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Executive Summary

A theoretical and experimental study was carried out to determine

lower bounds of NOx emission from staged combustion of a 0.7%N #6 fuel

oil. Thermodynamic and chemical kinetic calculations have shown

minimum NOx emissions at fuel rich stage equivalence ratios between 1.6

and 1.8 and fuel rich stage temperatures in the range of 1900 to 2100 K

(2960 to 3812 0F).

In the experimental investigations the use of the MIT Combustion

Research Facility permitted the detailed study of aerodynamically complex

industrial-type turbulent flames in thermal and chemical environments

similar to those in utility boiler furnaces. The primary stage fuel

equivalence ratio, the flow and mixing pattern in the flame, the level

of air preheat and the mode and quality of fuel atomization, were varied

to determine their effect upon the NOx and combustibles emission.

Unstaged flame studies were carried out to establish baseline data

for comparison with those obtained in fuel rich-lean staged flames in

which a fuel rich stage was formed near the burner and the lean stage was

established by the admixing of the rest of the combustion air at a

distance farther downstream.

Results of the computational modeling studies have shown that in

the fuel rich zone of the flame the fuel bound nitrogen compounds (FBN)

can be converted to molecular nitrogen, N2, which renders the FBN innocuous

for forming NOx in the lean stage of the flame.

Care has to be taken however to ensure that the mixing of the

secondary air with the products from the fuel rich stage does not produce

high flame temperatures, in excess of 1800K (27800K) and hence "thermal NOx."

-1-
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The modeling studies have shown also that the FBN conversion to N2 goes

through a minimum as the fuel equivalence ratio is varied and that this

minimum is lower, and shifts more towards the fuel rich as the fuel rich

stage temperature is raised.

The experiments guided by the modeling have led to significant

reduction in NOx emission; NOx was reduced from a level of 0.51 lb/10
6 Btu

(400 ppm @ 3% 02) in a single stage flame to 0.10 lb/106 Btu (80 ppm @

3% 02) in staged combustion when the fuel equivalence ratio in the fuel

rich stage was maintained in the range of =1.5 to 1.7 (50 to 70% fuel

rich), very close to that predicted from the model. The overall excess

air was maintained in all experiments at EA=10%, and the combustibles

(soot) emission was generally low, always well below the emission standard

of 0.1 lb/106 Btu.

It is considered that an important factor in the very low NOx emission

levels obtained in this study is the favorable mode of secondary air

admixing with the fuel rich flame gases which ensure complete combustion

without any additional "thermal" NOx formation.

It is emphasized that the conditions for these experiments were

carefully selected to approach optimum values for the concentration and

temperature history of the fuel. The tight controls of combustion

aerodynamics and of the heat extraction along the flame available in the

MIT Combustion Research Facility were highly favorable for the physical

realization and experimental study of these flames.

Due to the practical difficulties in controlling mixing and heat

extraction in existing utility boiler furnaces, it is not considered

realistic to expect the same low NOx and soot emission levels by combustion

- 2 -
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modifications. It is thought that the results of this study should be

used as guidance in design strategy for low NOx emission from the

combustion of high nitrogen-bearing fuels rather than as an indication of

the absolute levels of NOx which can be achieved by staged combustion

techniques in utility boilers.

Because of the significance of the flow and mixing pattern in the

flame for both the formation of NOx and carbonaceous particulates it is

recommended that in the second phase of this study the effect of mixing

and heat extraction along both single and multiple staged flames be

studied in more detail with a view of application of these controls to

the combustion in large utility boilers.

1. Introduction

It is recognized that one of the major problems associated with the

clean combustion of certain liquid fuels, including shale oil and coal

derived liquids, is due to their high nitrogen content. Fuel-bound

nitrogen (FBN) is known to convert preferentially to NOx under conventional

turbulent diffusion flame conditions, and is often the major source of

NOx emission for these high nitrogen content fuels. There are two major

sources of NOx emissions from combustion processes: at high flame

temperatures and oxidizing conditions atmospheric nitrogen reacts with the

oxygen in the flame to form NOx. The reaction mechanism--the Zeldovich

"atom shuttle" reaction between N atoms and 02 molecules, and 0 atoms and

N2 molecules respectively--is known and chemical kinetic rate parameters

are available for its calculation in fuel lean flames.

- 3 -
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The other source of NOx in flames is the nitrogen organically bound

mainly in heterocyclic compounds in the fuel. The mechanism of the

conversion of fuel bound nitrogen (FBN) in flames is more complex as it

involves a large number of gas phase and heterogeneous reactions but

a general picture of the most significant steps in the reaction paths of

FBN is evolving through a number of investigations carried out during the

last decade. Research on the conversion of FBN in flames surveyed by

Haynes [1] has been extended by Levy et al [2] in the course of a recent

research study at MIT. Some details of the chemistry of FBN conversion

relevant to the present study are discussed in Chapter 2 of this report.

At this point in our introductory discussion it should be noted that the

major difference from the point of view of NOx control between "thermal

NO" and "fuel NO" is that the former is produced predominantly at

temperatures in excess of 1800K and its rate of formation is strongly

dependent upon the temperature, while the latter is little affected by the

flame temperature, the rate of formation being primarily dependent upon

local flame stoichiometry. It is important also to note that reactions of

FBN in fuel rich, high temperature environments can lead to the formation

of molecular nitrogen, N 2, which is the way of rendering the FBN innocuous

for further oxidation to NOx in the lean stage of staged combustion

systems.

Because of the strong dependence of FBN conversion upon the local

fuel/air mixing ratio in the flame NOx control methods developed to

reduce thermal NOx formation by reducing peak flame temperatures, such as

flue gas recirculation, will not be effective in suppressing "fuel NO"
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formation; however, staged combustion techniques are found to be most

effective. Staged combustion involves the delayed mixing of a proportion

of the combustion air to permit the reactions which convert FBN to N 2

to proceed in the fuel rich part of the flame following which the combustion

is completed in an oxidizing atmosphere. Staged combustion can be achieved

by the appropriate management of the fuel/air mixing in a single combustor,

or by the physical separation of the fuel-rich and lean combustion

chambers. In the present first phase of our investigation the fuel

rich-lean combustion system was chosen for study mainly because of the

better control of mixing and heat extraction that this system permits.

As will be seen from the discussion of the experimental program, however,

one of the single stage flames chosen for establishing baseline data

-a slowly mixing, long turbulent diffusion flame-is representative of

the aerodynamical staging in a single combustion chamber.

Recent theoretical investigations at MIT have shed additional light

on the FBN conversion processes involved in staged combustion [3].

These calculations indicate that some of the important fuel-nitrogen

conversion reactions in the fuel-rich zone may well be kinetically limited

at the low flame temperatures which exist in this zone, effectively

preventing these reactions from reaching equilibrium within the available

residence time. Consequently, it is very likely that increased

temperatures in the fuel-rich zone will assist in maximizing fuel-nitrogen

conversion to molecular nitrogen and thereby reducing overall NOx emission.

In practice increased temperatures can only be obtained by increasing

air-preheat, and/or reducing heat loss from the fuel-rich zone.

- 5 -
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A problem associated with maximizing the efficiency of fuel-nitrogen

conversion to molecular nitrogen in a high temperature fuel-rich zone is

that these conditions are conducive to the formation of large concentrations

of soot or coke residues. Hence the research problem becomes one of

optimizing the conditions within the fuel-rich zone to minimize both NOx

and soot formation.

The research approach which has been adopted in this program was aimed

at demonstrating the practical feasibility of the staged combustion approach

to NOx control, using the MIT Combustion Research Facility (CRF). Thermo-

dynamic and kinetic data on reactions known to play a significant role in

fuel-nitrogen conversion were used to help formulate critical experiments

and to identify parameters which are most likely to have a significant

effect on the efficiency of conversion of fuel-nitrogen to molecular

nitrogen.

The fuel equivalence ratio and the fuel rich stage temperature and

residence time are parameters the significance of which to FBN conversion

was clearly illustrated by results of the thermodynamic-chemical kinetic

modeling studies. Correspondingly the experimental program was devised to

determine the effects of these variables together with others which were

expected to influence the emission of combustible gases and solids. The

fuel rich stage temperature was varied by means of the variation of air

preheat up to 5000 C and the fuel rich stage residence time by varying the

fuel input rate in the range of 1 to 2.0MW (thermal).

In the following the details of the thermodynamic and chemical kinetic

modeling studies are discussed followed by the presentation of the

experimental program, and the results of the investigation.
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Studies on a single fuel rich first stage, and on the second stage of

a two-staged combustor have been completed. multiple staging has not been

taken up to any extent yet. Studies have been carried out on a high

nitrogen No. 6 fuel oil having an organic nitrogen content of about 0.7%

by weight.

Descriptions of the experimental facility, the MIT Combustion Research

Facility and the various measurement, sampling and analytical techniques

can be found in Appendices A and B.

2. Theoretical Analysis: Chemical Equilibrium and Kinetic Studies on

Nitrogen Species Formed in Staged Combustion of High Nitrogen No. 6

Fuel Oil

Thermodynamic and chemical kinetic computer studies on nitric oxides

formed during staged combustion of high nitrogen-bearing fuels, were

carried out to complement experimental work in the same area carried out

at the MIT Combustion Research Facility (CRF). These studies are

largely qualitative, and were intended to aid in the planning of the

experimental program and in interpretation of data.

The theoretical studies examine a number of variables in the staged

combustion process which are thought to have a strong effect on nitric

oxides emissions. These are (1) combustion temperature in each stage

(affected by air preheat and combustor heat losses), (2) fuel equivalence

ratio (particularly in the fuel rich first stage(s)), (3) average residence

time in each stage, (4) the number of stages, and (5) the organic nitrogen

content of the fuel. Information on the effects of these variables on

NO, emissions should help in the formulation of an optimal staged

combustion process strategy.

-7-



The theoretical studies make use of two computer programs, one which

calculates equilibrium compositions of combustion mixtures, and the other

which models the chemical kinetics of fuel nitrogen transformations.

Both are used to calculate concentrations of nitrogen oxides (and other

nitrogenous species) in combustion mixtures. A description of these

programs is given in the following section. The results of the computer

studies are presented next, and then finally some conclusions that may

be drawn from them.

2.1 Descriptions of the Computer Programs Employed in the Theoretical Studies

The NASA Chemical Equilibrium Program

The computer program used to carry out chemical equilibrium

calculations in this study is entitled COMPUTER PROGRAM FOR CALCULATION OF

COMPLEX CHEMICAL EQUILIBRIUM COMPOSITIONS, ROCKET PERFORMANCE, INCIDENT

AND REFLECTED SHOCKS, AND CHAPMAN-JOUGNET DETONATIONS, and was written at

the NASA Lewis Research Center by S. Gordon and B. McBride in 1961-1962,

and has since been updated and improved upon several times.

Program Basis

There are two approaches towards solving simultaneous chemical

equilibria at a specified temperature and pressure, one involving equilibrium

constants and the other minimization of Gibbs free energy. The NASA

program is based upon the latter approach, which does not require an

explicit formulation of an independent set of chemical reactions leading

-8-
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to the formation of the chemical species being considered. (This

information is implicit in the Gibbs energy formulation of a chemical

equilibrium problem).

The Gibbs free energy of the combustion mixture may be written

n
S= E ui Ni

i=l

where

G is the total Gibbs free energy,

i refers to a chemical species,

Ni refers to the number of moles of species i present in the mixture,

Ui refers to the chemical potential of species i present in the
mixture.

The criterion for equilibrium is that the Gibbs free energy of the combustion

mixture is at a minimum (at a particular temperature and pressure):

n
6G = ui 6 Ni = 0

i=l

The variations in Ni are not independent but are subject to a number of

constraints consisting of elemental balances:

n
SN i aik- Ak = 0

i=l

where

k refers to the kth element in the mixture,

Ak refers to the total moles of the kth element,

-9-
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aik refers to the atoms of the kth element present in species i.

The NASA program applies the Lagrangian multiplier approach towards

simultaneously solving the equation defining chemical equilibrium and the

accompanying constraints for the equilibrium composition of the mixture.

The program uses the ideal gas equation of state, even when small

amounts of condensed species are present. The program is equipped with a

thermodynamic data base that can handle over 60 reactants and 400 reactant

species. Other state functions may be used to assign the thermodynamic

state at which the equilibrium composition is to be determined, besides

temperature and pressure (e.g., enthalpy and pressure).

The computer program is able to handle an adiabatic condition as well

as isothermal. In the case of the adiabatic option, an energy balance is

coupled with the equations for equilibrium, in the determination of the

equilibrium composition and temperature.

The NASA program has been used in our study for the calculation of the

sum of bound nitrogen concentrations including NOx (i.e. all nitrogen

compounds except N2) in combustion mixtures at chemical equilibrium. Because

of the departure from equilibrium conditions at shorter residence times in

the fuel rich stage of the combustor the results of thermodynamic calculations

were considered to give information on the trends in NOx formation as

combustor temperature and fuel equivalence ratio are varied. It was

recognized that for more detailed information the chemical kinetics of

fuel-nitrogen conversion reactions have to be taken into consideration.
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2.2 Nitrogen Oxides Chemistry

A brief review of NOx chemistry is given below to facilitate a better

understanding of the second computer program used in the theoretical

studies. A description of the program follows this review.

Nitrogen oxides are formed by direct oxidation of nitrogen (N2) in

the air (thermal NOx), by fixation of nitrogen in the air by hydrocarbon

fragments and their subsequent oxidation (prompt NOx), and by direct

oxidation of organic nitrogen (fuel NOx).

2.2.1 Thermal NOx

The formation of thermal NOx is well understood, resulting from a

small set of gaseous reactions referred to as the extended Zeldovich

mechanism. These reactions are listed below.

N2 +0 = NO+N (1)

N+0 2 = NO+O (2)

N+OH = NO+H (3)

These reactions are highly temperature sensitive; formation rates of

nitric oxides via the Zeldovich mechanism begin to become noticeable at

combustion temperatures above 1800K. Thermal NOx also increases with

increasing oxygen concentration in the combustion mixture.

2.2.2. Prompt NOx

In fuel rich hydrocarbon flames it is believed that molecular

nitrogen can be fixed by unburnt hydrocarbon fragments in reactions

- 11 -



such as

CH+N 2 = HCN+N (4)

The bound nitrogen thus formed is believed to undergo oxidation to nitric

oxides in reactions such as those described below.

2.2.3 Fuel NOx

The process by which nitrogen oxides are formed from fuel nitrogen

is complex and not fully understood. Figure 1 shows the paths that fuel

nitrogen transformations are believed to take during the combustion

process. The -fuel nitrogen is first partially devolatilized to

heterocyclic organic nitrogen compounds which then decompose mostly to

HCN. The decomposition of the ring compounds is believed to proceed at a

much greater rate than the initial pyrolysis step. The HCN proceeds through

a set of homogeneous gas phase reactions to N2 or NOx. The condensed fuel

nitrogen in the soot particles is believed to undergo a heterogeneous

oxidation process to NOx. There is also interaction between NOx in the gas

phase and the carbon in the soot particles, which is believed to catalyze

a NOx reduction reaction to N2. Considerable progress has been made in

understanding the homogeneous gas phase kinetics of fuel nitrogen reactions.

Some of the reactions upon which the chemical kinetic program is based, are

given below. The understanding of the kinetics of the heterogeneous

reactions is not so well advanced, especially for liquid fuel combustion.
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REACTIONS

Figure 1. The formation of nitrogen oxides in fossil fuel

combustion: mechanistic pathways.
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2.3 Homogeneous Gas Phase Reactions of Fuel Nitrogen

The HCN formed from pyrolysis of the fuel nitrogen is believed to

be initially oxidized to short-lived oxycyanogen intermediates in

reactions such as the one presented below. (HCN is assumed to initially

be partially equilibrated with CN.)

CN+OH = NCO+H (5)

CN+0 2 = NCO+0 (6)

HCN+ OH = HNCO +H (7)

HCN+0 = NCO+H (8)

The oxycyanogens are in turn thought to be converted to ammonia species

by H radicals.

NCO+ H = NH +CO (9)

HNCO+H = NH2 +CO (10)

The ammonia species and nitrogen atom, N, NH, NH 2, NH3, undergo a

number of hydrogen abstraction reactions which rapidly interconvert them

to one another.

NH3 + OH = NH +H 20 (11)

NH3 + = NH2+ OH (12)

NH2 + 0 = NH+ OH (13)

NH+OH = N+H20 (14)

NH+0 = N+OH (15)

NH+H = N+H2 (16)

NH2 +OH = NH +H20 (17)

NH2 H = NH+H 2  (18)

NH3 +H = NH2 +H2 (19)

NH +NH2 = NH 3 +N (20)
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The fuel nitrogen is thought to form molecular nitrogen or nitric oxide

by reactions through a common intermediate, probably being one or more of

the N, NH, NH2, and NH3 species. The intermediate undergoes two parallel

competing reactions:

1) with NO to produce N2

2) with 0 or OH to produce NO.

The major rationale behind staged combustion is to create conditions which

favor the first of the two reaction paths listed above.

Thus fuel nitrogen is converted to molecular nitrogen by the reaction

N+NO = N2 +O (1)

Other reactions leading to N2 include the reaction sequence shown below.

NH+NO = N O+H (21)

N20+ H = N 2 + OH (22)

Interaction of ammonia species may also lead to N 2.

NH+N = N2 +H (23)

The fuel nitrogen may be converted to nitric oxide by the reaction

N+OH = NO+H (3)

which competes with Reaction 1, or by

NH+O = NO+H (24)

which competes with the reaction sequence 21-22. Another source of NO

from fuel nitrogen is believed to be the oxidation of NCO.

- 15 -

ft



NCO+O = NO+CO

In addition to reactions 25 and 26 a number of other elementary reactions have

been postulated to lead to NO, such as reactions of HNO and N 20 with 0, H, or

OH radicals.

A number of other reactions are required to define concentrations of

intermediate species. These include (1) hydrogen abstraction reactions

between H2, 02, H, 0, H20, and between CN and HCN, (2) 3-body recombination/

disassociation reactions, and (3) the CO to CO2 oxidation reaction. Some of

these are listed below.

H2 +O = H+OH (26)

H20+O = OH+OH (27)

H2 +OH = H20 +H (28)

02+H = O+OH (29)

H+OH+M1 = H2 0+M1 (30)

H+H+Ml = H2 +Ml (31)

N O+M1 = N2+O+M1 (32)

H+O+Ml = OH+M1 (33)

02++M1 = O+O+Ml (34)

CN+H 2 = HCN+H (35)

HCN+OH = CN+H 20 (36)

C02+H = CO+OH (37)

All the reactions presented in this section are summarized in Table 1,

and form the basis of the chemical kinetic program which is described shortly.

In general, fuel nitrogen reactions are sensitive to fuel-air stoichiometry,

which plays an important role in determining whether the fuel nitrogen proceeds

to N2 or NO. Temperature has an important bearing on fuel nitrogen reactions

- 16 -
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TABLE 1

CHEMICAL KINETICS STUDIES ON HIGH NITROGEN NO. 6 FUEL OIL.REACTIONS CONSIDERED
TO INITIALLY BE PARTIALLY EQUILIBRATED

1. H20 + CO = CO2 + H2

2. 02 + H2 = OH + H

3. 0 + OH = 02 + H

4. H2 + OH = H + H20

5. HCN + H = CN + H2

REACTIONS CONSIDERED IN THE CHEMICAL KINETICS COMPUTER PROGRAM USED FOR
PREDICTION OF BOUND NITROGEN SPECIES CONCENTRATIONS

Zeldovich Reactions

1. N + NO = N2 + O0

2. NO + 0 = N + 02

3. NO + H = N + OH

Formation of oxycyanogens

4. CN + OH = NCO + H

5. CN + 02 = NCO + 0

6. HCN + OH = HNCO + H

7. HCN + 0 = NCO + H

8. NCO + H2 = HNCO + H

Oxidation of CN to CO

9. CN + 0 = CO + N

Conversion of oxycyanogens to ammonia species

10. NCO + H = NH + CO

11. HNCO + H = NH 2 + CO

Ammonia species interconversions

12. NH3 + OH = NH + H20

13. NH3 + 0 = NH2 + OH

14. NH2 + 0 = NH + OH

15. NH + OH = N + H20

16. NH + 0 = N + OH

17. NH + H = N + H2

18. NH2 + OH = NH + H20

19. NH2 + H = NH + H2
- 17 -



20. NH3 + H = NH 2 + H2
21. NH + NH2  NH 3 + N

Fcnateion of molecular nitrogen

1. N + NO = N2 + 0

22. NH + NO = N20 + H

23. N20 + H = N2 + OH

24. N20 + Ml = N2 + 0 + M1

25. NH + N = N2 + H

Formation of nitric oxide

26. NCO + 0 = NO + CO

3. N + OH = NO + H

27. NH + 0 = NO + H

Interconversions between 02, O, H2 , H, and H20

28. H2 + 0 = H + OH

29. H20 + 0 = OH + OH

30. H2 + OH = H20 + H

31. 02 + H = 0 + OH

Interconversions between HCN and CN

32. CN + H2 = HCN + H

33. HCN + OH = CN + H20

CO - CO 2 reaction

34. CO2 + H = CO + OH

3-body recombination/dissassociation

35. H + OH + Ml = H20 + Ml

36. H + H + M1 = H2  + MI

37. H + 0 + MI = OH + M1

38. 02 + Ml = 0 + 0 + Ml
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under fuel rich conditions, because it greatly affects free radical

concentrations, which in turn greatly affect the reaction rates.

2.4 The Chemical Kinetic Computer Program

The second computer program takes a large step forward as far as

prediction of nitric oxide formation in fossil fuel combustion is

concerned. Developed at MIT by Taylor, Levy, and Sarofim, the program is

an attempt at modeling fuel nitrogen transformations to nitric oxides by

a comprehensive elementary reaction set. Included in the set are reactions

from the well-established Zeldovich mechanism which accounts reasonably well

for nitric oxides formed by direct oxidation of nitrogen (N2) in the air at

high combustion temperatures. The program does not account for interaction

of nitrogenous species with hydrocarbon fragments or heterogeneous fuel

nitrogen reactions.

The hydrocarbon fuel is assumed to initially combust to a partially

equilibrated mixture of CO, C02, H2, H20, 0, and 02. In addition the fuel

nitrogen is assumed to have instantaneously been devolatilized and converted

to HCN and CN, these species also being in partial equilibrium with those

mentioned above. The elementary reaction set then models the kinetics of

nitric oxide and other bound nitrogen species formation from this partially

equilibrated mixture. The assumption of partial equilibrium is reasonable,

since rates of formation of the CO, C02, H2 , H20, 0, 02, CH, and HCN are

fast relative to the nitrogen species transformations that follow.

* The program version used in this study was developed by Barry Taylor

(doctoral candidate in chemical engineering at MIT under Prof. Sarofim).
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A list of the initially partially equilibrated reactions and the

elementary kinetic reaction set is given in Table 1.

2.4.1 Limitations on the Applicability of the Chemical Kinetic Program

Results to the CRF Combustor

The elementary reaction set is integrated into a simple plug-flow

reactor model, which puts limitations on the quantitative accuracy of

the computer calculated NOx concentrations, when applied to the CRF

combustor. The reactions in the program are assumed to take place in a

homogeneous gas phase environment in which the oxidant and fuel have been

introduced in a perfectly mixed state. In order to predict NOx emissions

quantitatively and accurately from a combustor such as is in use at the

MIT CRF, the following processes would have to be taken into account in

addition to the gas phase chemistry of NOx formation from fuel nitrogen

and N2 in the air:

1) Atomization
i) droplet sizes and size distribution

ii) nature of the spray (e.g. dimensions and pattern).

2) Fuel droplet vaporization (both the hydrocarbons and the organic
nitrogen compounds).

3) Decomposition of volatilized organic nitrogen compounds to HCN.

4) Mixing rates and patterns in the combustor, of air and fuel.

However, it is thought that the gas phase reactions of fuel bound nitrogen

compounds in the fuel rich stage of a staged combustor are predominant and

this prediction therefore gives good approximate quantitative information

even when neglecting some of the above-mentioned physical and chemic-

al processes.
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2.4.2 Description of the Computer Runs and Results

All the computer studies carried out thus far have been on a high

nitrogen No. 6 fuel oil having a composition similar to that studied at

the CRF and reported in Chapter 3. The important characteristics of

this fuel are listed in Table 2.

2.5 Thermodynamic Calculations

The thermodynamic equilibrium calculations were mainly aimed at the

fuel rich first stage(s), in which combustor air inlet temperatures were

selected at 298K, 500K, and 700K, and fuel equivalence ratios at 0.8, 1.0,

1.2, 1.4, 1.6, 1.7, 1.8, 1.9, 2.0, 2.2, 2.4, 2.6, and 2.8. Other important

parameters affecting the equilibrium combustion mixture compositions were

left constant: pressure at 1 atmosphere, and inlet fuel temperature at 367 K.

All calculations were carried out for adiabatic conditions.

Table 3 is a list of the most important combustion species considered

by the program.

The results of these calculations are shown in:

1) Figure 2; equilibrium adiabatic flame temperatures as a function

of fuel equivalence ratio at different combustor inlet air

temperatures, and

2) Figure 3; the sum of the bound nitrogen species mole fractions at

chemical equilibrium as a function of fuel equivalence ratio at

different combustor inlet air temperatures.
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TABLE 2

TRIAL NO. 6 FUEL OIL BLENDS

Description

Blend Make-up: wt %

Asphalt (X-4299)
Cutter Stock (X-4300)

Asphalt

100

Light Cycle Trial
Oil No. 6 F.O. Blends

(cutter stk) A B
X-4300 X-4321 X-4322

100

Inspection

Gravity: OAPI
Specific Gravity, 60 0 /60 0 F
Viscosity, Kin. cSt

1000 F

2100
2750

Flash, P-M: OF
Sulfur, ASTM D1552: Wt %
Nitrogen, Gulf 811: Wt %
Carbon, Semi Micro: Wt %
Hydrogen, Semi Micro: Wt%
Spot Test, Gulf 856*
Compatability with Phil. Dieselect
Compatability with PA No. 2 H.O.
Compatability with FCC No. 2 F.O.

Spot Test, Homogeneity Rating
Gulf 986t
Spotted at 140 F
Spotted and Dried at 140 F

8.0 25.9 16.5
1.0143 0.8990 0.9561

2484
257

1.91'
1.27

85.48
10.61

22.74
11.72

4.09

0.13
87.17
12.83

726
120.3
29.52

325

* No. 5 spots were obtained using procedure A (HOT) and procedure B (COLD).

t This test is for intermediate fuels. Sample tested (X-4321) is outside the
suggested viscosity range of the test.
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TABLE 3

LIST OF HYDROCARBON, HYDROGEN, AND OXYGEN SPECIES
CONSIDERED IN THE NASA CHEMICAL EQUILIBRIUM

COMPUTER PROGRAM FOR A FUEL CONTAINING
HYDROGEN, CARBON, AND NITROGEN

(Nitrogenous species are
listed separately)

C 3H8

C02

C (s)

H20 (1)

C3 02

CH

CH2

C2H

CH20

C 2 H2

H20 (s)

CH3

C 2 H4

LIST OF NITROGENOUS SPECIES CONSIDERED IN THE NASA

CHEMICAL EQUILIBRIUM COMPUTER PROGRAM FOR A FUEL
CONTAINING HYDROGEN, CARBON, AND NITROGEN

HCN

CN

HNCO

NCO

CNN.

C2N2

CN.

C2 N

HNO

HN02

HN03

N

NE

NH,
hi

NH 3

NO

NO2

NO 3

N2 0

N20,

N2 0Z

N2 H.
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HCO

H102

CsH e

CH4

C2H 6

H20

H202

CH 30H

C 2 0

_ __ _ __ _ ______
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Figure 2. --Equilibrium adiabatic flame temperature as a

function of fuel equivalence ratio at different combustor inlet air
temperatures.
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2.6 Chemical Kinetic Calculations

Single Stage Study

The first set of computer runs, performed with the chemical kinetic

computer program, were devoted to a single fuel rich first stage. The

effects of air preheat and fuel equivalence ratio were investigated: the

air temperatures were again selected at 298 K, 500 K, and 700K, and the

fuel equivalence ratios, at 1.4, 1.6, 1.8, and 2.0. The pressure was

left constant at 1 atmosphere, inlet temperature at 367 K, conditions were

adiabatic, and the reactor model was plug flow. Calculations were carried

out to residence times of 4 seconds.

Table 4 lists the major combustion species considered by the kinetic

program.

Results from the chemical kinetic computer runs in the first stage

study are as follows:

1) Figures 4-7; the sum of the bound nitrogen species mole fractions

as a function of residence time at different combustor inlet air

temperatures for fuel equivalence ratios of 1.4, 1.6, 1.8, and

2.0.

2) Figures 8-12; the sum of the bound nitrogen species mole fractions

as a function of fuel equivalence ratio at different inlet air

temperatures for residence times of 0.5, 1.0, 2.0, 3.0, and

4.0 seconds.

3) Figures 13-17; the sum of the bound nitrogen species mole fractions

as a function of adiabatic flame temperature at different fuel

equivalence ratios for residence times of 0.5, 1.0, 2.0, 3.0,

and 4.0 seconds.
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TABLE 4

A LIST OF THE COMBUSTION SPECIES CONSIDERED
BY THE CHEMICAL KINETIC COMPUTER PROGRAM

Nitrogenous Species

N NH HCN HNCO

NH NO CN N

NH NO NCO

Others

H H2  CO

O 02 C02

OH H2 0 Ar
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4) Figure 18; the effect of combustor inlet air temperature on

the position of the minimum of the sum of the bound nitrogen

species mole fractions: a comparison between chemical

equilibrium and kinetic calculations.

5) Figure 19; the effect of combustor inlet air temperature on the

value of the sum of the bound nitrogen species mole fractions:

a comparison between chemical equilibrium and kinetic

calculations.

Two-Staged Study

The chemical kinetic study was extended here to two stages where fuel

burnout was completed in the second stage with an overall excess of air.

Nitric oxide concentrations leaving the second stage were calculated by

means of the chemical kinetic program.

The results of the two-staged study are shown in Figures 20-24 where

the sum of bound nitrogen species in equivalent ppm NOx at 3%02, is given

as a function of residence time in a two-staged combustor for various

combinations of conditions in the first and second stage. These

conditions are described in Table 5. (The factor for converting from

lbs. NO 2 /16B1tu to ppm NOx at 3%02 for this particular high nitrogen No. 6

fuel oil is 781.38 [multiply by this factor to arrive at ppm at 3% 02 .)

2.7 Discussion of Thermodynamic and Chemical Kinetic Modeling Results

2.7.1 Chemical Equilibrium Studies

1) The sum of the bound nitrogen species mole fractions passes

through a minimum as fuel equivalence ratio is varied (see Fig. 3).
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TABLE 5

TWO-STAGE COMBUSTION STUDY: VALUES FOR OPERATING
VARIABLES FOR EACH COMPUTER RUN

1) Figure 3.22:

2) Figure 3.23:

2nd Stage

Case A, Tf

1st Stage

4 = 1.6
T = 298 0K
air
T. = 19150 K

ist Stage

=1.6
T air = 500K
air

T, = 20360K

Case B,

Case C,

= 2193*K

T a = 2980K
air

Tf = 16000K

Tf = 18000K

2nd Stage

Case A,

Case B,

Tf = 2288°K

T = 5000 K
air

Tf = 1600.K

Case C, Tf = 1800°K

3) Figure 3.24: 1st Stage

b =1.6
T.
air

Tf

4) Figure 3.25:

= 700 0K

= 2159K

1st Stage

4) = 1.8
T = 5000 K
air

T. = 1892°K

2nd Stage
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Figure 4. --The sum of the bound nitrogen species mole frac-

tions (in equivalent ppm NOx at 3% 02), as a function of residence time
at different combustor inlet air temperatures.
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tions (in equivalent ppm NOx at 3% 02), as a function of fuel
equivalence ratio at different combustor inlet air temperatures.
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equivalence ratio at different combustor inlet air temperatures.
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equivalence ratio at different combustor inlet air temperatures.
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flame temperature at different fuel equivalence ratios.
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- 40 -

r 4

o

Cn

a

0 0

o"'4

go

0)

0

0

Fuel
Equivalence

Ratio
61.4
ol01.6
01.8
02.0

Residence Time = 1.0 sec

1 1 I I I I I 1 I

L_

LL~1 - I.

I



4)

,4 Mo

O

o 5

w t-4

3 a
0 >

0

Ca

0

I 1I

1600 1700 1800 1900

Fuel

Equivalence
Ratio
a 1.4
o 1.6
- 1.8
02.0

- Residence Time = 2.0 sec

, . 1 ,i I '" I

2000 2100 2200 2300

Adiabatic Flame Temperature (OK)
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Figure 18 --The effect of combustor inlet air temperature

upon the position (with respect to fuel equivalence ratio) of the

minimum of the sum of the bound nitrogen species mole fractions: a

comparison between chemical equilibrium and kinetic calculations.
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Figure 19 --The effect of combustor inlet air temperature on

the value of the minimum of the sum of the bound nitrogen species mole

fractions: a comparison between chemical equilibrium and kinetic calcu-

lations.
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This information suggests that fuel equivalence ratio is a

very important parameter in the staged combustion process, and

that it may be optimized. From the standpoint of chemical

equilibrium the optimal fuel equivalence ratio that should be

applied to the first stage lies between 1.75 and 2.0 depending

on air preheat.

2) It is important to look at the sum of the bound nitrogen species

mole fractions, since they all have the potential of being

oxidized to pollutant NOx, especially if combustion is completed

with an overall excess of air after the fuel rich first stage(s).

3) The combustion temperature (which may be controlled to some degree

by air preheat) affects the position of the minimum of the sum of

the bound nitrogen species mole fractions with respect to fuel

equivalence ratio. Equilibrium calculations indicate that the

minimum shifts toward higher fuel equivalence ratios with

increasing inlet air temperatures. (In observing this trend,

particular notice should be made that rates of fuel nitrogen

reactions are not taken into account.)

4) The equilibrium adiabatic flame temperature drops as fuel equivalence

ratio is increased beyond 1 (see Fig. 2). This trend is important

to bear in mind since 1) temperatures in the fuel rich first stage

may drop to unacceptably low levels (e.g. poor carbon burnout)

and 2) the introduction of secondary air to later stages may result
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in sudden temperature rises or hot spots. Figure 2 indicates

that combustion temperature may be raised by air preheat thus

suggesting a means of solution to the possible occurrence of

unacceptably low temperature in the first stage.

5) The chemical equilibrium calculations do not provide information

on rates of fuel nitrogen reactions, on effects of residence

times on NOx concentrations, on effects of increased organic

nitrogen content in the fuel, or on the actual quantitative

values of nitric oxides concentrations in the flue gases of the

CRF combustor.

2. 7.2 Chemical Kinetic Calculations

Single Stage Study - Examination of the Fuel Rich Stage

6) The kinetic computer calculations demonstrate the importance of

rates of fuel nitrogen reactions in the optimization of conditions

for the fuel rich stage. At high fuel equivalence ratios (see

Fig. 7) the rates of fuel nitrogen reactions are so low that the

sum of the bound nitrogen species mole fractions does not come

close to the equilibrium value even within 4 seconds of residence

time, a period of time much longer than encountered in most

utility boilers. At the other extreme (see Fig. 4), at low fuel

equivalence ratios, rates are so fast that near-equilibrium values

are achieved within half-a-second. Hence, though thermodynamic

equilibrium calculations might indicate an optimal fuel equivalence
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ratio of 2.0 at high air preheat (see Fig. 3) the kinetic

calculations indicate that from a rate standpoint, within'

the constraints imposed by typical utility boilers this

value is unacceptable.

7) Examination of the computer results indicate that temperature is

a key variable in affecting the rates of fuel nitrogen

transformations, and may possibly be as important a variable in

optimizing the fuel rich stage as fuel equivalence ratio. The

combustion temperature is affected by 1) fuel equivalence ratio

and 2) air preheat. Observation of Figures 13-17 will illustrate

that from the point of view of fuel nitrogen chemistry, the optimal

temperature in the first stage lies between 1900 K and 2100 K at

any residence time.*

It might be added that these high temperatures are required

to produce high radical concentrations (particularly the OH

radical), which are necessary for the fuel nitrogen reactions to

proceed rapidly.

In looking at Figures 13-17 the sum of the bound nitrogen

species concentrations is observed to pass through a minimum with

respect to temperature. The rise in the sum to the left of the

minimum is indicative of kinetic constraints, and the rise to the

* Results from the MIT CRF indicate a weak dependence on temperature of

fuel nitrogen reactions. Special note should be made though, that the
combustion temperatures in the CRF are considerably below the optimal
temperatures indicated by the computer calculations, i.e., 1600 to 1800 K
as opposed to 1900 to 2100K.
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right, of thermodynamic constraints, in the NOx minimization

problem.

8) The minimum of the sum of the bound nitrogen species concentrations

occurs at somewhat lower fuel equivalence ratios than those

indicated by the equilibrium calculations (see Fig. 18). The

kinetic calculations indicate that the position of the minimum

with respect to fuel equivalence ratio lies between 1.6 and 1.8.

9) The chemical kinetic calculations indicate that the value of the

minimum decreases with increasing temperature, a trend opposite

to that indicated by the thermodynamic calculations (see Fig. 19).

This discrepancy is due of course to the rates of the fuel nitrogen

reactions being accounted for in the kinetic calculations.

10) The calculated nitrogenous species concentrations, made by the

chemical kinetic computer program, are not acceptable from a

quantitative viewpoint because of lack of a realistic reactor

model accounting for effects on nitrogenous species formation, of

quality of atomization, volatilization rates, and fuel-air mixing

patterns and rates. However the modeling of the fuel nitrogen

chemistry is good and provides reliable qualitative information.

Two-Stage Study - Examination of the Second Stage

11) The chemical kinetic study of the second stage of a two-staged

combustor demonstrates above all the importance of temperature

regulation in the second stage (see Figures 20-24). If
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temperatures are allowed to increase above approximately 1800 K,

thermal NOx production via the Zeldovich mechanism becomes so

great that it nullifies efforts to minimize concentrations of

bound nitrogen species in the first stage. (Observe the adiabatic

case in the second stage runs in Figures 20-24).

The introduction of secondary air in the second stage results

in sudden temperature rises which exacerbate the thermal NOx

problem. In a real combustor, the rise in temperature is

fortunately not so sharp due to finite mixing rates of air and

fuel. However, some form of temperature control by means of

heat removal may be necessary to keep thermal NOx to a minimum.

Temperature control may be rendered easier by multiple staging,

where the combustion air is introduced a small amount at a time,

rather than all at once.

12) The results of the single and two-stage studies indicate that

optimally for the case of a two-staged combustor, the first stage

should be run at a temperature between 1900K and 2100 K, and a

fuel equivalence ratio between 1.6 and 1.8, and the second stage

at a temperature at least below 1800K. The overall equivalence

ratio of the staged combustor should be about .9 to .95, slightly

air-rich so as to achieve complete fuel burnout.
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3. Experimental Investigation of Staged and Unstaged High-N #6

Fuel Oil in the MIT CRF

High-N Content #6 Fuel Oil

A high nitrogen content #6 fuel oil was obtained from the Santa Fe

Springs Refinery of the Gulf Oil Company in California.

The fuel oil consists of a blend of a cutter-stock and a high

nitrogen content asphalt. The compatability and homogenity of blends

of these oils were determined by Gulf Research and Development Company.

The results of their analyses are presented in Table 2.

A 50:50 wt % blend was chosen because of its lower viscosity, per-

mitting easier fuel handling. The fuel was blended by simply loading the

cutter-stock and asphalt separately into a road tanker and relying on

natural mixing during transportation from Los Angeles to Boston.

It is not possible to classify the resultant high nitrogen content #6

fuel oil as coming from any particular oil field since the asphalt itself

consisted of a blend of the residues and vacuum tower bottoms of a range of

crude oils.

3.1 Single Stage Combustion Studies

The objective of the unstaged or single-stage combustion studies was

to establish baseline data on NOx emissions. The influence of air preheat,

atomizer type and degree of swirl (flame ;aerodynamics) was established.

The operating conditions of the CRF which were maintained constant

throughout each test were:
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Thermal Input 1 MW (3.4 x 106 Btu/hr 125 gph)

Fuel Temperature 2000 F

Excess Air 5% (1% 02 in flue gas)

Wall Temperature (average) 1200 0 C

Flue Gas Exit Temperature % 10000 C

A total of eight flames were investigated; the input conditions for

each flame are given in Table 6.

Air preheat levels of 5000 F and 8500 F were obtained using the

independently fired air preheater. The atomizer types consisted of a

pressure jet nozzle (Lucas 14 M80B) shown schematically in Figure 25(a),

and a twin-fluid steam atomizing nozzle shown schematically in Figure 25(b).

Fuel temperature was maintained at n 2000 F at which temperature the oil

viscosity was 1 30 Cp.

The measurements taken for each of the eight unstaged flames were:

9 Axial temperature profiles - using suction pyrometer

* Axial NOx, CO, C02 and 02 profiles - using gas sampling probe

* Flue gas NOx, CO, CO2 , 02 and particulate concentrations

3.1.1 The Axial Gas Composition and Temperature Profiles

The NOx concentration profiles for the unstaged flames are presented

in Figures 26 to 29. The results clearly show the effect of burner swirl

number on NOx formation and emission. The high swirl flames exhibit NOx

concentrations l 120 ppm higher throughout than the low swirl flames. The

higher NOx values are attributed to higher peak flame temperatures in the

high swirl flame which result in an increased proportion of thermal NOx .
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TABLE 6

INPUT CONDITIONS FOR UNSTAGED FLAMES

[See also Tables Bl(a) and (b)]

Nozzle Type*

Pressure Jet

Pressure Jet

Pressure Jet

Pressure Jet

Twin Fluid

Twin Fluid

Twin Fluid

Twin Fluid

Air Preheat

5000 F

5000 F

8500 F

8500 F

5000 F

5000 F

8500 F

8500 F

* The pressure jet nozzle shown in Figure 25(a) was operated at a
pressure of 180 psi; the twin fluid steam atomizer shown in
Figure 25(b) was operated with a steam pressure of 95 psia and an
oil pressure of 160psia.

The swirl number S of a free air jet is defined as the ratio of
the angular momentum (Gp) to the product of axial thrust (Gx) and
the nozzle radius (R).

i.e., S = --R
Gx
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Swirl #t

2.7

0.42

2.7

0.42

2.7

0.53

2.7

0.53

Run #

21(a)

21(b)

24(a)

24(b)

29(a)

29(b)

30(a)

30(b)

Flame
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A common feature of most of the profiles is that they remain

essentially flat after 3-4 ft. from the burner. Visible flame lengths

were typically 6-9 ft. These results indicate that NOx formation is

completed early in the flame. The slight upwards turn in some of the

NOx profiles near the burner nozzle, particularly at high swirl numbers,

is probably due to increased formation of both thermal and fuel NOx in

this region. The increased formation of thermal and fuel NO near thex

burner nozzle in turn may be attributed to higher flame temperatures

which occur in this region, and to the effects of swirl.

A close look at some of the NOx profiles shown in Figures 26-29,

especially at high swirl numbers, will show that in several instances

there is a slight dip in the ppm NOx at intermediate distances from the

burner nozzle. This trend occurs too frequently to be dismissed as a

random phenomenon due to experimental errors (see Figures 26, 28, and

29, high swirl), and most likely is attributable to the internal recirculation

of gases within the flame. The recirculation of combustion gases, caused by

an adverse pressure gradient produced in the flame at high swirl numbers,

probably creates a reduction in oxygen concentration and temperature at

intermediate distances from the burner nozzle. The reduction in oxygen

concentration and temperature would result in a lowering of both thermal

and fuel NOx formation rates.

The dip in the axial NOx profiles observed in the recirculation zone

may reflect not simply a lowering of NOx formation rates, but actually the

destruction of NOx in this region, perhaps due to nitrogenous species--

hydrocarbon fragment interactions. Further experimentation is required in

- 64 -



the form of more detailed temperature and gas composition* mapping

throughout the unstaged flames to provide a thorough and conclusive

explanation for the dip in the NOx profiles shown in Figures 26, 28

and 29.

Figure 30 illustrates the effect of burner nozzle type on the NOx

profiles from low swirl flames #2 and #6, using 5000 F air preheat. The

NOx emission from the steam atomized jet flame is lower, 200ppm compared

to 250 ppm for the pressure jet case. Visual observation of these two

flames indicated that the pressure jet flame was much shorter than the

steam atomized flame.

The effect of air preheat on the NOx profiles of a low swirl, pressure

jet flame is shown in Figure 31. The overall effect of increased air

preheat is to increase NOx emission from 250 ppm at 5000F air preheat to

300 ppm at 8500 F air preheat. The axial NOx profiles are also somewhat

different, the high air preheat flame exhibiting a flatter profile. This

is attributed to a combination of the increased rates of the NOx forming

reactions due to increased flame temperature, and also the better mixing

early in the flame due to the increased axial velocity of the combustion

air at the high preheat temperature. Burner throat velocities increased

from 23m/sec at 500*F air preheat to 35 m/sec at 8500 F.

Figure 32 is an example of 02 and CO2 concentration profiles obtained

from the unstaged experiments. The sharp dip downwards in the CO2

concentration profile near the burner nozzle is typical of all the data,

* It would be desirable to measure concentrations of cyanogens, ammonia

species, and hydrocarbon fragments, in addition to nitrogen oxides,
since these other species are involved in reactions which might destroy

NOx (see Chapter 2).
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concentration (ppm at 3% 02) profile in conventional unstaged combustion.
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and is an indication of incomplete combustion of the fuel at this position

in the combustion chamber. The slight increase in oxygen concentration

in the direction towards the burner nozzle is believed to be due to

imperfect mixing of air and fuel, and also to leakage of air into the

furnace chamber through the viewing ports when the gas probe was

inserted into the furnace. This problem, discovered at the beginning of

the experimental studies, was remedied by closely monitoring the furnace

chamber pressure and making sure it was maintained at a value slightly

above that of atmospheric.

Axial temperature profiles are shown in Figures 33-36, again for the

low and high swirl flames. Two general points concerning the temperature

profiles might be made. First, it should be noted that the axial

temperature profiles, especially at high swirl, do not display the

absolute maximum temperatures of the flame. Temperatures along the

centerline, near the burner nozzle, of flames at high swirl, are somewhat

cooler than temperatures at a small distance to the side of the centerline,

because of internal recirculation which tends to cool the central core.

For this reason, direct comparison of the low swirl and high swirl

temperature profiles may be somewhat misleading since it would appear that

temperatures in the low swirl flames are higher. In actual fact peak

temperatures in the high swirl flames are higher, but occur off the

centerline and hence are not indicated by the axial profiles in

Figures 33-36.

Secondly, observation of the unstaged flame temperature profiles at

high swirl show that the profiles tend to flatten out at intermediate
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distances from the burner. This behavior, again, may probably be

attributed to recirculation of gases at the high swirl condition.

3.1.2 Discussion

The general conclusion which was drawn from the study of these

eight unstaged flames was that each of the variables chosen for

investigation i.e., nozzle type, swirl number and air preheat level, did

have an influence on the NOx emission. However, when the average level

of emission was evaluated separately for each of these three variables

it was found that swirl number had the largest effect, followed by air

preheat, with nozzle type having the least effect. Table 7 summarizes

these general observations based on the averages of the measured N0x

emission. These data were obtained by separating the three parameters,

swirl, air preheat and nozzle type, from the 2x 2x 2=8 matrix of unstaged

flame conditions. Hence, the average NOx emission from, say, the low

swirl flames, is obtained by averaging the measured emissions from flames

#2, #4, #6, #8, which include changes in air preheat and nozzle type.

Similarly, the average values of the measured NOx emissions with nozzle

type as the parameter include changes in swirl number and air preheat,

etc.

This method of averaging identifies which of the parameters have

the most significant influence on the N0x emission for the range of

variables investigated.
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TABLE 7

SUMMARY OF INFLUENCE OF SWIRL NUMBER, AIR PREHEAT, AND BURNER NOZZLE TYPE

ON NOx EMISSIONS FROM UNSTAGED FLAMES

Difference
Averaged NOx emission, ppm @ 3% 02 in Average

Parameter (Averaged from 4 flame conditions) NOx Emission

Swirl Low Swirl (S = 0.4) 266 ppm High Swirl (S = 2.7) 436 ppm 170 ppm

Air Preheat Low Preheat (500* F) 308 ppm High Preheat (8500 F) 394 ppm 88 ppm

Burner Nozzle Pressure Jet 365 ppm Steam Atomized 337 ppm 28 ppm

3.2 Staged Combustion Studies

A schematic arrangement of the MIT Combustion Research Faciltiy set

up for staged combustion experiments is shown in Figure 37. The second

stage air was admitted perpendicular to the furnace axis through two sets

of simple 1-inch nozzles arranged directly opposite each other through the

furnace sidewalls, as shown in Figures 38 and 39. Operating conditions were

maintained similar to those employed in the unstaged flame tests listed

earlier, with the exception of two flames run at increased throughput to

study the effect of residence time on NOx emissions.

The injection air velocity is dependent upon both the primary stage

fuel equivalence ratio b and the value of the air preheat temperature for

a fixed firing rate and overall equivalence ratio 0. However, the range
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of secondary stage injection air velocities was 20-200 m/sec which is

one to two orders of magnitude greater than the mean axial velocity

within the furnace for the range of staging conditions investigated.

These design conditions were chosen to ensure adequate mixing of the

primary zone exhaust gases with secondary zone injection air.

Throughout all of the staged combustion experiments the location

of the secondary zone air injection was maintained constant at 8.5 ft

from the exit plane of the burner.

In order to maintain flame stability and fuel/air mixing patterns

in the early stages of the primary zone it was necessary to maintain

burner throat air velocities within the range 20-40 m/sec throughout the

staged combustion experiments. This was achieved by the insertion of a

convergent-divergent nozzle in the burner throat, as shown in Figure 40.

The objective of this series of staged combustion experiments was

to investigate the influence of primary stage or burner fuel equivalence

ratio b, atomizer type, air preheat, swirl number, and residence time

on NOx emissions. In addition, it was decided to obtain axial profiles

of NOx, C02 , 02, CO and temperature together with overall solids emission

for selected flames. These data greatly assist in the interpretation and

understanding of the NOx formation and destruction processes occurring in

staged combustion systems, and help provide a more detailed understanding

of the flame processes than the simple input-output type of study.

The approach taken was to obtain axial flame profiles for the minimum

and maximum staging conditions i.e., 4 = 1.08 and b = 1.9 respectively

with overall=0.95 (5% XS air). In addition single point measurements of
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NOx, C02, 02, CO and temperature were made on the furnace axis at four

intermediate staging conditions. Flue gas composition was monitored

continuously for all staging conditions. A total of 32 flames have

been investigated to determine the effects of the staging conditions

i.e., b' atomizer type, air preheat, swirl number, and residence time

on overall NOx emission and flame characteristics. Table 8 lists the

values of the input parameters used in these studies.

A typical set of data obtained from a staged combustion test is

presented in Figures 41-43, in which the measured axial profiles of

temperature, N0x , CO2 , 02, CO are shown. These data were obtained using

the pressure jet nozzle with air preheat temperature at 500* F and a burner

swirl number of 0.4.

Figure 41 shows the axial temperature distribution for both the

minimum and maximum staging conditions, i.e., overall fuel equivalence

ratio o = 0.95, and burner equivalence ratios of b of 1.15 and 2.05

respectively. The minimum staging condition exhibits an axial temperature

profile which decreases steadily from a maximum close to the burner in a

similar manner to the unstaged profiles shown in Figure 33, both the peak

flame temperature and the flue gas temperature are lower at the minimum

staging conditions than in the single stage flame by approximately 100* C.

There is, however, a significant difference in the region of interaction of

the secondary zone air jets, with a pronounced 'dip' in the temperature

profile of the minimally staged flame. The maximum staging condition

( b = 2. 0 5 , o =0.95) exhibits a considerably different temperature profile,

with a characteristic M-shape. The peak flame temperature in the primary
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TABLE 8

A LIST OF THE FLAMES ALONG WITH VALUES OF THEIR
RESPECTIVE INPUT VARIABLES THAT COMPRISE

THE TWO-STAGE STUDY

Air Burner Fuel
Flame CRF Run Number Temperature Swirl Equivalence
Number and Date Atomizer Type OK OF Number Ratio

9 25a 8/8/79 pressure jet 533 500 0.53 1.15
10 25b 8/8/79 pressure jet 533 500 0.53 2.05
11 26a 8/9/79 pressure jet 533 500 0.53 1.18
12 26b 8/9/79 pressure jet 544 520 0.53 1.27

S13 26c 8/9/79 pressure jet 544 520 0.53 1.47
14 26d 8/9/79 pressure jet 544 520 0.53 1.75
15 26e 8/9/79 pressure jet 544 520 0.53 1.88
16 26f 8/9/79 pressure jet 544 520 0.65 1.49
17 26g 8/9/79 pressure jet 544 520 1.17 1.51
18 26h 8/9/79 pressure jet 544 520 1.78 1.49
19 26i 8/9/79 pressure jet 544 520 2.7 1.45
20 27a 8/15/79 pressure jet 731 855 0.53 1.06
21 27b 8/15/79 pressure jet 750 890 0.53 1.31
22 27c 8/15/79 pressure jet 742 875 0.53 1.41
23 27d 8/15/79 pressure jet 742 875 0.53 1.75
24 27e 8/15/79 pressure jet 731 855 0.53 1.97



TABLE 8 : Continued

CRF Run Number
and Date

18a
18b
18c
19a
19b
19c
31a
31b
31c
31d
31e
31f

31g
37a
371b
37c

6/25/79
6/25/79
6t25/79
6/26/79
6/26/79
6/26/79
8/22/79
8/22/79
8/22/79
8/22/79
8/22/79
8/22/79
8/22/79
10/15/79
30/15/79
10/15/79

Air
Temperature

Atomizer Type

twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin
twin

fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid
fluid

Swirl
OF Number

531
531
531
744
744
744
529
531
529
531
528
529
528
300
533
533

495
495
495
880
880
880
493
495
493
495
490
493
490
80

500
500

Burner Fuel
Equivalence

Ratio

0.53
2.7
0.53
0.53
2.7
0.53
0.53
2.7
0.53
0.53
0.53
0.53
2.7
0.53
0.53
0.53

1.17
1.17
2.01
1.12
1.12
1.70
1.18
1.19
1.26
1.42
1.69
1.77
2.02
1.48
0.97
1.29

Flame
Number

25
26
27
28

29
30
31
32
33
34
35
36
37
38
39
40
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FIgure 41 -- Axial NOx concentration (ppm at 3% 02) profiles, staged combustion study.
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zone is seen to be shifted downstream from the burner exit nozzle. The

measured peak temperature on the furnace axis at both the minimum and

maximum staging condition is surprisingly close, 14500 C. It is felt

however, that this value is not indicative of peak flame temperatures

which are known to occur off-axis in the earlier part of the flames.

The pronounced M-shaped axial temperature distribution also shows

quite clearly that some back-mixing of injected secondary zone air is

occurring, thus reducing the effective length of the primary zone. This

back-mixing is thought to be due to the aerodynamics of the horizontally

opposed high-momentum secondary zone air jets which create a local stagnation

point at the position of impingement resulting in a reverse flow of air in

this region. The maximum staging condition produces very high jet

momentum levels in the secondary zone air injection jets, and the extent

of back-mixing is greatest under these conditions.

The pronounced increase in temperature in the secondary zone under

maximum staging conditions is to be expected since the heat release rate

from the unburnt fuel carried over from the primary zone is well in

excess of the local rate of heat loss. The final exhaust gas temperature

from the secondary zone at maximum staging is seen to be higher by 1 2000 C

than under minimum staging conditions.

Figure 42 shows the corresponding NOx profiles at minimum and maximum

staging conditions obtained with the pressure jet nozzle, low air preheat

and low swirl number. The flat NOx profile obtained at minimum staging

indicates that most of the NOx, both thermal-NOx and fuel-NOx, is formed

very early in the flame. Furthermore, there is a negligible change in
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NOx concentration after injection of the small amount of secondary zone air,

indicating that no further thermal-NOx is produced in the locally oxidizing

atmosphere. This observation is entirely consistent with the very slight

temperature increase seen in Figure 41, in the secondary zone air injection

region.

The axial NOx profile obtained under maximum staging conditions

exhibits an increase in NOx level along the flame in the primary zone.

The peak NOx level in this region is seen to coincide with the position of

the peak axial temperature and it is not clear what the relative

contributions of thermal-NOx and fuel-NOx are in this region. However,

there is a significant reduction in NOx level (1 40%) at the end of the

primary zone compared to the minimum staging condition. This reduction

is very likely due to the reduced conversion of fuel-N to NOx in the

fuel-rich primary zone. The observation that the NOx level does not increase

after the injection of secondary zone air confirms that all of the available

fuel-N has been transformed in the primary zone and in addition that local

flame temperatures in the secondary zone do not exceed the critical level

( 1800K) for thermal NOx formation. The reduction in NOx emission of n 40%

at maximum staging conditions is considered to be significant and confirms

the general trends indicated by the computer studies of both the equilibrium

and kinetics of the NOx formation reactions.

Figure 43 shows the corresponding axial profiles of 02 and C02 , which

can be seen to be consistent with the overall stoichiometry of the minimum

and maximum staging conditions. Of particular interest is the shift

towards the burner of the peak 02 level under maximum staging conditions
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Figure 43 -- Axial CO2 and 02 concentration profiles, staged combustion study.



_IF~ ^_

as compared to minimum staging. This again confirms the conclusions

drawn from the observed temperature profiles, that considerable back-mixing

of secondary zone air is occurring at maximum staging conditions.

The effect of swirl number on the NOx emissions from a staged flame

obtained with a pressure jet nozzle and 5000 F air preheat is shown in

Figure 44. The staging conditions i.e., 4, =0.95 and 0b= 1. 4 6 , were

maintained constant and the swirl number varied by use of the variable

swirl generator. Figure 44 shows that under these staging conditions,

swirl number did not have a significant effect on NOx emission. Only a

slight decrease in NOx (%110%) is observed for changes in swirl number

from 0.4 to 2.7.

The influence of fuel atomizer type on the axial NOx profile of a

staged flame is shown in Figure 45. These profiles were obtained at

under almost identical staging conditions. The pressure jet flame had

o= 0.95 and b = 2.0 5 and the steam atomized flame had 4o =0.91 and

b = 1.77. The swirl number was 0.4 and the air preheat 5000 F in both

cases.

The measured NOx emission from both of these flames does not differ

significantly, being % 90 ppm in both cases. However, the axial NOx

profiles show a slight difference in shape, with the steam atomized flame

exhibiting a slightly higher peak NOx concentration at the exit of the

primary zone. The flatter profile from the pressure jet flame indicates

that atomization, mixing and subsequent fuel-N conversion is more complete

than in the steam atomized flame. This is consistent with the higher

momentum of the latter type flame which would tend to carry more unreacted

fuel-N into the air-rich secondary stage. Figure 46 shows the effect of
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air preheat on NOx profiles of staged flames. Again the staging conditions

were maintained almost identical for two pressure jet flames with a swirl

number of 0.4. The high air preheat (8000 F) flame had o = 0.95 and

b = 1.06 and the low air preheat flame had o = 0.95 with b =1. 1 5 . There

isa slight increase in NO0 emission at the higher level of air preheat i.e.,

175 ppm to 160 ppm. It is interesting to note that NOx levels in the

primary zone tend to be slightly lower in the high air preheat flame.

This observation is consistent with the expected influence of temperature

on the rates of reaction of the fuel-N conversion reaction in a fuel-rich

first stage.

The significant effect of staging on NOx emissions from the high-N

fuel oil flames obtained with a pressure jet atomizer, 5000F air preheat

and swirl number of 0.4 is illustrated in Figure 47. The axial NOx

profiles of single and two-stage flames are compared in Figure 47 which

clearly shows that the highest NOx emissions (" 375 ppm) occurred with a

high swirl number single-stage flame (i.e., short high intensity flame).

The lowest NOx emissions ('\ 85ppm) were obtained with a two-stage flame

at maximum staging conditions (o = 0.95, b = 2. 0 5 ). A four-fold reduction

in NOx emissions was obtained by staging the combustion process.

The influence of primary zone stoichiometry ( b) on NOx emissions is

shown in Figure 48. These data were obtained by adjusting the primary

zone stoichiometry while maintaining the overall stoichiometry constant,

using pressure jet atomization, a swirl number of 0.4 and air preheat of

5000 F.

The strong effect of staging is again clearly shown. The NOx

emissions decrease steeply with increasing (b) in the range of b from
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Figure 46 --An example of the effect of inlet combustion air temperature on the NOx

coiiccntration (ppm at 3% 02) profile during staged combustion.
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Figure 47 --Axial NOx concentration (ppm at 3% 02) profiles, comparison between staged and

nstiaged conditions.
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Figure 48 --NOx concentration (ppm at 3% 02) in the flue gas
as a function of burner fuel equivalence ratio.
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0.95- 1.3. The minimum NOx emission is seen to occur at b of 1.4- 1.7,

and a slight increase in NO, emission is observed as increasingly fuel-rich

conditions are experienced beyond b of 1.6.

These experimental data are in very good agreement with the predictions

of the simplified plug flow reactor model which accounts for the rates

of both fuel-N and atmospheric nitrogen reactions under flame conditions.

The predicted value of bb for minimum NOx emissions under plug flow and

adiabatic conditions with an air preheat of 5000 F and a residence time of

4 seconds is 1.65.

3.2.1 Results of Parametric Study for the Effects of Air Preheat

Temperature, Burner Air Swirl Number, Atomizer Type, Residence

Time and Burner Fuel Equivalence Ratio on NOx Emissions

The experimental data discussed in the preceding section consisted

of a typical set of results obtained at maximum and minimum staging

conditions using the pressure jet atomizer with constant burner swirl

number, air preheat and residence time. Similar measurements were made

on a 'y'-jet atomizer; two levels of air preheat, burner air swirl number

and residence time were investigated for each atomizer type over a range

of burner fuel equivalence ratios. The complete matrix of variables

yielded 32 staged combustion experiments. The input conditions for each

of these flames is listed in Table 8. The data obtained from these

experiments are presented in graphical form in Figures 49 through 60

and Appendix C lists all of the data in tabular form. Because of the

extensive amount of data obtained an averaging approach was employed to

identify the relative importance of the above variables on NOx emissions.
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Figure 49 --Axial NOx concentration (ppm at 3% 02) profiles, staged combustion study.
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Figure 50 --Axial NOx concentration (ppm at 3% 02) profiles, staged combustion study.
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Figure 51 --Axial NOx concentration (ppm at 3% 02) profiles, comparison between staged and
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Figure 54 --Axial temperature profiles, staged combustion study.
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Fgur-c 55 --Axial CO and 07 concentration profiles, staged colnbustlon study.
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Figure 57 --An example of the effect of inlet combustion air temperature on the NOx

con.centratlon (ppm at 3% 02) profile in conventional unstaged combustion.
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Figure 59 --NOx concentration (ppm at 3% 02) in the flue gas

as a function of burner fuel equivalence ratio.
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Both the experimental data and the theoretical model indicate that

NO emission is a strong function of burner fuel equivalence ratio. Hence
x

plots were made of ppm NOx in the flue gas versus the burner fuel equi-

valence ratio (b), in which the indicated NOx emission for a given 0b

actually represented an average of all the available data over the in-

dividual variations in NO emissions for two out of the three variables.
x

Thus, three graphs were formed; one in which the effect of inlet air temp-

erature was examined, where variations in NO emissions due to changes in
x

swirl and atomizer type was averaged; a secondwhere the effect of swirl

was examined and the variations in NO emission due to the other two var-
x

iables, air preheat and atomizer type were averaged; and a third in which

the effect of atomizer type was similarly examined. The graphs from this

study are discussed in this section; a summary of this averaging study,

presented in the form of a table, may be found in Appendix D. Shown in

this table are the individual values of NO emission levels used in this study.
x

3.2.2 Inlet Combustion Air Temperature

Figures 31 and 57 are examples of the effect of combustion air

temperature upon NO emission from the experimental combustor when it isx

fired in a conventional unstaged mode. Both figures demonstrate that

there is an overall increase in NO emissions at higher inlet combustionx

air temperatures. The higher air preheat has the effect of increasing

the combustion temperature which in turn enhances the formation of

thermal NOx, particularly in those portions of the flame where peak

temperatures of 18000K are approached and exceeded. The higher combustion

temperatures may also enhance the conversion efficiency of the fuel-nitrogen
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to NOx . It should be pointed out, though, that under unstaged firing

conditions, the effect of temperature (in the neighborhood of 18000 K and

above), is much greater on the direct oxidation of N 2 to NOx (the formation

of thermal NOx) than on the conversion of fuel-nitrogen to NOx (Sarofim,

Pohl, and Taylor, 1978). Hence there is reason to believe that the

observed increase in overall NOx emissions with increasing air preheat

(see Figures 31 and 57) is primarily due to increased thermal NOx formation.

However, further experimentation is required, perhaps with low nitrogen-

content fuel oils, to fully verify this conclusion.

Figure 46 is an example of the effect of air temperature upon the

axial NOx profile in a fully-staged combustion condition. As can be

seen, the effect is negligible. More will be said about this result

after the effects of swirl upon NOx emission have been discussed.

Figure 61 is a result of the averaging study described earlier,

and consists of an examination of the effect of inlet air temperature

upon averaged NO0 emissions at various burner fuel equivalence ratios.

The "error bars" represent the spread (high and low values) of the

individual data over which the averages were taken. Figure 61 reaffirms

the trends indicated by the individual examples of Figures 31, 46 and 57.

At the preheat levels investigated (5330 K and 7300 K), this variable has

a substantial effect only on NOx levels in the flue gas under conventional,

unstaged conditions (b = 0.9- 1.0) and under weakly-staged (b = 1.0- 1.2)

conditions. As the combustor is made to operate in a fully-staged mode

(b > 1. 2 ) , the effect of inlet air temperature (in the range of 2980 K -

730 0 K), upon NOx emissions becomes negligible.
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Figure 61 --NOx concentration (ppm at 3% 02) in the flue
gas as a function of burner fuel equivalence ratio; examination of

the effect of inlet combustion air temperature.
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3.2.3 Degree of Swirl

Examples from various experimental runs of the effect of swirl upon

the axial NOx profiles in the case of single-stage firing are shown in

Figures 26 to 29. These figures show that increases in degree of swirl

lead to higher NOx emission levels. Increasing the degree of swirl has

the effect of increasing the intensity of fuel-air mixing. This has the

effect of increasing both fuel and thermal NOx formation due to effects

upon local fuel-air stoichiometry and combustion temperature in the flame.

Increases in fuel NOx formation are primarily brought about by the

increased oxygen availability that accompanies high-intensity mixing under

overall fuel-lean conditions. Increases in thermal NOx are primarily the

result of increased combustion temperature. Further experimentation is

required to determine the relative degree to which fuel NOx and thermal

NOx are affected by increases in degree of swirl (e.g., by comparisons

between fuel oils having different nitrogen contents).

Figure 44 is an example of the effect of swirl upon NOx emissions at

a fully-staged condition. The effect of swirl in the ranges investigated,

S=0.53 to 2.7, is seen to be negligible.

Figure 62 presents data that come from the averaging study, and give

further support to trends in the effect of swirl upon NOx emissions

As the swirl number is decreased below 0.53 to 0, an increase in NOx
emissions is observed, perhaps due to poor separation of stages (i.e.,
unburnt fuel carryover to the 2nd stage) and to poor mixing in the
fuel-rich stage. At such low swirl conditions the flame front is blown
significantly downstream from the nozzle, and the flame tends to become
unstable. For reasons of flame stability the swirl number was generally
maintained at a value no lower than 0.5 during the course of the experiments.
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Figure 62 --NOx concentration (ppm at 3% 02) in the flue gas

as a function of burner fuel equivalence ratio; examination of the

effect of swirl.
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observed in the individual examples of Figures 26-29 and 44. The degree

of swirl is seen to have a noticeable effect on NOx emissions only under

unstaged and weakly-staged conditions ($b< 1.2). Under fully-staged

conditions ( b > 1.2), this effect becomes negligible (S=0.53 to 2.7).

3.2.4 Atomizer Type

Figures 30 and 58 show the effect of atomizer type upon the axial

NOx concentration profiles for a number of unstaged flames. These figures

demonstrate that NOx formation is somewhat lower in the case of a twin-fluid

atomizer than that of a pressure jet atomizer. The axial momentum of the

fuel jet spray delivered by a twin-fluid atomizer is considerably higher

than that of a pressure jet atomizer. Visual observation of the flames

represented in Figures 30 and 58 confirms this: the steam-atomized flames

were considerably longer than those that were pressure-atomized. As

discussed in Chapter 1, delayed, slower, fuel-air mixing, which is

characteristic of longer turbulent diffusion flames, results in lower

NOx emissions, due to the occurrence of lower local oxygen concentrations

and lower peak temperatures where combustion occurs within the flame.

With these observations in mind, the results shown in Figures 30 and

58 are understandable and to be expected.

Figure 45 gives an example of the effect of atomizer type upon the

axial NOx profile for a staged flame. Differences in NOx concentrations

due to use of either a twin-fluid atomizer or a pressure jet are quite

small. Theoretically, a twin-fluid atomizer would be expected to have

just the opposite effect upon NOx emission in the case of a staged flame,
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as in that of an unstaged flame. The higher axial momentum of the fuel

spray delivered by a twin-fluid atomizer would be expected under some

circumstances (e.g., a short primary zone), to result in carry-over of

fuel droplets directly into the fuel-lean stage. Such an occurrence

would partially defeat the purpose of the staged combustion process, since

some of the fuel would be combusted under fuel lean conditions. The NOx

profiles shown in Figure 45 appear to confirm this reasoning; the NOx

concentrations upon entering the second stage are slightly higher for the

twin field atomizer. However, as stated earlier, the difference is small,

and further experimentation would be required, perhaps with a shorter first

stage, to confirm this interpretation of the data. These slight differences

as shown by the profiles in Figure 45 might alternately be attributed to

differences in peak combustion temperatures achieved upon introduction of

the secondary air into the combustor.

Figure 63 is a result of the averaging study described earlier, and is

an examination of the effect of atomizer type upon averaged flue gas NOx

levels at different burner fuel equivalent ratios. The trends shown in

Figure 63 are consistent with the discussion above concerning individual

examples shown in Figures 30, 45 and 58.

3.2.5 Residence Time

Table 9 consists of a list of values for residence times in the M.I.T.

CRF combustor, in terms of seconds per meter, for different burner fuel

equivalence ratios and combustion temperatures. These values are based

upon chemical equilibrium combustion calculations of the volume of

combustion gas produced per kilogram of fuel input, and upon total inputs
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Figure 63 --NOx concentration (ppm at 3% 02) in the flue

gas as a function of burner fuel equivalence ratio; examination of

the effect of atomizer type.
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TABLE 9

RESIDENCE TIMES IN THE M.I.T. CRF FURNACE

Seconds per Meter

Fuel
Equivalence

Ratio

Combustion Temperature, *K

1400 1500

Basis: 83 kg/hr Fuel Input

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.60
1.70
1.80
2.00

Basis:

0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00

0.9118
0.9662
1.0200
1.0736
1.1269
1.1683
1.2087
1.2481
1.2865
1.3240
1.3606
1.4312
1.4986
1.5630
1.6246
1.6836
1.7942

143 kg/hr

0.5297
0.5608
0.5920
0.6231
0.6544
0.6781
0.7016
0.7244
0.7467
0.7685
0.7897
0.8307
0.8698
0.9073
0.9429
0.9772
1.0099
1.0414

0.8512
0.9017
0.9520
1.0020
1.0517
1.0904
1.1281
1.1649
1.2007
1.2357
1.2699
1.3358
1.3987
1.4588
1.5163
1.5713
1.6746

Fuel Input

0.4941
0.5234
0.5526
0.5816
0.6104
0.6329
0.6548
0.6761
0.6969
0.7172
0.7371
0.7753
0.8118
0.8467
0.8801
0.9120
0.9426
0.9720

Note: Combustion of high nitrogen No. 6 fuel oil.
dissociation taken into account.

Both temperature and
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0.7979
0.8454
0.8925
0.9394
0.9859
1.0223
1.0576
1.0921
1.1257
1.1585
1.1905
1.2523
1.3113
1.3676
1.4215
1.4731
1.5699

0.4631
0.4907
0.5180
0.5452
0.5722
0.5934
0.6139
0.6339
0.6534
0.6724
0.6910
0.7269
0.7611
0.7938
0.8251
0.8550
0.8837
0.9112

0.7510
0.7956
0.8400
0.8841
0.9277
0.9621
0.9954
1.0278
1.0594
1.0903
1.1205
1.1786
1.2341
1.2872
1.3379
1.3864
1.4775

0.4359
0.4618
0.4876
0.5131
0.5385
0.5584
0.5777
0.5966
0.6149
0.6328
0.6504
0.6841
0.7163
0.7471
0.7765
0.8047
0.8317
0.8576

0.7092
0.7513
0.7932
0.8348
0.8758
0.9086
0.9401
0.9707
1.0006
1.0297
1.0582
1.1131
1.1655
1.2156
1.2634
1.3094
1.3954

0.4116
0.4361
0.4604
0.4865
0.5083
0.5274
0.5457
0.5634
0.5808
0.5977
0.6142
0.6461
0.6765
0.7056
0.7334
0.7600
0.7855
0.8099

0.6717
0.7116
0.7512
0.7906
0.8291
0.8607
0.8905
0.9195
0.9479
0.9755
1.0024
1.0545
1.1041
1.1516
1.1969
1.2404
1.3219

0.3899
0.4134
0.4360
0.4589
0.4812
0.4996
0.5169
0.5337
0.5502
0.5662
0.5818
0.6121
0.6408
0.6684
0.6947
0.7200
0.7441
0.7673



of 83 kg/hr and 143 kg/hr, respectively. Flames 1 to 38 listed in Tables 6

and 8 are based upon a fuel input of approximately 83 kg/hr, and flames 39

and 40 upon an input of 143 kg/hr. The values presented in Table 9 may be

used to obtain approximate estimes of residence times of the combustion

mixture in the entire length of the combustion chamber for unstaged

flames, and in the fuel-rish first stage for the staged flames. For

example, temperatures of the unstaged flames varied between 1500 K and

1800 K, the combustion chamber length was approximately 4.6 m and the fuel

equivalence ratio was about 0.95. Hence average residence times for the

unstaged flames varied roughly between 3.8 and 4.6 seconds at a fuel

input of 83 kg/hr. The primary zone of the staged flames was approximately

2.6 m long. Residence times in the primary zone at minimum staging

conditions ( b - 1.1) varied between 2.4 and 2.8 seconds, and for minimum

staging conditions ( b = 2.0) between 3.6 and 4.1 seconds, at a firing

rate corresponding to 83 kg/hr.

Data on the effect of residence time upon NOx emissions is limited.

As evident from the discussion above, fuel input was maintained at primarily

one value, 83 kg/hr, and the length of the primary zone in the case of

the two-stage studies was left constant at 2.6 m. Flames 39 and 40 in

Table 8 represent the only experiments carried out, in which the residence

times were substantially changed. NO emissions from these flamesx

are presented in Table 10 along with values from other flames for

comparison. It appears that the increased firing rate and lowering of

residence times have only a small effect upon the NO emissions of the

flames. Roughly a 20 ppm increase in NO emission levels was observed.

However, interpretation of the data is complicated by the fact that flame

temperatures were higher. For example, in the case of flame 40,

- 118 -



higher primary zone temperatures may have accelerated the rates of

the fuel-nitrogen reactions and therefore may have tended to lower

the overall NOx emission. The shorter primary zone residence time, on

the other hand, may have offset the effect of the higher temperatures,

the final outcome thus being, as shown in Table 10, little different

from a similar flame based upon a lower fuel input.

It is concluded that the problem in interpretation of flame 40 as

compared to flame 33 (see Table 10) is one of determining the degree

to which each of the variables, residence time and temperature, has

an effect on overall NOx emission levels. The problem arises out of

the fact that both tend to have opposite effects on the final outcome.

Further experimentation is required in which residence time and primary

zone temperature are varied separately by means of proper manipulation

of firing rates (fuel input), and the physical length of the fuel-rich

primary zone, so as to properly ascertain the individual effects of

these two variables on NOx emissions.

3.2.6 Burner Fuel Equivalence Ratio

Figures 47, 51 and 52 are direct comparisons of axial NOx profiles under

staged and unstaged conditions, and'they dramatically demonstrate the

effectiveness of the staged combustion strategy in reducing NOx emissions.

NOx emissions are shown experimentally to be reduced by 3 to 5 times; the

theoretical studies indicate a much greater potential with proper

optimization of combustion variables.

The experimental results show that the most important variable in the

staged combustion process from the standpoint of lowering NOx emissions is
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TABLE 10

COMPARISON BETWEEN NOx EMISSIONS FROM FLAMES

BASED ON DIFFERENT FIRING RATES

CRF Run

Number and Date

Fuel Input
kg/hr.

Atomizer
Air

Temperature

NOx Emission
(ppm N0x

Burner Fuel in the
Swirl Equivalence Flue Gas

OK Number Ratio at 3% 02)

Twin Fluid

Twin Fluid

Twin Fluid

143.2 Twin Fluid 533

Flame
Number

, 6 29b

31c

37b

8/20/79

8/22/79

10/15/79

85.3

83.8

142.4

533

529

533

0.53

0.53

0.53

0.94

1.26

0.87

217

73

238

_ I__UII____LL_____I_1_3_-~ -- ~ L--1 ll __ __ ____

37c 10/15/79 0.53 1.29 90



the burner fuel equivalence ratio. Figures 48, 59 and 60 show the effect

of burner fuel equivalence ratio upon NOx emissions at different inlet

air temperatures and with use of different atomizer types. NOx emissions

drop sharply as burner fuel equivalence ratio is increased from 0.95 to 1.1,

then passes through a minimum, and finally increases slightly at burner

fuel equivalence ratios greater than 1.6.

Most of the data displayed in Figures 48, 59 and 60 were taken at a

low swirl condition (i.e., a swirl number equal to 0.53). Included,

however, are NOx emissions data for a high swirl condition (S= 2.7), at

conventional unstaged conditions (b = 0.95), for the purpose of demonstrating

the worst possible (i.e., the highest), NOx emission levels that could be

achieved in the CRF combustor. As indicated in discussions earlier, the

difference in NOx emissions at a high swirl condition becomes negligible at

fuel equivalence ratios greater than 1.2.

The experimental results shown in Figures 48, 59 and 60 substantiate

trends shown by the theoretical studies. The experimental data verify

that there is indeed an optimum value for the fuel equivalence ratio in

the fuel-rich, first stage, at which the resulting NOx level in the flue

gas exiting the combustor is at a minimum due to destruction of NO and

conversion of fuel nitrogen to N2 in the first stage. The data indicate

an optimum burner fuel equivalence ratio between 1.4 and 1.7, as compared

to 1.6 and 1.8 predicted by the theoretical studies. Differences in values

of the optima are thought to be due to generally lower temperatures in the

real combustor resulting from heat losses, and to delayed fuel-air mixing

effects which are not accounted for in the simple reactor model employed

in the theoretical studies.
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3.2.7 Particulate Emission

A limited number of measurements were made to determine the

concentrations of particulates in the flue gases, for both staged and

unstaged flames. The data obtained on solids emissions from staged and

unstaged flames are shown in Table 11. These data were obtained from

single point measurements taken in the flue gas, using a water-cooled

solids sampling probe system which collects the solids in a sintered

bronze thimble-type filter. This sampling system is designed primarily

for in-flame measurement where particulate concentrations are quite high,

and long sampling periods were required to measure the extremely low

particulate concentration reported in Table 11.

It can be seen from Table 11 that particulate emissions were very low,

at least an order of mangnitude below existing emission standards, under

both staged and unstaged conditions. No major differences are observed

between staged and unstaged flames and the only parameter which appears to

have any significant effect on particulate concentration in the flue gas

is swirl number, at high air preheat temperatures. This observation

reflects the influence of fuel spray/combustion air interaction and mixing

on particulate emission, i.e. at high swirl levels and high burner throat

air velocities (due to air preheat level) a mismatch can be expected

between the fuel spray and the air flow resulting in poor mixing and

increased particulate formation.

It was concluded that the high velocity, transverse air jets, which

deliver the secondary stage air were instrumental in achieving efficient

mixing in the fuel-lean stage. At the high temperatures prevailing in
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TABLE 11

SOLIDS EMISSIONS DATA FROM STAGED AND UNSTAGED FLAMES

Flame Conditions

Flame Type Nozzle S Air Preheat
Flame Solids

# lb/106 Btu

Steam

Steam

Steam

Steam

Pressure Jet

Pressure Jet

Pressure Jet

Pressure Jet

Steam
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Unstaged

Unstaged

Unstaged

Unstaged

Staged

Staged

Staged

Staged

Staged

0.95

0.95

0.95

0.95

1.97

1.97

1.15

2.05

1.10

0.95

0.95

0.95

0.95

0.95

0.95

0.95

0.05

0.95

2.7

0.4

2.7

0.4

2.7

0.4

0.4

0.4

0.4

8000 F

8000 F

5000 F

5000 F

8000 F

8000 F

5000 F

500 F

5000 F

.005

.008

.004

.004

.005

.008

.001

.001

.004

--



this region, carbon burnout is extremely rapid, of the order of

100 msecs.
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Conclusions

A systematic experimental study has been carried out on the conversion

of fuel-nitrogen in single stage and two stage combustion of a 0.7% N

content heavy fuel oil using the M.I.T. Combustion Research Facility. The

experiments were guided by results of kinetic model calculations of the

fuel-N conversion to NOx and N2 respectively. Results of the experiments

show that staged combustion can effectively reduce NOx emission without

excessive emission of carbonaceous particulates. It is shown that in

agreement with theoretical model predictions, an optimum range of fuel

equivalence ratios opt - 1.4 - 1.8, exists for the fuel rich stage. Under

close control of the mixing and flame temperatures in both the fuel rich

and lean stages, NOx (at 3% 02) emission levels of 80 ppm could be achieved

with no visible emission of soot. Of the other variables tested in the

experiments, the degree of swirl in the burner had insignificant effect,

for stable flames, under staged combustion conditions; higher swirl degrees

giving slightly lower NOx emissions for first stage fuel equivalence ratios

4 > 1.5. Under single stage combustion, reduced intensity of mixing

brought about by a lower degree of swirl in the combustion air decreased

the NO emission level from about 400 ppm at S = 2.7 to 250 ppm at S =x

0.53. NO emissions increased stepwise for both staged and unstaged flames

when the swirl number was reduced below the critical level needed to main-

tain a stable flame, i.e. under "lifted-flame" conditions.

Air preheat, the effect of which was studied at three levels: 293 K,

500 K and 730 K, was expected to be a significant factor in fuel-N conver-

sion in the fuel rich stage but this was not borne out by experiment, most

likely because the experimental temperature range (1000 to 1900 K) was too

low to illustrate this theoretically predicted temperature effect.
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Experiments carried out under conditions of reduced residence time in the

combustor showed only slight increase in NOx emission.

The results obtained from the theoretical and experimental studies

showed that in general terms no fundamental limitations exist which would

preclude low NOx and particulates emission from high nitrogen content

liquid fuel flames. Information obtained from this study may be used as a

technical basis for the development and design of burners and boiler fur-

naces. In particular, the optimum concentrations and temperature histories

of the fuel which have been identified in these investigations may provide

guidance for the flow and mixing pattern, the quality of fuel atomization,

the use of air preheat and the combination of heat extraction and fast

secondary air admixing needed in full scale boiler plant for the control of

NOx and particulates emission.

However it should be appreciated that the very low NOx and particu-

lates emission levels obtained in these studies are due primarily to the

close controls over the combustion process which can be obtained using the

MIT-CRF. While the combustion conditions are representative of those in

full scale plants, such controls, particularly the high velocity secondary

air jets, may not be economically feasible for utility size boilers.

Consequently the main value of the results presented in this report are in

their potential application to the development of a design strategy and the

absolute values of NOx emissions reported may be regarded as lower bounds

for emission.
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APPENDIX A

MIT COMBUSTION RESEARCH FACILICf (CRF)

The schematic arrangement of the experimenal p.ant is shown in Figure
A-1 The furnace and the systems for the storage, me.ering, feeding and
controlling fuels, the pumping, preheating, meterin; of the combustion air
and that-for cleaning and pumping the combustion products are represented
in Figures A-2 through A-7 respectively.

The Fuel System

1. Fuel Oils

The fuel oil is pumped along a 100-ft long, steam-heated supply line
into either of two storage tanks (2000 gallons capacity each). In the
tanks the oil 8 an be maintained at a temperature adequate for pumping
(e.g., 100-150 F for heavy fuel oils) by two heaters in each tank. The
tanks have temperature and level controls. Excess fuel during filling is
dumped through a pressure-relief valve into a dump tank.

The oilois pumped to a 300-gallon day tank where it cahn be maintained
at about 150 F temperature.

A fuel preDaration system filters the oil and heats it to the final
temperature necessary for satisfactory atomization. Provision is made for
the mixing and emulsification of fuel oils and for their injection through
the burner at controlled flow rates and temperature. The excess fuel fed
through the oil preparation system is recirculated to the day tank.

2. Natural Gas

Natural gas is supplied to the air preheater, the afterburner and also
to the main burner of the experimental furnace. Provision is made for the
mixing of the natural gas with diluents (CO2 , N2) for reducing its
calorific value if required for experimental purposes. The gas from high
pressure mains is distributed to the three supply lines at controlled flow
rates and pressures as shown in the drawing.

3. Solid Fuels/Slurries

In the second stage of its development, the experimental plant will be
provided with a pulverized coal storage metering and feeder assembly as
shown schematically in Figure A-3. This system is in procurement.

The Air SuDDlv System

1. The Combustion Air

The combustion air is supplied by a fan capable of delivering 3500
SCFM against 80 in WG pressure, The gir can be preheated in an externally-
fired air preheater, up to 500 C (900 F). The preheated air can then be
divided into two separately metered branches for introduction to the burner
as primary and secondary air flows.
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2. Oxygen

Oxygen is supplied both to the burner for oxygen enrichment of the
combustion air and to the natural gas-oxygen burner used in the after-
burner assembly.

3. Pressurized Air

Pressurized air is available for air-atomization of liquid fuels.

I4. Steam

Steam is available for heating the oil transport lines and the tanks
and also for steam atomization of liquid fuels. The regulated pressure of
the heating steam is measured. Both the flow rate and temperature of the
super-heated steam used for atomization can be recorded.

The Gas Exhaust and Cooling Water System

1. The Gas Chamber

The pressure in the experimental furnace is maintained close to the
atmospheric pressure by the balanced operation of the forced draft and
induced draft fans. The combustion products pass from the experimental
section of the furnace into 8he afterburner section where the gas tempera-
ture is raised to about 1200 C and the oxygen concentration increased by a
natural gas-oxygen burner so that submicron size soot particles can be
burned completely. Downstream of the aft rburner section the combustion
products are cooled by water spray to 200 C. The gas vapor mixture then
enters a wet scrubber which removes inorganic particles in excess of l1.lm
size with an overall efficiency 2 90%. An induced draft fan propels the
gases through the stack.

2. The Cooling Water System

The cooling water system is used to cool the one-foot wide sections of
the experimental furnace. The cooling water is circulated in a closed
loop cooled by river water in a heat exchanger. The individual furnace
sections are instrumented for the measurement of the water flow rate and
the temperature rise of the cooling water so as to enable sectional heat
balances of the furnace to be calculated. The furnace sections are
provided with a high temperature alarm system for their protection against
dry-out.

3. TaD Water Supply

The tap water supply is available for the emulsifier, for the probes'
cooling water, for the spray that cools the exhaust gases before entrance
to the scrubber and for the scrub6er.

Control and Interlock System

A comprehensive automatic control and interlock system is used for the
safe light up shut off and operation of the experimental plant.
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Measurements - Instrumentation

Probe and optical measurements are made within the flames and at the
furnace walls. -Time average gas temperatures are measured by suction
rometers and time averag3 velocities with water cooled impact Rrobes

capable of measuring axial, radial and tangential velocity components at
points in the flame. Gas and solid samples are taken from the same points
in the flame for chemical analyses.

Laser-droppler velocimetry is used for the measurement of the spatial
distribution of time-resolved velocities in the furnace, and laser-
diffraction and multi-flash photographic methods employed for determining
particle and droplet size distributions in the flame.

The furnace sections are of two types of water-cooled inside walls or
of refractory-lined inside walls. Wall temperatures are measured at
several points in each section. The total heat transfer from the flame to
the furnace is determined by using conductivity plug type heat flow meters
and the radiative heat transfer contribution by using hemispherical type
hollow ellipsoidal radiometers, both at the furnace wall.. Flame
emissivities are determined optically according to the Schmidt method using
total radiation pyrometers.

All measured variables are displayed at the control panel after trans-
duction to their electrical analogs and these electrical analogs are used
as the inputs to manual or, in some cases automatic control loops; a data
acquisition computer system based on a PDP11/60 machine common to several
facilities in the building is used to log all data. The system permits
quasi real-time processing of the data with comparisons between model
predictions and current experimental results.

I,

- 130 -

II __ __I ~ ___ I f i l l I II] II I I I I , ,I , , II I, , ff,,,l,,I



cowt'pas,'c

StoPAct 9t"

Al *AL DSUN

That T IpCr

DAY TANX

TANr N(ATEN

PuAAtV oStILorp 2 s.

OwYetN

SUOPLY Ii[EAOER

.At

PUMP
SUCVtON
NEATEN

atvnAVt* VE WAVI
SUPPLVY RETU-

C91MIMPS A1

Figure A-i MIT COMBUSTION RESE ARCH FACILITY

0*AI

(tY WAIER



Y~i~i

"
.~i L$ 4

:j
c

:_i :a. a
i --. .:.. .

.., i:
:.:: :i::i:

-~bg~~~i~ al TBx ~e~ ip~;;j~-E B

Figure A-2. View of Multi-Fuel Swirl Burner in MIT CRF.

-1101%

j



Steam
Heating

Filter Vacuum
Pump

Vacuum

Mixing Tank I Day Tank

Coal Weigher

Coal ' ) *

H Supply

S1ov Control Dampene ,

Homogenizer alve

Flow Meter Q (Caulin)
(Totalizing

Heater
Q flow Rate

Q Flow Meter Meter

Sta S(Totalizing)

Heating P P T Burner
Storage Nozzle

Water (Optional)

Figure -A= f COM Preparation and Handling Systems.

I - Conventional Mixing Tank >
II - Mechanical Homogenization (Caulin)

1



Combustion
Air Inlet

179"

Experimental
Section

Afterburner
Section

Figure A-4. - Furnace Assembly

Section



Air Steam

Compressed
Air

Solenoid
Valve

Return
to Day tank

S1

Emulsifying
Water

Safety Shut
-- off Valve

I

.1
I

Flow
Meter

Flow
Control
ValveEmulsifyi

Pump

Liquid Fuel Prep. System

Steam
Filter

Fuel
Pump Fuel

HIeater

Water
Heater

Emulsion

Heater

I

Figure A-5.



Air
Preheater

0o'

Figure A-6. Combustion Air



Dilution I

Air

Experimental

02

Natural
Gas

Temperature
Transmitter

MI

River
water

ter

Furnace

Drain

Figure A-7. -' Exhaust System

M... Metering
Orifice

Damper

Stack

Drain

I.D. Fan

.Scrubber



APPENDIX B

TABULATED DATA FROM THE EXPERIMENTAL STUDIES

1) Experimental and Operating Data, Unstaged Flames (1-8),
Tables B-la-b.

2) Experimental and Operating Data, Staged Flames (9-40),

Tables B-2a-b.

3) Gas Composition and Temperature Measurements, Flames 1-40,

Table B-3.
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TABLE B.la

COMBUSTION RESEARCH FACILITY OPERATING AND EXPERIMENTAL DATA,
FLAMES 1-8; HIGH NITROGEN NO. 6 FUEL OIL;

UNSTAGED, CONVENTIONAL FLAMES

Overall Swirl
CRF Fuel

Flame Run Equivalence Swirl Swirl

Number Number Ratio Setting Number Atomizer Type

1 21a .97 10 2.7 Pressure Jet

2 21b. .97 3 .42 Pressure Jet

3 24a .97 10 2.7 Pressure Jet

4 24b .97 3 .42 Pressure Jet

5 29a .93 10 2.7 Twin Fluid

6 29b .93 3.5 .53 Twin Fluid

7 30a .93 10 2.7 Twin Fluid

8 30b .93 3.5 .53 Twin Fluid



TABLE B.lb

COMBUSTION RESEARCH FACILITY OPERATING AND EXPERIMENTAL DATA,
FLAMES 1-8; HIGH NITROGEN NO. 6 FUEL OIL;

UNSTAGED, CONVENTIONAL FLAMES

Combustion Combustion

Air Fuel Oil Air Flow Rate Fuel Flow Rate

Temperature Temperature
CRF

Flame Run lbs lkg Ibs

Number Number OK OF OK OF hr min hr min

S

o 1 21a 533 500 376 217 1179 43.34 83.01 3.050

2 21b 533 500 376 217 1179 43.34 83.01 3.050

3 24a 728 850 375 215 1188 43.66 83.01 3.050

4 24b 728 850 375 215 1188 43.66 83.01 3.050

5 29a 533 500 369 204 1271 46.72 85.27 3.133

6 24b 533 500 369 204 1271 46.72 85.27 3.133

7 30a 722 840 381 225 1260 46.31 84.70 3.113

8 30b 722 840 381 225 1260 43.31 84.70 3.113



TABLE B.2a

COMBUSTION RESEARCH FACILITY OPERATING AND EXPERIMENTAL DATA,
FLAMES 9-40; HIGH NITROGEN NO. 6 FUEL OIL;

STAGED FLAMES

Burner
Fuel

CRF Equiv-
Flame Run alence

# # Ratio

Overall
Fuel

Equivalence
Ratio

From
Fuel

& Air
Flows

From
Flue

Gas 02
Anal-
ysis

Swirl

Swirl Swirl
Setting #

Atomizer
Type

Staging
Air

Inj ec t ion
Point

(Distance
from

Nozzle,
m)

.95 3.5

.95 3.5

.93 3.5

.95 - 3.5

.94 3.5

.95 3.5

.94 3.5

.96 4.0
.95 6.0
.97 8.0
.96 10.0
.95 3.5
.93 3.5
.96 3.5
.95 3.5
.95 3.5

3.5
10.0

.89 3.5
3.5

10.0
.91 3.5
.97 3.5
.95 10.0
.96 3.5
.96 3.5
.96 3.5
.96 3.5
.94 10.0
.93 3.5

3.5
.94 3.5

0.53
0.53
0.53
0.53
0.53
0.53
0.53
0.65
1.17
1.78
2.70
0.53
0.53
0.53
0.53
0.53
0.53
2.70
0.53
0.53
2.70
0.53
0.53
2.70
0.53
0.53
0.53
0.53
2.70
0.53
0.53
0.53

Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Pressure Jet
Twin Fluid
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin
Twin

Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
Fluid
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9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

25a
25b
26a
26b
26c
26d
26e
26f
26g
26h
26i
27a
27b
27c
27d
27e
18a
18b
18c
19a
19b
19c
31a
31b
31c
31d
31e
31f
31g
37a
37b
37c

1.15
2.05
1.18
1.27
1.47
1.75
1.88
1.49
1.51
1.49
1.45
1.06
1.31
1.41
1.75
1.97
1.17
1.17
2.01
1.12
1.12
1.70
1.18
1.19
1.26
1.42
1.69
1.77
2.02
1.48
0.97
1.29

0.950
0.996
0.994
0.983
0.980
0.980
0.930
0.992
0.997
0.980
0.970
0.933
0.975
0.937
0.955
0.964
0.960
0.960
0.880
0.960
0.960
0.830
1.010
1.000
0.950
0.960
0.950
0.910
1.000
0.860
0.870
0.940

2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59
2.59

2.592 . 5
2 .5 '
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TABLE B.2b

COMBUSTION RESEARCH FACILITY OPERATING AND EXPERIMENTAL DATA,
FLAMES 9-40; HIGH NITROGEN NO. 6 FUEL OIL;

STAGED FLAMES

Combus- Burner Staging
tion Fuel (Primary) (Secondary)
Air Oil Air Air Fuel

Temper- Temper- Flow Rate Flow Rate Flow Rate

ature ature
CRF

Flame Run g lbs g ibs g bs
#1 # OK F OK OF hr min hr hr hr hr

9 25a 533 500 367 200 1006 36.97 210 7.73 83.63 3.073
10 25b 533 500 367 200 551 20.25 584 21.46 81.62 2.999
11 26a 533 500 365 197 1006 36.97 188 6.91 85.73 3.150
12 26b 544 520 369 204 932 34.23 273 10.02 85.46 3.140
13 26c 544 520 371 207 803 29.50 401 14.74 85.46 3.140
14 26d 544 520 372 209 661 24.27 516 18.96 82.28 3.060
15 26e 544 520 379 223 610 22.43 623 22.90 82.71 3.039
16 26f 544 520 377 218 775 28.46 384 14.12 83.01 3.050
17 26g 544 520 377 219 759 27.88 395 14.51 83.01 3.050
18 26h 544 520 371 207 755 27.73 395 14.51 81.38 2.990
19 26i 544 520 366 199 796 29.24 393 14.44 83.55 3.070
20 27a 731 855 369 205 1080 39.80 147 5.41 82.90 3.046
21 27b 750 890 374 213 871 32.00 302 11.10 82.57 3.034
22 27c 742 875 371 207 814 29.90 410 15.07 82.57 3.034
23 27d 742 875 374 213 654 24.02 544 19.99 82.60 3.035
24 27e 731 855 367 200 560 20.59 585 21.51 79.74 2.930
25 18a 531 495 352 173 979 35.96 211 7.75 82.60 3.035
26 18b 531 495 352 173 979 35.96 211 7.75 82.60 3.035
27 18c 533 500 352 173 570 20.95 733 26.93 82.60 3.035
28 19a 744 880 357 183 1030 38.00 178 6.54 83.63 3.073
29 19b 744 880 357 183 1030 38.00 178 6.54 83.63 3.073
30 19c 744 880 357 183 673 24.74 696 25.57 82.33 3.025

31 31a 533 500 370 206 948 34.85 172 6.32 81.40 2.991

32 31b 531 495 373 211 981 36.06 189 6.95 85.17 3.130
33 31c 529 493 373 212 912 33.50 309 11.34 83.80 3.079

34 31d 531 495 372 210 830 30.48 405 14.88 85.27 3.133
35 31e 528 490 373 211 690 25.37 533 19.59 84.18 3.093
36 31f 529 493 373 212 652 23.95 613 22.52 83.20 3.057

37 31g 528 490 372 209 584 21.45 584 21.44 85.27 3.133
38 37a 300 80 362 192 749 27.53 558 20.51 80.18 2.946
39 37b 533 500 368 203 2025 74.39 254 9.31 142.40 5.232
40 37c 533 500 373 211 1539 56.53 570 20.95 143.20 5.261
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TABLE . 3

COMBUSTION RESEARCH FACILITY EXPERIENTAL DATA; HIGH NITROGEN NO. 6 FUEL OIL;
GAS COMPOSITION AND TEMPERATURE MEASURDLENTS, FLAMES 1-40

Distance Distance X CO: by % 02 by CO ppm by NOx ppm by
From From Volume Volume Volume Volume

Burner Furnace ppm
No:1le Wall Lbs NO, NOx at Temperature

(t) (m) (as measured at the experimental conditions) MM BTU 32 0 'K

Flame 1. CRF 121a

1.07 .:0 13.4 1.8 700-800 425 .506 395 1823
center 13.8 1.4 150-300 440 .515 402 1783
.75 - -- - -- - - 1803

1.37 .20 13.5 1.0 300-450 415 .478 373 1798
center 13.5 1.1 0 425 .492 384 1743
.67 -- -- - -- -- - 1748

1.675 .20 13.8 1.0 220 420 .486 380 1745
center 13.8 1.2 0 405 .470 367 1733
.75 - -- -- - -- -- 1728

1.98 .20 13.8 1.0 220 400 .461 360
center 14.0 1.0 150 400 .461 360

2.285 .20 -- - -- -- - - --
center -- -- -- -- 1703
.75 -- -- -- -- -- -- 1706

2.89 .20 13.6 1.2 0 420 .488 381 --
center 13.6 1.2 0 420 .488 381 1668

3.505 .20 13.6 1.0 0 425 .490 383 1643
.30 - -- - - -- - 1648
.50 - - -- -- -- -- 1643
center 13.6 1.1 0 430 .498 389 1643
.75 - -- - - - 1643

4.11 .20 13.6 1.2 0 420 .488 381 1612
.30 - -- - - - - 1613
.50 - - -- - - - 1613
center 13.6 1.2 0 420 .488 381 1608
.75 -- -- -- -- - - 1611

Flame 2. CRF #21b

0.87 .30 -- -- - -- - 1758
.40 -- - -- -- -- - 1803
.50 - -- - - -- - 1828
center 12.6 1.9 4000-5000 310 .374 292 1833
.75 - - -- - - - 1814

1.07 .30 - --- -- -- - 1776
.40 -- - - 1798
.50 -- - -- -- - 1811
center 12.8 1.6 2700-3300 300 .355 277 1813
.75 - -- -- - -- - 1793

1.37 .30 - - - -- - - 1768
.40 - -- - - 1786
.50 - - - - -- 1791
center 12.8 1.6 900-1650 280 .332 259 1786

1.675 .30 -- - -- -- - - 1763
.40 -- -- -- -- 1770
.50 - -- -- -- - - 1768
center 13.1 1.4 400-600 280 .328 256 1765
.75 - -- - -- -- - 1758

2.285 .20 -- - - - - 1713
.30 -- -- -- -- -- 1718
.50 - - - - - - 1713
center 13.7 1.0 0-150 278 .320 250 1713
.75 -- - - - -- - 1708

2.890 .20 -- -- -- -- - 1658
.30 -- -- - -- - - 1663
.50 -- -- -- -- - - 1638
center 13.4 1.: 0 280 .325 25- 1633
.75 -- -- -- - - 1653

3.50 .20 13.4 1. 0 270 .316 :7 1605
.30 13.4 i.3 27: .31 -" 1613

NOTE: The axial centerilne ,s approximatel1v .- = :rom the furnace side wall
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TABLE B.3: Continued

Distance Distance % CO2 by O2 by CO ppa by NOx ppm by
From From Volume Volume Volume Volume

Burner Furnace ppm
4ozzle Wal Lbs NO2 NOx at Temperature

(m) (a) (as measured at the experimental conditions) MM BTU 3% 02 OK

Flame 2, CRF #21b: Continued

3.505 .50 13.4 1.3 0 270 .316 247 1625
(con'd.) center 13.4 1.4 0 280 .328 256 1623

.75 -- - -- - -- - 1623
4.11 .20 13.7 1.2 0 280 .325 254 1586

.30 13.7 . 1.2 "0 280 .325 254 1592

.50 13.7 1.2 0 280 .325 254 1596
center 13.4 1.1 0 280 .325 253 1593
.675 13.7 1.1 0 280 .324 253 1592

Flame 4, CRF #24b

O.S7 centcer 13.7 1.0 >5000 380 .438 342 1851
1.07 center 13.9 1.0 >5000 360 .415 324 1837
1.37 center 14.4 1.2 1400-2100 370 .431 337 1815
1.675 center -- - - - 1779
1.98 center 14.5 1.2 300-900 360 .419 327 1755
2.285 center -- - -- -- - - 1736
2.89 center 14.4 1.2 0 350 .408 319 1676
3.2 center -- - -- -- - -- 1657
3.505 center - - -- -- - - 1640
3.81 center 14.4 1.0 0 350 .403 315 1631
4.11 center 14.4 1.1 0 350 .405 316 1613
4.415 center 14.3 1.0 0 340 .392 306 1602

Flame 3, CRF #24a

0.87 center 13.7 2.7 300 540 .678 530 1 8
1.07 center 14.4 1.3 0 510 .597 466 1722
1.37 center - - -- -- -- -- 17
1.675 center 14.4 1.3 0 500 .586 458 1710
1.98 center 14.4 1.0 0 500 .576 450 1692

16622.285 center -- -- -- - -- - 1662

2.89 center 14.4 1.2 0 520 .606 474 1653
3.20 center - - -- -- -- - 1639
3.505 center 14.4 1.1 0 510 .591 462 1626
3.81 center -- - -- -- - - 1617
4.11 center - - -- 1609
1.415 center 14.4 1.4 0 520 .609 476

Flame 5. CRF #29a

0.87 center 14.0 2.4 0 420 .521 407 1848
1.0" center 14.2 2.0 50-150 400 .485 379 1713
1.37 center -- - -- -- - - 1684
1.675 center 14.8 1.3 0-150 380 .445 348 167.,
1.98 center - -- -- -- -- -- 1654
2.285 center 14.6 1.25 0 435 .507 396 1630
2.89 center - - -- -- -- -- 1622
3.20 center 14.6 1.25 0 440 .512 400 1617
3.505 center -- - - -- -- -- 1607
3.81 center 14.6 1.4 0 425 .498 38Q 1598
4.11 center -- - -- - - -- 1589
4.415 center 14.5 1.3 0 425 .498 389 1582
flue center 14.5 1.. 0 420 .492 38. --
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TABLE B.3: Continued

Distance Distance X CO0 by X O by CO ppm by NOx ppa by
From From Volume Volume Volume Volume

Burner Furnace ppm
Nozzle Vall Lbs NO2  NOx at Temperature
(m) (a) (as measured at the experimental conditions) .M BTU 3% 02 "K

Flame 6, CRF *29b

0.S7 center - -- - - -- -- 1767
1.07 center 11.6 2.0 >5000 240 .259 202 1761
1.37 center - - -- -- -- -- 1738
1.675 center 14.0 1.0 3000-4000 240 .276 216 1723
1.98 center - - - - - - 1703
2.285 center 15.0 0.8 550-1650 240 .273 213 1682
2.89 center - - -- - - - 1643
3.2 center 15.0 0.8 550-1650 240 .273 213 1682
3.505 center - - - - -- - 1602
3.31 center 15.0 0.5 0-550 235 .263 206 1585
4.415 center 15.0 0.8 0-300 240 .273 213 1541
flue center 14.9 1.1 0 240 .278 217 --

Flame 7, CRF 130a

0.87 center 13.3 2.2 550 480 .589 460 1845
1.07 center 14.2 2.0 150 500 .606 474 1773
1.37 center -- - -- -- - - 1738
1.675 center 14.0 1.3 150 490 .574 449 1723
1.98 center - - - - - - 1708
2.285 center 14.6 0.8 0-1050 465 .530 414 1695
2.89 center -- - -- - - -- 1667
3.20 center 14.9 0.6 300-900 450 .507 396 1646
3.505 center - -- - -- -- -- 1627
3.31 center 14.6 0.8 0 470 .535 418 1618
4.11 center - - -- -- -- -- 1604
4.415 center 14.9 0.8 0 490 .558 436 1586
flue center 14.9 0.8 0 520 .592 463 --

Flame 8, CRF #30b

0.87 center 13.3 1.4 >5000 320 .375 293 1815
1.07 center 14.0 1.5 4000-5000 320 .379 296 1771
1.37 center - -- -- -- -- -- 1753
1.675 center 14.4 1.2 900-1650 315 .366 286 1710
1.98 center -- - -- -- - - 1680
2.285 center 14.4 1.1 300 300 .347 271 1673
2.89 center - - - -- -- - 1633
3.2 center 14.4 1.0 0 300 .346 270 1611
3.505 center - - -- -- - -- 1599
3.31 center 14.7 1.0 0 300 .346 270 1582
4.11 center -- - -- -- -- - 1566
4.415 center 14.4 1.1 0 295 .342 267 1551
flue center 14.4 1.0 0 320 .369 288 --

Flame 9, CRYF 25a

0.87 center 12.4 2.0 4000-5000 175 .212 166 1725
1.07 center -- -- -- - -- - 1681
1.37 center 13.2 0.2 >5000 215 .216 169 1643
1.675 center - 0.2 >5000 215 .216 169 1631
1.98 center -- 0.2 >5000 210 .211 165 1603
2.285 center 14.4 0.3 - 205 .21 167 1570
2.99 center 12.4 3.6 - 150 .19Q 155 1460
3.2 center 13.3 2.8 -- 163 .20' 162 149S
3.505 center 13.6 2.4 - 173 .215 168 --
3.8i center 13.9 2.0 -- 175 .21: 166 14Q9
4.11 center -- -- -- -- -- --

cene7 13. I. ". --
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TABLE B.3: Continued

Distance Distance Z Cos by Z O by CO ppm by NOx ppm by
From From Volume Volume Volume Volume

Burner. Furnace ppm
Nozzle Well Lbs NOz  NOx at Temperature

(a) (a) (as measured at the experimental conditions) MM BTU 3% 02 *K

Flame 10, CRF #25b

0.87 center 7.8 1.0 >5000 35 .030 23 1664
1.07 center 10.0 0.6 >5000 58 .053 41 1673
1.37 center 12.3 0.7 >5000 72 .071 55 1693
1.675 center 13.4 1.8 >5000 90 .108 84 1713
1.98 center 13.2 2.3 >5000 90 .111 87 1676
2.285 center 11.5 5.2 >5000 83 .122 95 1613
2.89 center 12.5 3.1 >5000 83 .107 84 1653
3.2 center 13.4 2.4 >5000 84 .104 81 1712
3.505 center 14.2 1.4 >5000 86 .101 79 1717
3.81 center 14.5 1.2 600-2650 86 .1 78 1706
4.11 center 14.5 1.2 900-2150 90 .105 82 1682

Flame 11, CRF #26a

flue center 14.0 1.8 0 190 .230 180 -
flue center 14.0 1.3 0 180 .218 170 --
1.675 center - -- - - -- -- 1653
4.415 center - -- -- - - -- 1493

Flame 12, CRF #26b

flue center 14.7 1.1 0 125 .145 113 --
1.675 center -- -- - -- - - 1639
4.415 center -- -- -- -- -- -- 1572

Flame 13, CRF #26c

flue center 14.7 1.2 0 88 .102 80 -
1.675 center -- -- - -- -- - 1636
4.415 center - - - - -- -- 1591

Flame 14, CRF #26d

flue center 14.3 1.2 0 88 .102 80 -
1.675 center - -- -- - - - 1648
4.415 center -- - - -- - -- 1617

Flame 15, CRF #26e

flue center 14.0 1.3 0 95 .111 87 --
1.675 center -- - - -- - -- 1691
4.415 center -- -- - 1652

Flame 16, CR #26f

flue center 14.3 1.0 0 88 .101 79 --

Flame 17, CRF 126g

flue center 14.3 . 0 5 .0985 7' --
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TABLE 5.3: Continued

Distance Distance 2 CO0 by 2 Ot by CO ppe by NOx ppn by
From From Volume Volume Volume Volume

Burner Furnace ppm
Nozzle wall Lbs NO2 NOx at Temperature

(i) (a) (as measured at the experimental conditions) M BTU 32 02 OK

Flame 18, CRF #26h

flue center 14.6 0.65 0-900 78 .088 69 --

Flame 19. CRF #261

flue center 14.6 0.95 0-700 78 .09 71

Flame 20, CRF 127a

0.87 center 12.1 0.2 >5000 220 .214 167 1748
1.07 center 12.9 0.2 >5000 203 .2 156 1688
1.37 center -- - - - - - 1652
1.675 center 12.9 0.2 >5000 200 .2 156 1641
1.98 center 1.9 0.2 >5000 205 .205 160 1622
2.285 center 13.5 0.6 >5000 205 .209 163 1605
2.89 center 11.5 3.9 0-400 165 .223 174 1512
3.2 center 12.9 2.0 0-250 178 .216 163 1533
3.505 center 13.2 1.5 0-550 185 .219 171 1539
3.81 center 13.2 1.4 0-550 190 .223 174 1528
4.415 center 13.6 1.4 0-100 188 .221 172 1515
flue center 13.9 1.3 0 210 .246 192 --

Flame 21, CRF #27b

flue center 13.6 1.6 0 103 .121 95 --
1.675 center 12.3 0.2 >5000 115 .113 88 1663
4.415 center 13.5 1.4 560-2650 105 .123 96 1614

Flame 22. CRF #27c

flue center 14.0 1.0 0-255 83 .096 75 --
1.675 center 12.8 0.6 >5000 88 .087 68 1675
4.415 center 13.5 1.3 >5000 83 .097 76 1637

Flame 23, CRF 127d

flue center 14.0 1.1 0 98 .114 89 --
1.675 center 11.8 0.3 >5000 85 .082 64 1663
4.415 center 13.8 0.7 >5000 95 .108 84 1614

Flame 24, CRF 127e

0.87 center 8.8 1.2 )5000 95 .085 66 16751.07 center 9.5 0.4 >5000 60 .054 42 1632
1.37 center 10.0 0.2 >5000 60 .055 43 1632
1.675 center 11.6 0.5 >5000 78 .075 59 1653
1.98 center 12.7 1.2 >5000 95 .111 86 17.
2.285 center 12.3 2.8 >5000 87 .111 86 1735
2.59 center 12.2 3.4 850-3300 85 .111 87 1717
3.2 center 12.9 2.2 850-2650 90 .111 86 17-:
3.505 center - -- -- - -- -- 1695
3.11 center 13.0 1.6 550-405C 90 .107 93 163

.-r. center 13. ":.: 0-*050 9" .195 ? 16-
tiur cen:er 13. . 0-50 105 .
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TABLE 3.3: Continued

Distance Distance Z CDO by Z 02 by CO ppe by NOx ppm by
From From Volume Volume Volume Volume

burner Fruace ppe
Nozale aill Lbs NO, NOx at Temperature

aI) (a) (as measured at the experimental conditions) 10 BTU 3X O *K

Flame 25, CRI l8a

0.87 .20 12.6 2.8 >5000 260 .33 258 1623
.30 12.7 1.0 >5000 280 .323 252 1728
.40 13.1 0.6 >5000 280 .316 247 1756
.50 13.4 0.7 >5000 270 .306 239 1753
center 13.5 0.6 >5000 260 .293 229 1856

1.07 .20 13.8 0.4 >5000 230 .258 202 1623
.50 14.0 0.0 >5000 220 .227 177 1733
.55 - - -- - - - 1713
center 14.0 0.0 >5000 220 .227 177 1703

1.37 .20 13.6 0.0 >5000 190 .194 152 1698
.30 - - - - - - 1688
.45 13.5 0.0 >5000 180 .184 144 --
.50 - - - - -- -- 1683
.55 14.1 0.0 >5000 200 .208 163 1688
center 14.1 0.0 >5000 230 .239 187 1688

1.675 .40 - - -- - - - 1663
.45 14.1 0.0 >5000 150 .156 122 -
.50 13.8 0.0 >5000 145 .148 116 1658
center 13.6 0.0 >5000 140 .143 112 1671

1.98 .35 14.0 0.0 >5000 125 .129 101 --
.40 13.8 0.0 >5000 125 .128 100 1640
.50 13.8 0.0 >5000 125 .128 100 1643
center 13.8 0.1 >5000 125 .128 100 1641

2.285 .35 14.0 0.2 >5000 105 .116 91 -
.40 14.0 0.1 >5000 110 .122 95 1543
.50 14.0 1.2 >5000 105 .122 95 1573
center 13.8 2.0 >5000 105 .127 99 1588

2.89 .35 11.9 4.6 300-1250 100 .141 110 -
.40 12.1 4.6 0 100 .141 110 1533
.50 11.9 4.6 0 100 .141 110 1493
center 12.1 4.8 0 100 .143 112 1481

3.2 .30 - - - -- - 1563
.50 - -- -- - - 1547
center - - - 1548

3.81 .40 - - - - - 1587
center - - - - 1586

4.415 .40 - - - - - - 1577
center - - - - - - 1573

Flame 26, CRF #18b

0.87

1.07

1.37

1.675

1.98

2.285

2.!9

.20

.30
center
.20
.30
center
.20
.30
center
.20
.30
center
.20
.30
center
.20
.30
.40
center
.=0
.30

13.1
13.9
13.9
13.9
13.9
14.1
14.0
14.0
14.1
14.1
14.1
14.1
14.1
14.1
13.6
13.9
13.4

12.0
10.9
11.3

0.6
0.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.4
0.0
0.0
2.0
1.3
1.6

3.7

5.3

>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
>5000
0-900
900-2650
900-5000+

150-1250
0
0

.31

.309

.314

.258

.247
.246
.236
.236
.236
.225
.225
.236
.216
.216
.242
.234
.207

.2

.227

.231!

242
241
245
202
193
192
184
184
184
176
176
18-
169
169
189
183
162

156
177
153"

1733
1773
1813
1695
1693
1713
1678
1681
1668
1668
1663
1668
1663
1648
1608
1633

1585
1538
1513
1498
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TABLE B.3: Continued

Distance Distance 2 CO0 by 2 O by CO pp. by NOx ppa by
From From Volume Volume Volume Volume

Burner Furnace ppM
No:zle Wall Lbs NO, NOx at Temperature

(i) (a) (as measured at the experimental conditions) M1 BTU 
31 

02 *K

Flame 26. CRF #18b: Continued

2.285 .40 - - -- - - - 1473

(con'd.) center 10.8 5.8 0 160 .243 190 1483
3.2 .20 12.3 3.6 0 190 .251 196 1478

.30 12.8 2.9 0 190 .242 189 --

.40 - -- - -- -- - 1561
center 12.8 2.6 0 190 .239 187 1573

3.81 .30 13.2 2.0 0 200 .242 189 1565
center 13.6 1.4 0 180 .211 165 1579

4.415 .20 13.8 0.9 0 220 .252 197 1553
.40 - - -- -- - - 1553
center 13.8 1.0 0 220 .253 198 1575

Flame 27. CRF #18c

1.07 center 11.0 0 >5000 .044 34.3 -
2.89 center 12.6 2.5 3300-4000 .124 97
flue center - 1.4 - 100 -

Flame 28, CRF 119a

0.87 .45 -- -- -- - -- 1777
.50 -- -- -- -- - - 1819
center 10.9 2.0 >5000 230 .279 218 1830

1.07 .30 -- -- -- -- - - 1766
.40 -- -- - -- - -- 177
.50 - -- -- -- -- -- 1785
center 12.3 1.2 >5000 225 .261 204 1804

1.37 .30 -- -- -- - -- -- 1753
.40 - - - - -- - 1766
.50 - - -- -- -- - 1766
center 13.4 0.4 >5000 215 .241 188 1777

1.675 .30 -- -- -- -- - -- 1740
.40 14.0 0.0 >5000 175 .192 150 1741
.50 - -- -- - -- - 1751
center 13.9 0.0 >5000 200 .209 163 1747

1.98 .30 - -- -- - -- -- 1717
.40 -- - -- - - - 1719
center 14.0 0.0 >5000 190 .199 155 1720

2.285 .30 13.8 0.0 >5000 190 .198 155 1699
.40 13.8 0.3 >5000 190 .210 16. 1687
center 13.8 0.8 >5000 190 .215 168 1675

2.89 .20 12.7 2.0 0-1700 160 .194 152 1649
.30 12.6 2.5 0-2700 165 .205 160 1622
.40 12.2 3.3 0-900 160 .208 163 1592
.50 11.3 4.2 0-900 145 .199 155 1580
center 11.3 4.6 0-900 145 .204 159 1580

3.2 .20 12.9 2.2 0-3300 160 .196 153 1650
.30 12.7 2.4 0-2100 155 .192 150 1633
.40 12.7 2.8 0-600 155 .19' 154 1622
center 12.7 2.8 0-900 150 .191 149 1619

3.505 .20 12.9 1.8 250-2100 165 .197 15. 1585
.30 12.9 1.8 0-600 165 .197 154 1596
.40 12.9 1.9 0-900 165 .199 155 1636

center 12.8 2.0 0-900 165 .2 156 163j

4.11 .20 12.9 1.8 0-1200 165 .197 154 le-

.40 13.0 1.4 0-1450 165 .194 152 160C

center 13.1 1.2 0-1200 165 .19: 150 16::
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TABLE B.3: Continued

Distance Distance % C02 by 2 02 by CO ppm by NOx ppm by
From From Volume Volume Volume Volume

Burner Furnace ppm
Nozzle Wall Lbs NO NOx at Temperature
(a) (W) (as measured at the experimental conditions) MM BTU 3% 02 *K

Flame 29, CRF #19b

0.87 .45 - - - - - - 1835
.50 - - - - - - 1808
center 14.3 0.0 >5000 340 .355 277 1817

1.07 .30 - -- - - - -- 1764
.40 -- - - -- - -- 1751
center 14.3 0.0 >5000 265 .277 216 1733

1.37 .30 -- -- - - -- - 1719
.40 -- -- - - - - 1713
center 14.3 0.0 >5000 240 .25 195 1709

1.675 .30 - - - - - - 1708
.40 -- - - -- -- - 1706
center 14.3 0.0 >5000 230 .24 188 1693

1.98 .30 -- -- - -- -- -- 1700
.40 -- - - -- -- - 1706
center 14.3 0.0 >5000 220 .23 180 1688

2.285 .30 -- -- -- - 1678
.40 - - - -- -- - 1673
center 13.1 1.9 >5000 200 .241 188 1657

2.89 .20 12.8 3.0 0-2650 180 .23 180 1590
.30 12.8 3.6 0-1250 165 .216 169 1567
.40 12.6 3.9 0 165 .223 174 1550
.50 11.8 4.2 0-15 160 .216 169 1564
center 11.8 4.2 0-550 160 .216 169 1583

3.2 .30 -- - -- -- - - 1617
.40 -- - -- - - - 1611
center 13.5 2.0 0-5000 190 .23 180 1608

3.505 .30 - - - -- -- - 1620
.40 - -- -- - -- - 1620
center 14.0 1.4 0-550 220 .258 202 1614

4.11 .20 - -- -- -- - -- 1601
.40 - - -- -- -- - 1597
center 14.0 0.8 0 220 .251 196 1595

Flame 30, CRF 019c

flue center 13.5 2.0 0 .109 85 --

Flame 31, CRF #31a

flue center 14.0 0.8 0-300 100 .114 89 --

Flame 32, CRF #31b

flue center 13.8 1.2 0 200 .233 182 --

Flame 33, CLF #31c

flue center 14.0 1.0 0 80 .092 72 --
1.675 center 11.8 0.1 >5000 80 .077 62 1639
4.415 center 13.8 1.2 0-1650 80 .093 32 l161
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TABLE B.3: Continued

Distance Distance Z C0O by I 02 by CO ppm by NOx ppm by
From From Volume Volume Volume Volume

Burner Furnace ppm
Nozzle wall Lbs NO, NOx at Temperature

(a) (a) (as measured at the experimental conditions) .4I BTU 3% 02 *K

Flame 34, CRF 031d

flue center 13.8 1.0 0-300 85 .098 77 -
1.675 center 10.4 1.1 >5000 60 .059 46 1619
4.415 center 13.4 1.1 0-3300 80 .093 73 1645

Flame 35, CRF 131e

flue center 14.0 1.0 0-300 103 .119 93 -
1.675 center 9.3 0.2 >5000 37 .033 26 1589
4.415 center 14.4 0.5 0-2650 100 .112 88 1678

Flame 36, CRF 031f

0.87 center 9.6 0.3 >5000 60 .054 42 1608
1.07 center - -- -- -- -- -- 1560
1.37 center 9.9 0.1 >5000 40 .036 28 1559
1.675 center - - - -- -- - 1563
1.98 center 11.4 0.6 >5000 90 .086 67 1682
2.285 center 12.3 3.5 900-1650 120 .158 124 1738
2.89 center 12.3 3.9 900-1650 100 .135 106 1671
3.2 center 13.2 2.3 900-1650 100 .123 96 1730
3.505 center - - -- - - - 1731
3.81 center 14.0 1.0 900-2650 100 .115 90 1696
4.11 center -- -- - -- - -- 1676
4.415 center 14.3 0.8 0-2650 100 .114 89 1661
flue center 14.3 1.1 0 110 .127 99.5 --

Flame 37, CRF 031g

flue center 14.0 1.4 0.0 100 -- 92 --

Flame 38, CRF #37 a

flue center 13.0 1.5 0-600 105 .124 97 -
flue center 13.3 1.4 0-600 100 .118 92 -

Flame 39, CRF #37b

flue center 13.3 1.5 0 255 .301 236
flue center 13.3 1.4 1 260 .305 238 -
1.675 center 12.7 0.8 >5000 260 .296 231 --
2.285 center - -- -- - -- - 1768
2.89 center - - - - 1614
3.2 center -- - - -- -- - 1674
3.81 center - - - -- - - 1705
4.11 center 12.4 2.9 300-1650 235 .299 233 1701
4.415 center -- - - -- - - 1702

Flame 40, CRF #37c

flue center 12.-- 2.0 0-1650 95 .115 90 --
1.675 center 8.2 1. >5000 95 .112 "-
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APPENDIX C

TABULATION OF THE EXPERIMENTAL DATA

AVERAGING STUDY

1) Examination of the effect of atomizer type on NOx
emissions, Table C.l.

2) Examination of the effect of inlet combustion air
temperature on NOx emissions, Table C.2.

3) Examination of the effect of degree of air swirl
on NOx emissions, Table C.3.
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TABLE C.1

LXPERLMENTAL DATA AVERAGING STUDY; EXAMINATION OF THE EFFECT OF ATOMIZER TYPE
ON FLUE GAS NOx LEVELS (VARIATIONS DUE TO OTHER VARIABLES--INLET AIR

TEMPERATURE, DEGREE OF SWIRL--ARE AVERAGED); NOx IN THE FLUE GAS
VERSUS FUEL EQUIVALENCE RATIO (NOx IN PPM AT 3% O)

Points Included
in the Average Average NOx Emission

Burner Fuel Pressure Twin Pres-
Equivalence CRF Run Number Jet Fluid sure Twin

Ratio and Date Atomizer Atomizer Jet Fluid

0.95 ± 0.03

1.15 ± 0.05

1.28 ± 0.03

1.45 ± 0.05

1.73 ± 0.04

1.95 - 0.1

18,
18,
19,
19,
25,
26,
27,
31,
31,

26,
27,
31,

26,
26,
26,
26,
26,
27,
31,

19,
26,
27,
31/
31,

18,
25,
26,
27,
31,

6/28/79
6/28/79
7/26/79
7/26/79
8/20/79
8/20/79
8/21/79
8/21/79

6/25/79
6/25/79
6/26/79
6/26/79
8/8/79
8/9/79
8/15/79
8/22/79
8/22/79

8/9/79
8/15/79
8/22/79

8/9/79
8/9/79
8/9/79
8/9/79
8/9/79
8/15/79
8/22/79

6/26/79
8/9/79
8/15/79
8/22/79
8/22/79

6/25/79
8/8/79
8/9/79
8/15/79
8/22/79

253
381
306
476

165
170
172

217
381
288
460

128
198
148
196

182

337

169

113

104

85

93
100
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TABLE C.2

EXPERIMENTAL DATA AVERAGING STUDY; EXAMINATION OF THE EFFECT OF INLET COMBUSTION
AIR TEMPERATURE ON FLUE GAS NOx LEVELS (VARIATIONS DUE TO OTHER VARIABLES

-- ATOMIZER TYPE, DEGREE OF SWIRL--ARE AVERAGED); NOx IN THE FLUE GAS
VERSUS FUEL EQUIVALENCE RATIO (NOx IN PPM AT 32 02)

Points Included
in the Average Average NOx Emissions

Burner Fuel T T T T
Equivalence CRF Run Number air air air air

Ratio and Date - 730*K - 533*K - 730*K - 5330K

21,
21,
24,
24,
30,
30,
29,
29,

18,
18,
19,
19,
25,
26,
27,
31,
31,

26,
27,
31,

26,
26,
26,
26,
26,
27,
31,

26,
27,
31,

0.95 ± 0.03

1.15 ± 0.05

1.28 ± 0.03

1.45 - 0.05

1.75 ± 0.02

1.69 ± 0.0

1.95 ± 0.1

6/28/79
6/28/79
7/26/79
7/26/79
8/21/79
8/21/79
8/20/79
8/20/79

6/25/79
6/25/79
6/26/79
6/26/79
8/8/79
8/9/79
8/15/79
8/22/79
8/22/79

8/9/79
8/15/79
8/22/79

8/9/79
8/9/79
8/9/79
8/9/79
8/9/79
8/15/79
8/22/79

8/9/79
8/15/79
8/22/79

306
476
288
460

148
196

172

253
381

217
381

128
198

165
170

89
182

113

72

172 155

100

19, 6/26/79
31, 8/22/79

18, 6/25/79
25, 8/8/79
26, 8/9/79
27, 8/15/79
31, 8/22/79
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TABLE C.3

EXPERIMENTAL DATA AVERAGING STUDV; EXAMINATION OF THE EFFECT OF DEGREE OF SWIRL
ON FLUE GAS NOx LEVELS (VARIATIONS DUE TO OTHER VARIABLES--INLET COMBUSTION

AIR TEMPERATURE, ATOMIZER TYPE-ARE AVERAGED); NOx IN THE FLUE GAS
VERSUS FUEL EQUIVALENCE RATIO (NOx IN PPM AT 3% 02)

Points Included
in the Average Average NOx Emissions

Burner Fuel Low High Low High

Equivalence CRF Run Number Swirl Swirl Swirl Swirl
Ratio and Date S - 0.53 S = 2.7 S - 0.53 S = 2.7

0.95 0.03 21, 6/28/79 253
21, 6/28/79 381
24, 7/26/79 306
24, 7/26/79 476
30, 8/21/79 288
30, 8/21/79 460
29, 8/20/79 217
29, 8/20/79 381

266 424

1.15 0.05 18, 6/25/79 128
18, 6/25/79 198
19, 6/26/79 148
19, 6/26/79 196
25, 8/8/79 165
26, 8/9/79 170
27, 8/15/79 172
31, 8/22/79 89
31, 8/22/79 182

145 192

1.45 0.05 26, 8/9/79 79
26, 8/9/79 71

79 71

1.95 0.1 18, 6/25/79 93
25, 8/8179 82
26, 8/9/79 87
27, 8/15/79 96
31, 8/22/79 91

90 91
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