8
95.4

0.0802
0.0672
0.0946
0.1453
0.1433
0.1283
0.1198
0.1175
0.1174
0.1175
0.1181
0.1192
0.1222
0.1302

140

TEMP
C

APPARENTAGi
MA

2062.8±23.6
1459.7±51.0
1029.1±29.5
684.7±24.7
522.7±13.4
496.5±9.1
504.8±3.5
505.0±2.0
508.5±1.8
508.8±3.1
513.4±2.2
510.9±1.2
504.9t.8

800
850
900
945
985
1025
1065
1100
1135
1165
1195
1235
1430

TOTAL
PLAT AGE

TEMP
C

520.12

635
730
800
850
900
945
985
1025
1070
1115
1155
1195
1235
1430

TOTAL

APPARENTAGE
MA

2140.6±107.6
1569.7±53.9
1337.4±125.5
1006.1±20.4
751±13.5
604.1±12.2
546.4±2.2
515.7±2.1
500.7±1.9
495.5±1.5
488.6±1.5
485.8±1.4
486±2
479.2±1.7

509.57



86-16D

TEMP
C

40AR/
39AR

16D-86H J=.004090

730
850
900
945
985
1025
1070
1115
1155
1195
1235
1430

TOTAL

2081.88
1207.95
175.49
114.72
121.02
103.23
95.64
95.63
95.08
95
97.88
90.84

6.4604
9.6237
16.5556
16.7142
16.9824
16.9517
16.7588
16.6703
16.7024
16.76
16.3654
12.2963

1.891
1.1794
0.1423
0.0542
0.0862
0.0466
0.0215
0.0232
0.0237
0.0312
0.0327
0.0225

37AR/
39AR

36AR/ MOLES
39AR 39AR

39AR %40AR K/
%TOTAL RAD 04

(E-14)

0.2
0.3
1.8
3.9
3.8
7.4
16
12.5
12.3
10.2
9.3
11.2

88.9

0.2
0.4
2
4.4
4.3
8.3
18
14.1
13.8
11.4
10.5
12.6

100

73.2
71.2
76.7
87.1
80
87.9
94.7
94.1
93.9
91.6
91.4
93.7

0.0755
0.0505
0.0292
0.0289
0.0285
0.0285
0.0289
0.029
0.029
0.0289
0.0296
0.0395

40AR/
39AR

37AR/ 36AR/
39AR 39AR

D8-87H J=.004083

442.24
253.11
98.71
74.69
72.08
71.13
70.8
70.78
70.7
69.85
70.48

3.279
3.7187
4.0512
4.3966
4.3263
4.344
4.363
4.327
4.3421
4.304
4.2914

1.0123
0.506
0.0749
0.0153
0.0066
0.0035
0.0062
0.005
0.0048
0.0041
0.0041

87-D8

MOLES
39AR

(E-14)

0.9
1
3.2
10.4
15.5
18.4
23.7
25.9
33.2
104 5
61.2

297.8

39AR %40AR K/
%TOTAL RAD 0k

0.3
0.3
1.1
3.5
5.2
6.2
8
8.7
11.1
35.1
20.5

100

32.4
41
77.9
94.4
97.7
99
97.8
98.3
98.4
98.7
98.7

0.1491
0.1314
0.1206
0.1111
0.1129
0.1124
0.1119
0.1129
0.1125
0.1135
0.1138

451.3±5 6
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APPARENTAGE
MA

3576.8±749.7
2730.8±165.5
799.6±25.5
625.0±5.6
608.4±12.7
575.5±28.9
574.5±2.4
571.6±4.9
567.8±3.0
555.4±7.9
568.3±4.0
543.0±5.7

587.83

TEMP
C

830
900
965
1025
1070
1115
1155
1190
1220
1280
1430

TOTAL
PLAT AGE

APPARENTAGE
MA

832.7±61.7
639.1±73.2
493.7±5.9
457.5±3.7
457.2±2.0
457.1±2.8
450.6±2.8
452.5±2.1
452.4±.9
448.6±1
452.3±.9

453.86



40AR/
39AR

37AR/
39AR

F3-87H J..004083

964.41
463.45
118.24
82.63
65.46
72.11
73.46
73.12
73.68
71.78
71.32
75.24

5.6063
6.4663
6.0226
7.3436
10.4965
11.7473
11.3913
11.4264
11.4532
11.396
11.3265
11.3592

36AR/
39AR

2.6588
1.3513
0.1598
0.1146
0.0621
0.0475
0.0293
0.0187
0.0237
0.0189
0.0171
0.0306

439.9±2.8

40AR/
39AR

37AR/ 36AR/
39AR 39AR

D26-86H J=.004090

592.45
314.77
122.89
99.88
95.09
92.15
92.14
91.98
90.59
89.94
89.8
88.54

1.863
1.713
2.154
2.805
3.4644
3.7616
4.6528
5.5944
6.5032
6.4827
6.0742
7 194

0.6202
0.2741
0.0432
0.0306
0 023
0.0234
0.0181
0.0062
0.0067
0.0052
0.0066
0.0049

87-F3

MOLES
39AR

(E-14)

0.2
0.4
0.2
0.4
0.5
1.2
5.6
12.5
16.1
24
29.1
20.6

110.9

86-D26

MOLES
39AR

(E-14)

1.4
2.3
1.2
1.6
2.1
2.6
3.2
5.4
13.1
12.9
10.1
52.8

108.7
559.5±9.8

39AR %40AR K /
%TOTAL RAD 0k

0.2
0.3
0.2
0.3
0.4
1.1
5
11.3
14.5
21.7
26.3
18.6

100

18.6
13.9
60.4
59.7
73.1
81.7
89.3
93.6
91.6
93.4
94.1
89.1

0.087
0.0754
0.081
0.0664
0.0463
0.0413
0.0426
0.0425
0.0424
0.0426
0.0429
0.0428

39AR %40AR K/
%TOTAL RAD CA

1.3
2.1
1.1
1.5
2
2.4
3
4.9
12.1
11.9
9.3
48.6

100

69.1
74.3
89.7
91 1
93.1
92.8
94.5
98.4
98.3
98.8
98.3
98.9

0.2626
0.2857
0.2271
0.1743
0.1411
0.1299
0.1049
0.0872
0.075
0.0752
0.0803
0.0677

142

TEMP
C

APPARENTAGE
MA

993.5±834.4
424. 1±323.3
463.6±153.0
332.5±79.8
324.4±39.2
392.1±17.0
431.6±11.9
447.9±3.1
442.6±1.7
439.7±1.8
440.2±1.7
439.7t2.9

730
800
900
945
985
1025
1070
1115
1155
1195
1235
1430

TOTAL
PLAT AGE

TEMP
C

440.63

830
900
965
1025
1070
1115
1155
1190
1220
1250
1280
1430

TOTAL
PLAT AGE

APPARENTAGE
MA

1776.0±49.2
1212.0±17.6
672.4±24.4
572.0±16.1
558.6±12.9
542.3±13.4
551.4±10.5
570.4±2.8
562.8±3.6
561.7±3.3
558.3±2.9
555.0±1.9

588.29



87-B10

TEMP
C

40AR/
39AR

BIO-87M J=.004230

730
840
910
975
1055
1135
1235
1430

TOTAL
PLATAGE

TEMP
C

97.99
77.72
71.89
67.82
65.26
65.27
64.89
65.51

37AR/
39AR

0.0815
0.01
0.0125
0.0101
0.0106
0.0078
0.0063
0.014

36AR/
39AR

0.1342
0.0309
0.0114
0.0062
0.0035
0.0034
0.0021
0.0029

433.5±2.4

40AR/
39AR

C1-85M J=.006060

905
930
975
1000
1025
1050
1180

TOTAL
PLATAGE

49.75
45.34
45.22
45.78
46.94
52.78
97.37

37AR/
39AR

0.0235
0.0107
0.0039
0.0479
0.0348
0.2435
3.085

36AR/
39AR

0.0127
0.003
0.0026
0.0041
0.0048
0.0025
0.0388

MOLES
39AR

(E-14)

3
10.7
23
43.4
101.8
94.9
126.3
110.7

513.9

85-cl

MCLES
39AR

(E - 14)

47.8
153.6
102.9
95
47.5
15.4
4

466.3
430.4±3.4

39AR %40AR K/
%TOTAL RAD ok

0.6
2.1
4.5
8.5
19.8
18.5
24.6
21.5

100

59.5
88.2
95.3
97.2
98.3
98.4
99
98.6

6.009
48.9996
39.1058
48.3708
46.226
62.925
77.6911
35.0247

39AR %40AR K/
%TOTAL RAD O

10.3
32.9
22.1
20.4
10.2
3.3
0.9

100

92.4
97 9
98.2
97.3
96 9
98.5
88.4

20.851
45.901
126.943
10.229
14.08
2.012
0.158

TEMP
C

40AR/
39AR

28A-86M J=.004157

730
840
910
975
1055
1135
1235
1430

TOTAL
PLATAGE

87.98
69.22
64.98
64.78
64.22
64.28
64.8
66.01

37AR/
39AR

0.01
0.0055
0.0051
0.0107
0.007
0.0071
0.0063
0.018

36AR/
39AR

0.0674
0.0113
0.0019
0.0016
0.001
0.0007
0.0006
0.003

86-28A

MO.ES
39AR

(E-14)

7.6
30.9
144
130.1
158.2
138.9
87.6
91

788.4

39AR %40AR K/
%TOTAL RAD Ok

1
3.9
18.3
16.5
20.1
17 6
11.1
11.5

100

77.3
95.1
99.1
99.2
99.5
99.6
99.7
98.6

48.9996
88.6714
96.6275
45.8369
70.2505
68.7831
77.5804
27.2521

425.4±3.4

143

APPARENTAGE
MA

397.710.8
459.3±4.8
459.0±1.5
443.8±1.0
433.3±1.2
433.5±1.1
433.5t.7
436.0t.7

436.36

APPARENTAGE
MA

443.3±4.8
429.9±4.0
430.1±4.0
431.1±4.3
439.2±4.8
494.4±5.5
759.0±12.4

437.51

APPARENTAGE
MA

449.4±5.8
436.6±1.9
427.8±1.2
427.2±1.6
425.0±1.1
425.9±0.8
429.1±0.8
432.0±1.1

427.98



87-C16

TEMP
C

40AR/
39AR

C16-87M J=.004199

730
840
910
975
1055
1135
1235
1430

TOTAL

81.23
66.69
64.64
63.87
63.15
64.16
64.13
69.94

37AR/
39AR

0.003
0.0087
0.0083
0.006
0.0053
0.0129
0.0186
0.0376

36AR/ MC.ES
39AR 39AR

0.0609
0.0092
0.0034
0.0023
0.0019
0.0024
0.0018
0.0196

(E-14)

7.6
57
81
133.7
173.6
108.7
126
56.3

743.9

39AR %40AR K /
%TOTAL RAD OA

1
7.7
10.9
18
23.3
14.6
16.9
7.6

100

77.8
95.9
98.4
98.9
99.1
98.8
99.1
91.7

163.333
56.4447
59.207
81.422
92.7149
37.9547
26.3296
13.035

87-D11

TEMP
C

40AR/
39AR

011-87M J=.004162

730
840
910
975
1055
1135
1235
1430

TOTAL
PLATAGE

TEMP
C

111.24
85.2
87.99
87.34
75.28
70.33
69.95
71.66

37AR/
39AR

0.1485
0.0638
0.1057
0.0467
0.0475
0.0348
0.0386
0.3354

36AR/
39AR

0.202
0.0471
0.0096
0.004
0.0034
0.0026
0.0019
0.0016

MC.ES
39AR

(E-14)

2.6
2.5
4.8
12.7
41.4
115.2
123.5
141.4

444.1

39AR %40AR K/
%TOTAL RAD Ok

0.6
0.6
1.1
2.9
9.3
25.9
27.8
31.8

100

46.3
83.6
96.7
98.6
98.6
98.9
99.1
99.3

458.0±3.8

87-D16

40AR/
39AR

87-D16M J=.004217

730
840
910
975
1055
1135
1235
1430

TOTAL

90.45
74.31
67.8
64.56
64.49
64.76
64.73
64.78

37AR/
39AR

0.0402
0.0175
0.0205
0.0081
0.0163
0.0095
0.0027
0.0142

36AR/
39AR

0.077
0.0219
0.0067
0.0022
0.0023
0.0028
0.0011
0.0026

MOLES
39AR

(E-14)

5.1
20.2
36.2
114
118.6
99.9
86.4
77.8

558.3

39AR %40AR K /
%TOTAL RAD 04

0.9
3.6
6.5
20.4
21.2
17.9
15.5
13.9

100

74 8
91.3
97.1
98.9
98.9
98.7
99.5
98.8

144

APPARENTAGE
MA

424.7t8.4
429.1±3.0
427.1t.8
424.4±1.0
420.7±1.5
425.9±1.0
426.8±1.1
430.2±1.1

425.25

APPARENTAGE
MA

350.5±46.7
468.5±22.7
547.1±5.1
552.7±1.7
485.8±1.4
458.6±0.8
457.5±0.9
468.2±1.0

3.2993
7.6775
4.6354
10.4989
10.3154
14.0882
12.6939
1.4606

466.96

APPARENTAGE
MA

452.9±9.0
453.8±9.5
441.8±1.3
430.3±0.9
429.7±1.1
430.4±1.0
433.4±1.3
431.0±1.2

12.1887
27.9996
23.9021
60.5233
30.0628
51.8076
181.0118
34.6286

432.56



87-D 17

40AR/ 37AR/ 36AR/
39AR 39AR 39AR

Jm.004212

98.66
75.55
64.88
64.24
65.19
65.82
65.27
68.52

0.0122
0.0052
0.0069
0.0072
0.006
0.0083
0.0068
0.0132

0.1029
0.0155
0.0023
0.0017
0.0019
0.0036
0.0034
0.0136

MOLES 39AR %40AR K/
39AR %TOTAL RAD o4

(E-14)

19.4
18.2
129.6
148.1
81.7
50.2
24.7
89

560.9

3.5
3.2
23.1
26.4
14.6
9
4.4
15.9

69.2
939
93.9
98.9
99.2
99.1
98.3
98.4

40.0978
94.0748
71.4803
68.2448
81.6663
59.1941
72.5707
37.1377

100 94.1

85-D19A

TEMP
C

40AR/
39AR

D19A85M J..006112

880
930
975
1000
1025
1050
1075
1180

TOTAL
PLATAGE

47.75
45.58
44.91
44.69
45.36
46.42
67.25
67.03

37AR/
39AR

0.0767
0.025
0.0489
0.037
0.0357
0.1437
0.75
1.665

36AR/
39AR

0.0106
0.0041
0.0022
0.0017
0.0022
0.0012
0.0518
0.0049

MES
39AR

(E-14)

34
100.5
56.3
115
55.9
13.7
3.9
1.7

39AR %40AR K/
%TOTAL RAD ok

8.9
26.4
14.8
30.2
14.7
3.6
1
0.5

93.3
97.3
98.5
98.8
98.5
99.2
77.3
98

381 100
431.8±3.9

40AR/
39AR

37AR/ 36AR/
39AR 39AR

87019M J..004229

100.23
74.68
75.87
87.86
72.92
72.2
73.93
80.3

0.0932
0.0271
0.0206
0.0166
0.0837
0.0109
0.0169
0.1294

0.1464
0.0355
0.0414
0.083
0.0348
0.0295
0.0348
0.0559

87-019

MC.S
39AR

(E-14)

3.8
17.7
61.6
82.9
128.9
62.5
59.6
123.2

540.1

39AR %40AR K /
%TOTAL RAD 0k

0.7
3.3
11.4
15.3
23.9
11.6
11
22.8

100

56.8
85.9
83.8
72.1
85.9
87.9
86
79.4

5.2555
18.0675
23.7399
29.4645
5.8567
44.9331
28.9594
3.7863

145

TEMP
C

D1787M

730
840
945
1015
1090
1160
1275
1430

TOTAL

APPARENTAGE
MA

455.7t3.6
471.5±1.8
431.7±1.1
428.8±1.0
434.1±1.0
434.9±0.9
432.1±0.9
433.5±1.1

433.98

6.3865
19.5996
10.0221
13.2465
13.7082
3.4095
0.653
0.2939

APPARENTAGE
MA

434.6±3.3
432.7±1.2
431.8±2.3
431.0±0.9
435.5±1.6
447.4±2.4
497.9±1 5.2
609.5±8.3

434.61

TEMP
C

730
840
945
1015
1090
1160
1240
1430

TOTAL

APPARENTAGE
MA

389.2±5.8
433.0±2.8
429.7±2.5
428.0±1.0
423.8±1.5
428.9±1.2
429.8±1.1
430.7±1.0

428.01



TEMP
C

40AR/ 37AR/ 36AR/
39AR 39AR 39AR

200-86M J..004231

730
840
910
975
1055
1135
1235
1430

TOTAL

TEMP
C

76.92
67.91
65.5
64.91
64.15
64.02
63.72
64.65

0.0294
0.0308
0.02761
0.0152
0.0111
0.0087
0.008
0.0318

0.0522
0.0097
0.0032
0.0026
0.0017
0.0015
0.0014
0.0017

96-200

MCUES
39AR

(E-14)

7.3
21.3
49.3
66.8
129
134.9
153.8
81.7

39AR %40AR K/
%TOTAL RAD Ok

1.1
3.3
7.7
10.4
20
20.9
23.9
12.7

644.1

40AR/
39AR

37AR/ 36AR/
39AR 39AR

85023M J=.0042116

730
840
910
975
1055
1135
1235
1430

TOTAL
PLATAGE

86.75
72.77
67.96
65.52
65.24
65.31
64.85
66.46

0.01
0.0452
0.0023
0.0067
0.01
0.01
0.01
0.025

0.0662
0.0185
0.0064
0.0026
0.0023
0.0023
0.0021
0.0057

85-D23

MOLES
39AR

(E -14)

16.7
23.9
89
103.1
91.6
111.4
68.2

508.9
434.2±3.3

39AR %40AR K /
%TOTAL RAD O

1
3.3
4.7
17.5
20.3
18
21.9
13.4

100

TEMP
C

40AR/
39AR

F25-85M J=.004151

730
840
910
975
1055
1135
1235
1430

TOTAL
PLAT AGE

88.28
79.67
71.3
69.19
68.94
70.93
69.8
70.9

37AR/
39AR

0.0159
0.0281
0.029
0.0164
0.0154
0.0358
0.0187
0.0276

36AR/
39AR

0.0306
0.0098
0.0035
0.0022
0.0018
0.0021
0.0015
0.003

85-F25

MOLES
39AR

(E-14)

6.6
23.8
76.6
96.2
100.6
79.1
103.8
59.4

546.1

39AR %40AR K/
%TOTTAL RAD 04

1.2
4.4
14
176
18.4
14.5
19
10.9

100

89.7
96.3
98.5
99
99.2
99.1
99.3
98.7

30.7592
17 4374
16.8787
29.8777
31.8385
13.6944
26.2169
17.7276

451.1±3.4

146

79.9
95.7
98.8
98.8
99.2
99.2
99.3
99.2

16.655
15.8984
17.71
32.2577
44.1438
56.4317
61.1045
15.3988

APPARENTAGE
MA

417.0±7.4
438.4t2.0
437.5t2.5
433.0±1.0
430.0±0.7
429.5±0.7
428.0±0.7
432.9±0.9

430.8

APPARENTAGE
MA

449.3±9.6
450.0±2.0
442.6±1.9
434.8±0.8
433.7±1.0
434.1±0.7
431.8±0.7
434.9±1.1

77.4
92.4
97.1
98.8
98.9
98.9
99
97.4

48.9996
10.8403
216.8138
73.134
48.9996
48.9996
48.9996
19.6389

434.82

APPARENTAGE
MA

512.8±10.9
499.0±2.0
461.5±1.0
451.5±1.5
450.7±1.4
461.7±1.1
456.2±1.1
460.0±1.7

458.89



Appendix 6:2

Release Spectra
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Appendix 6:3

Isotope Correlation Diagrams
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Chapter 7

Conclusions

The purpose of this study has been both to complete the MIT geologic transect of

the Scandinavian Caledonides through to the present day erosional front, and to apply an

integrated multidisciplinary approach to better constrain the complex geologic history of the

continent-continent collision which produced the orogen. In this chapter the results and

conclusions presented in the previous chapters will be briefly reviewed, followed by a

discussion of the tectonic history of the Singis-Nikkaluokta region. Constraints provided

by this study will then be examined and incorporated into new models and those proposed

by previous workers.

Tectonostratigraphy

The general tectonostratigraphy of the Singis-Nikkaluokta region consists of: 1)

autochthonous-parautochthonous Precambrian crystalline basement and its sedimentary

cover; 2) the Middle Allochthon shear zone which consists of a heterogeneous tectonic

assemblage of variably mylonitized sedimentary and crystalline rocks of the Baltic Shield;

and 3) The Upper Allochthon, which in the Singis-Nikkaluokta region is comprised of the

Seve and structurally overlying Koli Nappe sequences.

The sedimentary cover rocks overlying the Precambrian basement in both the

foreland and within tectonic windows through the Caledonides may be correlated

throughout the Norrbotten Caledonides with the Vendian-Cambrian aged Group sediments

(Thelander, 1982). The Middle Allochthon is present throughout the Scandinavian

Caledonides and represents the shear zone formed between Baltica and the overlying

Allochthonous Nappes. The Seve Nappe. in the Singis-Nikkaluokta region has been

correlated with the Vaimok lens described by Zachrisson and Stephens (1984), on the basis
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of 1) regional tectonostratigraphic position in both areas below units containing sheeted

dikes, and 2) the occurrence in both units of eclogites. Evidence, discussed in detail

within the tectonostratigraphy chapter, indicates that parts of the Seve Nappe represent the

outermost portions of the Baltoscandian Margin. Structurally overlying the Seve Nappe in

the study area are the greenschist grade psammitic gneisses of the Salka Group of the

Lower K6li Nappe. The Salka Group may be correlated with the Lower K6li in the central

to northern Scandinavian Caledonides (Stephens, pers. comm; Stephens and Gee, 1989).

Stephens and Gee (1985) group these Lower K6li rocks into the Virisen terrane which

contain volcanic, and high level intrusive rocks (ca. 490 Ma, Claesson et al, 1983) that are

thought to be related to ensimatic rifted-arc development. The Virisen terrane includes

Early Llanvirn age (478-468 Ma) fossils of both North American and Baltoscandian

affinities that are present within detrital serpentinites. The volcano-sedimentary sequence is

overlain by turbidites and conglomerates whose detritus indicates erosion from a

continental margin with local influx of material from a mafic volcanic and ultramafic

source. These rocks regress upwards into shallow marine quartzites and limestones which

contain Ashgillian brachiopods and corals similar to those on the Baltoscandian Platform

(Stephens and Gee, 1989). Models proposed by Dallmeyer and Gee (1986) and discussed

in Stephens and Gee (1985, 1989) associate the Early Ordovician arc volcanism of the

Virisen terrane with possible subduction of the outer margin of Baltica during arc-continent

collision; however at present there is no geologic evidence relating the Virisen Complex to

the Baltoscandian Margin during the Early Ordovician. There is evidence based on the

nature of post-arc clastic material and on the occurrence of typical Baltoscandian platformal

faunal assemblages, of proximity of the Virisen complex with Baltica during the Middle

Ordovician (Stephens and Gee, 1989).
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Structure

The structural history of the Singis-Nikkaluokta region has been subdivided into

eight deformational events (Fig. 7-1, Table 3-1). The first two events are associated

respectively with the eclogite grade and upper-amphibolite grade metamorphic events

evidenced within the Seve. D2 kinematic indicators are consistent with S60E transport

within the Seve Nappe. The third deformation is associated with the post-Ashgillian

metamorphism of the Lower K61i Nappe. Juxtaposition of the K6li and Seve Nappes

along the Rusjka Fault zone produced D4 fabrics. The emplacement of the Upper

Allochthon onto the Baltic shield produced D5, D6, and D7. D5 kinematic indicators; such

as asymmetric augen, S-C fabrics, oriented quartz C-axis, and mineral lineations, within

the Middle Allochthon granite mylonites are consistant with S60E shearing. The final

deformation (D8) is associated with late, west-vergent motion along the Seve-K6li contact.

Metamorphism

Evidence for two major tectonothermal events are exhibited by the rocks of the

Singis-Nikkaluokta region. The earliest event (Finnmarkian) affected the rocks of the Seve

Nappe. The conditions of metamorphism experienced by the Seve Nappe during the

Finnmarkian were obtained by rim thermobarometry performed on the Paltavare and Vidja

Assemblages of the Seve Nappe. Pressure-temperature conditions of the Paltavare

Assemblage range from 8.9-13.6 kb and 571-766* C, while the Vidja Assemblage yields a

pressure and temperature of 7.3±1.7 kb and 616*±600 C. These results are among the first

quantitative results for non-eclogitized portions of the Seve, and thus provide important

new constraints for the Finnmarkian tectonic evolution. The second event, termed the

Scandian, was responsible for: 1) metamorphism in the K6li Nappe; 2) juxtaposition of

the Seve and K6li Nappe with concomittant retrogression of the Seve; and 3) emplacement
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of the Seve-Koli Complex onto the Baltic Shield with associated development of the Middle

Allochthon shear zone. Metamorphic conditions exhibited during the Scandian were

Greenschist Facies for the Lower K6li and retrogressed portions of the Seve Nappe, and a

very low grade development of a weak schistosity in the sedimentary rocks of the Singis

window and foreland.

40Ar/39Ar Geochronology

Results of a detailed 40Ar/39Ar geochronologic study of the Singis-Nikkaluokta

region indicate: 1) High grade metamorphism and associated deformation of the Seve

was a Late Cambrian to Early Ordovician event (Finnmarkian) in which rocks cooled below

the closure temperatures of hornblende and muscovite at - 490 and 454 Ma respectively; 2)

A simple linear cooling model gives a cooling rate of 3-6* C/Ma for the older tectonothermal

event; 3) a hornblende plateau of 450 Ma provides evidence for a late stage, intra-Seve

shear zone between the Vidja and Aurek Assemblages; 4) The Scandian phase of

deformation partially reset some hornblendes and most of the muscovites from the Seve,

indicating that the rocks originally metamorphosed during the Finnmarkian were affected

by a second tectonothermal pulse in excess of 350* at - 430 Ma; and 5) it is likely that the

tectonic units of the Singis-Nikkaluokta transect were assembled prior to regional cooling

through the closure temperature of muscovite, because all tectonostratigraphic elements

sampled give overlapping Scandian ages.

Integrated Geologic History

The results presented previously can be integrated to constrain the tectonic history

of the Singis-Nikkaluokta region. Figure 7-1 visually represents the relationships between

deformational and thermal events in the tectonostratigraphic elements of the area. Rocks of
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Figure 7:1 Tectonothermal History of the Singis-Nikkaluokta Area
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the study area have been affected by two major tectonothermal events. The earliest event

termed the Finnmarkian phase is associated with deformation and metamorphism of the

Seve Nappe. The younger event (Scandian Phase) was experienced by all

tectonostratigraphic elements in the study area, and resulted in the emplacement of the

Upper Allochthon onto rocks of the Baltic Shield.

Portions of the Seve Nappe are interpreted to represent the Late Precambrian

outermost portion of Baltica (Gee, 1975). Svenningsen (1989) obtained a Sm/Nd

crystallization age of ca. 605 Ma for dolerite dyke rocks of the SarektjAkka Nappe,

approximately 100 km south of the study area, which have a rift related chemistry and are

associated with the development of Iapetus. The oldest deformational event (Dl) observed

within the study area includes the development of a weak foliation produced during eclogite

grade metamorphism of the Aurek Assemblage in the Seve Nappe. Temperature and

pressure conditions of 7300 C and >12 kb for the eclogite metamorphism in the study area

were obtained by Tilke (1986). These conditions are consistent with the pressures and

temperatures obtained for other Seve eclogites throughout the Scandinavian Caledonides

(eg. Santallier, in press, 1985; van Roermund, 1985, 1989). A Sm/Nd age of 505 ±18

Ma was obtained for Seve eclogite metamorphism from the Tsakkok lens in the southern

Norrbotten Caledonides (Mork, 1988). The second deformation in the study area also

occurs only within the Seve Nappe. D2 deformation is associated with high grade

metamorphism, the development of intrafolial isoclinal folds with a well developed axial

planar (N1O-304E 25* W) foliation with axes whose trend is -N50-60*W (parallel to the

infered transport direction), and mineral and intersection lineations parallel to the fold axis

direction. Rim thermobarometry constrains the pressures and temperatures of the

Savopakte Assemblage of the Seve Nappe to range from 8.9-13.6 kb and 571-766' C.

Timing constraints for the Seve metamorphism are provided by 40Ar/ 39A r

geothermochronology, which indicate that hornblendes from the garnet-amphibolites

cooled below the 500* C closure temperature for Ar retention at -490 Ma and muscovites
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cooled below their Ar retention temperature of 3500 C at between 450-460 Ma. These ages

coincide with the results of other 40Ar/39Ar studies of the Seve from the Scandinavian

Caledonides (Dallmeyer 1985; Dallmeyer and Gee, 1986). The ages presented in this

study are also consistent with an interpretation of Finnmarkian cooling from the 505 Ma

formation of Seve eclogites.

Interesting insights into the Finnmarkian history of the Scandinavian Caledonides

are provided by combining geochronologic and thermobarometric results obtained from the

Seve. The Seve cooled the 1504 C difference in Ar retention temperatures of hornblende

and muscovite within approximately 30-50 Ma, this corresponds to a simple linear cooling

rate of 3-5* C/Ma. This cooling rate is consistent with cooling during slow uplift. An

important problem in deciphering the Finnmarkian geologic history is; what were, and what

happened to the 30-40 km of rock that were overlying the high pressure rocks of the Seve?

Thermobarometry indicates that portions of the Seve Nappe (marginal Baltica) were buried

at depths of 30-45 km before 490 Ma. If it is assumed that by 440-450 Ma when the

majority of the Seve rocks, both within the study area and throughout the Scandinavian

Caledonides, cooled below 350* C that there was a typical geothermal gradient of ~ 15-20*

C/km, then this temperature corresponds to a depth of -17-23 km. Therefore from 490 to

440 Ma there was uplift of at most 15-20 km. This corresponds to an uplift rate on the

order of .4 mm/yr. It is important to note that this simple model does not equate cooling

rate with uplift rate; it simply assumes that after 30-50 Ma any thermal perturbation

associated with Finnmarkian thrusting would have relaxed and a typical geotherm may be

expected. In order to more realistically model the uplift path for the Seve, the method

developed by Royden and Hodges (1984) was utilized. In this technique the complete

uplift trajectory can be calculated by knowing the temperatures and pressures for a few

points along the the uplift path. Three points from the P-T trend obtained for the Savopakte

Assemblage (Fig. 4-3) were used in the model. In order to use the Royden and Hodges

technique the P-T points used in the model must correspond to points along a segment of
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the uplift path. The trend established by the Savopakte Assemblage P-T points is thought

to represent retrograde reequilibration at different points during Finnmarkian uplift and

cooling; however, as the trend of these points parallels the slope of the Kd line for the

geobarometer the possibility that the trend is an artifact of the different closure temperatures

of the geothermometer and geobarometer can not be precluded. Figure 7-2 shows the

maximum and minimum uplift paths obtained from the Royden and Hodges model for the

data from the Savopakte Assemblage. This uplift path may be used in combination with the

40Ar/39Ar geochronologic data obtained for the Seve which yielded cooling ages for 5000 C

and 3500 C of 490 Ma and 440-450 Ma respectively to obtain cooling rates of .21-.26

mm/yr. While not precluding uplift due to tectonic denudation, this magnitude of uplift

may easily be accounted for solely by erosion. Evidence for erosion of a Finnmarkian

thickened crust include (Stephens and Gee, 1989): 1) the Middle Ordovician influx of

detritus from a continental margin found in the Virisen Terrane (Lower K3li); which

require, in part, a mafic or ultramafic source area, and 2) the development, beginning in

the Early Ordovician, of a clastic wedge in the foreland basin which has been interpreted to

be related to orogenic activity along the Baltoscandian margin.

The Scandian orogenic phase was responsible for deformations 3 through 8

observed in the study area. The Lower K6li greenschist metamorphism and associated

isoclinal folds, axial planar foliations, and lineations formed during D3. 40Ar/39Ar

geochronolgy (Tilke, 1986; Page, this study) yield muscovite ages which range from 435-

424 Ma. D4 includes juxtaposition of the Koli and Seve Nappes along the Rusjka fault.

Synkinematic garnets preserve sygmoidal inclusion trails which indicate SE directed shear

Tilke (1986) obtained a garnet-biotite temperature of 5250 C for rocks within the Seve-K6li

shear zone. This event was also responsible for retrogression and transposition of the F2

foliation of the Seve Nappe near the contact with the Rusjka fault. D5 includes

emplacement of the Upper Allochthon onto the Autochthon-Parautochthon. During

emplacement the Middle Allochthon was formed by the detachment of thin variably
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mylonitized slivers of Baltic crystallines and sedimentary cover. Kinematic indicators

provided by S-C fabrics, mineral lineations, quartz c-axes, and isoclinal fold axes within

the Middle Allochthon consistently demonstrate S60E transport during D5. 40Ar/39Ar

geochronology yields Middle Allochthon muscovite ages of 431-421 Ma. The overlap in

muscovite ages from different tectonostratigraphic elements probably indicates that these

units were assembled prior to regional cooling below the muscovite closure temperature.

D6 and D7 are represented by late gentle warps along N60W and N30E respectively. D5

was the first event which affected the Autochthonous sediments within the Singis window

and in the foreland. These sedimentary rocks have developed only a slight schistosity at

very low metamorphic grade. The final deformational event (D8) was associated with late

west-vergent motion along the Seve-Koli contact. Tilke (1986) proposed that this motion

may have been the result of normal faulting during gravitational collapse of the Scandian

orogen, however much more work throughout the Scandinavian Caledonides is needed to

confirm or deny this hypothesis. - -

Discussion

The data presented within this study are consistent with the tectonic models

proposed by Dallmeyer and Gee (1986) for the early Caledonian (Finnmarkian) evolution

of the Baltoscandian Margin. In this model (Fig 7-3) the Baltoscandian margin was

subducted westward beneath an inferred volcanic arc (documented by the presence of arc-

related volcanics found within the lower K6li Nappe) beginning in Late Cambrian time.

During the Early Ordovician an accretionary wedge developed and high grade

metamorphism occured within the Seve units. Uplift occured during the Late-Middle

Ordovician and provided a source for the westerly derived turbidites which are preserved

within the foreland and also for the Middle Ordovician turbidites preserved within the

Lower Koli Virisen Terrane. The Scandian event resulted in the complete closure of
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Figure 7-3: Tectonic model for the Baltoscandian margin (Dallmeyer and Gee, 1986).

EARLY CALEDONIAN EVOLUTION OF THE

BALTOSCANDIAN MARGIN

EARLY CAMBRIAN L[QEN
StaOP NSE PLAIFf1N

Late Ordwtnes shal ltI
ad 1saastones In wavt I

A -. Ewg-f-e Ode f t-w-ahe

EARLY ORDOVICIAN _ a ed e, leae,,,,s

VUSSEM Caswll Mail "s~e
"C A(CRIffIVW MON CLASTIC W10SE

U istaAcCreleow pro&

- 3eseve aergla Vads

EDad 60044 s fade Mill"

.. Is.n veiceetes end ha

MID ORDOVICIID 0lew 0Aee in asm it -releed

vowlU Mail Me eesi

LATE ORDOVICIAN

PUo SBMsA cress
ref - staneesn lea scfle

.1 % \I ' - / - 0 e 0k

r scks
VerleCi K614

0



Iapetus with associated emplacement of a complex Nappe package (containing elements of

Laurentian, Baltic and unknown affinities) onto the Baltic Shield. Stephens and Gee

(1989) use the terrane concept (Coney et al., 1980) to better constrain the polyphase

accretionary history of the Scandinavian Caledonides and demonstrate that several terranes

had a complex tectonic history prior to coming into proximity with Baltica during the

Scandian. Within the Singis-Nikkaluokta region the rocks of the Lower Koli are correlated

with the Virisen Terrane; which has been interpreted to be proximal to Baltica during the

Middle Ordovician and contain fossils of Ashgillian age (Stephens and Gee, 1985).

4 0Ar/39Ar geochronology of the study area indicates that the K6li, Seve and Middle

Allochthon, although demonstrating cross cutting structural relationships, yield overlapping

ages of -431-421 Ma, indicating that the units were probably juxtaposed prior to regional

cooling through 3500 C.

This study provides some of the first integrated P-T-t constraints for the evolution

of the Finnmarkian tectonothermal event within the northern Scandinavian Caledonides.

While these constraints are consistent with the models proposed by Dallmeyer and Gee

(1986) and Stephens and Gee (1989) discussed above, the results obtained in this study

provide some additional constraints which need to be considered in future tectonic models.

These constraints include: 1) The metamorphic conditions obtained for the Savopakte

Assemblage of the Seve Nappe record high pressures and high temperatures during the

Finnmarkian. Therefore, tectonic models need to be considered which elevate the

geotherms and account for 40-60 km of overlying material. 2) Constraints provided by

this study indicate that Finnmarkian uplift rates of .2-.4 mm/yr were likely for marginal

Baltica after peak metamorphism. Rates of this magnitude may be accounted for solely by

slow erosion and do not require (but do not preclude) more complex tectonic

interpretations. and 3) The juxtaposition throughout the Seve Nappe of eclogites with

rocks of lower grade indicates these rocks were tectonically juxtaposed during the

Finnmarkian.
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A tectonic model provided by the Late Cenozoic thrust belts of the Apennine (Fig.7-

4), Carpathian, and Hellenic systems of the mediterranean region, may lead to new insights

into the Early Paleozoic evolution of the Scandinavian Caledonides. The tectonic setting

for these systems have developed within convergent systems in which thrusting, associated

with arc-type volcanism, occurred behind a zone of trench retreat (slab rollback); causing

synchronous extension in the overriding plate (Royden, 1988; Royden and Burchfiel,

1989, in press). This model is attractive for the evolution of the Caledonides because it

helps explain several salient points: 1) The overriding plate is a zone of extension allowing

for the elevation of geotherms; therefore explaining the high temperatures at high pressures

recorded within the Seve. 2) Although evidence for arc-related volcanic rocks has been

documented (Stephens and Gee, 1985), there exists no evidence within the Scandinavian

Caledonides of the volcanic arc. The Apennine model while containing arc-type volcanism

in the overlying plate, does not require the presence of a massive volcanic-arc. The arc

region is extended during its development and may be disrupted and spread across a broad

region of extension. 3) Within the Mediterranian systems the extended area is often a zone

of subsidence, thus a topographic high with associated rapid erosion rates are not

necessary. The low (.2-.4 mm/yr) uplift rates obtained in this study may be consistent with

this interpretation.

Clearly further integrated, multidisciplinary studies throughout the Scandinavian

Caledonides are needed to better constrain and to distinguish between the arc-continent

collision versus the Apennine model for the evolution of the Early Paleozoic Finnmarkian

event. However, the new results presented in this study provide new constraints which

require incorporation into tectonic models for the tectonic evolution of the Scandinavian

Caledonides.
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