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WITH THE

ELECTRIC POWER GRID
ABSTRACT

This report develops a new methodology for studying the economic
interaction of customer-owned electrical generators with the central
electric power grid. The purpose of the report is to study the
reciprocal effects of the operation and expansion plans of the utility,
and the resulting price of electricity, and the demand patterns and
expansion plans of customers. The system is modeled in an open-lo0p
feedback mode that allows both the utility and the customers to update
their plans and expectations for the next time period based on the
other's actions in the current time period and based on any new
information such as the current price of oil. The utility and the
customers solve similar operation and expansion problems, except that
each has control over different variables. In addition, each may have
different expectations about the future. A complete methodology
encompassing these ideas is developed and implemented.
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1.1 Introduction

0f the total energy consumed in the United States, twenty-five
percent is consumed by electric power utilities.l Utilities
traditionally have generated electricity at central stations and then
sent it through a grid of transmission and distribution lines to
industrial, commercial, and residential consumers. Electricity has many
advantages over other source of power, It is versatile and can be used
to produce work from motors or to produce heat from resistive devices.
It causes no pollution in its end use. Reliable electrical devices are
widely available on the market. To the consumer, the supply of
electricity has always appeared to be unlimited: A flip of a switch and
electricity is delivered instantly. Until recently, the real price of
electricity declined steadily over time as shown in Figure 1.1.

Counterbalancing the advantages of electrical energy to the consumer
are disadvantages which occur elsewhere in the system: to produce one
BTU of electrical energy requires three BTUs of thermal energy. (The
maximum thermal efficiency computed using thermodynamics is on the order
of thirty-five percent.) Thermal energy is produced by burning fossil
fuel which creates air pollution or by controlling nuclear reactions
which create radioactive wastes. The thermal energy that cannot be
converted into electricity is lost as thermal pollution. 1In addition,

economic inefficiencies result from the current price structure of

1Erikson, L.E., "A Review of Forecasts for U.S. Energy Consumption in
1980 and 2000," [21], p. 19.
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electricity which gives consumers misinformation about the cost of the
power they use.

For many years, technical innovations kept increasing the maximum
plant size and the cost per installed megawatt rose slowly. However, as
these scale economies were completely exploited the cost per megawatt in
constant dollars began to increase rapidly as illustrated in Figure 1.2.
It was also in the late sixties that environmental problems became
national concerns. With the passage of air and water pollution
regulations, utilities were forced to add pollution abatement equipment
to new and existing power plants and were encouraged to switch from
burning coal to burning low-sulfur oil. As a result of the oil embargo,
new laws have been passed requiring utilities to switch back to coal
while maintaining environmental standards. Safety-related equipment has
driven up the cost of nuclear power plants, so that a unit, that in the
fifties was expected to produce electricity too cheap to meter, now costs
billions of dollars before it even begins to produce electricity.

Awareness of environmental pollution has also made siting power
plants more difficult. People are now conscious of the potential
Tong-term effects of having a nuclear unit, a coal-fired unit, a
high-tension transmission line, or even a hydroelectric reservoir in
their neighborhood. Consequently, utilities have fewer sites available
and the costs of securing sites and rights of way have risen.

As plants have become larger, and new regulations have been passed,

the time between the announcement of a new plant and the startup of
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that plant has lengthened. It can take fifteen years to bring a nuclear
power plant on-line. These long lead times have two major effects. The
first effect is to increase the financial burden on the utility. In most
states, utilities cannot collect revenues on plants until the plants
start to generate electricity. So, a utility may be required to carry a
project that produces no revenue for many years. The second effect is to
reduce the planning f]e;ibility of the utility. A utility may find
itself conmitted to building a plant which is no longer needed, and be
unable to change its plans without severe penalties.

A1l of these factors have combined so that the cost to a utility of
building a new base load unit can be greater than the utility's total
prior investment. As the financial performance of utilities has
declined, so have their bond ratings, making it even more expensive for
them to raise the necessary capital.

As the price of electricity has risen, consumers have begun to pay
more attention to the rate hearings at which utilities request price
increases. Consumer groups have been organized to keep utilities from
collecting money for units that are not yet in service and from passing
fuel costs directly through to consumers without rate hearings. Many
regulatory commissions that used to hear unopposed rate cases now must
hear long contested rate cases. Their rulings are highly visible and
political. Lately, more and more rulings have favored the consumers over
the utilities.

What has saved the utilities from having to build ever more, ever

larger, ever more expensive plants is that in response to higher prices
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and governmental urgings, consumers have cut back on their use of
electricity. The leveling off of demand growth can be seen from Figure
1.3. After the depression and before 1973, electrical load grew steadily
at about eight percent per year. Then, the load growth began to drop to
between one and three percent per year depending on the region of the
country. Utilities were completely unprepared for this sudden drop in
demand and most refused to recognize that demand patterns were changing
in response to higher prices. For a while, utilities continued to plan
as if demand were going to return to its previous levels. Now, utilities
have begun to recognize that demand patterns have changed in response to
higher prices and have canceled or postponed many plants originally
scheduled for the early eighties.

So far, most of the price response by consumers has been short-run
response. That is, many wasteful uses of electricity have been
eliminated through conservation efforts, but there has not been time for
consumers to change their capital stock markedly. In the long run,
consumers can buy more efficient refrigerators as the current stock wears
out, they can replace resistive heaters with heat pumps or wood stoves,
and, in general, they can change their capital stock to more effectively
use the electricity supplied by the utility. They can also begin to
supply their own electricity.

Recent government policies and regulations encourage the
installation of small, privately owned generators that operate as part of
the utility system. The Public Utilities Regulatory Policies Act [73]

(PURPA) requires that utilities create fair rates for the purchase of
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electricity from privately owned generators. The installation of
decentralized generators will affect the operations and planning of
electric utilities in many ways.

Among the technologies currently available to consumers are: solar
space and water heating, electrical and mechanical power generation from
the wind, and industrial co-generation of process steam and electricity.
Photovoltaic cells have the potential to become a common source of
decentralized power because they produce electricity directly from
sunlight, are highly reliable, and require almost no maintenance;
although at the moment, photovoltaics are too expensive to compete with
other energy sources in most applications.

Those technologies using renewable resources, such as wind or solar
insolation, as a fuel have many advantages. A long-term supply of free
fuel is assured even though the short-term supply may be uncertain. (One
can never be positive that it will not be cloudy or calm the next day.)
Reducing consumption of fossil fuel by replacing it with renewable
resources eliminates pollution due to the combustion process. Matching
the energy source to the demand characteristics improves the efficiency.
For example, it is more energy efficient to use solar radiation directly
for heating than to burn fossil fuel to produce steam to drive a turbine
to drive a generator to produce electricity to be sent over transmission
Tines to be run through a resistive coil for heating. The technology for
co-generation also can improve energy efficiency by utilizing the waste
thermal energy which is a by-product of electricity production.

Co-generation can improve the efficiency by more than a factor of two,
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from about 34 percent to 80 percent,2 thereby reducing the fuel
burned and the pollution produced per unit of output.

In an economically perfect world, the prices charged by the utility
would reflect the marginal cost of energy and capacity'and would result
in the optimal level of centralized and decentralized generation.
However, neither the utility nor the customer knows exactly what the
other will do, so each must base decisions on what the other is expected
to do. Also, neither knows the future prices of fuel or generating
capacity with certainty. In addition, there are market imperfections
resulting from facts such as that utilities are regulated monopolies and
that consumer mortgages are indirectly subsidized through the federal and
state tax structure.

It is important to note that even without the problems discussed
above, centralized and decentralized generation are not equivalent.
‘Firstly, some types of generation exhibit economies of scale while other
do not. Secondly, the electrical distribution system that connects the
central generators to customers affects the reliability of the delivered
energy and, through its losses, increases the amount of centralized
electricity that must be generated. So that, with perfect markets, the

ownership might not matter, but the size and location still would.

1.I1 Problem Definition

Utilities must now plan in an environment that is changing rapidly,

2Gyftopou]os, [43], p. 25.
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but the techniques currently available do not recognize this. The
hypothesis of this report is that the plans made by utilities would be
quite different from their present plans if they could more accurately
account for factors such as demand response to price, lead times, and
decentralized generation.

This report develops a new methodology for long-range planning for
electric utilities. Most long-range planning models construct the
optimal plan over twenty or thirty years based on current knowledge.
These models require that the utility specify the customer demand, fuel
prices, and capital costs, for thirty years into the future. To study
the effect of an increase in the price of oil, a sensitivity run could be
made changing the price that utilities pay for oil; however, it would be
unlikely that the exogenously specified demand would be changed too since
that would require that a separate model be rerun. Because different
groups use the supply and demand models, it is rare to see a study that
links them. This new methodology explicitly accounts for the dynamics of
electricity supply and demand, allowing both the utility and its
customers to react to changing prices and changing expectations over time.

The result of this report is a methodology that allows planners to
model aspects of the system that have been ignored previously. The
methodology is flexible and allows the planner to substitute models of
more or less detail for any of those described here. The purpose is to
develop a new way of looking at long-range planning, rather than to
develop a better algorithm for modeling some part of the total system.

Because the system is complex, explicit assumptions have been made about
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the interactions between the utility and its customers:

1)

2)

3)

4)

5)

that the utility and its customers influence each other only
through a fixed set of signals. For the utility, the signals
sent are the price and reliability of the electricity provided.
For the customers, the signals sent are the peak power demand,
the energy consumption and the demand pattern (load shape);

that neither the utility or its customers can change the decision
criteria or the choices available to the other. This assumption
means that factors such as ad campaigns in which a utility
attempts to induce customers to switch to electric heat or to
conserve energy for other than purely economic reasons can not be
modeled;

that both the utility and its customers plan for the future based
on uncertain information and that as time passes decisions about
actions in the near future become fixed while those further in
the future may change based on new information. The new

information may be a signal from the other or a changed factor

from an exogenous source. An example of the former would be an
increase in the price of electricity while an example of the
latter would be an increase in the price of oil;

that the long range plans of the utility have 1ittle influence on
customers' decision except through their expectations of the
future price of electricity. The converse of this assumption is
not true, the next assumption being:

that the expected long range behavior of customers can influence
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the plans of the utility. That is, the utility can take into
account the expected response of demand to price when making its
long range forecast;

that the system need not be in equilibrium. That is, at any
time, it would be possible to iterate to an equilibrium solution
in which the price charged by the utility exactly matched what
customers were willing to pay. The assumption, however, is that
due to regulations, lead times, and other factors, that the
system continues to evolve over time without ever necessarily
reaching an equilibrium state; and

that adjustments are made at the beginning of discrete time
steps. This assumption could be relaxed, allowing, for example,
new units to be installed or price increases to take effect in
the middle of time steps. This assumption is made for ease in

exposition.

General Formulation

In broad outline, the interactions of the utility and its customers

are as follows: the utility announces a price for the current year.
Customers respond to that price in the short run by changing the patterns
of their consumption and, if they own their own generators, of their
supply as well. Both the customers and the utility make plans that
commence in the following year based on their current knowledge. For
either the utility or the customer it may not be possible to alter plans

instantly. Because of the lead times required for some projects, the
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decisions made in the current time step may not take effect until some
time in the fu;ure. However, it is assumed that in each time step some
decisions are made fixed while others are allowed to float. For example,
it may be necessary to make firm commitments today in order to have a
base load generator seven years from now, but the commitments for a
second unit on the same site, needed in twelve years, may be minimal.
When the time step advances, the plans of the utility and its customers
are fixed and a new price is announced based on the customer demand and
the installed units in the previous time period.

Figure 1.4 gives a schematic representation of the interactions.
The inner Toop of utility operation, rate setting, and customer demand
represent the direct interactions of the utility and its customers. The
peripheral loop of utility and customer expansion planning represents the
decision processes whose effects filter down to the direct interactions.
This is made more precise in Figure 1.5 which illustrates the signals
received and sent by each actor, using the notation developed in the
report.

Each box in Figure 1.5 can be thought of as a function that
transforms the input signal to the output signal. Most of the remaining
chapters of the report will be devoted to making the function forms of
these transformation explicit, although they can be written in general
form now.

First, the utility announces a price for electricity for the next
time period, based on the installed capacity and the system operating

cost in the current time period. In some areas, the price may include
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anticipated costs, but the price is always announced prior to the time
period in which it takes effect. (For an interesting discussion of
taking this principal to its 1imit by announcing a new price every five
minutes, see the paper on homeostatic utility control, reference [79].)
The price announced by the utility can be computed as some function of

the capital and operating costs of the system:

e, o) (1.1)
where c;+1 = price of electricity in time period t +1. (The subscript n
indicates that the variable is a property of the utility)
($/MBTU)
ECT = total cost of operating the utility system in time
period v (3) (see equation (1.5))
o' o= historical or replacement cost of system capacity in

time t ($) (see equation (1.12)).

This price becomes effective for the next year and the next year becomes

the current time period:
r=1+%1, (1.2)

Given the new price, customers may change their demand patterns
making short-run adjustments:

Yé = f(c;, X;; ¢, o' wh) (1.3)
E; = f(cn, Xeo € s QT, wh) (1.4)
where
T
YK = peak power demand of all customers in time period t (MW)
E; = energy demand from customers in time period ¢ (MBtu)
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c; = price of electricity in time period 1 computed using equation
(1.1)(3/MBtu)

X, = vector of installed capacities owned by customers in time
period r (MW)

¢ = vector of prices for competing sources of energy available
to customers in time t ($/MBtu) (exogenous)

Q = vector of demographic variables describing customers in
time © (exogenous)

w = vector of meteorological variables for time t (exogenous).

And, the utility must adjust its operating schedule to meet the new

demand at minimum cost, given the price of available fuels:

ECT = f(Yy, Egs X'» ) (1.5)
where
ECT = expected cost of meeting demand in time t (3)
Yé = customer demand as computed in equation (1.3)
EL = customer energy demand as computed in equation (1.4)
X' = vector of installed capacities in time t (MW)

! vector of prices for fuels in time ¢ ($/MBtu) (exogenous)

(g}
1

However, both the customers and the utility can change their capital
stock in the long run, although neither can change it instantly. For the
customer, this can mean buying appliances to match the rate structure.
For example, under some rate structures it would be worthwhile to buy an
oversized air conditioner that could be cycled to run only off-peak,

while under other rate structures, it would be worthwhile to buy an
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undersized air conditioner that would run constantly. In addition,
customers can buy appliances that use alternative fuels, for example, gas
stoves. And, customers can install their own source of power using
conventional fuels, e.g., diesel generators, or nonconventional fuels,
e.g., solar insolation. For any appliance or generator, the customer can

compute the breakeven capital cost:

t A N A
where
t .
BECCik = breakeven capital cost of system i installed in year t
by customer k
A
Yk = vector of estimates of customer k's power demands over
the lifetime of system i
A
Ex = vector of estimates of customer k's energy demands over
the lifetime of system i
¢ = estimates of power costs from all sources over the
lifetime of system i (exogenous)
W = vector of meteorological parameters (exogenous)

The breakeven capital cost is the cost that the system must sell for so
that a purchaser would be indifferent between that system and the best
alternative. If the purchase price is less than the breakeven cost, then
one should buy the system and save money. However, since there are many
factors that influence a purchase besides cost, only a fraction of
predicted purchases will be made:

ot

A
xik = f(BECC

t At
e K9 R T (1.7)
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where
X?k = planned capacity of system i to be installed in year t
by customer k
BECC?k = estimate of the breakeven capital cost for system i for
customer k in time t
Kg = estimate of the purchase price of system i in time t
U = minimum number of time steps to install system i.

Then, for all systems with

t
Xig 2 0 (1.8)
and t = + ui,
t ot
Xik = %k

That is, if one plans to have a system operating in time t and the
decision must be made in time t in order to have it in time t, then the
decision variables are fixed in time t for time t even though the plans

are based on estimates of the future. Thus, when time t becomes the

current time period, the capital stock of the customer is known.

The breakeven capital cost can be computed in one of two ways. The
usual way is to run a simulation of the customer demand computing the
difference in the cost of meeting demand with and without the system in
question. The cost saving is the total amount one would be willing to
pay to have the system installed. An alternative is to perform an
optimization to find the capital stock that will meet the demand at
minimum cost. From the optimal solution, one can perform sensitivity

analysis to find the cost at which a system just enters the solution. -
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If properly performed, the optimization and the simulation should
yield the same results. However, because of the many nonlinearities in
demand, formulating realistic solvable optimization problems is
difficult. The optimization technique has the advantages of being
elegant and of ensuring that the breakeven cost of the system is always
relative to the best alternative. The simulation technique has the
disadvantages of requiring a Tot of data and computer time and the
advantage of allowing almost any form of constraints.

At the same time that the customer is making decisions about the
future, so is the utility. First, the utility must know how much demand
there will be in order to decide how much to build. The demand
projection must take into account the expected price of electricity
relative to the expected price of other fuels and the expected customer
behavior:

A

ot ot-1 2t-1 ot At Lt
Yk = f(Yk s Ek ’ Xk, c,Q, W) (1.9)

/\__ /\- A A
EE = f(YE 1, EE 1, XE, ct,§1t, w)

where
ot
Xk = estimate of customer power demand in time t (MW)
E% = estimate of customer energy demand in time t (MBtu)
A
t .
Xk = estimate of customer's capital stocks in time t (MW)
A
ct = vector of estimates of fuel prices in time t ($/MBtu)
(exogenous )
t . .
Q = vector of demographic variables for customers in time t

(exogenous )
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W = vector of meteorological variables (exogenous).

Using the demand estimate from equation (1.9), the utility can plan
on how much capacity to build in each year. The long-range planning
problem for utilities has been studied for years, and there are many
alternative formulations available. Usually, the utility's objective
function is assumed to be cost minimization, although other criteria can

be used. In general form, the optimal capacity can be found using:

t* AMoAt -1 At At

Xe =, En X, ¢, K) t=T+pg, oo T (1.10)
where
*
XE = optimal capacity of type i to be installed in year t (MW)
A
YE = estimate of the total customer power demand in year t (MW)
A
Ek = estimate of the total customer power demand in year t (MBtu)
xt-1 = vector of capacity installed prior to year t (MW)
A
ct = vector of estimates of fuel prices for time t ($/MBtu)
(exogenous )
A
Kt = vector of estimates of installment costs for time t ($/MBtu)
(exogenous )
u = minimum number of time steps between the decision to build

a plant of type i and its beginning operation.
For all those decisions that must be made in the current time period v to

have a plant in time t, that is, for:

g* >0 (1.11)

X

and t:T"’u_i,
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t t*

And the capital cost of the system is updated:

oxt = f(xf, kb, ot (1.12)
where
cxt - capital cost of the system in time t (¥)
xt - capacity installed in time t (MW)
Kt = capital cost of new capacity in time t (3/MW)

Just as for the customer, when t becomes the current time period,
the installed capacity is known, although it may no Tlonger be optimal
since it was planned based on estimates of future customer demand and
prices.

The operating and capital costs computed in equations (1.5) and
(1.12) are then used to compute rates for the next time period using

equation (1.1) and the cycle repeats.

1.1V Implementation

In order to study the system outlined in Section 1.III. it is
necessary to make the functional forms explicit. One option is to
specify very simple functional forms to find the precise mathematical
relationships among variables and to find the sensitivity of the model to
changes in certain variables. However, to get beyond such basic
conclusions as if the price of electricity goes up, then the demand
decreases and less capacity is needed, more complex formulations are

needed. So, the other option is to use detailed models of each of the
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subsystems. This approach virtually eliminates the ability to write
closed-form solutions for the relationships among variables in different
submodels.

The advantage of the second approach is that each subsystem can be
modeled according to the requirements of the problem under study. In
many ways, the precise functional forms used to describe different
subsystems are arbitrary. Any long-range forecasting model can be used
as long as the user believes either that the model accurately depicts
demand growth or that it accurately depicts the way that the utility
would forecast load growth.

This report uses the second approach, giving the model descriptions
that follow an air of impermanence. But, in order to demonstrate how the
methodology works it is necessary to assume some functional form. And,
any model that was substituted for those described below would have to
solve the same problem as discussed in each model description.

Each of the next six chapters of this report describe one of the
subsystems in Figure 1.4. The entire system is summarized in Chapter 8.
An example is given in Chapter 9. The models described are
state-of-the-art models, some of which are still under development.
Because of this, not all of the models have been fully implemented as
computer models. Therefore, in the example given in Chapter 9, which
demonstrates how the modules fit together, some models have been run on a
hand calculator, while other models have been replaced by less advanced,
but available, computer models. So, the example in Chapter 9 is there as

a concrete guide, but the derived numbers should not be interpreted as
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results.

The author has contributed to most of the models described in this
thesis, particularly, the long-range planning model, the customer

operation model, the time-dependent generation model, and the
rate-setting model. The author is completely responsible for the
production costing and reliability models, and for the code which links

the models.

I.V Overview

Each subsystem in Figure 1.4 affects and is affected by the other
subsystems. Rather than attempting to model the entire system as a
single entity, each subsystem has been modeled separately explicitly
showing the interactions among them. A common data base has been used
for consistency.

Chapter 2 projects the long-run demand for electrical energy based
on fuel price forecasts. Then, the total demand is modified by consumer
response to time-of-day pricing and by customer-owned generating units,
resulting in a projection of the total demand on the electric utility.

Chapter 3 finds the distribution of the net load on the utility
based on correlation of the response to time-of-day pricing and of the
output of customer-owned generators with the fluctuations in the original
electricity demand.

Chapter 4 develops a methodology for finding the minimum cost of
operating a set of electrical generators to meet the demand as specified

in Chapters 2 and 3, using the fuel price projections. This methodology
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also finds the reliability with which the generators meet the demand.
Chapter 5 uses the methodology of Chapter 4 as part of an
optimization algorithm that finds the minimal cost expansion plan for a
utility subject to a reliability constraint. In addition to fuel price
projections and demand specificatons, this methodology also requires

¢

capital cost projections and new technology specifications.
Chapter 6 uses the rates, along with fuel price projections, capital

cost projections, and technology specifications to find the amount of
capacity that customers would install for themselves.

Chapter 7 uses the capital and operating costs from the optimal
expansion plan to compute new electricity rates.

The new electricity rates and new customer installations are then
used to project electricity demand starting in the next time period, thus
closing the loop.

Chapter 8 summarizes Chapters 2 through 7 and can be read in
parallel with the example in Chapter 9.

For those unfamiliar with electric utilities, Appendix A contains a

basic description of how utilities operate.
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2. Electrical Demand

The demand forecasting component of the model estimates the future
demand for electric energy based on the current demand (Chapter 3), the
current capital stock of customers (Chapter 6), and the current price of
electricity (Chapter 7). The demand forecasting model also requires
exogenously specified estimates for the projected prices of competing
fuels and exogenously specified estimates for variables that describe the
general state of the economy. The demand forecast is used only by the
utility long-range planning model.

2.1. Introduction

People do not need energy for itself. They need warm houses, cooked
food, conveyance from here to there, and so on. For the most part, the
type of energy used to produce the desired result is not of great
importance to consumers. When installing a new energy conversion system
or buy a new energy-consuming appliance, consumers made trade-offs
between capital and operating costs subject to the way in which they
expect to use it and to their own preferences. Of course, expectations
are not always met. If prices rise or the weather is extreme, consumers
may revise their needs or find alternative ways to meet the same needs.
For example, a homeowner who chose electric heat when utilities were
offering promotional rates might now find that double-glazed windows pay
for themselves in fuel savings and that 68" is comfortable given the cost
of keeping the house at 75°.

When studying electrical power systems, it is important to know how

the price of electricity and the prices of competing fuels will affect
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the overall demand for electricity both through changes in capital stock
and through changes in operating characteristics. It is also important
to know how the price of electricity will affect the shape of the demand
curve. For example, with flat electrical rates, it may be worth it to
consumers to keep their air conditioners off until late in the afternoon
when it gets hottest. Then, since they have their air conditioners on
for only a short time, their electricity bills are low and they are
comfortable. Although for the utility, even though the energy demand is
reduced, the peak power demand is the same or higher. This in turn may
lead to even higher electricity prices. The obvious solution to this
problem is to institute a price schedule that reflects the time-varying
cost of generation. However, the point is that the price of electricity
and its rate structure, the price of alternative fuels, and environmental
factors will all affect the peak demana, the load shape, and the total
energy demand. These in turn affect the cost of operating the electrical
generators and affect new capacity requirements. It is worth noting that
in long-range planning models used by utilities the demand is exogenously
specified and is not linked to the cost of generating power. See, for
example, the survey of models in Anderson 2].

There are two distinct camps in modeling the demand for electricity.
Econamists model the aggregate demand for electricity based on the
historical relationship of electricity consumption with factors such as
income level, regional fuel prices, and capital costs. Engineers model
the demand for electricity by simulating the use of appliances in

response to the weather, time-of-day, and other environmental factors.
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Economists tend to ignore the time variation in demand and its physical
causes while engineers tend to ignore the price response of demand. Of
course, there are many models that combined elements of both, but the
underlying bias toward physical causality or toward statistical
correlation is usually apparent.

Both types of models will be used for this report. A two-level
economic model will be used to predict shifts in demand in response to
different rate structures and to preduct long-run changes in demand in
response to the average price of electricity. An engineering model will
be used to simulate the joint dependence of electrical demand and
electrical supply for homeowners who elect to build weather-dependent
generators. These models are only loosely linked. An integrated
approach is currently under development by Hartman [45] at the MIT Energy

Laboratory.

2.1I1. Long-Run Electrical Demand

The economic literature is full of long-run energy demand models,
each with a different emphasis. For this report, the Baughman-Joskow
demand model [7,8,9,14,54], a relatively simple, well-documented,
regional model, will be used. In this model, the total residential and
commercial energy demand for each state is calculated and then the
relative fuel split is calculated. For the industrial demand, the total
national energy demand is estimated, then allocated by state, then split
by fuel type.

The Baughman-Jdoskow demand model does not explicitly account for
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trade-offs between the prices of fuel and the prices of the equipment
associated with burning each fuel; however, it does account for
trade-offs among fuels based on their relative prices. Because the
estimates of the way people make choices are based on historical data, if
one is willing to assume that the choices do not change drastically, then
the projections are valid. So that, as long as no inventor comes up with
a small, efficient, inexpensive cogenerator that can supply heat and
electricity to a single-family house, or as long as the electric car does
not become suddenly popular, then the Baughman-Joskow model is sufficient
for the purposes of this study. A critique of economic demand models,
including the Baughman-Joskow model, can be found in references [35] and
[45].

Changes in the long-run demand due to installations of customer-owned
generation will be addressed in Chapter 7. There, an optimization model
will be used to model the trade-offs between capital and fuel in
selecting new technologies. For now, the capital stocks, including
customer-owned generators, are assumed to be fixed and known.

The Baughman-Joskow demand model presented here uses the equations
and coefficients in the latest computer model. These are similar but not
identical to those presented in reference [54]. Also, the coefficients
have been adjusted so that the variables are given in the standard units
used in the rest of this report. Unfortunately, a statistical analysis

of the coefficients is not available.
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2.11.A Residential-Commercial Demand

In the Baughman-Joskow model, the total residential energy demand for

a particular region is estimated by:

ETr, = POPY exp(X1) (2.1)
where
X1 = Al + Bl(PIt/POPt) + Cl Tenpmin + Dl(POPt/AREA )
a a a a a
+ E1 log(Cy, * F1 ]og(Ez_l/P0P§°1)
where
t = time period
ET;a = total residential and commercial energy consumption in
region a at time t (MBtu)
POPg = population in region a at time t
PIE = personal income in region a at time t (1970 constant
dollars/person)
Tempgln minimum temperature in region a (°F)
AREAa= area of region a (square miles)
Eﬁa = weighted average residential-commercial energy price

in region a (1970 constant dollars/MBtu)
The coefficients in equation (2.1) have been estimated on historical data

and are given in Table 2.1.
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Coef Value
Al .668
Bl 2.69e-5
CL -.0012
D1 9.36e-6
El -.134
Fl 0.842
Residential-Commercial Total Demand Coefficients
Table 2.1

Dropping the regional subscript, the residential gas consumption in
region a, relative to the regional residential electricity consumption,

EE, is given by:

E6r - EE exp(X2) (2.2)

where

t ax
X2 = A2 + C2 log (cRG/cRn) + D2 Temg

+ F2 Tenpmm t—l/ t-1

+ H2 log(EG E” 7).

The residential oil consumption, relative to the residential

electricity consumption is:

o -

¢ = E enp(X3) ~ (2.3)

where
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t
X3 = B2 + C2 log (cRo/cEn) + E2 Temp™2X

+ G2 Tempy " + H log(E0% H/ERL).

and where

E; = electrical energy consumed by residential-commercial
customers in region a at time t (MBtu)l

EGE = gas energy consumed by residential-commercial customers
in region a at time t (MBtu)

E; = electrical energy consumed in region a at time t (MBtu)
in region a at time t (MBtu)

EOE = 01l energy consumed by residential-commercial customers

c;g = residential gas price in region a at time t (1970 constant
dollars/MBtu)

an = average residential electricity price in region a at time t
(1970 constant dollars/MBtu)

C;o = residential oil price in region a at time t (1970 constant
dollars/MBtu)

max : ‘ . °
Temp = maximum temperature in region a ( F)

The coefficients for equations (2.2) and (2.3) are given in Table 2.2.

lThese are Btu's of delivered energy, and do not include the energy
lost in producing the electricity.
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Coef . Value
A2 0.082
B2 0.415
C2 -0.207
D2 -0.00177
E2 -0.00429
F2 -0.00363
G2 -0.0102
H2 0.839

Residential-Commercial Fuel Split Coefficients
Table 2.2

Finally, the electrical energy consumed by residential and commercial

customers in region a at time t is:

t t t t

ER = ETR - EGR - EOR (2.4)
or

t t ,

ER = ETR/Ll + exp(X2) + exp(X3)) (2.5)

2.11.B Industrial Demand

For the industrial energy demand, first the national demand is

estimated, then it is broken down by state. The total demand is:

ET'; = exp( (A3+B3 log (E'I‘) + C3 log(VADDt) (2.6)

where

ET§ = national industrial energy demand in time t (MBtu)
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—

c = national weighted average price of industrial energy in time

t (1970 constant dollars/MBTU)

VADDt = value added to industrial goods in time t (1970
constant dollars)

The coefficients for equation (2.6) are given in Table 2.3.

Coefficient Value
A3 26.48
B3 -0.219
C3 0.688

Industrial Energy Demand Coefficients
Table 2.3

The relative energy consumed by each state is found using

t t - -t -t
ETIa = ET1a expl (Adlog (ca/cl)

t-1

1

+ B4log (POP/POP}) + C4log(ET ' /ET (2.7)

where the variables are the same as those defined in equation (2.6)
except that they are given by region. In equation (2.7), all of the
energies are computed relative to region L. For the coefficients given
in Table 2.4, region 1 is California. The absolute energy consumption

for any region can be found from the relative weights and the total

consumption.
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COEF VALUE
Ad -0.156
B4 -0.47
ca4 0.927

Industrial State Allocation Coefficients
Table 2.4

The amount of gas consumed by industrial customers relative to the

amount of electricity consumed by industrial customers is:

t ot t t
EGy,= E[, expLA5 + D5log (cha/CIna) (2.8)
t-1, t-1

+ ES]Og(EGIa /EIa ).

The amount of o0il consumed relative to amount of electricity consumed is:

t t t t

EO,. = E a &xp LB5 + DS]og(cIOa/cIna) (2.9)

t- _
+ ESlog (EOF;1/ES-D)D.

The amount of coal consumed relative to the amount of electricity
consumed is:

t

t t
CICa/CIna)

t
ECIa = E la ©XP LC5 + D51og( (2.10)

1 tel
+ E5log (ECVTH/ETTY)).

Finally, the electrical energy consumed in a region a time t is:
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(2.11)

where

ET§a= total energy consumed by industry in region a in time t (MBtu)

Ega = Electrical energy consumed by industry in region a 1in
time t (MBtu)

EG}a = Gas consumed by industry in region a in time t (MBtu)

EO';a = 011 consumed by inaustry in region a in time t (MBtu)

EC}a = coal consumed by industry in region a in time t (MBtu)

C%na = electricity price for industry in region a in time t
(1970 constant dollars/MBtu)

C%Ga = gas price for industry in region a in time t (1970
constant dollars/MBtu)

C?Oa = 01l price for industry in region a in time t (1970 constant
dollars/MBtu)

C%Ca = coal price for industry in region a in time t (1970

constant dollars/MBtu).

The coefficients for equations (2.8) to (2.10) are given in Table 2.5.

COEF VALUE
A -0.231
B5 -0.354
C5 -0.540
D5 0.301
E5 0.856

Industrial Fuel Split Coefficients
Table 2.5
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Equations (2.1) through (2.11) can be used to estimate the total
electrical demand, residential, commercial, and industrial, based on
projections of population growth, personal income, value added, cost of
capital, and fuel prices. Within the model, the fuel prices are linked
so that the price the utility pays for fuel is based on the price of fuel
to industry. Thus, the computed price for electricity is consistent with

the other fuel prices.

2.1II. Short-Run Electrical Demand

In the short run, consumers can not adjust their capital stock to
take the most advantage of changing fuel prices. At best, they can
change their overall consumption using the same capital stock or they can
change their patterns of usage to take advantage of time-differentiated
rates. This section will study changes in patterns of usage due to
time-of-day rates and to customer-owned generation.

The changes in overall consumption are measured relative to the
forecast from the long range model described above. Changes in patterns
of use will be measured relative to a base case load shape, for example,
from the last year of historical data. Marginal changes to the base load
shape will be computed based on an economic model of consumer reponse to
time-of-day rates ana on an engineering model of customer-owned
generation.

This section will discuss only residential customers. Many
industrial electricity users have had time-of-day rates for many years,

but there is very little data available. Acton and Mitchell [1] have
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studied industrial time-of-day rates in Britain and the United States.
However, because of the difficulty of getting matched cross-sectional
data, most of their evidence is anecdotal. When models of industrial
response to time-of-day rates become available, they can be fit into the
structure described here.

For convenience, residential customers have been aividea into two
classes: those who own their own electrical generators and those who do
not. This section will deal only with those customers who do not own |

generators. The next section will deal with those who do.

2.11T.A. Load Shifting

Much has been written about how time-of-day rates should cause
customers to shift their demand away from peak demand periods and much
has been written about how time-of-day rates should be calculated, but
little is known about how customers in the United States respond to
time-of-day rates. Since 1974, the Federal Energy Administration (FEA)
has sponsored residential time-of-day pricing experiments throughout the
country. A great deal of data has been collected, but it has only begun
to be analysed.

Hausman, Kinnucan, and McFadden (48 have analysed the data from the
Connecticut peak load pricing experiment and have developed a moael to
preaict how residential users respond to time-of-day rates. The
coefficients for their model have been estimated only on the Connecticut
data, but the structure of the model is general ana could be expanded

when more data becomes available. In particular, because there was not
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enought variation in the prices, it was not possible for them to estimate
cross-price effects. That is, effects from people changing the time at
which they do something in order to take advantage of a brice
differential. The cross-price terms have been dropped from the
presentation given here. They can be found in the original reference.
The model has two demand levels. On the first level, the total
electrical demand is computed based on its price relative to other
fuels. Theﬁ, since the total deqand is set, the demand in each time
period is computed based on the relative electrical prices. The
Baughman-Joskow model will be used for the first level and Hausman,
Kinnucan, and McFadden model for the second level. Under their
structure, if the price of electricity were to double the overall
consumption would be reduced, but as long as the relative prices remained
the same, then the relative consumption in each time period would remain
the same. This assumption is not overly restrictive for our purposes.
The electrical energy demand for customer k in subperiod s is found
relative to consumption in a period in which the demand and price are

both known, e.g. a corresponding historical time period:

I
s s S s
e = A6" + gzi B6, Appy, * C6. App; ApPyy

- [om—y
A ™
N

J
S S S
" El Dby, Soc;, * E6%c

I I
1
S S
+ 121 F6S cp APP;, * '22 665 cp  APP;, APP), (2.12)
= 1=



S = subperiod
C = price of electricity to customer k in subperiod s
relative to the price in the base period

0-1 variable indicating whether customer k owns

r
©
©

-
=
|

appliance i

App 1k = hot water heater

App2 to Il’k depend on the hot water heater
AppI to I K depend on the temperature
2 3’
SocJ.k = sociological factors about customer k such as number

of people in the household and the income level.

TempS temperature in subperiod s (°F).

Dayn = 0-1 variable indicating the day of the week (Day1 =
Sunday).
For any class of customers, i.e., those having the same appliance
stock and sociological factors, equation (2.12) can be simplifiea to just

those terms that depend on the temperature and time:
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) S S .S S S
e, = A7, *B7 C. *C7  Temp (2.13)
S S S l S m
+ D7> ¢o Temp® + 2 M6> Day
k “k . n
n=1
I I
S S S Zf
where A7 = A6 + séi 867 Appyy * 2y C6; ABRyy APy
+ D6, Spc.
i Jk
I I
S S S Ef S
B7, = E6° + ;Ei Foj ApPjy * 2u GOj Apb;, Apby
+ H6. Soc
joi 3k
I
S S zf; S
1=12
I
) S Ef S
D7, = J6~ + 2, L6 Appy,

1=12

and the rest of the terms are as defined in equation (2.12).

Table 2.6 defines the appliances ana sociological factors that were
included in the study. Since the data is for winter in Connecticut, air
conditioning load is not includea. Table 2.7 gives the estimates of the
coefficients in equation (2.12). The statistical analysis of the

coefficients, omittea for simplicity, can be found in the original
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reference.

App; . electric hot water heater

App,. dishwasher (depends on water heater)
Appjs. clothes washer (depends on water heater)
App4: electric heat (depends on temperature)
Appg: electric range

App. freezer

App;. electric clothes drier

Socy home during day (0-1 variable)

S0C,: home size (square feet)

Socs; home type (single home or multiple dwelling)
S0C, people in home

S°C5: income (1000's dollars)

Appliances and Sociological Factors in the
Connecticut Peak Load Pricing Test

Table 2.6 from reference [48], p. 276

Using equation (2.12), the coefficients in Table 2.7, and statistics
on the number of residential customers and the types of appliances they
own, shifts in the residential load curve can be computed.

The change in the electrical energy demand can be written as:

st _ st st

Ak, £ -k (2.14)

where

3 v energy demand after price shifting (MBtu).
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Winter Weekday Load Shift Coéfflciénts
Table 2.7 from reference (48], p. 276

Intermediate Of f-Peak

Coefficient Peak Period Period Period
A6 -2.230 -2.370 -1.380
B61 (water heater) .010 .545 .058
B6, (dishwasher) -0.064 -0.215 .152
B64 (heat) .039 -0.163 -0.356
B6s (range) .166 .374 -0.126
Bbg (freezer) -0.283 -0.407 -0.462
Boy (dryer) .222 .450 .705
Cop (dish x water) .307 .266 .192
Co3 (clothes x water) -0.079 -0.899 -0.411
D6,  (at home) .257 079 -0.228
D6, (size) .084 .114 -0.076
063 (type) -0.395 -0.206 -0.316
064 (number) .070 .038 .065
Dég, (income) .0058 .0074 .0020
E6 (price c) .011 137 .019
F6; (c x water) -0.018 -0.208 -0.200
Féo (c x dish) .014 .062 .066
F64  (c x heat) -0.012 -0.283 -0.021
Fég (c x range) -0.020 -0.031 -0.073
Fog (c x freezer) .018 .123 -0.036
Fo67 (¢ x dryer) -0.022 -0.181 -0.141
Gb) (c x dish x water) -0.027 -0.017 -0.067
G63 (c x clothes x water)  .043 .379 .266
H6 (c x at home) -0.005 .061 .118
H62 (c x size) -0.010 -0.084 .019
H63 (c x type) .021 -0.024 .030
H64 (c x number) -0.002 .0098 -0.025
Hb6g (c x income) -0.0006 -0.0065 -0.0028

continued on next page



Coefficient

I6 (temp)

Jb (c x temp)

Kég4 (tehp x heat)

Lbg (c x temp x heat)
M6 (Tuesday)

Mé4 (Wednesday)

Mésg (Thursday)

Mbg, (Friday)
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Table 2.7 (continued)

Intermediate

Peak Period Period
~0.0006 .0024
.0002 -.0u02

.037 -0.047

.0006 .024

-0.011 -0.107

-0.043 -0.079

-0.011 -0.109
-0.029 -0.153

Off-Peak
Period

-0.012
.004

.034
-0.020

.002
.051
.032
.050

By definition, eit is:

where

The change in

st st st
ek = Ec /Ek
Est _

customer k (MBtu)

AE(S:t DYDY

energy demand can be written as:

(2.15)

demana in subperiod s of the current time period by

(2.16)

so the net energy demand is known as a function of the demand in the

current time period ana the load shift coefficients.
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2.111.B Customer-Owned Generation

The economic demand models discussed above cannot account for new
technologies, nor can they account for the specific choices made by
particular customers. Since the purpose of this report is to study the
customers' options for generating their own electricity, a different type
of model is required. In a Chapter 6, a model of how customers decide
what to build and how much to build will be developed. In this chapter,
it is assumed that the -amount and type of customer-owned generation is
known. The problem is to find how customer-owned generation,
particularly time-dependent generation, affects the energy demand on the
utility.

The output from an electrical generator can be described in great
detail by modeling the steam cycle, harmonids of the stator and the
rotor, the mechanical and electrical inertia, the power angle and so on.
For studies of the power conditioning and safety equipment required for
small generators, such detail would be necessary. For a discussion of
some of the technical issues of integrating small electric generators
with a utility see reference [94]. A much simpler model will be used
here both for the central and decentral generators.

For conventional generators, that is, those that are not
time-dependent, the only necessary parameters are the capacity, the heat
rate (efficiency), and the forced outage rate. In Chapter 3, it will be
shown how the generators and load are modeled together. For the time
being, it is only necessary to define the operating capacity of a

generator. The operating capacity is a random variable given by:
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(2.17)

perating capacity of the unit i owned by customer k (MW)
ero-one random variable describing forced outages for
nit i

ated capacity of unit i owned by customer k (MW).

The distribution of the forced outage component is:

PLwi =

yl

p1 y = X

(2.18)
q; y=20
Py ¥ a4y =1

where q1 = probability of forced outage of unit 1.

For time-dependent generators, additional information on the nature

of the time aependence is needea. Detailed models of different types of

generators are availabie. Within this study, it is sufficient to know

that the output of a nominally sized generator can be written as:

~S
nj = fj(ws)

where S

24

(2.19)

subperiod (e.g., hour)

vector of meteorological data (e.g., wind speed,
ambient temperature, solar insolation)

function that transforms meteorological data into
electrical output for generator i

normalized output for generator type i in subperiod s.
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In equation (2.19), it is implicitly assumed that the function fi is
independent of the size of the generator. That is, if a one megawatt
generator can produce x megawatts, then, under the same conditions, a ten
megawatt generator can produce 10x megawatts. If this assumption is
violated for a particular generation type, for example, wind, then each

size range can be labeled as a distinct technology.

The operating capacity of a time-dependent generator is written:

o o~
Yik = M ¥ Xk (2.20)

where

~

Y?k = operating capacity of unit i owned'by customer k in
superiod s (MW).

For computing the long-run energy demand, it is only necessary to
know the total energy produced by customer-owned generators. Their
effect on power demand will be discussed in Chapter 3.

The total energy supplied by a time-dependent generator is the

integral over time of the operating capacity:

S S ~S = ~ ~5
ES, = Zvikns =Y n; ¥.X.h = “s“’ixikz"i (2.21)

where hS = hours in subperiod s.

Define the total nominal energy output from a unit to be:
Hg= 27 (2.22)

Given that the mechanical failures of the customer-owned generators are

independent, with the additional assumption that all generators of the



57

same type have the same binomial failure rate no matter who owns them,

and there are enough of them, then the sum of their outages is normally

distributed:
~ K _ 4
¥ - Z;l Vi (2.23)
Wi~ N (n.p., nip.qy) (2.24)

where n, = nunber of installations of type i.

As a rule of thumb, the normal approximation to the binomial
distribution is valid in the region where:

1/2

E(q%) > 3LVAR(§G)J (2.25)

where E(QH) = n.p,

VAR(qﬁ) = NP4, for the binomial distribution
So, for outage rates on the order of .1, there would have to be more than
81 installations to use the approximation.
Assuming there are enough customer owned generators on the system,,

then the expected energy generated by units of type i is:

-t -t

where  aAE change in electricity demand due to system i in time t
(MBtu)

Xi = installed capacity for system i (MW)

If we then assume that all the electricity generated by the time
dependent units displaces electricity that otherwise would have been

produced by the grid, then the net reduction in energy demand can be
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computed.

In computing the change in energy, it was implicitly assumed that the
energy from the time-dependent units would be used whenever it was
available. This assumption may not be true for conventional generators,
such as diesels, which may be used only under special circumstances. For
this type of generator, the function described in equation (2.16) might

require more complicated inputs.

2.1V.  Summary

From equations (2.1) and (2.11), estimates of the total electrical
demand in area a in time t can be found using the current price and
demand for electricity along with projections of their future values.
These equations can be expressed in functional form as:

t t-1 At At

Ea = f(Ea » €505 wa) t=r+1, ... T (2.27)
where -

E: = electrical energy consumption in region a in time t

e; = vector of estimates of fuel prices for region a in time t

A

Qg = vector of estimates of demographic and economic factors for
region a at time t

W, = vector of weather parameters for region a.

From equation (2.13), the consumption in a subperiod, relative to a
known subperioa, can be estimated for each customer class in a given
region:

st st _s t-Tast A t st .
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and
T t
NI LD DD DS tart1,...T (2.29)
a a a k
S k
where
AEZ = change in energy demand due to price of shifting in region a
in time t
e;E = estimated price of electricity for customer k in subperiod s,

time period t relative to the price in subperiod s, time period
A
SZE = vector of estimates of demographic and economic factors for

customer k in time period t

w:t = vector of weather parameters for region a for subperiod s,

time period t.

From equation (2.26), the change in electrical demand due to output
of custom-owned generators of type i can be found:

t t

AEi =P, Xia H (2.30)
where
Py = forced outage rate of unit type i
?a = instal led capacity of type i in region a at time t (MW)
H = sum of annual normalized output of generator a in region i.
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3. Utility Load Shape

To find the effect on the utility of changes in demand, it is
necessary to know not just the change in the energy consumption, but also
the change in the patterns of consumption. The load reduction model uses
the current customer capital stock (Chapter 6), the current price of
electricity (Chapter 7), and the exogenously specified weather and prices
for competing fuel to compute the shape of the net load duration curve.

The net load duration curve is used in Chapter 4 to compute the cost
of operating the central station units to meet demand. If desired, the
net load shape can also be projected for future years and used instead of
the base case load shape in the utility expansion model described in
Chapter 5.

3.1. Introduction

The instantaneous demand on the central generators of a utility is
the sum of the demands from all its customers, residential, commercial,
and industrial, plus the demand due to losses in the transmission and
distribution system, plus any demand from other utilities due to purchase
agreements. The transmission lines that link utilities are monitored
closely, so the external demand is known. However, without costly
metering and monitoring an electric utility cannot determine which
customers are demanding power at any instant. The only accounting is in
monthly energy metering which does not reveal the variations in power
demand over time.

A utility cannot tell whether customers have decided to consume less

electricity due to a peak price or whether customers are using an
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alternative source to supply some of their electricity or whether the
load is lower than expected due to some unknown factor. This suggests
that load shifts and decentralized generators can be modeled by
appropriately modifying the projected demand on the utility. This
chapter will show how the energy demand, load shifting, and
customer-owned generation are combined to find the net load duration
curve, that can then be used in the analysis of the effect of load
shifting and customer-owned generation on the electric utility.

First, the total demand for the utility is calculated based on
current and projected prices using the long-run demand model descriped in
Chapter 2. This results in projections for the annual energy demand for
each of the remaining years of the study, ignoring load shifts and
customer-owned generation.

Then, the marginal changes in the load shape due to time-of-day
pricing are computed. If flat rates assumea, this step is skipped
because the current model woula predict no changes. With a more
sophisticated model, load shifts could be computed if the relative price
of electricity rose or fell even though the rates were flat.

Finally, the electricity suppliea by the decentralized generators is
subtracted from the load leaving the net load to be supplied by the
central station generators. There are, however, several complications
with this procedure. One is that the decentralized electrical generation
may vary with the time of day and may be correlated with the original
demand. Another 15 that the output of different decentralized generators

may be correlated with one another complicating the subtraction
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procedure. Also, the electricity from decentralized generators is
consumed close to the point of generation and so bypasses much of the
distribution system and the losses incurred therein.

The load shifting and customer owned generation can be modeled
independently because it was assumed that owners of their own generation
shifted their loads based on the expected price of electricity in a given
time period. The expected price includes both grid electricity and
user-generated electricity. Of course, load shifting would occur based
on the actual price in that hour, not the expectation. That is, a
customer might expect the photovoitaic generator to be working on a sunny
noonday and plan to run a load of wash; however, if the generator failed
to work, the wash would be canceled and the repair person callea. In a
future model, it may be possible to combine the load shifting within the
decentralized generation model.

In this chapter, a procedure for modeling decentralized generators as
negative demands will be developed. Using this methodology, the utility
system can be studied with and without decentralized generators and
changes in the installed capacity of decentralized generators can be

modeled easily.

3.11 Load Representation

From historical data, one realization of the random variable of the
electricity aemand can be observed. The underlying process is assumed to
have the form:

PLYSt = xlws, S, cztj | (3.1)
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where

YSt = electrical demand at subperiod s of time period t

W = vector of meteorological data for time s

S = subperiod

c:t = price of electricity in subperiod s, time period t.

t
Let E(YS l c) = gSt(c) (3.2)
where gSt(c) = demand response function to price c in subperiod s,
tme period t
E(YStlc) = expected electrical demand given the price in

subperiod s, time period t.
A typical demand response function is illustrated in Figure 3.1.

Assume also that the distribution of the load, as a function of
weather, is independent of the price. That is, the mean of the
distribution moves along the demand response curve, but the shape of the
distribution remains unchanged as shown in Figure 3.2. So, from

historical data, the function
PLY" " = x g, s) (3.3)

can be estimated by grouping observations of load taken at a particular
time of day under similar weather conditions. If observations of load
under similar weather conditions, but with different pricing schedules,
were available, it would be possible to test the validity of the
assumption that the distribution remained constant. When further data
from peak load pricings studies become available, it may be possible to

test this assumption.
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Figure 3.1 Demand Response Function
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Figure 3.2 Demand Response with Random Component
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The total instantaneous demand for electricity by a particular
customer can be represented as a random variable that is a function of
many variables including weather, time of day, and lifestyle. Customer
may modify this demand because of time varying prices. In addition,
customers may meet some of their aemand with an alternative source to the

electric utility. The net demand on the utility can then be written as:

st st ~st
Ynk = Yok - AYk (3.4)
h qst _ VSt + gb VSt (3.5)
where aY, "= aY e ik .
and VEE = net electrical demand on the utility from customer k 1in

subperiod s, time period t(MW)

~

YZE = original electrical demand from customer k in subperiod

s, time period t(Mw)

AVit = reduction in electric demand by customer k(MW)
AVEE = reduction in electric demand by customer k due to the

price in subperiod s, time period k(MW)
??E = output from generator type i owned by customer k in sub-

period s, time period t(Mw).
N = number of generator types available to customers (e.g. wind-

mills or photovoltaics).
For notational simplicity, let

DV (3-6)
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The probability distribution of the original demand from a customer
1§ difficult to model or estimate for several reasons. One is that there
is not much data to work from. Another is that individual households
vary greatly in their consumption and in their consumption patterns. In
addition, the demand from a single household has a great deal of
variance. For example, the demand may be from just an electric clock
until someone comes home to cook dinner, then the demand may jump
suddenly to include lights, a stereo, and the oven.

So that, if the net demand on the utility is represented as the sum
of the demands from all customers, it must be recognized that some
demands are random while others have causative factors. For example,
refrigerators go on and off all day and from a central limit argument,
one would expect only a percentage of them to be on at any time. This
type of load is called diversified load. On the other hand, people turn
on lights when it gets dark and tend to eat meals at about the same
times. This type of load is called co-incident load.

We shall see, however, that with the methodology developed here the
original demand from an individual customer is never required. Returning
to equation (3.4), to find the total net demand on the utility, the sum
over all customers must be taken. Suppressing the time period

superscript, yields:

K K
=S s S Vs
Y, = 2: Yoo = 2:(Yok - AYk ) (3.7)
k=1l =1
where Vz = net demand on the electric utility in subperiod s (MW)

K = total number of customers
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Under certain conditions, the original demand and the reductions in
demand are independent random variables, so equation (3.7) can be written:

K

35S v TS
Yo=Y, - XY, . (3.8)
k=1
where ?Z = original demand on the electric utility in subperiod s (MW)

The probability distribution of the original customer demand can be
inferred from historical aata, as will be done here, or it can be derived
from a more sophisticated demand model if one is available. In any case,
this chapter will focus on finding the distribution of the changes in
electrical demand due to time of day pricing and customer owned

generation.

3.11.A Price - Dependent Demand

In Chapter 2, the energy demand in one time period was found relative
to that in a corresponding base case time period as a function of price ,
appliance stock, sociological factors, temperature and time. Assuming
that the average power demand is proportional to the energy demand, the
relative energy demand from equation (2.13) can be written in terms of
the variables in equation (3.4):

=5
& = ok~

s 7S
K= A%k)/%k. (3.9)

Defining the price modified demand, ?Ek’ as:

) v

=S
Yck = YOk - AYCk’ (3.10)
7S S IS
then YCk = e Yok’ (3.11)
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and the total price modified demand is:

K K
v v S ¥
D DRSS SN o (3.12)
k=1 k=1
vS K S
=¥ Y e (3.13)
k=l &

The economic demand model does not derive a probability distribution
for the changes in demand due to price. For lack of a better assumption,
the original demand and the price modified demand are assumed to have the

same distribution, shifted by a constant:

< Xx] = PY ng < x+ ks] (3.14)
Cc )

where the subscript on the probability distribution, P, indicates the
random variable that is being described. So, from equations (3.13) and
(3.14), the change in demand due to time varying prices and the

distribution of the modified demand can be found.

3.11.B  Customer-Owned Generation

Modeliing the operation of a small generator running in parallel with
the utility system can be complicated. One must know the characteristics
of all the electrical appliances, when they are likely to be used and
whether or not this demana can be delayed. One must know which
appliances are used in response to what weather conditions. One must
know the relatively costs of buying and selling electricity at different
times of day and the customer's strategy for using storage or other load

shifting techniques. One must also know the characteristics of the
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generator: its size, efficiency, and response to differing weather
conditions. Since all of these data are required on an hourly basis,
models of small power generators can become rather large. Several theses
have been written at the MIT Energy Laboratory on this problem alone
[17,27,87].

The major reason for using hour by hour simulators for small
generators is that the electrical demand and electrical generation both
depend on the weather and on the time of day. This correlation must be
modeled to get a good estimate of the value of the system. For example,
air conditioning load and solar insolation are highly positively
correlated, so a photovoltaic array would have a high value for meeting
air conditioning demand. On the other hand, a wind turbine would
probably have a Tow value for air conditioning demand, but a high value
for space heating demand. Another reason for using hourly simulators is
that there are frequently inter-hour dependencies. Some demands, for
example, clothes washing, can be performed earlier than planned to take

advantage of excess energy or can be delayed to take advantage of lower

rates.

For this study, a simplified generation model will be used. This
model will ignore many of the complications mentioned above, although the
structure of the study allows a more complex model to be used if it is
required. \

The random variable representing the output of a customer-owned
generator has two components. One component represents the variable

output from a generator due to, for exampte, fluctuations in solar
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insolation or wind intensity. The other component represents the changes
in output due to mechanical tailures. The latter <omponent is assumed to
be independent of time. For simplicity, two further assumptions will be
made. The first is that the output of a machine is a linear function of
its size. That is, if a 100 MW solar array produces x megawatts, then,
under identical conditions, a 200 MW solar array produces 2x megawatts.
The second assumption is that mechanical failures always result in zero
output. That is, a generator cannot run at reducea capacity if there are
mechanical failures.

With these simplifying assumptions, the output of generation type i

for customer k at time s is given by:

Yoo =x ¥, 0 | (3.15)
where
Xik = installed capacity of generation type i for customer k
ijk zero-one random variable representing mechanical failure
for generation type i, owned by customer k
;S = random variable representing fluctuations in output due to

time or weather for generation type i [0 < n < 1].

The distribution of Ji is:

and P; + q; = 1
where q; is the probability of mechanical failure for generation type i.

Rewriting equations (3.4) and (3.5) using equations (3.14) and (3.15)
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yields:

iy S
Yok = Yok -2 X Y (3.17)

- N
i=1

or, summing over all customers:

K
S 7S ~s ~
e Yo - X X v (3.18)
i=1 k=1
If the total installed capacity for each generator type is known and all

generators of a given type behave the same way irrespective of ownership

then equation (3.18) becomes:
vt s N ~s K -
Yn = YC - Z Tl]- X] Z \Ij]k (3-19)
i k=1

where Xi = installed capacity of generator type i (MW).

To find the distribution of the net load we neea to combine the
distributions of the price modified load and the customer owned
generation. That is, we must look at all possible combinations of load
ana generation and weight them by their probability of occurrence. If
the load and generation were independent, this would be a relatively
straight forward procedure; however, we know that the load and
generation are not independent for time and weather dependent
generators. But, it is reasonable to assume that conditionea on time and
weather that the load and generator output are independent and that
generator outputs are independent of one another. That is to say, given
that it is dark and windy, the output of a wind turbine will not affect

the output from a photovoltaic array nor will it affect the customer's
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desire to have a light on. And, illustrating a previous assumption, the
mechanical failure of the photovoltaic array is independent of its
output, the output of the wind turbine and the customer aemand.

The conditional distribution for the output of generator i is:
p. P [~ S . x| s,W s x >0
{in"i‘ >Ngde
S
P, LY.” = xX.|s,w_] = -~s . (3.20)

Y.o i i S q; P lng” > OIS,WSJ

+P [n°=0]s,w 1 x=0
n-' ’S’

Equation (3.20) can be rewritten as:
~s : -~ X- ~s
PYiLYi = xxil s,wsj==§;P [v; =31 P Ln = y|sswgd o (3.21)

where the distribution of iﬁ, the mechanical failure, as defined in (3.16)

with the additional definitions:

P Ly, = ;1 =1 for x =y =0
(3.22)
- x .
P Dyi = yj =0 for x =y #£0

If the output from different types of generators are assumed to be
independent conditional on the time and weather, then the conditional

distribution of the sum of their outputs is given by:

> S
v =k SsWg] = Py) * Pyp * ...

p

* PYNL?; = xX; [ s,w] (3.23)

where the symbol '*' represents convolution.



73

Defining the multiplicative convolution of (3.21) by 'o', equation
(3.23) becomes:

=z - 2 52
Py LY = xX, S,W. ] = (P™ o Pn )*{P"0 Pn )

* sV 0P NS - s ) (3.24)
n N X]. ’7s
Since the distribution of the total customer demand is known, the

distribution of the net demand can be found using equation (3.18) and

equation (3.22):

PLVZ = xls,wsj =, P[Yz = Xty s,W.] PLY® = y]s,ws] (3.25)
Yy

where 7S=Z X.ﬁj.ﬁs .
i=1

The conditional distribution as written in (3.25) can be computea for

each time period and then the distribution for the net load could be

found by summing out over time:

PLY =xJ = EPL?z = x|PLs] (3.26)
S

]

where P(s] = probability of time s, e.g., the number of observations
made at time s and weather W weightea by the total
nunber of observations.
One way to perform the computation of equation (3.18) is to have
observations of customer load and weather matched for time and location

as illustrated in Figure 3.3. The load can be assumed to have an error

distribution around the observed value and the output of the weather
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dependent generators can be calculated from the weather data. With the
mechanical failure rate superimposed on the generator output, the
distribution of the net load for each hour can be found using equation
(3.25). This procedure can be time consuming although it has the
advantage of implicitly modeling the dependence of load and weather
without requiring additional models. This methodoiogy has been
implemented and used in several studies of the breakeven cost of
photovoltaics [84,85,86] and is documented in reference [39].

This methodology is not well suited to planning because it depends on
historical data and uses substantial computer time. An alternative
method is to create models that study the causal relationship between
weather and electrical demand [27,62,77,87]. However, these models are
more detailed than are necessary for the current study.

Another alternative is to study the statistical correlation of
weather and load. This approach is currently being studied by Michael
Caramanis [16] at the MIT Energy Laboratory. The following section
outlines his work.

Given a series of historical observations of load and weather, a set
of orthogonal vectors, y, can be constructed using least squares:

N+1

~0 lo
d —an:ﬂ bN+l y + Byay (3.27)

L}

n° }E: b. + 50 1 =1, ... N

Jj=n+l ]J YJ i

-

where ¢ = index for a set of subperiods with the same characteristics,
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e.g., sunny breezy summer noontimes

d° = observed load at time o, normalized by the peak demand
as a function of prices for the time period

n. = output of generation type i at time o, with no
mechanical failures, normalized by the installed

capacity Xi

1

[bigj = matrix of regression coefficients
]

610 = error terms

¥° = equal orthogonal vectors.

Substituting (3.27) into (3.15):

N
? ° - 2: X bIS J ;.0 Bl J
A e E U Y
N N
- Y X g b9 39+, (3.28)
jentl ' ljeprr W J
Letting
‘o g .
b].J = —bij i$E#N+1
'o o .
bij = bij i=N+1 (3.29)
g o .
. = -g° +
B? BJ i$#N+1
[s) g .
. - . = +
BJ BJ i N+1
UN+D = 1,

then (3.28) can be written compactly as:

N N+l N+1
Yo - Y x. 5. b 0+ X x. 0. g% 3.30
n JEELI SRt BRSNS i=n+l ' ' Y (3-30)
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Simplifying, and using the fact that the matrix B is lower triangular:

N+ N+
Y O Y XX, U 0%, Y0+ x 0. 8% (3.31)
N T & T TN

By construction, the fandan variables, ;, are mutually linearly
independent. That is, even though the variables are not statistically or

probabilistically independent, they have the following properties:

sl(Y.i + Yj) = El(Yj) + El(Yj)

Sy ¥ Yj) = EZ(YJ) + EZ(YJ) (3.32)
where El(x) = ith cumulant of the random variable x.

The cumulants of a distribution as usea in equation (3.32) have many
useful invariance properties that the moments of a distribution do not
have. The cumulants can be derived from the characteristic function of a
distribution and can be written in terms of the moments. A discussion of
the cumulants and a derivation of their properties can be found in
reference [58). For this discussion, it is only necessary to know the

definition of the first four cumulants in terms of the moments:

El = ml
2
52 = m2 - ml (3.33)
3
53 = m3 - 3m2ml + 2m1
E.o=m, - 4m.m, - 3m. + l2n.m. - 6mY
g4 =My - dmgm; - 3m, M 2

where m, = E(xl).
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One very useful property of the cumulants is that the cumulant of the
sum of two independent random variables is equal to the sum of the
individual cumulants. In addition, the distribution of the sum can be
found from the new cumulants. So, to find the distribution of the net
load, .the cumulants of the load and the cumulants of the generation can
be computed separately, added together, and then operatea on to yield the
distribution of the net load.

However, this operation can only be performed in the two random
variables are independent. So, Caramanis assumes that property (3.32)
holds for all cumulants, even though it only holds necessarily for the
first two.

The first two cumulants of the net load can be written as:

N N*L
~g o ~ ol o ~
£,(V) = JZl ]ZJ LX; b5 E(DE(T]) + %) 85 ECH;)
and
NN+
7)) = X X [ 055 EWHEGS)
J=1 i=]
* Xy 85 E(?? )] (3.34)

The cumulants found above in (3.34) are conditional on time. As in
equation (3.26), the unconditional moments can pe found by multiplying by

the probability of each time increment and summing over time:

oee
-
_——
-<?
e
S’
1]

= £(Y )P [o]

ee
N
—
—~<1
=
~—
1

= 2:‘ EZ(Y:)PU[o] (3.35)
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where POLUJ = Probab1Tlity of set o¢.

If the moments of the random variables ¥ and ; are known and the coef-

ficients b and g are known, then the moments of Vn can be generated as
a function of the peak load and the installed capacity of the generators.

There are several ways to generate a probability distribution given
the moments of the distribution. Following Rau and Schenk [74],

Caramanis uses a truncated Gram-Charlier series to approximate the

distribution:
6 3 6 4 10 .2 6
PyLzJ = N(z) - —= N (z) t— N (z) + 5 G1 N“(z) (3.36)
where NJ(z) = Jth derivative of the standardized normal distribution
3/2
4 1/2, 2
62 = (54— 354 + 322) /52 -3 (3.38)

For ease of computation, it is not necessary to derive the
distribution itself. Rather, it is easier to find the transformation of
the distribution from the moments and to perform all the convolutions in
transform space. Since the use of transforms only eases the
computational burden and does not change the theory, a discussion of
transforms is omitted from here. See Caramanis |16 or Rau and Schenk

L74].

3.III Transmission and Distribution

Transmission and distribution have two effects important to this
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study. First, the demand on the central station generators is higher
than the sum of the customer demands due to losses in the transmission
lines. Second, the failures in the transmission system reduce the
reliability of the electricity delivered to consumers and reduce the net
load on the system.

The study of transmission and distribution (T+D) systems is a large
and complicated field in itself. An overview of current areas of study
in T+D reliability can be found in reference [32]. To model it properly
requires data on the topography of the system and specific information on
the characteristics of each line. Rather than attempt a less than
adequate model of the T+D system, a simple proxy will be used.

Equation (3.4) gives the net load as a function of the original
demand and the reductions in demand. The original demand includes line
losses, soO any reductions in losses caused by reductions in demand must

be accounted for. Equation (3.4) becomes:

Yo=Y -Zk aY, L (Y) (3.39)

where Lk(Y) = loss function for demand from customer k when the total
demand is Y.

Or, using equations (3.7) and (3.13):

Vo= ¥ % e, - )_,; Yol (Y,) (3.40)

The price-dependent demand was found as a fraction of the original
demand using equation (3.11). Depending on where the metering is done,

this fraction, € > May or may not account for the change in losses. If
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the metering is done at the customer's meter, the most likely place, then

e, does not include losses. Defining a new e to include losses yields:

e =¢ L (Y )/Lk(Y

K k LYo (3.41)

o)
Finally, for simplicity, a piecewise linear loss function is assumed
and the same loss function is assumed for all customers. Equation (3.40)

becomes:

Y, = LOY/L(Y,) Y, - L(Yn)Z; X yni (3.42)

These loss multipliers must be included when finding the load
correlations in equations (3.27) and (3.28).

The T+D system also affects the reliability of grid electricity. In
chapter 7, it will be seen that some customers may install their own
generation if the grid reliability is not high enough. So, the end
reliability to customers must be found. From historical data on the
frequency ana duration of outages for different types of customers, one
can estimate a failure rate for the transmission and distribution
system. In Chapter 4, the loss-of-load probability for the generation
system will be found. The net reliability to customer k is:

Poe= 1 = 95 = 9, (3.43)

Pri™ reliability of grid electricity to customer k

9= LOLP = Toss of load probability for the generation system

Ap = failure rate of the T+D system for customer k losses of
power

Equation (3.43) assumes that all are due either to the generation

system or to the transmission system, but never both at once.
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3.1V Summary

The changes in power demand for the current time period have been
found as a function of the current price of electricity, the price of
competing fuels, the customer capital stock, demographic variables, and
the weather. For future time periods, the changes in power demand can be
estimatea based on the projections of these variables.

From equation (3.9) estimates of the change in demand due to
time-of-day prices can be made. From equation (3.15) estimates of the
change in aemand due to customer owned generation can be made and from
equation (3.42) estimates of the change due to changes in T+D losses can

be made. Combining these in functional form yields:

st st t st st t=1,...T
AYak = f(ck ’ Xk sﬂk ) wa ) Lk) (3'44)
S = 1,...5
st _ st st
Yan = Yao - AYa (3.45)
st ; T
P LY. <x]=P *p, *P. [V < xJ (3.46)
ynt'an = AYac Ya Yao ao
AE st =Zh AySt t =1,...T (3.47)
a K S ak
s=1,...5
where
AYZE = net change in demand by customer k in region a in subperiod s,
time period t.
Y;; = net demand on the utility in region a in subperiod s, time

period t.
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net change in grid electricity demand in area a, time
period t.
vector of fuel prices for customer k in subperiod s, time

period t.

vector of installead capacities of generation owned by customer k
in time period t.

vector of demographic and economic variables for
for customer k in subperiod s, time period t.

T+D loss function for customer k

= change in demand due to price effects in region a in

subperiod s time period t.
change in demand due to customer owned generation

in area a in subperiod s, time period t

= original electrical demand in region a, subperiod s, time

period t

number of hours in subperiod s
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4. Utility Operation'

The production costing model uses the net load duration curve
(Chapter 3), the capital stock of the utility (Chapter 5), and
exogenously specified prices for fuel to compute the operating cost and
generator reliability of a utility system. The operating cost is used in
setting rates (Chapter 7) and the reliability is used in the customer
expansion model (Chapter 6). The generating cost model is also used with
the long-range planning model (Chapter 5) to find the cost of each
potential system chosen during the optimization process.

4.1 Introduction

Electric power systems are operated to meet the fluctuating power
demand at minimum cost. Electric utilities monitor the power flow
throughout the system to decide what the power output from each generator
should be. These decisions are based on economic criteria, but are
constrained by electric stability requirements imposed by the transmission
network. A complete model of the cost of operating a power system
requires detailed models of, and data on, each generator and each

transmission line. Such models are too complex to be used for planning
studies, so many simplifying assumptions must be made. For example, most
production costing models, including the one presented here, do not
consider transmission or stability constraints.

This chapter discusses a standard production costing methodology that

1This chapter has been extracted from Finger [37]. Reference [37]
includes addditional material on multiple block units, frequency and
duration, limited energy units, storage units, and time-dependent units.
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models the average generator output. The framework of the model is first
presented as a deterministic model in which the customer demand is fixed
and plants do not fail. Then, the model is expanded to a probabilistic
model in which the customer demand and plant failures are random

variables.

4.11 Deterministic Production Costing

Electric power systems are operated with the goal of meeting the
electric demand at minimum cost. For a fixed set of generators, the
dispatch strategy that results in the minimum operating cost is to use
the generators in order of increasing marginal cost. In practice, this
strategy may be modified to account for operating constraints such as
spinning reserve requirements, high startup or shutdown costs and
transmission constraints. The final ranking of generators is called the
merit order or the economic loading order.

The power demand on an electric utility varies with the season and
the time of day. Figure 4.1a shows a typical daily variation in power
demand. Although the overall pattern is predictable, there is a large
random component that makes hourly predictions difficult. For this
reason, most planning studies use load duration curves that give just the
percent of time that each demand level occurs. Figure 4.1 shows How a
time-dependent curve can be converted into a load duration curve.
Although detail is lost in the conversion, the load duration curve is
easier to work with for time periods longer than a day and for future

time periods for which there is not enough information to create hourly
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4.1a. Time-dependent load curve for a typical day. 4.1b. Load duration curve of la.

Figure 4.1. Conversion of time dependent curve to load duration curve.
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curves.

The operation of the power system can be modeled by plotting the
capacity of the generators, in merit order, along the vertical axis of
the customer demand curve as shown in Figure 4.2a. The demand level at
which a unit starts to generate is called its loading point. The energy
that a unit generates is the area under the customer demand curve between
its loading point and the loading point of the next unit. Converting the
time-dependent curve into a load duration curve, as shown in Figure 4.2b,
leaves the loading point and the energy the same as in 4.2a.

Conventional central station power plants are plants that can
generate power at full capacity at any time, except when they are on
maintenance or forced outage. These plants are much easier to model than
hydro, storage, or solar plants that have limited energy and
time-dependent power output. Nonconventional power generation will be
discussed in later section.

In the deterministic model, the conventional power plant with the
lowest marginal cost is loaded under the customer demand curve at a
derated capacity that reflects the plant's availability. For example, a
1000 MW plant with an 80 percent availability factor would be brought up
to 800 MW. This plant generates as much energy as it can to meet the
customer demand. Since there is still unmet demand, the unit with the
next lowest marginal cost is brought on line. This process continues
until all the area under the load duration curve has been filled in. The
total cost of the system operation can be computed by multiplying each

plant's total megawatt hours by the cost per megawatt-hour for that plant
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and then summing the costs over all plants.

4.T11 Probabilistic_Production Costing

Two major factors affecting system operating costs are uncertainties
in demand and random failures of plants. There are several models
available that take these factors into account. The simplest is a
deterministic model with heuristic calibration coefficients added to
account for plant failures. Slightly more complicated is the method
developed by Baleriaux and Jamoulle [6] which combines the probability
distributions of customer demand and of plant failures to find the
expected value of the energy produced by each plant and the probability
that the customer demand will not be met. There is also a frequency and
duration method developed by Ringlee and Wood [75] that models both the
load and plant failures as Markov chains. Recently,Ayoub and Patton [5]
have developed a method that includes frequency and duration in the
Jamoulle-Baleriaux model and that requires fewer assumptions than the
Ringlee-Wood model. The combined method of Ayoub and Patton and several
extensions that allow the model to treat plants with limited energy and
time-dependent power output are described in reference [37]. This
chapter describes only this basic model necessary for long range planning
and price setting.

The main difference between the deterministic model and the
probabilistic model is that the electrical demand and electrical
generation are treated as random variables in the probabilistic model.

In the deterministic model, a plant's capacity is derated to reflect
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random outages of the plant during its operating period. This assumes
that the plant is always available at its derated capacity, or
equivalently, that it has a forced outage rate of zero at its derated
capacity. In fact, the plant is not always available. When a plant
fails, more expensive generation must be brought on line to replace it.
Since the deterministic model assumes that units never fail, the energy
supplied by more expensive plants is underestimated. The deterministic
model also assumes that the electrical demand is fixed. In the
probabi]istfc model, uncertainty in the demand can be included in its
probability distribution.

In the probabilistic model, the electrical demand and power plant
failures are modeled as random variables with memory. That is, a power
plant has a probability of failure and an expected time that it remains
in a failure state. The electrical demand has a probability of being at

a given level and an expected time that it remains at that level.

4.111.A. Electrical Demand Representation

The probability distribution for the net electrical demand, Yc’ was
found in Chapter 3. Throughout this chapter, the following notation will

be used:

fy(x)dx = Probability [x < Y, < x + dx]

o
-
—
ped
et
|

= Probability (Yn < x] = fc (y) dy (4.1)

O\x

-
—<
—
x
~—
1]

1 - 6y(x) = Pr[Y, >x] = xf’ foly) dy.



91

where fY is the probability density function, GY is the cumulative
probability function, and FY will be referred to as the reverse
cumulative probability function.

The superscripts for subperiod and time period have been suppressed

throughout this chapter.

4 .111.B Conventional Power Plants

In the probabilistic model, the equivalent demand on a unit is
defined to be the sum of the demand due to customers plus the demand due
to failures of plants lower in the merit order. The equivalent demand YE

is the sum of two random variables:
Y. =Y + YF (4.2)

where X is the net customer demand as derived in Chapters 2 and 3. YF
is the demand due to forced outages of units already dispatched. Using
the formulas for the convolution of two independent random variables, the

cumulative distribution of the equivalent demand becomes:

d
G (d) = AL (Yp) Gy (d - Yg) dYg

= Probability [load + outages < d]J. (4.3)
The distribution of the equivalent demand is central to the
probabilistic model. As will be shown below, the expected energy
generated by each unit can be computed from it, as can the loss of load
probability .
For the case in which the forced outage rate of each plant is a

discrete random variable, the integral over the probability density
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function fF(YF), can be replaced by the sum over the probability mass
function. For a plant with forced outage rate, g, and capacity, X, this

probability mass function is given by:

|
o

( P if Ye =
PF (YF) = (4.4)
q if Y =

[
>

where p + ¢ = 1. That is, there is a probability, g, that the plant will
not perform and the demand on plants higher in loading order due to its
failure will be the capacity of the plant. There is a probaility, p,
that the plant will perform and the demand due to forced outage will be
zero.

Replacing the integral with the sum, equation (4.3) becomes:

6 (d) = pGy(d) + aGy(d - X)
or since p+ q=1 and GE =1- FE :
FE(d) = pFY(d) + qu(d - X). (4.5)

With these basic questions, the probabilistic analysis proceeds in
much the same way as the deterministic analysis. Units are loaded

starting at the left of the equivalent load duration curve. The demand

on the first base-loaded unit to be brought up is the entire customer

demand. There are no outages from previous units, so
YEl = Yn (4.6)

where Yy - equivalent demand on the first unit

Y

n total net customer demand.

Because the two random variables, YEl and Yn, are equivalent, their
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distribution function is the same:

F d). (4.7)

In the deterministic model, a unit is loaded onto the system by
filling in the area under the load duration curve. The area gives the
energy generated. To load a unit in the probabilistic model, the area is
again filled in. The vertical axis, instead of being the percent of time
that a unit operates at a given capacity, is now the probability that a
unit operates at that capacity at any given time. Taking the integral
2

over the capacity gives the expectation of the operating capacity

for the unit at any given time. The expected capacity for the first unit

is:
Xy
E(Y,)) = S Fy(x)dx (4.8)
0
where X1 = capacity of the first unit
Y1 = random variable describing the running capacity of the first

unit.
E(Yl) is the expected capacity required to meet the equivalent load,
without considering the availability of the unit. The total expected

energy from the first unit, taking outages into account, is:

MW, = P, h, E(Yl) (4.9)

where Py = availability of unit one

2The operating capacity is a continuous variable which takes on
values between zero and the unit's capacity in response to the customer
demand. This does not violate the assumption that plant outages occur in
discrete blocks.
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hS = length of the time period in hours.
The capacity factor, a, the ratio of operating capacity to nameplate
capacity, is given by:

@ 4= Py E(Y1)/X1 (4.10)

and the cost of running the system with unit 1 loaded is:

E(X,) = Hep ¢ M, (4.11)

where Hfl = full load heat rate for unit 1 burning fuel f (MBtu/MWH)
Ce = cost of fuel f ($/MBtu)
The equivalent demand on the second unit to be brought up is the

customer demand plus the demand due to the outages of the first unit:

YE2 = Yn + YFl (4.12)

Because of the way the equivalent load is defined, the loading point of
the second unit on the equivalent load duration curve is the same whether
or not the first unit fails. If the first unit fails, it creates a
demand, Xl’ so the second unit is loaded when the equivalent demand is
Xl. If the first unit does not fail, there is no demand due to outage.
The first unit supplies the demand until the demand exceeds Xl’ at which
point the second unit is loaded. The loading point, U, for the rth unit

is just the sum of the capacities of the previously loaded units:

r-1
U = X
i=1

and U1 =0 (4.13)

s
1]

Equation (4.5) gives the equivalent load curve for Ypq:
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Fep (d) = py Fpy(d) + qiF g (d - X)) (4.14)

Having found the equivalent load curve for the second unit, the
expected capacity, capacity factor, and the energy generated

can be obtained:

U
3
2
M, = p, hg E(Yp)

2
EC(Uz)= 3 Hey Cp MW,
i=1

For the third unit, the equivalent load is given by:

YE3 = Yn + YFl + YF2 (4.16)

Using the definition of YE2 in equation (4.12):
Yes=Ye2 " Yep -
Then,

Yy
E(Y;) = S Fpg (x)dx (4.17)
3

]
©
w
>
m
—_
-
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In general,

r-1
er = Yot &0 TR T e T YR
FEr = pr-l FEr-—l (d) + qr—l FEr—l (d - xr—l)
Ur+1
E(Y,) = UJ‘ Feo (x) dx (4.18)
r
o, = b, E(Y ) X

where r = loading order of the plant.

4.1IT.C Reliability Measures

After the last unit has been loaded, the final curve is the
equivalent load curve for the entire system. Since the loss of load
probability is defined to'be the percent of time that the customer demand
cannot be met, its value can be read directly from the final curve. The

energy demand that cannot be supplied is given by:

-]

EF(U ..) =h FEI(X) dx (4.19)

n+l s U

I+1

where I = number of plants.

The loss-of-load probability is given by:
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(4.20)

LOLP = F_ (U

El I+1)
where UI+1 is the total installed capacity of the system. Figure 4.3
shows the final system configuration.

An other measure of the reliability of a power system is its loss of
energy probability, LOEP. The LOEP is not a probability, but an expected

value for the fraction of the original demand that cannot be met. It is

defined as:

1+1 (x)dx

d/D FY(x)dx

LOEP = (4.21)

where U1+1 = total installed capacity

Q

peak customer demand.

4.1V Sumnarx

From basic information about the generating units and the load, it is
possible to produce a great deal of information about the operation of
each unit and about the operation of the system. The information about
each unit is used within the long-range planning model (Chapter 5) and is
not presented here.

Equations (4.17) and (4.20) give the functions for the system
operating cost and for the unserved energy demand as a function of the

operating capacities:

(4.22)

t,t t ,t t t
EFa (Y ) = f (Ea, pa, p, Xa, c a)
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t,  t t .t t .
Eca (Y ) = f (Ea’ Pas P, Xa )
(4.22)
t,t t .t t ot
EFa (Y)=f(Ea9 Pa’ P, Xaaca)
t t .t t
Y =f (Ea9 Paa P, Xa )
where EF; = expected unserved energy as a function of operating
capacity in region a at time t
ECE = expected operating cost as a function of operating
capacity in region a at time t
Yt = vector of operating capacities for units operating in
time t
EZ = total net electrical demand in region a at time t
P; = probability distribution for the net load in region a at
time t
P = vector of availabilities for units installed in region a
Xt = vector of unit capacities in region a at time t.
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5. Utility Expansion

The utility expansion model uses the energy forecasts (Chapter 2),
the net load curves (Chapter 3), exogenously specified capital and fuel
costs and exogenously specified available technologies to find the
optimal expansion path. The utility operation model (Chapter 4) is used
within the long-range planning model, and decisions from previous
expansion model runs (Chapter 5) are used to specify the existing capital
stock of the utility. The output of the expansion model is the optimal
installment plan over the specified time horizon. Based on the optimal
plan, decisions are made to begin construction of some new units. Only
those units for which construction must begin in the current time period
in order to have them when planned, are considered to be firm units.
These units are then included as committed units in the next time period
when the expansion model is run. And, when their installment date comes,
they are used in the utility operation model to meet demand (Chapter 4)
and are placed in the rate base by the rate-setting model (Chapter 7). .
(For some types of rates, these units may appear in the rate base before

they are installed.)

5.1. Introduction

Capacity expansion models are a central element of the planning
process of electric utilities. Most are based on optimization models
that search for the capacity plan with the minimum capital and operating
cost that reliably meets the expected customer demand over a time horizon

of twenty to thirty years. Objectives other than minimizing cost can be
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considered. Some planning models have financial objectives such as
maximizing the cash flow while others have social objectives such as
maximizing total welfare. While the latter objective is in keeping with
the tenor of this report, in order to maximize social welfare one must
know the social value of energy, power, short run reliability and Tong
run sufficiency and one must also have a consistent and defendable method
to measure consumers' surplus. Rather than descending into this morass,
a simple engineering cost minimization objective will be used.

Anderson [2] has published a survey paper on capacity expansion
models. All of these models require input data on the cost and
performance of potential generating plants, the expected customer demand
for each year in the planning period, and a reliability criterion for
meeting the demand. Within these models, the system operating costs and
reliability are usually calculated using linear approximations. None of
the available models include decentralized or weather-dependent
generation as potential capacity additions. Nor do they allow anyone
except the utility to install new capacity.

In each time step, the utility must make a decision on whether or
not to begin constructioq of a new unit or delay a unit in construction
based on new information on customer demand, fuel prices, and capital
costs. This problem is solved by performing the optimization, using the
new information, starting with the current year and comparing the new
plan to the plan produced in the preceding time step and adjustfng the
new unit schedule. In adjusting the new unit schedule, the utility would

take into account whether the cost of the adjustment was greater than any
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savings due to the adjustment before making any changes. For simplicity,
it will be assumed that the new schedule will always be adopted.

However, with additional data on the cost of delays and speedups, it
would be possible to incorporate these tradeoffs. The next plants to be
built are found using a modification of a utility planning model
developed by Bloom 11| that uses Benders' decomposition. The use of
decomposition allows the utility operation constraint to be nonlinear,
allows a realistic reliability constraint and allows the inclusion of
customer-owned and time-dependent generators.

For simplicity, it will be assumed that new units can be built in
any size. In fact, one can not build one half of a 500 MW unit. One
must build a 250 MW which may have characteristics quite different from a
500 MW unit due to technologies and economies of scale. It is possible
to use Benders' decomposition to solve an integer program allowing only
certain plant sizes to be built |22, 23, 70); however, the MIT EGEAS
program [ 65 which will be used here has not yet been expanded to allow
only integer solutions. In addition, it will be assumed that the
planning is done for aggregated time periods, rather than explicity
including constraints, for all subperiods. This is a reasonable
assumption since annual data projected for more than ten years is at most
a good guess. Monthly data would require omniscience. So, throughout
this chapter, the superscript for the subperiod s will be dropped,

although constraints for subperiods in the near future could be added.
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5.1I. General Formulation

A general formulation of the apacity expansion problem is given by:

J T T It -
XmQ Z Z KJVXJV+Z Z Hescs Y (5.1)

Jv its  j=1 v=t t=1 i=N+1
subject to
A . t=t, ... T
v >E (5.2)
i=N+1
PR (YY) <o t=t, o T (5.3)
t it
0<¥y < EJ: ; Siv Xivi tet, LT (5.4)
jv-z 0 (5.5)
where T = starting time period
t = time period
v = plant vintage
J = plant type
i = plant's place in the economic operating order
6;5 = 0 - 1 variable that gives a plant's place in the
operating order as a function of its age and type
KJv = per unit capital cost for plant type j installed in
year v (§/MW)
CE = cost of fuel f in time period t ($/MBtu)
H = full load heat rate for unit i burning fuel f (MBtu/MWH)
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b~ minimum unserved energy requirement for time t (MWHS)

va = installed capacity for lant type j in year v (decision
variable) (MW)

Y].t = operating capacity for plant i in time t,
(decision variable) (MW)

Et = energy function for time period t

EFt = unserved energy function for time perioa t

It = nuﬁber of operating plants in the system at time t.

The objective function (5.1) is the sum of the capital costs for
plants built during the planning horizon plus the cost of operating all
the existing plants to meet the demand. Constraini (5.2) requires that
the demand be met in each subperiod of the planning horizon. Constraint
(5,3) requires that the unserved energy in each time period be less than
the specified reliability level. Constraints (5.4) and (5.5) assure that
plants are never operated above their capacity and that the capacities
are never negative.

All of Chapter 4 was devoted to solving constraints (5.2) and
(5.3). The Yi's, the operating capacities, and EF, the unserved energy,
are outputs of the probabilistic simulation. Chapters 2 and 3 studied
Et, the net energy demand on the central station generators. Using the

results of these chapters, constraint (5.2) can be written as:

It

(5.6)
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t _ t ,t Lt t
Cn - f(CX Py Yl, YN s ey YI, M) (5-7)
where
cg = price charged for grid electricity at time t
cxt = capital cost (historical or replacement) of installed
capacity at time t (8/MW)
Y; = electricity purchases in time t (MW) subperiod s
Yf cen Y: = operating capacity of generators owned by

customers in time t (MW)
M = fixed costs due to e.g., metering and billing,
transmission and distribution (8).

The price function of equation (5.7) will be discussed in Chapter 6.

5.1I1. Benders' Decomposition

Bloom in his report [11] has solved the optimization of (5.1)-(5.5)
using Benders' decomposition. A general discussion of Benders'
decompostion algorithm can be found in Lasdon [59].

Benders' decomposition is used when a hard-to-solve optimization
problem can be broken down into two, or more, not-so-hard-to-solve
otpimization problems with distinct sets of decision variables. The
master problem is used to solve for the primary decision variables which
have the property that once these primary variables are fixed then the
optimal secondary decision variables of the subproblems can be found. In

addition, from the optimal solution to the subproblem, shadow prices on
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the fixed primary variables can be calculated. These shadow prices can
then be used to generate new linear constraints, Benders' cuts, to the
master problem. The Benders' cuts serve to successively restrict the
feasible region of the master problem to the feasible region of the
original problem.

In this case, the master problem chooses the amount of each type of
capacity to build. Then, once the unit capacities are known, the
production costing algorithm described in Chapter 4 can be used to find
the cheapest way to meet demand with that set of units. So, if the
master problem chose all nuclear plants in the first iteration, the
shadow prices fram the subperiod would indicate that there were cheaper
and more reliable ways to meet load.

A detailed description of the generation of Benders' cuts and the
calculation of the dual multipliers is given in reference |11] and an
analysis of convergence properties is given in reference [44].

Using Benders' decomposition for (5.1)-(5.5) the master problem is:

min z
X
J ! t ,,t t t
subject to z 3.253 :E: Ksy X3y * :E: [ECT (V) + 6 (X = X))
j:l V=T t:T
m=1, ... M (5.8)
t t t t

EF(Y ) +op 67 (X, - X) <€ te T

m=1, ... M (5.9)
where m = iteration number
X = vector of installed capacicies (decision variable)
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X, = vector of installed capacities chosen in iteration m

= operating capacities for central units in time period t
in iteration m

7 = shadow price associated with the energy constraint in

time period t, subperiod s, in iteration m

e " = shadow price associated with the reliability constraint
for time period t, subperiod s, in iteration m

= set of time periods in iteration m in which the
reliability constraint is not met

At each iteration m, an upper bound and lower bound for z, the value
of the objective function, can be generated. The algorithm halts when

the upper and lower bounds are within some prespecified tolerance.

5.1V. Relaxed Formulation

The purpose of the model developed by Bloom was to find the optimal
expansion path for a utility over a time horizon of twenty to thirty
years. Since this report focuses on the plants to be built in the
current time period, less detail is needed for time periods further in
the future. For this reason, the reliability constraint is retained for
only the next T, years, where T1 is some number less than the number of
years remaining in the study. In addition, for time periods greater than
Tl, the nonlinear operating constraint is replaced by a linear
approximation, thus reducing the computational effort to find the optimal
solution for each time step.

Thus, for time periods further in the future, constraints (5.2) and
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(5.3) are replaced by:

6t o X > £ T cteT (5.10)
t t
X>Q (1 +RM Tl <t«<T (5.11)
where Tl = last time period modeled with nonlinear constraints
T = last time period
RM = reserve margin requirement
ajv = design capacity factor for plant type j of vintage v.

Constraint (5.10) requires that the average expected energy production
meet the average demand. Constraint (5.11) requires that the installed
capacity exceeds the peak power demand by a specified margin.

Retaining constraints (5.2) and (5.3) for time periods less than Tl’
the master problem becomes:

J

t t
min z + Z Z Ksy X5y Z 2 Heco & a X (5.12)
Jj=1 v_T2 _T2 i=N+1
.t. 2> 30 SRk, k¢ 2 et (vf) + ot s (x - X))
j:l v=T t=T

m=1, ... M (5.13)

6t o X > E! T cteT (5.14)

t X

§ (1 + RM) Tl <t<T (5.15)
t,,t t t

EFE(YS) + o 6 (X - X) <e tel (5.16)
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Solving the optimization of (5.12)-(5.16) yields a solution, X*, Y*,
that gives the installed capacity and operating capacity for all plants
over the planning horizon. However, only the capacity installea in the
first year of the optimization is needed for the rest of the study. This
new capacity is included in tne plant operation model to determine the

energy costs and its capital is placed in the rate base.

5.V Summary

Based on the projections of demand, capital costs, fuel costs, and
available technologies, the expansion planuing model finds the optimal
plan over a long time frame. Because only the decisions in the near
future are made firm, the near time periods are modeled with more precise
nonlinear constraints while those far in the future are modeled with less
precise, but computationally simple, linear constraints.

From equations (5.12) through (5.16) the optimal expansion plan for

a given region can be found based on current estimates of costs and

demand:
t* "t t t At St t-1
Xa = F(Eg Py eqn € Ku X770
t=1, ...T (5.17)

t* . y .
where X~ = vector of optimal capacities for region a

A

Et = estimate of total electricity demand in region a at time t

distribution ot the electrical demand in region a at time t

it

reliability requirement for region a at time t

vector of estimtes of fuel cost in region a at time t
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A
KZ = vector of estimates of capacity costs for region a at

time t

t-1

a = vector of installed capacity in region a.
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6. Customer Expansion Planning

The customer in making decisions about whether or not to install a
generator consiaers the current price of grid electricity (Chapter 7),
the reliability of gria electricity (Chapter 4), the current and
estimated price of alternative fuels, and the current and estimated costs
for alternative generators. The result of the customer expansion model
is a series of decisions about what to build in each time period.
Presumably, most customers would not install more than one generator
during the planning period and most would rely on the grid as their only
source of electricity. Just as for the utility, decision by customers
cannot be implemented instantly so lead times must be considered,
although Tlead times are more on the order of one year than ten years for

small generators.

6.1 Introduction

For an electricity consumer, the decision of whether or not to build
an electrical generation system, what kind to build and when to build it

can be modeled in much the same way as it is modeled for an electric
utility as discussed in Chapter 5. However, consumers do not run
optimization models every year to decide what to do next. At most, they
may make a rough approximation of the breakeven value or the payback
period for some particular system. Usually, only one or two systems are

feasible for a site and the final decision usually faclors in many
non-economic considerations that would be difficult to include in an

optimization model. The following sections will discuss a breakeven
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model, optimization model, and a marketing model and the fusion of these

that will be used in this report.

6.I1 Breakeven Cost

The breakeven cost is the amount that one would be willing to pay
for a particular system so that one was indifferent between that system
and the next best alternative. If you were offered a system that would
supply all your electricity needs for the next twenty years at a cost
exactly equal to the present value of your expected electricity bill over
the next twenty years, you should be indifferent between the two
systems. This tradeoff can be made more precise using decision analysis
which takes uncertainties into account. For example, if you are risk
averse, and you suspect that the alternative system may last only ten
years although it could last as many as thirty, but you are positive that
electricity rates will rise no faster than inflation, you would require a
lower breakeven cost than someone who was risk indifferent or who had
different expectations about the relative risks of the alternatives. For
this report, money will be used as a proxy for consumer satisfaction
while acknowledging the limitations of this assumption.

The usual way to find the breakeven cost for a time dependent
generator is to run a simulation model like the one described in Chapter
2. If one assumes that the generator operation for the simulation year
is typical, then one can compute the total savings due to the time-
dependent generator over its lifetime. A complete derivation of the

breakeven cost of a photovoltaic system is given by Carpenter and Taylor
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A generalizea version of their basic formula is, suppressing the

subscript k for the customer and assuming grid electricity is always the

best alternative:

where

BEC

BEC.
j

p

2t

T s
3 (et -y e sty 1 — (6.1)
EE% gé% non o ST (1 +p)

total breakeven cost for system i instalied in year
including capital, variable, and fixed cost (§)

original grid electricity demand in subperiod s (MW)
electrical output of unit i in subperiod s (MW)

number of hours in subperiod s

price of grid electricity in subperiod s, time period
t(B/MWH)

cost of operating unit i in subperiod s, time period

t (B/MWH)

cumulative degradation factor for unit i in time period t

discount factor.

The total breakeven cost can be broken down to yield the breakeven cost

per installed megawatt, or as it is called, the breakeven capital cost:

where

BEccf

~

BECCE

t
FIXi

t t
BECi - FIX1

-TX
;

t

- VC (6.2)

breakeven capital cost for system i installed in year
(3/MW)
initial fixed cost for system i installed in year t,

e.g., power conditioning, lightening protection (§)
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VCE = initial variable cost for system i installed in year t,
e.g., insurance, taxes ($/MW)
X, = installed capacity of system i (MW).

i
For each customer, the breakeven cost for each system could be found
and campared with the current selling price of that system. If any
system's current selling price was lower than its breakeven cost, it
would be purchased. If more than one system met this criterion then the
system with the largest net benefit would be chosen, assuming there was
no synergy between systems. (If synergy was suspected to be an important

factor, then a hybrid, for example a wind-photovoltaic system, could be

considered as a separate technology.)

6.I1.A Statistical Method

The hourly simulation implieu in equation (6.1) can be simplified
using the statistical techniques that were used in Chapter 3. Looking at
the inner summand of equation (6.1), we have:

S.t = (YS CSt - YS. cs.t

1 n n 1 1 (6.3)

hg

net benefit from system i in subperiod s, time

=
>
[12]
]
m
o
]

period t (§).
As in Chapter 3, the original demand and the output of generatur i are
random variables. Rewriting the generator output as the product of its
capacity, outage rate, and time-dependence, yields:

yS

-~ g
jo= X ¥y (6.4)
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where ¢, Xi’ wi, and n; are definea in equation (3.2). Assuming that

there is only one generator at this site, substituting equations (3.18)

and (3.20) into equation (6.3) yields:

st st ~ g o o o o
Bi" = hg Xy Vplbpy vy T b vy B
st ~ o g
Fhe o X bilbyy vty (6.5)

Since the diagonal elements of tne b matrix are equal to one, equation

(6.5) simptlifies to:

st - st o o st
By = hSL;Z: Cj XJ wj(yj + Bj ) + c, an)n bni yij. (6.6)

Assuming that the subperiods are partitioned such that all s in the set
with ¢ index have the same cost structure, then equation (6.1) can be

written as:

A t
1

T
ot
BEC, =y (Y 8)) ———, (6.7)
] t=T o=l 1 (l * p)

Whereas before the inner sum was over all the hours of a time period, now
the number of elements in the sum has been reduced to the number of sets
into which the hours are partitioned.

Equation (6.7) simplifies the computation of the breakeven cost
greatly. Once the orthogonal vectors, y, and the regression
coetficients, b, have been computed for a particular customer, then the
size of the generalor, the peak load, the outage rate and the price

structure can be varied and a new breakdown cost calculated without
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requiring large amounts of additional work.
The bredkeven model still presents problems because it evaluates
only a particular proposed system rather than allowing an easy choice

among systems. The following section discusses an alternative.

6.11I.B Optimization Method

As mentioned in the introduction to this chapter, optimization
models do not necessarily give a good representation of the decision
process of a homeowner deciding whether or not to install an electrical
generator. In addition, for computational simplicity, most optimizations
are run with linear constraints. Because it is difficult to represent
the operation of time-dependent generators using linear equations,
optimization models are almost never used to model them. In this
section, an optimization model will be presented which overcomes these
objections.

In general, the optimization problem for an electricity customer can

be written as:

J T T S n st st
min D200 Ky X5y * 20D Do Y (6.8)
j:l V=T t=T S=1 1=l
subject to
n s=1, ... S
D vty St (6.9)
4 t=1, . T
i s eee
t
EF(Y™) <€ t=171, ... T (6.10)
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oivitsiZZs” X5y i=1, ...n (6.11)
J v v
s =1, . S
t=T, T
X. >0 i=1, «..d (6.12)

Jv =

where the subscript k, for the customer, has been suppressed. All of the
quantities are thc same as those defined for the utility in Chapter 5.1I,
except that one of the choices available to customers is to meet their
demand with grid electricity. This option requires no capital
investment, assuming that the customer is already servea by the utility.
If customers without electrical service, for example those in remote
locations are considerea, then grid electricity will also have a capital
investment component. In any case, the current source of electricity can
be treated just as existing generators were treated in the utility
optimization.

In Chapter 3.II, it was shown that time-dependent changes in the
load on a utility could be moageled using statistical tecnniques. 1In
Chapter 4, it was shown that the resulting curve could be used, along
with generating unit characteristics, to find the total energy generated
by each unit. By analogy, the time-aependent generation of a customer
can be modeled using statistical techniques to yield the customer's net
load auration curve. The single central utility unit, as it appears to
the custamer, can be operated against the load duration curve giving the
total grid energy supplied and the reliability of electricity supplied.

This looks exactly like the operating submodel of the utility
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optimization problem.

If the probability distribution of the customer's total demand for
electricity is known and the generators available to meet the demand are
given (chosen by the master problem), then the same model used for
utility operation can be used for the customer. The net demand on the
electricity utility, Yist, is given by:

n-1

st st st
Yo=Y - E Y, (6.14)
i=1

where Ygt is the original demand and Y?t is the output from customers'
generators. Assume for simplicity that the customer has only one

generator, call it i, and as before its output is given by:

st o §

where X] is the capacity, wi the mechanical failures, and n; the time-
dependent fluctuations.

From the methods discussed in Chaptér 3, the probability distribution
of Yn can be found using statistical techniques. That is, assuming that
the distribution for the total demand, at a given electricity price
structure, is known and the correlation of time-dependent generation with
loaa 1s known, then equation (3.40) can be used to find the distribution
of the net demand on the utility. The electricity fram the grid is
supplied to the customer with a reliability that is the product of the
generation system reliability and the transmission and distribution

system reliability. The maximum capacity that can be uelivered is the
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fuse rating un the house. Therefore, the grid electricity io0oks like a

generating unit with the following properties:

pt X = X
PLY St o x) - | P nk (6.16)
nk t X =0
l Ink -
t t
where Prk + A = 1
qﬁk = probability that grid electrici., cannot bpe
supplied to customer k (power outage)
Xnk = Maximum power that customer k can draw from the
grid (MW).
The probabiiity of power outage is given by:
ot =1 - (1-toehy( ) (6.17)
nk = N - 91k :
where Ay = T + D outage rate for customer k.

The loss-of-load probability (LOLP) is found from the current run of the
power plant operation model. The T + D outage rate is assumed to be
constant and is taken from historical data for different types of
custamers (e.g. urban versus rural or residential versus industrial). As
discussed in Chapter 3, it would be possible to replace the assumption
that the T + D system remains constant by usiny a model similar to that
used for generator reliability.

Then, following the logic of Chapter 5, the reverse cumulative
distribution of the net load 1s:

t t ot t ot
Fr (x) = P Fio (x) * a0 Fi(x= %) (6.18)

distribution of the equivalent load after the central

=
=
(1]
=5
[49)
-n
=~
—
x
o
i
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utility "unit® has been loaded.
Fk(x) = distribution of the equivalent loaa after the customer
k's generator has been loaded.

The operating capacity of the utility is

X

st nk _ st'
Yoo = Oj' Fo (X)dx, (6.19)

and the total energy supplied by the utility to customer is:

st st st
Mwnk = pnkthnk . (6.20)

The cost function for electricity for customer k is:

st ,st _ st + st st st (6.21)

st
EC(Y ") =h(py™ Yo 5 * P Yok Snk!

The overall reliability of electricity supply (central plus decentral

generators) for customer k is:

toep, b - ft

o= R (K) (6.22)

The unserved energy iS:

00

eF(Y.") = [ Ff (x)dx. ' (6.23)
xnk

Since the form of the function EC in the objective tunction (6.8) is
known, and the form of the function EF in constraint (6.10) is known, the
optimization (6.8)-(6.12) can be formulated using Benders' decomposition

just as it was for the central utility. The optimization becomes:
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min Z
X
J T T S ot
s.t zzzz K xJ.V+Z E LEC(Y.})
J:l V=T t=1 s=1
L st st -
i=1
EF(YmSt) + emSt GSt(Xm - X) g_ekt s,t el

m=1, ... M (6.25)
plus constraints (6.11) and (6.12). The only uifference between this
formulation and that for utilities is that the shadow price on the
capacity for the time dependenf unit can not be computed with the formula
given in reference |11j. Bloom has expanaed this formula so that the
shadow price can be calculated, but the methodology has not yet been
implemented.

It should be pointed out, that with Bloom's revisions,
hyaro-electric power plants, storage plants, and time-uependent
generators could be included in the utility optimization. For simplicity
of explanation, these types of units nave been omitted from the
discussion.

This discussion of the use of Benders' decomposition has been
included even though Bloom has not yet completed his work in order to
emphasize the symmetry of the utility and customer planning problems.

The breakeven methodoiogy will be used n the sample problem given in
Chapter 8. When the time-dependent methodology is complete, it will be

possible to use sensitivity analysis to find the breakeven cost for each
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alternative technology. Thus, the optimization will be able to answer
both questions: given the current price, how much should I buy and how

much 1s that system worth to me

6.1I1 Market Penetration

Even though a product may appear to be economically attractive, it
does not necesarily follow that everyone will go out and buy one. There
are many reasons that consumers may not buy something that economists

think they should. The reasons range from lack of information to

incompatible color schemes. Lilien and Wulfe [60] at MIT have studied
market acceptance of photovoltaics. Only a small portion of their work
will be used here and reference should be made to the original work for
more detail. Basically, before someone buys something, the product must
pass a number of screening tests. Lilien and Wulfe have developed
screening curves from survey resits that give the fraction of the market
that finds a product acceptable at a given value of one of its
attributes. The screening curve for breakeven cost for photovoltaics is

given in Figure 6.1.

6.1V Summary

The customer decision process has been shown to be similar to the
utility decision process. It is simpler in that each customer makes far
fewer active decisions than the utility, and it is more complex in that
each customer considers many more criteria than simple cost minimization.

From either the breakeven methodology or the optimization
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methodology, the breakeven capital cost for each system can be computed:

A A
Becct = £(C5, Kb, wh) t=t,...,T (6.26)
where ct - vector of current and projected fuel prices ($/MBtu)
A
Kt - vector of capital costs in time t (B/MW)
wt = vector of meteorological variables

From the screening curves, the number of customers who would buy system i
at time t at its projected price can be found:

Xt - f(seect, KE) (6.27)
where Qt = estimated capital cost of the system i at time t (§/MW).
Then, the decisions that must be made now in order to have the capacity

in time t are made firm:

(6.28)

where T current time period

lead time for generator type i.

Hy
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7. Price Setting

The rate-setting component of the model uses the operating cost from
Chapter 4 and the capital cost from Chapter 5 to compute the rate
Structure for electricity consumers for the next time period. Because
rate-setting procedures are not standard, several methodologies are
presented. Doing so allows one to answer questions about the effect of
different rate structures on the overall efficiency of the system.

7.1. Introduction

Rate setting procedures vary from state to state depending on the
practices of the local regulatory agency. These agencies are usually
mandated by the state to oversee the monopoly granted to the utilities.
Until recently, any control that the agencies did exert was through the
rate setting hearings. There used to be little controversy in rate
setting since utilities were able to exploit technological advances in
generation and economies of scale so that the real price of electricity
fell for many years. (See Figure 1.1). Now, however, the real price of
generating equipment is rising rather than falling, as shown in
Figure 1.2, and fuel prices have escalated rapidly. In addition,
electricity demand has ceased to grow at eight percent per annum as it
did for so many years. Growth now seems to be about two or three percent
per year (see Figure 1.3). Regulatory agencies have begun to look more
closely at the rates proposed by utilities and some agencies have even
begun to question seriously utilities' expansion plans. This section
will outline the major issues in rate setting. There is a large

literature on rate setting and its regulatory, economic and engineering
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aspects [10,12,18,19,24,25,32,53,55,56,66,68,69,72,78,80,91,92,93,95].

Reference should be made to this literature if more depth is required.

7.11. Qustomer Classes

Utilities have been allowed to divide their customers into classes
and to charge different rates to these classes basea on differences in
the cost of service. The standard classifications are residential,
commercial and industrial. Usually even these classes are subdivided so
that, for example, residential customers with electric heat are a
separate class from residential customers with non-electric heat.

The typical rate structure in the United States is a declining block
rate. An example is given in Table 7.1. The first large block is
designed to recover fixed costs such as hook-up costs, billing costs and
metering costs. The price declines thereafter because of the assumption
that the more electricity is consumed, the lower the marginal cost will
be. The assumed shape of the demand curve and the declining block

structure are illustrated in Figure 7.1.

10 kwhr or less $1.90
next 40 kwhr $0.0487 per kwhr
next 50 kwhr $0.0356 per pwhr
next 200 kwhr $0.0281 per kwhr
next 300 kwhr $0.0225 per kwhr
additional kwhrs $0.0206 per kwhr

plus $0.03839 per kwhr fuel adjustment charge.
Table 7.1: Residential Declining Block Tariff
from Cambridge Electric Light Company Bill (1980)
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The rates to different classes of consumers vary by the height and
length of the declining block. For example industrial customers tend to
receive power at higher voltages and supply more of their own power
conditioning equipment, Tike step-down transformers. So the investment
by the utility required for these customers is lower per kilowatt hour
consumed. Also, because industrial customers consume larger amounts of
energy, the fixed costs are spread over a large base and hence are
Jower. However, in the process of consuming energy, large users can also
place higher power demands on the utiiity. That is, a utility may have
to install capacity that sits idle much of the time in order to provide
energy when a customer wants it. Both to cover these costs and to
prevent spikes in demand, many utilities charge industrial users demand
charges based on their maximum power demand during the billing cycle.
High rates to residential users are usually justified by the argument
that residential users cause the peaks in demand, but that it is too
expensive to put demand meters on residences. The issue of allocating
capital costs among custamer classes is central to many of the debates on
how rates should be set. There are insufficient data available to make
definitive statements, but a great deal has been written on the subject.

In the ERATES model [24) used in this study, only two customer
classes are considered: industrial, and residentiai-commercial. The
capital cost for generation and transmission equipment is simply
apportioned to each class by its relative share of electrical energy
consumption. While it is known that capital costs are more directly

related to power consumption than to energy consumption, lack of data
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forces this simplifying function.

7.111. Rate Setting

Rate structures for electricity are currently under increased
scrutiny by the federal government, state utility boards, and public
interest groups. It is difficult to describe how rates are set since the
procedures vary greatly fram state to state. It is impossible to
describe how they should be set since there is no consensus among
regulators, economists, and engineers about the proper methods.

The first division of opinion comes over whether embedded or
marginal costs should be charged. One group argues that the utilities
should only be allowed to recover their actual cost of producing and
distributing electricity. The other yroup argues that customers should
be charged the cost of producing the last unit of electricity demanded.
In this way, customers pay the amount that it woula cost the utility to
increase production. If the electricity is worth that much to them, they
will be willing to pay that amount to the utility and the utility will be
willing to supply the electricity. This is marginal cost pricing.

The second division of opinion comes over flat rates versus time of
day rates. One group argues that, even though the cost of producing
electricity varies over time, the investment in metering required to
implement time varying rates will not pay off because most customers
would be unwilling to change their habits. The other group argues that
customers will respond to time of day rates and that the potential

savings to utilities in fuel ana capital savings are substantial.
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The following sections outline some of the ways in which rates can

e set.

/.IIT.A. Embedded Rates

In the United States utilities are regulated to prevent monopoly
prices. A basic concept is that a utility should be allowed to charge
prices such that it earns a fair rate of return on its capital
investments. The capital investments are commonly called the rate base.
What is allowed to be counted in the rate base varies from state to
state, but it is basically the undepreciated stock of generation and
transmission equipment plus an allowance for fuel inventory. The revenue
requirements for a utility are computed by multiplying the rate base by
the allowed rate of return and then adding in variable costs such as
fuel, operating and maintenance, and wages. How the required revenues
are collected depends on the type of rate structure, e.g. flat versus
time of time rates, but the underlying premise is that the revenues are
based on the historical cost to the utility. For more detail on how the
required revenues are computed see |10 or |56].

For this study, the ERATES model 24 method for computing the
required revenues will be used. In this model, the required revenues are
given by:

RRt = rr(CXE + Nt) + ECt + Dt ' (7.1)

where

RRt = required revenue in time t
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allowed rate of return on investment

re =
CXE = undepreciated stock of capital in time t (§)
wt = allowance for working capital in time t (%)
ECt = system operating cost in time t (§)

Dt = taxes, depreciation and other expenses (§)

7.1I1.B. Marginal Rates

For many years, economists have been writing in journals about the
desirability of marginal cost rates for electricity. The basic argument
is that if customers were charged the true cost of electricity, then they
could make more rational decisions about when and how much electricity to
use. The problem, however, is to determine what the true cost of
electricity is.

The marginal cost for an incremental unit of energy demanded in

subperiod s, time period t can be written as:

t st
st 3(CX"+ EC”)
MCE = 33 (7.2)
13
where
MCEt = marginal energy cost in subperiod s, iime period t (H/MWH)
CXt = cost of instailing new capacity at time t (§)

ECSt= system operating cost at subperiod s, time period t (§)

aESt = marginal change in the eneryy aemand in subperiod s, time
period t (MwH).

The marginal cost for an incremental unit of power demanded in

subperiod s, time period t can be written as:
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west _ a(ext+ et (7.3)
P aySt
where
MCSt = marginal power cost in subperiod s, time period t (§/MW)
aYSt = marginal change in the energy demand in subperiod s, time

period t (MW).

The partial derivatives of equations (7.2) and (7.3) can be computed
explicitly within a capacity optimization model as discussed by Bloom
L11]. However, since this methodology has not been implemented, the
partial derivatives of (7.2) and (7.3) will be approximated by a

difference equation:

st (TCit_ Tczt)
MC®" = (7.4)
st st
Bl - B

where

st _ .~ t st
TCi Cxi *+ EC)

. t .
total minimun system cost to produce energy E? in

subperiod s, time period t (8)

7.111.C. Flat Rates
The term flat rate refers to rates that do not vary with the time of
day, and depend only on the amount of energy consumed. Thus, declining

block rates are flat rates even though the price is not constant. In
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theory, a flat rate could be based on either embedded costs or marginal
costs.

To compute embeddea flat rates, the cost of service to each customer
class is canmputed as a function of the energy consumed. To do so
requires assumptions about the capital investments made for each type of
custamer, and about the consumption patterns of each type of custamer. )
Utilities have developed many ways of ailocating costs from scant data.

We will make the simplifying assumption that costs are directly related

to energy consumption. So, the required revenue for class k is:
t t -t t .
RR, = RR™ E(/E (7.5)

where

RRE = required revenue from class k in time t (§)

EE = energy consumed by class k in time t (MWH)

Et = total energy consumea by all customers (MwH).
Then, the imbedded flat price of electricity is:

c;k - RRE/EE (7.6)
where

t i . .
Cox = Price of grid electricity to customer k in time t (§/MWH)

Under a marginai flat rate, the marginal cost in equation (7.4)
would be computed for the entire time period and the rate would be given
by:

t ot
(tet - 1t
mct +m st o L 2" 4 opbpt (7.7)
K T K/ Ex
AEk

ct =
nk ~
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where
AEE = change in energy demand in time period t by customer, class k
(MWH)
ME = fixed costs attributable to customer k in time t (§)
EE = estimated energy consumption by customer k in time t (MWH)

7.1IT.D. Time of Day Rates

Because the cost of producing electricity varies with the time of
day, it seems only reasonable to charge rates that vary with the time of
day. Many European countries have successfully introduced time of day
rates after some experimentation. Electric utilities in the Unitea
States are only beginning to consider time of day rates and usually only
because of pressure fram the federal government or state regulatory
boards.

Time of day rates can be either embedded rates or replacement
rates. For embedded time of day rates, one computes the historical cost
of the capital and fuel required to supply electricity at that time. For
the replacement rate, one computes the cost of increased consumption at
the given time using equations (7.2) and (7.3). The increased cost has
both a capital and a fuel component, since an increase in demand requires
additional generating and transmission equipment as well as an increase
in fuel consumption. In theory, a cutomer should be charged both a
capital and energy cost in each time period. Since this is not possible
with present metering, the capacity charge is subsumed in the energy

charge:
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cor = mest + MCSE 20"+ M /E, (7.8)
where
C;E = cost of grid electricity to customer k in subperiod s, time
period t (§/MWH)
Zit = ratio of power demand to energy demand in subperiod s, time

period t for customer k.

There has always been some controversy over whether all capital costs
should be allocated to the peak demand periods. However, a simple
argument illustrates that the base periods should have capital costs
included. Suppose a system had an intermittent demand as illustrated in
Figure 7.2a. For this type of demand, a utility would build only peaking
units. An increase in demand on the peak would result only in a slightly

larger peaking unit being built, and the marginal cost for the peak

period would be the marginal capital cost of a peaking unit plus the fuel
cost. Now suppose there is an increase in demand in the periods in which
there was formerly no demand, as illustrated in Figure 7.2b. The utility
would then build a small base load unit to meet this new demand, and the
marginal cost for the base periods would be the marginal capital cost of
a base load unit plus its fuel cost. Therefore, because of the choices
of technology available to a utility, increases in base demand do have a
capital cost component. This component can be computed directly using
the partial derivatives of equation (7.2) and (7.3) and using the
historical cost of capacity, rather than its replacement cost. The
formula for the marginal embedded cost is then the same as equation (7.8)

with the marginal costs redefined.
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Time

Figure 7.2a Intermittant Demand.Optimal mix = peaking units

Time

Figure 7.2b Same demand as in Figure 6.5a with constant component
added. Optimal mix = peaking units + base unit

Figure 7.2 Effect of Demand patterns on the generation mix



137

7.IV. Summary

The price of electricity can be computed using embedded or marginal
cost principles given the operating and capital cost of the system as
computed in Chapters 4 and 5. The rate may be either a flat rate or a
time of day rate depending on the costing principle.

The rates for the next time period are set using one of the
methodologies described here. These rates are then sent to the customers
and influence both their short-run and long-run demand as described in
Chapters 3 and 6. The new rates are also used by the utility to update
their demand forecast as described in Chapter 2. The basic formulation

of the electrical rates is:

st st t
o = T(ECT, CX"y M) (7.9)
where
F.CSt = expected cost of operating the system in subperiod s, time
period t (%)
CXt = capital cost (historical or replacement) in time t (§)

fixed costs attributable to customer k (§)

x=
"
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8. Summary

Chapters 2 through 7 have described in detail specific algorithms
that can be used to implement the general methodology presented in
Chapter 1. This chapter will summarize the algorithms and the flow of
information among them. Chapter 9 gives an example that can be studied
in parallel with this chapter.

The general methodology assumes that the process of planning is
iterative and that plans are changed as new information becomes available
and as the future becomes the present. This chapter describes one
jteration, throughout which the exogenous variables remain constant.

Once the decisions for that time period have been made, based on both
endogenous and exogenous variables, then the data base is updated and the
process begins for the next time period. Each iteration depends on the
previous iterations in that current decisions may be limited by previous
decisions that have restricted or eliminated certain choices. The flow
of data between decision points and over time is illustrated in Figure
1.5.

To begin the planning process, one must have a data base containing
the current prices of fuels, the capital costs of large and small scale
generators, characteristics of the existing electrical generating system,
meteorological parameters, socio-economic factors, previous demand
patterns, and, where appropriate, the changes expected in these
parameters by each of the decision makers. These parameters must be
specified for every region to be studied.

The demand forecasting model, described in Chapter 2, is used to
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project the future energy demand in order to plan for the size and
installation dates of new generating units. Knowledge of future demand
is particularly important for units with long lead times which must be
begun before there is an apparent need for them. Since the demand for
electricity is sensitive to the price of electricity and to the price of
alternative fuels, in a time when fuel prices are changing rapidly and
unpredictably, the demand forecasts must be constantly updated. And, the
expansion plans which are based on them must also be updated and revised.

In general, the future demand for electricity depends on the price of
all fuels, including electricity, socio-economic factors, meteorological
factors, and the previous demand. Of these parameters, the
socio-economic factors, the meteorological factors, and the price of all
fuels except electricity are specified exogenously. The price of
electricity is found within the model based on the demand for electricity
and the cost of meeting that demand as computed in the previous iteration.

In this report, the Baughman-Jdoskow demand model [9] was used to
forecast long-run energy demand. In this model, a set of log-linear
regression equations is used to define the relationship between the
demand for electricity and the price of fuels. The coefficients for
these equations are estimated based on historical data on energy
consumption and energy prices for different fuels in different economic
sectors. '

The Baughman-Joskow model assumes that utility rates are flat (not
time-differentiated) and that a central utility supplies all the

electricity demanded. Since we are interested in studying both new rate
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structures and alternative ownership of generators, the Baughman-Joskow
model has been modified by two models to account for these factors.

The first is a load shifting model, developed by Hausman, Kinnucan,
and McFadden, which estimates the energy demand in one time period
relative to another based on the price differential, the appliance stock,
weather conditions, and sociological factors. The net change could be
either positive or negative. Some demands, like 1ighting demand cannot
usually be deferred, so the demand is permanently reduced when someone
decides to turn off a light to save on the electricity bill. Other
demands, such as heating and cooling may only be delayed and their delay
can result in a greater total demand than if they had been met when
originally required. If the off-peak prices are low enough, consumers
may actually increase the total electricity they consume in response to
the low price.

The second model modifies the demand projection to account for energy
that is produced by customer-owned generators rather than by the
utility's generators. The total demand for electricity is assumed to be
the demand as calculated by the Baughman-Jdoskow model and modified by the
Hausman model. However, the net energy demand on the utility's
generators is lowered by the total amount of energy generated by
customers, adjusted for losses. The adjustment for losses is computed
using a simple, linear assumption about the additional energy that must
be generated to the utility to make up for losses in the transmission
lines. In this model, it is assumed that the number and type of

generators owned by customers is known. We will see that this
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information is computed within the larger model and is updated at every
time step.

The combined forecasting method described above projects only the
total energy demand. To plan for new units, it is also necessary to know
the load shape in order to take advantage of the generating technologies
available. Because it is extremely difficult to construct a load shape
from scratch, the load shape from the last year is used as a basis and
then the modifications due to time-of-day pricing and to customer-owned
generation are superimposed on it. The same models are used to modify
the load shape as were used to modify the energy demand. For the
time-of-day pricing model, it is assumed that the change in power demand
is proportional to the change in energy demand within a pricing period.
While this assumption lacks refinement, there is not enough data to
warrant any other assumption. Once the demand in each time period has
been modified for the price response, the time-varying customer
generation is subtracted from it. Because the output from renewable
resource generators is frequently highly correlated with electricity
demand, it is necessary to take this correlation into account when
performing the subtraction. One way to do this is to use a statistical
method that finds the correlation of the demand with meteorological
variables, as developed by Caramanis [16] and described in Chapter 3. An
alternative way is to match hourly historical electricity demands with
historical weather data as is done in the example of Chapter 9.

The essential outputs of the demand model are the new forecasts of

the peak power demand, the total electricity demand and the load shapes
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for each time period in the study. These forecasts are used in the
capacity planning model in determining the number and type of new
generators to be built. The demand model can also be used to compute the
net demand on the central generators for the current time period. This
information is passed to the plant operation model to determine the costs
of meeting the demand in the current time period.

The plant operation model uses the load shape and energy demand, the
physical characteristics of the utility's generators, and the fuel prices
for the current time period to compute the expected cost to the utility
of meeting the customer demand and the reliability with which the utility
meets the customer demand can be found. In this report, the SYSGEN model
[38] developed by the author was used for the production costing and
reliability analysis.

The plant operation model takes into account the random nature of the
customer demand and the availability of generators using a technique
developed by Baleriaux [6]. As described in Chapter 4, this technique
makes it possible to compute the amount of energy that each plant would
be expecfed to generate taking into account that other plans may fail
requiring it to generate more electricity or that the demand may be
unusually high or low requiring it to generate more or less electricity.
This technique does not compute all possible combinations of plant
failures and load levels. Instead, it uses convolution to find the
probability distribution of the demand plus the plant outages. This
distribution can then be used to compute the expected value of the energy

generated by each plant. It can also be used to find the loss-of-1oad
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probability and the expected unserved energy of the system as illustrated
in Figure 4.3.

The plant operation model produces detailed information about the
operation of each unit. This information is used within the long range
planning model in making trade-offs between capital and operating costs
for different plants. The long range planning model also uses the
reliability measures computed in the plant operation model to ensure that
the new system meets the reliability requirement of the utility.

The total cost of operating the system is passed on to the rate
setting model to be included in the required revenues when setting the
rates for the next time period. The reliability of the system is sensed
directly by the customers and is one of the inputs to their decisions of
whether or not to build their own generators.

One of the assumptions of the system operating model is that it is
known what units have been installed and are available to generate
power. Once the current projections for the net load shape and energy
demand are known, the utility expansion plan can be found based on
current estimates of construction costs and fuel costs for new
generators. The expansion plan is usually made for about twenty years
into the future, but only the plans for the near future are made
definite. In fact, only those decisions which must be made in the
current time period to have a new unit when needed are made firm. All
other decisions are allowed to float until some future time period when
they are made firm, postponed, or abandoned depending on new conditions.

The model used for long-range planning, the EGEAS model developed at
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MIT, is described in Chapter 5. The model, based on Bloom's thesis [11],
uses Benders' decomposition to solve the optimization problem. Using
Benders' decomposition allows the use of a nonlinear model of the power
system operation, but retains the advantage of having a linear model for
the optimization. The master problem generates a capacity expansion plan
based on the criteria of minimizing total cost. The plant operation
model then computes the cost of operating that set of plants to meet the
demand. It also computes the shadow price on the capacity of each plant
in the current plan. The shadow price on the capacity indicates to the
master problem how the total cost of operating the system would change if
the plant were made a little bigger or a little smaller. Using this
information, the master problem computes a new expansion plan. This
process continues until the total cost is arbitrarily close to the upper
bound generated by the Benders' technique.

For this report, a relaxed version of the EGEAS model was used since
only the early years of a study are critical in deciding the next unit to
be built. In the relaxed version, the early years are modeled using the
complete Benders' structure and the later years-are modeled using a
Tinear, rather than a non-linear, plant operation model. This allows for
faster running times during computation.

Once a unit has been committed to construction that information is
passed on to the rate setting model so that its capital and carrying
costs will be included in the rates set for customers. The information
of committed units is also passed to the system operation model since, at

some point, the unit will come on line and can be used to meet customer
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demand.

In the demand model, it was assumed that the number of customers
owning their own generators was known. In order to find this number out,
one more model must be used. This model describes how customers respond
to the electricity rates and other factors in deciding whether or not to
build their own power generators. In terms of the larger model,
customers are given the price of electricity by the utility for the
current year and have expectations about the future price based on the
current price and the prior behavior of the price. In addition, the
customers perceive directly the reliability of the grid electricity to
their households.

Customers, in deciding what kinds of equipment to install and whether
or not to generate their own power, make the same kinds of decisions as
the utility although usually in a far less sophisticated way, and usually
with many more criteria besides cost minimization. Because of this, the
model is structured to answer the question of the worth of the system to
the owner, rather than the question of the number of systems that would
be installed under a minimum cost criterion. 1In optimization theory,
these two questions are closely linked, one being the dual of the other.
However, for our purposes, the first question is more useful. Since the
available computer version of EGEAS [30] does not yet treat
time-dependent generators, the example in Chapter 9 uses a breakeven
analysis model developed specifically for time-dependent generators and
described in reference [84].

The breakeven cost of a system is dependent on the price of the
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should change with the time of day. Rather than attempting to justify
using one rate or another, the ERATES model [24] was used because it can
calculate both flat and time of day rates on either an embedded or
marginal cost basis. The option of computing different types of rates
allows one to study the effect that different types of rates will have on
the demand.

The new rates for the next year are announced to the consumers and
the electriciy rates for the demand model and the customer choice model
are updated. A1l the exogenous variables are also updated and the
process begins again,

These interconnected models allow a planner to work through a full
utility planning structure incorporating the sequential and
interdependent nature of decisions. The following chapter works through
an example showing how the models fit together. The example demonstrates
method and logic while giving reasonable results, although the results

would not be applicable to any particular utility.



147

9. Example

This chapter presents results from hand calculations and computer
runs. Several of the computer modules were unavailable because they were
still under development. For these modules, simplifying assumptions were
made so that the model could be run on a pocket calculator, or else
another documented, available, but less advanced model was substituted.

A time frame of eight years was chosen, starting in 1975, with five
time periods modeled exactly and three approximately. The data on fuel
prices, socio-economic conditions, and weather conditions are based on
New England data for 1975. The example should be taken as an example of

the mechanics of the methodology, and not as the results of a study.

9.1. Demand Model

9.I.A. Long-Run Demand

The basic inputs to the long-run demand model are the estimates of
fuel prices, demographic factors and the energy consumption by economic
sector for the base year. Table 9.1 gives fuel prices for 1975 and Table
9.2 lists the demographic and economic factors and their assumed growth
rates. The population figure has been scaled so that the total demand
matches the capabilities of the test utility in the EGEAS data base.
Because the only version of the Baughman-Joskow model available was
estimated prior to 1973, the elasticities were too low for current price
levels. Therefore, in order to have demand grow so that the utility
would build new plants, it was necessary to assume that the population in

the test region grew at 10 percent per year.
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Table 9.1

Fuel Price Data 1975 prices in 1970 dollars

Industrial Fuel

Annual Real
Escalation Rate

B/MBTU (percent)
Electricity 4.0176* $.014/kWh 3.0
0il .6313 $3.66/barrel 3.0
Coal .5092 $13.24/ton 3.0
Nuclear .500 $62.50/gram 4.0
Gas .8461 $909.56/mcf 4.0
No. 6 0il 1.198 $7.57/barrel 3.0

Residential and Commercial Fuel

_$/MBTY
Electricity 4.754% $.016/kWh 3.0
No. 6 0il 1.260 $.25/gallon 3.0
Gas 2.344 $.0018/hundred cf 4.0

*assumes direct conversion rate of lkwh = .003412 MBTU
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Table 9.2

Demand Model Input Assumptions

Personal Income ($/person)
Population

Value Added (§) (national)
Real Discount Rate (percent)
Average Density (people/sq mi)
Minimum Temperature

Maximum Temperature

Average Residential energy
consumption (MBtu/capitag

Average industrial
consumption (MBtu/capita)

Average residential electrical
consumption (MBtu/capita)

Average industrial electrical
consumption (MBtu/capita)

1970 dollars

3,000
803,127

3.46ell
3
300
15°F
85°F

117

166

16.65

31.69

Annual growth rate (percent)
0.0

10.0
5.0

10.0
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The demand equations, as given in Chapter 2, were solved on a hand
calculator. The resulting energy demand projections of the
Baughman-Joskow model are given in Table 9.3.

As can be seen by the declining per capita energy consumption,
customers respond very strongly to the real increases in the price of
electricity. With more recent estimates of elasticities, one would not
expect such a sharp reduction in demand; however, the trend would be in
the same direction.

The long-run demand projections from the Baughman-Joskow model are
passed on to the short-run demand model in order to find the change in
load shape due to time-of-day pricing and customer owned generation. The
long-run demand projections will ultimately be used by the long-range
planning model as the given demand that must be met by building and

a

generating units.

9.1.B. Short-Run Demand

9.1.B.1. Load-Shifting

Because the Baughman-Joskow model predicts only the total energy
demand, without any other information, one would assume that the load
shape for the base year, as given in Table 9.4, remained constant over
time. However, two models have been presented that change both the total
energy demand and the load shape. The first model predicts changes due
to a price response to time-differentiated rates and the second predicts
changes due to customer-owned generation. Because both models compute
changes in energy demand and changes in load shape, the two functions are

not described separately.
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Table 9.3

Energy Demand Projections

Electrical Energy" Total Electric Electric
Demand (MBtu/capita) Energy Demand Power Demand
Residential Industrial ?MBtu)* (MW)
16.65 31.69 38,750,530 2100
15.39 30.42 40,700,014 2193
14.17 30.42 42,243,058 2289
13.44 29.25 44,564,624 2415
13.01 27.35 47,457,644 2572
12.37 26.62 50,431,381 2733
11.79 26.05 53,838,317 2917
11.39 25.61 57,907,486 3138
11.03 25.37 62,665,291 3396

*assumes direct conversion rate of 1 MWh = 3.412 MBtu
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Table 9.4

Initial Reverse Cumulative Distribution of the Customer Demand

x = percent of peak demand

X (percent) P[demand > x]
30 1.000
35 .980
40 .925
45 .820
50 .750
55 .628
60 .548
65 441
70 .324
75 213
80 .122
85 .109
90 .040
95 .001

100 0.0

Due to problems with the published values of the coefficients for
the load shifting model, a proxy model was used for the test case. The

relative demand for all residential customers was assumed to have the

form:

log €5 = M5 Tog c35€ + M2% log cSMOUNdEry y3S oq PO (9.1)
where e° = relative demand in subperiod s

¢S = relative price in subperiod s

M1S = elasticity of base period consumption with respect to

the price in subperiod s
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M2S = elasticity of shoulder period consumption with respect
to the price in subperiod s
M35 = elasticity of peak period consumption with respect to the

price in subperiod s.
Table 9.5 gives the hypothetical elasticities used in the test case.
These elasticities can be interpreted rather simply. The negative
elasticities along the diagonal mean that when the price goes up in that
time period, the consumption decreases. The effect is largest on the
peak and smallest in the base period. The off-diagonal elements
indicated the relative change in the demand in a time period when the
price in another time period changes. So, if the peak period price rises
relatively, one would expect the peak demand to fall and to have the
change in demand shifted mostly to the shoulder period and some to the

base periods, with some demand being lost altogether.

Table 9.5

Inter-hour Price Elasticities

Elasticities/Price cbase cShoulder cpeak
cbase ~.05 .05 ' .02
Cshoulder 01 _.15 06

Cpeak .01 .05 -.20
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Table 9.6 gives, for three subperiods, the energy consumption and
prices in the previous time period and the projection of relative
consumption for the next year of the study. These values were found by
substituting the elasticities from Table 9.5 into equation (9.1). The
prices in the subperiods are assumed to escalate at the same rate, so the
relative consumption in subperiods remains constant although the absolute
level of consumption changes. The new load distribution is given in
Table 9.7. Chnges in each hour were computed as well, since the hourly
curve is needed for the time-dependent generation model. As expected,
some demand has shifted to the base time periods. The probabilities of
being found in low load states are now higher. And, the probabilities of
being found in higher load states is lower. It should be noted that the
peak demand doesn't change since there is always some probability that
the original peak will still occur.

It should also be noted that the load shifting reduces the total
energy demand. Computing the area under the curves tabulated in Tables

9.4 and 9.7, given that the peaks are the same for each curve, one finds

Table 9.6

Price-Sensitive Demand

Base Shoulder Peak
Price relative to previous
time period .5 3 10
Residential consumption
relative to previous
equivalent time period 1.1453 .7335 .6620

Length of time period
(hours/day) 12 8 4
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Table 9.7
Reverse Cumulative Distribution after Residential Price Shifting

X = percent of peak demand

x (percent) P[demand > x]
30 1.000
35 .985
40 .935
45 .860
50 .750
55 .650
60 .500
65 .295
70 .165
75 .080
80 .010
85 .005
90 .001
95 .0005

100 0.0

that the overall reduction in demand is approximately six percent.

The load shape, modified by the price effect, is passed on to the

customer-owned generation model so that the effects of time-dependent
generation can be incorporated.

9.1.8.2 Customer-Owned Generation

There were initially assumed to be fifty identical wind turbines,
fifty identical photovoltaic generators, and fifty identical diesel
generators on the system with characteristics as given in Table 9.8. The
T+D loss function was assumed to be piecewise linear and is given as a
function of peak demand in Table 9.9.

The hourly Tload reductions for the wind and solar generators were
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Table 9.8

Customer Generator Data

Mechanical Installment

Capacity Forced Cost Heat Rate
Unit Type Fuel (kw) Outage Rate (B/kw) (BTU/KWH)
Photovoltaic Insolation 5 .01 500 -—
Wind Turbine Wind 5 .10 400 -
Diesel No. 6 0il 5 .10 200 17,000

Table 9.9
T+D Loss Function
base shoulder peak

percent of peak demand 50 100
loss multiplier 1.041 1.092 1.163

computed using the OESYS computer model [27] using a Boston weather tape

as input.

input to the ELECTRA [39] computer model.

These load reductions were written to a computer file and then

The new distribution for the

net demand on the utility, as computed by ELECTRA, is based on an hourly

analysis in order to capture the correlation of the output of the solar

and wind generators with the demand on the utility.

For ELECTRA, the

price modified loads were computed on an hourly basis and then converted

to a cumulative distribution as reported in Table 9.7.



Table 9.10 gives the new reverse cumulative distribution of the
load including price effects, customer owned generation, and T*+D losses.
Tables 9.7 and 9.10 are compared graphically in Figure 9.1.

Table 9.11 gives the final net energy and net power demand
projections for the first time step in the study. The net energy was
found by computing the area under the load curve using linear
interpo lation between the points in Table 9.10. The projection for the
current year, 1975, is the demand that will be used in the plant

operation model as the demand that the utility must serve.

Table 9.10
Final Reverse Cumulative Distribution of Customer Demand

x = percent of peak demand

x (percent) P[demand > x]
30 1.000
35 .941
40 .864
45 .787
50 .710
55 .629
60 .551
65 .481
70 .342
75 .243
80 .134
85 .058
90 .027
95 .007

100 0.0
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Table 9.11

Net Energy and Power Demand on the Utility

Energy Demand

(MBTU )*
38,403,534
40,107,626
41,864,797
44,165,576
47,032,687
49,979,800
53,356,225
57,388,955
62,104,159

Power Demand
(MW)

2100
2193
2289
2415
2572
2733
2917
3138
3396

*Assumes a direct conversion rate of 1 MWh = 3.412 MBtu
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9.1I. Utility Model

The expansion plan for the example was found using a prototype of
the EGEAS computer model [30] which uses SYSGEN [38], the production
costing model, as a submodel. The basic plant data are given in Table
9.12. Also included in Table 9.12 are data on the historical and
replacement capital cost which will be used in the rate setting model.
The cost of fuel is taken from the cost of fuel for industries given in
Table 9.1. The data on demand from Tables 9.10 and 9.11 were converted
to the EGEAS format and input to the program.

The total installed capacity is 2300 MW, giving a reserve margin of
approximately 10 percent over the initially projected power demand. In
the optimization, the unserved energy constraint is that at least 99.1
percent of the original energy demand must be met. These, and other
relevant, figures are summarized in Table 9.13.

The number of new alternatives is restricted to five to keep the
optimization from becoming too large. Since a basic alternative can be
installed in any year, there are actually forty alternatives within the
optimization. Data on the alternative units is given in Table 9.14.

The capacity expansion plan and the operating cost in each time
period are given in Table 9.15. In the sample case, lead times are
ignored, so that the unit listed for installation in 1976 is assumed to
be installed then.

The operating costs are computed as part of the long range planning
model and ‘so are not considered separately here. The operating cost for
1975 is passed on to the rate setting model as part of the required

revenues.
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Table 9.12
Installed Unit Data

(1970 dollars)

Name- Heat

Install- plate Rate Forced Historical

ment Capacity (MBTU/ Outage Cost
Unit Type Year (MW) MWH)  Rate (8/kw)
Nuclear Base 1971 600 10.400 .20 109
0il Base 1974 800 9.300 .13 130
0il Cycling 1963 800 9.400 .13 74
Gas Turbine Peaking 1968 50 14.000 .24 48
Gas Turbine Peaking 1970 50 14.000 .24 56

*Units built before 1958 are fully depreciated.
Data from reference [71] and [24].

Replace-
ment

Cost
($/kw)

189.
137

137
95

95

Table 9.13
Optimization Data
Number of years, T = 8
Discount rate, o = .03

Reliability requirement, ¢

Reserve margin, RM

Capital escalation rate

Allowed rate of return

3 percent

14 percent

0.9 percent of energy demand

20 percent of peak power demand
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Table 9,14
New Unit Data

Forced Instaliment Full Load

_ Capacity Outage Cost Heat Rate

Unit Type Fuel (MW) Rate (B/MW) (MBtu/MWh)
Nuclear Base Nuclear 1000 .35 50,000 10.400
Coal Base Coal 800 .25 40,000 9.750
011l Intermediate 0i1 500 .20 30,000 9.400
Coal Intermediate Coal 600 .20 35,000 9.000
Gas Turbine Peak 0il 150 .15 13,000 14.000

Table 9.15

Utility Capacity Expansion Plan

1970 Dollars

Net Present Value
Operating Cost

Year Unit Type Capacity (MW) (Million §)
1975 51.7
1976 Nuclear 208 44.1
1977 37.5
1978 32.4
1979 29.1
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9.III. Customer Expansion Model

Because the prototype of EGEAS could not handle time dependent
plants, the customer expansion model was run using the breakeven
methodology described in reference [84]. The OESYS computer model [27]
was used again to find the annual energy savings. Only one class of
customers was considered. Their peak load and energy requirements are
given in Table 9.16. The embedded flat rate for residential customers in
Table 9.1 was used for the price of electricity. The costs for each
potential new generating system are given in Table 9.8, along with other
operating characteristics of the generators. Each generator type was
assumed to have an expected useful life of 20 years for the purpose of
computing the breakeven capital cost. The payback period was computed by
dividing the capital cost of the system by the annual energy savings to
give the number of years required to recover the investment. No
discounting was used since Lilien and Wulfe [60] found that most
consumers did not use discounting when computing the payback time on
which they based decisions.

The marketing curves were only available as a function of payback
time rather than breakeven cost, as illustrated in Figure 6.1. From the
information on the amount of energy that the system provides annually,

and from the expected fuel costs, both the payback time and the breakeven

Table 9.16
Customer Characteristics
Peak power demand 6 kw
Annual energy demand 5256 kwh

Reliability requirement 95 percent of energy demand
Discount rate 3 percent real
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cost can be computed. These figures are included in Table 9.17. From
Figure 6.1, the number of installations of each type can be found
assuming that customers use the same criteria for all systems. The
number of new installations is given in Table 9.18, as read from Figure
6.1.

For the residential customers in the test case, the reliability
constraint was not binding. If industrial customers with higher
reliability requirements had been included, some diesel generators might

have been installed to meet power rather than energy requirements.

Table 9.17
System Breakeven Costs

(1970 dollars)

$/KW Installed Payback Time (years)
Photovoltaics $352.00 14
Wind Turbine $465.00 11
Diesel -$ 73.00 I
Table 9.18

New Customer Installations

New Installations Total Installations
Photovolitaics 20 70
Wind Turbine 30 80

Diesel —_ 50
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9.IV. Price Setting Model

The ERATES computer model [24] was used to compute the new rates
based on the operating and capital costs of the system and to project the
rates for the entire time horizon based on the expected operating and
capital costs. The input data necessary to run the price setting model
have been given in Tables 9.1, 9.2, 9.12, 9.13, and 9.15. These are:
the price of fuels, the number of ratepayers, the average consumption,
the existing capital structure and its depreciated and replacement value,
the allowed rate of return, and the newly installed capital. The data
were converted to ERATES format and input to the model.

Table 9.19 gives rates for 1976 for four different rate structures.
Instead of running the rate model for all the remaining years of the
study, a simple annual escalation rate of 5 percent was assumed. It

should be noted that the prices computed are considerably higher than

Table 9.19

Electricity Rates for 1976
1970 Dollars

Residential Industrial
(8/kwh) (8/kwh)
Flat embedded .0479 .0511
Flat replacement .0735 .0730
Time of day embedded
peak .0658 .0787
of f-peak .0638 .040
Time of day replacement
peak .0866 .0940

of f-peak .0645 .0649
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those assumed in Table 9.1, and therefore one would expect the demand to
be less than projected for the next time period.

For the next time period, the new rates would replace the flat rate
given in Table 9.1 and the other fuel costs would be updated as would the
socio-economic factors, expected growth rates, and capital costs for both
centralized and decentralized generation. The demand for 1976 and beyond

would be projected and the planning process would start again.
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10. Conclusion

The author has developed a dynamic, non-equilibrium methodology for
long-range planning of electric power systems. The methodology
synthesizes the models used in electricity planning in a way which
captures the common dependence of the utility and its customers on
exogenous factors. The methodology also captures the influence that the
customers have on the utility's decisions and that the utility has on the
customers' decisions. This new methodology does not assume the existence
of a long-term equilibrium solution. The general methodology presented
in this report allows one to assume that as exogenous and endogenous
factors change over time, decision makers can modify previous plans in
order to track an ever-changing optimum. Thus, in a rapidly changing
environment a stable equilibrium solution would not be expected using
this methodology. But, if exogenous variables behaved as expected and if
both the utility and its customers had the same expectations, and if each
could predict what the other would do, then the solution would be

equivalent to the equilibrium solution.

The methodology assumes that in each time period new information
becomes available and that old decisions are revised and new decisions
are made. The explicit inclusion of the time parameter allows the
utility and its customers to change their expectations of the other's
future behavior based on the new set of signals and to change their
expectations of the future behavior of exogenous variables, such as price
of oil, based on theirllatest values. The inclusion of the time

parameter also allows factors such as lead times for new units and short-
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versus long-run responses to be modeled accurately.

The methodology focuses on near—term'decis1ons based on the
assumption that a decision is made only when the lead time for a project
becomes critical. That is, even though plans may be made for the next
thirty years, only those decisions within the first ten years or so
require that commitments be made immediately. This allows the use of
simplifying assumptions for time periods further in the future that
reduce the computational effort required to find a solution.

One underlying assumption of the methodology is that the utility and
“its customers interact only through a small set of quantifiable signals.
This assumption makes the lines of communication as illustrated in Figure
1.5 clean and well-defined. However, the utility may influence demand in
many ways besides through the price they charge. They may promote new
appliances or they may promote conservation. They may discourage
non-utility generators through entangling rules or they may encourage
them through educational programs on alternative resource technology. Of
course, customers caﬁ influence the decisions of the utility other than
through their demand patterns. They may file lawsuits to prevent
specific projects or through referenda they may direct their legislations
to encourage or discourage the use of particular fuels. In addition, the
anticipated political response to new rates may influence how the rates
are set by a utility, and rates are frequently substantially changed in
response to consumer intervention during rate hearings. Interactions
such as these could be incorporated into the general structure if they

could be quantified as model inputs and outputs. However, the difficulty
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of quantifying such variables makes their inclusion in any utility model
quite impractical.

Another limitation is that, since the boundary defining the system
must be drawn somewhere, many potential interactions are ignored. For
example, the electric utilities by their choices of generation
technologies may affect the price of those technologies particularly
since they are the only buyers of large power plants. A case in point of
this principle is photovoltaic technology for which the price to all
buyers is expected to drop rapidly if sales increase to a substantial
level. Within the methodology, effects such as this must be treated
exogenously because they did not directly affect the interaction of the
utility and its customers.

By its very nature, the general methodology by trying to include
everything can become so unwieldy as to be impractical to use. However,
it can always be broken out into its components and then used as utility
planning models have always been used. Just the exercise of looking at
the planning process as a whole should help utility planners to see the
many interactions within the system and allow them to construct
internally consistent scenarios when planning.

To implement the general methodology fully would require computer
programs for each model described in Chapters 2 through 7, a common data
base, and linking programs. Of the models described above, some are
complete while others are still under development. In particular, the
demand models presented here require the most developed since the demand

drives the entire proces. Either the econometric models must be
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re-estimated or they must be replaced with end-use models. And, for most
of these models, there are other just as acceptable available models that
could replace them in the general methodology. Thus, most of the work in
implementing the methodology is in developing the data base and the
linking programs. In the example given-in Chapter 9, the data were
reworked for each model's particular input requirements. For a large
study, this would not be practical. A common data base would have to be
developed with the high 1inking programs interfacing between the main
programs and the data base.

As with any model that attempts to prescribe the actions of decision
makers, there is no test which allows one to accept or reject the
underlying hypotheses of the model. One possible experiment would be to
run the model for a particular utility which experienced sharp demand
reductions after 1973. Using this model, one could perform a planning
study starting in 1973 and updating the plan each year based on the new
information available in that year. By comparing the utility's actual

plan to the computed plan one could get an estimate of the value of this

type of planning methodology. Of course, the savings would be
overestimated since utilities always operate with more constraints than
are possible to model. The ultimate test will be its reasonableness and

usefulness to those who must plan for new electricity supply.
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Appendix A Electric Utilities

In the United States, electric power is supplied by public utilities
which are regulated monopolies. A utility must supply power to all
customers who wants it, whenever they want it, at a price approved by
regulators. For many years, supplying demand was not a problem because
fuel prices were stable, advances in technology steadily decreased the
capital requirements for new plants, and demand growth was steady. Under
these conditions, a price struction was set up which encouraged increased
consumption. A typical declining block tariff of this kind was shown in
Tapble. 7.1.

The price charged for a ki]owatt of electricity under this tariff
does not necessarily represent the cost of its production so that some
customers subsidize others, but the rate are set so that the total
revenues balance the total costs plus the allowed profit. The price of
electricity did not become an issue until the late sixties when the
trends mentioned above began to reverse: fuel prices increased, capital

requirements increase, and demand growth ueclined unsteadily.

A.I. Electricity Demand

Electricity demand varies with the time of day as people wake up, go
to work, eat, turn on lights and the television, and go to sleep. The
demand also varies with the season as the length of the day changes and
people require heating or cooling. Figures A.l. and A.2. show typical
daily and annual load curves for a utility. Demand patterns vary

markedly among utilities, depending on their location, the industries in
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the area, and the lifestyle of the poplulation. Most utilitics, except
those in the northernmost states, now experience their peak demand in the
summertime from the air conditioning load. In the north, the peak demand
occurs in the winter from the heating load and from the lighting load due
to the short days.

Electricity consumers can conveniently be divided into three
categories: residential, commercial, and industrial. The classes are
distinguished by the end use of the power, the volume and pattern of
demana, and the supply voitage of the power. Under the current rate
structure, each customer class has a different tariff based on the
utility's perception of the relative costs of supplying power and on its
perception of the relative demand elasticities. Although utilities
justify lower industrial rates on the basis that high voltage power is

cheaper to supply, it has been suggestedl

that the lower prices are
attributable to the higher industrial price elasticity. That is,
industrial users are more sensitive to the price of electricity than

other users.

A.II. Electricity Supply

For stable operation, an electric utility musi balance the power it
generates with the power that is demanded. If too little power is
generated then the electrical frequency drops below the standard 60

cyc les per second causing, in extreme cases, brown-outs, slowing of

lcicchetti, (18], p. 37.



174

electrical clocks, and damage to motors. If too much power is generated,
the frequency rises, causing clocks to speed up and again causing damage
to motors.

Because the demand for electricity is not uniform over time,
utilities build three different types of power plants: peaking units,
cycling (or intermediate) units, and base load units. A peaking unit has
Tow capital cost and high fuel cost and can be started up or shut down
rapidly. Keeping the capacity of a peaking unit available has a low
cost, but there is a high cost to generate energy with it. A base load
plant by contrast has high capital cost and low fuel cost. Base load
plants are usually large (500 to 1000 megawatts) and have lengthy start
up or shut down times. A cycling plant has capital and fuel costs
between those of a peaking and base load plant. The particular
combination of base load, cycling and peaking units owned by a utility 1s
called the generation mix.

A totally different type of plant is a storage unit which generated
no energy of its own. Storage units are used when there is not enough
customer demand to run a base load unit at full capacity. The extra
energy is saved in the storage unit until the customer demand rises and
the extra energy is needed. Not all energy is recovered, however,
because there are losses incurred in storing and in retrieving the
energy. The most common type of storage used by utilities is pumped
hydroelectric storage in which the excess energy is used to pump water up
into a reservoir where it remains until the energy is required. The

water is then released to drive a turbine which drives an electrical
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generator,
Figure A.3. shows trade-offs between initial cost and operating

costs for base, cycling, and peaking plants. Storage units are not

included because their energy cost is a function of the base power cost
and the demand pattern. The curve shown in Figure A.3 is called a
screening curve and can be used to make rough tradeoffs between different
plant types. In Chapter 5, a long range planning model is described
which makes the same trade-offs between capital anu operating costs, but

with much more sophistication.

$/kilowatt-year

L] [} T

’
25 50 75 100

Operating time (% of year)

Figure A.3 Yearly Fixed Versus Operating Costs for Power Plants
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When operating its plants to meet the customer demand, it is easy to
show that the utility should brinyg the plants on-line in order of
increasing cost. That is, if the demand increases, and the utility has
to start up another plant, then it should start up the one that is the
least costly to run among the plants that are not currently generating.
In this way, the utility minimizes the total cost of operating the
system. In fact, there are frequently reasons why the utility cannot
bring up the next cheapest unit: there are physical constraints on some
large generators that make it costly to start them up and shut them down;
there are operating constraints on some hydroelectric generators because
the water is used for many purposes or because reservoir size is limited;
there are reliability constraints that dictate that a certain amount of
capacity be kept in ready reserve; there are transmission constraints
that can effect the order in which plants are used due to their
geographical location.

In Chapter 4, a production costing model was presented that takes
most of the constraints into account. The purpose of this model is to
answer the question: How much does it cost to run the utility system

given the demand and the fuel costs

A.III. Electric Reliability

From the discussion so far, it would appear that a uti1lity would
build peaking units only if high demands were expected for short perids
of time; however, other factors make extra capacity necessary. One is

that a utility does not know what the peak demand will be. Extra
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capacity must be built as a hedge against excessive demand. Another
factor is that power plants cannot operate one hundred percent of the
time. Plants must be shut down for preventative maintenance at least
once a year. The utility needs extra capacity to make up tor any plant
that is being serviced. Also, a power plant generating electricity can
fail suddenly requiring other units to be brought up quickly. Utilities
usually operate with enough plants idling, ready to start generating, so
that if the largest unit were to fail, the electricity it was generating
could be replaced immediately. -

All of these factors combine to require utilities to build more
capacity that would at first seem necessary. For planning purposes, a
rule of thumb is that the installed capacity snould exceed the expected
peak demand by twenty percent. Most regulations, though, are written in
terms of the reliability of the system. For example, a utility may not
lose load for more than one day in ten years. In order to compute the
reliability at any one instant, one must know which plants are available
for generation, the probability of failure for eacn machine, and the
probability distribution of demand. These factors can be combined to
give the loss of load probability (LOLP). Another measure of the
reliability of a generating system is the expected unserved energy.
Expressed as a fraction of the total energy demand, the unserved energy
is referred to as the loss-of-load expectation, LOLE. The derivation of
these reliability measures will be discussed in Chapter 4.

Another aspect of system reliabiiity is the reliability of the

transmission and distribution (T+D) network. T+D failures cause most
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outages experienced by consumers, but these failures are not included in
the reliability measures of the LOLP or LOLE. Measuring the reliability
of the transmission and distribution system is much more difficult tnan
measuring the reliability of the generating system. The models require
more data and there is no closed form solution. Load flow models must be
run for each possible combination of available transmission lines,
generating units, and demand levels. In addition, the reliability of the
distribution system can vary greatly within a single network, so one must
distinguish between, for example, the reliability to an urban customer
served by underground lines and a rural customer served by long over-head

lines.
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Notation
Al,...A6
= regression coefficients for the demand equations

Ml,...M6

a = regional index

App].k = 0-1 variable indicating whether customer k owns
appliance i

AREAa = area of region a (square miles)

[b:. J = matrix of regression coefficients for time dependent

J generator outputs and customer demand.

B?t = net penefit from system i in subperiod s, time period t
(8)

BECF = Total breakeven cost for system i installed in year

! including capital, variable, and fixed cost (§)

BECC? = breakeven capital cost for system i installed in year t
(B/MW)

E? = national weighted average price of industrial energy in
time t (3/MBtu)

Cgfa = cost to industrial customers for fuel f in regiun a in
time t. Fuel n = electricity (§/MsTU)

E;a = weighted average cost of energy for residential and
commercial cutomers in region a in time t ($/MBtu)

Csia = cost to residential and commercial customers for fuel f
in region a in subperiod s of time period t
Fuel n = electricity ($/MBTU)

CX? = capital cost of system iu in time t (§)

d° = observed load at time o, normalized by the peak demana

Dt = taxes, depreciation, and other utility expenses in time t

(8)
Dayl = 0-1 variable indicating the day of the week (Dayl=5unday)
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energy demand by customer k in subperiod s relative to
demand in a known period.

electrical energy consumed in area a by customer class k
in time t (MBTU)

coal consumed in area a by customer class k in time t (MBtu)

gas consumed in area a by customer class k in time t (MBtu)
0il consumed in area a by customer class k in time t (MBtu)

total energy demand in area a by customer class k in time
t (MBtu)

expected value of random variable X

expected system operating cost as a function of plant
operating capacities in time period t \3)

expected unserved energy as a function of plant operating
capacities for time period t (MwH)

fuel type

Probability [X < Y.< X + dx|

G
1 - G(X) = Pr Y, 2 X] = (fc(y) dy .
reverse cumulative distribution of the net customer load

initial fixed cost for system i installed in year t,
e.g., power conditioning, lightening protection (§)

demand response function to price ¢ in subperiod s
time period t

coefficients for Gram-Charlier expansion
Probability [net customer load < x]
Probability |load + outages < dj.

number of hours in subperiod s
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full load neat rate for unit i burning fuel type f
(MBtu/MWH)

total number of units in the loading order in time period t

capital cost of installing a unit of type j and vintage v
(B/MW)

transmission loss function for energy from customer k when
the total demand is Y

loss of load probability in subperiod s, time period t

ratio of expected unmet demand to total expectea demand in
subperiod s, time period t

iteration number in Benders' decomposition algorithm
fixed costs attributable to customer k in time t (§)
mega Btu (10° Btu)

marginal energy cost in subperiod s, time period t
( B/MWH)

marginal power cost in subperiod s, time perioa t
(5/MWH)

energy produced by generator r in subperiod s, time period
t (MWH)

number of installations of customer owned generator type i

jth derivative of the standardized normal distribution
availability of generator type i

reliability of grid electricity to customer k
Probability |y = XxJ

personal income in region a at time t (p/person)

population in region a at time t

probability that grid electricity cannot be
supplied to customer k in time period t
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U = failure rate of the T+D system for customer K
QSt = peak customer demand in subperiod s, time period t (MW)
r = loading order of a central generator
RMt = reserve margin required in time periou t as a percent
of peak demand in time period t
RRY - required revenue in time t (%)
rr = allowed rate of return on investment
s = subperiod
S = total number of subperiods
Soc., = sociological factors about customer k such as
Jk nunber of people in the household and the income level
t = time period
T = total number of time periods
Tl = last time period with nun-Tinear constraints
TC(Yt) = total cost function in time period t as a function of
unit operating capacities (3)
TCSt = total cost of the system in subperiod s, time period t (§)
Temp® = temperature in subperiod s (°F) v
Temp':aX = maximum temperature in region a (°F)
Temp';n'n = minimum temperature in region a ('F)
Ur = loading point of unit r (MW)
UIt = total installed capacity in time perioa t (MW)
VADDt = value addea to industrial goods in time t (§)
Var(;) = variance of random variable x
VC? = initial variable cost for system i installed in year t

(B/MW)
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vector of meteorological variable for subperiod s in
region a

installed capacity of generation type i (MW)

equivalent demand on unit r in subperiod s, time
period t (random variable) (MW)

expected operating capacity of unit i in subperioa s,
time period t (random variable) (MW)

net electrical demand on the utility from customer k in
subperiod s, time period t (random variable) (MW).

original electrical demand from customer k in subperiod
s, time period t (random variable) (MW)

reduction in electric demand by customer k (random variavle)
(MW)

reauction in electric demand by customer k due to the time-
of-day prices (random variable) (MwW)

ratio of power demand to energy demand for customer k in
subperiod s, time period t (hour-1)

capacity factor for unit r in subperiod s, time period t.
Ratio of average operating capacity to nameplate capacity.

error term in the linear regression
equal orthogonal vectors for demand iransformation

set of time periods in iteration m of the optimization
algorithm for which the reliability constraint is not met

0-1 variable that converts the inaeces of unit type j
installed in year v into a loading order index, r, for
subperiod s, time perioa j.

cunulative degradation factor for unit type i after t years
of operation. '

maximum unserved energy allowed in time period t (MWH)

normal ized output for generator Lype 1 in subperiod s
given that the unit has not failed mechanically [0 < n < 4
(random variable)
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sun of normalized outputs for system i for period t

dual multiplier associated with a time period t
in which there is insufficient capacity to meel the
reliability requirement in iteration m.

shadow price associated with the energy constraint in time
period t, iteration m

discount factor

index for a set of subperiods with the same characteristics,
e.g., sunny breezy summer noontimes.

first time period in the current time set

zero-one random variable representinyg mechanical failure
for generation type i, owned by customer k

set of demographic and economic variables for customer K
in region a in subperiod s of time period d.

estimate
random variable

optimal
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