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INTEGRATION OF DECENTRALIZED GENERATORS

WITH THE

ELECTRIC POWER GRID
ABSTRACT

This report develops a new methodology for studying the economic
interaction of customer-owned electrical generators with the central
electric power grid. The purpose of the report is to study the
reciprocal effects of the operation and expansion plans of the utility,
and the resulting price of electricity, and the demand patterns and
expansion plans of customers. The system is modeled in an open-loop
feedback mode that allows both the utility and the customers to update
their plans and expectations for the next time period based on the
other's actions in the current time period and based on any new
information such as the current price of oil. The utility and the
customers solve similar operation and expansion problems, except that
each has control over different variables. In addition, each may have
different expectations about the future. A complete methodology
encompassing these ideas is developed and implemented.
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1.I Introduction

Of the total energy consumed in the United States, twenty-five

percent is consumed by electric power utilities.1 Utilities

traditionally have generated electricity at central stations and then

sent it through a grid of transmission and distribution lines to

industrial, commercial, and residential consumers. Electricity has many

advantages over other source of power. It is versatile and can be used

to produce work from motors or to produce heat from resistive devices.

It causes no pollution in its end use. Reliable electrical devices are

widely available on the market. To the consumer, the supply of

electricity has always appeared to be unlimited: A flip of a switch and

electricity is delivered instantly. Until recently, the real price of

electricity declined steadily over time as shown in Figure 1.1.

Counterbalancing the advantages of electrical energy to the consumer

are disadvantages which occur elsewhere in the system: to produce one

BTU of electrical energy requires three BTUs of thermal energy. (The

maximum thermal efficiency computed using thermodynamics is on the order

of thirty-five percent.) Thermal energy is produced by burning fossil

fuel which creates air pollution or by controlling nuclear reactions

which create radioactive wastes. The thermal energy that cannot be

converted into electricity is lost as thermal pollution. In addition,

economic inefficiencies result from the current price structure of

1Erikson, L.E., "A Review of Forecasts for U.S. Energy Consumption in
1980 and 2000," [21], p. 19.
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electricity which gives consumers misinformation about the cost of the

power they use.

For many years, technical innovations kept increasing the maximum

plant size and the cost per installed megawatt rose slowly. However, as

these scale economies were completely exploited the cost per megawatt in

constant dollars began to increase rapidly as illustrated in Figure 1.2.

It was also in the late sixties that environmental problems became

national concerns. With the passage of air and water pollution

regulations, utilities were forced to add pollution abatement equipment

to new and existing power plants and were encouraged to switch from

burning coal to burning low-sulfur oil. As a result of the oil embargo,

new laws have been passed requiring utilities to switch back to coal

while maintaining environmental standards. Safety-related equipment has

driven up the cost of nuclear power plants, so that a unit, that in the

fifties was expected to produce electricity too cheap to meter, now costs

billions of dollars before it even begins to produce electricity.

Awareness of environmental pollution has also made siting power

plants more difficult. People are now conscious of the potential

long-term effects of having a nuclear unit, a coal-fired unit, a

high-tension transmission line, or even a hydroelectric reservoir in

their neighborhood. Consequently, utilities have fewer sites available

and the costs of securing sites and rights of way have risen.

As plants have become larger, and new regulations have been passed,

the time between the announcement of a new plant and the startup of

I IIYIIIIYIYIYIII IIIIY11 Y1 Liti I , ,J llhIlYY I diG, id,
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that plant has lengthened. It can take fifteen years to bring a nuclear

power plant on-line. These long lead times have two major effects. The

first effect is to increase the financial burden on the utility. In most

states, utilities cannot collect revenues on plants until the plants

start to generate electricity. So, a utility may be required to carry a

project that produces no revenue for many years. The second effect is to

reduce the planning flexibility of the utility. A utility may find

itself committed to building a plant which is no longer needed, and be

unable to change its plans without severe penalties.

All of these factors have combined so that the cost to a utility of

building a new base load unit can be greater than the utility's total

prior investment. As the financial performance of utilities has

declined, so have their bond ratings, making it even more expensive for

them to raise the necessary capital.

As the price of electricity has risen, consumers have begun to pay

more attention to the rate hearings at which utilities request price

increases. Consumer groups have been organized to keep utilities from

collecting money for units that are not yet in service and from passing

fuel costs directly through to consumers without rate hearings. Many

regulatory commissions that used to hear unopposed rate cases now must

hear long contested rate cases. Their rulings are highly visible and

political. Lately, more and more rulings have favored the consumers over

the utilities.

What has saved the utilities from having to build ever more, ever

larger, ever more expensive plants is that in response to higher prices

-



and governmental urgings, consumers have cut back on their use of

electricity. The leveling off of demand growth can be seen from Figure

1.3. After the depression and before 1973, electrical load grew steadily

at about eight percent per year. Then, the load growth began to drop to

between one and three percent per year depending on the region of the

country. Utilities were completely unprepared for this sudden drop in

demand and most refused to recognize that demand patterns were changing

in response to higher prices. For a while, utilities continued to plan

as if demand were going to return to its previous levels. Now, utilities

have begun to recognize that demand patterns have changed in response to

higher prices and have canceled or postponed many plants originally

scheduled for the early eighties.

So far, most of the price response by consumers has been short-run

response. That is, many wasteful uses of electricity have been

eliminated through conservation efforts, but there has not been time for

consumers to change their capital stock markedly. In the long run,

consumers can buy more efficient refrigerators as the current stock wears

out, they can replace resistive heaters with heat pumps or wood stoves,

and, in general, they can change their capital stock to more effectively

use the electricity supplied by the utility. They can also begin to

supply their own electricity.

Recent government policies and regulations encourage the

installation of small, privately owned generators that operate as part of

the utility system. The Public Utilities Regulatory Policies Act [73]

(PURPA) requires that utilities create fair rates for the purchase of
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electricity from privately owned generators. The installation of

decentralized generators will affect the operations and planning of

electric utilities in many ways.

Among the technologies currently available to consumers are: solar

space and water heating, electrical and mechanical power generation from

the wind, and industrial co-generation of process steam and electricity.

Photovoltaic cells have the potential to become a common source of

decentralized power because they produce electricity directly from

sunlight, are highly reliable, and require almost no maintenance;

although at the moment, photovoltaics are too expensive to compete with

other energy sources in most applications.

Those technologies using renewable resources, such as wind or solar

insolation, as a fuel have many advantages. A long-term supply of free

fuel is assured even though the short-term supply may be uncertain. (One

can never be positive that it will not be cloudy or calm the next day.)

Reducing consumption of fossil fuel by replacing it with renewable

resources eliminates pollution due to the combustion process. Matching

the energy source to the demand characteristics improves the efficiency.

For example, it is more energy efficient to use solar radiation directly

for heating than to burn fossil fuel to produce steam to drive a turbine

to drive a generator to produce electricity to be sent over transmission

lines to be run through a resistive coil for heating. The technology for

co-generation also can improve energy efficiency by utilizing the waste

thermal energy which is a by-product of electricity production.

Co-generation can improve the efficiency by more than a factor of two,



from about 34 percent to 80 percent,2 thereby reducing the fuel

burned and the pollution produced per unit of output.

In an economically perfect world, the prices charged by the utility

would reflect the marginal cost of energy and capacity'and would result

in the optimal level of centralized and decentralized generation.

However, neither the utility nor the customer knows exactly what the

other will do, so each must base decisions on what the other is expected

to do. Also, neither knows the future prices of fuel or generating

capacity with certainty. In addition, there are market imperfections

resulting from facts such as that utilities are regulated monopolies and

that consumer mortgages are indirectly subsidized through the federal and

state tax structure.

It is important to note that even without the problems discussed

above, centralized and decentralized generation are not equivalent.

Firstly, some types of generation exhibit economies of scale while other

do not. Secondly, the electrical distribution system that connects the

central generators to customers affects the reliability of the delivered

energy and, through its losses, increases the amount of centralized

electricity that must be generated. So that, with perfect markets, the

ownership might not matter, but the size and location still would.

1.II Problem Definition

Utilities must now plan in an environment that is changing rapidly,

2Gyftopoulos, [43], p. 25.



but the techniques currently available do not recognize this. The

hypothesis of this report is that the plans made by utilities would be

quite different from their present plans if they could more accurately

account for factors such as demand response to price, lead times, and

decentralized generation.

This report develops a new methodology for long-range planning for

electric utilities. Most long-range planning models construct the

optimal plan over twenty or thirty years based on current knowledge.

These models require that the utility specify the customer demand, fuel

prices, and capital costs, for thirty years into the future. To study

the effect of an increase in the price of oil, a sensitivity run could be

made changing the price that utilities pay for oil; however, it would be

unlikely that the exogenously specified demand would be changed too since

that would require that a separate model be rerun. Because different

groups use the supply and demand models, it is rare to see a study that

links them. This new methodology explicitly accounts for the dynamics of

electricity supply and demand, allowing both the utility and its

customers to react to changing prices and changing expectations over time.

The result of this report is a methodology that allows planners to

model aspects of the system that have been ignored previously. The

methodology is flexible and allows the planner to substitute models of

more or less detail for any of those described here. The purpose is to

develop a new way of looking at long-range planning, rather than to

develop a better algorithm for modeling some part of the total system.

Because the system is complex, explicit assumptions have been made about



the interactions between the utility and its customers:

1) that the utility and its customers influence each other only

through a fixed set of signals. For the utility, the signals

sent are the price and reliability of the electricity provided.

For the customers, the signals sent are the peak power demand,

the energy consumption and the demand pattern (load shape);

2) that neither the utility or its customers can change the decision

criteria or the choices available to the other. This assumption

means that factors such as ad campaigns in which a utility

attempts to induce customers to switch to electric heat or to

conserve energy for other than purely economic reasons can not be

modeled;

3) that both the utility and its customers plan for the future based

on uncertain information and that as time passes decisions about

actions in the near future become fixed while those further in

the future may change based on new information. The new

information may be a signal from the other or a changed factor

from an exogenous source. An example of the former would be an

increase in the price of electricity while an example of the

latter would be an increase in the price of oil;

4) that the long range plans of the utility have little influence on

customers' decision except through their expectations of the

future price of electricity. The converse of this assumption is

not true, the next assumption being:

5) that the expected long range behavior of customers can influence

__ __~_
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the plans of the utility. That is, the utility can take into

account the expected response of demand to price when making its

long range forecast;

6) that the system need not be in equilibrium. That is, at any

time, it would be possible to iterate to an equilibrium solution

in which the price charged by the utility exactly matched what

customers were willing to pay. The assumption, however, is that

due to regulations, lead times, and other factors, that the

system continues to evolve over time without ever necessarily

reaching an equilibrium state; and

7) that adjustments are made at the beginning of discrete time

steps. This assumption could be relaxed, allowing, for example,

new units to be installed or price increases to take effect in

the middle of time steps. This assumption is made for ease in

exposition.

1.III General Formulation

In broad outline, the interactions of the utility and its customers

are as follows: the utility announces a price for the current year.

Customers respond to that price in the short run by changing the patterns

of their consumption and, if they own their own generators, of their

supply as well. Both the customers and the utility make plans that

commence in the following year based on their current knowledge. For

either the utility or the customer it may not be possible to alter plans

instantly. Because of the lead times required for some projects, the



decisions made in the current time step may not take effect until some

time in the future. However, it is assumed that in each time step some

decisions are made fixed while others are allowed to float. For example,

it may be necessary to make firm commitments today in order to have a

base load generator seven years from now, but the commitments for a

second unit on the same site, needed in twelve years, may be minimal.

When the time step advances, the plans of the utility and its customers

are fixed and a new price is announced based on the customer demand and

the installed units in the previous time period.

Figure 1.4 gives a schematic representation of the interactions.

The inner loop of utility operation, rate setting, and customer demand

represent the direct interactions of the utility and its customers. The

peripheral loop of utility and customer expansion planning represents the

decision processes whose effects filter down to the direct interactions.

This is made more precise in Figure 1.5 which illustrates the signals

received and sent by each actor, using the notation developed in the

report.

Each box in Figure 1.5 can be thought of as a function that

transforms the input signal to the output signal. Most of the remaining

chapters of the report will be devoted to making the function forms of

these transformation explicit, although they can be written in general

form now.

First, the utility announces a price for electricity for the next

time period, based on the installed capacity and the system operating

cost in the current time period. In some areas, the price may include
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anticipated costs, but the price is always announced prior to the time

period in which it takes effect. (For an interesting discussion of

taking this principal to its limit by announcing a new price every five

minutes, see the paper on homeostatic utility control, reference [79].)

The price announced by the utility can be computed as some function of

the capital and operating costs of the system:

c = f(ECT , CX) (1.1)
nr+

where cn = price of electricity in time period T+1. (The subscript n

indicates that the variable is a property of the utility)

($/MBTU)

EC = total cost of operating the utility system in time

period T ($) (see equation (1.5))

CX = historical or replacement cost of system capacity in

time T ($) (see equation (1.12)).

This price becomes effective for the next year and the next year becomes

the current time period:

T = T + 1. (1.2)

Given the new price, customers may change their demand patterns

making short-run adjustments:

YK = f(cn, Xk c , TI, w ) (1.3)

EEK = f(c n, Xk , C IT, WT )
(1.4)

where

YK = peak power demand of all customers in time period T (MW)

EK = energy demand from customers in time period T (MBtu)



cn = price of electricity in time period T computed using equation

(1.1)($/MBtu)

Xr = vector of installed capacities owned by customers in time

period T (MW)

cT = vector of prices for competing sources of energy available

to customers in time T ($/MBtu) (exogenous)

T
Q = vector of demographic variables describing customers in

time T (exogenous)

w = vector of meteorological variables for time T (exogenous).

And, the utility must adjust its operating schedule to meet the new

demand at minimum cost, given the price of available fuels:

ECT = f(YK' EK' X, c (1.5)

where

EC = expected cost of meeting demand in time T ($)

YK = customer demand as computed in equation (1.3)

E = customer energy demand as computed in equation (1.4)
K

XT = vector of installed capacities in time T (MW)

c = vector of prices for fuels in time T ($/MBtu) (exogenous)

However, both the customers and the utility can change their capital

stock in the long run, although neither can change it instantly. For the

customer, this can mean buying appliances to match the rate structure.

For example, under some rate structures it would be worthwhile to buy an

oversized air conditioner that could be cycled to run only off-peak,

while under other rate structures, it would be worthwhile to buy an



undersized air conditioner that would run constantly. In addition,

customers can buy appliances that use alternative fuels, for example, gas

stoves. And, customers can install their own source of power using

conventional fuels, e.g., diesel generators, or nonconventional fuels,

e.g., solar insolation. For any appliance or generator, the customer can

compute the breakeven capital cost:

A A A
BECCik = f(Yk' Ek', w) (1.6)

where

BECCt
BECCik = breakeven capital cost of system i installed in year t

by customer k
A

Yk = vector of estimates of customer k's power demands over

the lifetime of system i
A

Ek = vector of estimates of customer k's energy demands over

the lifetime of system i

c = estimates of power costs from all sources over the

lifetime of system i (exogenous)

w = vector of meteorological parameters (exogenous)

The breakeven capital cost is the cost that the system must sell for so

that a purchaser would be indifferent between that system and the best

alternative. If the purchase price is less than the breakeven cost, then

one should buy the system and save money. However, since there are many

factors that influence a purchase besides cost, only a fraction of

predicted purchases will be made:

At ^ t ^t

Xik = f(BECCik Ki) t = T + i .."' T (1.7)



where

X k = planned capacity of system i to be installed in year t

by customer k

BECC t = estimate of the breakeven capital cost for system i for
ik

customer k in time t

Kt  = estimate of the purchase price of system i in time t
1

Vi = minimum number of time steps to install system i.

Then, for all systems with

and

X > 0ik

t= +li'

(1.8)

Xt t
ik = Xik'

That is, if one plans to have a system operating in time t and the

decision must be made in time T in order to have it in time t, then the

decision variables are fixed in time T for time t even though the plans

are based on estimates of the future. Thus, when time t becomes the

current time period, the capital stock of the customer is known.

The breakeven capital cost can be computed in one of two ways. The

usual way is to run a simulation of the customer demand computing the

difference in the cost of meeting demand with and without the system in

question. The cost saving is the total amount one would be willing to

pay to have the system installed. An Alternative is to perform an

optimization to find the capital stock that will meet the demand at

minimum cost. From the optimal solution, one can perform sensitivity

analysis to find the cost at which a system just enters the solution.



If properly performed, the optimization and the simulation should

yield the same results. However, because of the many nonlinearities in

demand, formulating realistic solvable optimization problems is

difficult. The optimization technique has the advantages of being

elegant and of ensuring that the breakeven cost of the system is always

relative to the best alternative. The simulation technique has the

disadvantages of requiring a lot of data and computer time and the

advantage of allowing almost any form of constraints.

At the same time that the customer is making decisions about the

future, so is the utility. First, the utility must know how much demand

there will be in order to decide how much to build. The demand

projection must take into account the expected price of electricity

relative to the expected price of other fuels and the expected customer

behavior:

At At-1 At-i ^t At t

Yk f(Yk , Ek , Xk, c , , w) (1.9)

At At-1 At-1 At At t
Ek =-f(Yk , Ek , Xk, c , , w)

where
^t

Yk = estimate of customer power demand in time t (MW)

Et = estimate of customer energy demand in time t (MBtu)
AtXk = estimate of customer's capital stocks in time t (MW)

ct = vector of estimates of fuel prices in time t ($/MBtu)

(exogenous)

St = vector of demographic variables for customers in time t

(exogenous)



w = vector of meteorological variables (exogenous).

Using the demand estimate from equation (1.9), the utility can plan

on how much capacity to build in each year. The long-range planning

problem for utilities has been studied for years, and there are many

alternative formulations available. Usually, the utility's objective

function is assumed to be cost minimization, although other criteria can

be used. In general form, the optimal capacity can be found using:

t* At At t-1 At At

Xk = Yk Ek, X , c , K ) t = T + Pi, ... T (1.10)

where

t*
Xk = optimal capacity of type i to be installed in year t (MW)
A4-

Y = estimate of the total customer power demand in year t (MW)
E = estimate of the total customer power demand in year t (MBtu)
Xt-1 = vector of capacity installed prior to year t (MW)

c = vector of estimates of fuel prices for time t ($/MBtu)

(exogenous)
At

K = vector of estimates of installment costs for time t ($/MBtu)

(exogenous)

= minimum number of time steps between the decision to build

a plant of type i and its beginning operation.

For all those decisions that must be made in the current time period T to

have a plant in time t, that is, for:

Xt * > 0 (1.11)1

and t = T + Pi'



t t*
then X .= X

1 1

And the capital cost of the system is updated:

CXt = f(X t , Kt , CXt -l )  (1.12)

where

CXt = capital cost of the system in time t ($)

Xt  = capacity installed in time t (MW)

K = capital cost of new capacity in time t ($/MW)

Just as for the customer, when t becomes the current time period,

the installed capacity is known, although it may no longer be optimal

since it was planned based on estimates of future customer demand and

prices.

The operating and capital costs computed in equations (1.5) and

(1.12) are then used to compute rates for the next time period using

equation (1.1) and the cycle repeats.

1.IV Implementation

In order to study the system outlined in Section 1.III. it is

necessary to make the functional forms explicit. One option is to

specify very simple functional forms to find the precise mathematical

relationships among variables and to find the sensitivity of the model to

changes in certain variables. However, to get beyond such basic

conclusions as if the price of electricity goes up, then the demand

decreases and less capacity is needed, more complex formulations are

needed. So, the other option is to use detailed models of each of the



subsystems. This approach virtually eliminates the ability to write

closed-form solutions for the relationships among variables in different

submodels.

The advantage of the second approach is that each subsystem can be

modeled according to the requirements of the problem under study. In

many ways, the precise functional forms used to describe different

subsystems are arbitrary. Any long-range forecasting model can be used

as long as the user believes either that the model accurately depicts

demand growth or that it accurately depicts the way that the utility

would forecast load growth.

This report uses the second approach, giving the model descriptions

that follow an air of impermanence. But, in order to demonstrate how the

methodology works it is necessary to assume some functional form. And,

any model that was substituted for those described below would have to

solve the same problem as discussed in each model description.

Each of the next six chapters of this report describe one of the

subsystems in Figure 1.4. The entire system is summarized in Chapter 8.

An example is given in Chapter 9. The models described are

state-of-the-art models, some of which are still under development.

Because of this, not all of the models have been fully implemented as

computer models. Therefore, in the example given in Chapter 9, which

demonstrates how the modules fit together, some models have been run on a

hand calculator, while other models have been replaced by less advanced,

but available, computer models. So, the example in Chapter 9 is there as

a concrete guide, but the derived numbers should not be interpreted as



results.

The author has contributed to most of the models described in this
thesis, particularly, the long-range planning model, the customer

operation model, the time-dependent generation model, and the

rate-setting model. The author is completely responsible for the

production costing and reliability models, and for the code which links

the models.

I.V Overview

Each subsystem in Figure 1.4 affects and is affected by the other

subsystems. Rather than attempting to model the entire system as a

single entity, each subsystem has been modeled separately explicitly

showing the interactions among them. A common data base has been used

for consistency.

Chapter 2 projects the long-run demand for electrical energy based

on fuel price forecasts. Then, the total demand is modified by consumer

response to time-of-day pricing and by customer-owned generating units,

resulting in a projection of the total demand on the electric utility.

Chapter 3 finds the distribution of the net load on the utility

based on correlation of the response to time-of-day pricing and of the

output of customer-owned generators with the fluctuations in the original

electricity demand.

Chapter 4 develops a methodology for finding the minimum cost of

operating a set of electrical generators to meet the demand as specified

in Chapters 2 and 3, using the fuel price projections. This methodology
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also finds the reliability with which the generators meet the demand.

Chapter 5 uses the methodology of Chapter 4 as part of an

optimization algorithm that finds the minimal cost expansion plan for a

utility subject to a reliability constraint. In addition to fuel price

projections and demand specificatons, this methodology also requires

capital cost projections and new technology specifications.

Chapter 6 uses the rates, along with fuel price projections, capital

cost projections, and technology specifications to find the amount of

capacity that customers would install for themselves.

Chapter 7 uses the capital and operating costs from the optimal

expansion plan to compute new electricity rates.

The new electricity rates and new customer installations are then

used to project electricity demand starting in the next time period, thus

closing the loop.

Chapter 8 summarizes Chapters 2 through 7 and can be read in

parallel with the example in Chapter 9.

For those unfamiliar with electric utilities, Appendix A contains a

basic description of how utilities operate.



2. Electrical Demand

The demand forecasting component of the model estimates the future

demand for electric energy based on the current demand (Chapter 3), the

current capital stock of customers (Chapter 6), and the current price of

electricity (Chapter 7). The demand forecasting model also requires

exogenously specified estimates for the projected prices of competing

fuels and exogenously specified estimates for variables that describe the

general state of the economy. The demand forecast is used only by the

utility long-range planning model.

2.1. Introduction

People do not need energy for itself. They need warm houses, cooked

food, conveyance from here to there, and so on. For the most part, the

type of energy used to produce the desired result is not of great

importance to consumers. When installing a new energy conversion system

or buy a new energy-consuming appliance, consumers made trade-offs

between capital and operating costs subject to the way in which they

expect to use it and to their own preferences. Of course, expectations

are not always met. If prices rise or the weather is extreme, consumers

may revise their needs or find alternative ways to meet the same needs.

For example, a homeowner who chose electric heat when utilities were

offering promotional rates might now find that double-glazed windows pay

for themselves in fuel savings and that 680 is comfortable given the cost

of keeping the house at 750.

When studying electrical power systems, it is important to know how

the price of electricity and the prices of competing fuels will affect



the overall demand for electricity both through changes in capital stock

and through changes in operating characteristics. It is also important

to know how the price of electricity will affect the shape of the demand

curve. For example, with flat electrical rates, it may be worth it to

consumers to keep their air conditioners off until late in the afternoon

when it gets hottest. Then, since they have their air conditioners on

for only a short time, their electricity bills are low and they are

comfortable. Although for the utility, even though the energy demand is

reduced, the peak power demand is the same or higher. This in turn may

lead to even higher electricity prices. The obvious solution to this

problem is to institute a price schedule that reflects the time-varying

cost of generation. However, the point is that the price of electricity

and its rate structure, the price of alternative fuels, and environmental

factors will all affect the peak demand, the load shape, and the total

energy demand. These in turn affect the cost of operating the electrical

generators and affect new capacity requirements. It is worth noting that

in long-range planning models used by utilities the demand is exogenously

specified and is not linked to the cost of generating power. See, for

example, the survey of models in Anderson L2j.

There are two distinct camps in modeling the demand for electricity.

Economists model the aggregate demand for electricity based on the

historical relationship of electricity consumption with factors such as

income level, regional fuel prices, and capital costs. Engineers model

the demand for electricity by simulating the use of appliances in

response to the weather, time-of-day, and other environmental factors.



Economists tend to ignore the time variation in demand and its physical

causes while engineers tend to ignore the price response of demand. Of

course, there are many models that combined elements of both, but the

underlying bias toward physical causality or toward statistical

correlation is usually apparent.

Both types of models will be used for this report. A two-level

economic model will be used to predict shifts in demand in response to

different rate structures and to preduct long-run changes in demand in

response to the average price of electricity. An engineering model will

be used to simulate the joint dependence of electrical demand and

electrical supply for homeowners who elect to build weather-dependent

generators. These models are only loosely linked. An integrated

approach is currently under development by Hartman [45] at the MIT Energy

Laboratory.

2.II. Long-Run Electrical Demand

The economic literature is full of long-run energy demand models,

each with a different emphasis. For this report, the Baughman-Joskow

demand model [7,8,9,14,54], a relatively simple, well-documented,

regional model, will be used. In this model, the total residential and

commercial energy demand for each state is calculated and then the

relative fuel split is calculated. For the industrial demand, the total

national energy demand is estimated, then allocated by state, then split

by fuel type.

The Baughman-Joskow demand model does not explicitly account for



trade-offs between the prices of fuel and the prices of the equipment

associated with burning each fuel; however, it does account for

trade-offs among fuels based on their relative prices. Because the

estimates of the way people make choices are based on historical data, if

one is willing to assume that the choices do not change drastically, then

the projections are valid. So that, as long as no inventor comes up with

a small, efficient, inexpensive cogenerator that can supply heat and

electricity to a single-family house, or as long as the electric car does

not become suddenly popular, then the Baughman-Joskow model is sufficient

for the purposes of this study. A critique of economic demand models,

including the Baughman-Joskow model, can be found in references [35) and

[45].

Changes in the long-run demand due to installations of customer-owned

generation will be addressed in Chapter 7. There, an optimization model

will be used to model the trade-offs between capital and fuel in

selecting new technologies. For now, the capital stocks, including

customer-owned generators, are assumed to be fixed and known.

The Baughman-Joskow demand model presented here uses the equations

and coefficients in the latest computer model. These are similar but not

identical to those presented in reference [54]. Also, the coefficients

have been adjusted so that the variables are given in the standard units

used in the rest of this report. Unfortunately, a statistical analysis

of the coefficients is not available.
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2.II.A Residential-Commercial Demand

In the Baughman-Joskow model, the total residential energy demand for

a particular region is estimated by:

t t
ETRa = POPa exp(X1) (2.1)

where

t t min t
X1 = Al + Bl(PI /POP ) + CI Tempm + D1(POP /AREAa )a a a a a

-t t-1 t-1
+ El log(CRa + F log(E a /POPRa a a

where

t = time period

ETa = total residential and commercial energy consumption inRa

region a at time t (MBtu)

POPa = population in region a at time t

PIa = personal income in region a at time t (1970 constant

dollars/person)

mi n
Temp = minimum temperature in region a (0F)

a

-t
cRa = weighted average residential-commercial energy price

in region a (1970 constant dollars/MBtu)

The coefficients in equation (2.1) have been estimated on historical data

and are given in Table 2.1.
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Coef Value

Al .668

B1 2.69e-5

CI -. 0012

D01 9.36e-6

El -. 134

Fl 0.842

Residential-Commercial Total Demand Coefficients

Table 2.1

Dropping the regional subscript, the residential gas consumption in

region a, relative to the regional residential electricity consumption,

t
ER, is given by:

t t
EGR = ER exp(X2) (2.2)

where

t t ax
X2 = A2 + C2 log (CRG/CRn) + D2 Tempax

+ F2 Temp mi n + H2 log(EGt-1/Et-1).

The residential oil consumption, relative to the residential

electricity consumption is:

t t
EOR = ER exp(X3) (2.3)

where

_I_
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t t max
X3 = B2 + C2 log (cRo/CRn) + E2 Temp

min t-1 t-l
+ G2 Temp a + H2 log(EOR /ER

= electrical energy consumed by residential-commercial

customers in region a at time t (MBtu)1

= gas energy consumed by residential-commercial customers

in region a at time t (MBtu)

= electrical energy consumed in region a at time t (MBtu)

in region a at time t (MBtu)

= oil energy consumed by residential-commercial customers

t
cRg = residential gas price in region

dollars/MBtu)

t
cRn = average residential electricity

(1970 constant dollars/MBtu)

t
cRo = residential oil price in region

dollars/MBtu)

Tempm ax = maximum temperature in region a

The coefficients for equations (2.2) and (2.3)

a at time t (1970 constant

price in region a at time t

a at time t (1970 constant

(oF)

are given in Table 2.2.

1These are Btu's of delivered energy, and do not include the energy
lost in producing the electricity.

and where

t
ER

t
EGR

t
R

t
EO

R



Coef Value

A2 0.082

B2 0.415

C2 -0.207

02 -0.00177

E2 -0.00429

F2 -0.00363

G2 -0.0102

H2 0.839

Residential-Commercial Fuel Split Coefficients

Table 2.2

Finally, the electrical energy consumed by residential and commercial

customers in region a at time t is:

t t t t
ER = ETR - EGR - EOR (2.4)

or

E = ET t/L + exp(X2) + exp(X3)j (2.5)

2.II.B Industrial Demand

For the industrial energy demand, first the national demand is

estimated, then it is broken down by state. The total demand is:

t -t t
ET = expL(A3+B3 log (c ) + C3 log(VADD ) (2.6)

where

ET = national industrial energy demand in time t (MBtu)I



-t
c = national weighted average price of industrial energy in time

t (1970 constant dollars/MBTU)

VADD = value added to industrial goods in time t (1970

constant dollars)

The coefficients for equation (2.6) are given in Table 2.3.

Coefficient Value

A3 26.48

B3 -0.219

C3 0.688

Industrial Energy Demand Coefficients

Table 2.3

The relative energy consumed by each state is found using

t t -t -t
ETIa = Ea exp(A4og (ca/)

t t t-1 t-1
+ B41og (POP /POP ) + C41og(ETIa /ETI1 ) (2.7)a I Ia I(

where the variables are the same as those defined in equation (2.6)

except that they are given by region. In equation (2.7), all of the

energies are computed relative to region i. For the coefficients given

in Table 2.4, region I is California. The absolute energy consumption

for any region can be found from the relative weights and the total

consumption.



COEF

A4

B4

C4

VALUE

-0.156

-0.47

0.927

Industrial State Allocation Coefficients

Table 2.4

The amount of gas consumed by industrial customers relative to the

amount of electricity consumed by industrial customers is:

t t t t
EGia Ela expLA5 + D51og (c ga/c naIa= a Iga Ina (2.8)

t-1 t-1
+ E51og(EGia /Ela )j.

The amount of oil consumed relative to amount of electricity consumed is:

t tEO = Ela
Ia Ia

t t
exp LB5 + D5log(c la/Cln a)INa Ina

t-1 t-1
+ E5log (EOla /Eia ).

The amount of coal consumed relative to the amount of electricity

consumed is:

t t t t
ECia = E la exp LC5 + D5log(cICa/CIn a) (2.10)

t-1 t-1
+ E51og (ECIa /EIa ).

Ia a

Finally, the electrical energy consumed in a region a time t is:

(2.9)

I _ ~ ~_II_ i_ _



t t t t t
Ela = ET - EGa - EC - EOa (2.11)

where

ET a= total energy consumed by industry in region a in time t (MBtu)
tEa = Electrical energy consumed by industry in region a in

time t (MBtu)

EGla = Gas consumed by industry in region a in time t (MBtu)
tEOEOla = oil consumed by industry in region a in time t (MBtu)
tECa = coal consumed by industry in region a in time t (MBtu)
t
na = electricity price for industry in region a in time t

(1970 constant dollars/MBtu)

t
clGa = gas price for industry in region a in time t (1970

constant do llars/MBtu)

t
c Oa = oil price for industry in region a in time t (1970 constant

dollars/MBtu)

cCa = coal price for industry in region a in time t (1970

constant dollars/MBtu).

The coefficients for equations (2.8) to (2.10) are given in Table 2.5.

COEF VALUE

A -0.231

B5 -0.354

C5 -0.540

D5 0.301

E5 0.856

Industrial Fuel Split Coefficients

Table 2.5



Equations (2.1) through (2.11) can be used to estimate the total

electrical demand, residential, commercial, and industrial, based on

projections of population growth, personal income, value added, cost of

capital, and fuel prices. Within the moael, the fuel prices are linkeo

so that the price the utility pays for fuel is based on the price of fuel

to industry. Thus, the computea price for electricity is consistent with

the other fuel prices.

2.111. Short-Run Electrical Demand

In the short run, consumers can not adjust their capital stock to

take the most advantage of changing fuel prices. At best, they can

change their overall consumption using the same capital stock or they can

change their patterns of usage to take advantage of time-differentiated

rates. This section will study changes in patterns of usage due to

time-of-day rates and to customer-owned generation.

The changes in overall consumption are measured relative to the

forecast from the long range model described above. Changes in patterns

of use will be measured relative to a base case load shape, for example,

from the last year of historical data. Marginal changes to the base load

shape will be computed based on an economic model of consumer reponse to

time-of-day rates ana on an engineering model of customer-owned

generation.

This section will discuss only residential customers. Many

industrial electricity users have had time-of-day rates for many years,

but there is very little data available. Acton and Mitchell Lii have



studied industrial time-of-day rates in Britain and the United States.

However, because of the difficulty of getting matched cross-sectional

data, most of their evidence is anecdotal. When models of industrial

response to time-of-day rates become available, they can be fit into the

structure described here.

For convenience, residential customers have been divided into two

classes: those who own their own electrical generators and those who do

not. This section will deal only with those customers who do not own

generators. The next section will deal with those who do.

2.III.A. Load Shifting

Much has been written about how time-of-day rates should cause

customers to shift their demand away from peak demand periods and much

has been written about how time-of-day rates should be calculated, but

little is known about how customers in the United States respond to

time-of-day rates. Since 1974, the Federal Energy Administration (FEA)

has sponsored residential time-of-day pricing experiments throughout the

country. A great deal of data has been collected, but it has only begun

to be analysed.

Hausman, Kinnucan, and McFadden L48J have analysed the data from the

Connecticut peak load pricing experiment and have developed a model to

predict how residential users respond to time-of-day rates. The

coefficients for their model have been estimated only on the Connecticut

data, but the structure of the model is general and could be expanded

when more data becomes available. In particular, because there was not
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enought variation in the prices, it was not possible for them to estimate

cross-price effects. That is, effects from people changing the time at

which they do something in order to take advantage of a price

differential. The cross-price terms have been dropped from the

presentation given here. They can be found in the original reference.

The model has two demand levels. On the first level, the total

electrical demand is computed based on its price relative to other

fuels. Then, since the total demand is set, the demand in each time

period is computed based on the relative electrical prices. The

Baughman-Joskow model will be used for the first level and Hausman,

Kinnucan, and McFadden model for the second level. Under their

structure, if the price of electricity were to double the overall

consumption would be reduced, but as long as the relative prices remained

the same, then the relative consumption in each time period would remain

the same. This assumption is not overly restrictive for our purposes.

The electrical energy demand for customer k in subperiod s is found

relative to consumption in a period in which the demand and price are

both known, e.g. a corresponding historical time period:

I I
ek A6s + B6 APPik C6S App

i=1 i=2

J

+ E D6s Socj + E6Sc
k jk kj=1

I I

+ E F6 c Appik + E G6 ck Aik Appk 2.12)
i=1 i=21k(.2

- h hhIII , 1' 'I''11 iW 1,11ifi IOIW '
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J
+ L H6' c' Socjk + 16s Temps

j=1 k S k

+ J6s cS Temps + K6 Appi Temps
i=I

2

I 7

+ L6s ck Appik Temps + E M6n Day
i=I 2  n=l

where

s = subperiod

ck = price of electricity to customer k in subperiod s

relative to the price in the base period

Appik = 0-1 variable indicating whether customer k owns

appliance i

App 1k = hot water heater

App 2 to 1,k depena on the hot water heater

App 2 to 13, k depend on the temperature

Socjk sociological factors about customer k such as number

of people in the household and the income level.

Temp s  temperature in subperiod s (OF).

Day = 0-1 variable indicating the day of the week (Day =

Sunday).

For any class of customers, i.e., those having the same appliance

stock and sociological factors, equation (2.12) can be simplifiea to just

those terms that depend on the temperature and time:



es A7s + B7 C + C7 Temp
k  k  k  k k

7
+ D7 ck Temp s  +  Ms Day m

n=1

where A7k = A6k +

+ 1
j=1

I I

SB6i Appik + C6i Appik Appik
i=1 i=2

D6 Spcjk
j jk

B7s = E6s +k

j=1

C7 = 16s +

D7k = J65 +

I
F6  Appik

i=1

H6 Socjk

i 1ikI S

K6i Appik
2

LL6 s  App
i=I 2

ik

I

+ G6i Appik Applk
i=2

and the rest of the terms are as defined in equation (2.12).

Table 2.6 defines the appliances ana sociological factors that were

included in the study. Since the data is for winter in Connecticut, air

conditioning load is not includea. Table 2.7 gives the estimates of the

coefficients in equation (2.12). The statistical analysis of the

coefficients, omitted for simplicity, can be found in the original

(2.13)



reference.

AppI: electric hot water heater
ApP 2: dishwasher (depends on water heater)
ApP 3: clothes washer (depends on water heater)
App 4: electric heat (depends on temperature)
ApP 5 : electric range
ApP6: freezer

ApP 7: electric clothes drier

Socl: home during day (0-1 variable)

Soc 2 : home size (square feet)
Soc 3: home type (single home or multiple dwelling)
Soc 4 : people in home
Soc5: income (1000's dollars)

Appliances and Sociological Factors in the
Connecticut Peak Load Pricing Test

Table 2.6 from reference [48j, p. 276

Using equation (2.12), the coefficients in Table 2.7, and statistics

on the number of residential customers and the types of appliances they

own, shifts in the residential load curve can be computed.

The change in the electrical energy demand can be written as:

st st st
AE = E - Ec (2.14)

where

E = energy demand after price shifting (MBtu).
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Winter Weekday Load Shift Coefficients

Table 2.7 from reference L48J, p. 276

Coefficient

B61  (water heater)
B62  (dishwasher)
B64  (heat)
B65 (range)
B66  (freezer)
867  (dryer)

C62  (dish x water)
C63  (clothes x water)

D61 (at home)
062 (size)
063 (type)
064 (number)
065 (income)

E6 (price c)

F61
F62
F64
F65
F66
F67

water)
dish)
heat)
range)
freezer)
dryer)

G62  (c
G63 (c

H61
H62
H63
H64
H65

Peak Period

-2.230

.010
-0.064

.039

.166
-0.283

.222

.307
-0.079

.257
.084

-0.395
.070
.0058

.011

-0.018
.014

-0.012
-0.020

.018
-0.022

x dish x water) -0.027
x clothes x water) .043

at home)
size)
type)
number)
income)

-0.005
-0.010

.021
-0.002
-0.0006

Intermediate
Period

-2.370

.545
-0.215
-0.163

.374
-0.407

.450

.266
-0.899

.079

.114
-0.206

.038
.0074

.137

-0.208
.062

-0.283
-0.031

.123
-0.181

-0.017
.379

.061
-0.084
-0.024

.0098
-0.0065

continued on next page

Off-Peak
Period

-1.380

.058

.152
-0.356
-0.126
-0.462

.705

.192
-0.411

-0.228
-0.076
-0.316

.065

.0020

.019

-0.200
.066

-0.021
-0.073
-0.036
-0.141

-0.067
.266

.118

.019
.030

-0.025
-0.0028



Table 2.7 (continued)

Coefficient Peak Period
Intermediate

Period
Off-Peak

Period

16 (temp)

J6 (c x temp)

K64  (temp x heat)

L64  (c x temp x heat)

M63  (Tuesday)
M64  (Wednesday)
M65  (Thursday)
M66 (Friday)

-0.0006

.0002

.037

.0006

-0.011
-0.043
-0.011
-0.029

.0024

-. 0002

-0.047

.024

-0.107
-0.079
-0.109
-0.153

st
By definition, ek is:

est = Est /E ST
k c k

where

st
Ek = demano in subperiod s of the current time period by

customer k (MBtu)

The change in energy demand can be written as:

s
5

(Est - est EST

S (Ek k )
k

St ET E E st
=E -E ek

s k

so the net energy demand is known as a function of the demand in the

current time period ana the load shift coefficients.

-0.012

.004

.034

-0.020

.002

.051

.032

.050

(2.15)

(2.16)



2.III.B Customer-Owned Generation

The economic demand models discussed above cannot account for new

technologies, nor can they account for the specific choices made by

particular customers. Since the purpose of this report is to study the

customers' options for generating their own electricity, a different type

of model is required. In a Chapter 6, a model of how customers decide

what to build and how much to build will be developed. In this chapter,

it is assumed that the-amount and type of customer-owned generation is

known. The problem is to find how customer-owned generation,

particularly time-dependent generation, affects the energy demand on the

utility.

The output from an electrical generator can be described in great

detail by modeling the steam cycle, harmonics of the stator and the

rotor, the mechanical and electrical inertia, the power angle and so on.

For studies of the power conditioning and safety equipment required for

small generators, such detail would be necessary. For a discussion of

some of the technical issues of integrating small electric generators

with a utility see reference [94]. A much simpler model will be used

here both for the central and decentral generators.

For conventional generators, that is, those that are not

time-dependent, the only necessary parameters are the capacity, the heat

rate (efficiency), and the forced outage rate. In Chapter 3, it will be

shown how the generators and load are modeled together. For the time

being, it is only necessary to define the operating capacity of a

generator. The operating capacity is a random variable given by:



Yik = iXik (2.17)

where Yik = operating capacity of the unit i owned by customer k (MW)

94 = zero-one random variable describing forced outages for

unit i

Xik = rated capacity of unit i owned by customer k (MW).

The distribution of the forced outage component is:

Pi y= X
PL+ i yjy] = (2.18)

qi y=O

Pi +  = 1

where qi = probability of forced outage of unit i.

For time-dependent generators, additional information on the nature

of the time dependence is needed. Detailed models of different types of

generators are available. Within this study, it is sufficient to know

that the output of a nominally sized generator can be written as:

11 = fiw s) (2.19)

where s = subperiod (e.g., hour)

ws  = vector of meteorological data (e.g., wind speed,

ambient temperature, solar insolation)

f. = function that transforms meteorological data into
1

electrical output for generator i

n.; = normalized output for generator type i in subperiod s.



In equation (2.19), it is implicitly assumed that the function fi is

independent of the size of the generator. That is, if a one megawatt

generator can produce x megawatts, then, under the same conditions, a ten

megawatt generator can produce 10x megawatts. If this assumption is

violated for a particular generation type, for example, wind, then each

size range can be labeled as a distinct technology.

The operating capacity of a time-dependent generator is written:

Ys ~s ~  (2.20)
ik = i i Xik (2.20)

where

-s
ik = operating capacity of unit i owned by customer k in

superiod s (MW).

For computing the long-run energy demand, it is only necessary to

know the total energy produced by customer-owned generators. Their

effect on power demand will be discussed in Chapter 3.

The total energy supplied by a time-dependent generator is the

integral over time of the operating capacity:

Eik khs = n =Xi hs ikC "  (2.21)

where hs = hours in subperiod s.

Define the total nominal energy output from a unit to be:

Hs E L s (2.22)

Given that the mechanical failures of the customer-owned generators are

independent, with the additional assumption that all generators of the



same type have the same binomial failure rate no matter who owns them,

and there are enough of them, then the sum of their outages is normally

distributed:

K

i= ik (2.23)

Ti N (niPi, niPiqi) (2.24)

where n. = nunber of installations of type i.

As a rule of thumb, the normal approximation to the binomial

distribution is valid in the region where:

E(qi) > 3LVAR(i) 11 2  (2.25)

where E(I'i) = n.p.i

VAR(, i) = niPiq i for the binomial distribution

So, for outage rates on the order of .1, there would have to be more than

81 installations to use the approximation.

Assuming there are enough customer owned generators on the system,,

then the expected energy generated by units of type i is:

t
AEi = niPiXi  (2.26)

where AE. = change in electricity demand due to system i in time t

(MBtu)

X. = instal lea capacity for system i (MW)1

If we then assume that all the electricity generated by the time

dependent units displaces electricity that otherwise would have been

produced by the grid, then the net reduction in energy demand can be



computed.

In computing the change in energy, it was implicitly assumed that the

energy from the time-dependent units would be used whenever it was

available. This assumption may not be true for conventional generators,

such as diesels, which may be used only under special circumstances. For

this type of generator, the function described in equation (2.16) might

require more complicated inputs.

2.IV. Summary

From equations (2.1) and (2.11), estimates of the total electrical

demand in area a in time t can be found using the current price and

demand for electricity along with projections of their future values.

These equations can be expressed in functional form as:

t t-I At t
a Ea a' a' Wa) t =+ l, ... T (2.27)

where ,

t
Ea = electrical energy consumption in region a in time t
At
c = vector of estimates of fuel prices for region a in time t
At

Qa = vector of estimates of demographic and economic factors for

region a at time t

wa = vector of weather parameters for region a.

From equation (2.13), the consumption in a subperiod, relative to a

known subperioa, can be estimated for each customer class in a given

region:

st st s t-lAst A t st
eak = Eak/Eak = f(E , nk, ak' Wa ) t =+ 1,...T (2.28)



and

aE = Et - E a e t =+ 1,...T (2.29)a a a ks k

where
t

AEa = change in energy demand due to price of shifting in region a

in time t

Ast
Cnk = estimated price of electricity for customer k in subperiod s,

time period t relative to the price in subperiod s, time period
A

t2k = vector of estimates of demographic and economic factors for

customer k in time period t

st
wa = vector of weather parameters for region a for subperiod s,

time period t.

From equation (2.26), the change in electrical demand due to output

of custom-owned generators of type i can be found:

t t
AE. = p. X H (2.30)

1 1 ia ia

where

Pi = forced outage rate of unit type i

Xia = installed capacity of type i in region a at time t (MW)

H ia = sum of annual normalized output of generator a in region i.1a



3. Utility Load Shape

To find the effect on the utility of changes in demand, it is

necessary to know not just the change in the energy consumption, but also

the change in the patterns of consumption. The load reduction model uses

the current customer capital stock (Chapter 6), the current price of

electricity (Chapter 7), and the exogenously specified weather and prices

for competing fuel to compute the shape of the net load duration curve.

The net load duration curve is used in Chapter 4 to compute the cost

of operating the central station units to meet demand. If desired, the

net load shape can also be projected for future years and used instead of

the base case load shape in the utility expansion model described in

Chapter 5.

3.1. Introduction

The instantaneous demand on the central generators of a utility is

the sum of the demands from all its customers, residential, commercial,

and industrial, plus the demand due to losses in the transmission and

distribution system, plus any demand from other utilities due to purchase

agreements. The transmission lines that link utilities are monitored

closely, so the external demand is known. However, without costly

metering and monitoring an electric utility cannot determine which

customers are demanding power at any instant. The only accounting is in

monthly energy metering which does not reveal the variations in power

demand over time.

A utility cannot tell whether customers have decided to consume less

electricity due to a peak price or whether customers are using an



alternative source to supply some of their electricity or whether the

load is lower than expected due to some unknown factor. This suggests

that load shifts and decentralized generators can be modeled by

appropriately modifying the projected demand on the utility. This

chapter will show how the energy demand, load shifting, and

customer-owned generation are combined to find the net load duration

curve, that can then be used in the analysis of the effect of load

shifting and customer-owned generation on the electric utility.

First, the total demand for the utility is calculated based on

current and projected prices using the long-run demand model described in

Chapter 2. This results in projections for the annual energy demand for

each of the remaining years of the study, ignoring load shifts and

customer-owned generation.

Then, the marginal changes in the load shape due to time-of-day

pricing are computed. If flat rates assumed, this step is skipped

because the current model woula predict no changes. With a more

sophisticated model, load shifts could be computed if the relative price

of electricity rose or fell even though the rates were flat.

Finally, the electricity supplied by the decentralized generators is

subtracted from the load leaving the net load to be supplied by the

central station generators. There are, however, several complications

with this procedure. One is that the decentralized electrical generation

may vary with the time of day and may be correlated with the original

demand. Another is that the output of different decentralized generators

may be correlated with one another complicating the subtraction
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procedure. Also, the electricity from decentralized generators is

consumed close to the point of generation and so bypasses much of the

distribution system and the losses incurred therein.

The load shifting and customer owned generation can be modeled

independently because it was assumed that owners of their own generation

shifted their loads based on the expected price of electricity in a given

time period. The expected price includes both grid electricity and

user-generated electricity. Of course, load shifting would occur based

on the actual price in that hour, not the expectation. That is, a

customer might expect the photovoltaic generator to be working on a sunny

noonday and plan to run a load of wash; however, if the generator failed

to work, the wash would be canceled and the repair person callea. In a

future model, it may be possible to combine the load shifting within the

decentralized generation model.

In this chapter, a procedure for modeling decentralized generators as

negative demands will be developed. Using this methodology, the utility

system can be studied with and without decentralized generators and

changes in the installed capacity of decentralized generators can be

modeled easily.

3.II Load Representation

From historical data, one realization of the random variable of the

electricity demand can be observed. The underlying process is assumed to

have the form:

st st
PLY = xIw s , s, cn (3.1)

V S2 C
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where

Yt = electrical demand at subperiod s of time period t

ws  = vector of meteorological data for time s

s = subperiod

st
cn = price of electricity in subperiod s, time perioa t.

Let E(Yst c) = gst(c) (3.2)

where gSt(c) = demand response function to price c in subperiod s,

time period t

E(Ystjc) = expected electrical demand given the price in

subperiod s, time period t.

A typical demand response function is illustrated in Figure 3.1.

Assume also that the distribution of the load, as a function of

weather, is independent of the price. That is, the mean of the

distribution moves along the demand response curve, but the shape of the

distribution remains unchanged as shown in Figure 3.2. So, from

historical data, the function

PLYst= x s, sJ (3.3)

can be estimated by grouping observations of load taken at a particular

time of day under similar weather conditions. If observations of load

under similar weather conditions, but with different pricing schedules,

were available, it would be possible to test the validity of the

assumption that the distribution remained constant. When further data

from peak load pricings studies become available, it may be possible to

test this assumption.
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9gSt(c)

Demand, Y

Figure 3.1 Demand Response Function

gSt(c)

Demand, Y

Figure 3.2 Demand Response with Random Component



The total instantaneous demand for electricity by a particular

customer can be represented as a random variable that is a function of

many variables including weather, time of day, and lifestyle. Customer

may modify this denand because of time varying prices. In addition,

customers may meet some of their aemand with an alternative source to the

electric utility. The net demand on the utility can then be written as:

-st -st -st
nk = ok - aYk (3.4)nk ok k

~st ~st -st
where AY = AY + Y (3.5)k ck ik

i=1

and nk = net electrical demand on the utility from customer k in

subperiod s, time period t(MW)

st
Yok original electrical demand from customer k in subperiod

s, time period t(MW)

AYk = reduction in electric demand by customer k(MW)

yst
AY = reduction in electric demand by customer k due to theck

price in subperiod s, time period k(MW)

-st
Yik = output from generator type i owned by customer k in sub-

period s, time period t(MW).

N = number of generator types available to customers (e.g. wind-

mills or photovoltaics).

For notational simplicity, let

N
-st C -st

Kst ik (3.6)k iki=1



The probability distribution of the original demand from a customer

is difficult to model or estimate for several reasons. One is that there

is not much data to work from. Another is that individual households

vary greatly in their consumption and in their consumption patterns. In

addition, the demand from a single household has a great deal of

variance. For example, the demand may be from just an electric clock

until someone comes home to cook dinner, then the demand may jump

suddenly to include lights, a stereo, and the oven.

So that, if the net demand on the utility is represented as the sum

of the demands from all customers, it must be recognized that some

demands are random while others have causative factors. For example,

refrigerators go on and off all day and from a central limit argument,

one would expect only a percentage of them to be on at any time. This

type of load is called diversified load. On the other hand, people turn

on lights when it gets dark and tend to eat meals at about the same

times. This type of load is called co-incident load.

We shall see, however, that with the methodology developed here the

original demand from an individual customer is never required. Returning

to equation (3.4), to find the total net demand on the utility, the sum

over all customers must be taken. Suppressing the time period

superscript, yields:

K K
-s k s - aY (3.7)Yn C Ynk Yok k)

k=1 k=1

~s
where = net demand on the electric utility in subperiod s (MW)n

K = total number of customers

mmIImiulkll liimllliiv-----~cpl
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Under certain conditions, the original demand and the reductions in

demand are independent random variables, so equation (3.7) can be written:

K
s s sS- k (3.8)

k=1

~s
where = original demand on the electric utility in subperiod s (MW)

The probability distribution of the original customer demand can be

inferred from historical data, as will be done here, or it can be derived

from a more sophisticated demand model if one is available. In any case,

this chapter will focus on finding the distribution of the changes in

electrical demand due to time of day pricing and customer owned

generation.

3.II.A Price - Dependent Demand

In Chapter 2, the energy demand in one time period was found relative

to that in a corresponding base case time period as a function of price ,

appliance stock, sociological factors, temperature and time. Assuming

that the average power demand is proportional to the energy demand, the

relative energy demand from equation (2.13) can be written in terms of

the variables in equation (3.4):

S ~S ~S ~Sek = (Yok- AY) /Yok (3.9)k ok ck ok

--SDefining the price modified demand, YCk as:

S ~s ~s
ck ok ck' (3.10)

then Y e Yok (3.11)ck k ok'
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and the total price modified demand is:

K K
~s ~s s  ~s
c ck = ek ok (3.12)

k=1 k=1

K
=Y es (3.13)

k=1 k

The economic demand model does not derive a probability distribution

for the changes in demand due to price. For lack of a better assumption,

the original demand and the price modified demand are assumed to have the

same distribution, shifted by a constant:

P [Y x] = P LY < x + ks ] (3.14)
Y c Y 0o0

where the subscript on the probability distribution, P, indicates the

random variable that is being described. So, from equations (3.13) and

(3.14), the change in demand due to time varying prices and the

distribution of the modified demand can be found.

3.II.B Customer-Owned Generation

Modeling the operation of a small generator running in parallel with

the utility system can be complicated. One must know the characteristics

of all the electrical appliances, when they are likely to be used and

whether or not this demand can be delayed. One must know which

appliances are used in response to what weather conditions. One must

know the relatively costs of buying and selling electricity at different

times of day and the customer's strategy for using storage or other load

shifting techniques. One must also know the characteristics of the

,- - ..... . . .. . .. Ii l l i, 1i 1 1 IIIMll i



generator: its size, efficiency, and response to differing weather

conditions. Since all of these data are required on an hourly basis,

models of small power generators can become rather large. Several theses

have been written at the MIT Energy Laboratory on this problem a(one

[17,27,87].

The major reason for using hour by hour simulators for small

generators is that the electrical demand and electrical generation both

depend on the weather and on the time of day. This correlation must be

modeled to get a good estimate of the value of the system. For example,

air conditioning load and solar insolation are highly positively

correlated, so a photovoltaic array would have a high value for meeting

air conditioning demand. On the other hand, a wind turbine would

probably have a low value for air conditioning demand, but a high value

for space heating demand. Another reason for using hourly simulators is

that there are frequently inter-hour dependencies. Some demands, for

example, clothes washing, can be performed earlier than planned to take

advantage of excess energy or can be delayed to take advantage of lower

rates.

For this study, a simplified generation model will be used. This

model will ignore many of the complications mentioned above, although the

structure of the study allows a more complex model to be used if it is

required.

The random variable representing the output of a customer-owned

generator has two components. One component represents the variable

output from a generator due to, for example, fluctuations in solar
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insolation or wind intensity. The other component represents the changes

in output due to mechanical tailures. The latter component is assumed to

be independent of time. For simplicity, two further assumptions will be

made. The first is that the output of a machine is a linear function of

its size. That is, if a 100 MW solar array produces x megawatts, then,

under identical conditions, a 200 MW solar array produces 2x megawatts.

The second assumption is that mechanical failures always result in zero

output. That is, a generator cannot run at reducea capacity if there are

mechanical failures.

With these simplifying assumptions, the output of generation type i

for customer k at time s is given by:

Yik = X ' n (3.15)

where

Xik = installed capacity of generation type i for customer k

ik = zero-one random variable representing mechanical failure

for generation type i, owned by customer k

ni  = random variable representing fluctuations in output due to

time or weather for generation type i [0 < n < 1].

The distribution of pi is:

SPi x = 1
PXLi = xj = (3.16)( qi x= O

and Pi + q.i = 1

where qi is the probability of mechanical failure for generation type i.

Rewriting equations (3.4) and (3.5) using equations (3.14) and (3.15)



yields:

is S ~S
Ynk = Yck - Xik ik ni  (3.17)

i=1

or, summing over all customers:

N K

Yn c - ni ikXik .  (3.18)

i=1 k=1

If the total installed capacity for each generator type is known and all

generators of a given type behave the same way irrespective of ownership

then equation (3.18) becomes:

N K
~S -S ~S
Yn Y - E ni Xi L ik (3.19)

i=1 k=1

where Xi = installed capacity of generator type i (MW).

To find the distribution of the net load we neea to combine the

distributions of the price modified load and the customer owned

generation. That is, we must look at all possible combinations of load

and generation and weight them by their probability of occurrence. If

the load and generation were independent, this would be a relatively

straight forward procedure; however, we know that the load and

generation are not independent for time and weather dependent

generators. But, it is reasonable to assume that conditioned on time and

weather that the load and generator output are independent and that

generator outputs are independent of one another. That is to say, given

that it is dark and windy, the output of a wind turbine will not affect

the output from a photovoltaic array nor will it affect the customer's



desire to have a light on. And, illustrating a previous assumption, the

mechanical failure of the photovoltaic array is independent of its

output, the output of the wind turbine and the customer aemand.

The conditional distribution for the output of generator i is:

L S
P LY i
Yi

= xXi s,wsJ =

-sp PnLni x1s,wsJ, x > 0

qi P [nis > Ojswsj

-s =+Pn = 0 s,ws , x = 0

Equation (3.20) can be rewritten as:

- s
Py.LY

is1
= xXi s,w s ] =EP

y 1 PLs = ys,ws]

where the distribution of Ii, the mechanical failure, as defined

with the additional definitions:

x

P Li = j= 0
i y

for x = y = 0

for x = y f 0

If the output from different types of generators are assumed to be

independent conditional on the time and weather, then the conditional

distribution of the sum of their outputs is given by:

Py LYi
i

= xXi S,Ws = PY1 * PY2 * "'

* PYN = xX swsN (3.23)

where the symbol '*' represents convolution.

(3.20)

(3.21)

in (3.16)

(3.22)

_I^_ I I_ _ _I_~~ _I



Defining the multiplicative convolution of (3.21) by 'o', equation

(3.23) becomes:

PyiL = xXil sws = (P o P )*(P2o

(N N- ~s x
*...*( P Ln = -Xi J s,ws]) (3.24)

Since the distribution of the total customer demand is known, the

distribution of the net demand can be found using equation (3.18) and

equation (3.22):

s s ,s (3.25)
PLYn = xls,ws] = PY = x+y s,ws] PL s = yls,w] (3.25)

y

N

where = . n
i=l1

The conditional distribution as written in (3.25) can be computed for

each time period and then the distribution for the net load could be

found by summing out over time:

PLY n =x= ] PLY s = xPLs] (3.26)

where P[s] = probability of time s, e.g., the number of observations

made at time s and weather ws weighted by the total

number of observations.

One way to perform the computation of equation (3.18) is to have

observations of customer load and weather matched for time and location

as illustrated in Figure 3.3. The load can be assumed to have an error

distribution around the observed value and the output of the weather
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Weekly time dependent demand curve. The output of a solar generator
is plotted at the bottom of the curve

Figure 3.3 Time-dependent Load and Generation Curves



dependent generators can be calculated from the weather data. With the

mechanical failure rate superimposed on the generator output, the

distribution of the net load for each hour can be found using equation

(3.25). This procedure can be time consuming although it has the

advantage of implicitly modeling the dependence of load and weather

without requiring additional models. This methodology has been

implemented and used in several studies of the breakeven cost of

photovoltaics [84,85,86] and is documented in reference [39].

This methodology is not well suited to planning because it depends on

historical data and uses substantial computer time. An alternative

method is to create models that study the causal relationship between

weather and electrical demand [27,62,77,871. However, these models are

more detailed than are necessary for the current study.

Another alternative is to study the statistical correlation of

weather and load. This approach is currently being studied by Michael

Caramanis [16] at the MIT Energy Laboratory. The following section

outlines his work.

Given a series of historical observations of load and weather, a set

of orthogonal vectors, y, can be constructed using least squares:

N+1

d= bN+o 'Yj N+ (3.27)

n i  i n1j Yj + i

where a = index for a set of subperiods with the same characteristics,



e.g., sunny breezy summer noontimes

S = observed load at time a, normalized by the peak demand

as a function of prices for the time period

ni = output of generation type i at time a, with no

mechanical failures, normalized by the installed

capacity X.
1

Lb ij = matrix of regression coefficients
io

B = error terms

yeJ = equal orthogonal vectors.

Substituting (3.27) into (3.15):

N

Yn = XN+lLbN+1i jo +
j=n+1

N

- X1
i=n+l

N

j=n+1
b1 a 8a ].
i Yj j

i N+1

i =N+

1 = N 1

then (3.28) can be written

N N+1

n j=n+l i=n+1

compactly as:

N+1

X. i bi + X1 1 i i=n+1 Bj

Letting

(3.28)

b
13

bI
ij

'o
B.

N+1

= -bo

= b0.
13

-8

a

(3.29)

(3.30)



Simplifying, and using the fact that the matrix B is lower triangular:

N+1 N+1

X0 = [ X . b ' 0 + X' . 8 J (3.31)
n J=n+l i=j i  ij j

By construction, the random variables, y, are mutually linearly

independent. That is, even though the variables are not statistically or

probabilistically independent, they have the following properties:

,(Yi + yj) = i(Yj) + l(Yj)

s2(Yi + j = j + j (3.32)

where (1(x) = ith cumulant of the random variable x.

The cumulants of a distribution as usea in equation (3.32) have many

useful invariance properties that the moments of a distribution do not

have. The cumulants can be derived from the characteristic function of a

distribution and can be written in terms of the moments. A discussion of

the cumulants and a derivation of their properties can be found in

reference [58]. For this discussion, it is only necessary to know the

definition of the first four cumulants in terms of the moments:

F1 = ml 2

m2 = m2 - ml (3.33)

3 = m3 - 3m2 ml + 2m1

44 = m-4 mm l - 3m2 + 12m 2m- 6m

where mi = E(x ).
1



One very useful property of the cumulants is that the cumulant of the

sum of two independent random variables is equal to the sumn of the

individual cumulants. In addition, the distribution of the sum can be

found from the new cumulants. So, to find the distribution of the net

load,.the cumulants of the load and the cumulants of the generation can

be computed separately, added together, and then operatea on to yield the

distribution of the net load.

However, this operation can only be performed in the two random

variables are independent. So, Caramanis assumes that property (3.32)

holds for all cumulants, even though it only holds necessarily for the

first two.

The first two cumulants of the net load can be written as:

N N+1
a2 + a

(Yn) = E E LXi bj E( i)E(Y) + XJ j E( j)j
j=1 i=j

and

N N+1

42Yn) = L C [X ba E( 2 )E( 2

j=1 i=j

+ a -2
+ Xj Bj E(y )] (3.34)

The cumulants found above in (3.34) are conditional on time. As in

equation (3.26), the unconditional moments can oe found by multiplying by

the probability of each time increment and summing over time:

L1Y' )p [o]

(Yn ) =  I (Yn o)o] 3.3

t2(Yn) = E 2(Yn)PGlo] (3.35)



where P LoJ = Probability of set o.

If the moments of the random variables 1 and y are known and the coef-

ficients b and B are known, then the moments of Yn can be generated as

a function of the peak load and the installed capacity of the generators.

There are several ways to generate a probability distribution given

the moments of the distribution. Following Rau and Schenk L74],

Caramanis uses a truncated Gram-Charlier series to approximate the

distribution:

G G
PyLZJ = N(z) - 3(z) + N () + G N (Z) (3.36)S(z) + - (

where Nj(z) = jth derivative of the standardized normal distribution

GI = 3/ 5 3/2 (3.37)

4 1/2 2
G2= (4- 3 4 + 3k2 1 2 - 3 (3.38)

For ease of computation, it is not necessary to derive the

distribution itself. Rather, it is easier to find the transformation of

the distribution from the moments and to perform all the convolutions in

transform space. Since the use of transforms only eases the

computational burden and does not change the theory, a discussion of

transforms is omitted from here. See Caramanis L16J or Rau and Schenk

L74].

3.111 Transmission and Distribution

Transmission and distribution have two effects important to this



study. First, the demand on the central station generators is higher

than the sun of the customer demands due to losses in the transmission

lines. Second, the failures in the transmission system reduce the

reliability of the electricity aelivered to consumers and reduce the net

load on the system.

The study of transmission and distribution (T+D) systems is a large

and complicated field in itself. An overview of current areas of study

in T+D reliability can be found in reference [32]. To model it properly

requires data on the topography of the system and specific information on

the characteristics of each line. Rather than attempt a less than

adequate model of the T+D system, a simple proxy will be used.

Equation (3.4) gives the net load as a function of the original

Uemand and the reductions in demand. The original demand includes line

losses, so any reductions in losses caused by reductions in demand must

be accounted for. Equation (3.4) becomes:

Y = Y -  AYk Lk(Yn) (3.39)
k

where Lk(Y) = loss function for demand from customer k when the total

demand is Y.

Or, using equations (3.7) and (3.13):

Y =  ek kLk (Yn) (3.40)

The price-dependent demand was found as a fraction of the original

demand using equation (3.11). Depending on where the metering is done,

this fraction, ek, may or may not account for the change in losses. If



the metering is done at the customer's meter, the most likely place, then

ek does not include losses. Defining a new ek to include losses yields:

ek = ek LK(Yo)/Lk(Yo) (3.41)

Finally, for simplicity, a piecewise linear loss function is assumed

and the same loss function is assumed for all customers. Equation (3.40)

becomes:

Yn = L(Yc (Y ) Yc - L(Y n) Xi ini (3.42)

These loss multipliers must be included when finding the load

correlations in equations (3.27) and (3.28).

The T+D system also affects the reliability of grid electricity. In

chapter 7, it will be seen that some customers may install their own

generation if the grid reliability is not high enough. So, the end

reliability to customers must be found. From historical data on the

frequency and duration of outages for different types of customers, one

can estimate a failure rate for the transmission and distribution

system. In Chapter 4, the loss-of-load probability for the generation

system will be found. The net reliability to customer k is:

Pnk = 1 - qG - qTk (3.43)

Pnk= reliability of grid electricity to customer k

q9= LOLP = loss of load probability for the generation system

qTk = failure rate of the T+D system for customer k losses of

power

Equation (3.43) assumes that all are due either to the generation

system or to the transmission system, but never both at once.
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3.IV Summary

The changes in power demand for the current time period have been

found as a function of the current price of electricity, the price of

competing fuels, the customer capital stock, demographic variables, and

the weather. For future time periods, the changes in power demand can be

estimatea based on the projections of these variables.

From equation (3.9) estimates of the change in demand due to

time-of-day prices can be made. From equation (3.15) estimates of the

change in demand due to customer owned generation can be made and from

equation (3.42) estimates of the change due to changes in T+D losses can

be made. Combining these in functional form yields:

st st 9 t st st t = *T (3.44)
AYak = f(ck , Xk '~k, wa , Lk) (3.44)

S = 1,...S

Yst = Yst - yt (3.45)
an ao a

st 1
P LY s x] = P * P * P [Y xj (3.46)
yn an AY Y Y aoac a ao

AEa st =C ha st t =T,...T (3.47)k s ak
S= 1,...S

where

st
AYak = net change in demand by customer k in region a in subperiod s,

time period t.

stYna = net demand on the utility in region a in subperiod s, timena

period t.



t
,Ea = net change in grid electricity demand in area a, time

period t.

ckt = vector of fuel prices for customer k in subperiod s, time

period t.

tXk = vector of installed capacities of generation owned by customer k

in time period t.

stk = vector of demographic and economic variables for

for customer k in subperiod s, time period t.

Lk = T+D loss function for customer k
s t
ac = change in demand due to price effects in region a in

subperiod s time period t.

st
Ya = change in demand due to customer owned generation

in area a in subperiod s, time period t

Yaost = original electrical demand in region a, subperiod s, time

period t

hs = number of hours in subperiod s
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4. Utility Operation1

The production costing model uses the net load duration curve

(Chapter 3), the capital stock of the utility (Chapter 5), and

exogenously specified prices for fuel to compute the operating cost and

generator reliability of a utility system. The operating cost is used in

setting rates (Chapter 7) and the reliability is used in the customer

expansion model (Chapter 6). The generating cost model is also used with

the long-range planning model (Chapter 5) to find the cost of each

potential system chosen during the optimization process.

4.1 Introduction

Electric power systems are operated to meet the fluctuating power

demand at minimum cost. Electric utilities monitor the power flow

throughout the system to decide what the power output from each generator

should be. These decisions are based on economic criteria, but are

constrained by electric stability requirements imposed by the transmission

network. A complete model of the cost of operating a power system

requires detailed models of, and data on, each generator and each

transmission line. Such models are too complex to be used for planning

studies, so many simplifying assumptions must be made. For example, most

production costing models, including the one presented here, do not

consider transmission or stability constraints.

This chapter discusses a standard production costing methodology that

1This chapter has been extracted from Finger [37]. Reference [37)
includes addditional material on multiple block units, frequency and
duration, limited energy units, storage units, and time-dependent units.



models the average generator output. The framework of the model is first

presented as a deterministic model in which the customer demand is fixed

and plants do not fail. Then, the model is expanded to a probabilistic

model in which the customer demand and plant failures are random

variables.

4.II Deterministic Production Costing

Electric power systems are operated with the goal of meeting the

electric demand at minimum cost. For a fixed set of generators, the

dispatch strategy that results in the minimum operating cost is to use

the generators in order of increasing marginal cost. In practice, this

strategy may be modified to account for operating constraints such as

spinning reserve requirements, high startup or shutdown costs and

transmission constraints. The final ranking of generators is called the

merit order or the economic loading order.

The power demand on an electric utility varies with the season and

the time of day. Figure 4.1a shows a typical daily variation in power

demand. Although the overall pattern is predictable, there is a large

random component that makes hourly predictions difficult. For this

reason, most planning studies use load duration curves that give just the

percent of time that each demand level occurs. Figure 4.1 shows how a

time-dependent curve can be converted into a load duration curve.

Although detail is lost in the conversion, the load duration curve is

easier to work with for time periods longer than a day and for future

time periods for which there is not enough information to create hourly
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4.1a. Time-dependent load curve for a typical day. 4.1b. Load duration curve of Ia.

Figure 4.1. Conversion of time dependent curve to load duration

of time

curve.



curves.

The operation of the power system can be modeled by plotting the

capacity of the generators, in merit order, along the vertical axis of

the customer demand curve as shown in Figure 4.2a. The demand level at

which a unit starts to generate is called its loading point. The energy

that a unit generates is the area under the customer demand curve between

its loading point and the loading point of the next unit. Converting the

time-dependent curve into a load duration curve, as shown in Figure 4.2b,

leaves the loading point and the energy the same as in 4.2a.

Conventional central station power plants are plants that can

generate power at full capacity at any time, except when they are on

maintenance or forced outage. These plants are much easier to model than

hydro, storage, or solar plants that have limited energy and

time-dependent power output. Nonconventional power generation will be

discussed in later section.

In the deterministic model, the conventional power plant with the

lowest marginal cost is loaded under the customer demand curve at a

derated capacity that reflects the plant's availability. For example, a

1000 MW plant with an 80 percent availability factor would be brought up

to 800 MW. This plant generates as much energy as it can to meet the

customer demand. Since there is still unmet demand, the unit with the

next lowest marginal cost is brought on line. This process continues

until all the area under the load duration curve has been filled in. The

total cost of the system operation can be computed by multiplying each

plant's total megawatt hours by the cost per megawatt-hour for that plant



Gas turbines

Old fossil

New fossil

Nuclear

Time (hours)

C

E
0'

Gas turbines

Oil fossil

New fossil

Nuclear

Per cent of

4.2a. Typical operating schedule. 4.2b. Equivalent schedule on a load duration curve,

Figure 4.2 Deterministic
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and then summing the costs over all plants.

4.111 Probabilistic Production Costing

Two major factors affecting system operating costs are uncertainties

in demand and random failures of plants. There are several models

available that take these factors into account. The simplest is a

deterministic model with heuristic calibration coefficients added to

account for plant failures. Slightly more complicated is the method

developed by Baleriaux and Jamoulle [6] which combines the probability

distributions of customer demand and of plant failures to find the

expected value of the energy produced by each plant and the probability

that the customer demand will not be met. There is also a frequency and

duration method developed by Ringlee and Wood [75] that models both the

load and plant failures as Markov chains. Recently,Ayoub and Patton [5]

have developed a method that includes frequency and duration in the

Jamoulle-Baleriaux model and that requires fewer assumptions than the

Ringlee-Wood model. The combined method of Ayoub and Patton and several

extensions that allow the model to treat plants with limited energy and

time-dependent power output are described in reference [37]. This

chapter describes only this basic model necessary for long range planning

and price setting.

The main difference between the deterministic model and the

probabilistic model is that the electrical demand and electrical

generation are treated as random variables in the probabilistic model.

In the deterministic model, a plant's capacity is derated to reflect



random outages of the plant during its operating period. This assumes

that the plant is always available at its derated capacity, or

equivalently, that it has a forced outage rate of zero at its derated

capacity. In fact, the plant is not always available. When a plant

fails, more expensive generation must be brought on line to replace it.

Since the deterministic model assumes that units never fail, the energy

supplied by more expensive plants is underestimated. The deterministic

model also assumes that the electrical demand is fixed. In the

probabilistic model, uncertainty in the demand can be included in its

probability distribution.

In the probabilistic model, the electrical demand and power plant

failures are modeled as random variables with memory. That is, a power

plant has a probability of failure and an expected time that it remains

in a failure state. The electrical demand has a probability of being at

a given level and an expected time that it remains at that level.

4.III.A. Electrical Demand Representation

The probability distribution for the net electrical demand, Yc' was

found in Chapter 3. Throughout this chapter, the following notation will

be used:

fy(x)dx = Probability Ex < Yn < x + dx]

x

Gy(x) = Probability IY < x] = J fC (y) dy (4.1)
S-- 0

Fy(x) = 1 - Gy(x) = Pr [Yn >x] = f fY(y) dy.
x
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where fy is the probability density function, Gy is the cumulative

probability function, and Fy will be referred to as the reverse

cumulative probability function.

The superscripts for subperiod and time period have been suppressed

throughout this chapter.

4.III.B Conventional Power Plants

In the probabilistic model, the equivalent demand on a unit is

defined to be the sum of the demand due to customers plus the demand due

to failures of plants lower in the merit order. The equivalent demand YE

is the sum of two random variables:

YE = Y + YF (4.2)

where is the net customer demand as derived in Chapters 2 and 3. YF

is the demand due to forced outages of units already dispatched. Using

the formulas for the convolution of two independent random variables, the

cumulative distribution of the equivalent demand becomes:

d
GE (d) = Jr fF (YF) Gy (d - YF) dYF

= Probability Fload + outages < d]. (4.3)

The distribution of the equivalent demand is central to the

probabilistic model. As will be shown below, the expected energy

generated by each unit can be computed from it, as can the loss of load

probability .

For the case in which the forced outage rate of each plant is a

discrete random variable, the integral over the probability density
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function fF(YF), can be replaced by the sum over the probability mass

function. For a plant with forced outage rate, q, and capacity, X, this

probability mass function is given by:

' p if YF=O 
(PF (YF) = i (4.4)

q if YF = X

where p + q = 1. That is, there is a probability, q, that the plant will

not perform and the demand on plants higher in loading order due to its

failure will be the capacity of the plant. There is a probaility, p,

that the plant will perform and the demand due to forced outage will be

zero.

Replacing the integral with the sum, equation (4.3) becomes:

GE(d) = pGy(d) + qGy(d - X)

or since p + q = 1 and GE = 1 - FE :

FE(d) = pFy(d) + qFy(d - X). (4.5)

With these basic questions, the probabilistic analysis proceeds in

much the same way as the deterministic analysis. Units are loaded

starting at the left of the equivalent load duration curve. The demand

on the first base-loaded unit to be brought up is the entire customer

demand. There are no outages from previous units, so

YEl = Yn (4.6)

where YE1 = equivalent demand on the first unit

Y, = total net customer demand.

Because the two random variables, YE1 and Y,, are equivalent, their

------- 1H II, 16111



distribution function is the same:

FEl(d) = FY(d). (4.7)

In the deterministic model, a unit is loaded onto the system by

filling in the area under the load duration curve. The area gives the

energy generated. To load a unit in the probabilistic model, the area is

again filled in. The vertical axis, instead of being the percent of time

that a unit operates at a given capacity, is now the probability that a

unit operates at that capacity at any given time. Taking the integral

over the capacity gives the expectation of the operating capacity 2

for the unit at any given time. The expected capacity for the first unit

is:

E(Y1)= .f FY(x)dx (4.8)
0

where X1 = capacity of the first unit

Y1 = random variable describing the running capacity of the first

unit.

E(Y1) is the expected capacity required to meet the equivalent load,

without considering the availability of the unit. The total expected

energy from the first unit, taking outages into account, is:

MW1 = p1 hs E(Y1) (4.9)

where pl = availability of unit one

2The operating capacity is a continuous variable which takes on
values between zero and the unit's capacity in response to the customer
demand. This does not violate the assumption that plant outages occur in
discrete blocks.



hs = length of the time period in hours.

The capacity factor, a, the ratio of operating capacity to nameplate

capacity, is given by:

1= P1 E(Y1)/X1  (4.10)

and the cost of running the system with unit 1 loaded is:

E(X1) = Hfl cf MW1 (4.11)

where Hfl = full load heat rate for unit 1 burning fuel f (MBtu/MWH)

cf = cost of fuel f ($/MBtu)

The equivalent demand on the second unit to be brought up is the

customer demand plus the demand due to the outages of the first unit:

YE2 = Yn + YF1 (4.12)

Because of the way the equivalent load is defined, the loading point of

the second unit on the equivalent load duration curve is the same whether

or not the first unit fails. If the first unit fails, it creates a

demand, X1, so the second unit is loaded when the equivalent demand is

X1 . If the first unit does not fail, there is no demand due to outage.

The first unit supplies the demand until the demand exceeds X1, at which

point the second unit is loaded. The loading point, U, for the rth unit

is just the sum of the capacities of the previously loaded units:

r-1

U = C X.
r i=1

and U1 = 0 (4.13)

Equation (4.5) gives the equivalent load curve forYE1:



FE2 (d) = p1 FEl(d) + q1FE1(d - X1) (4.14)

Having found the equivalent load curve for the second unit, the

expected capacity, capacity factor, and the energy generated

can be obtained:

E(Y2) = f FE2 (x)dx
2

a 2 = P2 E(Y2) X2  (4.15)

MW2 = P2 hs E(Y2)

2
EC(U 3)= E Hfi cf MWi

i=1

For the third unit, the equivalent load is given by:

YE3 = Yn + YF1 + YF2 (4.16)

Using the definition of YE2 in equation (4.12):

YE3 = YE2 + YF2

Then,

FE3 (d) = P2FE 2 (d) + q2 FE2 (D - X2 )

U4
E(Y3) = f FE3 (x)dx (4.17)

3

3 = P3 E(Y3 ) X3

MW3 = P3 hs E(Y3)

3
EC(U 4 ) = C Hfi cf MWi

i=1



.II Im n11111

In general,

r-1
YEr = YC +  Y

Er F i = YEr-1 Fr-1i=1

FEr = Pr-1 FEr- (d) + qr- 1 FEr- (d - Xr-1)

E(Yr) = f 1 FEr (x) dx (4.18)

r

ar = Pr E(Yr) Xr

MWr= Pr hs E(Y )

r
EC(Ur+1) = C Hfi Cf MWi

i=1

where r = loading order of the plant.

4.III.C Reliability Measures

After the last unit has been loaded, the final curve is the

equivalent load curve for the entire system. Since the loss of load

probability is defined to,be the percent of time that the customer demand

cannot be met, its value can be read directly from the final curve. The

energy demand that cannot be supplied is given by:

EF(U ) = h f F (x) dx (4.19)
F(Un+1 )  s UII ElI+1

where I = number of plants.

The loss-of-load probability is given by:



LOLP = FEI(UI+1) (4.20)

where UI+ 1 is the total installed capacity of the system. Figure 4.3

shows the final system configuration.

An other measure of the reliability of a power system is its loss of

energy probability, LOEP. The LOEP is not a probability, but an expected

value for the fraction of the original demand that cannot be met. It is

defined as:

UI+1 FEI(x)dx
LOEP = ...

fQ FY(x)dx
0

(4.21)

where UI+1 = total installed capacity

Q = peak customer demand.

4.IV Summary

From basic information about the generating units and the load, it is

possible to produce a great deal of information about the operation of

each unit and about the operation of the system. The information about

each unit is used within the long-range planning model (Chapter 5) and is

not presented here.

Equations (4.17) and (4.20) give the functions for the system

operating cost and for the unserved energy demand as a function of the

operating capacities:

t t t t t Xt
EC ( ) = f (E , P p, X )a a a a

(4.22)
EF t(yt) f (Et Pt p Xt ct

a a' a' a' a
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t(yt t t t
Ea ) = f (Ea' a' p, Xa )

EFat(Yt) = f (Ea' Pa, p, Xa cta)

t t t t
yt= f (Ea' Pa' P' Xa

t
where EFaa

Yt

= expected unserved energy as a function of operating

capacity in region a at time t

= expected operating cost as a function of operating

capacity in region a at time t

vector of operating capacities for units operating in

time t

E- = total net electrical demand in region a at time ta

Pa = probability distribution for the net load in region a ata

time t

p = vector of availabilities for units installed in region a

Xa = vector of unit capacities in region a at time t.a

(4.22)
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5. Utility Expansion

The utility expansion model uses the energy forecasts (Chapter 2),

the net load curves (Chapter 3), exogenously specified capital and fuel

costs and exogenously specified available technologies to find the

optimal expansion path. The utility operation model (Chapter 4) is used

within the long-range planning model, and decisions from previous

expansion model runs (Chapter 5) are used to specify the existing capital

stock of the utility. The output of the expansion model is the optimal

installment plan over the specified time horizon. Based on the optimal

plan, decisions are made to begin construction of some new units. Only

those units for which construction must begin in the current time period

in order to have them when planned, are considered to be firm units.

These units are then included as committed units in the next time period

when the expansion model is run. And, when their installment date comes,

they are used in the utility operation model to meet demand (Chapter 4)

and are placed in the rate base by the rate-setting model (Chapter 7).

(For some types of rates, these units may appear in the rate base before

they are installed.)

5.1. Introduction

Capacity expansion models are a central element of the planning

process of electric utilities. Most are based on optimization models

that search for the capacity plan with the minimum capital and operating

cost that reliably meets the expected customer demand over a time horizon

of twenty to thirty years. Objectives other than minimizing cost can be

=011MINMINIM1,11l
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considered. Some planning models have financial objectives such as

maximizing the cash flow while others have social objectives such as

maximizing total welfare. While the latter objective is in keeping with

the tenor of this report, in order to maximize social welfare one must

know the social value of energy, power, short run reliability and long

run sufficiency and one must also have a consistent and defendable method

to measure consumers' surplus. Rather than descending into this morass,

a simple engineering cost minimization objective will be used.

Anderson [2] has published a survey paper on capacity expansion

models. All of these models require input data on the cost and

performance of potential generating plants, the expected customer demand

for each year in the planning period, and a reliability criterion for

meeting the demand. Within these models, the system operating costs and

reliability are usually calculated using linear approximations. None of

the available models include decentralized or weather-dependent

generation as potential capacity additions. Nor do they allow anyone

except the utility to install new capacity.

In each time step, the utility must make a decision on whether or

not to begin construction of a new unit or delay a unit in construction

based on new information on customer demand, fuel prices, and capital

costs. This problem is solved by performing the optimization, using the

new information, starting with the current year and comparing the new

plan to the plan produced in the preceding time step and adjusting the

new unit schedule. In adjusting the new unit schedule, the utility would

take into account whether the cost of the adjustment was greater than any
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savings due to the adjustment before making any changes. For simplicity,

it will be assumed that the new schedule will always be adopted.

However, with additional data on the cost of delays and speedups, it

would be possible to incorporate these tradeoffs. The next plants to be

built are found using a modification of a utility planning model

developed by Bloom L11J that uses Benders' decomposition. The use of

decomposition allows the utility operation constraint to be nonlinear,

allows a realistic reliability constraint and allows the inclusion of

customer-owned and time-dependent generators.

For simplicity, it will be assumed that new units can be built in

any size. In fact, one can not build one half of a 500 MW unit. One

must build a 250 MW which may have characteristics quite different from a

500 MW unit due to technologies and economies of scale. It is possible

to use Benders' decomposition to solve an integer program allowing only

certain plant sizes to be built L22, 23, 70]; however, the MIT EGEAS

program [65J which will be used here has not yet been expanded to allow

only integer solutions. In addition, it will be assumed that the

planning is done for aggregated time periods, rather than explicity

including constraints, for all subperiods. This is a reasonable

assumption since annual data projected for more than ten years is at most

a good guess. Monthly data would require omniscience. So, throughout

this chapter, the superscript for the subperiod s will be dropped,

although constraints for subperiods in the near future could be added.

A N.. . .. . I III i IIN 1111 ill
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5.1. General Formulation

A general formulation of the apacity expansion problem is given by:

J T T I
min KjvXjv + H fi C (5.1)

jv its j=1 V=T t=T i=N+1

subject to

It t t =T, ... T
Yi >E (5.2)

i=N+1

EFt(y t ) < t = T, ... T (5.3)

0 < Y. < 6it X (5.4)
- 1 v v jv t =, ... T

X.jv > 0 (5.5)

where T = starting time perioa

t = time period

v = plant vintage

j = plant type

i = plant's place in the economic operating order

it
6jv = 0 - 1 variable that gives a plant's place in the

operating order as a function of its age and type

K = per unit capital cost for plant type j installed in

year v ($/MW)

t
C = cost of fuel f in time period t ($/MBtu)

Hfi = full load heat rate for unit i burning fuel f (MBtu/MWH)
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t2: = minimum unserved energy requirement for time t (MWHS)

Xjv - installed capacity for lant type j in year v (decision

variable) (MW)

t
Yi = operating capacity for plant i in time t,

(decision variable) (MW)

E = energy function for time period t
tEF = unserved energy function for time period t

I number of operating plants in the system at time t.

The objective function (5.1) is the sum of the capital costs for

plants built during the planning horizon plus the cost of operating all

the existing plants to meet the demand. Constraint (5.2) requires that

the demand be met in each subperiod of the planning horizon. Constraint

(5,.3) requires that the unserved energy in each time period be less than

the specified reliability level. Constraints (5.4) and (5.5) assure that

plants are never operated above their capacity and that the capacities

are never negative.

All of Chapter 4 was devoted to solving constraints (5.2) and

(5.3). The Y.'s, the operating capacities, and EF, the unserved energy,

are outputs of the probabilistic simulation. Chapters 2 and 3 studied

E t, the net energy demand on the central station generators. Using the

results of these chapters, constraint (5.2) can be written as:

t
I

Y > Et (Cn', Y ... YN)  (5.6)

i=N+1

and

.. . .. P IIIY YYii l~lln mlIi~IY IhYIIII
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t  t  t t tc f(CX Y1 YN ... , Y, M) (5.7)

where

ct  = price charged for grid electricity at time t

CXt = capital cost (historical or replacement) of installed

capacity at time t ($/MW)

Y = electricity purchases in time t (MW) subperiod s
n

Y ... Yn = operating capacity of generators owned by

customers in time t (MW)

M = fixed costs due to e.g., metering and billing,

transmission and distribution ($).

The price function of equation (5.7) will be discussed in Chapter 6.

5.111. Benders' Decomposition

Bloom in his report [11] has solved the optimization of (5.1)-(5.5)

using Benders' decomposition. A general discussion of Benders'

decompostion algorithm can be found in Lasdon [59].

Benders' decomposition is used when a hard-to-solve optimization

problem can be broken down into two, or more, not-so-hard-to-solve

otpimization problems with distinct sets of decision variables. The

master problem is used to solve for the primary decision variables which

have the property that once these primary variables are fixed then the

optimal secondary decision variables of the subproblems can be found. In

addition, from the optimal solution to the subproblem, shadow prices on
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the fixed primdry variables can be calculated. These shadow prices can

then be used to generate new linear constraints, Benders' cuts, to the

master problem. The Benders' cuts serve to successively restrict the

feasible region of the master problem to the feasible region of the

original problem.

In this case, the master problem chooses the amount of each type of

capacity to build. Then, once the unit capacities are known, the

production costing algorithm described in Chapter 4 can be used to find

the cheapest way to meet demand with that set of units. So, if the

master problem chose all nuclear plants in the first iteration, the

shadow prices from the subperiod would indicate that there were cheaper

and more reliable ways to meet load.

A detailed description of the generation of Benders' cuts and the

calculation of the dual multipliers is given in reference L11J and an

analysis of convergence properties is given in reference L44].

Using Benders' decomposition for (5.1)-(5.5) the master problem is:

min z
X

J T T t t t
subject to z > Kjv Xjv + a [EC t (Ym) +m at (Xm -X)J

j=i v=T t=T

m = i, ... M (5.8)

t t t t
EF(Y ) + mt  t ( m - X) < tE rm

m = 1, ... M (5.9)

where m = iteration number

X = vector of installed capacicies (decision variable)

1110111110 9MIN1 11
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Xm = vector of installed capacities chosen in iteration m

Yt = operating capacities for central units in time period t

in iteration m

nm = shadow price associated with the energy constraint in

time period t, subperiod s, in iteration m

stet =shadow price associated with the reliability constraint

for time period t, subperiod s, in iteration m

m = set of time periods in iteration m in which the

reliability constraint is not met

At each iteration m, an upper bound and lower bound for z, the value

of the objective function, can be generated. The algorithm halts when

the upper and lower bounds are within some prespecified tolerance.

5.IV. Relaxed Formulation

The purpose of the model developed by Bloom was to find the optimal

expansion path for a utility over a time horizon of twenty to thirty

years. Since this report focuses on the plants to be built in the

current time period, less detail is needed for time periods further in

the future. For this reason, the reliability constraint is retained for

only the next T1 years, where T1 is some number less than the number of

years remaining in the study. In addition, for time periods greater than

T1 , the nonlinear operating constraint is replaced by a linear

approximation, thus reducing the computational effort to find the optimal

solution for each time step.

Thus, for time periods further in the future, constraints (5.2) and
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(5.3) are replaced by:

SaX > Et T < t < T (5.10)

t t

6 X > Q t( + RM) T < t < T (5.11)

where T1 = last time period modeled with nonlinear constraints

T = last time period

RM = reserve margin requirement

a. = design capacity factor for plant type j of vintage v.

Constraint (5.10) requires that the average expected energy production

meet the average demand. Constraint (5.11) requires that the installed

capacity exceeas the peak power demand by a specified margin.

Retaining constraints (5.2) and (5.3) for time periods less than T1,

the master problem becomes:

J T+ T I t

min z + Kjv Xjv + Hfcf 6  aX (5.12)

j=1 v=T2  t=T 2 i=N+1

s.t. z > K Xjv + [ECt (Ym) +  m (Xm - X)

j=1 v=T t=T

m = i, ... M (5.13)

SaX > Et T < t < T (5.14)

t et
6 X > (1 + RM) T < t < T (5.15)

t() t(X - X) (516)
EF(Ym) +m 6 (Xm - X) < tElm (5.16)
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Solving the optimization of (5.12)-(5.16) yields a solution, X*, Y*,

that gives the installed capacity and operating capacity for all plants

over the planning horizon. However, only the capacity installea in the

first year of the optimization is needed for the rest of the study. This

new capacity is included in tne plant operation model to determine the

energy costs and its capital is placed in the rate base.

5.V Summary

Based on the projections of demand, capital costs, fuel costs, and

available technologies, the expansion planning model finds the optimal

plan over a long time frame. Because only the decisions in the near

future are made firm, the near time periods are modeled with more precise

nonlinear constraints while those far in the future are modeled with less

precise, but computationally simple, linear constraints.

From equations (5.12) through (5.16) the optimal expansion plan for

a given region can be found based on current estimates of costs and

demand:

t* At t t At At t-1
X = f(Ea' P a' Ca' Ca' K a Xa )

t = , ... T (5.17)

where X = vector of optimal capacities for region a
At
Ea  = estimate of total electricity demand in region a at time t

t
P = distribution of the electrical demand in region a at time ta

t
;a = reliability requirement for region a at time t

At
c = vector of estimtes of fuel cost in region a at time t
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At

Ka = vector of estimates of capacity

time t

costs for region a at

t- = vector of installed capacity in region a.a

O~ I id
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6. Customer Expansion Planning

The customer in making decisions about whether or not to install a

generator considers the current price of grid electricity (Chapter 7),

the reliability of gria electricity (Chapter 4), the current and

estimated price of alternative fuels, and the current and estimated costs

for alternative generators. The result of the customer expansion model

is a series of decisions about what to build in each time period.

Presumably, most customers would not install more than one generator

during the planning period and most would rely on the grid as their only

source of electricity. Just as for the utility, decision by customers

cannot be implemented instantly so lead times must be considered,

although lead times are more on the order of one year than ten years for

small generators.

6.1 Introduction

For an electricity consumer, the decision of whether or not to build

an electrical generation system, what kind to build and when to build it

can be modeled in much the same way as it is modeled for an electric

utility as discussed in Chapter 5. However, consumers do not run

optimization models every year to decide what to do next. At most, they

may make a rough approximation of the breakeven value or the payback

period for some particular system. Usually, only one or two systems are

feasible for a site and the final decision usually fdcLors in many

non-economic considerations that would be difficult to include in an

optimization model. The following sections will discuss a breakeven
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model, optimization model, and a marketing model and the fusion of these

that will be used in this report.

6.II Breakeven Cost

The breakeven cost is the amount that one would be willing to pay

for a particular system so that one was indifferent between that system

and the next best alternative. If you were offered a system that would

supply all your electricity needs for the next twenty years at a cost

exactly equal to the present value of your expected electricity bill over

the next twenty years, you should be indifferent between the two

systems. This tradeoff can be made more precise using decision analysis

which takes uncertainties into account. For example, if you are risk

averse, and you suspect that the alternative system may last only ten

years although it could last as many as thirty, but you are positive that

electricity rates will rise no faster than inflation, you would require a

lower breakeven cost than someone who was risk indifferent or who had

different expectations about the relative risks of the alternatives. For

this report, money will be used as a proxy for consumer satisfaction

while acknowledging the limitations of this assumption.

The usual way to find the breakeven cost for a time dependent

generator is to run a simulation model like the one described in Chapter

2. If one assumes that the generator operation for the simulation year

is typical, then one can compute the total savings due to the time-

dependent generator over its lifetime. A complete derivation of the

breakeven cost of a photovoltaic system is given by Carpenter and Taylor
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Li7]. A generalized version of their basic formula is, suppressing the

subscript k for the customer and assuming grid electricity is always the

best alternative:

t
T S A.

BECi = (Y cst - is c st)hs 1 (6.1)BECi Yn Cn i i t+"
t=T S=1

where BEC. = total breakeven cost for system i installed in year
1

including capital, variable, and fixed cost ($)

Yn = original grid electricity demand in subperiod s (MW)
nS

YS = electrical output of unit i in subperiod s (MW)

h = number of hours in subperiod s

st
c = price of grid electricity in subperioa s, time period

t($/MWH)

st
ci  = cost of operating unit i in subperiod s, time period

t ($/MWH)

t
Ai  = cumulative degradation factor for unit i in time period t

p = discount factor.

The total breakeven cost can be broken down to yield the breakeven cost

per installed megawatt, or as it is callea, the breakeven capital cost:

t t
BEC - FIX

BECCt = - VC i (6.2)i X. 1
1

where BECC = breakeven capital cost for system i installed in year

($/MW)

t
FIX. = initial fixed cost for system i installed in year t,

e.g., power conditioning, lightening protection ($)
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t
VC. = initial variable cost for system i installed in year t,

1

e.g., insurance, taxes (s/MW)

Xi  = installed capacity of system i (MW).

For each customer, the breaKeven cost for each system could be found

and compared with the current selling price of that system. If any

system's current selling price was lower than its breakeven cost, it

would be purchased. If more than one system met this criterion then the

system with the largest net benefit would be chosen, assuming there was

no synergy between systems. (If synergy was suspected to be an important

factor, then a hybrid, for example a wind-photovoltaic system, could be

considered as a separate technology.)

6.II.A Statistical Method

The hourly simulation implieu in equation (6.1) can be simplified

using the statistical techniques that were used in Chapter 3. Looking at

the inner summand of equation (6.1), we have:

st s st s stBi = (Yn c s t - Yi ct )hs (6.3)

st
where Bi  = net benefit from system i in subperiod s, time

period t (s).

As in Chapter 3, the original demand and the output of generatur i are

ranaom variables. Rewriting the generator output as the product of its

capacity, outage rate, and time-dependence, yields:

SY X. n (6.4)
1 1 i i

- IIIlmwwlii u
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where a, Xi, i' and ni are definea in equation (3.2). Assuming that

there is only one generator at this site, substituting equations (3.18)

ana (3.20) into equation (6.3) yields:

Bist  hs Cn n (bni Yi nn Yn n+

+ h c.st X 4.(bo  a + o(6.5)
s 1 i 1i i i i

Since the uiagonal elements of tne b matrix are equal to one, equation

(6.5) simplifies to:

st V' st o o st
Bst = hs L C. X. (Y ) + cst Xn n bi iJ ] . (6.6)i J= n j j j n n n ni i

Assuming that the subperiods are partitioned such that all s in the set

with a index have the same cost structure, then equation (6.1) can be

written as:

T A
BEC ( B ) 1 (6.7)

t=T o=1

Whereas before the inner sum was over all the hours of a time period, now

the number of elements in the sum has been reduced to the number of sets

into which the hours are partitioned.

Equation (6.7) simplifies the computation of the breakeven cost

greatly. Once the orthogonal vectors, y, and the regression

coefficients, b, have been computed for a particular customer, then the

size of the generaLor, the peak load, the outage rdate and the price

structure can be varied and a new breakdown cost calculated without
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requiring large amounts of additional work.

The breukeven model still presents problems because it evaluates

only a particular proposed system rather than allowing an easy choice

among systems. The following section discusses an alternative.

6.III.B Optimization Method

As mentioned in the introduction to this chapter, optiiization

models do not necessarily give a good representation of the decision

process of a homeowner deciding whether or not to install an electrical

generator. In addition, for computational simplicity, most optimizations

are run with linear constraints. Because it is difficult to represent

the operation of time-dependent generators using linear equations,

optimization models are almost never used to model them. In this

section, an optimization model will be presented which overcomes these

objections.

In general, the optimization problem for an electricity customer can

be written as:

J T T S n
min A Kjv Xjv + : E Yi (6.8)

j=1 v=T t=T s=1 i=1

subject to

n st St s = 1, ... SSY > Y (6.9)
i t=T, ... T

i=1

EF(Y ) < et t= T, ... T (6.10)

--~-~ Y IIIIIIYY
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0 Yits it Xjv i = 1, ... n (6.11)
j v jv

s=1, ... S

t=T, ... T

Xj >0 j = , ... J (6.12)

where the subscript k, for the customer, has been suppressed. All of the

quantities are the same as those defined for the utility in Chapter 5.11,

except that one of the choices available to customers is to meet their

demand with grid electricity. This option requires no capital

investment, assuming that the customer is already served by the utility.

If customers without electrical service, for example those in remote

locations are considered, then grid electricity will also have a capital

investment component. In any case, the current source of electricity can

be treated just as existing generators were treated in the utility

optimization.

In Chapter 3.11, it was shown that time-dependent changes in the

load on a utility could be modeled using statistical tecnniques. In

Chapter 4, it was shown that the resulting curve could be used, along

with generating unit characteristics, to find the total energy generated

by each unit. By analogy, the time-aependent generation of a customer

can be modeled using statistical techniques to yield the customer's net

load duration curve. The single central utility unit, as it appears to

the customer, can be operated against the load duration curve giving the

total grid energy supplied and the reliability of electricity supplied.

This looks exactly like the operating submodel of the utility
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optimization problem.

If the probability distribution of the customer's total demand for

electricity is known and the generators available to meet the demand are

given (chosen by the master problem), then the same model used for

utility operation can be used for the customer. The net demand on the

st
electricity utility, Yi , is given by:

n-1
Y st = Y st - Yist (6.14)

i=l

st st
where Yo is the original demand and Yi is the output from customers'

generators. Assume for simplicity that the customer has only one

generator, call it i, and as before its output is given by:

st (615)
Y t = X. 9 . (6.15)
Yi i i

where X1 is the capacity, i the mechanical failures, and ni Lhe time-

dependent fluctuations.

From the methods discussed in Chapter 3, the probability distribution

of Yn can be found using statistical techniques. That is, assuming that

the distribution for the total demand, at a given electricity price

structure, is known and the correlation of time-dependent generation with

loaa is known, then equation (3.40) can be used to find the distribution

of the net demand on the utility. The electricity from the grid is

supplied to the customer with a reliability that is the product of the

generation system reliability and the transmission and distribution

system reliability. The maximum capacity that can be uelivered is the
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fuse rating un the house. Therefore, the grid electricity iooks like a

generating unit with the following properties:

t
st ) Pnk x =XnkPLYnk = x] = nk (6.16)nk nk x 0

t t
where Pnk + q = 1

t
qnk = probability that grid electriciLj cannot be

supplied to customer k (power outage)

Xnk = Iaximum power that customer k can draw from the

grid (MW).

The probability of power outage is given by:

tnk = 1 - (1 - LOLP t )(1 - qTk) (6.17)

where qTk = T + D outage rate for customer k.

The loss-of-load probability (LOLP) is found from the current run of the

power plant operation model. The T + D outage rate is assumed to be

constant and is taken from historical data for different types of

customers (e.g. urban versus rural or residential versus industrial). As

discussed in Chapter 3, it would be possible to replace the assumption

that the T + D system remains constant by usirig a model similar to that

used for generator reliability.

Then, following the logic of Chapter 5, the reverse cumulative

distribution of the net load is:

t t t t Fkt  (6.18)
Fk (x) = pnk Fk (x) + qnk Fk (x - Xnk) (6.18)

Fk'(x) = distribution of the equivalent load after the centralwhere
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utility "unit" has been loaded.

Fk(x) = distribution of the equivalent loaa after the customer

k's generator has been loaded.

The operating capacity of the utility is

t nk st'
Ynkst = k F (st x)dx, (6.19)

and the total energy supplied by the utility to customer is:

MWSt pst st (6.20)
nk nk s nk (6.20)

The cost function for electricity for customer k is:

st st st st st st st
EC(Yk ) =hs(Pi ik ci + nk Ynk Cnk) (6.21)

The overall reliability of electricity supply (central plus decentral

generators) for customer k is:

t ti
LOLPk = Fk (Xnk) (6.22)

The unserved energy is:

EF(Ykt) = Ft'(x)dx. (6.23)
Xnk

Since the form of the function EC in the objective tunction (6.8) is

known, and the form of the function EF in constraint (6.10) is known, the

optimization (6.8)-(6.12) can be formulated using Benders' decomposition

just as it was for the central utility. The optimization becomes:
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min Z
X

J T T S
s.t. z > Kjv Xjv + ' S LEC(Y)s t

j=1 V=T t=T s=1

+ t 6(Xmjv - Xjv)] m = 1, ... M (6.24)

i=l

St st st t

EFYm ) + e 6 (Xm - X) < ek s,t Er m

m = 1, ... M (6.25)

plus constraints (6.11) and (6.12). The only uifference between this

formulation and that for utilities is that the shadow price on the

capacity for the time dependent unit can not be computed with the formula

given in reference L11]. Bloom has expanaed this formula so that the

shadow price can be calculated, but the methodology has not yet been

implemented.

It should be pointed out, that with Bloom's revisions,

hyaro-electric power plants, storage plants, and time-uependent

generators could be included in the utility optimization. For simplicity

of explanation, these types of units nave been omitted from the

discussion.

This discussion of the use of Benders' decomposition has been

included even though Bloom has not yet completed his work in order to

emphasize the symmetry of the utility and customer planning problems.

The breakeven methodology will be used n the sample problem given in

Chapter 8. When the time-dependent methodology is complete, it will be

possible to use sensitivity analysis to find the breakeven cost for each
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alternative technology. Thus, the optimization will be able to answer

both questions: given the current price, how much should I buy and how

much is that system worth to me

6.111 Market Penetration

Even though a product may appear to be economically attractive, it

does not necesarily follow that everyone will go out and buy one. There

are many reasons that consumers may not buy something that economists

think they should. The reasons range from lack of information to

incompatible color schemes. Lilien and Wulfe [60] at MIT have studied

market acceptance of photovoltaics. Only a small portion of their work

will be used here and reference should be made to the original work for

more detail. Basically, before someone buys something, the product must

pass a number of screening tests. Lilien and Wulfe have developed

screening curves from survey reslts that give the fraction of the market

that finds a product acceptable at a given value of one of its

attributes. The screening curve for breakeven cost for photovoltaics is

given in Figure 6.1.

6.IV Summary

The customer decision process has been shown to be similar to the

utility decision process. It is simpler in that each customer makes far

fewer active decisions than the utility, and it is more complex in that

each customer considers many more criteria than simple cost minimization.

From either the breakeven methodology or the optimization
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Figure 6.1 Screening curve for the breakeven cost for
photovoltaics. From reference [60].
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methodology, the breakeven capital cost for each system can be computed:

A t At At tBECCi = f(c , K , w ) t = T,...,T (6.26)

At
where c = vector of current and projected fuel prices ($/MBtu)

A

Kt = vector of capital costs in time t (s/MW)

wt = vector of meteorological variables

From the screening curves, the number of customers who would buy system i

at time t at its projected price can be found:

At A t At

X = f(BECC i, Ki) (6.27)

At

where K = estimated capital cost of the system i at time t ($/MW).

Then, the decisions that must be made now in order to have the capacity

in time t are made firm:

t A +
Xi = Xi (6.28)

where T = current time period

"i = lead time for generator type i.
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7. Price Setting

The rate-setting component of the model uses the operating cost from

Chapter 4 and the capital cost from Chapter 5 to compute the rate

structure for electricity consumers for the next time period. Because

rate-setting procedures are not standard, several methodologies are

presented. Doing so allows one to answer questions about the effect of

different rate structures on the overall efficiency of the system.

7.1. Introduction

Rate setting procedures vary from state to state depending on the

practices of the local regulatory agency. These agencies are usually

mandated by the state to oversee the monopoly granted to the utilities.

Until recently, any control that the agencies did exert was through the

rate setting hearings. There used to be little controversy in rate

setting since utilities were able to exploit technological advances in

generation and economies of scale so that the real price of electricity

fell for many years. (See Figure 1.1). Now, however, the real price of

generating equipment is rising rather than falling, as shown in

Figure 1.2, and fuel prices have escalated rapidly. In addition,

electricity demand has ceased to grow at eight percent per annum as it

did for so many years. Growth now seems to be about two or three percent

per year (see Figure 1.3). Regulatory agencies have begun to look more

closely at the rates proposed by utilities and some agencies have even

begun to question seriously utilities' expansion plans. This section

will outline the major issues in rate setting. There is a large

literature on rate setting and its regulatory, economic and engineering
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aspects L10,12,18,19,24,25,32,53,55,56,66,68,69,72,78,80,91,92,93,95j.

Reference should be made to this literature if more depth is required.

7.1. Customer Classes

Utilities have been allowed to divide their customers into classes

and to charge different rates to these classes basea on differences in

the cost of service. The standard classifications are residential,

commercial and industrial. Usually even these classes are subdivided so

that, for example, residential customers with electric heat are a

separate class from residential customers with non-electric heat.

The typical rate structure in the United States is a declining block

rate. An example is given in Table 7.1. The first large block is

designed to recover fixed costs such as hook-up costs, billing costs and

metering costs. The price declines thereafter because of the assumption

that the more electricity is consumed, the lower the marginal cost will

be. The assumed shape of the demand curve and the declining block

structure are illustrated in Figure 7.1.

10 kwhr or less $1.90
next 40 kwhr $0.0487 per kwhr
next 50 kwhr $0.0356 per pwhr
next 200 kwhr $0.0281 per kwhr
next 300 kwhr $0.0225 per kwhr

additional kwhrs $0.0206 per kwhr
plus $0.03839 per kwhr fuel adjustment charge.

Table 7.1: Residential Declining Block Tariff

from Cambridge Electric Light Company Bill (1980)



- demand curve

Demand (kwh)

Figure 7.1 Electrical Demand and the Declining Block Rate Structure
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The rates to different classes of consumers vary by the height and

length of the declining block. For example industrial customers tend to

receive power at higher voltages and supply more of their own power

conditioning equipment, like step-down transformers. So the investment

by the utility required for these customers is lower per kilowatt hour

consumed. Also, because industrial customers consume larger amounts of

energy, the fixed costs are spread over a large base and hence are

lower. However, in the process of contsuming energy, large users can also

place higher power demands on the utility. That is, a utility may have

to install capacity that sits idle much of the time in order to provide

energy when a customer wants it. Both to cover these costs and to

prevent spikes in demand, many utilities charge industrial users demand

charges based on their maximum power demand during the billing cycle.

High rates to residential users are usually justified by the argument

that residential users cause the peaks in demand, but that it is too

expensive to put demand meters on residences. The issue of allocating

capital costs among customer classes is central to many of the debates on

how rates should be set. There are insufficient data available to make

definitive statements, but a great deal has been written on the subject.

In the ERATES model L24j used in tnis study, only two customer

classes are considered: industrial, and residential-commercial. The

capital cost for generation and transmission equipment is simply

apportioned to each class by its relative share of electrical energy

consumption. While it is known that capital costs are more directly

related to power consumption than to energy consumption, lack of data

__ -- -- YIII~.
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forces this simplifying function.

7.111. Rate Setting

Rate structures for electricity are currently under ,ncreased

scrutiny by the federal government, state utility boards, and public

interest groups. It is difficult to describe how rates are set since the

procedures vary greatly from state to state. It is impossible to

describe how they should be set since there is no consensus among

regulators, economists, and engineers about the proper methods.

The first division of opinion comes over whether embedded or

marginal costs should be charged. One group argues that the utilities

should only be allowed to recover their actual cost of producing and

distributing electricity. The other group argues that customers should

be charged the cost of producing the last unit of electricity demanded.

In this way, customers pay the amount that it would cost the utility to

increase production. If the electricity is worth that much to them, they

will be willing to pay that amount to the utility and the utility will be

willing to supply the electricity. This is marginal cost pricing.

The second division of opinion comes over flat rates versus time of

day rates. One group argues that, even though the cost of producing

electricity varies over time, the investment in metering required to

implement time varying rates will not pay off because most customers

would be unwilling to change their habits. The other group argues that

customers will respond to time of day rates and that the potential

savings to utilities in fuel ana capital savings are substantial.
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The following sections outline some of the ways in which rates can

be set.

7.III.A. Embedded Rates

In the United States utilities are regulated to prevent monopoly

prices. A basic concept is that a utility should be allowed to charge

prices such that it earns a fair rate of return on its capital

investments. The capital investments are commonly called the rate base.

What is allowed to be countea in the rate base varies from state to

state, but it is basically the undepreciated stock of generation and

transmission equipment plus an allowance for fuel inventory. The revenue

requirements for a utility are computed by multiplying the rate base by

the allowed rate of return and then adding in variable costs such as

fuel, operating and maintenance, and wages. How the required revenues

are collected depends on the type of rate structure, e.g. flat versus

time of time rates, but the underlying premise is that the revenues are

based on the historical cost to the utility. For more detail on how the

required revenues are computed see L1OJ or L56J.

For this study, the ERATES model L24] method for computing the

required revenues will be used. In this model, the required revenues are

given by:

RRt = rr(CX + W t) + ECt + Dt (7.1)

where

RRt = required revenue in time t
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rr

t
CXd

W t

ECt

Dt

= allowed rate of return on investment

= undepreciatea stock of capital in time t (8)

= allowance for working capital in time t ()

= system operating cost in time t ($)

= taxes, depreciation and other expenses ()

7.III.B. Marginal Rates

For many years, economists have been writing in journals about the

desirability of marginal cost rates for electricity. The basic argument

is that if customers were charged the true cost of electricity, then they

could make more rational decisions about when and how much electricity to

use. The problem, however, is to determine what the true cost of

electricity is.

The marginal cost for an incremental unit of energy demandea in

subperiod s, time period t can be written as:

MCst = (CXt + ECt) (72)
aEst

where

MCStE = marginal energy cost in subperiod s, Lime period t ($/MWH)

s t

ECt= system operating cost at subperiod s, time period t ($)

aEst = marginal change in the eneryy aemand in subperiod s, time

period t (MWH).

The marginal cost for an incremental unit of power demanded in

subperiod s, time period t can be written as:
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t st
MCst a(CX + ECt) (73)
Sayst

where

stMC = marginal power cost in subperiod s, time period t ($/MW)

aYst = marginal change in the energy demand in subperiod s, time

period t (MW).

The partial derivatives of equations (7.2) and (7.3) can be computed

explicitly within a capacity optimization model as discussed by Bloom

L11]. However, since this methodology has not been implemented, the

partial derivatives of (7.2) and (7.3) will be approximated by a

difference equation:

MCst 1 - 2 (7.4)
st st

- E2

where

TC - CX + ECt
1 i i

st
= total minimum system cost to produce energy Ei in

subperiod s, time period t ($)

7.III.C. Flat Rates

The term flat rate refers to rates that do not vary with the time of

day, and depend only on the amount of energy consumed. Thus, declining

block rates are flat rates even though the price is not constant. In
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theory, a flat rate could be based on either embedded costs or marginal

costs.

To compute embedded flat rates, the cost of service to each customer

class is computed as a function of the energy consumed. To do so

requires assumptions about the capital investments made for each type of

custaomer, and about the consumption patterns of each type of customer.

Utilities have developed many ways of ailocating costs from scant data.

We will make the simplifying assumption that costs are directly related

to energy consumption. So, the required revenue for class k is:

RRt RRt t t (/.5)
RRk =RR Ek/E .)

where

RRk = required revenue from class k in time t (S)
t

Ek = energy consumed by class k in time t (MWH)

Et = total energy consumea by all customers (MWH).

Then, the imbedded flat price of electricity is:

t tt
cnk RR I/E (7.6)

where

t
Cnk = price of grid electricity to customer k in time t ($/MWm)

Under a marginal flat rate, the marginal cost in equation (7.4)

would be computed for the entire time period and the rate would be given

by:

t At (TC - TC) t t
nk = MCk + Mk/E k  + Mk/Ek (7.7)

AE
k
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where

t
AEk = change in energy demand in time period t by customer, class k

(MWH)

Mt = fixed costs attributable to customer k in time t ()k
At
Ek = estimated energy consumption by customer k in time t (MWH)

7.III.D. Time of Day Rates

Because the cost of producing electricity varies with the time of

day, it seems only reasonable to charge rates that vary with the time of

day. Many European countries have successfully introduced time of day

rates after some experimentation. Electric utilities in the Unitea

States are only beginning to consider time of day rates and usually only

because of pressure from the federal government or state regulatory

boards.

Time of day rates can be either embedded rates or replacement

rates. For embedded time of day rates, one computes the historical cost

of the capital and fuel required to supply electricity at that time. For

the replacement rate, one computes the cost of increased consumption at

the given time using equations (7.2) and (7.3). The increased cost has

both a capital and a fuel component, since an increase in demand requires

additional generating and transmission equipment as well as an increase

in fuel consumption. In theory, a cutomer should be charged both a

capital and energy cost in each time period. Since this is not possible

with present metering, the capacity charge is subsumed in the energy

charge:
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st st st st ^Cnk= MC E + MC Zk + Mk/E k  (7.8)

where

st
Cnk = cost of grid electricity to customer k in subperiod s, time

period t ( /MWH)
st
Zk  = ratio of power demand to energy demand in subperiod s, time

period t for customer k.

There has always been some controversy over whether all capital costs

should be allocated to the peak demand periods. However, a simple

argument illustrates that the base periods should have capital costs

included. Suppose a system had an intermittent demand as illustrated in

Figure 7.2a. For this type of demand, a utility would build only peaking

units. An increase in demand on the peak would result only in a slightly

larger peaking unit being built, and the marginal cost for the peak

period would be the marginal capital cost of a peaking unit plus the fuel

cost. Now suppose there is an increase in demand in the periods in which

there was formerly no demand, as illustrated in Figure 7.2b. The utility

would then build a small base load unit to meet this new demand, and the

marginal cost for the base periods would be the marginal capital cost of

a base load unit plus its fuel cost. Therefore, because of the choices

of technology available to a utility, increases in base demand do have a

capital cost component. This component can be computed directly using

the partial derivatives of equation (7.2) and (7.3) and using the

historical cost of capacity, rather than its replacement cost. The

formula for the marginal embedded cost is then the same as equation (7.8)

with the marginal costs redefined.



__________________________h~

136

Time

Figure 7.2a Intermittant Demand. Optimal mix = peaking units

Time

2b Same demand as in Figure 6.5a with constant component
added. Optimal mix = peaking units + base unit

2 Effect of Demand patterns on the generation mix

Figure 7.

Figure 7.
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7.IV. Summary

The price of electricity can be computed using embedded or marginal

cost principles given the operating and capital cost of the system as

computed in Chapters 4 and 5. The rate may be either a flat rate or a

time of day rate depending on the costing principle.

The rates for the next time period are set using one of the

methodologies described here. These rates are then sent to the customers

and influence both their short-run and long-run demand as described in

Chapters 3 and 6. The new rates are also used by the utility to update

their demand forecast as described in Chapter 2. The basic formulation

of the electrical rates is:

st f(ESt, t
nk= f(ECt, CX , Mk) (7.9)

where

EC st = expected cost of operating the system in subperiod s, time

period t ($)

CXt = capital cost (historical or replacement) in time t (6)

Mk = fixed costs attributable to customer k ($)
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8. Summary

Chapters 2 through 7 have described in detail specific algorithms

that can be used to implement the general methodology presented in

Chapter 1. This chapter will summarize the algorithms and the flow of

information among them. Chapter 9 gives an example that can be studied

in parallel with this chapter.

The general methodology assumes that the process of planning is

iterative and that plans are changed as new information becomes available

and as the future becomes the present. This chapter describes one

iteration, throughout which the exogenous variables remain constant.

Once the decisions for that time period have been made, based on both

endogenous and exogenous variables, then the data base is updated and the

process begins for the next time period. Each iteration depends on the

previous iterations in that current decisions may be limited by previous

decisions that have restricted or eliminated certain choices. The flow

of data between decision points and over time is illustrated in Figure

1.5.

To begin the planning process, one must have a data base containing

the current prices of fuels, the capital costs of large and small scale

generators, characteristics of the existing electrical generating system,

meteorological parameters, socio-economic factors, previous demand

patterns, and, where appropriate, the changes expected in these

parameters by each of the decision makers. These parameters must be

specified for every region to be studied.

The demand forecasting model, described in Chapter 2, is used to

I -- ~C - IIWOM I III,,li
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project the future energy demand in order to plan for the size and

installation dates of new generating units. Knowledge of future demand

is particularly important for units with long lead times which must be

begun before there is an apparent need for them. Since the demand for

electricity is sensitive to the price of electricity and to the price of

alternative fuels, in a time when fuel prices are changing rapidly and

unpredictably, the demand forecasts must be constantly updated. And, the

expansion plans which are based on them must also be updated and revised.

In general, the future demand for electricity depends on the price of

all fuels, including electricity, socio-economic factors, meteorological

factors, and the previous demand. Of these parameters, the

socio-economic factors, the meteorological factors, and the price of all

fuels except electricity are specified exogenously. The price of

electricity is found within the model based on the demand for electricity

and the cost of meeting that demand as computed in the previous iteration.

In this report, the Baughman-Joskow demand model [9] was used to

forecast long-run energy demand. In this model, a set of log-linear

regression equations is used to define the relationship between the

demand for electricity and the price of fuels. The coefficients for

these equations are estimated based on historical data on energy

consumption and energy prices for different fuels in different economic

sectors.

The Baughman-Joskow model assumes that utility rates are flat (not

time-differentiated) and that a central utility supplies all the

electricity demanded. Since we are interested in studying both new rate
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structures and alternative ownership of generators, the Baughman-Joskow

model has been modified by two models to account for these factors.

The first is a load shifting model, developed by Hausman, Kinnucan,

and McFadden, which estimates the energy demand in one time period

relative to another based on the price differential, the appliance stock,

weather conditions, and sociological factors. The net change could be

either positive or negative. Some demands, like lighting demand cannot

usually be deferred, so the demand is permanently reduced when someone

decides to turn off a light to save on the electricity bill. Other

demands, such as heating and cooling may only be delayed and their delay

can result in a greater total demand than if they had been met when

originally required. If the off-peak prices are low enough, consumers

may actually increase the total electricity they consume in response to

the low price.

The second model modifies the demand projection to account for energy

that is produced by customer-owned generators rather than by the

utility's generators. The total demand for electricity is assumed to be

the demand as calculated by the Baughman-Joskow model and modified by the

Hausman model. However, the net energy demand on the utility's

generators is lowered by the total amount of energy generated by

customers, adjusted for losses. The adjustment for losses is computed

using a simple, linear assumption about the additional energy that must

be generated to the utility to make up for losses in the transmission

lines. In this model, it is assumed that the number and type of

generators owned by customers is known. We will see that this
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information is computed within the larger model and is updated at every

time step.

The combined forecasting method described above projects only the

total energy demand. To plan for new units, it is also necessary to know

the load shape in order to take advantage of the generating technologies

available. Because it is extremely difficult to construct a load shape

from scratch, the load shape from the last year is used as a basis and

then the modifications due to time-of-day pricing and to customer-owned

generation are superimposed on it. The same models are used to modify

the load shape as were used to modify the energy demand. For the

time-of-day pricing model, it is assumed that the change in power demand

is proportional to the change in energy demand within a pricing period.

While this assumption lacks refinement, there is not enough data to

warrant any other assumption. Once the demand in each time period has

been modified for the price response, the time-varying customer

generation is subtracted from it. Because the output from renewable

resource generators is frequently highly correlated with electricity

demand, it is necessary to take this correlation into account when

performing the subtraction. One way to do this is to use a statistical

method that finds the correlation of the demand with meteorological

variables, as developed by Caramanis [16] and described in Chapter 3. An

alternative way is to match hourly historical electricity demands with

historical weather data as is done in the example of Chapter 9.

The essential outputs of the demand model are the new forecasts of

the peak power demand, the total electricity demand and the load shapes



142

for each time period in the study. These forecasts are used in the

capacity planning model in determining the number and type of new

generators to be built. The demand model can also be used to compute the

net demand on the central generators for the current time period. This

information is passed to the plant operation model to determine the costs

of meeting the demand in the current time period.

The plant operation model uses the load shape and energy demand, the

physical characteristics of the utility's generators, and the fuel prices

for the current time period to compute the expected cost to the utility

of meeting the customer demand and the reliability with which the utility

meets the customer demand can be found. In this report, the SYSGEN model

[38] developed by the author was used for the production costing and

reliability analysis.

The plant operation model takes into account the random nature of the

customer demand and the availability of generators using a technique

developed by Baleriaux [6]. As described in Chapter 4, this technique

makes it possible to compute the amount of energy that each plant would

be expected to generate taking into account that other plans may fail

requiring it to generate more electricity or that the demand may be

unusually high or low requiring it to generate more or less electricity.

This technique does not compute all possible combinations of plant

failures and load levels. Instead, it uses convolution to find the

probability distribution of the demand plus the plant outages. This

distribution can then be used to compute the expected value of the energy

generated by each plant. It can also be used to find the loss-of-load
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probability and the expected unserved energy of the system as illustrated

in Figure 4.3.

The plant operation model produces detailed information about the

operation of each unit. This information is used within the long range

planning model in making trade-offs between capital and operating costs

for different plants. The long range planning model also uses the

reliability measures computed in the plant operation model to ensure that

the new system meets the reliability requirement of the utility.

The total cost of operating the system is passed on to the rate

setting model to be included in the required revenues when setting the

rates for the next time period. The reliability of the system is sensed

directly by the customers and is one of the inputs to their decisions of

whether or not to build their own generators.

One of the assumptions of the system operating model is that it is

known what units have been installed and are available to generate

power. Once the current projections for the net load shape and energy

demand are known, the utility expansion plan can be found based on

current estimates of construction costs and fuel costs for new

generators. The expansion plan is usually made for about twenty years

into the future, but only the plans for the near future are made

definite. In fact, only those decisions which must be made in the

current time period to have a new unit when needed are made firm. All

other decisions are allowed to float until some future time period when

they are made firm, postponed, or abandoned depending on new conditions.

The model used for long-range planning, the EGEAS model developed at
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MIT, is described in Chapter 5. The model, based on Bloom's thesis [11],

uses Benders' decomposition to solve the optimization problem. Using

Benders' decomposition allows the use of a nonlinear model of the power

system operation, but retains the advantage of having a linear model for

the optimization. The master problem generates a capacity expansion plan

based on the criteria of minimizing total cost. The plant operation

model then computes the cost of operating that set of plants to meet the

demand. It also computes the shadow price on the capacity of each plant

in the current plan. The shadow price on the capacity indicates to the

master problem how the total cost of operating the system would change if

the plant were made a little bigger or a little smaller. Using this

information, the master problem computes a new expansion plan. This

process continues until the total cost is arbitrarily close to the upper

bound generated by the Benders' technique.

For this report, a relaxed version of the EGEAS model was used since

only the early years of a study are critical in deciding the next unit to

be built. In the relaxed version, the early years are modeled using the

completeBenders' structure and the later years are modeled using a

linear, rather than a non-linear, plant operation model. This allows for

faster running times during computation.

Once a unit has been committed to construction that information is

passed on to the rate setting model so that its capital and carrying

costs will be included in the rates set for customers. The information

of committed units is also passed to the system operation model since, at

some point, the unit will come on line and can be used to meet customer

_ _I~ I~
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demand.

In the demand model, it was assumed that the number of customers

owning their own generators was known. In order to find this number out,

one more model must be used. This model describes how customers respond

to the electricity rates and other factors in deciding whether or not to

build their own power generators. In terms of the larger model,

customers are given the price of electricity by the utility for the

current year and have expectations about the future price based on the

current price and the prior behavior of the price. In addition, the

customers perceive directly the reliability of the grid electricity to

their households.

Customers, in deciding what kinds of equipment to install and whether

or not to generate their own power, make the same kinds of decisions as

the utility although usually in a far less sophisticated way, and usually

with many more criteria besides cost minimization. Because of this, the

model is structured to answer the question of the worth of the system to

the owner, rather than the question of the number of systems that would

be installed under a minimum cost criterion. In optimization theory,

these two questions are closely linked, one being the dual of the other.

However, for our purposes, the first question is more useful. Since the

available computer version of EGEAS [30] does not yet treat

time-dependent generators, the example in Chapter 9 uses a breakeven

analysis model developed specifically for time-dependent generators and

described in reference [84].

The breakeven cost of a system is dependent on the price of the
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should change with the time of day. Rather than attempting to justify

using one rate or another, the ERATES model [24] was used because it can

calculate both flat and time of day rates on either an embedded or

marginal cost basis. The option of computing different types of rates

allows one to study the effect that different types of rates will have on

the demand.

The new rates for the next year are announced to the consumers and

the electriciy rates for the demand model and the customer choice model

are updated. All the exogenous variables are also updated and the

process begins again.

These interconnected models allow a planner to work through a full

utility planning structure incorporating the sequential and

interdependent nature of decisions. The following chapter works through

an example showing how the models fit together. The example demonstrates

method and logic while giving reasonable results, although the results

would not be applicable to any particular utility.

- ---- lil1iil
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9. Example

This chapter presents results from hand calculations and computer

runs. Several of the computer modules were unavailable because they were

still under development. For these modules, simplifying assumptions were

made so that the model could be run on a pocket calculator, or else

another documented, available, but less advanced model was substituted.

A time frame of eight years was chosen, starting in 1975, with five

time periods modeled exactly and three approximately. The data on fuel

prices, socio-economic conditions, and weather conditions are based on

New England data for 1975. The example should be taken as an example of

the mechanics of the methodology, and not as the results of a study.

9.1. ,Demand Model

9.I.A. Long-Run Demand

The basic inputs to the long-run demand model are the estimates of

fuel prices, demographic factors and the energy consumption by economic

sector for the base year. Table 9.1 gives fuel prices for 1975 and Table

9.2 lists the demographic and economic factors and their assumed growth

rates. The population figure has been scaled so that the total demand

matches the capabilities of the test utility in the EGEAS data base.

Because the only version of the Baughman-Joskow model available was

estimated prior to 1973, the elasticities were too low for current price

levels. Therefore, in order to have demand grow so that the utility

would build new plants, it was necessary to assume that the population in

the test region grew at 10 percent per year.
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Table 9.1

Fuel Price Data 1975 prices in 1970 dollars

Industrial Fuel

Electricity

Oil

Coal

Nuclear

Gas

No. 6 Oil

$/MBTU

4.0176*

.6313

.5092

.500

.8461

1.198

$.014/kWh

$3.66/barrel

$13.24/ton

$62.50/gram

$909.56/mcf

$7.57/barrel

Annual Real
Escalation Rate

(percent)

3.0

3.0

3.0

4.0

4.0

3.0

Electricity

No. 6 Oil

Gas

Residential and Commercial Fuel

$/MBTU

4.754* $.016/kWh

1.260 $.25/gallon

2.344 $.0018/hundred cf

*assumes direct conversion rate of lkwh = .003412 MBTU

3.0

3.0

4.0
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Table 9.2

Demand Model Input Assumptions

1970 dollars

Personal Income ($/person)

Population

Value Added ($) (national)

Real Discount Rate (percent)

Average Density (people/sq mi)

Minimum Temperature

Maximum Temperature

Average Residential energy
consumption (MBtu/capita)

Average industrial
consumption (MBtu/capita)

Average residential electrical
consumption (MBtu/capita)

Average industrial electrical
consumption (MBtu/capita)

3,000

803,127

3.46ell

3

300

150 F

850F

Annual growth rate (percent)

0.0

10.0

5.0

10.0

117

166

16.65

31.69
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The demand equations, as given in Chapter 2, were solved on a hand

calculator. The resulting energy demand projections of the

Baughman-Joskow model are given in Table 9.3.

As can be seen by the declining per capita energy consumption,

customers respond very strongly to the real increases in the price of

electricity. With more recent estimates of elasticities, one would not

expect such a sharp reduction in demand; however, the trend would be in

the same direction.

The long-run demand projections from the Baughman-Joskow model are

passed on to the short-run demand model in order to find the change in

load shape due to time-of-day pricing and customer owned generation. The

long-run demand projections will ultimately be used by the long-range

planning model as the given demand that must be met by building and

generating units.

9.I.B. Short-Run Demand

9.I.B.1. Load-Shifting

Because the Baughman-Joskow model predicts only the total energy

demand, without any other information, one would assume that the load

shape for the base year, as given in Table 9.4, remained constant over

time. However, two models have been presented that change both the total

energy demand and the load shape. The first model predicts changes due

to a price response to time-differentiated rates and the second predicts

changes due to customer-owned generation. Because both models compute

changes in energy demand and changes in load shape, the two functions are

not described separately.
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Table 9.3

Energy Demand Projections

Electrical Energy'
Demand (MBtu/capita)

Residential Industrial

16.65 31.69

15.39 30.42

14.17 30.42

13.44 29.25

13.01 27.35

12.37 26.62

11.79 26.05

11.39 25.61

11.03 25.37

Total Electric
Enery Demand

(MBtu)*

38,750,530

40,700,014

42,243,058

44,564,624

47,457,644

50,431,381

53,838,317

57,907,486

62,665,291

Electric
Power Demand

(MW)

2100

2193

2289

2415

2572

2733

2917

3138

3396

*assumes direct conversion rate of 1 MWh = 3.412 MBtu

1975

1976

1977

1978

1979

1980

1981

1982

1983
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Table 9.4

Initial Reverse Cumulative Distribution of the Customer Demand

x = percent of peak demand

x (percent) P[demand > x]

30 1.000
35 .980
40 .925
45 .820
50 .750
55 .628
60 .548
65 .441
70 .324
75 .213
80 .122
85 .109
90 .040
95 .001

100 0.0

Due to problems with the published values of the coefficients for

the load shifting model, a proxy model was used for the test case. The

relative demand for all residential customers was assumed to have the

form:

log es = M1s log cbase + M2s log cshoulder+ M3s log cpeak (9.1)

where es = relative demand in subperiod s

cs  = relative price in subperiod s

M1s = elasticity of base period consumption with respect to

the price in subperiod s
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M2s = elasticity of shoulder period consumption with respect

to the price in subperiod s

M3s = elasticity of peak period consumption with respect to the

price in subperiod s.

Table 9.5 gives the hypothetical elasticities used in the test case.

These elasticities can be interpreted rather simply. The negative

elasticities along the diagonal mean that when the price goes up in that

time period, the consumption decreases. The effect is largest on the

peak and smallest in the base period. The off-diagonal elements

indicated the relative change in the demand in a time period when the

price in another time period changes. So, if the peak period price rises

relatively, one would expect the peak demand to fall and to have the

change in demand shifted mostly to the shoulder period and some to the

base periods, with some demand being lost altogether.

Table 9.5

Inter-hour Price Elasticities

Elasticities/Price Cbase Cshoulder Cpeak

Cbase -.05 .05 .02

Cshoulder .01 -.15 .06

Cpeak .01 .05 -.20
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Table 9.6 gives, for three subperiods, the energy consumption and

prices in the previous time period and the projection of relative

consumption for the next year of the study. These values were found by

substituting the elasticities from Table 9.5 into equation (9.1). The

prices in the subperiods are assumed to escalate at the same rate, so the

relative consumption in subperiods remains constant although the absolute

level of consumption changes. The new load distribution is given in

Table 9.7. Chnges in each hour were computed as well, since the hourly

curve is needed for the time-dependent generation model. As expected,

some demand has shifted to the base time periods. The probabilities of

being found in low load states are now higher. And, the probabilities of

being found in higher load states is lower. It should be noted that the

peak demand doesn't change since there is always some probability that

the original peak will still occur.

It should also be noted that the load shifting reduces the total

energy demand. Computing the area under the curves tabulated in Tables

9.4 and 9.7, given that the peaks are the same for each curve, one finds

Table 9.6

Price-Sensitive Demand

Base Shoulder Peak

Price relative to previous
time period .5 3 10

Residential consumption
relative to previous
equivalent time period 1.1453 .7335 .6620

Length of time period
(hours/day) 12 8 4
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Table 9.7

Reverse Cumulative Distribution after Residential Price Shifting

x = percent of peak demand

x (percent) P[demand > x]

30 1.000
35 .985
40 .935
45 .860
50 .750
55 .650
60 .500
65 .295
70 .165
75 .080
80 .010
85 .005
90 .001
95 .0005

100 0.0

that the overall reduction in demand is approximately six percent.

The load shape, modified by the price effect, is passed on to the

customer-owned generation model so that the effects of time-dependent

generation can be incorporated.

9.I.B.2 Customer-Owned Generation

There were initially assumed to be fifty identical wind turbines,

fifty identical photovoltaic generators, and fifty identical diesel

generators on the system with characteristics as given in Table 9.8. The

T+D loss function was assumed to be piecewise linear and is given as a

function of peak demand in Table 9.9.

The hourly load reductions for the wind and solar generators were
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Unit Type

Photovoltaic

Wind Turbine

Diesel

Fuel

Insolation

Wind

No. 6 Oil

Table 9.8

Customer Generator Data

Mechanical
Capacity Forced
(kw) Outage Rate

5 .01

5 .10

5 .10

Installment
Cost
($/kw)

500

400

200

Table 9.9

T+D Loss Function

base shoulder peak

percent of peak demand 50 75 100

loss multiplier 1.041 1.092 1.163

computed using the OESYS computer model [27] using a Boston weather tape

as input. These load reductions were written to a computer file and then

input to the ELECTRA [39] computer model. The new distribution for the

net demand on the utility, as computed by ELECTRA, is based on an hourly

analysis in order to capture the correlation of the output of the solar

and wind generators with the demand on the utility. For ELECTRA, the

price modified loads were computed on an hourly basis and then converted

to a cumulative distribution as reported in Table 9.7.

Heat 
Rate

Heat Rate
(BTU/KWH)

17,000
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Table 9.10 gives the new reverse cumulative distribution of the

load including price effects, customer owned generation, and T+D losses.

Tables 9.7 and 9.10 are compared graphically in Figure 9.1.

Table 9.11 gives the final net energy and net power demand

projections for the first time step in the study. The net energy was

found by computing the area under the load curve using linear

interpo lation between the points in Table 9.10. The projection for the

current year, 1975, is the demand that will be used in the plant

operation model as the demand that the utility must serve.

Table 9.10

Final Reverse Cumulative Distribution of Customer Demand

x = percent of peak demand

x (percent) P[demand > x]

30 1.000
35 .941
40 .864
45 .787
50 .710
55 .629
60 .551
65 .481
70 .342
75 .243
80 .134
85 .058
90 .027
95 .007

100 0.0
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Net Energy and

1975

1976

1977

1978

1979

1980

1981

1982

1983

Table 9.11

Power Demand on the Utility

Energy Demand Power Demand
(MBTU)* (MW)

38,403,534 2100

40,107,626 2193

41,864,797 2289

44,165,576 2415

47,032,687 2572

49,979,800 2733

53,356,225 2917

57,388,955 3138

62,104,159 3396

*Assumes a direct conversion rate of 1 MWh = 3.412 MBtu
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9.11. Utility Model

The expansion plan for the example was found using a prototype of

the EGEAS computer model [30] which uses SYSGEN [38], the production

costing model, as a submodel. The basic plant data are given in Table

9.12. Also included in Table 9.12 are data on the historical and

replacement capital cost which will be used in the rate setting model.

The cost of fuel is taken from the cost of fuel for industries given in

Table 9.1. The data on demand from Tables 9.10 and 9.11 were converted

to the EGEAS format and input to the program.

The total installed capacity is 2300 MW, giving a reserve margin of

approximately 10 percent over the initially projected power demand. In

the optimization, the unserved energy constraint is that at least 99.1

percent of the original energy demand must be met. These, and other

relevant, figures are summarized in Table 9.13.

The number of new alternatives is restricted to five to keep the

optimization from becoming too large. Since a basic alternative can be

installed in any year, there are actually forty alternatives within the

optimization. Data on the alternative units is given in Table 9.14.

The capacity expansion plan and the operating cost in each time

period are given in Table 9.15. In the sample case, lead times are

ignored, so that the unit listed for installation in 1976 is assumed to

be installed then.

The operating costs are computed as part of the long range planning

model and so are not considered separately here. The operating cost for

1975 is passed on to the rate setting model as part of the required

revenues.
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Unit Ty

Nuclear

Oil

Oil

Gas Turbine

Gas Turbine

pe

Base

Base

Cycling

Peaking

Peaking

Install-
ment
Year

1971

1974

1963

1968

1970

Table 9.12

Installed Unit Data

(1970 dollars)

Name- Heat
plate Rate Forced
Capacity (MBTU/ Outage
(MW) MWH) Rate

600 10.400 .20

800 9.300 .13

800 9.400 .13

50 14.000 .24

50 14.000 .24

Historical
Cost
($/kw)

109

130

74

48

56

*Units built before

Data from reference

1958

[71]

are fully

and [24].

depreciated.

Table 9.13

Optimization Data

Number of years, T = 8

Discount rate, p = .03

Reliability requirement, E = 0.9 percent of energy demand

Reserve margin, RM = 20 percent of peak power demand

Capital escalation rate = 3 percent

Allowed rate of return = 14 percent

Rep lace-
ment
Cost
($/kw)

189

137

137

95

95
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Table 9.14

New Unit Data

Unit Type

Nuclear Base

Coal Base

Oil Intermediate

Coal Intermediate

Gas Turbine Peak

Capacity
Fuel (MW)

Nuclear 1000

Coal 800

Oil 500

Coal 600

Oil 150

Forced
Outage
Rate

.35

.25

.20

.20

.15

Installment
Cost

($/MW)

50,000

40,000

30,000

35,000

13,000

Full Load
Heat Rate

(MBtu/MWh)

10.400

9.750

9.400

9.000

14.000

Table 9.15

Utility Capacity Expansion Plan

1970 Dollars

Capacity (MW)

208

Net Present Value
Operating Cost
(Million $)

51.7
44.1
37.5
32.4
29.1

Year

1975
1976
1977
1978
1979

Unit Type

Nuclear
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9.111. Customer Expansion Model

Because the prototype of EGEAS could not handle time dependent

plants, the customer expansion model was run using the breakeven

methodology described in reference [84]. The OESYS computer model [27]

was used again to find the annual energy savings. Only one class of

customers was considered. Their peak load and energy requirements are

given in Table 9.16. The embedded flat rate for residential customers in

Table 9.1 was used for the price of electricity. The costs for each

potential new generating system are given in Table 9.8, along with other

operating characteristics of the generators. Each generator type was

assumed to have an expected useful life of 20 years for the purpose of

computing the breakeven capital cost. The payback period was computed by

dividing the capital cost of the system by the annual energy savings to

give the number of years required to recover the investment. No

discounting was used since Lilien and Wulfe [60] found that most

consumers did not use discounting when computing the payback time on

which they based decisions.

The marketing curves were only available as a function of payback

time rather than breakeven cost, as illustrated in Figure 6.1. From the

information on the amount of energy that the system provides annually,

and from the expected fuel costs, both the payback time and the breakeven

Table 9.16

Customer Characteristics

Peak power demand 6 kw

Annual energy demand 5256 kwh

Reliability requirement 95 percent of energy demand
Discount rate 3 percent real
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cost can be computed. These figures are included in Table 9.17. From

Figure 6.1, the number of installations of each type can be found

assuming that customers use the same criteria for all systems. The

number of new installations is given in Table 9.18, as read from Figure

6.1.

For the residential customers in the test case, the reliability

constraint was not binding. If industrial customers with higher

reliability requirements had been included, some diesel generators might

have been installed to meet power rather than energy requirements.

Table 9.17

System Breakeven Costs

(1970 dollars)

Photovoltaics

Wind Turbine

Diesel

$/KW Installed

$352.00

$465.00

-$ 73.00

Payback Time (years)

14

11

Co

Table 9.18

New Customer Installations

New Installations

Photovoltaics 20

Wind Turbine 30

Diesel

Total Installations

70

80

50
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9.IV. Price Setting Model

The ERATES computer model [24] was used to compute the new rates

based on the operating and capital costs of the system and to project the

rates for the entire time horizon based on the expected operating and

capital costs. The input data necessary to run the price setting model

have been given in Tables 9.1, 9.2, 9.12, 9.13, and 9.15. These are:

the price of fuels, the number of ratepayers, the average consumption,

the existing capital structure and its depreciated and replacement value,

the allowed rate of return, and the newly installed capital. The data

were converted to ERATES format and input to the model.

Table 9.19 gives rates for 1976 for four different rate structures.

Instead of running the rate model for all the remaining years of the

study, a simple annual escalation rate of 5 percent was assumed. It

should be noted that the prices computed are considerably higher than

Table 9.19

Electricity Rates for 1976

1970 Dollars

Residential Industrial
($/kwh) ($/kwh)

Flat embedded .0479 .0511

Flat replacement .0735 .0730

Time of day embedded

peak .0658 .0787

off-peak .0638 .040

Time of day replacement

peak .0866 .0940

off-peak .0645 .0649
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those assumed in Table 9.1, and therefore one would expect the demand to

be less than projected for the next time period.

For the next time period, the new rates would replace the flat rate

given in Table 9.1 and the other fuel costs would be updated as would the

socio-economic factors, expected growth rates, and capital costs for both

centralized and decentralized generation. The demand for 1976 and beyond

would be projected and the planning process would start again.
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10. Conclusion

The author has developed a dynamic, non-equilibrium methodology for

long-range planning of electric power systems. The methodology

synthesizes the models used in electricity planning in a way which

captures the common dependence of the utility and its customers on

exogenous factors. The methodology also captures the influence that the

customers have on the utility's decisions and that the utility has on the

customers' decisions. This new methodology does not assume the existence

of a long-term equilibrium solution. The general methodology presented

in this report allows one to assume that as exogenous and endogenous

factors change over time, decision makers can modify previous plans in

order to track an ever-changing optimum. Thus, in a rapidly changing

environment a stable equilibrium solution would not be expected using

this methodology. But, if exogenous variables behaved as expected and if

both the utility and its customers had the same expectations, and if each

could predict what the other would do, then the solution would be

equivalent to the equilibrium solution.

The methodology assumes that in each time period new information

becomes available and that old decisions are revised and new decisions

are made. The explicit inclusion of the time parameter allows the

utility and its customers to change their expectations of the other's

future behavior based on the new set of signals and to change their

expectations of the future behavior of exogenous variables, such as price

of oil, based on their latest values. The inclusion of the time

parameter also allows factors such as lead times for new units and short-



168

versus long-run responses to be modeled accurately.

The methodology focuses on near-term decisions based on the

assumption that a decision is made only when the lead time for a project

becomes critical. That is, even though plans may be made for the next

thirty years, only those decisions within the first ten years or so

require that commitments be made immediately. This allows the use of

simplifying assumptions for time periods further in the future that

reduce the computational effort required to find a solution.

One underlying assumption of the methodology is that the utility and

its customers interact only through a small set of quantifiable signals.

This assumption makes the lines of communication as illustrated in Figure

1.5 clean and well-defined. However, the utility may influence demand in

many ways besides through the price they charge. They may promote new

appliances or they may promote conservation. They may discourage

non-utility generators through entangling rules or they may encourage

them through educational programs on alternative resource technology. Of

course, customers can influence the decisions of the utility other than

through their demand patterns. They may file lawsuits to prevent

specific projects or through referenda they may direct their legislations

to encourage or discourage the use of particular fuels. In addition, the

anticipated political response to new rates may influence how the rates

are set by a utility, and rates are frequently substantially changed in

response to consumer intervention during rate hearings. Interactions

such as these could be incorporated into the general structure if they

could be quantified as model inputs and outputs. However, the difficulty
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of quantifying such variables makes their inclusion in any utility model

quite impractical.

Another limitation is that, since the boundary defining the system

must be drawn somewhere, many potential interactions are ignored. For

example, the electric utilities by their choices of generation

technologies may affect the price of those technologies particularly

since they are the only buyers of large power plants. A case in point of

this principle is photovoltaic technology for which the price to all

buyers is expected to drop rapidly if sales increase to a substantial

level. Within the methodology, effects such as this must be treated

exogenously because they did not directly affect the interaction of the

utility and its customers.

By its very nature, the general methodology by trying to include

everything can become so unwieldy as to be impractical to use. However,

it can always be broken out into its components and then used as utility

planning models have always been used. Just the exercise of looking at

the planning process as a whole should help utility planners to see the

many interactions within the system and allow them to construct

internally consistent scenarios when planning.

To implement the general methodology fully would require computer

programs for each model described in Chapters 2 through 7, a common data

base, and linking programs. Of the models described above, some are

complete while others are still under development. In particular, the

demand models presented here require the most developed since the demand

drives the entire proces. Either the econometric models must be
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re-estimated or they must be replaced with end-use models. And, for most

of these models, there are other just as acceptable available models that

could replace them in the general methodology. Thus, most of the work in

implementing the methodology is in developing the data base and the

linking programs. In the example given in Chapter 9, the data were

reworked for each model's particular input requirements. For a large

study, this would not be practical. A common data base would have to be

developed with the high linking programs interfacing between the main

programs and the data base.

As with any model that attempts to prescribe the actions of decision

makers, there is no test which allows one to accept or reject the

underlying hypotheses of the model. One possible experiment would be to

run the model for a particular utility which experienced sharp demand

reductions after 1973. Using this model, one could perform a planning

study starting in 1973 and updating the plan each year based on the new

information available in that year. By comparing the utility's actual

plan to the computed plan one could get an estimate of the value of this

type of planning methodology. Of course, the savings would be

overestimated since utilities always operate with more constraints than

are possible to model. The ultimate test will be its reasonableness and

usefulness to those who must plan for new electricity supply.
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Appendix A Electric Utilities

In the United States, electric power is supplitd by public utilities

which are regulated monopolies. A utility must supply power to all

customers who wants it, whenever they want it, at a price approved by

regulators. For many years, supplying demand was not a problem because

fuel prices were stable, advances in technology steadily decreased the

capital requirements for new plants, and demand growth was steady. Under

these conditions, a price struction was set up which encouraged increased

consumption. A typical declining block tariff of this kind was shown in

Table. 7.1.

The price charged for a kilowatt of electricity under this tariff

does not necessarily represent the cost of its production so that some

customers subsidize others, but the rate are set so that the total

revenues balance the total costs plus the allowed profit. The price of

electricity did not become an issue until the late sixties when the

trends mentioned above began to reverse: fuel prices increased, capital

requirements increase, and demand growth ueclined unsteadily.

A.I. Electricity Demand

Electricity demand varies with the time of day as people wake up, go

to work, eat, turn on lights and the television, and go to sleep. The

demand also varies with the season as the length of the day changes and

people require heating or cooling. Figures A.1. and A.2. show typical

daily and annual load curves for a utility. Demand patterns vary

markedly among utilities, depending on their location, the industries in
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the area, and the lifestyle of the poplulation. Most utilities, except

those in the northernmost states, now experience their peak demand in the

summertime from the air conditioning load. In the north, the peak demand

occurs in the winter from the heating load and from the lighting load due

to the short days.

Electricity consumers can conveniently be divided into three

categories: residential, commercial, and industrial. The classes are

distinguished by the end use of the power, the volume and pattern of

demand, and the supply voltage of the power. Under the current rate

structure, each customer class has a different tariff based on the

utility's perception of the relative costs of supplying power and on its

perception of the relative demand elasticities. Although utilities

justify lower industrial rates on the basis that high voltage power is

cheaper to supply, it has been suggested1 Lhat the lower prices are

attributable to the higher industrial price elasticity. That is,

industrial users are more sensitive to the price of electricity than

other users.

A.II. Electricity Supply

For stable operation, an electric utility must balance the power it

generates with the power that is demanded. If too little power is

generated then the electrical frequency drops below the standard 60

cycles per second causing, in extreme cases, brown-outs, slowing of

Cicchetti, L181, p. 37.
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electrical clocks, and damage to motors. If too much power is generated,

the frequency rises, causing clocks to speed up and again causing damage

to motors.

Because the demand for electricity is not uniform over time,

utilities build three different types of power plants: peaking units,

cycling (or intermediate) units, and base load units. A peaking unit has

low capital cost and high fuel cost and can be started up or shut down

rapidly. Keeping the capacity of a peaking unit available has a low

cost, but there is a high cost to generate energy with it. A base load

plant by contrast has high capital cost and low fuel cost. Base load

plants are usually large (500 to 1000 megawatts) and have lengthy start

up or shut down times. A cycling plant has capital and fuel costs

between those of a peaking and base load plant. The particular

combination of base load, cycling and peaking units owned by a utility is

called the generation mix.

A totally different type of plant is a storage unit which generated

no energy of its own. Storage units are used when there is not enough

customer demand to run a base load unit at full capacity. The extra

energy is saved in the storage unit until the customer demand rises and

the extra energy is needed. Not all energy is recovered, however,

because there are losses incurred in storing and in retrieving the

energy. The most common type of storage used by utilities is pumped

hydroelectric storage in which the excess energy is used to pump water up

into a reservoir where it remains until the energy is required. The

water is then released to drive a turbine which drives an electrical
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generator.

Figure A.3. shows trade-offs between initial cost and operating

costs for base, cycling, and peaking plants. Storage units are not

included because their energy cost is a function of the base power cost

dnd the d(andnd pdttern. The curve shown in Figure A.3 is called a

screening curve and can be used to make rough tradeoffs between different

plant types. In Chapter 5, a long range planning model is described

which makes the same trade-offs between capital anu operating costs, but

with much more sophistication.

25 50 75 100

Operating time (% of year)

Figure A.3 Yearly Fixed Versus Operating Costs for Power Plants
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When operating its plants to meet the customer demand, it is easy to

show that the utility should bring the plants on-line in order of

increasing cost. That is, if the demand increases, and the utility has

to start up another plant, then it should start up the one that is the

least costly to run among the plants that are not currently generating.

In this way, the utility minimizes the total cost of operating the

system. In fact, there are frequently reasons why the utility cannot

bring up the next cheapest unit: there are physical constraints on some

large generators that make it costly to start them up and shut them down;

there are operating constraints on some hydroelectric generators because

the water is used for many purposes or because reservoir size is limited;

there are reliability constraints that dictate that a certain amount of

capacity be kept in ready reserve; there are transmission constraints

that can effect the order in which plants are used due to their

geographical location.

In Chapter 4, a production costing model was presented that takes

most of the constraints into account. The purpose of this model is to

answer the question: How much does it cost to run the utility system

given the demand and the fuel costs

A.III. Electric Reliability

From the discussion so far, it would dppear that a utility would

build peaking units only if high demands were expected for short perids

of time; however, other factors make extra capacity necessary. One is

that a utility does not know what the peak demand will be. Extra
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capacity must be built as a hedge against excessive demand. Another

factor is that power plants cannot operate one hundred percent of the

time. Plants must be shut down for preventative maintenance at least

once a year. The utility needs extra capacity to make up tor any plant

that is being serviced. Also, a power plant generating electricity can

fail suddenly requiring other units to be brought up quickly. Utilities

usually operate with enough plants idling, ready to start generating, so

that if the largest unit were to fail, the electricity it was generating

could be replaced immediately.

All of these factors combine to require utilities to build more

capacity that would at first seem necessary. For planning purposes, a

rule of thumb is that the installed capacity sirould exceed the expected

peak demand by twenty percent. Most regulations, though, are written in

terms of the reliability of the system. For example, a utility may not

lose load for more than one day in ten years. In order to compute the

reliability at any one instant, one must know which plants are available

for generation, the probability of failure for eacn machine, and the

probability distribution of demand. These factors can be combined to

give the loss of load probability (LOLP). Another measure of the

reliability of a generating system is the expected unserved energy.

Expressed as a fraction of the total energy demand, the unserved energy

is referred to as the loss-of-load expectation, LOLE. The derivation of

these reliability measures will be discussed in Chapter 4.

Another aspect of system reliability is the reliability of the

transmission and distribution (T+D) network. T+D failures cause most
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outages experienced by consumers, but these failures are not included in

the reliability measures of the LOLP or LOLE. Measuring the reliability

of the transmission and distribution system is much more difficult tnan

measuring the reliability of the generating system. The models require

more data and there is no closed form solution. Load flow models must be

run for each possible combination of available transmission lines,

generating units, and demand levels. In addition, the reliability of the

distribution system can vary greatly within a single network, so one must

distinguish between, for example, the reliability to an urban customer

served by underground lines and a rural customer served uy long over-head

lines.
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Notation

A1,...A6

M1,...M6
= regression coefficients for the demand equations

a = regional index

Appik = 0-1 variable indicating whether customer k owns
appliance i

AREAa = area of region a (square miles)

[bj ]  = matrix of regression coefficients for time dependent
1j generator outputs and customer demand.

tBs t  = net benefit from system i in subperiod s, time period tBEC t  = Total breakeven cost for system i installed in year
i including capital, variable, and fixed cost (S)

t
BECC t  = breakeven capital cost for system i installed in year t

(s/MW)

= national weighted average price of industrial energy in
time t (B/MBtu)

= cost to industrial customers for fuel f in regiun a in
time t. Fuel n = electricity ($/MoTU)

= weighted average cost of energy for residential and
commercial cutomers in region a in time t ($/MBtu)

= cost to residential and commercial customers for fuel f
in region a in subperiod s of time period t
Fuel n = electricity ($/MBTU)

= capital cost of system iu in time t ()

= observed load at time o, normalized by the peak demana

= taxes, depreciation, and other utility expenses in time t
)= - variable indicatng the day of the week (Da

= 0-1 variable indicating the day of the week (Day,=Sunday)

-t
CI

tc f
Ifa

-tcRa

st
CRfa

tCX
1

Dt

Day
1
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ek  = energy demand by customer k in subperiod s relative to
demand in a known period.

Eka = electrical energy consumed in area a by customer class kka in time t (MBTU)

ECt
ECka = coal consumed in area a by customer class k in time t (MBtu)

EG = gas consumed in area a by customer class k in time t (MBtu)ka

EOa = oil consumed in area a by customer class k in time t (MBtu)
ka

ETk = total energy demand in area a by customer class k in time
ka t (MBtu)

E(x) = expected value of random variable x

EC(Y t ) = expected system operating cost as a function of plant
operating capacities in time period t k$)

EF(Y t ) = expected unserved energy as a function of plant operating
capacities for time period t (MWH)

f = fuel type

fc (x)dx = Probability Lx < YC< x + dxj

Fc(x) = 1- Gc(x) = Pr [Y > x ] = ffC(y) dy
x

= reverse cumulative distribution of the net customer load

tFIX = initial fixed cost for system i installed in year t,
i e.g., power conditioning, lightening protection ($)

g st(c) = demand response function to price c in subperiod s
time period t

G. = coefficients for Gram-Charlier expansion
1

GC(x) = Probability [net customer load < x]

GE(d) = Probability Lload + outages < dj.

h = number of hours in subperiod s
s
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Hi = full load heat rate for unit i burning fuel type f
(MBtu/MWH)

I = total number of units in the loading order in time period t

Kj = capital cost of installing a unit of type j and vintage v
(s/MW)

Lk(Y) = transmission loss function for energy from customer k when
the total demand is Y

LOLP st = loss of load probability in subperiod s, time period t

LOEP st = ratio of expected unmet demand to total expected demand in
subperiod s, time period t

m = iteration number in Benders' decomposition algorithm

Mt k = fixed costs attributable to customer k in time t (8)

MBtu = mega Btu (106 Btu)

MCs = marginal energy cost in subperiod s, time period t
E (b/MWH)

MCs t = marginal power cost in subperiod s, time period t
P ( /MWH)

MWst = energy produced by generator r in subperiod s, time period
r t (MWH)

n. = number of installatioiis of customer owned generator type i
1

NJ(z) = th derivative of the standardized normal distribution

pi =  availability of generator type i

pnk = reliability of grid electricity to customer k

P yLx = Probability Ly = xJ

PIa = personal income in region a at time t (b/person)

POPt = population in region a at time t
a

q probability that grid electricity cannot be
supplied to customer k in time period t



182

qTk = failure rate of the T+D system for customer k

Qst = peak customer demand in subperiod s, time period t (MW)

r = loading order of a central generator

RM = reserve margin required in time periou t as a percent
of peak demand in time period t

RR = required revenue in time t ($)

rr = allowed rate of return on investment

s = subperiod

S = total nunber of subperiods

Soc = sociological factors about customer k such as
number of people in the household and the income level

t = time period

T = total number of time periods

T1  = last time period with nun-linear constraints

TC(Y t ) = total cost function in time period t as a function of
unit operating capacities ($)

TCst = total cost of the system in subperiod s, time period t (8)

Temps = temperature in subperiod s (°F)

max
Tempa = maximum temperature in region a (oF)

minTempa = minimum temperature in region a (oF)

Ur = loading point of unit r (MW)

U = total installed capacity in time perioa t (MW)

VADD = value addea to industrial goods in time t ($)

Var(x) = variance of random variable x

VCt = initial variable cost for system i installed in year t
S (/MW)
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ws = vector of meteorological variable for subperiou s in
region a

X. = installed capacity of generation type i (MW)
1

stER = equivalent demand on unit r in subperiod s, time
perioa t (random variable) (MW)

st
Y = expected operating capacity of unit i in subperioa s,

time period t (random variable) (MW)

st
st = net electrical demand on the utility from customer k in
nk subperiod s, time period t (random variable) (MW).

st
ok = original electrical demana from customer k in subperioa

s, time period t (random variable) (MW)

A st = reduction in electric demand by customer K (random varidule)
(MW)

stAYS = reauction in electric demand by customer k due to the time-
ck of-day prices (random variable) (MW)

zk = ratio of power aemand to energy demand for customer k in
subperiod s, time period t (hour-l)

st
a = capacity factor for unit r in subperiod s, time period t.
r Ratio of average operating capacity to nameplate capacity.

i  = error term in the linear regression

-s
S = equal orthogonal vectors for demand Lransformation

= set of time periods in iteration m of the optimization
m algorithm for which the reliability constraint is not met

6rv = 0-1 variable that converts the inaeces of unit type j
rjv installea in year v into a loading order index, r, for

subperiod s, time perioa j.

t
A. = cumulative degradation factor for unit type i after t years

I of operation.

C = maximum unserved energy allowed in time period t (MWH)

S normidlized output for generator type i in subperiod s
given that the unit has not failed mechanically LO < n < J
(random variable)
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Ht  = sum of normalized outputs for system i for period t
t

o = dual multiplier associated with a time period t
in in which there is insutticient capacity to meet the

relldbility requirement in iteration m.

n = shadow price associated with the energy constraint in time
m period t, iteration m

p = discount factor

a = index for a set of subperiods with the same characteristics,
e.g., sunny breezy summer noontimes.

T = first time period in the current time set

=ik zero-one random variabli representing mechanical failure
for generation type i, owned by customer k

st = set of demographic and economic variables for customer k
ak in region a in subperiod s of time period d.

A = estimate

= random variable

* = optimal
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