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Abstract

For the first time, a study of past changes in the sea level based on changes

in the area-age distribution of the oceans is done with the systematic estimation

of the associated uncertainties. The differences in the total volume of the ocean

basins due to differences in the distribution of area with age of the ocean floor,
but assuming a constant area of the ocean basins and a constant volume of ocean

water, should have caused a decrease in the sea level of 30 ± 10 meters since

anomaly 13 time (35.58 Ma) and a decrease of 97 ± 10 meters since anomaly 25
time (58.94 Ma). To deduce this, we analyzed the available datasets of magnetic
anomaly and fracture zone crossings and of the resulting rotation parameters
describing finite reconstructions of the major plates. We improved this dataset
with the digitization of new data and with the calculation of new and consis-
tent rotation parameters. We built isochron maps for the present time and for
reconstructions at the times of anomalies 13 and 25 (35.58 Ma and 58.94 Ma).
The northwards movement of India since its collision with Eurasia is another
major factor in changes in the sea level since about 50 Ma, the approximate
time of the collision.

For the anomaly 13 reconstruction, the change in the volume of the ocean
basins due to the northern motion of India yields a decrease in sea level of
about 42 meters ± 16 meters and for the anomaly 25 reconstruction, we have a
decrease of about 76 meters i 46 meters.

The combination of changes in the sea level due to differences in the area-
age distribution, and sea-level changes caused by the penetration of India into
Eurasia yield a decrease in the sea level of 72 ± 19 meters since the time of
anomaly 13 (35.58 Ma) and a decrease in the sea level of 173 ± 47 meters since
anomaly 25 time (58.94 Ma).

The combination of the changes in sea level due to the previous factors and
the assumption that most of the ice in Antarctica was formed in the past 30 m.
y. gives us predicted decreases in sea level of 143 ± 25 meters since the time of



anomaly 13 (35.58 Ma) and of 244 ± 53 meters since the time of anomaly 25

(58.94 Ma).
Thesis Supervisor: Peter Molnar
Title: Senior Research Associate in Geophysics
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Chapter 1

Introduction

Stratigraphic studies show that many transgressions and regressions identified

along different continental margins are nearly simultaneous and similar in mag-

nitude, indicating global changes in sea level. Because global changes in sea

level reflect changes in tectonic, glacial, and other large scale processes (i.e. the

change in the total volume of sea water), sea-level changes indicate the times of

major events.

A eustatic sea-level change on a global scale may be caused by a change in

the total volume of water in the oceans, by a change in the volume of the ocean

basins, or by a combination of both. The change in the volume of water may be

due to glaciation and deglaciation, or to the production of juvenile water from

magmatic sources or hot springs. Tectonic processes or the filling of the basins

by sediments may cause a change in the volume of the ocean basins.

Among these, only tectonic processes seem to be capable of causing long-

period sea-level changes (Vail et al., 1977). Pitman (1978) considered that

glacial changes and processes such as dessication and flooding of small ocean

basins cause rapid changes in sea level of tens of meters, but variation in the

volume of midocean ridges, related to changes in the rate of seafloor spreading,
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is the mechanism most likely to cause larger and longer lasting changes in sea

level.

Pitman [1978] showed that transgressions and regressions that are syn-

chronous worldwide may be caused by changes in the rates of sea-level rise

or fall. He indicated that the subsidence rate at the seaward edge of a passive

margin platform, due to cooling of the lithosphere, is comparable with the rate

at which sea level rises or falls. So, if there is a fall in the sea level, the shoreline

will stabilize at that point on a margin where the rate of sea-level fall equals

the difference between the rate of subsidence and the rate of sediment infill. If

the rate of sea-level fall decreases, a transgression will occur, and if the rate

of sea-level fall increases, a regression will occur. If there is a rise in the sea

level, the shoreline can stabilize at that point on a margin where the rate of

sea-level rise equals the difference between the sedimentation rate and the rate

of subsidence. Under these conditions, if the rate of sea-level rise increases, a

transgression will happen, and if the rate of sea-level rise decreases, a regres-

sion will occur. Pitman [1978] developed a quantitative relation between the

position of the shoreline and the rates of subsidence, of sea-level change, and

of sedimentation. He constructed a sea-level curve, where sea level is shown to

fall steadily but at varying rates since Late Cretaceous time, due to a decrease

in the volume of ocean ridges, resulting from a decrease in the rates of seafloor

spreading.

The study of global changes in sea level has major applications that are very

important to the oil industry. It is used to improve stratigraphic and struc-

tural analysis incorporating the effects of sea-level changes, in the estimation

of geologic age before the drilling of a site, and in the development of a global

geochronology system.

In regional stratigraphic studies, comparisons of regional sea level curves,

based on the analysis of seismic sequences and regional sea-level changes, with
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global sea-level curves can suggest age of sequences with poor control and can fill

gaps in regional sea-level curves. Such comparisons also help in the prediction

of depositional facies and distribution of sequences. In areas with sparse or

no well control, the sea-level curves can be used to estimate the geologic age of

strata before drilling. In the areas with good subsurface control and well defined

biostratigraphic zones, the seismic sequences can be correlated for accurate age

control. If the subsurface control is poor within the grid, geologic ages can be

inferred by the comparison of a regional chart of relative sea-level changes built

from seismic data, with a global sea-level curve.

A major potential application of a global sea-level curve is in the study of

geochronology (Vail et al., 1977) since global cycles are defined just by the global

change in the relative position of sea level through time. The construction of

accurate regional sea-level charts can be used to improve the global chart.

Finally, differences between the regional sea-level curve and the global curve

may suggest anomalous regional processes such as tectonic subsidence or uplift

(Vail et al., 1977).

The study of sea-level changes is important not only to the petroleum stratig-

raphy but also to the studies of the heat budget of the earth, the force system

on the surface plates, and paleoclimate.

A large portion of the heat loss occurs in young sea floor. Using a thermal

model and subsidence of oceanic ridges, the ridge volume can be related to the

ridge heat flow (Turcotte and Burke, 1978; Parsons, 1982).

Since orogenic events are mainly associated with plate consumption, past

changes in sea level can be indicators of the episodicity of orogeny (Turcotte

and Burke, 1978). Turcotte and Burke [1978] associated high global sea levels

with cycles of high ridge heat flow. This implies a high rate of plate production

and, consequently, a high rate of simultaneous plate consumption.

Parsons [1982] discussed further applications of the study of the area-age
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distribution to the study of changes in the force system acting on the plates.

A change in this force system would change the magnitudes and directions

of plate velocities and hence the rate of plate generation and the distribution

of consumption with age. Furthermore, the resultant changes in the area-age

distribution would lead to new changes in the force system.

Changes in sea level are correlated with changes in the total surface of con-

tinental land and hence have important consequences on paleoclimates. The

total continental land area affects total weathering systems, the C02 level of

the atmosphere and the heat budget of the earth. Berner et al.[1983] deter-

mined that the C02 content of the atmosphere is highly sensitive to changes

in the seafloor spreading rates and total continental land area. They deter-

mined a much higher C02 level for the Cretaceous atmosphere, based on the

study of seafloor spreading rates. Assuming that C02 level and surface air tem-

perature are correlated with an atmospheric greenhouse model, they predicted

paleotemperatures for the Cretaceous. Berner et al.[1983] concluded that the

predominant factor affecting atmospheric C02 and climate over the past 100

Ma., is worldwide tectonic activity.

In addition, the change in the total water and ice coverage can be linked

to the absorption of heat from the sun and hence contributes to the total heat

budget of the earth.

The ultimate objective of this thesis is to analyze the relationship between

the distribution of area with age of the oceans and global changes in sea level.

In order to accomplish this objective, we first had to organize a global dataset

of magnetic anomalies and fracture zones, and a global dataset of rotation pa-

rameters. Then, we had to analyze the magnetic and bathymetric data in order

to test the rotation parameters. We improved both of these datasets by digitiz-

ing and including more recently published data and by calculating new rotation

parameters in order to minimize the uncertainties in the area-age distribution



1.0. CHAPTER 1

of the oceans. We used these data to construct a reliable map of the age of the

ocean basins for the present time and for 35.58 Ma and 58.94 Ma. We devel-

oped a method to measure the areas of a particular age span of the oceans. We

used this method to measure the distribution of area with age of the oceans at

the present time and at the two particular times chosen for the reconstructions

(35.58 Ma and 58.94 Ma). Finally, we analyzed the implications of the resulting

area-age distribution for global changes in sea level.

The first goal of the work presented here was to organize a set of magnetic

anomalies, fracture zones and plate boundaries that included all the data col-

lected and presented until now in the geophysical literature. We also collected

published sets of rotation parameters. These first two steps involved a detailed

search in the literature followed by the digitization of all the data that were not

included in an earlier database, previously organized by other MIT researchers

(Molnar et al., 1975; Molnar et al., 1988; Pardo-Casas and Molnar, 1987; Rosa

and Molnar, 1988; Stock and Molnar, 1982, 1987; Suarez and Molnar, 1980)

with contributions from Kim Klitgord, Hans Schouten, Tanya Atwater, Steve

Cande, and John Sclater. We compiled isochrons for the times of magnetic

anomalies 5 (10.59 Ma), 6 (19.90 Ma), 13 (35.58 Ma), 18 (42.01 Ma), 21 (49.55

Ma), 25 (58.94 Ma), 30-31 (68.47 Ma), 34 (84.00 Ma), MO (118.35 Ma), M4

(125.91 Ma), M11 (132.78 Ma), M16 (141.52 Ma), M21 (149.65 Ma), and M25

(156.42 Ma).

The second task in this thesis was the analysis of the magnetic and bathymet-

ric data in order to test the rotation parameters. This resulted in the refinement

and modification of the rotation parameters and of the uncertainties associated

with them to build a consistent set of parameters with calculated uncertainties

that would work with all the plate boundaries.

We then constructed an internally consistent, reliable map of the age of the

ocean basins for the present time and for two particular times in the past (35.58
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Ma and 58.94 Ma). These are times of reliable reconstructions, when sea level

was different, and when the plate configurations differed from the present plate

configuration. This involved the definition of the isochrons for the present time

and the later reconstructions of these isochrons to the past ages, as well as the

extrapolation of the isochrons to certain areas of the ocean floor which were

present in the past but were subducted later and are now not present on the

existing ocean floor. The definition of the isochrons involved the analysis of the

magnetic and bathymetric data, the digitization of the isochrons, together with

the analysis and calculation of the rotation parameters.

The final goal was to analyze the area-age distribution for the present time

and for the reconstructions at the times of anomalies 13 and 25 (35.58 Ma and

58.94 Ma respectively), and to associate the changes in these area-age distribu-

tions with sea-level changes.

1.1 Overview of Contents

In Chapter 2, we summarize our studies on the rigidity of the Pacific plate during

late Cretaceous and Tertiary time, with the analyses of magnetic anomaly and

fracture zone crossings, due to Pacific-Farallon-Vancouver-Kula-Nazca spread-

ing, together with the calculation of rotation parameters and associated uncer-

tainties. This portion of our work was already published by Rosa and Molnar

[1986, 1988]. These results contributed to an improved tectonic history of the

Pacific Ocean with implications for the geologic setting of western North Amer-

ica (see Stock and Molnar, 1988).

Tertiary plate motions in the southeastern Pacific were studied in detail in

Chapter 3. This chapter presents an analysis of the data of Cande et al. [1982]

with the calculation of rotation parameters and associated uncertainties, a stage

which was not performed by those workers. The southeastern Pacific region has
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undergone a complex tectonic history with spreading between several pairs of

plates. Our analysis agrees with the evolution of this region originally proposed

by Weissel et al. [1977] and supported by Cande et al. [1982], involving a major

reorganization of plate boundaries between anomaly 26 time and anomaly 18

time.

In Chapter 4 we show the results of our analysis of global magnetic anomaly

and fracture zone data, and of published rotation parameters, which were used to

build a consistent set of global rotation parameters with calculated uncertainties.

These were used together with digitized plate boundaries to define isochrons for

the present time and for reconstructions at anomaly 13 time (35.58 Ma) and at

anomaly 25 time (58.94 Ma).

In Chapter 5 we present the method used to calculate areas on the surface

of the earth. We also discuss the errors associated with the method. This

reliable and innovative method is used in Chapter 6 to determine the area-

age distribution for the present time and for the reconstructions at the times of

anomalies 13 and 25 (35.58 Ma and 58.94 Ma respectively). Finally, we interpret

the changes in the area-age distribution in terms of changes in sea level.

Chapter 7 summarizes the results of each of the previous chapters, and

presents further conclusions regarding the analysis of these results.

Figure Captions

Figure 1.1. Late Cretaceous to present sea-level curves (adapted from Kom-

inz, 1984). The heavy dashed curve is from Haq et al.(1987). Kominz

(1984) curve with error range, includes a 48 meters ice-volume correction.
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It is a ridge-volume sea-level curve and assumes that the age-depth re-

lationship of Parsons and Sclater (1977) and the magnetic anomaly time

scale of Larson et al.(1982) are correct. The Pitman (1978) curve is also

a ridge-volume derived sea-level curve with a 48 meters ice-volume cor-

rection. The Watts and Steckler (1979) sea-level curve is derived from

Atlantic continental margin subsidence data. The dashed and dash-dot

curves are derived from Paris basin subsidence data. The high (dashed)

curve is that of Brunet and Le Pichon (1982) by assuming post-Cretaceous

tectonic uplift. The hachured area is a water depth uncertainty. The Bond

(1979) sea-level estimates are derived from a combination of stratigraphic

data and continental hypsometry.

16
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Chapter

Uncertainties in

Reconstructions of the Pacific,

Farallon, Vancouver, and Kula

Plates and Constraints on the

Rigidity of the Pacific and

Farallon (and Vancouver) Plates

between 72 and 35 Mega annum

2.1 Introduction

Since the first efforts to make global reconstructions of the major plates, it has

been evident that there must have been an additional plate boundary in the

sequence of finite rotations needed to reconstruct the Pacific plate, and hence
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the Farallon plate, to other plates. The need for such a boundary is most

clearly revealed by a comparison of the reconstructed positions of early Tertiary

paleomagnetic poles from the major continents both with those of the Pacific

plate and with inferred loci of the spin axis from sediment facies on the Pacific

plate [Gordon and Cox, 1980; Sudrez and Molnar, 1980]. Whereas most of the

paleomagnetic poles from the continents agree within the uncertainties of one

another, they disagree by more than 1000 km with those of the Pacific plate.

Consequently, Gordon and Cox [1980] and Sudrez and Molnar [1980] concluded

that the additional plate boundary must lie somewhere between the equatorial

Pacific and east Antarctica.

Determination of the reconstructed positions of the Farallon and North

American plates is further complicated by the possibility of deformation of the

Farallon plate during their history of convergence. Menard [1978] suggested

that around 55 Ma, the Farallon plate split and that the area north of the

Murray fracture zone moved as a separate plate, the Vancouver plate, from the

remainder of the Farallon plate south of that fracture zone. Because at 55 Ma

the Murray fracture zone could have lain 1000 km or more south of its present

position, if Menard's [1978] contention were correct, it would not have been the

Farallon plate that was subducted beneath most of North America during the

Eocene and Oligocene epochs, but rather the Vancouver plate.

Unaware of Menard's [1978] suggestion of a Vancouver plate, the initial pur-

pose of our study was to examine whether an important early Tertiary plate

boundary could have lain north of the Eltanin fracture zone system, north of

about 45*S in the South Pacific, within what is now the Pacific plate. While

this study was in progress, Engebretson et al. [1984] presented results similar

in many ways to some of those that we present here and showed that a plate

boundary probably did not lie north of the Eltanin fracture zone. Shortly after-

ward, Stock and Molnar [1987] found the missing plate boundary within what
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is now the Antarctic plate north of west Antarctica. Nevertheless since some

aspects of our approach and some details of our results differ from those of En-

gebretson et al. [1984], we also present evidence similar to theirs for the rigidity

of the Pacific plate. In addition, we found Menard [1978] to have been correct in

that the Vancouver plate existed and moved separately from the Farallon plate

since the time of anomaly 21.

2.2 Data

The first step was to reexamine all published profiles of magnetic anomalies

that we could find from the Pacific plate: Atwater [1970] (her unpublished

chart), Bassinger et al. [1969], Elvers et al. [1972, 1973], Grim and Erickson

[1969], Handschumacher et al. [1975], Hayes and Heirtzler [1968], Malahoff and

Handschumacher [1971], Mason and Raff [1961], Molnar et al. [1975], Peter

[1966], Peter et al. [1970], Pitman and Hayes [1968], Raff [1966], Raff and Mason

[1961], Shih and Molnar [1975], Vacquier [1965], and Vacquier et al. [1961].

From them we picked the locations of anomalies 13, 18, 21, 25, the negative

anomaly between 30 and 31, and the positive anomaly on the young side of 32,

according to the numbering system of Pitman et al. [1968] (Figure 2.1). To

define fracture zones, we used the contour maps of Chase et al. [1970] in the

North Pacific and crossings of the Agassiz fracture zone on Mammerickx's map

of the South Pacific in the work by Molnar et al. [1975]. Unlike Engebretson

et al. [1984], we did not consider the seafloor formed in the Early Cretaceous

and Jurassic periods. Uncertainties were assigned to the location of individual

crossings of magnetic anomalies according to the resemblance of the magnetic

anomalies to those observed on other profiles and to whether or not satellite

navigation was used. For fracture zones, we arbitrarily assigned an uncertainty

of 20 km because of the difficulty of defining where within the complicated

20
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topography the plate boundary lay.

All reconstructions are given for particular pairs of magnetic anomalies, not

for uniformly spaced intervals of time, because of the uncertainties in the geo-

magnetic time scale.

For Cenozoic magnetic anomalies we used ages given by Berggren et al.

(1985], and for Mesozoic anomalies, those of Kent and Gradstein [1985]. Values

for the anomalies that we used are given in Table 2.1, together with those of

Harland et al. [1982], which were used by Engebretson et al. [1984].

2.3 Search for the Poles of Rotations

In the reconstruction of the history of the Pacific-Farallon-Vancouver-Kula sys-

tem, only one side remains of the seafloor originally formed at the Pacific-

Farallon, Pacific-Vancouver, and Pacific-Kula ridges. The other sides have been

consumed in subduction zones. Nevertheless, we can still determine most of the

history based only on the magnetic anomalies and fracture zones present today

on the Pacific plate. Insofar as the plates were rigid, the magnetic anomalies

and the fracture zones represent the locations in the past of the ridges and trans-

form faults. Thus to describe a reconstruction, we calculated the position of the

pole of rotation and the angle that brought into accord the two sets of magnetic

anomalies of different ages and the corresponding segments of the fracture zones

that then were transform faults.

The "best" pole positions and angles for each interval of time between con-

secutive magnetic anomalies were first calculated using Hellinger's [1979] meth-

od and then improved by qualitative analyses of the resulting fits of the data.

Hellinger's method [Hellinger, 1979; Stock and Molnar, 1982] begins with a

primary search to find the angle of rotation, for a given pole position, that min-

imizes the misfit of corresponding segments of magnetic anomalies and fracture
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zones. A second iterative search within a particular region is then made for the

location of the pole with the minimum misfit. Since we have data from only one

plate, points representing a magnetic anomaly of one age were rotated about a

given pole to overlie points of an older magnetic anomaly.

Because Hellinger's method uses a least squares analysis of errors, it is sensi-

tive to data that do not follow the assumptions of the method [Hellinger, 1979].

A lack of sufficient data to define a trend in a plate boundary, as is the case

for some anomalies in the South Pacific, makes Hellinger's method insensitive

to these data. Significant differences in trend between corresponding segments

of the boundary, caused for instance by changes in direction of spreading or

by disruption by propagating ridges and transform faults, can make the distri-

bution of misfits not Gaussian at all [Hellinger, 1979]. Although we tried to

avoid such situations, one check suggested that we were not entirely successful.

The calculated rotations should agree among themselves. For example, if we

combine the rotation necessary to rotate anomalies 13 over anomalies 18 with

the rotation of anomalies 18 to anomalies 21, we should obtain the rotation for

the 13-21 rotation. In practice, however, when rotations such as these three

were calculated independently, they were not consistent. "Best" fits obtained

by Hellinger's [1981] method were routinely examined visually, and we made

qualitative choices of the best fitting reconstructions (Tables 2.2, 2.3, and 2.4).

In all cases, however, the reconstructions obtained from Hellinger's method lay

well within the uncertainties in the reconstructions that we present.

2.4 Calculations of Uncertainties

Because of the differences in the distribution of magnetic anomalies and fracture

zones of different ages, two variations on the procedure outlined by Stock and

Molnar [1983] were used to describe uncertainties in the rotations. With either
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variation we avoid the unwieldy description of the uncertainties in both the

position of the pole and the rotation angle, quantities that are dependent on one

another. Instead we cast the uncertainty in terms of small perturbing rotations

about three orthogonal axes.

For the Pacific-Farallon rotation of anomaly 30-31 to 32 and for the rota-

tions that describe either Pacific-Kula or Pacific-Vancouver motion, we used the

method developed by Stock and Molnar [1983] and modified slightly by Molnar

and Stock [1985] (Figure 2.2a). We found the positions of three axes: one in the

center of the set of the older anomalies of the pair, a second 90* from it in the

direction of transform faults that were, or would have been, active then, and a

third 90* from the first in a direction perpendicular to such transform faults.

Small rotations about each of these three axes produce small but allowable mis-

fits: (1) a rotation about the first produces a skewed fit, with underlap of some

magnetic anomalies and overlap of others, (2) a rotation about the second axis

mismatches fracture zones (transform faults), and (3) a rotation about the third

systematically mismatches the magnetic anomalies but not the fracture zones.

We tolerated uncertainties in positions and misfits of 20 km. The minimum

angle of rotation to give a 20-km skewed mismatch can be approximated by

20(km)

111.4A,, km M

where L is the length, in degrees, of the plate boundary for which there are data

[Stock and Molnar, 1983]. The angle of rotation that gives a 20-km mismatch

of the fracture zones or magnetic anomalies is 0.18*.

For the Pacific-Farallon rotations that use data south of the Pioneer fracture

zone from both the North and South Pacific, we used a different method to

obtain the three orthogonal axes (Figure 2.2b). For each rotation, we took the

southernmost crossing of the older anomaly north of the Murray fracture zone

as a northern axis. Rotation about this axis would cause a large mismatch
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of data in the South Pacific without degrading the fit in the North Pacific

substantially. Given the limited number of data, we allowed a rotation of 0.36*,

corresponding to misfits of as much as 40 km in the South Pacific. Using the

azimuth of the Murray fracture zone, we calculated an axis 90* away from this

first point; a rotation about this axis would allow mismatches of 20 km of the

fracture zones in both the North and South Pacific. As a southern center, we

took a point 90* from the other two. Small rotations about this axis cause

much larger mismatches of the magnetic anomalies in the North than in the

South Pacific. We allowed a 20-km mismatch for these anomalies at the Murray

fracture zone, corresponding to an angle of 0.18*. Examples of the calculated

uncertainty regions for each rotation were plotted beside the selected anomalies

in Figures 2.3-2.6, and the partial uncertainty rotations are listed in Tables 2.5-

2.7.

2.5 Results

2.5.1 Pacific-Farallon, south of the Pioneer fracture zone

As we show below, the magnetic anomalies younger than anomaly 21 and cor-

responding fracture zones north of the Pioneer fracture zone and south of the

Murray fracture zone cannot have formed by spreading of the same Farallon

plate from the Pacific plate. It appears that the seafloor between the Pioneer

and Murray fracture zones formed by separation of the Pacific plate from the

Farallon plate, which lay south of the Murray fracture zone, and not from the

Vancouver plate [Menard, 1978], which lay north of the Pioneer fracture zone.

Thus we begin our discussion with results for Farallon-Pacific motion south of

the Pioneer fracture zone. The magnetic anomalies, particularly 13, 18, and

21, between the Pioneer and Murray fracture zones played an important role
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in this analysis, since this is the area with the best coverage. To illustrate

the reconstructions, we show the rotated points representing the crossings of

each anomaly to those of the next older anomaly, and the rotated positions of

anomaly 13 over all the others (Figures 2.3-2.5).

Just south of the Murray fracture zone (Figure 2.4), however, there is an

anomalously large space between anomalies 13 and 21, where a ridge jump must

have occurred [Menard and Atwater, 1969; Harrison and Sclater, 1972]. Thus

anomalies 13 from this segment do not help in the reconstruction. A little far-

ther south of the Murray fracture zone, approximately at 26*N, there are two

crossings of anomaly 18 (Figure 2.4). If the trend of these anomalies can be

extended to the north, the spacing between anomalies 13 and 18 south of the

Murray fracture zone is more than twice the spacing between these anomalies

north of this fracture zone. In this case, the ridge jump would have occurred

sometime after anomaly 18, and the possibility of asymmetrical spreading could

be ruled out, since the maximum distance between two anomalies in the case of

a totally asymmetrical spreading must be twice the separation of the anomalies

in a symmetrical spreading system. On the other hand, if we consider only

anomalies 13 and 21, the spacing between these anomalies just south of the

Murray fracture zone is less than twice the spacing between these same anoma-

lies between the Pioneer and Murray fracture zones. In this case, a ridge jump

could have occurred, but the possibility of asymmetrical spreading during the

interval between 35 and 50 Ma cannot be discarded.

Between the Pioneer and the Murray fracture zones, anomalies 13, 18, and

21 show slight departures from their north-south trends (Figure 2.4). These

variations in trends gave us some difficulty when we rotated them over one

another and over older anomalies. Although Menard [1978] explained these

departures as a result of a split of the Farallon plate about 37 Ma, we think

that they can be explained by a process of ridge jumping, probably by the
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propagation of spreading centers and transform faults [Hey, 1977; Shih and

Molnar, 1975]. In any case this difficulty is most serious for reconstructing

anomaly 25 and younger anomalies. Only four crossings define the anomaly 25

lineation between the Pioneer and Murray fracture zones, and only one pair of

them can be overlapped by rotated anomalies 13, 18, or 21. We chose to overlap

the southern two crossings of anomaly 25 because by doing so we also can match

anomalies 21 and 25 south of the Murray fracture zone. If we were to match the

northern crossings of anomaly 25, we could match neither crossings of anomaly

21 south of the Murray fracture zone nor the trend of the fracture zones.

Crossings of magnetic anomalies in the South Pacific are few, and by them-

selves they could not define poles and angles well. We, like Engebretson et al.

[1985] however, found that we could use the same pole positions (Table 2.2) to

match the magnetic anomalies and the trend of the Agassiz fracture zone in

the South Pacific with the magnetic anomalies and fracture zones in the North

Pacific south of the Pioneer fracture zone (Figures 2.4 and 2.5).

To reconstruct anomaly 25 to anomaly 30-31, we found that we could use

the trends of the Surveyor and Mendocino fracture zones and the crossings of

these anomalies between them (Figure 2.3). The spacing of these anomalies

farther north, however, is too large, and some asymmetric accretion of material

to the Farallon and Pacific plates must have occurred there (Figure 2.3).

We found no reliable crossings of anomaly 32 in the South Pacific, but from

those profiles of anomaly 30-31 near 35*S, 145*W, we are convinced the spread-

ing rate there was relatively slow and that anomaly 32 must lie only about

100 km west of anomaly 30-31. Nevertheless, crossings of anomalies 30-31 and

32 from the Great Magnetic Bight in the North Pacific to those south of the

Murray fracture zone can be rotated to one another such that the predicted po-

sition of anomaly 32 in the South Pacific lies just west of anomaly 30-31 there

(Figure 2.5).

26
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Thus as Engebretson et al. [1984] found, magnetic anomalies and fracture

zones in the North and South Pacific are sufficiently concordant that we can be

confident that, except for local areas such as the disturbed zone south of the

Murray fracture zone, the Farallon and Pacific plates behaved rigidly from the

time of anomaly 32 to that of anomaly 13.

2.5.2 Pacific-Vancouver, north of the Pioneer and Men-

docino fracture zones

To fit magnetic anomalies north of the Pioneer fracture zone and younger than

anomaly 21, we found that the parameters used for the region south of it yield

unacceptable misfits (Figure 2.7), and rotation parameters different from those

used for the area south of the Pioneer fracture zone are necessary. The need for

different parameters is particularly clear from the trends of the Surveyor, Men-

docino, and Pioneer fracture zones, which differ by about 11* from that of the

Murray fracture zone. It was largely because of this difference in trends of frac-

ture zones that Menard inferred that there must have been a Vancouver plate,

separate from the Farallon plate beginning some time between the formation of

anomalies 25 and 21. Note also, however, that when the magnetic anomalies

north of the Pioneer fracture zone are rotated about the poles determined for

the Pacific south of the Pioneer fracture zone, some rotated anomalies lie on the

south side of the Mendocino, Surveyor, and Pioneer fracture zones and others

mismatch their counterparts by as much as 100 km (Figure 2.7).

When we rotate backward the magnetic anomalies 21 and 18 over crossings

of magnetic anomaly 13 south of the Pioneer fracture zone about the poles of

rotations determined for the Pacific north of this fracture zone (Table 2.3), the

rotated anomalies lie on the south side of the Murray fracture zone (Figure 2.8).

This implies that the seafloor be a result of spreading between the Pacific and
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Farallon plates and not between the Pacific and Vancouver plates. Only if the

creation of the disturbed zone were associated with propagating ridges that

crossed the Murray fracture zone, could its trend be oblique to transform faults

that offset the Pacific-Farallon ridge. We cannot completely eliminate this pos-

sibility, but both the parallelism of the Murray and Clipperton fracture zones

and the orthogonality of magnetic anomaly lineations to the Murray fracture

zone suggest that the Murray fracture zone formed as a transform fault between

the Pacific and Farallon plates and does not reflect deformation near the triple

junction of the Pacific, Vancouver, and Farallon plates. Thus we think that

the Pacific-Farallon-Vancouver triple junction lay on the Pioneer fracture zone,

but we cannot eliminate completely the possibility that it lay on the Murray

fracture zone or between these two fracture zones.

Engebretson et al. [1984] did not infer that the Vancouver and Farallon plates

were distinct. They relied on various published inferences of linear trends of

magnetic anomalies and projections of their intersections with fracture zones to

constrain the reconstructions. Locations for such projected intersections proba-

bly contain larger errors and discrepancies than those of individual crossings of

magnetic anomalies. Thus we suspect that their data included sufficient "noise"

to make the misfits of the data north and south of the Pioneer fracture zone

seem acceptable without revealing the mismatch of some tens of kilometers that

we found.

Replacement of the Farallon plate by the Vancouver plate in global plate

reconstructions makes small, but in some cases significant, changes in the cal-

culated rates of subduction beneath western North America between 50 and 35

Ma. In the present coordinates and with respect to the Pacific plate at the time

of anomaly 13, the calculated position of the pole of rotation describing the con-

vergence between the Vancouver and Farallon plates from the time of anomaly

21 to that of anomaly 13 is 41*N, 108*W. This position is nearly due east of

28
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the east-west trending Mendocino fracture zone. Although the rotation angle of

7.80, corresponding to an average angular velocity of 0.56*/yr is not small, the

proximity of the pole to the Farallon-Vancouver plate boundary, a maximum

of 180 from the pole, means that the relative motion across that boundary was

small, less than 20 mm/yr. Moreover, at the part of the west coast of North

America where the eastern half of the Mendocino fracture zone would have in-

tersected it, the rate of motion of the Farallon and Vancouver plates would have

been smaller and virtually negligible. Ignoring the existence of the Vancouver

plate, however, is more serious at its northern extremity, which relative to North

America lay near the present latitude of Cape Mendocino at the time of anoma-

lies 13 and 18 [Stock and Molnar, 1988]. At this position and at the time of

anomaly 13, the calculated velocity of the Vancouver plate with respect to the

Farallon plate is about 30 mm/yr. Therefore the calculated average relative

velocity between the Vancouver and North American plates at this locality also

differs by 30 mm/yr from the velocity that would be calculated for the Faral-

lon and North American plates, assuming that there was no separate Vancouver

plate. Thus the inclusion of a separate Vancouver plate is probably unimportant

for some crude calculations of the subduction history of western North America,

but is important for those seeking quantitative relations between plate motions

and the geology of the continental interior of western North America.

Finally note that some authors relate the major reorganization in the Pacific-

Farallon-Kula relative motions at about 55 Ma to the death of the Pacific-Kula

ridge [e.g., Byrne, 1979; Duncan, 1982]. Engebretson et al. [1984], however,

believe that the Pacific-Kula spreading continued until about anomaly 18.

2.5.3 Kula plate

Numerous crossings of anomalies 25 and 30-31 and a few of anomaly 32, plus

the trend of the Amlia fracture zone, allow us to determine parameters for the
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reconstruction of these anomalies (Figure 2.6). Unfortunately, the published

profiles east of the Amlia fracture zone (Figure 2.6) clearly show anomalies that

are not part of the sequence in the rest of the world [Peter et al., 1970]. Thus a

clear ridge jump makes it impossible to match the best sets of anomalies 30-31

and 32. In any case, the same pole position works for both reconstructions,

but the uncertainty for the reconstruction of anomaly 30-31 to 32 is clearly the

larger.

2.6 Conclusions

Five results can be listed from our analysis in this chapter. (1) Tables 2.2-2.4

list sets of consistent rotations for the Pacific-Farallon, Pacific-Vancouver, and

Pacific-Kula plates between the times of anomalies 13 and 32, and Tables 2.5-

2.7 give uncertainties. (2) The Pacific and Farallon plates between the Pioneer

and Agassiz fracture zones appear to have been rigid, with neither broken into

two plates in that interval of time. (3) Therefore the additional Tertiary plate

boundary inferred by Gordon and Cox [1980] and Sudrez and Molnar [1980]

must have been south of the area studied within the Pacific plate south of the

latitude 43*S, or within the Antarctic plate. (4) Spacings of magnetic anomalies

13, 18, and 21 north of the Pioneer fracture zone and the orientations of the

Pioneer, Mendocino, and Surveyor fracture zones differ from those south of the

Pioneer fracture zone and suggest that between the formation of anomalies 25

and 21, the northern part of the Farallon plate split from the rest of it to form

the Vancouver plate, as Menard [1978] had inferred. (5) Therefore it has been

the Vancouver plate, not the Farallon plate, that was subducted beneath most

of western North America from about 55 Ma until the spreading center was
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annihilated at the subduction zone.

Figure Captions

Figure 2.1 Locations of magnetic anomalies and fracture zones used in this

chapter. Magnetic anomalies are shown as triangles and identified by

number. The Amlia fracture zone is shown as A, and the other fracture

zones are shown as C. Oblique Mercator projection with a pole at 72.90*N,

90.77 0E.

Figure 2.2a Diagram showing locations of centers of rotation used for calcu-

lating uncertainties by the method developed by Stock and Molnar [1983]

and modified slightly by Molnar and Stock [1985]. Points A and D repre-

sent the locations of the northernmost and southernmost crossings of the

set of the older magnetic anomalies of the pair, respectively. Centers for

mismatched magnetic anomalies (m. ma.) and for mismatched fracture

zones (m. fz.) are indicated.

Figure 2.2b Diagram showing locations of centers of rotation used for calcu-

lating uncertainties by a variation of the method outlined by Stock and

Molnar [1983]. Points A and B represent the locations of the northernmost

and southernmost crossings of the set of the older anomalies of the pair,

respectively, in the North Pacific. Points C and D represent similar lo-

cations in the South Pacific. Centers for mismatched magnetic anomalies

(m. ma.) and for mismatched fracture zones (m. fz.) are indicated.
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Figure 2.3. Fits and uncertainties in rotations of magnetic anomalies in the

North Pacific. The magnetic anomalies are shown as triangles and iden-

tified by number. Numbers in parentheses show inferred locations. The

Amlia fracture zone is shown as A, and other fracture zones are shown as

C. The solid circles represent the rotation of each anomaly over the next

older anomaly. The crosses represent the rotation of magnetic anomaly

13 over all others. Oblique Mercator projection with a pole at 72.90*N,

90.77 0E.

Figure 2.4. Detailed view of part of Figure 2.3 showing fits and uncertainties

in the rotations of magnetic anomalies between 24*N and the Mendocino

fracture zone. The magnetic anomalies are shown as triangles and iden-

tified by number. Numbers in parentheses show inferred locations. The

fracture zones are shown as C. The solid circles represent the rotation of

each anomaly over the next older anomaly. The crosses represent the rota-

tion of magnetic anomaly 13 over all others. Oblique Mercator projection

with a pole at 72.90*N, 90.77*E.

Figure 2.5. Fits and uncertainties in rotations of magnetic anomalies in the

South Pacific. The magnetic anomalies are shown as triangles and iden-

tified by number. Numbers in parentheses show inferred locations. The

Agassiz fracture zone is shown as C. The dot-dashed lines represent pro-

posed fracture zones. The solid circles represent the rotation of each

anomaly over the next older anomaly. The crosses represent the rota-

tion of magnetic anomaly 13 over all others. Oblique Mercator projection

with a pole at 72.90*N, 90.77*E.

Figure 2.6. Detailed view showing fits and uncertainties in the Pacific-Kula

rotations. The magnetic anomalies are shown as triangles and identified

by number. The Amlia fracture zone is shown as A, and other fracture
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zones are shown as C. The solid circles represent the rotation of each

anomaly over the next older anomaly.

Figure 2.7. Misfits in the rotations of magnetic anomalies north of Pioneer

fracture zone and fits in the rotations south of Pioneer fracture zone us-

ing the rotation parameters appropriate for the rotations south of Pioneer

fracture zone (Table 2.2). The magnetic anomalies are shown as trian-

gles and identified by number. The fracture zones are shown as C. The

solid circles represent the rotation of magnetic anomaly 18 over magnetic

anomaly 21. The crosses represent the rotation of magnetic anomaly 13

over magnetic anomalies 18 and 21. Oblique Mercator projection with a

pole at 78.00*N, 140.00*W.

Figure 2.8. Fits in the rotations of magnetic anomalies north of Pioneer frac-

ture zone and misfits in the rotations south of Pioneer fracture zone using

the rotation parameters appropriate for the rotations north of Pioneer

fracture zone (Table 2.3). The magnetic anomalies are shown as triangles

and identified by number. The symbol (13) shows the inferred location of

magnetic anomaly 13 in the disturbed zone. The fracture zones are shown

as C. The solid circles represent the rotation of magnetic anomaly 21 over

magnetic anomalies 18 and 13, and also the rotation of magnetic anomaly

18 over magnetic anomaly 13. Oblique Mercator projection with a pole

at 78.00*N, 140.00*W.
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Chapter 3

Uncertainties in

Reconstructions of the Pacific,

Antarctica, Farallon, and Aluk

Plates during Cenozoic time

3.1 Introduction

Several spreading centers have been active in the southeast Pacific since early

Cretaceous time, reflecting spreading among several pairs of plates: Pacific-

Antarctica/Bellingshausen, Antarctica/Bellingshausen-Aluk, Pacific-Aluk, Pacific-

Farallon, Antarctica/Bellingshausen-Farallon, and Antarctica-Nazca. Our knowl-

edge of the tectonic history of this area was much improved by Cande et

al.[1982], who, with much new data, identified a major re-organization in plate

boundaries between anomaly 26 time and anomaly 18 time. At this time, a

large fragment of sea floor was broken off the Pacific plate and joined to the

Antarctica plate. This region, east of the Hudson Trough and south of the Hum-
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boldt fracture zone (Figure 3.2), had subsequently spread rapidly away from an

area in the southwestern Pacific, where a sequence of older anomalies, that were

formerly adjacent and part of the same sequence of magnetic anomalies, had

been identified by Weissel et al.[1977].

Weissel et al.[1977] had speculated that the anomalies west of the Henry

Trough (Figure 3.2) were formed by Pacific-Aluk spreading. Weissel et al.[1977]

proposed a model involving a major reorganization of plate boundaries between

anomaly 26 time and anomaly 18 time (Figure 3.1). Before anomaly 26 time

there was one triple junction involving the Pacific, Aluk and Antarctic plates

and one triple junction involving the Pacific, Farallon and Aluk plates (Figure

3.1a). By anomaly 18 time, there was one triple junction involving the Pacific,

Antarctic and Farallon plates and one involving the Antarctic, Farallon and

Aluk plates (Figure 3.1b). The tectonic history proposed by Cande et al.[1982]

seems to confirm their speculation. Cande et al.[1982] concluded that the re-

organization occurred progressively over a 18.5 m.y. interval at about anomaly

21 time (49.55 Ma), and showed how this reorganization happened.

Here we analyze further the data in the southeast Pacific to quantify the

reconstructions of the Pacific, Antarctic, Farallon, and Aluk plates at time of

selected anomalies. These poles and angles of rotation will be used in later

chapters for our global plate reconstructions, which is one of the major objectives

of this thesis. In addition, they may be useful in later studies of the history of

subduction along the South America and West Antarctica margins.

3.2 Data Analysis

In order to be able to study the region, we digitized the magnetic anomalies,

fracture zones and plate boundaries presented by Cande et al.[1982] (Figure

3.2, Figure 1 of Cande et al., 1982). These data were separated into groups
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according to the spreading centers where the oceanic crust was formed. (Figure

3.3, Figure 2 of Cande et al., 1982).

As described in Chapter 2, we emphasize that all reconstructions here were

made for particular pairs of magnetic anomalies, not for uniformly spaced in-

tervals of time, due to the uncertainties in the geomagnetic time scale.

3.3 Search for the Poles of Rotations

With the exception of a small part of seafloor just south of the southernmost

point of South America, only one side remains of the seafloor originally formed

at the Antarctica-Aluk, Pacific-Aluk, Pacific-Farallon, and Antarctica-Farallon

ridges. Therefore, we determined the rotation parameters using only the mag-

netic anomalies and fracture zones present today on the Pacific and Antarctica

plates.

We used the same methodology used in Chapter 2 to define the best-fit pole

positions. The "best" pole positions and angles for each interval of time between

consecutive magnetic anomalies were first calculated using Hellinger's [1979]

method, described in Chapter 2, and then improved by qualitative analyses of

the resulting fits of the data. For the southeast Pacific, however, there is much

less data than was available for the Pacific-Farallon-Vancouver-Kula system.

Thus, we had to make qualitative choices of best fitting reconstructions to define

most of the rotation parameters (Tables 3.1 to 3.6).

Sometimes we refer to the Bellingshausen plate, instead of the Antarctica

plate, since a reanalysis of early Tertiary magnetic anomalies on the Pacific

plate south of the Campbell Plateau by Stock and Molnar [1987] indicated that

until a little before anomaly 18 time (42.01 Ma), there was a triple junction of

the Pacific, the Antarctic, and a third plate now beneath the Bellingshausen

sea, which they named the Bellingshausen plate.
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3.4 Calculations of Uncertainties

For the calculation of the uncertainties associated with the rotation parameters

(Tables 3.7 to 3.11) we used the method of Stock and Molnar [1983] modified

later by Molnar and Stock [1985] and described in the previous chapter (Section

2.4). The calculated partial uncertainty rotations listed In Tables 3.7 to 3.11 can

be added to the best-fit rotations to estimate the uncertainty region surrounding

the best-fit pole and angle.

Sometimes we could not calculate the uncertainties associated with the ro-

tation parameters due to a lack of data. For example, in those places for which

we have just one segment of the isochron with its orientation and size poorly

defined by just one magnetic anomaly crossing. If it was impossible to calculate

the uncertainties directly from the end points of plate boundaries, we interpo-

lated or extrapolated from the parameters calculated for the adjacent magnetic

anomalies.

The uncertainties in the rotation parameters are large because the lengths

of plate boundaries are very short. In contrast, in Chapter 2, we studied the

Northeast Pacific where the isochrons represent well defined and long plate

boundaries, yielding small uncertainties in the rotation parameters.

3.5 Results

The southeast Pacific is a region of complex tectonic history. Calculating the

rotation parameters, we noticed several interesting points that we shall discuss

now.

Studying the Antarctic-Aluk (Bellingshausen-Aluk) data presented by Cande

et al.[1982] with their collection of new magnetic anomalies, fracture zones and

bathymetric features, we noticed that the data from north and south of one of
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the fracture zones, could not be matched with the same rotation parameters,

especially sometime before anomaly 10 (Figure 3.2, Figure 1 of Cande et al.,

1982). This is the second fracture zone south of the Hero fracture zone and

the second fracture zone north of the Tula fracture zone, southeast from the

region that is hachured in their figure (Figure 3.2). It is clear that a single

reconstruction will not match the magnetic anomaly crossings north and south

of this fracture zone for the 13-18 rotation, or for the 18-20 rotation. This fact

could be real or it could be a result of poor identifications. A collection of new

magnetic anomaly crossings and bathymetric data from this region is necessary

to solve this problem.

Another problem that could be solved with the collection of new data is that

there are no crossings of magnetic anomalies younger than anomaly 22 south of

the Tula fracture zone and there are no crossings of magnetic anomalies older

than anomaly 20 north of this fracture zone. We are not sure that the younger

data south of the Tula fracture zone would be consistent with the rotation

parameters determined for the data just north of this fracture zone.

Another feature noticeable in the Antarctica (Bellingshausen)/Aluk data

presented by Cande et al.[1982] is that the lineations of magnetic anomalies

25 and 26, south of the Tula fracture zone, have different azimuths from the

lineations of magnetic anomalies 23, 24, 27, 28 and 29. This also could be a result

of misinterpretation of the magnetic data, sparsity of the magnetic anomaly

crossings, unidentified fracture zones with small offset, or poor navigation. We

can also notice that there was probably a ridge jump near anomaly 27 time,

south of the Heezen fracture zone, where the spacing between the crossings

of anomaly 28 and the crossing of anomaly 27 is different from the spacing

between these two anomalies just north of this fracture zone. The Antarctica-

Aluk reconstructions for anomalies 6 to 13 are the best constrained. There are

not enough data to define well the other reconstructions.
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In the region corresponding to Antarctica (Bellingshausen)-Farallon spread-

ing, just north of the hachured area in Figure 3.2, there was probably a ridge

jump between the times corresponding to magnetic anomalies 13 and 18 at the

ridge segment west of the westernmost fracture zone. There was probably an-

other ridge jump between the time of magnetic anomaly 12 and the time of

magnetic anomaly 18, along the segment of ridge between the second and the

third fracture zones counting from the west to the east.

We calculated the rotation parameters for the Nazca-Antarctic rotations for

anomalies 5, 6, and 13, using the Nazca-Pacific and the Pacific-Antarctic poles

and angles. If we use the pole and angle for the anomaly 5 rotation to rotate

the data from Cande et al.[1982], the anomaly 5 crossings rotate parallel to the

azimuth of the fracture zones that bound them.

3.6 Conclusions

The southeastern Pacific has been an area of complex tectonic activity with the

spreading occurring between at least six different plate boundaries. Cande et

al.[1982] presented more data and proposed a tectonic history for the area that

agrees with that of Weissel et al.[1977].

We digitized all the data presented by Cande et al.[1982] and calculated

rotation parameters with their associated uncertainties. As we expected, the

uncertainties are large since we do not have enough data to constrain most

of the rotations. However, these data are still useful for determining the age

distribution of the ocean floor in this region. The rotation parameters can be

used for calculating subduction rates from global plate circuits. Although the

lengths of the spreading centers in this region are not large, a reanalysis of the

original magnetic profiles and future collection of new magnetic and bathymetric

data may reduce the uncertainties and further improve the details of the tectonic
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history proposed by Weissel et al.[1977] and Cande et al.[1982].

Figure Captions

Figure 3.1. Orientations of plate boundaries in the southeast Pacific at dif-

ferent times (from Weissel et al., 1977). Note the change in the plates

involved in the two triple junctions at each of the two reconstructions

(Figure adapted from Cande et al., 1982).

Figure 3.2. Magnetic anomalies and fracture zones in the southeast Pacific

Ocean after Cande et al.[1982]. The hachured seafloor was identified by

Cande et al.[1982] as being formed by Pacific-Aluk spreading (from Cande

et al., 1982).

Figure 3.3. Separation of the Antarctica (Bellingshausen) plate into regions

according to the spreading ridges at which the crust was formed (from

Cande et al., 1982).
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Chapter 4

Data and Rotation Parameters

used in Global Reconstructions

4.1 Introduction

In order to obtain a reliable area-age relationship for the times of the various

reconstructions, we assembled rotation parameters from various authors and

used our dataset of magnetic anomaly and fracture zone crossings to check

them. We also calculated rotation parameters and augmented our dataset of

magnetic anomaly and fracture zone crossings whenever necessary or when new

data became available. By doing this, we hoped to minimize uncertainties in

the reconstructions and, consequently, in the calculations of sea-level changes

correlated with the area-age relationship.

We will first describe our collection of magnetic anomalies, fracture zones

and other data. We will then discuss the rotation parameters used in the re-

constructions. Finally, we will describe how we treated these data to get the

isochron map for the present time and the reconstructed isochron maps at par-

ticular ages (35.58 Ma and 58.94 Ma).
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4.2 Data

4.2.1 Present Plates and Plate Boundaries

We digitized all the ridges, transform faults, and trenches bounding each present

tectonic plate from the GEBCO charts (General Bathymetric Charts of the

Oceans; Canadian Hydrographic Office, Ottawa). The ridges and transform

faults were digitized at the points where a spreading center intersects a transform

fault and vice-versa. This dataset, formed by geographic coordinates of the

present ridges and transform faults, was the basis for the calculation of many of

the younger isochrons, as we will explain later in this chapter (Section 4.4). All

the digitizing was done using a 9000 series CALCOMP digitizing table, which

can read the coordinates of a point indicated by a cross-hair cursor with an

accuracy of 0.001 inch.

The program used to digitize and to invert the digitized coordinates for

geographical coordinates was DIGIMAP. We used a newer version of the orig-

inal DIGMAP software developed by Bortoluzzi and Ligi [1986], modified and

adapted to work with the APOLLO and CALCOMP hardware and software. It

is a versatile computer program for acquisition of geographical coordinates from

maps in widely used cylindric and conic conformal projections: Direct Mercator,

Lambert conformal, UTM, and Polar Stereographic. Various reference ellipsoids

and datum shift procedures are provided by this program. It also has statistical

tests of accuracy. Bortoluzzi and Ligi [1986] indicate that the uncertainty of

determining geographical coordinates is, in general, twice the graphic precision

of 0.2 mm at any map scale and projection. Accuracy is increased by using good

quality maps. In the case of the GEBCO maps, our performance tests indicated

a radius of uncertainty of capture of coordinates usually less than the graphic

precision, which was around 2005 m.
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4.2.2 Magnetic Anomalies and Fracture Zones

The magnetic anomalies and fracture zones were collected and analyzed from

several published maps and datasets. For the Pacific plate the data were ob-

tained from the following references: Atwater [1970] (her unpublished chart),

Bassinger et al.[1969], Cande et al.[1982], Cande et al.[1989], Christoffel and

Falconer [1972], Elvers et al.[1972, 1973], Grim and Erickson [1969], Hand-

schumacher et al.[1975], Hayes and Heirtzler [1968], Hilde et al.[1976], Larson

[1976], Larson et al.[1972], Malahoff and Handschumacher [1971], Mason and

Raff [1961], Molnar et al.[1975], Peter [1966], Peter et al.[1970], Pitman and

Hayes [1968], Raff [1966], Raff and Mason [1961], Shih and Molnar [1975], Stock

and Molnar [1987], Vacquier [1965], and Vacquier et al.[1961].

For the Indian Ocean, we used the following source of information: Bergh

[1977], Bergh and Barrett [1980], Bergh and Norton [1976], Cande and Mutter

[1982], Cande et al.[1989], Fisher and Sclater [1983], Fullerton et al.[1989], Lar-

son [1975, 1977], Liu et al.[1983], Markl [1974], Martin et al.[1982], Molnar et

al.[1988], Norton and Sclater [1979], Schlich [1982], Sclater and Fisher [1974],

Sclater et al.[1976, 1981], S6goufin [1978], S6goufin and Patriat [1980, 1981],

Weissel and Hayes [1972].

For the Atlantic Ocean, data were available from: Cande and Kristoffersen

[1977], Cande et al.[1989], Klitgord and Schouten [1986], Kristoffersen and Tal-

wani [1977], Pitman III and Talwani [1972], Rabinowitz and LaBrecque [1979],

Srivastava and Tapscott [1986], Vogt and Avery [1974], Vogt et al.[1971, 1980,

1981, 1982].

For the Coral Sea, we used the results of Weissel and Watts [1979], while for

the Tasman Sea we used the data of Hayes and Ringis [1973] and the data of

Weissel and Hayes [1977].

Most of the data were digitized in the form described in the previous section.

The locations of anomalies were picked according to the numbering system of
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Pitman et al.[1968] and are listed in Table 4.1. Whenever possible, we assigned

uncertainties to the locations of individual crossings of magnetic anomalies ac-

cording to the resemblance of the magnetic anomalies to those observed on

other profiles and to whether or not satellite navigation was used. For fracture

zones, we arbitrarily assigned an uncertainty of 20 km because of the difficulty

in defining where within the complicated topography the plate boundary lay.

For Cenozoic magnetic anomalies we used ages given by Berggren et al.[1985],

and for Mesozoic anomalies, those of Kent and Gradstein [1985].

4.3 Rotation Parameters and Uncertainties in

Reconstructions

4.3.1 Rotation Parameters

The most important dataset for our reconstructions are the pole positions and

angles of rotations (Tables 4.2 to 4.27). Some of the reconstruction parameters

were taken from the literature, while others were calculated here, and some

others were interpolated or extrapolated. Some rotations that were calculated

by combining rotations listed in the tables are not listed here.

Tables 4.2 to 4.7 give the poles and angles of rotation calculated and de-

scribed in Chapter 3. They are used in the reconstructions of the southeast

Pacific and were calculated using the data digitized from Cande et al.[1982].

Table 4.8 gives the East Antarctica-Africa poles and angles of rotations. Pa-

rameters for the Cenozoic and late Cretaceous times were taken from Molnar et

al.[1988]. The anomaly MO reconstruction parameters were interpolated using

Molnar et al.'s [1988] anomaly 34 parameters and Norton and Sclater's [1979]

anomaly M1 parameters. The parameters for the anomalies M4 and M11 time

were interpolated using Segoufin and Patriat's [1980] parameters for anomalies
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M2 and M15. The anomalies M16 and M21 poles and angles were interpo-

lated using Segoufin and Patriat's [1980] anomaly M15 parameters and Norton

and Sclater's [1979] anomaly M22 parameters. The closure pole and angle, at

anomaly M22 time (152.11 Ma) (Lawyer et al., 1985), were given by Norton and

Sclater [1979].

Table 4.9 lists the parameters for East Antarctica-India. Those for Cenozoic

and late Cretaceous times were taken from Molnar et al.[1988]. The earlier

Mesozoic poles were calculated through the plate circuit. The closure pole, at

Jurassic time, was taken from Smith and Hallam [1970] and is the same closure

pole used by Norton and Sclater [1979] in their study of the Indian Ocean.

Table 4.10 contains parameters for India-Africa rotations. We took those

for Cenozoic and late Cretaceous times from Molnar et al.[1988]. The ear-

lier Mesozoic parameters were calculated through the plate circuit using the

India-Madagascar closure pole calculated from the India-Africa and Africa-

Madagascar closure poles from Norton and Sclater [1979]. We used the same

Jurassic closure rotation parameters given by Norton and Sclater [1979].

Table 4.26 lists the rotation parameters for the India-Australia spreading.

The parameters were taken from Royer and Sandwell [1989]. Since 42.7 Ma,

there has been essentially no motion between India and Australia (Royer and

Sandwell, 1989).

The Madagascar-Africa rotation parameters are given in Table 4.27. Mada-

gascar has been fixed to Africa since 112.5 Ma (Cochran, 1988). We calculated

the Mesozoic parameters from Segoufin and Patriat's [1980] anomalies M2, M15,

and M21 poles and angles based on the measured distances between anomalies.

Cochran [1988] reinterpreted the data used by Rabinowitz et al.[1983] and con-

cluded that his new interpretation essentially agrees with that of Segoufin and

Patriat [1980] in both anomaly identification and spreading rates. Cochran

[1988] supports our use of Segoufin and Patriat's [1980] poles and angles to
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calculate the parameters for the magnetic anomaly times.

In Table 4.11, we list the East Antarctica-Australia rotation parameters.

Most of the Cenozoic parameters were calculated by Stock and Molnar [1982,

1988]. The anomaly 21 pole was extrapolated from those for anomalies 25 and

30-31. The spreading changed from a very slow spreading to a fast spreading

at about anomaly 19 time (Cande and Mutter, 1982). The late Cretaceous pole

and angle for anomaly 34 time (84.00 Ma) were taken from Royer and Sandwell

[1989]. Separation between Australia and East Antarctica began at about 96

Ma and both the rotation parameters and the age of closure were taken from

Royer and Sandwell [1989].

For the Pacific-West Antarctica rotations (Table 4.12), we used the Cenozoic

parameters calculated by Stock and Molnar [1982, 1987, 1988]. We calculated

those for the anomalies 25 and 30-31 using the parameters given by Stock and

Molnar [1987, 1988]. The anomaly 21 parameters were interpolated by Stock

(personal communication, 1989) using those for anomalies 18 and 25. Separation

began at anomaly 34 time (84.00 Ma), when the Campbell Plateau broke away

from Antarctica (Christoffel and Falconer, 1972). We assign this age to the

closure parameters extrapolated by distance from Stock and Molnar [1988].

Stock and Molnar's [1982] work is the basis for Table 4.13, with the pa-

rameters for Pacific-Bellingshausen spreading. They calculated the poles and

angles for anomalies 25 and 30-31, although at that time they assigned them to

Pacific-West Antarctica spreading. The parameters for anomalies younger than

anomaly 18 are the same as those for Pacific-West Antarctica spreading (Ta-

ble 4.12). The anomaly 21 rotation parameters were interpolated in our work

using the anomaly 18 parameters for Pacific-Bellingshausen spreading and the

anomaly 25 parameters for Pacific-West Antarctica spreading. We assume the

existence of a separate Bellingshausen plate prior to anomaly 30-31 time. The

anomaly 34 rotation parameters were calculated by Molnar et al.[1975], and

58
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were also originally assigned to Pacific-West Antarctica spreading.

The rotation parameters for Greenland-Europe spreading are given in Table

4.14. They result from unpublished work by Klitgord and Schouten (Klitgord,

personal communication, 1986). The anomaly 18 parameters were obtained

by interpolation between the anomalies 13 and 20 parameters of Klitgord and

Schouten (1986, personal communication). We calculated the anomaly 21 pa-

rameters in this work. The closure is dated a little before anomaly 24 time, at

about 56 Ma. (Kristoffersen and Talwani, 1977).

Rotation parameters for Greenland-North America are listed in Table 4.15.

This table is based on the work of Klitgord and Schouten (personal communica-

tion, 1986), Srivastava and Tapscott [1986] and on our analysis of the magnetic

anomalies and fracture zones. Since about 45 Ma, there has been no motion

in the Labrador Sea (Laughton, 1972). We calculated the rotation parame-

ters for anomalies 21, 30-31 and 34 based on our analysis of the parameters

for Greenland-North America spreading, [Greenland + North America]-Europe

spreading and on our analysis of magnetic anomalies and fracture zones. The

initial opening of the Labrador Sea was approximately at 95 Ma (Srivastava and

Tapscott, 1986).

Table 4.16 is based mostly on the work of Klitgord and Schouten [1986].

The reconstruction parameters for anomaly 5 were later recalculated by Klitgord

and Schouten using an unpublished dataset (Klitgord, personal communication,

1988). We calculated parameters for anomalies 30-31 and 34 based on our

reconstructions using magnetic anomalies and fracture zones. The closure pole

and angle are given by Srivastava and Tapscott [1986].

Table 4.17 contains parameters for Iberia-North America rotations. We cal-

culated the parameters for anomalies 30-31 and 34. We obtained the parameters

for the anomalies MO and M4 by adding the respective stage poles for Africa-

North America spreading to the anomaly 34 rotation parameters for Iberia-
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North America spreading. Our analysis agrees with the assumption that Iberia

has been fixed to Europe since about anomaly 29 time (65.8 Ma) (Laughton et

al., 1972; Sclater et al., 1977).

The Africa-North America rotation parameters, listed in Table 4.18, were

also taken from Klitgord and Schouten [1986]. For the anomaly 5 (10.59 Ma)

reconstruction, we use the pole interpolated from their results by Stock and

Molnar [1988]. We interpolated the anomaly M11 pole and angle from Klitgord

and Schouten's [1986] M1ON and M16 parameters. Klitgord and Schouten [1986]

give rotation parameters for minimum closure and others for maximum closure.

We list both in Table 4.18 but we use the maximum closure pole and angle in

our reconstructions.

The rotation parameters for the South Atlantic (Africa-South America spread-

ing) are given in Table 4.19. Those for Cenozoic and late Cretaceous times were

calculated by Cande et al.[1988], and by Pardo-Casas and Molnar [1987]. The

parameters for the MO and M4 anomalies were taken from Martin et al.[1982].

The closure parameters, at anomaly M1 1 time (132.78 Ma) were also taken from

Martin et al.[1982].

Table 4.20 lists the South America-East Antarctica rotation parameters. All

the rotation parameters were calculated through the plate circuit by rotating

South America to Africa to East Antarctica.

Table 4.21 gives the Nazca-Pacific rotation parameters. Most of the param-

eters originated from the work summarized in Chapter 2 (Rosa and Molnar,

1988). Pardo-Casas and Molnar [1987] calculated the parameters for the most

recent anomalies. They used Rosa and Molnar's [1988] parameters for displace-

ments during successive intervals to calculate total rotations of the Nazca and

Pacific plates. We identified a misprint in the angle for their anomaly 21 time

(49.55 Ma) rotation: their rotation parameters, 74.76*N, 122.36*W, -69.98*,

should be replaced by 74.76*N, 122.36*W, -64.98*. We adjusted some of the
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parameters to correspond to 42.01 Ma, the center of the broad normal epoch

of anomaly 18 (Berggren et al., 1985). The parameters calculated by Rosa and

Molnar [1988] and given by Pardo-Casas and Molnar [1987] correspond to a

time of 42.26 Ma, (Berggren et al., 1985) the center of the earliest minor re-

versal within anomaly 18. We calculated the anomaly 34 parameters using the

Nazca-Pacific anomaly 30-31 parameters and the Pacific-Farallon anomaly 30-31

to anomaly 34 reconstruction.

The early Tertiary and late Cretaceous parameters for the spreading between

Australia and Lord Howe Rise (Table 4.22) were taken from the studies of Stock

and Molnar [1982, 1988]. We extrapolated the anomaly 34 rotation using the

parameters for anomalies 30-31 and 32 given by Stock and Molnar [1982, 1988].

The closure parameters, corresponding to an age of about 90.00 Ma, were given

by Weissel et al.[1977].

Table 4.23 lists the rotation parameters for anomalies on the Pacific plate

formed by Pacific-Farallon spreading. All the parameters describe the rotation

of the younger anomaly with respect to the fixed older anomaly. The Cenozoic

parameters were calculated in Chapter 2 (see also Rosa and Molnar, 1988).

We first calculated the 13-18 and 18-21 rotations (Rosa and Molnar, 1988)

corresponding to the age of the center of the earliest minor reversal within

anomaly 18 (42.26 Ma, Berggren et al., 1985). Stock and Molnar [1988] later

used these results to interpolate the 13-18 and 18-21 rotations corresponding

to the age of the center of the broad normal epoch of anomaly 18 (42.01 Ma,

Berggren et al., 1985). We interpolated the 30-31-34 rotation parameters from

the 25-30-31 reconstructions given by Rosa and Molnar [1988] and the 25-34

parameters from Engebretson et al.[1984]. The Mesozoic poles and angles come

from the work by Engebretson et al.[1984].

The poles of rotation for anomalies on the Pacific plate formed by the Pacific-

Vancouver spreading (Rosa and Molnar, 1988; Wilson, 1988) are given in Table
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4.24. Most of them come from Rosa and Molnar [1988] and from Wilson [1988].

All the poles and angles describe the rotation of the younger anomaly over the

fixed older anomaly. We calculated the 0-5, 5-6, and 6-13 parameters using

the stage reconstructions of Wilson [1988]. The 21-25, 25-30-31 and 30-31-34

parameters are the same as for Pacific-Farallon spreading, given in Table 4.23.

Table 4.25 gives the rotation parameters for anomalies on the Pacific plate

formed by Pacific-Kula spreading. All the parameters describe the rotation of

the younger anomaly over the fixed older anomaly. The Cenozoic poles and an-

gles of rotations were basically taken from Chapter 2 (Rosa and Molnar, 1988).

The Mesozoic reconstructions were taken from the Pacific-Izanagi-1 parameters

of Engebretson et al.[1984]. The 22-25 rotation parameters were extrapolated

from the 25-30-31 rotation of Rosa and Molnar [1988]. We also extrapolated

the 30-31-34 rotation parameters from those given by Engebretson et al.[1984]

for the 31-34 rotation.

4.3.2 Uncertainties in Reconstructions

To calculate the uncertainties for most of the rotation parameters listed in Ta-

bles 4.28 through 4.51, we used the procedure outlined by Stock and Molnar

[1983] and modified slightly by Molnar and Stock [1985] (See Chapter 2 (Sec-

tion 2.4), and Figure 2.2a). This geometrical method yields uncertainties in

reconstructions, based on positions of magnetic anomalies and fracture zones

with finite uncertainties. Using this method, we describe the uncertainty in the

reconstruction in terms of small perturbing rotations about three orthogonal

axes (partial uncertainty poles). A rotation about the center of the data region

will skew the two plates slightly and a rotation about one the two other axes

will cause a mismatch of the magnetic anomalies or a mismatch of the fracture

zones.

In our study of the Pacific, Farallon, Vancouver and Kula plates (Chapter 2),

~1
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we tolerated uncertainties in positions and misfits of 20 km. In this chapter, we

allow different uncertainties in positions and misfits, depending on the quality

of our data, which depends on the navigational method, density of bathymetric

coverage, and quality of magnetic and topographic signatures. The angle of

rotation that gives a x-km skewed mismatch can be approximated by

x(km)

111.4( km )sin\degree Sfl2

where L is the length (in degrees) of the plate boundary for which there are data

[Stock and Molnar, 1983]. The angle of rotation that gives a 20-km mismatch

of the fracture zones or magnetic anomalies, for a partial uncertainty rotation

pole ninety degrees away from the dataset, is 0.18*.

Whenever it was not possible to calculate the uncertainties directly from the

geometry of the data distribution (end points of plate boundaries and azimuths

of transform faults), we interpolated, extrapolated or used a method analogous

to that of Chang et al.(submitted for publication, 1989) to combine uncertainties

from two pairs of plates to get the uncertainties for a third pair of plates. This

method calculates covariance matrices that are summed to yield a covariance

matrix for the combined reconstruction. The eigenvalues and eigenvectors of

this covariance matrix are analogous to the angles and partial uncertainty poles

of partial uncertainty rotations for the combined reconstruction. Therefore,

for each reconstruction, we could construct a "pseudo-covariance" matrix with

eigenvalues equal to the partial uncertainty rotation angles, and eigenvectors

parallel to the partial uncertainty rotation axes. These matrices could then be

summed and solved to yield partial uncertainty rotation axes and angles for

combined reconstructions.

In tables 4.28 through 4.51, we list the partial uncertainty rotations associ-

ated with the rotation parameters listed in tables 4.2 through 4.27. They can

be added to the best-fit rotation to represent in latitude-longitude-angle space
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the uncertainty associated with the best-fit pole and angle.

4.4 Determination of Isochrons

We are interested in determining the geographic distribution of the isochrons

for the times of magnetic anomalies 5, 6, 13, 18, 21, 25, 30-31, 34, MO, M4, M11,

M16, M21, and M25. To get the isochrons at these specific times, we rotated

the magnetic anomaly crossings on both sides of the ridge by the respective

half-angles about the pole of rotation for each anomaly, so that the crossings of

the magnetic anomalies would incide at a paleo-ridge axis. We then modified

the paleo-ridge axis to best fit the positions of the rotated magnetic anomalies

and moved the "modified ridge" back to the position of the original data, by

rotating it by the respective half-angles about the pole of rotation for the chosen

anomaly. The resulting two lines constitute the isochrons. Figures 4.1 and 4.2

illustrate the procedure.

We will use the calculations for South Atlantic ocean as an example: To

define the anomaly 5 time isochrons, we took the magnetic anomaly 5 crossings

on both sides of the mid-Atlantic ridge and rotated them about the South

America-Africa anomaly 5 pole of rotation by the respective half-angles to the

ridge crest (see Table 4.19). We then modified the shape of the plate boundary

at the ridge axis using both the present plate boundary and the rotated data,

which in many cases is inadequate to define the plate boundary at the time of

anomaly 5. We digitized the "modified ridge" and rotated this feature about

the same pole of rotation back the present positions of anomaly 5. The resultant

lineations constitute the anomaly 5 isochrons in the South Atlantic ocean. These

isochrons are constrained by crossings of anomaly 5 where such data exist, and

are defined by the shape of the present (younger) ridge crest where such data

do not exist.
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To get the isochrons for anomaly 6 time, we changed the "modified anomaly

5 ridge" by rotating the crossings of anomaly 6 on both sides of this ridge

about the South America-Africa anomaly 6 pole of rotation (Table 4.19) by the

respective half-angles. We then digitized the "modified anomaly 6 ridge" and

rotated it back about the same pole of rotation so that the resultant lineations

constitute the anomaly 6 isochrons on the South Atlantic. Isochrons for anomaly

6 and older are defined by crossings of such anomalies where they exist, and by

the isochrons for younger anomalies where data are insufficient.

We were careful to use all sets of data available. Although we were interested

in just the isochrons for the times of magnetic anomalies 5, 6, 13, 18, 21, 25,

30-31, 34, MO, M4, M11, M16, M21, and M25, we modified these isochrons

whenever we had magnetic anomaly crossings and poles of rotations. Using the

South Atlantic again as an example, we digitized "modified ridges" for the times

of the Tertiary and Late Cenozoic anomalies 5, 6, 13, 18, 20, 31, 32, 33, and

34. To define the anomaly 21 time isochrons, we used the "modified anomaly

20 ridge", rotated about the South America-Africa anomaly 21 pole of rotation

(Table 4.19) by the respective half-angles.

We followed this procedure for all the oceans to obtain the isochrons at the

selected times of magnetic anomalies 5, 6, 13, 18, 21, 25, 30-31, 34, MO, M4,

M11, M16, M21, and M25. We then had to review each region and connect

the isochrons, especially at the triple junctions where the lengths of isochrons

change progressively with time; near the trenches, where older seafloor has been

subducted, and the shape of the isochrons differ at each time; and in the regions

where there is a lack of data.
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4.5 Reconstructions for the times of anoma-

lies 13 and 25 (35.58 Ma and 58.94 Ma)

To get the reconstructions for the time of anomaly 13 (35.58 Ma) and for the

time of anomaly 25 (58.94 Ma), we rotated all the continents and isochrons with

respect to a fixed Africa.

The Caribbean region was rotated with North America. With the rotation

of India to its original southern position at anomalies 13 and 25 times, we have

an opening between India and Southern Tibet. We traced the coastline of Asia

from Sumatra to Southern Iran across this region following the shape of the

Himalayas.

We needed to assign an age to the regions of oceanic crust that were sub-

ducted later than the times of the reconstructions and are not present today.

We show on our reconstructions one possible configuration for each of these

areas. In some regions of the earth, where we have isochrons on one side of

the plate pair at the present time, we reflected these isochrons onto the other

plate. In some of these regions, however, no isochrons were available from the

corresponding plate. This is the case for the northwestern Pacific region, where

we have the Pacific-Kula and Pacific-Phoenix Mesozoic lineations present to-

day. We assumed that in the past, these isochrons continued to the west to the

trenches on the east side of Asia or until they reached the Mesozoic lineations

present today on northwestern Australia.

In the gap opened between India and Southern Tibet, we assumed the age of

the sea floor to be of Jurassic age. We will make further discussions on the age

of this region in Chapter 6 when we use the area-age distribution to calculate

changes in sea level.
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4.6 Conclusions

We assembled a collection of rotation parameters from various authors. We

used our dataset of plate boundaries, magnetic anomaly crossings, and fracture

zone crossings to check these rotation parameters. We enlarged this dataset

and calculated new rotation parameters several times until we had a group of

rotation parameters and a dataset of plate boundaries, magnetic anomaly and

fracture zone crossings that were internally consistent. From these, we prepared

a map of the age of the ocean floor for the present time.

We discussed in detail our rotation parameters and calculated the uncertain-

ties associated with these parameters. It is the first time that a global analysis

of rotation parameters and their uncertainties has been made, resulting in a

consistent world map of the age of the oceans.

We also made two reconstructions for the times of anomalies 13 (35.58 Ma)

and 25 (58.94 Ma). The resultant global maps show that our rotation parameters

are consistent by connecting the rotated isochrons in the triple junctions.

The analyses of the resultant area-age distributions for the present time and

for the times of anomalies 13 and 25 are presented later in Chapter 6, when

we calculate the sea-level changes associated with each area-age distribution.

All the work in the present Chapter was done in order to minimize, and then

accurately represent, the uncertainties in the reconstructions and, consequently,

in the calculations of sea-level changes.

Figure Captions
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Figure 4.1. Schematic diagram of the steps used in the determination of the

isochrons. To get a specific isochron, we rotated the magnetic anomaly

crossings on both sides of the ridge by the respective half-angles about the

pole of rotation for each anomaly, so that the crossings of the magnetic

anomalies would incide at the ridge axis. We then modified the ridge

axis according to the positions of the rotated magnetic anomalies and

rotated the "modified ridge" by the respective half-angles about the pole of

rotation for the chosen anomaly. The resulting two lines would constitute

the isochrons.

Figure 4.2. Ilustration of the procedure described on Figure 4.1. First, we

have the present ridge and magnetic anomaly 5 crossings (Figure 4.2a).

We rotate the magnetic anomaly crossings on both sides of the ridge by

the respective half-angles about the pole of rotation for anomaly 5 (Fig-

ure 4.2b) so that the rotated magnetic anomaly 5 crossings incide at the

present ridge (Figure 4.2c). We modify the present ridge based on the

rotated crossings of magnetic anomaly 5 (Figure 4.2d). Finally, we ro-

tate the "modified ridge at anomaly 5 time" by the respective half-angles

about the pole of rotation for anomaly 5 to get the isochrons for anomaly 5

(Figure 4.2e). To get the isochrons for anomaly 6, we repeat this proce-

dure starting with the "modified ridge at anomaly 5 time" instead of the

present ridge.
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Chapter 5

Numerical Determination of the

Area-Age Distribution of the

Ocean Floor

5.1 Introduction

The global plate reconstructions summarized in Chapter 4, achieved using the

rotation parameters compiled from the geophysical literature and those obtained

here (Chapters 2, 3 and 4) enable us to view the geographic distribution of the

age of the ocean floor at several stages of the geologic time scale.

We should consider now the importance of the area-age relationship ob-

tained for the present-day age zones by Berger and Winterer [1974] and Sclater

et al.[1980], which was shown by Parsons [1982] to be useful in the determi-

nation of the sea level changes, to obtain the hypsometric distribution, and to

constrain temporal variations in the heat loss from the ocean floor. Parsons'

[1982] work encouraged us to use our global plate reconstruction results in order

to perform similar studies for other geologic ages. This chapter summarizes the
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mathematical setup of our problem, which is centered on the determination of

these area-age distributions. We also show here the results of some tests per-

formed to check the validity of the numerical method, used to compute areas

and describe the sources of uncertainties in the results.

5.2 Numerical determination of the area on

the surface of a sphere using Stokes The-

orem

If we consider the present-day distribution of the ocean floor age zones, we

notice that we may have the following types of boundaries for these age zones:

magnetic anomalies, fracture zones, ridges, trenches, and the continent-ocean

boundary at passive margins (Figure 5.1). The geographical position of each

of these features will determine the limits of each age zone. This means that

we need to know the geographical coordinates (we will use the colatitude 0

and longitude <p) of each point forming these tectonic features at each geologic

age considered. This can be obtained by digitizing the present-day tectonic

maps of the oceans, including all available data for the magnetic anomalies, and

by rotating these points by means of the parameters collected in the previous

Chapters (i.e. by using the global plate reconstruction models).

We then use Stokes' Theorem, in order to avoid the calculation of a surface

area integral by substituting an equivalent line integral (Figure 5.2):

I ( x F) - dA= F -df (5.1)

Notice (Figure 5.2) that we have assumed that the unit vector n^ points

upwards, perpendicular to the surface A, which implies that we follow the path

C in the counterclockwise sense (Hildebrand, 1976).
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The only requirement implied by the definition above is that the area A

should be contained in a simple region, where the vector F is continuously

differentiable. A region R is defined as a simple region if any arbitrary closed

curve lying in R can be shrunk continuously to a point in R without passing

outside R (Hildebrand, 1976).

If we consider the case where the area A is on the surface of a unit sphere

(which is the case if we are considering only areas on the surface of a spherical

earth model), we have that the unit vector n^ is always coincident with the radial

direction of this sphere: n = r (Figure 5.3). We can then write (5.1) as:

( x ),dA = F-d (5.2)

Since we want to obtain the area A, we can constrain

(v x F), = 1 (5.3)

so that we have only left the right hand side of equation (5.2),

A = J F - d (5.4)

We now proceed to determine the vector F along the limiting path C.

Because we are using spherical coordinates (r, 0, p) in the parameterization

of our problem, and because on the surface of the earth r = R, we can use the

definition of curl to rewrite the constraint (V X F)r = 1 as

- - 1 8 9F
x F)= - (sinOF,) - -F 1=1 (5.5)

Rsin0 I 8 TO -

In general F is not uniquely specified and we can use two particular solutions

to the differential equation in (5.5), in order to obtain the expression for F - d

in equation (5.4). We first consider the solution for which F = 0.

In this case, equation (5.5) becomes
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a
T(sinO . Fw) = RsinO

which leads us to

F, = -Rcot9 + - = F,(0,p) (5.6)
sin6

where g(p) is a function which is independent of the variable 0 resulting from

the integration.

This way,

F = (Fe, F,) = [-RcotO + ](O, 1) (5.7)
sinG

The path C is composed of points r- = (RO, (Rsin)p) due to the parame-

terization in spherical coordinates (Figure 5.3). So,

F= R(O(s), [sinG(s)]p(s)) (5.8)

where s is the index of each point in the limiting curve C for the area. If we

apply the chain rule, df = dds, we get

dr, = RT [sinO(s)V(s)] ds (5.9)

But, since F8 = 0 for this particular solution,

F -dF= (F9, Fw) - (dro, dr.) = F.dr, (5.10)

Then, using Equations (5.4), (5.6), (5.9) and (5.10), we obtain:

A F dr' Ao Rjg(cp(s)) dA J= C d= A+R I-[sin(s) -W(s)]ds (5.11)
Jc c sinG(s) ds

where

Ao = -R2 cotO(s) - - [sinG(s) -W(s)] ds (5.12)
fC ds

r- - -_ ___ __ .1 -- - - - ;=; _



5.2. NUMERICAL ANALYSIS 77

which is the expression for the calculation of the area for the particular case

FO = 0. This line integral is not easy to solve or implement numerically. So, we

should try to find a better equation for F different than the equation (5.7).

We now show the case for which the solution of equation (5.5) employs

F, = 0.

In this case, equation (5.5) becomes

aF0-- = Rsin9
ao

This leads us to

Fo = -RsinO - p + g(9) (5.13)

(we then have FO = F9(0,cp)).
So,

F = (Fo, Fw) = (-RsinO -V + g(O))(1, 0) (5.14)

Using the parameterization in spherical coordinates of each point in the path

C (r = (R, Rsin9 - W)),

r = R(9(s), sinG(s) - p(s))

and the chain rule, df= Lds, we get

dro = R [O(s)]ds (5.15)

But,

F -dr?= (Fe, F,) - (dro,dr,) = FedrO (5.16)

(since F. = 0 for this particular solution).

Then, using equations (5.4), (5.13), (5.15) and (5.16), we obtain
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A = F.- dF= Ao + Rd((} [6s]s(5.17)
A= F-d'=Ao+R g(9(S))yd-[O(s)]ds

where

Ao = -R 2  sinO(s) . [(s) - -[O(s)]ds (5.18)c ds

If we compare equations (5.17) and (5.18) with the corresponding equations

for the first solution, (5.11) and (5.12), we notice that since we will be using

0 < 0 < r and 0 < p 5 27r, the sign change in the cotO(s) term in the

first solution (equations 5.11 and 5.12) will be more critical than in the second

solution (equations 5.17 and 5.18). This is due to the discontinuity we will have

in this term due to a singularity which is not present in this second solution.

Most important though is the fact that equation (5.17) is easier to solve and

to implement numerically than equation (5.12). Thus, we will use (5.17) to

calculate the surface areas, but we still must evaluate the function g(6(s)).

This can be achieved by examining the boundary conditions of this particular

problem.

Since F is an arbitrary vector, we may impose the condition Fe(0, p = Vo) =

0. This will allow us to evaluate the function g(6(s)):

F8(0, y= po) = -Rsin(s)po(s) + g(6(s)) = 0

then,

g(O(s)) = po(s)Rsin9(s)

and

F(6(s), V(s)) = -Rsin(s)[p(s) - Vo(s)] (5.19)

Finally, equations (5.17) and (5.18) can be written as
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A = -R 2  sinO(s)[p(s) - o(s)] [6(s)]ds (5.20)

which can be evaluated numerically as

N

A L -R 2  _ sin~k(k - Vo)[Ok+1 - Ok] (5.21)
k=1

where Vo is the longitude of the westernmost point of the boundary C, which

was parameterized into N points.

5.3 Application of the numerical method to

the original digitized data

The method described in the previous section was applied to the digitized data

set. As we recall, the data set consists of geographic coordinates (0, p) of a

series of tectonic features, which bound each of the age zones considered here.

These coordinate pairs (0, p) result then from the rotation of the original coor-

dinates of points which were unevenly digitized from present-day tectonic maps

of the oceans (Chapter 4). In order to have all points in a given path C (which

bounds an area A) at a fixed distance from each other, we decided to perform

linear interpolation between each two digitized points in our reconstructed earth

models. This is a reasonable approach, since most magnetic anomalies, fracture

zones and ridges are nearly linear features, and considering that we have digi-

tized with high density of points the other two types of features (namely, the

continental boundaries and trenches). After this interpolation process was used,

all consecutive points forming a boundary had the same distance measured from

each other. The interpolation process was also very useful in the reconstruc-

tion process, since it is easier to identify the point of intersection of two linking

features when we are dealing with a larger amount of points in each one of these.
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We shall now describe how the linear interpolation was performed to deter-

mine the coordinates of the points forming each boundary of an arbitrary area

A (Figure 5.1). This method has been widely used in seismology to determine

the coordinates of points forming the great circle paths along which seismic

surface waves travelled between any two points on the surface of the earth (see

Rosa, 1986 for a recent application). In this case, we assume a spherical earth

model for simplicity, and consider the system of Cartesian coordinates shown

in Figure 5.3. The Cartesian coordinates of the two points (1 and 2) which will

be the extremities of the great circle we want to interpolate, are given by:

x = Rsincosp;

yI = Rsin;sinp;
z; = Rcos0;

,i = 1,2 (5.22)

We then define another system of Cartesian coordinates (x', y', z') such that

the x' and y' axes lie in the plane containing the great circle path between the

two points (Figure 5.4). We proceed by setting the intersection of the x' axis

with the surface of the sphere at one of the points at the end of the great circle

[Rosa, 1986].

Using this new system of coordinates, we can define the coordinates of

equally spaced points located at a distance d from each other along this great

circle:

x = Rcos;o

y = Rsinp

z =

S= i -d (i = 1, 2, ... ).

To calculate the corresponding coordinates (Xi, yi, z;) of these interpolated

points, we apply the following rotation operator to these points:
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XI anl a12 a13  x(
y; = a21 a22 a2 3  y (5.24)

zi a31 a32 a33  z

for which the elements ai; are obtained by constraining that this operator should

perform the following rotations: (1, 0, 0) to (x1 , yi, zi); (0, 0, 1) to (x 1, y1 , zi) x

(x 2, y2, z 2) and (0, 1, 0) to [(x1 , y1,z 1 ) x (x 2, y2,z 2)] x (x1 7 y1 , zi).

Finally, the spherical coordinates of the interpolated points are given by

i = -tan-1{ : [ ] (5.25)

We can then obtain the total area bounded by a set of tectonic features

by applying equation (5.21) to all interpolated points with coordinates (0j, sOi)

given by equation (5.25) above.

5.4 Numerical Methods

The application to our reconstructed (originally digitized) data set requires that

we have an idea of the uncertainties of these data. In this section, we try to

make an estimate of the uncertainties related to the area calculation process.

Other sources of errors, related to the uncertainties envolved in our data set,

and in our reconstructed earth models, were discussed in Chapters 2, 3 and 4.

The basic idea behind the tests whose results are presented here is the eval-

uation of the amount of error which we may have in the calculation of areas

using the Stokes Theorem method introduced in section 5.2.

In order to evaluate these errors, we have chosen to digitize a present geo-

graphic feature, with well known area, obtain the geographic coordinates of each

point bounding this feature, and finally apply our method to calculate the area
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of this region. We chose to digitize the border line of three different Brazilian

states: Minas Gerais (with a listed area of 587,172km 2 ), Sergipe (with a listed

area of 21,994km 2 ), and the Federal District, where Brasilia is located (with an

area of 5, 814km 2).

Minas Gerais and the Federal District were digitized from a 1:3,000,000

scale geographic map (Figure 5.5), while the state of Sergipe was digitized from

a 1:4,000,000 map (Figure 5.6). We have followed the same area calculation

process described in the sections above, and used the same software as was used

for the area calculations discussed in Chapter 6. Using an increment distance of

0.001 degrees in equation (5.23), we obtained the following results: 575,382km 2

area for the Minas Gerais state (a 2% error if we consider the area listed above),

21,973km 2 for the Sergipe state (a 0.1% error), and 5, 453km2 for the Federal

District (a 6% error from the real value). These results were all obtained using

an interpolation distance of 0.01*. We believe that the larger error involved

in the last case is due to the inappropriate map used to study the area of the

Federal District, which has a small area compared to the other two features,

and so should have been obtained from a larger scale map. For the other two

states, we considered the error level acceptable since it is less than the errors

usually involved in the digitization process. This method should be suitable

for the application to our reconstructed tectonic maps of the earth, since most

areas considered here are larger than those considered in these tests.

In order to test even further our method and the computer programs written

to implement it, we applied an additional test. This time we used a larger area

which is known exactly, thereby eliminating doubts on the mapping precision

such as those encountered above. We chose a 60* wide segment of a hemisphere

of the earth. This segment, bounded by the 30*E and 90*E longitude lines and

by the geographic equator, has a total area given by:
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'(4,rR 2) = 42, 505, 372.67
12

where R is the earth's radius (R = 6371 km). To start the area calculation, we

generated the points forming the area boundaries at each 1* increment along

the two longitudinal lines (30*E and 90*E) and along the equator between 30*E

and 90*E. Using interpolation distance values of 0.10, 0.01* and 0.0010, we

obtained the following results for the area of this region: 34,648,274.74km 2,

41,722, 504.09km 2 , and 42,386,233.27km 2 . These correspond to the error val-

ues of 18%, 1.8% and 0.28%, respectively, from the above exact value. This

shows that our method is also suitable for application in cases where large areas

are considered. It is also clear that the use of a small interpolation distance

implies smaller errors in our results.

In the case of areas bounded by actual tectonic features (present-day case),

the uncertainties are mostly due to possible errors in the location of these fea-

tures. If we consider the case of areas bounded by reconstructed (rotated)

tectonic features, we have additional uncertainties due to uncertainties in the

rotation parameters. Such uncertainties can become smaller with the collec-

tion of more magnetic anomaly and bathymetric data, better tectonic evolution

models for the ocean basins and better definition of their boundaries.

5.5 Conclusions

We defined a method for the calculation of the areas of ocean floor created

during a certain period of time by using the Stokes theorem to transform an

area integral into a line integral. The method proved to work properly. The

errors in the areas calculated by the method are less than 2% of the correct area

when the boundaries of the area are digitized from a map with a proper scale
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and when an interpolation factor of 0.010 is used in the method. To assure well

defined boundaries requires then that the digitization of the boundaries be done

carefully using maps with appropriate scales (e.g. 1:3,000,000 would be suitable

for a 30, 000km 2 area) and the digitized points are not very far apart from each

other (e.g. not farther away from 1* if we are using an interpolation distance of

0.010).

The errors in the calculated areas are small compared to the uncertainties

in the areas due to the uncertainties in the rotation parameters.

The method developed here will be used to calculate the area of ocean floor

created during certain periods of times, and the area of ocean floor in various

tectonic reconstructions at specific times. The results of the area calculations

and the analysis of these results in terms of sea-level changes are listed and

discussed in Chapter 6.

Figure Captions

Figure 5.1 Schematic representation of a particular case where two different

areas (bounded by different tectonic features) need to be determined from

the geographic coordinates of each point forming these area boundaries.

Figure 5.2 Graphic representation of the unit vector h, perpendicular to the

area A, which is bounded by the line C. The line C is followed in the

counter-clockwise sense in the application of Stokes theorem, if the vector

n points out of the surface where A is located.
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Figure 5.3 Spherical coordinate system used in the application of Stokes the-

orem method for area calculation: each point P is determined by the co-

latitude and longitude (0, V) pair. The distance RO from the north pole,

and the distance from the zero meridian to the meridian containing P,

(RsinO)p, can also be used as a mean of fixing the position of the point.

Figure 5.4 Graphic representation of the linear interpolation method used to

determine the geographic coordinates of each point between two any points

(labeled 1 and 2) on the surface of a sphere. (x', y', z') represent the

rotated reference axes, where A is the distance between points 1 and 2,

and d is the interpolation distance.

Figure 5.5 Map of the Brazilian state of Minas Gerais and Federal District,

reduced from a 1:3,000,000 scale geographic map which was used to digitize

the boundaries of these features for the calculation of their areas with the

method developed in this Chapter.

Figure 5.6 Map of the Brazilian state of Sergipe, reduced from a 1:4,000,000

map which was used to digitize the boundaries of this state for the calcu-

lation of its area, using the method developed in this Chapter.
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Chapter 6

The Area-Age Relationship and

Global Sea-Level Changes

6.1 Introduction

In this chapter we will define the area-age distributions for the present time

and for the times of anomalies 13 and 25 (35.58 and 58.94 Ma, respectively).

Then, as the ultimate goal of the thesis, we will use the changes in the area-age

distributions for the three particular times to derive changes in the sea level,

together with the uncertainties in these changes. We will test the hypothesis

that past sea-level changes were mainly controlled by the distribution of area

and age of the oceanic crust.

6.2 The Theoretical Area-Age Relationship

Sclater et al. [1980] determined the distribution of area as a function of the age

of the ocean floor at the present time, using areas measured from an equal-area

map of the oceans on which isochrons had been plotted. They found that the
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area per unit age decreases with age in an approximately linear fashion. Parsons

[1982] used these results and proposed an equation for the derivative of area, A,

with respect to age, t, of the form

dA ((61)
-t =Co (1 - -' (61

where Co is the rate of generation of new ocean floor and tm is the maximum

age. This linear relation between the area per unit age and age is empirical.

There is no theory that justifies that this relation must be linear. In order to

reduce the effect of errors in isochron locations, ages, and area measurements,

Parsons [1982] combined adjacent age intervals from the area calculations of

Sclater et al. [1980]. By integrating Equation (6.1), Parsons [1982] gave the

cumulative area (the area of the ocean floor that is younger than a given age),

A(t) =Cot 1 - (6.2)

Parsons [1982] explained why the empirical relations (6.1) and (6.2) describe

so well the area-age distribution and the cumulative area versus age distribution,

built on the area-age data given by Sclater et al. [1980], by considering the

balance between plate generation and plate consumption. According to Parsons

[1982], this is due to the fact that at any given time, new area of the ocean floor

is generated at a rate equal to Co at that time. He also postulated that the total

amount of consumption must be equal to C, so that the total area preserved at

anytime is constant. As the ocean gets older, the initial area per unit age, Co,

experiences a constant rate of consumption, Co/tm, and hence decreases with

time.

Parsons [1982] also calculated a theoretical hypsometric curve for the oceans

by combining this relationship between area and age, with the relationship be-

tween age and depth. Parsons and Sclater [1977] showed that the variation of

the mean depth, b(t), with age can be described by
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(t)=do + at 2  0 < t < 70Ma

(6.3)

6(t) = d, - be-r t > 20Ma

where the values of the constants involved above, when t is measured in millions

of years, are

a = 350 m do = 2500m, b = 3200m, d, = 6400m, r = 62.8Ma
(Ma)2'

The two expressions differ by less than 20 m between 20 and 50 Ma. Their

derivatives, which we used later, amplify the differences but agree within 1% at

35 Ma, which is where Parsons [1982] matched the different expressions.

Parsons [1982] calculated the derivative of area with respect to depth (area

per unit depth interval), which can be expressed as:

dA = dAdt

d dtd(6.4)

By substituting (6.1) and (6.3) into (6.4), Parsons [1982] got

d A 2Cot 2 t
-=1 - 0 < t < 35Ma

dS tm

(6.5)

dA _Core* ft
d- 1-- 35< t < 180Ma
d6 b tM

Equations (6.3) and (6.5) represent a parameterized hypsometric curve with

the age of the ocean floor as the parameter with the assumption that the deriva-

tive of area with respect to age, t, is linear dependent on age.

Changes in the area-age distribution, leading to changes in the hypsometric

curve, result in global changes in sea level.
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The volume of water, VO, above the ocean floor is given by

/tm dA trm dA
V = 6(t)-dt = [d, -e(t)]-dt

fo di fo di(.6

where e(t) is the elevation of the ocean floor above the reference depth, d,

(Parsons, 1982). In his derivation, Parsons [1982] neglected the volume of

water that floods the continental margins since this represents only 15% of the

volume change associated with the increased water depth, even when 50% of

the continents are flooded [Hays and Pitman, 1973; Turcotte and Burke, 1978].

Parsons [1982] calculated a value of 1.51 x 109km 3 for V, by substituting (6.1)

and (6.3) in (6.6). He compared his value with that of Menard and Smith

[1966], who estimated a value of 1.35 x 10'km3 by using the actual hypsometric

distribution.

According to Parsons [1982], the thermal structure of the plates determines

the elevation e(t). The total volume of water above the ocean floor, V,, and

the total area of the oceans, A(tm), are considered to be constant. Thus, any

changes in dA/dt must be balanced in equation (6.6) by changes in the reference

depth, d,. As Parsons [1982] noted, with allowance for the isostatic response,

any variation in the water depth everywhere will cause a sea-level change. Ac-

cordingly, we are interested in changes in the area-age distribution.

Parsons [1982] also discussed how the area-age distribution, dA/dt, can be

modified. Changes in the rate of plate generation, in the distribution of con-

sumption with age, or in the total oceanic area as the area occupied by conti-

nents changes, will modify the area-age distribution. Following Parsons [1982],

we consider the total oceanic area to be constant. This way, the area-age dis-

tribution and consequently, calculated sea-level changes, will result only from

changes in the rate of plate generation over geologic time and in the distribution

of consumption with age.
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6.3 Area Measurements

We measured the areas for particular age intervals for the present time, for the

anomaly 13 time (35.58 Ma), and for anomaly 25 time (58.94 Ma). These two

particular times were chosen because the magnetic anomalies are well defined for

these ages and mainly because they represent times of different area-age distri-

butions than the present configuration. The area calculations were made using

the method described in Chapter 5. Tables 6.1 to 6.15 list the area measure-

ments and the uncertainties associated with these measurements for the present

time. Tables 6.16 to 6.28 give these values for the reconstruction at anomaly 13

time (35.58 Ma) and Tables 6.29 to 6.38 give those for the reconstruction at

anomaly 25 time (58.94 Ma).

The areas were measured between the isochrons of a specific magnetic anomaly

age and between the boundaries formed by the limits of younger magnetic

anomaly isochrons. The uncertainties in these areas were calculated by rotating

one of the boundaries formed by one of the magnetic anomaly isochrons using

the partial uncertainty poles and angles for the specific magnetic anomaly listed

in the tables in Chapter 4. By this procedure, the individual measurements of

area are for the cumulative areas (i.e. the area younger than the time of a

specific magnetic anomaly). This was done to avoid combining uncertainties in

younger reconstructions.

The calculated areas were separated into age groups and the values were

used to calculate the dA/dt versus age graphs for each particular time (Figures

6.1 to 6.3 ). We also calculated the cumulative area versus age graphs for each

particular time (Figures 6.4 to 6.6).

If we look at the dA/dt versus age graph for the present time, we notice

a large difference between our results and those of Parsons [1982]. Our area

versus age data do not agree with the linear relation given by Sclater et al.

4
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[1980] (Equation 6.1). The difference results from differences in the isochrons

of certain areas, where we used more recent magnetic anomaly and rotation

parameters and obtained a different pattern from that inferred by Sclater et

al.[1980]. Major differences occur for the Nazca-Pacific isochrons and for the

Indian Ocean. There is no theory that justifies the linear relation between dA

and t determined empirically by Sclater et al.[1980] and Parsons [1982].

6.4 Variations in the Volume of the Oceans

The total volume of the ocean basins is given by,

6 (t) dA(t)dt
j (t d (6.7)

o0 dt

where 6(t) is the mean depth of the ocean at age t and A(t) is the area per unit

age of the ocean between age t and t + dt. Solving this integral by parts, we

obtain
A/tradS(t)d

A(tm)S(tm) - A(t) dt (6.8)
o0 dt

The variation of the mean depth with age, 6(t), can be described by Equa-

tions (6.3) (Parsons and Sclater, 1977). We match the two equations at 40 Ma,

when they differ by less than 10 m. So, the integral in Equation (6.8) becomes

tm d6(t) 4oMa da(t) 18OMa dS(t)
A(t) dt = t) dt+ A(t) d (6.9)0 dtF 0 (1dt 40Ma td(.9

where t,(= 180Ma), the maximum age of the ocean floor.

We have evaluated A(t) at discrete times, ti, of selected magnetic anomalies.

Let us assume that the area, A(t) between two different magnetic anomalies,

t;_1 and ti, can be described by the linear equation,

A(t,) -At;1
A(t) = A(ti-)+ti 1  (t-ti1) ti1 < t < t; (6.10)

ti - t;_.1

4
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Now, we solve the integral between 0 and 40Ma in Equation (6.9). From the

depth equations given by Parsons and Sclater [1977] (Equation 6.3), we know

that,

d6(t) 1 1
- = -at-

dt 2
(6.11)

So, we have

A(t)t) = -{[A(t_1)-(
di 2

Evaluating one term in the first integral of Equation (6.9) leads to the inte-

gral

I t
_, -

d=t )_A(ti) - A(ti_1) tI A(ti) - A(ti- 1)
A(t) dt di = at[ A(t_1 ti - ti31 ti-1]+a [ ti - ti_1 -

=ati[ A(t;_1)

-0t_1 [A(ti_1)

A(ti) - A(ti_1)

t; - t_ 1

A(ti) - (A(ti_1)

ti - ti_1

a 1 A(t ) - A(ti_1)
+ -t2[ ]3 ti - ti- 1

a j A(ti) - A(ti_1)
3 1 ti - ti_ 1

1 1a a 
3

(t - at 1 )A(tij 1 ) + (-at ti-1 + tS I- 3,
3 a 3 A(ti) - A(ti_1)

+at_, 3t_ [ ti - ti_1

= a{A(tj_1)t 2 - A(t_ + [- _ A(ti) +
ti - ti_ 1

1 t ?
+ - A(t;)

3 t - ti_1

1 V A(ti-1)
3t - t;-1

2 t?..
+ 2_ -1 A(ti)

3 ti - ti_1

1 3 3

1 tt,1  1 t7 2 ti
= a{ [t? - t7_1 + ~ * z - %_1-|A(t__1)

ti - ti_1 3 ti - t;_1 3 ti - ti_1

(6.12)

V.
z ti_1 A(ti_1)

ti - ti_1

2 t?- 2_ t_A(tj_1)]}
3 ti -ti_1
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ti - ti-1 V ti - t;_1
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tSt_ 1  1 t +2 tS1 ]A(ti)}
t - ti_1 3 ti - ti_ 3 ti - ti_1

3 1 3

2t7 - 3tit7 + t
= a{[ t - t 1  - ]A(t;-1) +

3(ti - t;-1)

3 13

t - 3t t_-1 + 2t_

3(ti - ti_1)

So, letting to = OMa, for which A(to) = 0, we can write

A(t)dS(t) =
aN

3 ZEjE~A(t-j) + 4DjA(tj)}
i=1

(6.13)

where tN = 40Ma, and

3 1 3

2t7 - 3tit7_1 +
ti - ti_1

3 1.3

t? - 30 ti- 1 + 2t2_1

ti - ti_1

Now, we solve the integral between 40 and 180Ma in Equation (6.9). From

the depth equations given by Parsons and Sclater [1977] (Equation 6.3), we

know that,

dS(t) b _

.- = -e-; (6.14)

For an interval of age between t-_1 and t;, we have

6(t) b A(ti) - A(t;-1) A(t;) - A(t_1) _
A(t) = - - ( )t-1]e+[ 'te*}

dTi r t; - tu-1 ti - ti_1

This leads us to the integral

/t b
A(t)dS(t) = { (-r)e- _,[A(ti-1) -

+{ 
b
7'

A(ti) - A(ti_1)

(i )t-1]}

A ( t ) - A ( t i_ - 2

ti - ti- 1 ti-I e7-I 1 }

I0 =Ma
Vl= fOMa

and

(6.15)
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= b{-e-f + ( ~- )A(ti) - ( )A(t _1) ±A(t-1)
t; - t-1 ti - ti-1

t s- 1  ti

-(1e r )A(t) + _ 1)
ti - 4 _1 ti - t 1

-( ( )A(t )
ti - ti-_

t 1t - t_ 1  t ,t 1

-( ) A~~~t;) + ( ) A~~ti-1)+()At -()At_ }

t - t1 ti 1

*.- r(e- - e- ) r(e~ -e~ -f)
=b{[e-~~++ ]A(t _1 )+ [-e - - ]A(ti)}

St- we_1 tc- wi-1So, I we can writei

18OMa

V2 = Ma (6.16)
M

A(t)d6(t) = b E {QA(t.- 1 ) + %T;A(tj)}
i=N+1

where tM = 180Ma, and

*t--1. r(e- r - e-r)
£; = [e~~1T- + ~ f]

ti - ti-1

and

_ = r(e-r - e- )
ti - ti1

The total volume of the oceans at a particular time is given by

Vo = A(tm)6(tm) - (Vo + V02 ) (6.17)

We checked the numerical scheme by comparing results with the analytic

solution for ± linear in t, and found the disagreement to be less than 0.01%.
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Since all estimates of A(t;) are independent of one another, we assume that

the uncertainties in each can be treated as random. Thus, the uncertainties

involved in the calculation of V, are given by:

1~i (})2[E)2~i N-1(4Di+E+1)2A A+42 2"W0 =o {)[oAA2Z(o) AA?+ AA]. (6.18)
i=1

and the uncertainties associated with Vo2 are given by:

M-1

2~o = [{2 2+g21 E (Xi+fl+1 2 T2M 2M
Vo2 = f bj AA++A? A (6.19)

i=N+1

The total uncertainty involved in the calculation of the volume of the oceans

at a particular time, due to the area-age distribution, is given by

Vo = iAV2 + o2 (6.20)

We seek an estimate of the difference in the volume of the oceans at different

times:

EV = Vpartictlar time - Vp,...,, time

Again, because the estimates of the volumes are independent of one another,

the uncertainty in their difference is simply

AeV = ILAV + AV (6.21)

The values in Tables (6.16) to (6.38) and the above equations were used to

compute the change in the volume of the ocean basins with respect to the present

time and the respective uncertainties associated with the volume changes. We

take the total area of the oceans A(tm) to be 2.967 x 10 8km 2 . The maximum

depth S(tm) is 6.218km. Below, we consider changes of this area with time.

For the present time, Equations (6.13), (6.16), (6.18), and (6.19) yield:

Vol = 0.7547 x 108 km 3 t 0.70 x 106km3

I-
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V0 2 = 2.8446 x 108km 3 ± 2.51 x 106km 3

The above values in Equations (6.17) and (6.20) yield:

Voeent tme = 1.48509 x 109 km 3 ± 2.61 x 106 km 3

For anomaly 13 time (35.58 Ma), using Equations (6.13), (6.16), (6.18), and

(6.19), we got the following values:

Vo = 0.7846 x 108km 3 ± 0.98 x 106 km 3

Vo2 = 2.9439 x 108km3 ± 3.53 x 106 km 3

Using the above values in Equations (6.17), (6.20) and (6.21), we obtain

Vomaly 13 time= 1.47217 x 10 9km 3 ± 3.66 x 106km 3

The difference in the volume of the ocean basins at the time of anomaly 13

from that for the present time is

eVan13-..pre = 12.92 x 106km 3 ± 4.50 x 106km 3

For anomaly 25 time (58.94 Ma), Equations (6.13), (6.16), (6.18), and (6.19),

yield the following values:

Vo = 0.8918 x 108km 3 ± 1.01 x 106km 3

V 2 = 3.1174 x 108km 3 ± 3.27 x 106 km 3

Using the above values in Equations (6.17), (6.20) and (6.21), we obtain

Vo 2time= 1.44410 x 109km 3 ± 3.43 x 106km 3

The difference in the volume of the ocean basins between the time of anomaly

25 and the present time is given by

eVan2 5-pres = 40.98 x 106km 3 ± 4.30 x 106km3
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6.5 Sea-Level Changes

Pitman [1978] showed that transgressions and regressions result from changes in

the rates of sea-level rise or fall. He derived a quantitative relationship between

the position of the shoreline and the rates of subsidence, sea-level changes, and

sedimentation at Atlantic-type passive margins.

Pitman [1978] argued that to translate changes in the total ridge volume

into sea-level changes, two corrections are needed. If the change in the water

depth is h, a subsidence of the floor of ocean basin relative to the continent, d,

must occur, but because of isostasy, h # d. If the density of the upper mantle

is 3.4g/cm3 , the change in the sea-level is (h - d) = 0.7h. Second, a correction

must be made for the hypsometric distribution (i.e. for the shape of the ocean

basin). Pitman [1978] assumed that with the increase in the sea level there is

a linear increase in the area covered by the sea (0.17 x 106 km 2 for each meter

rise in sea level). Based on these two corrections he showed that the change in

continental freeboard (change in the sea level) (h - d) caused by a change in

the volume of the oceans, (eV), may be computed from

V = Aoh +(0.7h)2-- (6.22)

where W (in Km 3) is the difference between the present volume of the oceans

and the volume at time t, Ao is the present total area of the oceans (calculated

here to be 296,723,115 Km 2) and h is measured in Km.

This equation can be rewritten as

eV Ao(h - d) + (h - d)2__- (6.23)
0.7 2

Solving Equation (6.23) for (h - d), we get

(--)2 + 340eV -A

(h - d) = 170 0.7 (6.24)
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Substituting the values of differences in the volume of the oceans calculated

in the previous section, together with Equation (6.24), we obtain a fall in the

sea-level of 30 ± 10 meters from anomaly 13 time (35.58 Ma) to the present time.

From anomaly 25 time (58.94 Ma) to the present time, we obtain a sea-level fall

of 97 ± 10 meters.

To check what would be the change in the sea level if in the past the distribu-

tion of the mean depth of the oceans would not be described by equations (6.3),

we made a simple test. Assuming that the variation of the mean depth with

age could be described just by the d relation of equation (6.3), we calculated

a decrease in the sea level of 32 meters since anomaly 13 time (35.58 Ma) and

a decrease in sea level of 98 meters. Comparing these values with the results

above, we conclude that if the distribution of mean depth with age in the past

60 million years was different from the present distribution, we would still have

practically the same changes in sea level.

6.6 The Northward Motion of India

The calculated changes in sea level given above are based on the assumption

that the area of the ocean basins has remained constant. This is very unlikely,

but to estimate the change in area with time from reconstructions is virtually

impossible. The uncertainties are enormous and they dominate any calculation

of uncertainties in calculations of sea level. To examine how a change in area

affects sea level, we consider what is probably the largest change in area, the

penetration of India into Eurasia.

Since about 50 Ma, the total area of the oceans probably has being de-

creasing due to India moving northward with respect to Eurasia, with that

penetration absorbed largely by crustal thickening apparently with almost no

extrusion (England and Houseman, 1986). Let us estimate the contribution of
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this change in the area of the oceans to the variation in the sea level.

For the calculation at anomaly 13 time (35.58 Ma), we assume an average

northward motion since that time of 50 k (with a 20% uncertainty), of a section

of 2000km in width (with an uncertainty of 10%) of continental crust migrating

northward, and with a 5km mean depth of the ocean basin created by the

diminution of continental area (but with an uncertainty of 30%). This yields

CV35 5mati"km

eVSa = 35.58Ma x 50- x 2000km x 5km = 17.8 x 106km 3

The percentage uncertainty associated with this value is given by

V(0.20)2 + (0.10)2 + (0.30)2 = 37%

which corresponds to an uncertainty of 6.7 x 10'km3 in volume.

For the compression of Eurasia between the time of collision and the time

of anomaly 13, let us assume the collision occurred at about 5OMa with an

uncertainty of 5 Ma, and a northward motion of 100% with a 20 % uncertainty.

We obtain

eV5j,0 8a ," = (50 - 35.58)Ma x 100 x 2000km x 5km = 14.42 x 106 km 3
In ta otionMa

The per cent uncertainty associated with this value is roughly

V(0.30)2 + (0.20)2 + (0.10)2 + (0.30)2 = 48.0%

So, for the reconstruction at anomaly 25 time (58.94 Ma), the penetration

of India into Eurasia has created a volume of ocean given by

JS9a ion = (17.8 + 14.4) x 106km 3 = 32.2 x 106km3

The per cent uncertainty associated with this value is given by

(0.37)2 + (0.48)2 = 61%
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which is an uncertainty of 19.6 x 106km 3.

Using Equation (6.24) to translate these values into differences in the sea-

level, we get a difference of 42 meters ± 16 meters for the reconstruction at

anomaly 13 time (35.58 Ma) and a difference of 76 meters ± 46 meters at

anomaly 25 time (58.94 Ma).

The contribution to the variations in the sea level of the change in the volume

of the oceans due to the northward motion of India is very large, comparable

with that due to the difference in the mean age of the ocean floor. For the

reconstruction at anomaly 13 time (35.58 Ma) the change in the sea level due

to differences in the area-age distribution of the oceans is smaller than the

estimated sea-level change due to the compression of the northern part of India

against Eurasia. For the reconstruction at anomaly 25 time (58.94 Ma), the

change in sea-level caused by the northward motion of India is smaller than the

change in sea-level calculated from variations in the area-age distribution of the

oceans, but they are comparable.

6.7 Conclusions

The area-age distributions of the ocean floor at the present time and at the

times of anomalies 13 and 25 (35.58 and 58.94 Ma, respectively) were computed

here. The area-age distribution at the present time disagrees with the conclusion

originally made by Sclater et al.[1980] and used later by Parsons [1982], that

the area per unit age decreases following an approximately linear dependence

on age.

The differences in the area-age distributions were used to calculate differ-

ences in the total volume of the oceans. These differences in the total volume

of the oceans were translated into changes in the sea-level following the analysis

of Pitman [1978]. The uncertainties involved in the calculations were also com-
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puted. The differences in the total volume of the oceans should have caused a

change in the sea level of 30 ± 10 meters since anomaly 13 time (35.58 Ma) and

a change of 97 ± 10 meters since anomaly 25 time (58.94 Ma), assuming that

the area of the ocean basins has been constant. These results agree with the

predictions of some sedimentary studies. The uncertainties in the final numbers

indicate that it is important to continue this research with the calculations of

changes of sea level during other periods of time, to see if it is possible to define

sharper sea-level changes.

Following the analysis of Turcotte and Burke [1978], these changes in the

sea level would represent a change in the ridge heat flow of 3.351 x 1011 cal/sec

since anomaly 13 time (35.58 Ma) and a change in the ridge heat flow of 6.664 x

1011 cal/sec since the time of anomaly 25 (58.94 Ma). This suggests that the

convection process is not a steady state process.

We also notice, however, that the change in area of the ocean basins due

to the northward movement of India since its collision with Eurasia could be

very important and a major factor in sea-level changes since the collision time

(about 50 Ma). For the anomaly 13 reconstruction, the change in the volume

of the oceans due to the northward motion of India could be responsible for

larger variations in the sea level than is the change in the area-age distribution

of the oceans. For-the anomaly 25 time (58.94 Ma) reconstruction, the collision

of India with Eurasia results in smaller changes in sea level than the variation

in the area-age distribution of the oceans but, nonetheless, the changes due to

this collision are very significant.

The combination of the changes in the sea level due to differences in the

area-age distribution with the sea-level changes caused by the penetration of

India into Eurasia give us a change in the sea level of 72 t 19 meters since the

time of anomaly 13 (35.58 Ma) and a change in the sea level of 173 i 47 meters

since anomaly 25 time (58.94 Ma).
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There are 30.11 x 106 Km3 ± 2.5 x 10"Km 3 of ice present today in Antarctica

which is about 90% of the world's ice (Drewey, 1983). This would represent a

difference in sea level of 71 meters ± 6 meters. So, the combination of the

changes in sea level due to the previous factors and the assumption that most

of the ice was formed in the past 30 m.y., give us a change in sea level of 143 ± 25

meters since the time of anomaly 13 (35.58 Ma) and a change in the sea level

of 244 ± 53 meters.

The changes in the total area of the ocean basins due to other collision

boundaries is considered here to be small and are ignored. The changes in the

volume of the ocean basins due to seamounts and plateaus are also ignored.

There is no reliable way to estimate their values in the past. The volume of

ocean water is assumed to be constant. Ninety percent of the water is believed

to have been formed during the first billion years of earth's history and, during

the Phanerozoic the production of juvenile water was insignificant (Holland,

1984). There is an error associated with the study of sea-level changes due to

these factors.

We also could have additional errors due to the subduction of young sea

floor in the past with no record of its age preserved at the present time. If all

the subducted ocean floor that we considered to be older than anomaly M25

in the reconstruction for anomaly 13 time, with age between 144.42 Ma and

180 Ma, were very young sea floor, with age between 0 Ma and 6.43 Ma, we

would have a change of 144 meters due to change in the area-age distribution.

In a similar way, if all the subducted ocean floor that we considered to be older

than anomaly M25 at the reconstruction at anomaly 25 time, with age between

121.06 Ma and 180 Ma, were very young sea floor, with age between 0 Ma and

9.53 Ma, we would have a change of 307 meters due to changes in the area-

age distribution. These two examples show the extreme error that could arise

from our lack of knowledge about the age of the portion of ocean floor that was
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subducted in the past and is no longer present today.

Figure Captions

Figure 6.1
d, as

Figure 6.2
d, as
d '

Figure 6.3
d, asas

Graph showing the variation of the

a function of time, t, for the present

Graph showing the variation of the

a function of time, t, for the time of

Graph showing the variation of the

a function of time, t, for the time of

ratio between area and time,

time.

ratio between area and time,

anomaly 13 (35.58 Ma).

ratio between area and time,

anomaly 25 (58.94 Ma).

Figure 6.4 Graph of the variations of cumulative area, A, versus time, t. The

red represents the variation for the present time. The blue shows the

variation for the time of anomaly 13 (35.58 Ma). The green shows the

variation for the time of anomaly 25 (58.94 Ma).
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Chapter 7

Summary and Conclusions

The first task of the work presented here was to organize a set of magnetic

anomalies, fracture zones and plate boundaries that included all the data col-

lected and presented until now in the geophysical literature. We also collected

published sets of rotation parameters. These first two steps involved a detailed

search in the literature followed by the digitization of all the data that were

not included in an earlier database. We compiled isochrons for the times of

magnetic anomalies 5 (10.59 Ma), 6 (19.90 Ma), 13 (35.58 Ma), 18 (42.01 Ma),

21 (49.55 Ma), 25 (58.94 Ma), 30-31 (68.47 Ma), 34 (84.00 Ma), MO (118.35

Ma), M4 (125.91 Ma), M11 (132.78 Ma), M16 (141.52 Ma), M21 (149.65 Ma),

and M25 (156.42 Ma).

The second task of this thesis was the analysis of the magnetic and bathymet-

ric data in order to test the rotation parameters. This resulted in the calculation

of some new rotation parameters and of the uncertainties associated with them

to build a consistent set of parameters with calculated uncertainties that would

work with all the plate boundaries.

These first two objectives were performed in Chapters 2, 3, and 4. Chap-

ter 2 describes our study on the rigidity of the Pacific plate during late Cre-
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taceous and Tertiary time. We analyzed magnetic anomaly and fracture zone

crossings resulting in the set of consistent rotation parameters with associated

uncertainties for the Pacific-Farallon, Pacific-Vancouver, and Pacific-Kula plates

between the times of anomalies 13 and 32. The Pacific and Farallon plates be-

tween the Pioneer and Agassiz fracture zones appear to have been rigid, with

neither broken into two plates during that interval of time. Therefore, the ad-

ditional Tertiary plate boundary inferred by Gordon and Cox [1980] and Sudrez

and Molnar [1980] must have been south of the area studied within the Pacific

plate south of the latitude 43*S, or within the Antarctic plate. Based on the

reanalysis of early Tertiary magnetic anomalies on the Pacific plate south of

the Campbell Plateau, Stock and Molnar [1987] concluded that this boundary

existed until a little before anomaly 18 time (42.01 Ma) and is now beneath

the Bellingshausen sea. They named this plate which had boundaries with the

Pacific and the Antarctic plates, the Bellingshausen plate.

We also concluded that the spacings of magnetic anomalies 13, 18, and 21

north of the Pioneer fracture zone and the orientations of the Pioneer, Mendo-

cino, and Surveyor fracture zones differ from those south of the Pioneer fracture

zone and suggest that between the formation of anomalies 25 and 21, the north-

ern part of the Farallon plate split from the rest of it to form the Vancouver

plate, as Menard [1978] had inferred. This showed that it has been the Van-

couver plate, not the Farallon plate, that was subducted beneath most of the

western North America from about 55 Ma until the spreading center was de-

stroyed at the subduction zone.

In Chapter 3, we studied the Tertiary plate motions in the southeastern

Pacific. We analyzed the data of Cande et al. [1982] with the calculation of

rotation parameters and associated uncertainties. Although we are not able

to constrain very well some of the rotation parameters, it was the first time

that rotation parameters were calculated for this dataset. The southeastern



7. SUMMARY AND CONCLUSIONS

Pacific has had a complex tectonic history with spreading between several pairs

of plates. Our analysis agrees with the model for the evolution of this region

originally proposed by Weissel et al. [1977] and supported by Cande et al.

[1982], involving a major reorganization of plate boundaries between anomaly

26 time and anomaly 18 time. Although the lengths of the spreading centers in

this region are not large, a reanalysis of the original magnetic and bathymetric

data, together with future collection of new data may reduce the uncertainties

and further improve the details of the tectonic history of the region.

A global analysis of magnetic anomaly and fracture zone data, and of pub-

lished rotation parameters, described in Chapter 4, was used to build a con-

sistent set of global rotation parameters with calculated uncertainties. These

were used together with digitized plate boundaries to define isochron maps for

the present time and for reconstructions at anomaly 13 time (35.58 Ma) and at

anomaly 25 time (58.94 Ma). It is the first time that a global analysis of rota-

tion parameters and their uncertainties has been made, resulting in a consistent

world map of the age of the oceans.

In Chapter 5 we present the method used to calculate areas on the surface of

the earth. The errors associated with the method were discussed. It is a reliable

and innovative method used in Chapter 6 to determine the distribution of area

with age of the ocean floor for the present time and for the reconstructions at

the times of anomalies 13 and 25 (35.58 Ma and 58.94 Ma, respectively). The

area-age distribution at the present time disagree with the conclusion originally

made by Sclater et al.[1980] and used by Parsons [1982], that the area per unit

age decreases following an approximately linear dependence on age.

The ultimate goal was to analyze the area-age distribution for the present

time and for the reconstructions at anomalies 13 and 25 times (35.58 Ma and

58.94 Ma respectively), and to associate the changes in these area-age distribu-

tions with sea-level changes. We used the differences in the area-age distribu-
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tions to calculate differences in the total volume of the oceans. The differences

in the total volume of the oceans should have caused a change in the sea level of

30 ± 10 meters since anomaly 13 time (35.58 Ma) and a change of 97 ± 10 meters

since anomaly 25 time (58.94 Ma). The uncertainties involved in these values

indicate that it is important to continue this research with the calculations of

changes of sea level during other periods of time to see if we can define sharper

changes in the sea level.

We also notice that the northwards movement of India since its collision with

Eurasia is a major factor in changes in the sea level since about 50 Ma, the time

of the collision. For the anomaly 13 reconstruction, the change in the volume of

the oceans due to the northern motion of India yields a difference in sea level of

about 42 meters ± 16 meters and for the anomaly 25 reconstruction, we have a

difference of about 76 meters ± 46 meters.

The combination of the changes in the sea level due to differences in the

area-age distribution with the sea-level changes caused by the penetration of

India into Eurasia give us a change in the sea level of 72 ± 19 meters since the

time of anomaly 13 (35.58 Ma) and a change in the sea level of 173 ± 47 meters

since anomaly 25 time (58.94 Ma).

The present volume of ice in Antarctica would represent a difference in sea

level of 71 meters ± 6 meters. The combination of the changes in sea level due

to the previous factors and the assumption that most of the ice was formed in

the past 30 m.y., give us a change in sea level of 143 ± 25 meters since the time

of anomaly 13 (35.58 Ma) and a change in the sea level of 244 ± 53 meters.

This is the first time a study of changes in sea level due to changes in the

distribution of area with age of the oceans is done with the calculation of the

associated uncertainties.
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Figure Captions

Figure 7.1. Late Cretaceous to present sea-level curves (adapted from Kominz,

1984). For comparison, our results are plotted over the curves presented

in Figure 1.1.
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Appendix A

TABLE 2.1. Ages for the Magnetic Anomalies

Age, Ma

Magnetic Used in Used in

Anomaly This Study* Engebretson et al. [1984]t

13 35.58 37.06

18 42.26 42.49

21 49.54 48.08

25 58.94 55.97

30-31 68.47 66.93

32 71.51 69.60

*Source of ages is Berggren et al. {1985] unless otherwise indicated.

tSource of age is Kent and Gradstein [1985].

tSource of ages is Harland et al. [1982].
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TABLE 2.2. Poles of Rotations for Pacific-Farallon Magnetic

Anomalies South of the Pioneer Fracture Zone and for

Pacific-Farallon Magnetic Anomalies Older than

Anomaly 25 North of the Pioneer Fracture Zone

Pole

Rotated Fixed Lat* Long* Angle,

Anomaly Anomaly deg

13 18 80.71 101.84 -4.10

13 21 82.06 119.39 -8.39

13 25 75.91 81.36 -12.43

13 30-31 74.52 81.28 -16.10

13 32 74.32 80.77 -17.30

18 21 82.26 140.00 -4.30

18 25 73.36 74.85 -8.37

18 30-31 72.34 76.60 -12.05

18 32 72.29 76.35 -13.25

21 25 59.77 59.09 -4.36

21 30-31 64.86 66.00 -8.00

21 32 65.81 66.61 -9.19

25 30-31 69.87 79.17 -3.69

25 32 70.37 77.89 -4.89

30-31 32 71.89 73.76 -1.20

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 2.3. Poles of Rotations for Pacific-Vancouver

Magnetic Anomalies Younger than Anomaly 21

North of the Pioneer Fracture Zone

Pole

Rotated Fixed Lat* Long* Angle,

Anomaly Anomaly deg

13 18 78.00 140.00 -5.55

13 21 76.70 139.40 -11.12

18 21 75.40 139.40 -5.57

* North and east are positive.

Lat, latitude; Long, longitude.

Appendix A

Rotation angles are positive counterclockwise.

TABLE 2.4. Poles of Rotations for

Pacific-Kula Magnetic Anomalies

Pole

Rotated Fixed Lat* Long* Angle,

Anomaly Anomaly deg

25 30-31 27.50 126.25 -3.10

25 32 27.50 126.25 -4.60

30-31 32 27.50 126.25 -1.50

* North and east are positive.

Lat, latitude; Long, longitude.

Rotation angles are positive counterclockwise.
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TABLE 2.5. Partial Uncertainty Rotations

for Reconstructions in Table 2.2

Southern

Northern Center

Center (or Offset Mismatched

(or Skewed Magnetic Fracture

Rotation Misfits) Anomalies) Zones

13-18 33.46*N 55.24 0 S 8.33*N

131.55*W 113.81*W 36.00*W

±0.360* ±0.1800 ±0.1800

18-21 33.50*N 55.08 0 S 8.74*N

135.62*W 117.06*W 39.78*W

±0.3600 ±0.1800 ±0.1800

21-25 33.75*N 53.780 S 11.60*N

141.00*W 116.83*W 43.11*W

±0.3600 ±0.1800 ±0.1800

25-30 33.78*N 53.750S 11.60*N

145.23*W 121.08*W 47.34*W

±0.3600 ±0.1800 ±0.1800

30-32* 41.42*N 45.150 S 14.13*N

154.01 0W 126.52*W 51.18*W

±1.210 ±0.1800 ±0.180*
Method used to calculate uncertainties is that developed by Stock and Molnar

[1983] and modified slightly by Molnar and Stock [1985] (Figure 2.2a).

*Variation of the method outlined by Stock and Molnar [1983] (Figure 2.2b).
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TABLE 2.6. Partial Uncertainty Rotations

for Reconstructions in Table 2.3

Mismatched Mismatched

Skewed Magnetic Fracture

Rotation Misfit Anomalies Zones

13-18 48.99*N 40.990S 0.98 0N

148.31*W 146.32*W 57.17*W

i1.310 ±0.1800 ±0.1800

18-21 48.13*N 41.86 0 S 1.00 0 N

143.93*W 141.92*W 52.81*W

±1.600 ±0.1800 ±0.1800
is that developed by Stock and Molnar

and Stock [1985] (Figure 2.2a).

Method used to calculate uncertainties

[1983] and modified slightly by Molnar
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TABLE 2.7. Partial Uncertainty Rotations

for Reconstructions in Table 2.4

Mismatched Mismatched

Skewed Magnetic Fracture

Rotation Misfit Anomalies Zones

25-30 48.66*N 00.000 41.34*N

171.25*W 81.25*W 8.750 E

±1.7500 ±0.1800 ±0.1800

30-32 47.26*N 00.000 42.74*N

169.50*W 79.50*W 10.490E

±2.730 ±0.3600 ±0.2500

is that developed by 5tock and Molnar

and Stock [1985] (Figure 2.2a).

Method used to calculate uncertainties

[1983] and modified slightly by Molnar
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TABLE 3.1. Poles of Rotation for Aluk-West Antarctic

(/Bellingshausen) and for reconstructions of anomalies

on the West Antarctica (/Bellingshausen) plate formed

by Aluk-West Antarctica (/Bellingshausen) spreading

Pole

Rotation Lat* Long* Angle, Comments

deg

04t -31.00 -43.50 -2.20 total angle

05t -31.00 -41.50 -4.90 total angle

05-06t -31.00 -48.50 -6.30

06-07t -29.00 -44.00 -2.00

07-10t -25.00 -44.00 -1.10

10-13t -25.00 -44.00 -1.00

13-18t -25.00 -44.00 -1.60

13-18 -25.00 -50.00 -1.10

18-20t -25.00 -44.00 -1.70

18-20t -25.00 -50.00 -0.60

2 2 - 2 3 t -25.010 -50.00 -0.60

23-241 -62.45 -77.17 -10.55

24-25t -58.38 -73.50 -11.15

25-26t -62.13 -81.07 -10.02

26-27t -64.81 -93.24 31.74

27-28t -25.00 -60.00 -1.10

28-29t -25.00 -55.00 -1.10

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

t Parameters calculated using data north of fracture zone 'G'.

+ Parameters calculated using data south of fracture zone 'G'.
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TABLE 3.3. Poles of Rotations for anomalies

originally on the Antarctic (/Bellingshausen)

plate formed by Antarctic

(/Bellingshausen)-Farallon spreading

Pole

Rotation Lat* Long* Angle,

deg

10-13 -50.00 -20.00 1.90

13-18 -50.00 -20.00 2.20

12-18 -50.00 -20.00 2.40

18-19 -50.00 -20.00 1.10

19-20 -50.00 -20.00 0.80

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 3.4. Poles of Rotation for reconstructions of anomalies

originally on the Pacific 1 .ate formed by Pacific-Aluk

spreading for the area northwest of the Palmer Peninsula

(See Figure 3.2, Figure 1 of Cande et al. [19821).

Pole

Rotation Lat* Long* Angle,

deg

21-22 70.00 112.00 3.00

22-23 70.00 112.00 2.70

23-24 70.00 112.00 3.40

24-25 70.00 112.00 8.60

25-26 70.00 112.00 6.40

26-27 70.00 112.00 9.30

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 3.5. Poles of Rotation for reconstructions

of anomalies originally on the Pacific plate formed

by Pacific-Aluk spreading for the area northeast of

New Zealand (See Figure 3 of Cande et al. [1982]).

Pole

Rotation Lat* Long* Angle,

deg

2 9 - 30t -70.00 -112.00 9.50

30-31t -70.00 -112.00 6.20

31- 3 2 t -55.00 100.00 3.40

32-33f -55.00 100.00 4.60

33-34t -45.00 80.00 3.60

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

tAll these rotations follow two other rotations in the following order:

-76.00,151.00, -39.70 and -54.90, -95.10,30.00.
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TABLE 3.6. Poles of Rotation for Nazca-Antarctica

Pole

Rotation Lat* Long* Angle,

deg

05 -34.62 87.20 7.54

06 -51.06 81.43 15.40

13 -52.64 61.73 23.61

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 3.7. Partial Uncertainty Rotations for Aluk-West Antarctic (/Bellingshausen)

and for reconstructions of anomalies on the West Antarctic (/Bellingshausen) plate

formed by Aluk-West Antarctic (/Bellingshausen) spreading

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, AngleI Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km

04** -58.44 -64.46 -60.61 -64.53 126 -59.52 -64.49 9.48 1056 (20) .17.34 57.56 0.18 20 -24.22 155.64 0.18 20

05** -60.10 -63.79 -61.57 -64.03 130 -60.83 -63.91 14.00 1559 (20) -18.25 62.32 0.18 20 -21.92 159.95 0.18 20

05-06**

06-07** -62.37 .69.42 -64.93 -74.39 129 -63.67 -71.79 6.09 678 (20) -16.21 54.18 0.18 20 -20.16 150.30 0.18 20

07-10** -62.35 -71.53 -64.59 -76.01 129 -63.49 -73.68 6.86 764 (20) .16.31 52.25 0.18 20 -20.30 148.46 0.18 20

10-13** -61.85 -72.30 -63.71 .76.67 129 -62.80 -74.42 7.54 840 (20) -16.72 51.35 0.18 20 .20.81 147.90 0.18 20

13-18**

13-18**

18-20**

18-20***

22-23*** .64.63 -80.57 -64.83 -80.92 133 -64.73 -80.74 82.29 9167 (20) -16.93 49.40 0.18 20 -18.19 145.13 0.18 20

23-24*** -64.44 -81.76 -64.60 -82.20 133 -64.52 -81.98 82.29 9167 (20) -17.06 48.11 0.18 20 -18.34 143.95 0.18 20

24-25*** -63.69 -85.45 -63.83 -86.13 133 -63.76 -85.79 62.34 6945 (20) .17.55 44.12 0.18 20 -18.87 140.32 0.18 20

25-26*** -63.35 -86.73 -63.53 -88.43 133 -63.44 -87.58 26.38 2938 (20) -17.75 42.25 0.18 20 -19.09 138.61 0.18 20

26-27*** -62.06 -89.38 -62.76 -90.97 130 -62.41 -90.17 20.17 2247 (20) -17.32 36.47 0.18 20 -20.78 133.27 0.18 20

27-28*** -61.92 -91.32 -64.58 -95.23 134 -63.26 -93.18 6.45 718 (20) -18.21 37.59 0.18 20 -18.88 134.05 0.18 20

28-29*** -63.30 -94.30 -63.57 -95.10 131 -63.44 -94.70 45.72 5093 (20) -17.06 33.17 0.18 20 -19.72 129.48 0.18 20

North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Parameters calculated using data north of fracture zone 'G'.

* Parameters calculated using data south of fracture zone 'G'.

t Values in parentheses give overlap or underlap in kilometers of endpoints of the plate boundary.
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End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Anglej Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg 1cm deg km deg km-
10-13 .51.73 -86.18 -57.26 -76.56 22 -54.59 -81.70 2.62 292 (20) 32.49 -55.33 0.18 20 -12.54 26.53 0.18 20

13-18 -50.54 -91.87 -58.82 .74.89 22 -54.97 -84.25 1.61 180 (20) 32.15 .57.99 0.18 20 .12.42 24.05 0.18 20

12-18 -50.54 -91.87 -55.88 -82.81 22 -53.30 -87.62 2.71 302 (20) 33.65 -60.88 0.18 20 -12.94 20.32 0.18 20

18-19 .52.72 -91.33 -59.15 -76.37 22 -56.16 -84.47 1.96 218 (20) 31.09 .58.53 0.18 20 -12.04 24.08 0.18 20

19-20 -54.06 88.00 -59.19 -79.08 22 -56.70 -83.84 2.90 323 (20) 30.60 -58.05 0.18 20 -11.87 24.82 0.18 20

North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 3.9. Partial Uncertainty Rotations for reconstructions of anomalies originally on the

Pacific plate formed by Pacific-Aluk spreading for the area northwest of the

Palmer Peninsula (See Figure 3.2, Figure 1 of Cande et al. [19821).

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km

21-22 .59.96 -80.58 -60.98 -81.52 132 -60.47 -81.04 18.37 2046 (20) -19.26 47.03 0.18 20 -21.49 144.94 0.18 20

22-23 -59.39 -81.93 -60.72 .82.75 132 -60.06 -82.33 14.80 1649 (20) -19.51 45.63 0.18 20 -21.77 143.77 0.18 20

23-24 .58.87 -83.49 -59.24 .83.61 132 .59.05 -83.55 55.60 6194 (20) -20.12 44.13 0.18 20 .22.47 142.84 0.18 20

24-25 -57.22 -87.02 -57.95 .87.31 128 -57.58 .87.16 27.43 3056 (20) -19.27 36.24 0.18 20 -24.99 135.62 0.18 20

25-26 -56.25 -89.78 -56.91 .90.14 124 .56.58 -89.96 29.82 3321 (20) .17.94 29.42 0.18 20 -27.17 128.98 0.18 20

26-27 -55.26 -94.22 -56.16 .94.36 124 -55.71 -94.29 22.86 2546 (20) .18.36 24.84 0.18 20 -27.84 124.94 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 3.10. Partial Uncertainty Rotations for reconstructions of anomalies

originally on the Pacific plate formed by Pacific-Aluk spreading for the

area northeast of New Zealand (See Figure 3 of Cande et al. (1982]).

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Anglej Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km

29-30 -45.44 -144.98 -46.07 -146.76 129 -45.76 -145.86 14.80 1649 (20) -26.04 -25.74 0.18 20 -32.83 82.64 0.18 20

30-31 .44.48 -145.00 -45.40 -148.04 133 -44.95 -146.51 8.79 979 (20) -28.86 -23.13 0.18 20 -31.17 86.34 0.18 20

31-32 -41.66 -144.88 -43.58 .151.92 129 -42.67 -148.34 3.73 415 (20) -27.56 -29.58 0.18 20 -34.85 81.72 0.18 20

32-33 -38.93 -150.01 -40.64 .156.24 127 -39.83 -153.09 4.05 451 (20) -27.53 -37.32 0.18 20 -37.83 76.55 0.18 20

33-34 -36.11 150.08 -38.23 -159.56 134 -37.26 -154.75 2.63 292(20) -33.5 .34.44 0.18 20 -34.92 83.16 0.18 20

SNorth and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 3.11. Partial Uncertainty Poles for Nazca-Antarctica

End Points of P-late Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat Long* Angle, Angle,

deg km deg km deg km
**4 .. i 75 lA 220U 3 178U 48 0.18 20 -333 -1IU ~ 3I ~ -O3 0~05 U1

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Partial uncertainty rotations calculated using end points of isochrons.

06 -48.28 -78.55 -47.5 -.721 76 -43.33 -77.0 4.01 4.7 (20) 6.80 4.32 .18
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TABLE 4.1. Ages of magnetic anomalies

Magnetic Anomaly Position Age (Ma)

05 old edge 10. 5 9 t

06 center 19 .9 0t

13 center 35.58t

18 center of broad normal epoch 42.01 t

21 center 49.55t
25 center 58.94t

30-31 center of reversed pol. bet. 30 and 31 68.47t

34 young edge 84.00t

MO center 118.35t

M4 center 125.91+

M11 center of first reversal 132.78t

M16 center 141.52t

M21 center 149.65t

M25 center 156.42t

tBerggren et al.[1985]

tKent and Gradstein[1985]
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TABLE 4.2. Poles of Rotation for Aluk-West Antarctic

(/Bellingshausen) and for reconstructions of anomalies

on the West Antarctica (/Bellingshausen) plate formed

by Aluk-West Antarctica (/Bellingshausen) spreading

Pole

Rotation Lat* Long* Angle, Comments

deg

04t -31.00 -43.50 -2.20 total angle

05t -31.00 -41.50 -4.90 total angle

05-06t -31.00 -48.50 -6.30

0 6 - 07 t -29.00 -44.00 -2.00

07-10t -25.00 -44.00 -1.10

10-13t -25.00 -44.00 -1.00

13-18t -25.00 -44.00 -1.60

13-18t -25.00 -50.00 -1.10

18-20t -25.00 -44.00 -1.70

18-20t -25.00 -50.00 -0.60

22-23t -25.00 -50.00 -0.60

23-24t -62.45 -77.17 -10.55

24-25 -58.38 -73.50 -11.15

25-26t -62.13 -81.07 -10.02

26-27t -64.81 -93.24 31.74

27-28t -25.00 -60.00 -1.10

28-29t -25.00 -55.00 -1.10

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

t Parameters calculated using data north of fracture zone 'G'.

Parameters calculated using data south of fracture zone 'G'.
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TABLE 4.3. Poles of Rotation for anomalies

originally on the Pacific plate formed by

Pacific-Farallon spreading

Pole

Rotation Lat* Long* Angle,

deg

21-22 82.28 138.57 -0.90

22-23 82.28 138.57 -0.80

23-24 82.28 138.57 -0.80

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 4.4. Poles of Rotations for anomalies

originally on the Antarctic (/Bellingshausen)

plate formed by Antarctic

(/Bellingshausen)-Farallon spreading

Pole

Rotation Lat* Long* Angle,

deg

10-13 -50.00 -20.00 1.90

13-18 -50.00 -20.00 2.20

12-18 -50.00 -20.00 2.40

18-19 -50.00 -20.00 1.10

19-20 -50.00 -20.00 0.80

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 4.5. Poles of Rotation for reconstructions of anomalies

originally on the Pacific plate formed by Pacific-Aluk

spreading for the area northwest of the Palmer Peninsula

(See Figure 3.2, Figure 1 of Cande et al. [1982]).

Pole

Rotation Lat* Long* Angle,

deg

21-22 70.00 112.00 3.00

22-23 70.00 112.00 2.70

23-24 70.00 112.00 3.40

24-25 70.00 112.00 8.60

25-26 70.00 112.00 6.40

26-27 70.00 112.00 9.30

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 4.6. Poles of Rotation for reconstructions

of anomalies originally on the Pacific plate formed

by Pacific-Aluk spreading for the area northeast of

New Zealand (See Figure 3 of Cande et al. [1982]).

Pole

Rotation Lat* Long* Angle,

deg

2 9 - 3 0t -70.00 -112.00 9.50

30-31t -70.00 -112.00 6.20

31- 3 2 t -55.00 100.00 3.40

32-33t -55.00 100.00 4.60

33- 3 4t -45.00 80.00 3.60

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

tAll these rotations follow two other rotations in the following order:

-76.00, 151.00, -39.70 and -54.90, -95.10, 30.00.
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TABLE 4.7. Poles of Rotation for Nazca-Antarctica

Pole

Rotation Lat* Long* Angle,

deg

05 -34.62 87.20 7.54

06 -51.06 81.43 15.40

13 -52.64 61.73 23.61

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
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TABLE 4.8. Poles of Rotation for East Antarctica-Africa

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 11.72 -43.84 1.55 Molnar et al.[1988]

06 19 .9 0t 11.72 -43.84 2.79 Molnar et al.[1988]

13 3 5 .58t 8.57 -39.59 5.58 Molnar et al.[1988]

18 4 2 .01t 8.79 -40.72 6.95 Molnar et al.[1988]

21 4 9 .5 5t 8.09 -39.28 8.65 Molnar et al.[1988]

25 58.94t 6.43 -39.15 10.94 Molnar et al.[1988]

30-31 6 8 .4 7 t 2.22 -40.74 12.50 Molnar et al.[1988]

34 84.00t -5.03 -36.12 18.24 Molnar et aL[1988]

MO 118.35t -3.95 -28.15 42.84 *1

M4 125.91t -13.29 -24.01 46.40 *2

M11 132.78t -11.63 -26.04 47.90 *2

M16 141.52t -8.68 -28.76 50.36 *3

M21 149.65t -3.77 -31.85 54.16 *3

Closure (M22) 152.11t -2.4 -32.7 55.4 Norton and Sclater{1979], Lawver et al.[1985]

tBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.

*1 - Interpolated using Molnar et al.'s [1988] anomaly 34 pole and Norton and Sclater's [1979]

anomaly M1 pole.

*2 - Interpolated using Sigoufin and Patriat's [1980] anomalies M2 and M15 poles.

*3 - Interpolated using Sigoufin and Patriat's [1980] anomaly M15 pole and Norton and

Sclater's [1979] anomaly M22 pole.
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TABLE 4.9. Poles of Rotation for East Antarctica-India

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) . deg

05 10. 59 t 26.09 20.48 5.60 Molnar et al.[1988]

06 19 .9 0t 18.47 29.56 11.37 Molnar et al.[1988]

13 3 5 .5 8 t 13.42 30.52 20.51 Molnar et al.[1988]

18 42 .01t 15.61 29.26 23.94 Molnar et al.[19881

21 4 9 .55t 16.36 23.96 27.99 Molnar et al.[1988]

25 58.94t 16.95 12.60 35.51 Molnar et al.[1988)

30-31 68 .47t 11.76 11.53 50.66 Molnar et al.[1988]

34 8 4 .00t 11.79 8.57 62.25 Molnar et al.[1988]

MO 118. 35 t -1.39 10.38 89.44

M4 125 .9 1t -5.83 15.37 91.27

M11 13 2 .7 8 t -5.80 15.61 91.18

M16 141. 6 5+ -5.85 13.43 92.46

M21 14 9 .6 5+ 0.10 8.91 86.56

Closure Jurassic 1.0 -7.7 88.9 Smith and Hallam[1970]**

TBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.
**Referenced in Norton and Sclater[1979]

*** Calculated through the plate circuit.
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TABLE 4.10. Poles of Rotation for India-Africa

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 59 t 25.88 37.94 -5.06 Molnar et al.[1988]

06 19 .90t 17.73 44.44 -10.78 Molnar et al.[1988]

13 3 5. 5 8 t 14.57 46.75 -19.20 Molnar et al.[1988]

18 42.01t 17.46 46.85 -22.23 Molnar et al.[1988]

21 49 .55 t 19.67 42.41 -25.11 Molnar et al.[1988]

25 58.94t 22.79 29.38 -29.93 Molnar et al.[1988]

30-31 68 .47t 18.45 23.47 -44.14 Molnar et al.[1988]

34 84.00t 23.36 19.57 -51.54 Molnar et al.[1988]

MO 118.35t 18.62 28.40 -60.83 **

M4 12 5 .9 11 19.41 30.70 -61.37 **

M11 13 2 .7 8 t 20.31 33.44 -62.13 **

M16 141.65t 20.36 34.15 -62.57 **

M21 14 9 .6 5t 23.32 41.33 -64.01 **

Closure Jurassic 29.6 36.1 -56.8 Norton and Sclater[1979]

tBerggren et al.[1985]
TKent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

** Rotation parameters calculated from the plate circuit, using the India-

Madagascar closure pole calculated from the India-Africa and Africa-

Madagascar closure poles from Norton and Sclater[1979].
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TABLE 4.11. Poles of Rotation for East Antarctica-Australia

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 8.70 35.56 6.65 Stock and Molnar[1982,1988]

06 19 .9 0f 8.95 32.07 11.90 Stock and Molnar[1982,1988]

13 3 5 .5 8 t 11.68 31.81 20.46 Stock and Molnar[1982,1988]

18 4 2 .01t 8.68 34.52 22.80 Stock and Molnar1988]

21 4 9 .55t 5.15 35.75 25.04 Extrapolated from A25 and A30-31 poles

25 58 .9 4 t 4.45 35.99 25.55 Stock and Molnar[l988]

30-31 68. 47t 3.76 36.23 26.08 Stock and Molnar1988]

34 84.00t 4.9 35.8 26.81 Royer and Sandwell, 1989

Closure 96. 1.0 38.0 28.30 **

tBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive.

Long, longitude.

Rotation angles are positive counterclockwise. Lat, latitude;

** Closure of continent-ocean boundary,Royer and Sandwell, 1989
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TABLE 4.12. Poles of Rotation for Pacific-West Antarctica

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 59 t 72.00 -70.00 9.75 Stock and Molnar{1982,1987,1988]

06 19 .90t 71.25 -73.19 15.41 Stock and Molnar1982,1987,1988]

13 3 5 .58 t 74.83 -56.86 28.01 Stock and Molnar[1982,1987,1988]

18 42.01t 75.08 -51.25 32.56 Stock and Molnar[1982,1987,1988]

21 49 .55 t 72.85 -53.21 35.11 Interpolated by Stock (personal communication)

25 5 8 .941t 70.40 -54.85 38.46 Stock and Molnar1988]**

30-31 68.47t 66.09 -56.94 46.27 Stock and Molnar1988]**

34 (Closure) 8 4 .00t 62.97 -58.05 54.25

tBerggren et aL[1985]

tKent and Gradstein[1985]

* North and east are positive.

latitude; Long, longitude.

Rotation angles are positive counterclockwise. Lat,

** Calculated here from parameters given by Stock and Molnar1987,1988].

Time when the Campbell Plateau broke away from Antarctica Christoffel and

Falconer[1972]. Rotation parameters extrapolated by distance here using the data

from Stock and Molnar[1988].

ON"
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TABLE 4.13. Poles of Rotation for Pacific-Bellingshausen

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 72.00 -70.00 9.75 **Stock and Molnar[1988]

06 19 .90t 71.25 -73.19 15.41 **Stock and Molnar[1988]

13 35.58t 74.83 -56.86 28.01 **Stock and Molnar[1988]

18 42 .01t 75.08 -51.25 32.56 **Stock and Molnar[1988]

21 49 .55t 73.38 -54.65 35.90 Interpolated here

25 58 .94 t 71.61 -57.47 40.11 Stock and Molnar[1982,1988]

30-31 68 .4 7t 71.65 -49.00 53.75 Stock and Molnar1982,1988]

34 84 .00t 68.0 -50.0 66.0 Molnar et al.[1975]

tBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

**Same as Pacific-West Antarctica for these times (see Table 4.12).
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TABLE 4.14. Poles of Rotation for Greenland-Europe

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 65.29 131.14 2.41 Klitgord and Schouten (1986, pers. comm.)

06 19 .9 0t 66.82 137.95 4.86 Klitgord and Schouten (1986, pers. comm.)

13 3 5 .5 8 t 63.55 137.05 7.38 Klitgord and Schouten (1986, pers. comm.)

18 4 2 .01t 55.40 141.05 8.33 Klitgord and Schouten[1986]

21 49.55t 51.88 133.58 9.16 **

Closure 56.(?) 9.70 -45.08 13.57 *** Klitgord and Schouten (1986, pers. comm.)

tBerggren et al.[1985]

+Kent and Gradstein[1985]

*North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

**Calculated here.

*Closure occurred a little before A24 time.
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TABLE 4.15. Poles of Rotation for Greenland-North America

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 59 t Since about 45 Ma, no motion Laughton [1972]

06 19 .90t Since about 45 Ma, no motion Laughton [1972]

13 3 5 .58 t Since about 45 Ma, no motion Laughton [1972]

18 42.01t Since about 45 Ma, no motion Laughton [1972]

21 49.55t 30.85 -153.02 -1.11

25 5 8 .94 t 12.93 -144.32 -2.93 Klitgord and Schouten (1986, pers. comm.)

30-31 68.47 t  53.30 -128.63 -5.65 Calculated here

34 84.00t 66.63 -113.59 -11.27 Calculated here

Closure 95.(?) 73.97 -107.20 -13.62 **

* North and east are positive. Rotation angles are positive counterclockwise. Lat,

latitude; Long, longitude.

**Closing of Labrador Sea to initial opening at 95(?)Ma (Srivastava and Tapscott

[1986]).

*** Calculated through the plate circuit GRE-EUR-NAM.

a
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TABLE 4.16. Poles of Rotation for [North America + Greenland]-Europe

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 64.57 133.84 2.39 Klitgord and Schouten (1988, pers. comm.

06 19 .9 0t 66.82 137.05 4.86 Klitgord and Schouten [1986]

13 35.581 63.55 137.05 7.38 Klitgord and Schouten [1986]

18 42.011 55.40 141.05 8.33 Klitgord and Schouten [1986]

21 49.551 52.79 142.31 9.82 Klitgord and Schouten [1986]

25 58.94t 46.57 145.45 12.83 Klitgord and Schouten [1986]

30-31 68.471 58.92 148.00 15.43 Calculated here

34 84 .00t 70.62 153.05 20.20 Calculated here

Closure 91.(?) 79.83 143.02 25.90 Srivastava and Tapscott [1986]

tBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat,

latitude; Long, longitude.
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TABLE 4.17. Poles of Rotation for Iberia-North America

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

30-31 68.47t 71.16 136.68 -16.32 Calculated here

34 84.00t 77.33 129.23 -21.32 Calculated here

MO 118.35t 74.13 -2.80 -43.10 Calculated here**

M4 125.911 73.35 -2.24 -45.18 Calculated here**

tBerggren et al.[1985]

Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat,

latitude; Long, longitude.

** Calculated by adding the respective stage poles for the stage rotations between

Africa and North America and the anomaly 34 rotation pole for Iberia-North America

spreading.

mono

176



Appendix C

TABLE 4.18. Poles of Rotation for Africa-North America

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10 .59 t 79.53 71.47 -2.66 **

06 1 9 .90t 79.57 37.84 -5.29 **

13 3 5 .58t 76.41 7.12 -9.81 **

18 4 2 .01t 75.36 -0.28 -12.44 **

21 4 9 .55t 74.51 -4.83 -15.32 **

25 58.94t 80.60 -0.50 -18.07 **

30-31 68.47t 82.28 -2.61 -21.33 **

34 84.001 76.55 -20.73 -29.60 **

MO 118.351 66.30 -19.90 -54.25 Kliigord and Schouten[1986]

M4 125.91t 66.13 -19.00 -56.39 Kliigord and Schouten[1986]

M11 132.78t 65.97 -18.49 -57.50

M16 141.52 66.10 -18.40 -59.79 Klitgord and Schouten[1986]

M21 149.651 66.50 -18.10 -61.92 Kiigord and Schouten[1986]

M25 156.421 67.15 -16.00 -64.70 Klitgord and Schouten[1986]

Closure(min) 175.01 66.97 -12.34 -74.57 Klitgord and Schouten[1986]

Closure(max) 175.01 66.95 -12.02 -75.55 Kliigord and Schouten[1986]

fBerggren et al.[1985]
1 Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.

Klitgord and Schouten[1986], Stock and Molna{1988]

Interpolated here using Klitgord and Schouten's [1986] M1ON and M16 poles.

MOM"
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TABLE 4.19. Poles of Rotation for Africa-South America

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 59 f 59.66 -38.31 -3.72 Cande et al.[1988]

06 19. 90t 59.50 -37.44 -7.25 Cande et aL[1988]

13 35.58t 57.42 -33.92 -13.49 Cande et al.[1988]

18 42.01f 57.66 -32.34 -16.18 Cande et al.[1988]

21 49.55f 58.10 -33.95 -20.13 Pardo-Casas and Molnar[1987]

25 58.94f 60.53 -34.57 -22.31 Pardo-Casas and Molnar[1987]

30-31 68.47f 62.96 -35.30 -25.05 Pardo-Casas and Molnar[1987]

34 84.00t 63.06 -36.63 -33.58 Pardo-Casas and Molnar[1987]

MO 118 .35t 51.78 -34.74 -52.51 Martin et al.[1982]

M4 125.91t 49.33 -33.67 -54.30 Martin et al.[1982]

Closure (M11)** 132.78t 46.75 -32.65 -56.40 Martin et al.[1982]

f Berggren et al.[1985]

tKent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat,

latitude; Long, longitude.

** Closure pole time given by Martin et al.[1982] was at anomaly M1ON time (131.50

Ma).
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TABLE 4.20. Poles of Rotation for South America- East Antarctica

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 5 9 t 81.82 -12.13 2.92 **

06 19 .9 0t 79.26 -13.65 5.77 **

13 35.58t 78.60 -4.67 10.69 **

18 42 .01t 78.04 8.23 12.78 **

21 49.55 t 79.20 6.32 16.02 **

25 58 .94 t 81.79 46.81 18.19

30-31 68 .47t 80.55 65.30 21.84 **

34 84.00t 80.09 81.83 31.54 **

MO 118 .3 5 t 70.42 96.81 44.60

M4 12 5 .9 1t 72.49 96.63 51.97 **

M11 13 2 .7 8 t 70.81 86.44 50.32 **

tBerggren et al.[1985]

tKent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

**Calculated by rotating SAM to AFR to East ANT.
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TABLE 4.21. Poles of Rotation for Nazca-Pacific

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 10. 59 t 56.64 -87.88 -16.30 Pardo-Casas and Molnar[1987]

06 19 .9 0t 62.38 -93.02 -30.18 Pardo-Casas and Molnar[1987]

13 35.58t 69.85 -106.13 -49.54 Pardo-Casas and Molnar[1987]

18 4 2 .01t 73.03 -113.78 -56.59 Rosa and Molnar[1988]

21 4 9 .55t 74.76 -122.26 -64.99 Rosa and Molnar[1988]

25 58 .94t 78.82 -137.59 -71.35 Rosa and Molnar[1988]

30-31 68.47t 79.95 -152.26 -77.83 Rosa and Molnar[1988]

34 84 .00t 81.20 174.25 -89.03 **

tBerggren et al.[1985]

+Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

**Calculated here from Nazca-Pacific A30-31 pole and Pacific-Farallon stage

pole A30-31-A34.
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TABLE 4.22. Poles of Rotation for Australia-Lord Howe Rise

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 No motion

06 No motion

13 No motion

18 No motion

21 No motion

25 58 .94 t -4.49 139.36 1.71 Stock and Molnar1982,1988]

30-31 68 .4 7f -8.70 139.34 8.97 Stock and Molnar1982,1988]

34 84.00t -12.81 139.32 21.16 Extrapolated using Stock and Molnar[1982,1988]

Closure 90.(?) -14.0 142.0 23.0 Weissel et al.[1977]

t Berggren et al.[1985]

Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat,

latitude; Long, longitude.

, - W - 11 - -- MEM201- __ -
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TABLE 4.23. Poles of Rotation for anomalies on the Pacific

plate formed by Pacific-Farallon spreading

Pole

Rotation Age Lat* Long* Angle, Reference and Comments

(Ma) deg

05-06

06-13

13-18 ** 80.71 101.84 -4.10 Rosa and Molnar [1988]

13-18 42.01*** 80.71 101.84 -3.95

18-21 ** 82.26 140.00 -4.30 Rosa and Molnar [1988]

18-21 82.28 138.57 -4.45

21-25 59.77 59.09 -4.36 Rosa and Molnar [1988]

25-30-31 69.87 79.17 -3.69 Rosa and Molnar [1988]

30-31-34 63.62 57.11 -6.70 Interpolated by Rosa

25-34 66.0 64.0 -10.35 Engebretson et al.[1984]

34-MO 65.0 56.0 -14.6 Engebretson et al.[1984]

MO-M4 9.0 16.0 -3.88 Interpolated from Engebretson et al.[1984]

M4-M11 9.0 16.0 -3.52 Interpolated from Engebretson et al.[1984]

M11-M16 25.0 47.0 -2.99 Interpolated from Engebreison et al.[1984]

M16-M21 25.0 47.0 -2.78 Interpolated from Engebretson et al.[1984]

M21-M25 25.0 47.0 -2.31 Interpolated from Engebreison et al.[1984]

M25-PM26 25.0 47.0 -0.52 Interpolated from Engebreison et al.[1984]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.

**Calculated by Rosa and Molnar [1988] using the age of 42.26 Ma for the center of the earliest

minor reversal within anomaly 18 on the DNAG timescale (Berggren et al.[1985]).

*Interpolated by Stock and Molnar [1988] using the parameters and data from Rosa and

Molnar [1988] but using the age of 42.01 Ma for the center of the broad normal epoch of

anomaly 18 on the DNAG timescale (Berggren et al.[1985]).

Note 1: All the ages used here are those of the DNAG timescale used on the previous tables,

except when noted.

Note 2: Younger anomaly rotated over the fixed older anomaly.
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TABLE 4.24. Poles of Rotation for anomalies

on the Pacific plate formed by Pacific-Vancouver spreading

Pole

Rotation Age Lat* Long* Angle, Reference and Comments

(Ma) deg

00-05 73.43 6.14 -3.77 (See Note 3)

05-06 86.01 27.56 -3.64 (See Note 3)

06-13 79.62 61.91 -7.49 (See Note 3)

13-18 ** 78.00 -140.00 -5.55 Rosa and Molnar [1988]

13-18 42.01*** 78.00 -140.00 -5.33

18-21 ** 75.40 -139.40 -5.57 Rosa and Molnar [1988]

18-21 75.50 -139.40 -5.79

21-25 Same as Pacific-Farallon (see Table 4.22)

25-30-31 Same as Pacific-Farallon (see Table 4.22)

30-31-34 Same as Pacific-Farallon (see Table 4.22)

* North and east are positive. Rotation angles are positive counterclockwise.

Lat, latitude; Long, longitude.

**Calculated by Rosa and Molnar [1988] using the age of 42.26 Ma for the

center of the earliest minor reversal within anomaly 18 on the DNAG timescale

(Berggren et al.[1985]).

***Interpolated by Stock and Molnar [1988] using the parameters and data from

Rosa and Molnar [1988] but using the age of 42.01 Ma for the center of the broad

normal epoch of anomaly 18 on the DNAG timescale (Berggren et al.[1985]).

Note 1: All the ages used here are those of the DNAG timescale used on the

previous tables, except when noted.

Note 2: Younger anomaly rotated over the fixed older anomaly.

Note 3: Calculated using stage poles of Wilson[1988].
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TABLE 4.25. Poles of Rotation for anomalies

on the Pacific plate formed by Pacific-Kula spreading

Pole

Rotation Age Lat* Long* Angle, Reference and Comments

(Ma) deg

05-06 No spreading

06-13 No spreading

13-18 No spreading

18-22 No spreading

22-25 27.50 126.25 -2.17 Extrapolated from Rosa and Molnar1988]

25-30-31 27.50 126.25 -3.10 Rosa and Molnar1988]

30-31-34 18.0 111.0 -8.61 Extrapolated from Engebretson et al.[1984]

34-MO -48.0 3.0 -25.3 From Pacific-Izanagi-1 poles of Engebretson et al.[1984]

MO-M4 -48.0 3.0 -6.15 From Pacific-Izanagi-1 poles of Engebretson et al.[1984]

M4-M11 -48.0 3.0 -9.55 From Pacific-Izanagi-1 poles of Engebretson et al.[1984]

M11-M16 -15.0 88.0 -4.1 From Pacific-Izanagi-1 poles of Engebretson et al.[1984]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.

Note 1: All the ages used here are those of the DNAG timescale used on the previous tables,

except when noted.

Note 2: Younger anomaly rotated over the fixed older anomaly.
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TABLE 4.26. Poles of Rotation for India-Australia

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 Since 42.7 Ma, no motion Royer and Sandwell[1989]

06 Since 42.7 Ma, no motion Royer and Sandwe141989]

13 Since 42.7 Ma, no motion Royer and Sandwe141989]

18 Since 42.7 Ma, no motion Royer and Sandwe141989]

21 49 .55t 6.61 -7.86 -4.38 Royer and Sandwell1989]

25 58.94t 2.57 -0.2 -14.25 Royer and Sandwell1989]

30-31 6 8 .4 7 t 1.7 -2.1 -28.43 Royer and Sandwell[1989]

34 84.00t 0.4 -3.1 -42.16 Royer and Sandwell[1989]

tBerggren ei al.[1985]

tKent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.
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TABLE 4.27. Poles of Rotation for Madagascar-Africa

Pole

Magnetic Age Lat* Long* Angle, Reference and Comments

Anomaly (Ma) deg

05 Fixed to Africa since 112.5 Ma Cochran[1988]

06 Fixed to Africa since 112.5 Ma Cochran[1988]

13 Fixed to Africa since 112.5 Ma Cochran[1988]

18 Fixed to Africa since 112.5 Ma Cochmn[1988]

21 Fixed to Africa since 112.5 Ma Cochran[1988]

25 Fixed to Africa since 112.5 Ma Cochran[1988]

30-31 Fixed to Africa since 112.5 Ma Cochran[1988]

34 Fixed to Africa since 112.5 Ma Cochran[1988]

MO 118.35t 5.42 -76.18 0.65 Sigoufin and Patriat[1980], Cochran[1988]**

M4 125.911 5.42 -76.18 3.06 Sigoufin and Pariat[1980], Cochran[1988]**

M11 132.78t 5.43 -76.19 5.96 Sigoufin and Patria[1980], Cochran[1988]**

M16 141.52t 6.10 -78.54 6.74 Sigoufin and Patriat[1980], Cochran[1988]**

M21 149.65t 4.04 -71.40 14.41 Sigoufln and Pahriat[1980], Cochran[1988]**

Closure -10.0 -30.0 14.2 Coffin and Rabinowitz[1987]

tBerggren et al.[1985]
1 Kent and Gradstein[1985]

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude;

Long, longitude.

** Calculated from Sigoufin and Patriat's [1980] pole based on measured distances between

anomalies.

--4
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TABLE 4.28. Partial Uncertainty Rotations for Aluk-West Antarctic (/Bellingshausen)

and for reconstructions of anomalies on the West Antarctic (/Bellingshausen) plate

formed by Aluk-West Antarctic (/Bellingshausen) spreading

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Anglet Lat* Long* Angle, Angle, Lat Long* Angle, Angle,

deg km deg km deg km

04** -58.44 -64.46 -60.61 -64.53 126 -59.52 -64.49 9.48 1056 (20) .17.34 57.56 0.18 20 -24.22 155.64 0.18 20

05** -60.10 -63.79 -61.57 -64.03 130 .60.83 -63.91 14.00 1559 (20) .18.25 62.32 0.18 20 -21.92 159.95 0.18 20

05-06**

06-07** -62.37 -69.42 -64.93 -74.39 129 -63.67 .71.79 6.09 678 (20) .16.21 54.18 0.18 20 -20.16 150.30 0.18 20

07.10** -62.35 -71.53 -64.59 .76.01 129 -63.49 -73.68 6.86 764 (20) -16.31 52.25 0.18 20 -20.30 148.46 0.18 20

10-13** -61.85 -72.30 -63.71 -76.67 129 .62.80 -74.42 7.54 840 (20) -16.72 51.35 0.18 20 -20.81 147.90 0.18 20

13-18**

13-18***

18-20**

18-20***

22-23*** -64.63 -80.57 -64.83 -80.92 133 -64.73 -80.74 82.29 9167 (20) -16.93 49.40 0.18 20 -18.19 145.13 0.18 20

23-24*** -64.44 -81.76 -64.60 -82.20 133 -64.52 -81.98 82.29 9167 (20) -17.06 48.11 0.18 20 -18.34 143.95 0.18 20

24-25*** -63.69 -85.45 -63.83 -86.13 133 -63.76 -85.79 62.34 6945 (20) -17.55 44.12 0.18 20 -18.87 140.32 0.18 20

25-26*** -63.35 -86.73 -63.53 -88.43 133 -63.44 -87.58 26.38 2938 (20) -17.75 42.25 0.18 20 -19.09 138.61 0.18 20

26-27*** -62.06 -89.38 -62.76 -90.97 130 -62.41 -90.17 20.17 2247 (20) -17.32 36.47 0.18 20 -20.78 133.27 0.18 20

27-28*** -61.92 -91.32 -64.58 -95.23 134 -63.26 -93.18 6.45 718 (20) -18.21 37.59 0.18 20 -18.88 134.05 0.18 20

28-29*** -63.30 -94.30 -63.57 -95.10 131 -63.44 -94.70 45.72 5093 (20) -17.06 33.17 0.18 20 -19.72 129.48 0.18 20

North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

Parameters calculated using data north of fracture zone 'G'.
* Parameters calculated using data south of fracture zone 'G'.

Values in parentheses give overlap or underlap in kilometers of endpoints of the plate boundary
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TABLE 4.29. Partial Uncertainty Rotations for reconstructions of anomalies originally on the

Antarctic (/Bellingshausen) plate formed by Antarctic (/Bellingshausen)-Farallon spreading

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km
10-13 -51.73 -86.18 .57.26 -76.56 22 -54.59 .81.70 2.62 292 (20) 32.49 -55.33 0.18 20 -12.54 26.53 0.18 20
13-18 -50.54 -91.87 -58.82 -74.89 22 -54.97 -84.25 1.61 180 (20) 32.15 -57.99 0.18 20 -12.42 24.05 0.18 20
12-18 -50.54 -91.87 -55.88 -82.81 22 -53.30 -87.62 2.71 302 (20) 33.65 -60.88 0.18 20 -12.94 20.32 0.18 20
18-19 -52.72 -91.33 -59.15 -76.37 22 -56.16 -84.47 1.96 218 (20) 31.09 -58.53 0.18 20 -12.04 24.08 0.18 20
19-20 -54.06 -88.00 -59.19 -79.08 22 -56.70 -83.84 2.90 323 (20) 30.60 -58.05 0.18 20 -11.87 24.82 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 4.30. Partial Uncertainty Rotations for reconstructions of anomalies originally on the

Pacific plate formed by Pacific-Aluk spreading for the area northwest of the

Palmer Peninsula (See Figure 3.2, Figure 1 of Cande et al. [1982]).

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Anglet Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km

21-22 .59.96 -80.58 -60.98 -81.52 132 -60.47 -81.04 18.37 2046 (20) -19.26 47.03 0.18 20 -21.49 144.94 0.18 20

22-23 -59.39 -81.93 -60.72 -82.75 132 -60.06 -82.33 14.80 1649 (20) -19.51 45.63 0.18 20 -21.77 143.77 0.18 20

23-24 -58.87 -83.49 -59.24 -83.61 132 -59.05 .83.55 55.60 6194 (20) -20.12 44.13 0.18 20 -22.47 142.84 0.18 20

24-25 -57.22 -87.02 -57.95 -87.31 128 -57.58 -87.16 27.43 3056 (20) -19.27 36.24 0.18 20 -24.99 135.62 0.18 20

25-26 .56.25 -89.78 -56.91 -90.14 124 .56.58 -89.96 29.82 3321 (20) -17.94 29.42 0.18 20 -27.17 128.98 0.18 20

26-27 -55.26 -94.22 -56.16 -94.36 124 -55.71 -94.29 22.86 2546 (20) -18.36 24.84 0.18 20 -27.84 124.94 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 4.31. Partial Uncertainty Rotations for reconstructions of anomalies
originally on the Pacific plate formed by Pacific-Aluk spreading for the

area northeast of New Zealand (See Figure 3 of Cande et al. 1 19821).
End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,
deg km deg km deg km

29-30 -45.44 -144.98 -46.07 -146.76 129 -45.76 -145.86 14.80 1649 (20) -26.04 -25.74 0.18 20 -32.83 82.64 0.18 20
30-31 -44.48 -145.00 -45.40 -148.04 133 -44.95 -146.51 8.79 979 (20) -28.86 -23.13 0.18 20 -31.17 86.34 0.18 20
31-32 -41.66 -144.88 -43.58 -151.92 129 -42.67 -148.34 3.73 415 (20) -27.56 -29.58 0.18 20 .34.85 81.72 0.18 20
32-33 -38.93 -150.01 -40.64 -156.24 127 -39.83 -153.09 4.05 451 (20) -27.53 -37.32 0.18 20 -37.83 76.55 0.18 20
33-34 -36.11 -150.08 -38.23 -159.56 134 .37.26 -154.75 2.63 292 (20) -33.56 -34.44 0.18 20 -34.92 83.16 0.18 20

North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
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TABLE 4.32. Partial Uncertainty Poles for Nazca-Antarctica

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km
05** -38.08 -96.96 -47.65 -76.21 76 -43.33 .87.40 2.31 257 (20) -46.33 83.89 0.18 20 -4.36 178.48 0.18 20

06 -49.29 -78.55 -54.01 -75.31 79 -51.66 -77.01 4.01 447 (20) 6.80 4.32 0.18 20 -37.51 89.07 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

** Partial uncertainty rotations calculated using end points of isochrons.
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TABLE 4.33. Partial Uncertainty Rotations for East Antarctica-Africa

End Points of Plate Boundaries

and Azimuths of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Anglej Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05 -44.00 36.59 -26.58 66.60 N5E -36.22 53.25 0.52 58 (15) 53.48 61.67 0.18 20 4.03 -33.79 0.09 10

06 -43.48 36.76 -29.11 59.60 N8E -36.84 49.25 0.67 75 (15) 52.42 62.44 0.18 20 6.39 -35.93 0.11 12

13 -42.17 37.54 -34.90 51.00 N10E -38.72 44.62 1.61 180 (20) 50.21 60.36 0.18 20 7.79 -39.09 0.18 20

18** -35.69 48.66 1.61 180 53.72 60.21 0.34 38 5.65 -37.25 0.22 25

21 ** -34.85 48.83 1.53 170 54.57 60.67 0.40 45 5.59 -37.25 0.27 30

251 -41.19 38.88 0.53 46.63 61.02 0.18 -11.23 138.89 0.18

30-31** -42.59 32.06 2.32 258 47.35 35.66 0.72 80 1.79 -56.30 0.27 30

34 -44.46 23.01 -34.76 41.19 NSE -39.96 32.75 1.22 135 (20) 49.78 40.51 0.36 40 3.83 -54.03 0.13 15

MOt -16.33 43.28 0.71 73.63 46.83 0.18 -0.96 133.56 0.18

M4
1  

-15.96 43.31 0.69 74.01 46.94 0.18 -0.96 133.58 0.18

Mi
1

t -15.33 43.37 0.66 74.64 47.15 0.18 -0.96 133.63 0.18

M16
1  

-14.79 43.45 0.64 75.18 47.36 0.18 -0.97 133.70 0.18

M21
1  

-14.32 43.49 0.63 75.64 47.53 0.18 -0.97 133.74 0.18

Closure

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 21, 30-31 and 34 is Stock and Molnar [1988).
North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Pole positions, angles, and partial uncertainty rotations interpolated between those for neighboring anomalies.

t Values in parentheses give overlap or underlap in kilometers of endpoints of the plate boundary.

I End points of plate boundaries were taken as the end points of the respective isochrons.
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TABLE 4.34. Partial Uncertainty Rotations for East Antarctica-India

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

0T-19.42 61.14 0.80 57.86 117.00 0.31 24.53 -19.60 0.16

061 -22.30 70.78 2.09 40.70 140.12 0.44 41.02 1.68 0.31

131 -35.21 41.80 1.73 15.34 120.63 0.55 50.62 11.10 0.23

18 .. . .... .... . ... -20.45 80.46 7.13 794 69.42 87.23 0.36 40 2.22 -8.71 0.90 100

21 -.- .... .... .... .... -18.17 81.00 7.13 794 71.70 87.83 0.36 40 2.03 -8.33 0.90 100

25 -11.10 78.10 -12.30 80.00 N2E -11.70 78.95 7.01 781 (15) 78.13 88.72 0.36 40 1.96 -10.64 0.27 30

30-31 -4.15 77.30 -8.55 83.25 N2E -6.35 80.26 2.10 234 (15) 83.34 97.78 0.36 40 1.99 -9.52 0.11 12

34 0.00 80.33 .... .... N2E 0.00 80.33 10.30 1147** 88.00 170.33 0.36 40 2.00 -9.67 0.36 40

MO
t  

-21.19 34.57 6.12 49.59 97.49 1.76 32.56 -41.10 0.40

M041 -27.29 30.24 13.86 46.44 87.38 2.09 30.96 -41.73 0.40

M11t -26.38 31.82 21.22 49.62 86.15 1.96 28.13 -42.80 0.40

M16
1  

-25.12 32.99 27.25 51.69 86.59 1.90 26.86 -43.27 0.40

M211 -20.30 40.12 23.25 64.34 79.77 1.42 15.02 -44.18 0.39

Closure

Source for the partial uncertainty rotations for anomalies 18, 21, 25, 30-31 and 34 is Stock and Molnar [1988).
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
** Mismatch of 100 km at 5 degrees from pole.

I Values in parentheses give overlap or underlap in kilometers of endpoints of the plate boundary.
I Rotation parameters and partial uncertainty parameters calculated from other boundaries in the Indian Ocean.

1
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TABLE 4.35. Partial Uncertainty Rotations for India-Africa

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat Long* Azimuth Lat* Long* Angle, Angle,t Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05 0.75 59.60 -22.40 67.00 N57E -10.84 63.16 0.64 71 (15) 32.34 146.20 0.18 20 55.46 -10.69 0.09 10

06 -25.05 65.65 .... .... N58E -25.05 65.65 2.00** 223** 28.69 140.83 0.27 30 50.20 9.77 0.27 30

13 .17.95 61.80 -37.10 69.35 N61E -27.57 65.24 0.77 85 (15) 25.45 140.85 0.27 30 50.83 15.10 0.13 15

18 .... .... .... .... .... -8.92 58.97 2.76 308 56.61 135.72 0.36 40 32.90 -25.20 - 0.90 100

21 .... .... .... .... .... -9.91 57.79 2.76 308 54.50 133.60 0.36 40 33.69 .25.53 0.90 100

25 1.35 55.85 -27.57 55.50 N34E -13.11 55.69 1.08 120 (30) 53.85 127.10 0.27 30 33.00 -25.61 0.18 20

30-311 .... .... .... .... .... -33.77 57.26 2.85 31.24 123.33 1.36 40.51 2.11 0.73

341 .... .... .... .... .... -16.57 79.55 10.33 39.87 155.17 0.97 45.45 7.14 0.49

MO*** -8.34 16.80 4.10 30.92 101.77 0.36 57.73 -59.76 0.36

M04*** -5.54 17.67 4.36 31.06 104.32 0.36 58.34 -63.27 0.36

M11*** -2.02 19.00 4.29 31.04 107.78 0.36 58.88 -67.64 0.36

M16*** -0.76 20.09 4.23 30.72 109.63 0.36 59.26 -68.62 0.36

M21*** 7.34 21.09 4.10 31.00 115.53 0.36 57.95 -80.78 0.36

Closure

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 21, 25, 30-31 and 34 is Stock and Molnar [1988].

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Mismatch of 1 degree (111.4 kin) at 30 degrees from pole.

*+* Partial uncertainty parameters were calculated from the plate circuit IND-MAD-AFR.

Value in parentheses give overlap or underlap in kilometers of endpoints of the plate boundary.

I Rotation parameters and partial uncertainty poles calculated from other boundaries in the Indian Ocean
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TABLE 4.36. Partial Uncertainty Rotations for East Antarctica-Australia
End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, t  
Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km
05 -39.16 90.99 -59.28 155.63 OE -53.68 115.90 0.47 20 36.32 115.90 0.18 20 0.00 -154.10 0.18 20
06 -37.90 95.13 .56.69 157.22 N2W -51.50 120.02 0.48 20 38.47 117.46 0.18 20 1.24 -151.55 0.18 20
13 -25.70 82.37 -51.50 157.55 OE -44.93 111.95 0.35 20 45.07 111.95 0.18 20 0.00 -158.05 0.18 20
18 -38.35 130.60 -50.25 156.15 OE -45.01 142.05 0.96 20 44.99 142.05 0.18 20 0.00 -127.95 0.18 20

211 -42.50 141.09 1.92 40 47.50 140.90 0.36 40 0.09 -128.99 0.36 40
25 t t t t -43.47 141.46 1.92 40 46.53 141.36 0.36 40 0.05 -128.59 0.36 40

30-31 t I t i -43.18 141.35 1.92 40 46.82 141.22 0.36 40 0.06 -128.71 0.36 40
341 -40.77 140.77 1.92 40 49.22 141.43 0.36 40 -0.33 -128.95 0.36 40

Closure1  
-38.91 140.17 1.92 40 51.08 138.68 0.36 40 0.73 -130.42 0.36 40

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 25 and 30-31 is Stock and Molnar [1988].
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
t These best fit poles were calculated by interpolation between the anomaly 18 pole [Stock and Molnar, 1982] and the magnetic
quite zone fit [Konig, 1980], using distances given by Cande and Mutter [1982]. Partial uncertainty rotation axes were rotated
from anomaly 18, with angle value doubled to reflect additional uncertainty in these interpolated poles.
I Partial uncertainty rotation axes were rotated from anomaly 18, with angle value doubled to reflect additional uncertainty
in these interpolated poles.
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TABLE 4.37. Partial Uncertainty Rotations for Pacific-West Antarctica
End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,
Anomaly deg km deg km deg km

05 -35.83 -103.85 .63.01 -147.25 N70W -51.31 -119.14 0.55 20 12.34 166.72 0.18 20 35.97 .94.14 0.18 20

06 -61.05 -140.26 -44.74 -101.13 N70W -54.46 .116.84 0.37 20 11.47 169.65 0.18 20 33.11 .92.74 0.18 20
13 -55.59 -100.38 -61.63 -133.62 N60W -59.68 -115.52 1.14 20 14.62 -179.03 0.18 20 25.93 .81.75 0.18 25
18 -53.97t .97.41 .66.821 -149.29 N62W -62.83 -117.84 0.38 20 12.38 177.47 0.18 20 23.78 -86.98 0.18 20

211 -64.64 -114.11 0.76 40 10.89 179.82 0.36 40 22.60 -85.58 0.36 40
251 -66.88 -108.71 0.76 40 8.89 -177.22 0.36 40 21.16 .83.74 0.36 40

30-311 -71.40 -92.96 0.76 40 4.08 -170.75 0.36 40 18.12 -79.41 0.36 40
34 (Closure)t -74.48 -70.71 0.76 40 -1.07 -164.57 0.36 40 15.48 -74.86 0.36 40

Source for the partial uncertainty rotations for anomalies 05, 06, 13 and 18 is Stock and Molnar [1988].
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

Endpoint rotated from the Pacific plate.
Partial uncertainty rotation axes were rotated from anomaly 18, with angle value doubled to reflect additional uncertainty

in these interpolated poles.
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TABLE 4.38. Partial Uncertainty Rotations for Pacific- Bellingshausen

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Anglet Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,
Anomaly deg km deg km deg km

05 -35.83 -103.85 -63.01 .147.25 N70W -51.31 -119.14 0.55 20 12.34 166.72 0.18 20 35.97 -94.14 0.18 20
06 -61.05 -140.26 -44.74 -101.13 N70W -54.46 -116.84 0.37 20 11.47 169.65 0.18 20 33.11 -92.74 0.18 20
13 -55.59 -100.38 -61.63 .133.62 N60W -59.68 -115.52 1.14 20 14.62 -179.03 0.18 20 25.93 -81.75 0.18 25
18 -53 .97t -97.41 .6 6 .8 2 t -149.29 N62W -62.83 -117.84 0.38 20 12.38 177.47 0.18 20 23.78 .86.98 0.18 20

211 -60.71 -125.67 1.14 20 18.47 -179.12 0.18 20 21.89 .81.41 0.18 20
25 -60.02 -112.67 -65.38 -128.7 N52W -62.93 .119.95 1.14 20 16.27 -175.13 0.18 20 21.02 .78.69 0.18 20

30-31 -62.23 -106.08 -67.42 -125.88 N54W -65.15 -115.02 2.10 20 14.30 -171.62 0.18 20 19.87 -76.33 0.18 20
34** -74.48 .70.71 0.76 40 -1.07 -164.57 0.36 40 15.48 -74.86 0.36 40

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 25 and 30-31 is Stock and Molnar [19881.
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
** Partial uncertainty rotations are the same as those for Pacific-Antarctica spreading.
t Endpoint rotated from the Pacific plate.

Partial uncertainty rotations were rotated from anomaly 25.
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TABLE 4.39. Partial Uncertainty Rotations for Greenland-Europe

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05 72.74 8.89 56.81 .31.87 115 66.04 .17.79 0.91 101 (20) .9.88 49.13 0.18 20 -21.59 .44.82 0.18 20

06 72.42 11.07 56.78 -30.03 120 65.90 -15.67 0.91 101 (20) .11.78 46.54 0.18 20 -20.70 -47.98 0.18 20

13 71.85 13.33 56.70 .28.20 120 65.63 -13.41 0.91 101 (20) .11.91 48.85 0.18 20 .20.94 -45.78 0.18 20

18 71.35 15.08 56.68 -26.96 120 65.42 -11.73 0.91 101 (20) .12.00 50.56 0.18 20 -21.11 -44.14 0.18 20

21 70.78 15.17 56.20 -26.94 122 64.93 -11.52 0.90 100 (20) .12.97 48.97 0.18 20 -21.06 -46.12 0.18 20

Closure

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
t Values in parentheses give overlap or underlap in kilometers of end points of the plate boundary.
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TABLE 4.40. Partial Uncertainty Rotations for Greenland-North America

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat Long* Angle, Angle,' Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

211 55.89 -27.01' 1.26 17.03 89.87 0.34 -28.57 9.47 0.23

25 61.62 .60.27 55.59 -47.84 65 58.75 .53.52 2.33 260 (20) 12.66 58.22 0.18 20 .28.04 -24.91 0.18 20

30-31 61.47 -61.28 55.11 -49.97 65 58.41 .55.11 2.37 264 (20) 12.79 56.55 0.18 20 .28.34 -26.42 0.18 20

34 61.27 -62.80 54.79 .51.88 65 58.15 -56.84 2.38 265 (20) 12.89 54.76 0.18 20 -28.57 -28.08 0.18 20

Closure

North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
I Values in parentheses give overlap or underlap in kilometers of end points of the plate boundary.
I Partial uncertainty rotations calculated through the plate circuit.
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TABLE 4.41. Partial Uncertainty Rotations for [North America + Greenland].Europe

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,' Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05 72.71 8.45 39.00 -17.50 103 56.42 -10.58 0.29 32 -7.23 68.40 0.13 15 32.59 153.74 0.07 8

06 72.12 9.05 45.00 .31.36 105 64.58 -12.63 0.47 52 -6.57 63.35 0.13 15 24.59 150.63 0.09 10

13 71.60 11.15 39.00 -25.39 93 56.55 -14.91 0.42 47 .2.05 71.98 0.13 15 33.37 160.63 0.09 10

18** 50.84 -21.87 0.64 -2.04 66.31 0.16 37.03 157.08 0.10

21 55.86 -27.10 39.00 -23.55 93 47.56 -24.99 0.91 101 -2.02 62.81 0.18 20 42.37 150.97 0.11 12

25*** 47.41 -22.25 0.47 -7.58 58.77 0.24 41.39 140.88 0.08

30-31 **** 48.63 -16.67 2.36 5.95 79.76 0.22 41.18 173.26 0.09

34 52.11 -17.42 46.48 -13.96 80 49.35 -15.88 2.55 283 4.11 78.93 0.22 25 40.35 172.43 0.09 10

MOt 49.35 -15.88 5.00 4.11 78.93 0.44 40.35 172.43 0.18

M41 49.35 -15.88 5.00 4.11 78.93 0.44 40.35 172.43 0.18

Closure

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Partial uncertainty rotations interpolated between those for anomalies 13 and 21.

* Partial uncertainty rotations extrapolated from those for anomalies 21 and 24.
**** Partial uncertainty rotations interpolated between those for anomalies 24 and 31.

Partial uncertainty rotations for North America-Iberia spreading. Partial uncertainty poles are the same as those for

anomaly34 rotation, with twice the angle.
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TABLE 4.42. Partial Uncertainty Rotations for Africa-North America

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05** 30.42 -40.23 0.32 36 -8.63 44.66 0.09 10 58.12 120.54 0.036 4

06 23.66 -47.89 37.48 .35.52 104 30.72 -42.15 0.41 46 -12.00 40.59 0.09 10 56.53 111.83 0.036 4

13 24.44 -49.93 37.53 -37.16 105 31.13 -43.99 0.42 47 -12.80 38.12 0.09 10 55.77 108.61 0.036 4

181 31.30 -45.00 0.63 70 -13.18 36.81 0.13 15 55.43 106.95 0.072 8

21 21.80 -52.70 33.52 -46.30 098 27.70 -49.67 0.63 71 -7.08 36.59 0.13 15 61.26 113.51 0.045 5

25 21.90 -54.65 33.77 -48.23 085 27.87 -51.62 0.71 79 4.42 40.72 0.09 10 61.72 138.98 0.045 5

30-311 27.46 -51.18 0.48 53 2.58 40.16 0.13 15 62.40 135.12 0.09 10

34 18.05 -60.92 37.60 -46.28 115 28.02 -54.27 0.35 39 -21.91 23.37 0.13 15 53.14 80.94 0.045 5

MO 29.00 -66.53 40.04 -51.42 125 34.75 -59.48 0.93 104 (15) -28.12 8.76 0.13 15 42.30 69.67 0.13 15

M04 29.02 -67.55 40.03 -52.60 125 34.75 -60.57 0.94 105 (15) -28.12 7.67 0.13 15 42.30 68.58 0.13 15

M11 29.02 -68.03 40.04 -53.67 112 34.74 -61.33 0.96 107 (15) -17.93 15.70 0.13 15 49.63 83.33 0.13 15

M16 29.00 -69.27 40.42 -54.43 112 34.93 -62.37 0.93 103 (15) -17.88 14.61 0.13 15 49.47 82.43 0.13 15

M21 29.00 -70.60 41.70 -52.60 112 35.68 -62.32 0.80 89 (15) -17.71 14.42 0.13 15 48.86 97.02 0.13 15

M25 29.31 -72.03 41.90 -56.00 122 35.87 -64.65 0.86 96 (15) -25.43 5.24 0.13 15 43.41 68.51 0.13 15

Closure

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 21, 25, 30-31 and 34 is Stock and Molnar [1988].

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Best pole and angle interpolated (by time scale) between values for anomaly 05 (center) and anomaly 06; partial uncertainty

rotations rotated from anomaly 05 (center) [Stock and Molnar, 1988].

t Partial uncertainty rotations interpolated between those of neighboring anomalies.
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TABLE 4.43. Partial Uncertainty Rotations for Africa-South America

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat Long* Angle, Angle, Lat* Long* Angle, Angle, Lat Long* Angle, Angle,

Anomaly deg km deg km deg km

05 -17.80 -14.90 -50.80 -9.50 078 -34.33 - -12.76 0.63 70 9.89 70.40 0.22 25 53.88 -33.41 0.13 15

06 -19.20 .17.25 -49.85 -14.90 080 -34.53 -16.29 1.02 113 8.22 68.00 0.22 25 54.22 -33.57 0.22 25

13 -29.60 -20.05 -50.85 -18.20 082 -40.23 .19.28 1.46 162 6.10 65.53 0.22 25 49.12 -31.56 0.16 18

18 -35.61 -20.46 1.38 154 4.17 66.54 0.33 37 54.07 -29.24 0.20 22

21 -35.64 -22.80 1.15 128 3.88 64.40 0.28 31 54.08 -30.97 0.16 18

25 -35.65 -24.09 1.38 154 3.71 63.23 0.33 37 54.10 -31.91 0.20 22

30-31 -31.05 -29.46 1.16 130 3.47 58.45 0.28 31 58.71 -37.27 0.19 21

34 -16.28 -31.45 .47.70 -39.15 090 -32.05 -34.63 0.65 72 0.00 55.37 0.22 25 57.95 -34.63 0.09 10

MO -49.97 -36.18 -51.78 -36.96 087 .50.88 -36.56 10.97 1222 (20) 1.89 51.11 0.18 20 39.06 -40.43 0.18 20

M04 -49.96 .37.99 -51.38 -38.86 087 -50.67 -38.42 13.51 1505 (20) 1.90 49.26 0.18 20 39.26 -42.29 0.18 20

Closure (M11)t -50.52 -39.58 15.82 1.90 49.51 0.18 39.17 -41.38 0.18

Source for the partial uncertainty rotations for anomalies 05, 06, 13, 18, 21, 25, 30-31 and 34 is Pardo-Casas and Molnar [1987].
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

Partial uncertainty rotations extrapolated from those for anomalies MO and M04.

1
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TABLE 4.44. Partial Uncertainty Rotations for South America-Antarctica

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

05 38.28 -165.27 0.75 .1.20 -76.22 0.39 51.69 12.25 0.23
06 36.12 -173.86 1.15 14.18 -73.24 0.49 50.33 34.50 0.28

13 41.69 -157.62 2.08 10.99 -57.67 0.69 46.23 44.02 0.27

18 38.81 .153.48 2.00 11.71 -53.88 0.79 48.79 49.82 0.44
21 39.22 -149.70 1.81 15.15 -46.93 0.70 46.82 59.84 0.47

25 26.82 -172.96 1.45 27.99 -172.96 0.39 49.38 60.91 0.37
30-31 48.51 -159.29 2.50 41.09 11.22 0.92 4.72 105.35 0.52

34 48.96 -158.80 1.32 41.03 21.99 0.54 -0.39 111.65 0.29
M0 5.12 -140.85 10.98 83.55 -178.38 0.65 -3.91 128.80 0.26

M04 -8.42 -132.65 13.51 80.71 -157.75 0.66 -3.88 136.77 0.23
Mi1 -12.30 .133.24 15.77 62.03 -67.48 0.85 24.70 142.51 1.19

All partial uncertainty rotations were calculated from other boundaries in the South Atlantic Ocean.
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

II
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TABLE 4.45. Partial Uncertainty Rotations for Nazca-Pacific

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat* Long* Angle, Angle, Lat Long* Angle, Angle,

Anomaly deg km deg km deg km

05 2.94 -108.64 -32.27 -122.37 NIOSE -14.77 -114.93 2.79 311 -14.49 -21.02 0.90 100 69.07 -68.50 0.90 100

06 3.47 -115.09 -31.15 -130.34 N99E .13.96 .122.13 5.58 622 -8.73 .29.94 1.80 200 73.44 .88.84 1.80 200

13 -13.94 -134.45 -31.36 .136.70 N80E -23.65 -135.63 0.79 88 9.15 .49.68 0.90 100 64.44 -159.36 0.13 15

18** -24.81 -143.44 1.58 176 9.69 -57.97 1.80 200 63.12 -167.67 0.26 30

21** .25.95 -152.12 1.58 176 9.25 -66.67 1.80 200 62.22 -174.69 0.26 30

25** .28.12 -157.82 1.58 176 12.72 .74.75 1.80 200 58.65 173.50 0.26 30

30-31** .30.26 -164.00 1.58 176 13.75 -82.22 1.80 200 56.14 166.39 0.26 30

34** -34.52 -173.45 1.58 176 17.02 -95.61 1.80 200 50.37 152.70 0.26 30

Source for the partial uncertainty rotations for anomalies 05, 06, and 13 is Pardo-Casas and Molnar [1987].

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

* Partial uncertainty rotation axes were rotated from anomaly 13, with angle value doubled to reflect additional uncertainty

in these interpolated poles.

II



Appendix C 205

TABLE 4.46. Partial Uncertainty Rotations for Australia-Lord Howe Rise
End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

Anomaly deg km deg km deg km

25 -40.30 157.06 1.73 20 18.19 -129.12 0.18 20 .44.09 -57.69 0.18 20
30-31 -39.20 157.96 2.36 20 27.16 -136.78 0.18 20 -38.76 -71.11 0.18 20

34 -38.28 158.69 3.39 20.67 -131.11 0.18 -42.79 -61.58 0.18
Closure

Source for the partial uncertainty rotations for anomalies 25 and 30-31 is Stock and Molnar [1988].
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.

Partial uncertainty rotation axes have been rotated from anomaly 28 [Stock and Molnar, 1988].
Partial uncertainty rotation axes have been rotated from anomaly 32 [Stock and Molnar, 1988].

* Partial uncertainty rotations were extrapolated from those for anomalies 25 and 30-31.

II
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TABLE 4.47. Partial Uncertainty Rotations for reconstructions of

anomalies on the Pacific plate formed by Pacific-Farallon spreading

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km
00-05*** 18.39 -118.02 1.32 8.54 -25.16 0.36 -69.59 -91.37 0.36

05-06** 34.02 .121.22 2.72 -115.37 81 18.39 -118.02 0.66 73 (20) 8.54 -25.16 0.18 20 -69.59 -91.37 0.18 20

06-13* 40.15 -131.59 -9.52 -127.53 80 15.32 -129.30 0.43 47 (20) 9.64 .36.63 0.18 20 -71.77 -95.59 0.18 20

13-18 t 33.46 -131.55 0.36 8.33 .36.00 0.18 -55.24 -113.81 0.18
18-21 - 33.50 -135.62 0.36 8.74 -39.78 0.18 -55.08 -117.06 0.18

2 1 - 2 5 t 33.75 -141.00 0.36 11.60 -43.11 0.18 -53.78 -116.83 0.18

25-30-31 33.78 -145.23 0.36 11.60 -47.34 0.18 .53.75 -121.08 0.18

30-31-341 41.42 -154.01 1.21 14.13 -51.18 0.18 -45.15 -126.52 0.18
34-MO** 44.15 164.18 5.10 191.26 68 25.22 179.96 0.46 51 (20) 19.81 -80.27 0.18 20 -57.01 -136.57 0.18 20

MO-M04** 42.94 162.14 5.23 189.61 70 24.69 178.01 0.47 52 (20) 18.10 -83.34 0.18 20 -58.62 -140.93 0.18 20

M04.M11** 39.78 160.67 5.12 187.67 50 23.01 175.94 0.50 55 (20) 36.27 -75.90 0.18 20 -44.84 -119.04 0.18 20
M1I-M16** 34.87 156.85 14.86 183.71 43 25.47 171.40 0.66 74 (20) 41.32 -73.84 0.18 20 -38.00 -120.45 0.18 20

M16-M21** 30.76 158.14 13.30 181.12 40 22.43 170.35 0.76 84 (20) 45.08 -75.19 0.18 20 -36.45 -117.40 0.18 20

M21-M25** 28.78 156.76 14.64 173.74 38 21.93 165.67 0.98 109 (20) 46.97 -78.78 0.18 20 -34.83 -120.59 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
**End points of plate boundaries were taken as the end points of the respective isochrons.
*** Partial uncertainty poles are the same as those for the 05-06 rotation with twice the angle.
tSource is Rosa and Molnar [1988] (Chapter 2, Table 2.5). Method used to calculate uncertainties is that developed by Stock
and Molnar [1983] and modified slightly by Molnar and Stock [1985] (Figure 2.2a).
IPartial uncertainty rotations are the same as those for the rotation 30-31-32, as calculated by Rosa and Molnar [1988]. Vari-
ation of the method outlined by Stock and Molnar [1983] (Figure 2.2b).
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TABLE 4.48. Partial Uncertainty Rotations for reconstructions of
anomalies on the Pacific plate formed by Pacific-Vancouver spreading

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat Long* Azimuth Lat Long* Angle, Angle, Lat* Long Angle, Angle, Lat* Long* Angle, Angle,

deg km deg km deg km
00-05** 53.11 .133.08 40.14 .131.05 88 46.63 -131.94 1.58 176 (20) 1.37 -40.49 0.18 20 -43.34 -129.19 0.18 20
05-06* 55.86 -135.54 39.93 -135.88 88 47.89 .135.74 1.29 144 (20) 1.34 .44.25 0.18 20 -42.07 .133.04 0.18 20
06-13** 59.38 -142.80 38.53 -131.57 89 49.08 -135.99 0.94 105 (20) 0.65 .45.24 0.18 20 -40.91 -134.67 0.18 20

13-18 48.99 -148.31 1.31 0.98 -57.17 0.18 -40.99 -146.32 0.18
18-21 48.13 -143.93 1.60 1.00 -52.81 0.18 -41.86 -141.92 0.18

21-25** 51.01 .157.43 38.24 -141.34 73 44.90 -148.49 1.21 135 (20) 11.95 -46.31 0.18 20 -42.63 -125.07 0.18 20

Partial source for this table is Rosa and Molnar [1988] (Chapter 2, Table 2.6).
* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
**End points of plate boundaries were taken as the end points of the respective isochrons.
Method used to calculate uncertainties is that developed by Stock and Molnar [1983] and modified slightly by Molnar and
Stock (1985] (Figure 2.2a).
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TABLE 4.49. Partial Uncertainty Rotations for reconstructions of
anomalies on the Pacific plate formed by Pacific-Kula spreading

End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Rotation Lat* Long* Lat* Long* Azimuth Lat Long* Angle, Angle, Lat Long* Angle, Angle, Lat* Long* Angle, Angle,
deg km deg km deg km

22-25** 51.01 -157.43 48.38 -185.36 179 50.54 -171.78 1.14 127 (20) 39.45 9.52 0.18 20 0.63 .81.01 0.18 20
25-30-31 48.66 -171.25 1.75 41.34 8.75 0.18 0.00 -81.25 0.18 20

30-31-34*** 47.26 -169.50 2.73 42.74 10.49 0.25 0.00 .79.50 0.36
34-MO** 44.15 164.18 42.84 147.83 157 43.79 155.92 1.73 193 (20) 41.65 7.44 0.18 20 16.38 .97.72 0.18 20

M0-M4** 42.94 162.14 42.39 147.42 157 42.90 154.75 1.90 212 (20) 42.40 6.69 0.18 20 16.63 -99.14 0.18 20
M4-M11** 39.78 160.67 38.34 144.15 142 39.35 152.32 1.60 178 (20) 37.54 23.26 0.18 20 28.43 -91.32 0.18 20

M11-M16** 34.87 156.85 33.69 142.05 166 34.50 149.40 1.68 187 (20) 53.09 6.85 0.18 20 11.50 .112.56 0.18 20
M16-M21** 30.76 158.14 28.80 143.06 155 29.99 150.53 1.56 174 (20) 51.71 13.53 0.18 20 21.47 -106.35 0.18 20
M21-M25** 28.78 156.76 24.00 143.92 155 26.53 150.21 1.66 184 (20) 54.18 16.44 0.18 20 22.22 -108.03 0.18 20

Partial source for this table is Rosa and Molnar [1988] (Chapter 2, Table 2.7).
*North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
*End points of plate boundaries were taken as the end points of the respective isochrons.
***Partial uncertainty rotations are the same as those for the rotation 30-31-32, as calculated by Rosa and Molnar [1988].
Method used to calculate uncertainties is that developed by Stock and Molnar [19831 and modified slightly by Molnar and
Stock [1985] (Figure 2.2a).
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TABLE 4.50. Partial Uncertainty Rotations for India-Australia

End Points of Plate Boundaries
and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat* Long* Lat* Long* Azimuth Lat* Long* Angle, Angle,t Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,
Anomaly deg km deg km deg km

21 -11.99 90.19 -2.26 98.46 0 .7.14 94.37 1.62 180 (20) 82.86 94.37 0.18 20 0.00 -175.63 0.18 20
25 -17.54 89.79 -7.96 98.36 0 .12.78 94.16 1.62 181 (20) 77.21 94.16 0.18 20 0.00 -175.84 0.18 20

30-31 -25.26 89.08 -6.20 101.41 0 .15.82 95.54 0.92 103 (20) 74.18 95.54 0.18 20 0.00 -174.46 0.18 20
34 -23.63 90.76 .12.08 104.05 0 -17.97 97.62 1.21 134 (20) 72.03 97.62 0.18 20 0.00 -172.38 0.18 20

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
t Values in parentheses give overlap or underlap in kilometers of end points of the plate boundary.
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TABLE 4.51. Partial Uncertainty Rotations for Madagascar-Africa
End Points of Plate Boundaries

and Azimuth of Transform Faults Skewed Fit Mismatched Fracture Zones Mismatched Magnetic Anomalies

Magnetic Lat Long* Lat* Long* Azimuth Lat* Long* Angle, Angle, Lat* Long* Angle, Angle, Lat* Long* Angle, Angle,
Anomaly deg km deg km deg km

MO** -2.98 49.61 .7.61 41.43 1. -5.31 45.53 4.40 490 (40) 84.60 56.22 0.36 40 .1.00 135.63 0.36 40
M4** -2.22 49.65 .6.86 41.40 1. -4.55 45.54 4.36 486 (40) 85.34 57.94 0.36 40 .1.00 135.62 0.36 40

M11** -0.97 49.77 -5.61 41.36 1. -3.30 45.57 4.29 478 (40) 86.55 62.45 0.36 40 -1.00 135.63 0.36 40

M16** .0.10 49.91 -4.51 41.32 1. -2.21 45.62 4.23 471 (40) 87.57 69.96 0.36 40 -1.00 135.66 0.36 40
M21** 1.03 50.00 -4.00 41.29 1. -1.49 45.65 4.10 457 (40) 88.21 79.53 0.36 40 -1.00 135.68 0.36 40

Closure

* North and east are positive. Rotation angles are positive counterclockwise. Lat, latitude; Long, longitude.
* End points of plate boundaries taken from the respective isochrons used in this study. The isochrons were taken or
interpolated from Cochran [19881.
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TABLE 6.1. Area measurements for the present time.

Areas for the age interval from the present to anomaly 5 time (0 to 10.59 Ma).

Calculated Positive Negative Nature

Area Uncertainty Uncertainty of Area

746604 10843 -10821 Africa-North America spreading

3049831 192519 -192639 Africa-South America spreading

755783 86671 -86672 Antarctica-Africa spreading

3966869 99587 -99570 Antarctica-Australia spreading

1206664 56166 -56169 Antarctica-India spreading

755885 90026 -90095 Greenland-Europe spreading

776391 38900 -38880 India-Africa spreading

799766 27062 -26892 Nazca-Antarctica spreading

450335 14276 -14261 North America-Europe spreading

711381 76099 -76136 Pacific-Antarctica spreading

2990109 70595 -70646 Pacific-Bellingshausen spreading

576768 27636 -27823 Pacific-Vancouver spreading

1493605 57709 -62355 Pacific-Farallon spreading

5200005 291002 -289356 Nazca-Pacific spreading

163777 58608 -58392 South America-Antarctica spreading

1054062 Galapagos Region (Nazca-Cocos)

3400000 Marginal Basins

425475 Red Sea

156242 South part of Red Sea

116132 12280 -12280 Antarctica-Aluk t

TOTAL 28795684 1468580 -1468580

dA/dt 2719139

Estimated uncertainties.
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TABLE 6.2. Area measurements for the present time.
f~I*~ ~E~\

Areas for the age interval from anomaly 5 time to anomaly t time (1U.59 ia to 19.9U via).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

679260 11309 -11306 Africa-North America spreading

2915827 297155 -297277 Africa-South America spreading

568440 84204 -84195 Antarctica-Africa spreading

3051875 101079 -101292 Antarctica-Australia spreading

1110528 90080 -90431 Antarctica-India spreading

675768 84748 -84609 Greenland-Europe spreading

577351 31244 -377393 India-Africa spreading

837071 213511 -203545 Nazca-Antarctica spreading

497381 31230 -31178 North America-Europe spreading

654304 43421 -43481 Pacific-Antarctica spreading

1784089 66072 -65771 Pacific-Bellingshausen spreading

455346 33565 -33585 Pacific-Vancouver spreading

1905196 88795 -106207 Pacific-Farallon spreading

3870664 544021 -277287 Nazca-Pacific spreading

134794 69425 -69551 South America-Antarctica spreading

2100000 Marginal Basins

278763 17530 -17530 Antarctica-Aluk t

TOTAL 22096657 1988699 -2099182

dA/dt 2373432

t Estimated uncertainties.

213



Appendix D

TABLE 6.3. Area measurements for the present time.

Areas for the age interval from anomaly 6 time to anomaly 13 time (19.90 Ma to 35.58 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

1020389 11193 -11191 Africa-North America spreading

4963792 525199 -525977 Africa-South America spreading

1138158 79931 -79888 Antarctica-Africa spreading

5184735 99096 -98448 Antarctica-Australia spreading

1332697 118225 -25820 Antarctica-India spreading

618392 125428 -124827 Greenland-Europe spreading

43532 207511 -154426 India-Africa spreading

547884 20439 -20428 North America-Europe spreading

635814 101217 -101113 Pacific-Antarctica spreading

2396783 60574 -60324 Pacific-Bellingshausen spreading

1297182 43595 -43625 Pacific-Vancouver spreading

5131220 96883 -96987 Pacific-Farallon spreading

5336500 95985 -95780 Nazca-Pacific spreading

272470 134771 -135104 South America-Antarctica spreading

7500000 Marginal Basins

277886 23650 -23650 Antarctica-Aluk i
392594 23480 -23480 Antarctica-Farallon f
334085 18060 -18060 Nazca-Antarctica f

TOTAL 38424113 2228598 -2036478

dA/dt 2450517

t Estimated uncertainties.
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TABLE 6.4. Area measurements for the present time.

Areas for the age interval from anomaly 13 time to anomaly 18 time (35.58 Ma to 42.01 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

558452 22148 -22137 Africa-North America spreading

2103914 429708 -422670 Africa-South America spreading

551016 143105 -143087 Antarctica-Africa spreading

1473112 163793 -163771 Antarctica-Australia spreading

533787 112289 -85093 Antarctica-India spreading

711417 123410 -123063 Greenland-Europe spreading

518109 286105 -309960 India-Africa spreading

288386 22942 -22943 North America-Europe spreading

201057 39076 -39100 Pacific-Antarctica spreading

731855 49498 -48866 Pacific-Bellingshausen spreading

678133 40308 -40205 Pacific-Vancouver spreading

2520884 99503 -99453 Pacific-Farallon spreading

2330873 93297 -91319 Nazca-Pacific spreading

128826 167940 -167715 South America-Antarctica spreading

1480000 Marginal Basins

115350 18070 -18070 Antarctica-Aluk t

196185 20940 -20940 Antarctica-Farallon t

TOTAL 15121356 2026262 -2011140

dA/dt 2351688

t Estimated uncertainties.
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TABLE 6.5. Area measurements for the present time.

Areas for the age interval from anomaly 18 time to anomaly 21 time (42.01 Ma to 49.55 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

607234 16784 -16757 Africa-North America spreading

3317116 349268 -349084 Africa-South America spreading

572440 159119 -159223 Antarctica-Africa spreading

1357693 328885 -330471 Antarctica-Australia spreading

723067 220619 -214236 Antarctica-India spreading

442260 123960 -123400 Greenland-Europe spreading

196886 70541 -69212 Greenland-North America spreading

2122460 214261 -209859 India-Africa spreading

350776 25044 -24975 North America-Europe spreading

552914 81872 -81987 Pacific-Antarctica spreading

827109 40168 -40606 Pacific-Bellingshausen spreading

598625 38036 -37996 Pacific-Vancouver spreading

2740674 98255 -98186 Pacific-Farallon spreading

2077696 91290 -89175 Nazca-Pacific spreading

136601 9727 -39768 India-Australia spreading

78660 154917 -155036 South America-Antarctica spreading

1700000 Marginal Basins

176578 19870 -19870 Antarctica-Aluk t

241765 21680 -21680 Antarctica-Farallon t

14331 7220 -7220 Pacific-Aluk i
163959 14460 -14460 Pacific-Antarctica i

TOTAL 18998844 2298860 -2317859

dA/dt 2519741

t Estimated uncertainties.
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TABLE 6.6. Area measurements for the present time.

Areas for the age interval from anomaly 21 time to anomaly 25 time (49.55 Ma to 58.94 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

-16963

-428272

-68901

-340107

-34478

-55855

-42136

-17378

-69566

-31666

-18208

-133570

-14044

-86756

781483

1915020

822631

318278

204345

197368

1052401

722271

516411

885557

159677

3205335

684335

154875

1870000

596081

1020545

255684

230559

79789

89286

955358

340182

17057471

1816557

Africa-North America spreading

Africa-South America spreading

Antarctica-Africa spreading

Antarctica-Australia spreading

Australia-Lord Howe Rise spreading

Greenland-North America spreading

India-Africa spreading

North America-Europe spreading

Pacific-Antarctica spreading

Pacific-Bellingshausen spreading

Pacific-Kula spreading

Pacific-Farallon spreading

India-Australia spreading

South America-Antarctica spreading

Marginal Basins

Nazca-Pacific

Greenland-Europe i

Antarctica-Aluk t

Pacific-Aluk t

Pacific-Antarctica i
Pacific-Farallon I

Antarctica-India i
Antarctica-India i

-119605

-123400

-21680

-20780

-9030

-11750

-38520

-16970

-1927494

16966

435746

68608

341037

34472

55749

41692

17390

69719

31762

18055

133541

13849

85817

122437

123960

21680

20780

9030

11750

38520

16970

1944552TOTAL

dA/dt
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TABLE 6.7. Area measurements for the present time.

Areas for the age interval from anomaly 25 time anomaly 30-31 time (58.94 Ma to 68.47 Ma)

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

799560 23801 -23827 Africa-North America spreading

2297438 310291 -306299 Africa-South America spreading

695612 162528 -162266 Antarctica-Africa spreading

291084 321589 -322467 Antarctica-Australia spreading

741626 32256 -32293 Australia-Lord Howe Rise spreading

198230 55990 -54509 Greenland-North America spreading

476784 19470 -19502 North America-Iberia, Iberia-Europe, and North America

1142287 68376 -67974 Pacific-Antarctica spreading

1288226 26628 -26462 Pacific-Bellingshausen spreading

484678 37522 -37603 Pacific-Kula spreading

2941000 134687 -134542 Pacific-Farallon spreading

608978 143127 -139439 Nazca-Pacific spreading

224986 27908 -27980 India-Australia spreading

1303292 407568 -409217 South America-Antarctica spreading

2420000 Marginal Basins

1010506 32180 -32180 South America-Antarctica (Weddell Sea)

255363 11790 -11790 Africa-South America

293689 25110 -25110 Antarctica-Aluk t

241341 20420 -20420 Pacific-Aluk t

154108 16270 -16270 Pacific-Antarctica t

231631 14720 -14720 Antarctica-India t

2349250 90760 -90760 Antarctica-India t
2330359 70070 -70070 India-Africa t
1152944 27680 -27680 India-Africa t

TOTAL 23932972 2321498 -2297565

dA/dt 2511330

t Estimated uncertainties.

1P_
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TABLE 6.8. Area measurements for the present time.

Areas for the age interval from anomaly 30-31 time to anomaly 34 time (68.47 Ma to 84.00 Mz

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

1367430 14015 -14012 Africa-North America spreading

6190112 174521 -173049 Africa-South America spreading

1300549 63673 -63458 Antarctica-Africa spreading

454122 315260 -316260 Antarctica-Australia spreading

1001567 33277 -33298 Australia-Lord Howe Rise spreading

298094 56351 -54696 Greenland-North America spreading

752383 20260 -20150 North America-Iberia, Iberia-Europe, and North America

1105011 68155 -68118 Pacific-Antarctica spreading

2501455 34284 -33835 Pacific-Bellingshausen spreading

705466 54398 -54286 Pacific-Kula spreading

4659261 346460 -346736 Pacific-Farallon spreading

297841 183949 -180028 Nazca-Pacific spreading

569118 203199 -203277 South America-Antarctica spreading

3830000 Marginal Basins

560975 28940 -28940 Africa-South America

298768 17700 -17700 Antarctica-India t

1752973 53890 -53890 Antarctica-India t

1383941 44600 -44600 India-Africa 

TOTAL 29029066 1973976 -1973976

dA/dt 1869225

t Estimated uncertainties.
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TABLE 6.9. Area measurements for the present time.

Areas for the age interval from anomaly 34 time to anomaly MO time (84.00 Ma to 118.35 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

4273181 41870 -41818 Africa-North America spreading

5148197 94064 -94061 Africa-South America spreading

2333685 56356 -68408 Antarctica-Africa spreading

636297 70292 -72039 North America-Iberia spreading

1337215 35593 -35920 Pacific-Kula spreading

10971625 119393 -119118 Pacific-Farallon spreading

1363552 477514 -476777 South America-Antarctica spreading

14235547 711777 -711777 Pac-Phoe-Naz-Bell-Ant spreading **

720000 Marginal Basins

56600 8050 -8050 Greenland-North America spreading i

842059 46960 -46960 North America-Europe spreading i

6626430 174521 -174521 Africa-South America spreading t

138384 12500 -12500 Africa-South America spreading i

3418472 58980 -58980 Antarctica-India spreading i

3712548 91150 -91150 Antarctica-Australia spreading i

82041 22290 -22290 Pacific-Antarctica spreading t

441515 22280 -22280 Pacific-Bellingshausen spreading i

1466227 146623 -146623 Indian Ocean **

372181 37218 -37218 Antarctica-Australia spreading **

1699886 26180 -26180 Antarctica-India spreading t

384559 16638 -16638 Australia-Lord Howe Rise spreading I

270681 19650 -19650 India-Africa spreading t

982789 32420 -32420 India-Australia spreading (NW Australia) I

1190618 35910 -35910 India-Australia spreading (NW Australia) I

TOTAL 62704289 2382763 -2382763

dA/dt 1825452

i Estimated uncertainties.

1 Same as 30-31-34 uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.10. Area measurements for the present time.

Areas for the age interval from anomaly MO time to anomaly M4 time (118.35 Ma to 125.91 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

499886 42934 -42920 Africa-North America spreading

1920065 99656 -99338 Africa-South America spreading

- 608804 59620 -60642 Antarctica-Africa spreading

58983 17340 -17340 North America-Iberia spreading t

1982607 45350 -45350 Pacific-Phoenix spreading t

237552 24581 -24635 Pacific-Kula spreading

1438030 97950 -97906 Pacific-Farallon spreading

335247 459360 -459654 South America-Antarctica spreading

660000 Marginal Basins

751816 43880 -43880 India-Australia (NW Australia) t

TOTAL 8492990 968201 -968201

dA/dt 1123411

t Estimated uncertainties.
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TABLE 6.11. Area measurements for the present time.

Areas for the age interval from anomaly M4 time to anomaly M11 time (125.91 Ma to 132.78 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

245689 40744 -40722 Africa-North America spreading

486201 82250 -82268 Africa-South America spreading

406402 63084 -64269 Antarctica-Africa spreading

1576704 44390 -44390 Pacific-Phoenix spreading t

464718 27338 -27300 Pacific-Kula spreading

1382629 96892 -96733 Pacific-Farallon spreading

301291 601637 -601151 South America-Antarctica spreading

610000 Marginal Basins

239185 18400 -18400 North America-Iberia spreading

320309 13720 -13720 India-Australia (NW Australia) t

778955 22440 -22440 India-Australia (NW Australia) i
TOTAL 6812083 1110369 -1110369

dA/dt 991570

Estimated uncertainties.
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TABLE 6.12. Area measurements for the present time.

Areas for the age interval from anomaly M11 time to anomaly M16 time (132.78 Ma to 141.52 Ma

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

528502

431529

1389700

546569

1205968

610000

546816

15983

5275067

603555

40899

65362

41530

31147

85124

27240

3250

332329

-40904

-66471

-41530

-31166

-85005

-27240

-3250

-332329

Africa-North America spreading

Antarctica-Africa spreading

Pacific-Phoenix spreading t

Pacific-Kula spreading

Pacific-Farallon spreading

Marginal Basins

South America-Antarctica spreading (Weddell Sea)

India-Australia (NW Australia) t

Estimated uncertainties.

TOTAL

dA/dt
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TABLE 6.13. Area measurements for the present time.

Areas for the age interval from anomaly M16 time to anomaly M21 time (141.52 Ma to 149.65 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

547731 15774 -37809 Africa-North America spreading

450012 67384 -68486 Antarctica-Africa spreading

1266588 41530 -41530 Pacific-Phoenix spreading t

594973 28769 -28785 Pacific-Kula spreading

332990 64439 -64749 Pacific-Farallon spreading

100459 8740 -8740 India-Australia spreading (NW Australia) t

TOTAL 3292753 226636 -250099

dA/dt 405013

t Estimated uncertainties.
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TABLE 6.14. Area measurements for the present time.

Areas for the age interval from anomaly M21 time to anomaly M25 time (149.65 Ma to 156.42 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

883465 43031 -43033 Africa-North America spreading

2204727 36750 -36750 Pacific-Phoenix spreading t
568584 29718 -29618 Pacific-Kula spreading

682163 55870 -55747 Pacific-Farallon spreading

848721 84872 -84872 Indian Ocean **

194535 11980 -11980 India-Australia (NW Australia) t

TOTAL 5382195 262221 -262000

dA/dt 795007

Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.15. Area measurements for the present time.

Areas with age older than anomaly M25 time (156.42 Ma to 180.0 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

9025140 451257 -451257 Pac-Far-Kul-Pho spreading *

2216272 63040 -63040 Africa-North America spreading I
66163 7740 -7740 India-Australia (NW Australia) t

TOTAL 11307575 522037 -522037

dA/dt 479541

t Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.16. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 13 time to anomaly 18 time (0.00 to 6.43 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

558452 22148 -22137 Africa-North America spreading

2103914 429708 -422670 Africa-South America spreading

551016 143105 -143087 Antarctica-Africa spreading

1473112 163793 -163771 Antarctica-Australia spreading

533787 112289 -85093 Antarctica-India spreading

711417 123410 -123063 Greenland-Europe spreading

518109 286105 -309960 India-Africa spreading

288386 22942 -22943 North America-Europe spreading

201057 39076 -39100 Pacific-Antarctica spreading

731855 49498 -48866 Pacific-Bellingshausen spreading

1480000 Marginal Basins

1895781 80267 -80308 Pacific-Farallon spreading (Pacific Plate)

1408478 22362 -33459 Pacific-Farallon spreading (Farallon Plate)

2633371 147705 -154267 Nazca-Pacific spreading

617732 13637 -13604 Pacific-Vancouver spreading (Vancouver Plate)

745084 14982 -15208 Pacific-Vancouver spreading (Pacific Plate)

566642 407056 -406772 South America-Antarctica spreading

TOTAL 17018193 2280438 -2280438

dA/dt 2646686
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TABLE 6.17. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 18 time to anomaly 21 time (6.43 Ma to 13.97 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

607234 16784 -16757 Africa-North America spreading

3317116 349268 -349084 Africa-South America spreading

572440 159119 -159223 Antarctica-Africa spreading

1357693 328885 -330471 Antarctica-Australia spreading

723067 220619 -214236 Antarctica-India spreading

442260 123960 -123400 Greenland-Europe spreading

196886 70541 -69212 Greenland-North America spreading

2122460 214261 -209859 India-Africa spreading

350776 25044 -24975 North America-Europe spreading

552914 81872 -81987 Pacific-Antarctica spreading

827109 40168 -40606 Pacific-Bellingshausen spreading

1700000 Marginal Basins

2740674 98255 -98186 Pacific-Farallon spreading (Pacific plate)

1613871 77228 -82731 Pacific-Farallon spreading (Farallon plate)

3204153 143916 -144029 Nazca-Pacific spreading

570693 168222 -168053 Pacific-Vancouver spreading (Vancouver plate)

756493 26391 -26591 Pacific-Vancouver spreading (Pacific plate)

985766 21720 -21720 Australia-India spreading

275746 375636 -375618 South America-Antarctica spreading

TOTAL 22917351 2750082 -2750082

dA/dt 3039436

t Estimated uncertainties.
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TABLE 6.18. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 21 time to anomaly 25 time (13.97 Ma to 23.36 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

781483 16966 -16963 Africa-North America spreading

1915020 435746 -428272 Africa-South America spreading

822631 68608 -68901 Antarctica-Africa spreading

318278 341037 -340107 Antarctica-Australia spreading

204345 34472 -34478 Australia-Lord Howe Rise spreading

197368 55749 -55855 Greenland-North America spreading

1052401 41692 -42136 India-Africa spreading

722271 17390 -17378 North America-Europe spreading

516411 69719 -69566 Pacific-Antarctica spreading

885557 31762 -31666 Pacific-Bellingshausen spreading

1870000 Marginal Basins

1020545 123960 -123400 Greenland-Europe spreading t

955358 38520 -38520 Antarctica-India spreading t

340182 16970 -16970 Antarctica-India spreading i

3205335 133541 -133570 Pacific-Farallon spreading (Pacific plate)

1038199 34377 -47039 Pacific-Farallon spreading (Farallon plate)

1970953 204786 -205175 Nazca-Pacific spreading

40707 46133 -47301 Pacific-Vancouver spreading (Vancouver plate)

95687 45220 -45107 Pacific-Vancouver spreading (Vancouver plate)

827366 41084 -41154 Pacific-Kula spreading

1789160 45110 -45110 Australia-India spreading t

47008 64871 -64871 South America-Antarctica spreading

TOTAL 20616265 2102859 -2102859

dA/dt 2195555

Estimated uncertainties.

Same as 18-21 uncertainties.
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TABLE 6.19. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 25 time anomaly 30-31 time (23.36 Ma to 32.89 Ma)

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

799560 23801 -23827 Africa-North America spreading

2297438 310291 -306299 Africa-South America spreading

695612 162528 -162266 Antarctica-Africa spreading

291084 321589 -322467 Antarctica-Australia spreading

741626 32256 -32293 Australia-Lord Howe Rise spreading

198230 55990 -54509 Greenland-North America spreading

476784 19470 -19502 North America-Iberia, Iberia-Europe, and North America

1142287 68376 -67974 Pacific-Antarctica spreading

1288226 26628 -26462 Pacific-Bellingshausen spreading

2420000 Marginal Basins

255363 11790 -11790 Africa-South America spreading

154108 16270 -16270 Pacific-Antarctica spreading i

231631 14720 -14720 Antarctica-India spreading t

2349250 90760 -90760 Antarctica-India spreading t

2330359 70070 -70070 India-Africa spreading i

1152944 27680 -27680 India-Africa spreading

2941000 134687 -134542 Pacific-Farallon spreading (Pacific plate)

928223 28632 -41868 Pacific-Farallon spreading (Farallon plate)

2135982 239767 -240468 Nazca-Pacific spreading

470647 31460 -31460 Pacific-Kula spreading (Kula plate)

1949686 46550 -46550 Australia-India spreading

264439 377039 -377038 South America-Antarctica spreading

484678 37522 -37603 Pacific-Kula spreading (Pacific plate)

TOTAL 25999157 2365923 -2365923

dA/dt 2728138

t Estimated uncertainties.
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TABLE 6.20. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 30-31 time to anomaly 34 time (32.89 Ma to 48.42 ME

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

1367430 14015 -14012 Africa-North America spreading

6190112 174521 -173049 Africa-South America spreading

1300549 63673 -63458 Antarctica-Africa spreading

454122 315260 -316260 Antarctica-Australia spreading

1001567 33277 -33298 Australia-Lord Howe Rise spreading

298094 56351 -54696 Greenland-North America spreading

752383 20260 -20150 North America-Iberia, Iberia-Europe, and North America

1105011 68155 -68118 Pacific-Antarctica spreading

2501455 34284 -33835 Pacific-Bellingshausen spreading

3830000 Marginal Basins

560975 28940 -28940 Africa-South America spreading

298768 17700 -17700 Antarctica-India spreading f
1752973 53890 -53890 Antarctica-India spreading t

1383941 44600 -44600 India-Africa spreading t

4659261 346460 -346736 Pacific-Farallon spreading (Pacific plate)

1400500 27129 -41176 Pacific-Farallon spreading (Farallon plate)

2974926 319192 -321053 Nazca-Pacific spreading

2371726 131576 -102955 Pacific-Kula spreading (Kula plate)

883116 45590 -45590 Australia-India spreading

816613 203182 -203068 South America-Antarctica spreading

705466 54398 -54286 Pacific-Kula spreading (Pacific plate)

TOTAL 36608988 2306366 -2269757

dA/dt 2357308

Estimated uncertainties.
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TABLE 6.21. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly 34 time to anomaly MO time (48.42 Ma to 82.77 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

4273181 41870 -41818 Africa-North America spreading

5148197 94064 -94061 Africa-South America spreading

2333685 56356 -68408 Antarctica-Africa spreading

636297 70292 -72039 North America-Iberia spreading

56600 8050 -8050 Greenland-North America spreading f

842059 46960 -46960 North America-Europe spreading f

6626430 174521 -174521 Africa-South America spreading t

138384 12500 -12500 Africa-South America spreading f

3418472 58980 -58980 Antarctica-India spreading f

3712548 91150 -91150 Antarctica-Australia spreading f

82041 22290 -22290 Pacific-Antarctica spreading f

441515 22280 -22280 Pacific-Bellingshausen spreading i

1466227 146623 -146623 Indian Ocean **

372181 37218 -37218 Antarctica-Australia spreading **

1699886 26180 -26180 Antarctica-India spreading i

384559 16638 -16638 Australia-Lord Howe Rise spreading 1

270681 19650 -19650 India-Africa spreading t

6309473 878333 -856316 Nazca-Pacific spreading

9988487 456058 -457073 Pacific-Kula spreading (Pacific plate)

10971625 119393 -119118 Pacific-Farallon spreading (Pacific plate)

19964270 1996427 -1996427 Pac-Far-Ant-Bel-Pho spreading **

446850 26270 -26270 Australia-India spreading t

5666850 283342 -283342 Australia-India spreading **

1781459 472412 -471392 South America-Antarctica spreading

982789 32420 -32420 Australia-India spreading i

720000 Marginal Basins

TOTAL 88734746 5235350 -5235350

dA/dt 2583253

t Estimated uncertainties.

1 Same as 30-31-34 uncertainties.
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TABLE 6.22. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly MO time to anomaly M4 time (82.77 Ma to 90.33 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

499886 42934 -42920 Africa-North America spreading

1920065 99656 -99338 Africa-South America spreading

608804 59620 -60642 Antarctica-Africa spreading

58983 17340 -17340 North America-Iberia spreading t

660000 Marginal Basins

986644 54940 -54940 Pacific-Kula spreading (Pacific plate) i
4758996 78280 -78280 Pacific-Phoenix spreading (Pacific plate) i
1438030 97950 -97906 Pacific-Farallon spreading (Pacific plate)

936320 65542 -65542 Australia-India spreading t

520778 458308 -462597 South America-Antarctica spreading

TOTAL 12388506 1028246 -1028246

dA/dt 1638691

t Estimated uncertainties.
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TABLE 6.23. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly M4 time to anomaly M11 time (90.33 Ma to 97.20 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

245689 40744 -40722 Africa-North America spreading

486201 82250 -82268 Africa-South America spreading

406402 63084 -64269 Antarctica-Africa spreading

610000 Marginal Basins

239185 18400 -18400 North America-Iberia spreading

1098402 28357 -30200 Pacific-Kula spreading (Pacific plate)

3410940 56196 -76184 Pacific-Phoenix spreading (Pacific plate)

1382629 96892 -96733 Pacific-Farallon spreading (Pacific plate)

577007 602359 -601764 South America-Antarctica spreading

320309 13720 -13720 India-Australia (NW Australia) i
778955 22440 -22440 India-Australia (NW Australia) i

TOTAL 9555719 1089352 -1118019

dA/dt 1390934

t Estimated uncertainties.
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TABLE 6.24. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly M11 time to anomaly M16 time (97.20 Ma to 105.94 Ma)

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

528502 40899 -40904 Africa-North America spreading

431529 65362 -66471 Antarctica-Africa spreading

610000 Marginal Basins

1664895 334177 -331478 Pacific-Kula spreading (Pacific plate)

2684612 27537 -36525 Pacific-Phoenix spreading (Pacific plate)

1205968 85124 -85005 Pacific-Farallon spreading (Pacific plate)

546816 27240 -27240 South America-Antarctica spreading (Weddell Se

15983 3250 -3250 India-Australia (NW Australia) t

TOTAL 7688305 722701 -730389

dA/dt 879669

t Estimated uncertainties.
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TABLE 6.25. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly M16 time to anomaly M21 time (105.94 Ma to 114.07 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

547731 15774 -37809 Africa-North America spreading

450012 67384 -68486 Antarctica-Africa spreading

2876898 121158 -118959 Pacific-Kula spreading (Pacific plate)

2153762 74610 -74610 Pacific-Phoenix spreading (Pacific plate) f

332990 64439 -64749 Pacific-Farallon spreading (Pacific plate)

138572 11450 -11450 Australia-India spreading t

TOTAL 6499965 354815 -376063

dA/dt 799504

i Estimated uncertainties.
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TABLE 6.26. Area measurements for the anomaly 13 time (35.58 Ma).

Areas for the age interval from anomaly M21 time to anomaly M25 time (114.07 Ma to 120.84 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

883465 43031 -43033 Africa-North America spreading

848721 84872 -84872 Indian Ocean **

3170640 94565 -93601 Pacific-Kula spreading (Pacific plate)

1888961 75540 -75540 Pacific-Phoenix spreading (Pacific plate) t

682163 55870 -55747 Pacific-Farallon spreading (Pacific plate)

538903 31980 -31980 Australia-India spreading t

TOTAL 8012853 385858 -384773

dA/dt 1183582

t Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.27. Area measurements for the anomaly 13 time (35.58 Ma).

Areas with age older than anomaly M25 time and younger than 144.42 Ma (120.84 Ma to 144.42 Ma

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

2216272 63040 -63040 Africa-North America spreading t
9025140 451257 -451257 Pac-Far-Kul-Pho spreading **

411418 32690 -32690 Australia-India spreading i
TOTAL 11652830 546987 -546987

dA/dt 494183

t Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.28. Area measurements for the anomaly 13 time (35.58 Ma).

Areas with age older than 144.42 and younger than 180.0 Ma (144.42 Ma to 180.0 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

15661270 3132254 -3132254 Pac-Far-Kul-Pho spreading **

TOTAL 15661270 3132254 -3132254

dA/dt 440171

t Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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TABLE 6.29. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly 25 time anomaly 30-31 time (0.0 Ma to 9.

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

799560 23801 -23827 Africa-North America spreaci'.

2297438 310291 -306299 Africa-South America spread in

695612 162528 -162266 Antarctica-Africa spread 1'5

291084 321589 -322467 Antarctica-Australia sprea, IAtJ

741626 32256 -32293 Australia-Lord Howe Rise spread)iA

198230 55990 -54509 Greenland-North America spe4)

476784 19470 -19502 North America-Iberia, Iberia-Europe, and North

1142287 68376 -67974 Pacific-Antarctica spreali,

1288226 26628 -26462 Pacific-Bellingshausen spreadiij

2420000 Marginal Basins

255363 11790 -11790 Africa-South America spreall 5

154108 16270 -16270 Pacific-Antarctica spreadinj

231631 14720 -14720 Antarctica-India spreadinS

2349250 90760 -90760 Antarctica-India spreading

2330359 70070 -70070 India-Africa spreading

1152944 27680 -27680 India-Africa spreading

2208612 238735 -238887 Nazca-Pacific spreadint,

2941000 134687 -134542 Pacific-Farallon spreading (Pacc

4086467 304510 -301618 Pacific-Farallon spreading (Fara fI4Je)

4100022 60860 -60860 Australia-India spreadin5

470647 31460 -31460 Pacific-Kula spreading (Kula Fi~e-)

484678 37522 -37603 Pacific-Kula spreading (Pacifie jp")

TOTAL 31115928 2240347 -2209231

dA/dt 3265050

t Estimated uncertainties.
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TABLE 6.30. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly 30-31 time to anomaly 34 time (9.53 Ma to

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

1367430 14015 -14012 Africa-North America spreacfvx

6190112 174521 -173049 Africa-South America spreacvn

1300549 63673 -63458 Antarctica-Africa spread; nt

454122 315260 -316260 Antarctica-Australia spreacfvl

1001567 33277 -33298 Australia-Lord Howe Rise spreJtI4J

298094 56351 -54696 Greenland-North America spre4i 3

752383 20260 -20150 North America-Iberia, Iberia-Europe, and North

1105011 68155 -68118 Pacific-Antarctica spreadivt5

2501455 34284 -33835 Pacific-Bellingshausen spreaJI #A

3830000 Marginal Basins

560975 28940 -28940 Africa-South America sprea4 ie

298768 17700 -17700 Antarctica-India spreadin,

1752973 53890 -53890 Antarctica-India spreading

1383941 44600 -44600 India-Africa spreading

2627165 295521 -296219 Nazca-Pacific spreadinr

4659261 346460 -346736 Pacific-Farallon spreading (PacAcf4e)

5900342 232600 -286501 Pacific-Farallon spreading (Fara

1879094 38750 -38750 Pacific-Kula spreading (Kula

2850244 59670 -59670 Australa-India spreadin9

705466 54398 -54286 Pacintc-Kula spreading (Pacific sra +ed)

TOTAL 41418952 2153785 -2195204

dA/dt 2667028

t Estimated uncertainties.
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TABLE 6.31. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly 34 time to anomaly MO time (25.06 Ma to 59.41 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

4273181 41870 -41818 Africa-North America spreading

5148197 94064 -94061 Africa-South America spreading

2333685 56356 -68408 Antarctica-Africa spreading

636297 70292 -72039 North America-Iberia spreading

720000 Marginal Basins

56600 8050 -8050 Greenland-North America spreading t

842059 46960 -46960 North America-Europe spreading t

6626430 174521 -174521 Africa-South America spreading T

138384 12500 -12500 Africa-South America spreading t

3418472 58980 -58980 Antarctica-India spreading t

3712548 91150 -91150 Antarctica-Australia spreading t

82041 22290 -22290 Pacific-Antarctica spreading t

441515 22280 -22280 Pacific-Bellingshausen spreading t

1466227 146623 -146623 Indian Ocean **

372181 37218 -37218 Antarctica-Australia spreading **

1699886 26180 -26180 Antarctica-India spreading t
384559 16638 -16638 Australia-Lord Howe Rise spreading f

270681 19650 -19650 India-Africa spreading t

6866470 501640 -500639 Nazca-Pacific spreading

10971625 119393 -119118 Pacific-Farallon spreading (Pacific plate)

25918938 1295947 -1295947 Pacific-Farallon spreading (Farallon plate) **

2101436 127753 -132201 Pacific-Kula spreading (Kula plate)

16953824 560139 -529409 Pacific-Kula spreading (Pacific plate)

3199269 159963 -159963 Australia-India spreading **

5745195 287260 -287260 Australia-India spreading **

982789 32420 -32420 Australia-India spreading i

TOTAL 111910361 4364504 -4364504

dA/dt 3257943

t Estimated uncertainties.

+ Same as 30-31-34 uncertainties.



Appendix D

TABLE 6.32. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly MO time to anomaly M4 time (59.41 Ma to 66.97 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

499886 42934 -42920 Africa-North America spreading

1920065 99656 -99338 Africa-South America spreading

608804 59620 -60642 Antarctica-Africa spreading

58983 17340 -17340 North America-Iberia spreading t

660000 Marginal Basins

821510 164302 -164302 Farallon-Phoenix spreading **

1438030 97950 -97906 Pacific-Farallon spreading (Pacific plate)

65183 15924 -16879 Pacific-Farallon spreading (Farallon plate)

1549344 26369 -23691 Pacific-Kula spreading (Pacific plate)

3403398 93014 -92027 Pacific-Phoenix spreading (Pacific plate)

1068752 101690 -101690 Australia-India spreading (Australia plate)

TOTAL 12093955 798201 -786107

dA/dt 1599729

t Estimated uncertainties.
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Appendix D

TABLE 6.33. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly M4 time to anomaly M11 time (66.97 Ma to 73.84 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

245689 40744 -40722 Africa-North America spreading

486201 82250 -82268 Africa-South America spreading

406402 63084 -64269 Antarctica-Africa spreading

610000 Marginal Basins

239185 18400 -18400 North America-Iberia spreading

574369 114874 -114874 Farallon-Phoenix spreading **

1382629 96892 -96733 Pacific-Farallon spreading (Pacific plate)

73832 18131 -18728 Pacific-Farallon spreading (Farallon plate)

1622161 20516 -18829 Pacific-Kula spreading (Pacific plate)

3690194 82957 -75580 Pacific-Phoenix spreading (Pacific plate)

320309 13720 -13720 India-Australia (NW Australia) i

778955 22440 -22440 India-Australia (NW Australia) t

TOTAL 10429926 604936 -604936

dA/dt 1518184

t Estimated uncertainties.

I nvommw Pro I -, "
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Appendix D

TABLE 6.34. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly M11 time to anomaly M16 time (73.84 Ma to 82.58 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

528502 40899 -40904 Africa-North America spreading

431529 65362 -66471 Antarctica-Africa spreading

610000 Marginal Basins

1205968 85124 -85005 Pacific-Farallon spreading (Pacific plate)

1588533 216241 -208045 Pacific-Farallon spreading (Farallon plate)

2128236 25113 -22306 Pacific-Kula spreading (Pacific plate)

2901347 64439 -51770 Pacific-Phoenix spreading (Pacific plate)

15983 3250 -3250 India-Australia (NW Australia) t

TOTAL 9410098 536376 -508145

dA/dt 1076670

i Estimated uncertainties.
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Appendix D

TABLE 6.35. Area measurements for the anomaly 25 time (58.94 Ma).

Areas for the age interval from anomaly M16 time to anomaly M21 time (82.58 Ma to 90.71 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

547731 15774 -37809 Africa-North America spreading

450012 67384 -68486 Antarctica-Africa spreading

332990 64439 -64749 Pacific-Farallon spreading (Pacific plate)

3602482 83828 -86821 Pacific-Kula spreading (Pacific plate)

2302945 40083 -61357 Pacific-Phoenix spreading (Pacific plate)

TOTAL 7236160 271508 -319222

dA/dt 890057

t Estimated uncertainties.
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Appendix D

TABLE 6.37. Area measurements for the anomaly 25 time (58.94 Ma).

Areas with age older than anomaly M25 time and younger than 121.06 Ma (97.48 Ma to 121.06 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

2216272 63040 -63040 Africa-North America spreading t

9025140 451257 -451257 Pac-Far-Kul-Pho spreading **

411418 32690 -32690 Australia-India spreading t
TOTAL 11652830 546987 -546987

dA/dt 494183

t Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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Appendix D

TABLE 6.38. Area measurements for the anomaly 25 time (58.94 Ma).

Areas with age older than 121.06 and younger than 180.0 Ma (121.06 Ma to 180.0 Ma).

Calculated Positive Negative Location

Area Uncertainty Uncertainty of Area

15167638 3033528 -3033528 Pac-Far-Kul-Pho spreading **

15797439 3159488 -3159488 Area North of India **

TOTAL 30965077 .6193016 -6193016

dA/dt 525366

i Estimated uncertainties.

** Uncertainties arbitrarily assigned.
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