
USE OF VIRTUAL MACHINES IN INFORMATION SYSTEMS

John J. Donovan

May 1975 Energy Lab in Association
with Sloan School

Report No. MIT-EL-75-010

Abstract

Acknowledgment

I. Introduction

2. Interfacing modeling facilities and data base facilities

3. Problems with interfacing

4. Description of Virtual Machine Concepts

5. Use of VM in Information Systems

5.1 Communications between VM's

5.2 Multiuser Coordination

5.3 Multiple Modeling Interfaces

5.4 Incompatible Data Management System

5.5 A Practical Example

6. Performance

6.1 Analysis as Separate Machines

6.2 Analysis if all Machines are VM's

7. Techniques for Reducing Synchronization Overhead

8. Techinques for Reducing Effect of Virtual Machine on Response Time

9. Summary

Abstract

This paper presents a scheme using the virtual machine concept for

creating:

1) An environment for increasing the effectiveness of researchers who

must use analytical, modeling systems and have complex data management needs.

2) A mechanism for multi-user coordination of access and update to a

central data base.

3) A mechanism for creating an environment where several different

modeling facilities can access the same data base.

4) A mechanism for creating an environment where several different and

potentially incompatible data management systems can all be accessed by

the same user models or facilities.

The paper investigates and formalizes the performance implications

of this scheme specifically directed at the question of response time de-

gradation as a function of number of virtual machines, of locked time of

the data base machine, and of query rate of the modeling machine.

1. Introduction

Many applications demand both a very good analytical and modeling capa-

bility, as well as a flexible data base management capability. They demand

that the capability be on-line and interactive. These demands are particu-

larly acute in information systems for assisting public policy decisions

and in particular we have found in the area of energy [Donovan: 1975;

MacAvoy: 1974]. Such systems have a spectrum of users ranging from the non-

technical to the researcher to the computer professional. Each grouping

demands a different level of detail in capabilities. Further such systems have:

- a need to build models quickly.

- a need to place complex protection rights on data.

- a need to validate data.

- a need to access data according to any number of criterion.

- a need for mechanism for changing the system to meet new

demands and different data series and needs.

- a need to handle all types of data.
Hall: 1975] provide

Modeling systems like TROLL [TROLL: 1972], EPLAN [Schober: 1974 , and TSP /

flexible analytical capabilities such as sophisticated statistical methods,

arithematic operation, plots, graphs, histograms and facilities for con-

structing and executing mathematical models. All of these have some short

comings but the most serious shortcoming is in their limited data manage-

ment capabilities. There are very limited facilities for protecting data,

storing different types of data, changing the structure of data or tables

in the system, validating data, quering data by specifying different con-

ditions. Some of these facilities are single user non interactive systems.

None allow multiple users accessing the same data base.

Corresponding there exist data management systems like IMS, DBDG,

ENQUIRE, TOTAL which provide some degree of data manipulation capabilities

but are seriously lacking in analytical or modeling capabilities. They

also lack the flexibility in use, access, and protection of data demanded

by some applications [Jacoby; 1975]. They do however have considerably more

data capability than the modeling systems previously mentioned. This lack of

flexibility is a particularly damaging limitation in the context of the

certain applications for several reasons:

1. Since unforseen uses and needs for the data inevitably

arise, the system must be flexible so that it can adapt

to these changing needs. This is particularly true when

providing information for policy decisions in so volatile

an area as energy.

2. There are varying constraints imposed by changes in the

quality, availability, and protection requirements of

data. The system must be able to adjust to such moving

constraints.

3. The system must be able to accommodate changing needs and

constraints at reasonable expenditures of cost and effort.

Computer systems of a decade or two ago could support most

current applications, but in many cases, only at a high cost.

A flexible system makes it possible to easily experiment

with many uses of the data at modest costs.

We have developed a very flexible data management system called TRANSAC

[Donovan & Jacoby: 1974] that meets these criteria. The purpose of this paper is

however not to promote any one modeling system or data management system

but rather to present a scheme whereby the good features of any system

can be best utilized.

2. Interfacing modeling facilities and data base facilities

Let us explain a scheme whereby we could interface a modeling

system e.g. TROLL, to a data base system.

For conceptual purposes,let us just speak of two separate machines,

one at %le which is running TROLL under Yale's operating system and one at

M.I.T. which is running the data base system under M.I.T.'s operating system.

The interface scheme would be whenever the Yale machine needs

data, it would request a courier to run to M.I.T. and get the data out of

the data management machine. The courier would then bring the data back for

the modeling machine.

3. Problems with interfacing

Starting with the scheme of using two independent computer

systems, let us evolve into a proposed viable scheme which we advocate.

1. Many modeling facilities are single user non-interactive

batch oriented (e.g. TROLL is single user, IBM's TSP is

batch oriented). A multiuser interactive facility is de-

sirable.

- Solution: place each modeling facility on a separate

machine.

User 1 User 2

.. /

Courier

Figure I

Multiple Users of the Same Data Base

1~YI~-_ll l~ll .~~.~~- I~YIIP-.II-~--l~_ -_ LI~. ------

User 3

5

2. We would like more than one use (modeler) to be able to access

the data base at one time.

- Solution: Allow many machines to communicate with the same

data base machine as in Figure 1.

3. The solution to 2 creates the problem of coordination of updating

the single data base.

- Solution: Only one modeling system will be serviced by the

data base machine at one time.

4. Not every user will want the same modeling facility; some will want

TSP; others, TROLL, etc.

- Solution: One solution is to require all users to convert and

all existing models be redone in one modeling language. Another

solution is to run a courier between machines that have different

modeling capability on them and the single data base machine as

in Figure 1.

5. Data series may already exist in several and incompatible data

base management systems. How can a user access these data series.

- Solution: Interface machines that have different data base

systems as in Figure 2.

YYI-I-~.I^_II_ --LI-.-i-_ ~ IIIII CCI--ICZCIC

User 1

Modeling or Analytical
Machine s

Data Base
Machine

Data Base
System

1

Incompatible
data base management machines

Figure 2

User 3User 2

(-7

6. The cost of many separate machines is high.

Couriers between all these machines are slow and not oractical.

- Solution: Have all these machines run on the same machine,

that is, have one machine simulate several machines

(virtual machines). On some of these virtual

machines, run the modeling facilities; on others

run the data base facilities; on one run the general data

base facility. What about communication? This

will be discussed in Section 5.

7. What about performance?

We discuss this in Section 6.

4. Description of Virtual Machine Conempts

A virtual machine may be defined as a replica of a real computer

system simulated by a combination of a Virtual Machine Monitor (VIM)

software program and appropriate hardware support. (See [Goldberg: 1973]

for a more precise definition.) For example, the VM/370 (IBM 72) system

enables a single IBM

System/370 to appear functionally as if it were multiple independent

System/370's (i.e., multiple "virtual machines"). Thus, a VMM can make

one computer system function as if it were multiple physically isolated

systems. A VMM accomplishes this feat by

controlling the multiplexing of the physical hardware resources in a manner

analogous to the way that the telephone company multiplexes communications

enabling separate and, hopefully, isolated conversations over the same

physical communications link.

By restricting itself to the task of multiplexing and allocating the

physical hardware, the VMM presents an interface that appears identical

to a "bare machine". In fact, it is usually desirable to load a user-

oriented operating system into each virtual machine to provide the functions

expected of modern operating systems, such as Job Control Language, command

processors, data management services, and language processors. Thus, each

virtual machine is controlled by a separate, and possibly different, opera-

ting system. The feasibility of this solution has been demonstrated on the

VM/370 system and the earlier CP-67 and CP-40 systems

In addition to VM/370 and its predecessors, several other operational

virtual machine systems have been developed, such as the DOS/VM of PRIME

Computer, Inc. [PRIME: 1974], the virtual machine capability provided under

the Michigan Terminal System (MTS) [Morrison: 1973], and a virtual machine

system for a modified PDP-11/45 used by UCLA for data security studies

[Popek & Kline: 1974].

The VMM concept, once understood, is quite simple and logical. Unfor-

tuntely, it is sufficiently different from most conventional operating systems

that many people have difficulty in understanding the concept. The papers

[Buzen: 1973, Goldberg: 1973, Hogg: 1973, Madnick: 1969, Parmellee: 1972, and

Madnick & Donovan: 1974] give additional insight.

At first the idea of replicating the bare machine interface may seem

foolish since you end up back where you started. The key difference is

VM/370 produces the effect of multiple bare machines. In this way each

user appears to have his own 370 computer. Thus, each user can select the

operating system (e.g. OS/360 DOS, etc.) of his choice to run on his
"private" computer.

How does V/370 produce this feat? How do the users of VM/370 communi-

cate with it? Programs running under VM/370, usually operating systems

physically execute in problem state but can behave as if they were in

supervisor state. When they issue a privileged instruction, such as

START I/O or SET STORAGE KEY, an interrupt occurs and control transfers to

VM/370. The interrupt is handled in such a way that the program thinks

that the privileged instruction was actually executed. Thus, these privi-

leged instruction interrupts are the subtle interfaces between users and

VM/370.

Additional advantages of VM are outlined in [Buzen: 1973] and

[Madnick & Donovan: 1974, 1975].

5. Use of VM in Information Systems

As was discussed in Section 4, having multiple machines gives the

effect of having multiuser modeling facilities which can access data stored

in several different data bases. Proposed communication between all these

was via courier. Another possibility and the scheme we advocate is to

simulate several different machines on one machine using the VM concept.

This section discusses the implications and mechanics of this possibility.

Combining the solutions of the previous section, we could, for

example, create a configuration of VM's whose architecture could be depicted

as in Figure 2, where each box denotes a virtual machine.

5.1 Communications between VM's

Configuring several VM's on one real machine as in Figure 2 allows

several modeling systems to access data from a single data base management

system. When a modeling facility issues a request for data, that request

is output on a virtual card punch and sent to the data management machine's

virtual card reader. The data management machine reads the request, selects

the data, and transfers the data back to the modeling facility via the trans-

fer of data from the data management virtual punch to the modeling facility's

virtual reader.

Note that no (physical) cards are involved in this process. The

"card files" which are punched and read, are in fact stored on (physical) disks

for the transfer.

The amount of reprogramming and design involved in modifying the

data base management system DBMS to accept requests and output data to its
complexity

virtual card devices is relatively small, compared to the amount of work and/

that would be involved in rewriting the modeling system to include a facility

for data handling, for multiusers, for interactive editing, for synchronization

of data base access and updating.

Since all modeling facilities have mechanisms to store data in

files and facilities to operate on this data, the modification to a modeling

system under the VM scheme consists of adding three commands:

- adding a command to convert the data outputted from the DBMS

into the format that the modeling facility uses.

By adding two more commands, a modeling system which has very poor

data management capabilities can appear to a user as if he had a very powerful

facility for storing, quering, updating, and manipulating data.

- adding a command that has as possible arguments the commands

of the data base system. The modeling system "passes" the command

on to the data base machine via virtual cards.

- adding a command which prints data passed back to the modeling

facility.

This scheme will also work with most data base systems, as most of them

have (or it is easy to add)

a mechanism for reading request in from files or cards and outputting results

to cards or files.

5.2 Multiuser Coordination

The basic problem with having multiple users of the same data base

is how to prevent race conditions and uncertainties resulting from several

users accessing and updating the same data base. A mechanism we advocate

is to have the data base virtual machine only allow one user to access

or update its VM at one time. Thus, whenever the data base virtual machine

is processing a request, it queues all other requests. The queue is

serviced on a FIFO basis.

The performance implications of this approach have not been experi-

mentally tested. A mathematical analysis of the performance is presented

in Section 6.

5 .3 Multiple Modeling Interfaces

Adding the commands outlined in the previous section to other

modeling facilities and running each of these different modeling facilities in

a separate VM allows several different modeling facilities to communicate with

i-Yb""~puaru; ~a~ a~I~-i~rri~c~ ----̂ -

the same data base. Thus, incompatible systems, such as TROLL and EPLAN,

can work from the same data base.

5.4 Incompatible Data Management System

Let us suppose that there is a need to create a DBMS that uses data

from several data bases, each of which is on an incompatible data base

system. We reject copying all data bases into one data base system because,

for example, the existing DB systems may be specialized to keep the data up

to date. Thus, how can we treat these four physically separate data bases

as one logical unit?

A solution to this problem is also shown in Figure 2, where we could configure

three virtual machines to allow the mutually incompatible data base manage-

ment systems to run on the same physical computer. We then implement another

VM to act as an interface, analyzing the data query and funneling it to the

appropriate DBMS (via virtual card files). All of these mechanisms can be

made invisible to the user, who can use the system as though he had all the

data in one "virtual" data base.

Note the "user" in this sense can be a modeling facility or a person,

i.e., a user here is anything that makes a data request.

5.5. A Practical Example

We have configured a cluster of VM as in Figure 2 to produce a total

system for research in energy policy analysis. We call the system GMIS

(General Management Information System). Figure 3 depicts the ultimate

GMIS system (Donovan et al: 1975], where across the top several modeling

or analytical systems are depicted as running on separate virtual machines.

Note that each of these analytical systems may be running under a different

operating system, e.g., TSP running under MVT, TROLL running under CP/CMS,

EPLAN running under VSZ. TRANSACT [Donovan and Jacoby: 1975] is a data base

system based on the relational model of data [Codd: 1970] and uses some IBM

software [Chamberlain: 1974]. TRANSACT is implemented in a hierarchical fashion

[Dijkstra: 1968, Madnick: 1970, Donovan: 1972], and as such it is a very

flexible and powerful data management system. Across the bottom of

Figure 3 are depicted several data base systems, each of which may be

incompatible and running under different operating systems.

Note that in this paper, independently of any one data base system, we

are advocating the use of VM to produce an environment where multiple analy-

tical machines can be used on the same facility and these analytical systems

have access to data base systems.

A
Validation VM
e.g. TRANSACT

(Sing le .User
modeling VM's

t The Virtual Data Base System

Data Base
VM's

e.g. RDMS

Incompatlble DB',J -

Data Management
VM

e.g. TRANSACT

Figure 3

- - - -- r--ax-i;-;-- -- Lp-- r ~:ir- XE----LP _~~ _ ~ __

6. Performance

Not only does the VM approach solve all the problems of Section 3

but it also has the following cost benefits:

- no conversion cost in bringing up existing models as long as they

run on an IBM machine (independent of lanuguage or operating system).

- no retraining cost involved as programmer's may use whatever

system they are familiar with.

- little cost involved in implementing the simple interfaces.

What is the possible disadvantage - performance , which is

reflected in additional overhead costs: For example, the following

questions arise:

- How many users (modeling machines) can use the same data base

machine? That is, what is the degradation of response time as a

function of the number of modelers?

- What is the degradation cost due to the synchronization mechanism?

- What is the degradation cost due to VM?

We have separated the two performance costs:

(1) due to lock out synchronization mechanisms and

(2) due to VM overhead.

The approach to answering these questions we take here is an analytical

one. We will first analyze the performance issues of lock out by configuring

a system of separate real machines. We then analyze the cost of VM by

configuring the separate real machines or as virtual machines on one

real machine. Other approaches to gain other factors of performance in

VM are discussed in [Hatfield: 1972, Goldberg: 197^].

_ ~___jl__~ __~1I~LI~~_~

7.1 Analysis as Separate Machines (performance degradation due to lock
out)

Assuming a configuration as in figure 1, where several modeling facilities

each running on a separate real machine are accessing and updating a data

base which is managed by a data base management system running on its sepa-

rate real machine. What is the degradation of performance with each

additional user? What is it as a function of the length of time the DB

machine takes to process a request?

An access or update to the DB machine may be initiated either by a

query from a person which would be passed on by the modeling machine or

by a model executing on the modeling machine.

In either case, the DB machine while processing a request locks out

(queues) all other requests. Let us write a function that specifies total

response time of a model.

Ttotal " Toverhead + Tmodel + Trequest and wait

where

total total response time of a task, (e.g., a model) that

is, total time from the start of execution of a

model to the answer.

Toverhead = amount of CPU time spent executing instructions

in the operating system of the modeling machine.

Tmodel amount of CPU time executing the instruction

associated with the model.

Trequest and wait = time modeling machine waits for request

to be processed plus time spent waiting for request

to be serviced by the DB machine.

What one would want to know is what happens to Ttota as a function

of the number of users. That is, how many users can we tolerate on the

system.

Assume that:

(1) a configuration of separate real machines as in figure 1.

(2) the time spent in executing the model in a modeling machine

before issuing a request for data to the DB machine is negative

exponentially distributed with mean 1/A

(3) the time for the DB machine to serve a request is negative

exponentially distributed with mean 1/u

(4) the order of service at the DB machine is FIFO

(5) the number of modeling machines is m

We can formualte the probelm as a machine-repairman model [Satty: 1961]

as shown in Figure 4. The steady state equations are:

mXP0 = uP I
mPo 1 for 0 < i < m

[(m-i) X+V] Pi " (m-i+l) A Pi- 1 + Pi+1

Pm X Pm-1

Where Pi is the steady-state probability that there are I modeling

machines waiting and being served.

The solution is:

=P)i m

,Pm_

i

where i 1, ***, m

where,

P = iE ;)

m
R i M!J V 1 (m-i 1The average response time for a request to DB machine as derived by

(Little: 1961] is:

ini P (1" Po)

Figure 5 Illustrates the wait and process time for a single request
as a fundtion of modeling machines. For example, with 1 five users on

the system degrades the response time of each user by a factor of four. With

a - ratio of less than .1 there is almost no degradation of response until

a large number of users are using the system

Note: In all the remaining graphs p is set at a constant value of 1.0,

and N (number of data requests) is a constant 10. The values of Toverhead

is a constant equal to 1.0.

-I~---_-_T_-_~~YiYI~- . V~.-~i~=~XII~-II~IEYIl~- IY--~

Figure 4

Model of Figure 1

Average
Response
Time for a
Single Data
Request
(1 = 1)

X/1 = 1.0

X/P = 0.3

X/1 = 0.2

X/V = 0. 1

* ~ , 5 1 V ~ 5 5 I ~ V U I ~"
I I I - I I I I F w f

5 10 15
Number of Modeling Machines

Figure 5

Response Time for a Single Request

10.0

5.0 *

O0

Assume that the average number of data requests to DB machine in

running a model in a modeling machine is N. The data base is locked only

while a request is being processed. We are assuming there is no reason to

lock the data base for the whole period while a model is running. The

situation where a data base must be locked for the entire period of execu-

tion (e.g., a possible danger that other modeling machines will change

sensitive data in between requests) requires another anlaysis.

The total time waiting for data from the Data Base machine is:

T wait for data 0 N * R

The average time spent in executing a model in a modeling machine is

a constant:

T =N (1/X)
model

The overhead of the operating system of one modeling machine is fixed

and is equal to a constant Toverhead. The total time to execute a model

in the modeling machine is:

T T +T +Ttotal overhead + Tmdel + wait-for-data

and is plotted in Figure 6.
-_ --~--

III~LLI~.~YPa~-- II__ -i~-I~IU~CI~--IC-I~.

Ttotal

100.0

/P = 0.1

X/1 = 1.0

Number of Modelling Machines

Figure 6

Total Response Time

n [; x r xrr r 1 1 (1

6.2 Analysis if All Machines are VM's on One Real Machine

If all machines are run as virtual machines on one real machine, what is the

additional degradation of response time?

In the VM configuration actually the real machine spends a small portion

of its time on each VM. As the number of VM's increase, then each VM will

get less of the real CPU's time thus further increasing the elapse time between

the start of a model and the production of the answer.

The analysis is further complicated by the fact that as some VM's become

locked then others get more of the real CPU's time, therefore, they generate

requests faster. However, the DB VM gets more of the CPU's time thereby

processing requests faster. For example, if there are ten virtual machines,

each one receives one-tenth bf the real CPU. However, if seven of the ten

are in a locked state, then the remaining three receive one-third of the

CPU. Thus, these three run (in real time) faster than they did when ten

were running. The following is an analysis of VM's performance for the use

outlined in this paper.

We have assumed that the virtual speeds of VM's are constant and equal. However

when some VM's are blocked (i.e., waiting for data from the DB VM), the remaining

VM's (including DB VM) are allocated a larger share of CPU processing power and

becAie faster in real time. We assume that each unblocked VM receives the

same amount of CPU processing power and at the initial state m machines are

running (i.e., the data base machine is stopped if no modeling machines are

making requests). 'x'is request rate of each modeling VM when there are

m VM's running. ' y Is thO Service rata At which the data base virtual

machine is running when there are m-1 modeling VM and one data base VM

running. Thus, we may write the relations:

L--~ai

m
l " m-i+ T

=o

1
-i'm-T41

(,, 1, 2, ...,0)

where i (I = 0.1,...,m) is the number of modeling VM's being blocked.

Using a birth/death process model [Drake: 1967], the state transition

diagram is shown in Figure 7.

mXo (m-1)A

P0 P1

p1 p2

(m-2)A2 m-1

6m-1 m

Figure 7

State Transition of Multi-VM Model

From this model, the steady state equations are [Drake 1967]

m X0 PO P1 P1

[(m-i) Xi + "i P1 * (m-i+1) Ai- 1 + i+1 P1+1

i<m

The solution of the above set of equations is:

(1 l 2, ... ,m)

Um Pm E Xm-1 Pm-1

P1 (m-i+1) Po (i = 1, 2, 3,...,m)

where

Pom= 1 (m-)! (m-i+l
=l

The average response time for a request to the DB VM in this VM con-

figuration is obtained by generalizing the analysis [Little: 1961] to this

situation where there is queue dependency.

m
Z ipi

R 1.1m

Figure 8 illustrates the response time of a single request as a function

of the number of modeling VM's.

Similar to equation of section 6.1,

Toverhead Toverhead

T'wait-for-data - N.R.

T'model is calculated similarly to the way Tmodel was calculated In

section 6.1. That is, T'model = N * . However, the X's vary.

Thus we take a weighted sum and get the following. (Note that if

Xi are constant, this reduces to the Tmodel of section 6.1.)

m-1

T'model = N. i=o P im
m-1

i=o

T' : T' + T' + T'total overhead + model + wait-for-data

Figure 9 illustrates the total time to execute a model as a function of the

number of modl Ing VM's,

10.0

5.0

5 10 15

Number of Modelling VMs

Figure 8

Response Time of a Single Request in a VM Configuration

28

total

100.0

50.0

- -. , , 5

0 5 10 15

Number of Modelling VMs

Figure 9

Total Elapsed Time in a VM Configuration

- , ----;- - - i- __ __~i~

7. Techniques for Reducing Synchronization Overhead

The synchronization of the access and updates to the DB Virtual Machine

is accomplished by what we call a spin lock. That is, if the modeling VM

encounters a "locked" DB VM, then it must wait (in a queue, until the DB VM

is unlocked, the modeling machine cannot do anything else.
We have seen, has an adverse effect upon system

The use of locks where the VM's must wait if encnunterinn a lock, as /

performance. Several techniques may be used to reduce this synchronization

overhead, and the relative merits of each must be weighed.

One approach is to use a single lock (as we have done) to cover all shared
in the single DB VM.

data bases/ The alternative is to identify all separate data bases carefully

and associate a separate lock with each.

There are many factors to be considered in choosing between a precise lock

approach (i.e., a large number of separate locks) and an overall lock approach

(i.e., one lock for all data bases). In the precise approach, considerable

overhead is incurred in setting and resetting locks, even though the parti-

cular data base is not needed by any other VM. This multitude of locks also

greatly complicates debugging.

In the overall lock approach (also called brute force), the lock may be on

for long periods of time (up to 50 percent or more). This greatly increases

the likelihood of software lock-out and the resulting slow response time.

8. Techniques for Reducing Effect of VM on Response Time

The basic reason for the degradation of performance due to VM is the

fact that one real machine is being used to simulate several VM's. That is,

one real CPU spends a little time on VM #1, then on VM #2, then on VM #3

and so forth. Thus, each VM only gets a fraction of real CPU time.

One method of increasing the amount of real CPU each VM gets is to

increase the number of real CPU's. That is, use a multiprocessor configuration.

Note all processors are executing instructions in the same memory.

The trade off is, the cost of the extra processors and their

real effect. That is, each additional processor incurs some overhead and

introduces a lower level set of locking problems. The lower level locking

problem arises from having to lock "system" data bases whose access and

updating must be synchronized (e.g., the system table which keeps track of

what process the processor should be assigned to).

Treating each VM as corresponding to a separate process, we may perform

a similar analysis [Madnick and Donovan: 1975] to determine the effectiveness

of additional CPU's.

9. Summary

Running individual modeling facilities on separate machines all interfaced

to a single database machine creates a total facility that is multiuser,

interactive, suited to individual tastes and provides access to a single common

data base. Simulating all these machines as virtual machines on one real machine

provides a mechanism for fast and inexpensive communication between machines.

Multiple use of a single database creates the problem of synchronization

of access and updates to that database. The spin lock provides a synchronization

mechanism, however, at a performance cost in increased delays in response

time. Figure 10 dotted curves give these times assuming separate real

machines.

The performance implications of the use of VM can be seen in Figure 10,

that is, the degradation because of VM becomes significant with large

numbers of VM's.

Response time degradation due to a lock can be improved by partitioning

the data base and using more than one lock. Degradation due to overhead

associated with VM (one real processor simulating many) may be improved

by adding more processors.

4$,

#' J

/1'

/ /

/0.2 /

-.

//

total

/

4-

Ttota
total

X/=O0. 5

I w F

5 10 15

Number of Modelling Machines or VMs

Figure 10

Comparison of Total Elapsed Times for a VM and a non-VM Configuration

4%Ttotal

and

T'
total

100.0

50.0

j _____~I_ __ __I _~__ _ I~~I__~ ; ___I ____1__ __

- r I ,- -- -- - -

- W..W- -

Acknowledgment

Want to thank Professor Peter Chen for helping with the analytical

contruction and solutions to the performance equations and to Stu Madnick

for helping in formulating these equations. We acknowledge the work

of Marvin Essrig in applying this VM scheme in developing a system for

leading Energy Indicators and in expanding the scheme for creating an en-

vironment where several different and potentially incompatible data manage-

ment systems can all be accessed by the same models or facility.

We acknowledge the assistance of Drs, Stuart Greenberg and Ray Fessel

of the IBM Cambridge Scientific Center for their assistance in implementing

the scheme here. We acknowledge Louis Gutentag and the MIT students who

worked with him for making the system operational.

REFERENCES

1. Buzen, J.P. and U. Gagliardi: "Evolution of VM Architecture", AFIPS
Conference Proceedings, National Computer Conference 1975, Vol. 42,
pp. 291-299.

2. Buzen, J. P., Peter P. Chen, and Robert P. Goldberg: "Virtual Machine
Techniques for Improving System Reliability", Proceedings of the
ACM Workshop on Virtual Computer Systems, (March 26-27, 1973).

3. Chamberlain, D. D., and R. F. Boyce: "SEQUEL: A Structured English
Query Language," PROCEEDINGS 1974 ACM/SIGFIDET Workshop.

4. Codd, E. F.: "A Relational Model of Data for Large Shared Data Banks,"
CACM, Vol. 13, No. 6, June 1970, pp. 377-387.

5. Codd, E. F.: "A Data Base Sublanguage Founded on the Relational
Calculus," PROCEEDINGS 1971 ACM/SIGFIDET Workshop.

6. Coff n, E.G,, r, and LC, Yarlan; "Further Experimental Data on the
Behavior of Programs in a Paging Environment," CACM, vol. 11, No, 7,
pp. 471-474.

7. Denning, P.J.: "Virtual Memory," ACM COMPUTING SURVEYS, vol. 2, No. 3,
pp. 153-190, September, 1970.

8. Dijkstra, E.: "T.H.E. Multiprogramming System," CACM, May 1968.

9. Donovan, John J.: SYSTEMS PROGRAMMING, McGraw-Hill, New York, 1972.

10. Donovan, John J., and Henry D. Jacoby: "A Hierarchical Approach to
Information System Design," Report CISR-5, M.I.T. Sloan School
Working Paper 762-75, January 1975.

11. Donovan, John J., Louis M. Gutentag, Stuart E. Madnick, and Grant N.
Smith: "An Application of a Generalized Management Information
System to Energy Policy and Decision Making: The User's View,"
Proceedings of Nation Computer Conference, Anaheim, CA, May 1975.

12, Donovan, John J., and Stuart E. Madnick: "Application and Analysis
of the Virtual Machine Approach to Computer System Security and
Reliability," IBM SYSTEMS JOURNAL, May 1975.

13. Drake, A. W.: FUNDAMENTALS OF APPLIED PROBABILITY THEORY, McGraw-
Hill, New York, 1967.

14. Goldberg, R. P.: "Architecture of Virtual Machines," Proceedings AFIPS,
National Computer Conference, vo. 42, pp. 309-318, 1973.

15. Goldberg, R. P.: "Survey of Virtual Machine Research," Computer,
Volume 7, Number 6, (June 1974), pp. 34-45.

16. Hall, Robert: "TSP Manual," Harvard Technical Report No. 12, Harvard
Institute of Economic Research, Cambridge, MA, April 1975.

17. Hatfield, D. J., "Experiments on Page Size Program Access Patterns,
and Virtual Memory Performance," IBM Journal of Research and
Development, vol. 16, no. 1, pp. 58-66, January 1972.

18. Hogg, J., and P. Madderom, "The Virtual Machine Facility -- How to
Fake a 360," Internal Note, University of British Columbia and

University of Michigan Computer Center, (1973).

19. IBM, "IBM Virtual Machine Facility/370: Introduction," Form Number
GC20-1800, (July 1972).

20. Iverson, Kenneth E., A Programming Language, John Wiley and Sons, 1962.

21. Jacoby, Henry D.: "Final Report, FEA Leading Energy Indicator Project,"
Energy Lab Working Paper, M.I.T., April 1975.

22. Jacoby, Henry D., and John J. Donovan: "Final Report, New England Energy
Management Information Systems," Energy Lab Working Paper, M.I.T.,
February 1975.

23. Little, John: "A Proof of the Queueing Formula: L = Xw," Operations
Research 9, (1961), pp. 383-387.

24. MacAvoy, P., and R. Pendyke: "A Model for Natural Gas," Bell System
Journal, 1975.

25. Madnick, S. E.: "Design Strategies for File Systems," M.I.T. Project
MAC TR-78, October 1970.

26. Madnick, S. E.: "Time-Sharing Systems: Virtual Machine Concept vs.
Conventional Approach," Modern Data 2, 3 (March 1969), pp. 34-36.

27. Madnick, Stuart E., and John J. Donovan: Operating Systems, McGraw-Hill,
New York, 1974.

28. Morrison, J. E.: "User Program Performance in Virtual Storage Systems,"
IBM Systems Journal, vo. 12, no. 3, pp. 216-237, 1973.

29. Parmelee, R. P., T. I. Peterson, C. C. Sullivan, and D. S. Hatfield:
"Virtual Storage and Virtual Machine Concepts," IBM Systems Journal,
vol. 11, no. 2, pp. 99-130, 1972.

30. Popek, G. J., and C. Kline: "Vieriffable Secure Operating Systems
Software," AFIPS Conference, 1974 NCC.

31. PRIME Computer, Inc., "DOS/VM Reference Manual," (1974).

32. Schober, F., EPLAN- An APL-based Language for Econometric Modeling
and Forecasting, IBM Philadelphia Scientific Center, 1974.

33. Smith, Grant N., "Internal Intermediate Language, Version 2," M.I.T.
Sloan School Report CISR-6, November 1974.

34. Satty, T. C.: Elements of Queueing Theory, McGraw-Hill., New York, 1961.

35. TROLL REFERENCE MANUAL, National Bureau of Economic Research, 1972.
-- cl.-- ,,~C-- 7 __ _____---

