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Abstract,

This report provides an evaluation of the architecture, empirical
foundation, and applications of the Oak Ridge National Laboratory (ORNL)
residential energy use model. A particular effort is made to identify
the strengths and shortcomings of the model for alternative uses, and to
identify areas where model structure and empirical support could be
upgraded. Concrete suggestions are made for improvements in model logic,
strengthening the empirical basis for behavioral and technical
parameters, and reducing the biases in the model arising from
aggregation. The overall conclusion is that the model has the potential
to provide adequate forecasts of the aggregate impacts at a regional or
national level of policies whose effects on households are relatively
homogeneous. There are a number of model changes which would be
relatively easy to implement, and which should substantially improve
forecasts of this sort. On the other hand, the aggregate architecture of
the ORNL model makes it fundamentally unsuitable for applications to
geographical areas smaller than DOE regions, or to policies which have a
heterogeneous impact on households.
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EXECUTIVE SUMMARY

The Oak Ridge National Laboratory (ORNL) residential energy use model

is a complex system designed to simulate the impacts of alternative

energy policies on the residential sector. Its architecture represents a

compromise between the.need to analyze policies which are quite localized

and heterogeneous in their impacts, such as mandatory insulation

standards in new homes, and the requirements that data inputs and

forecast outputs be defined at highly aggregate national or DOE regional

levels. Totally satisfactory achievement of both objectives is beyond

the reach of contemporAry data and modeling art. The ORNL model is a

successful exercise in the "art of the possible" which attains many, but

not all, of its goals. The model is generally sound in concept and

logic. Its aggregate design places fundamental limits on the kinds of

questions it can sensibly address -- it is intended to provide aggregate

forecasts of impacts of "uniform" policies, and should not be asked to

forecast localized or heterogeneous effects. The implementation of the

model contains a number of slips and modeling misjudgements which in

hindsight could and should be rectified. The empirical analysis and

judgement underlying model parameters is a particular area where a

substantial continuing effort to upgrade the model is needed. An overall

conclusion is that the ORNL model provides an adequate framework for

aggregate forecasting of the impacts of homogeneous policies, but needs

an immediate overhaul to repair some obvious weaknesses, and a program of

long-term maintenance and upgrading. For localized forecasting of the



impacts of heterogeneous policies, as for example the impact of a credit

program for insulation retrofitting in a utility service area, the ORNL

is fundamentally limited by its aggregate architecture, and should not be

expected to provide satisfactory results. The following paragraphs

summarize the findings of the evaluation report.

Policy Analysis and Energy Use Modeling

The report attempts to provide a perspective on methods for policy

analysis -- non-modeling approaches, simple "econometric" models, and

complex simulation models of the ORNL type.

o Modeling provides a useful discipline for policy analysis in

which assumptions are explicit, interactions are accounted for

:: in a logical fashion, and conclusions are reproducible.

Jowever, the state of modeling art is such that model outputs

should be treated as only one input to decision-making, subject

to error, and the models themselves should be treated as

evolutionary.

o In modeling, more complex or "realistic" is not necessarily

better -- a model is purposely an abstraction of reality, and

different policy goals may call for models of different "grains."

o In designing models, it is useful to think of them as

"factories" which transform data on economic conditions and

energy policies into forecasts. Decisions on model architecture

parallel the decisions required to design the processing

technology and management structure of a real factory. Further,

the model user faces the same problems and decisions as a real

factory owner -- breakdowns and maintenance, investment to

replace or upgrade processing technology, adequacy of

management, R&D, and when to scrap an obsolete plant and start

over.

o Complex energy use models such as ORNL have data requirements



for calibration and operation considerably in excess of what is

currently available. Several remedies are required: better

documentation of judgements made in the absence of adequate data

and identification of data needs, modification of models to use

available data, innovative use of existing data, and a program

to expand data collection in directions needed for policy

modeling.

o A program of on-going validation and evaluation of results

should be undertaken for energy policy models, including the

ORNL model and others.

ORNL Model Structure

The ORNL model structure is designed to forecast energy consumption

by major end use, taking into account appliance saturations, efficiency

of appliances, and usage patterns. The unit of analysis is aggregate --

a DOE region or the nation. The model is explicitly dynamic, with

equipment decisions in new construction and replacement decisions

following failures.

o The model has difficulty handling aggregation correctly-because

the behavioral equations represent aggregates of heterogeneous

households, and because of aggregation of accounts (e.g.,

aggregation of appliances of all vintages dad efficiencio into

a single old appliance category with an "average" efficiency).

This is a fundamental limitation on the precision of the model

due to its architecture. However, biases could be reduced by

selective disaggregation and appropriate correction factors.

o The housing module is currently insensitive to energy policy,

-and contains some questionable model assumptions and

econometrics. Remedies are to rework the model using better

data (e.g., Annual Housing Survey) and statistical methods, or

else to use external housing market forecasts to provide the

.required simulation inputs.

o . Appliance efficiency decisions are assumed in the ORNL model to

minimize life-cycle costs. This report gives examples showing



that Joint determination by households of efficiency with
utilization, durability, or capacity of appliances can result in

significant biases in the ORNL approach. A number of technical

suggestions are made for improving the ORNL efficiency choice

module.

o The usage of owned appliances is modeled satisfactorily.

Some technical improvements are suggested.

o The appliance saturation models are quite awkward, and could be

both simplified and improved. There is room for substantial

improvement in data sources (e.g., equipment prices) and model

specification (e.g., interaction of climate, capacity, and

effective price).

Model. Calibration

The ORNL model requires, by crude count, 500 behavioral and

technological parameters, plus approximately 450 exogenous variable

values for each region analyzed. Most of the parameters and many of the

exogenous values are not observed directly, and must be calibrated by

indirect construction, engineering calculation, econometric estimation,

or judgement. In practice, the econometric and engineering support for

the calibration is weak, and the model relies heavily on judgement.

o Housing sub-model parameters are mainly estimated

econometrically, with some simplistic judgements on future
housing mix. Better use of available data and more careful
model specification and estimation should improve this module.

o The module determining appliance efficiency utilizes engineering

estimates of the tradeoff between appliance efficiency and
fabrication cost, and untested assumptions on the relation of

fabrication cost and price of equipment, and on life-cycle
minimization without adjustments for capacity, service features,
or interaction with utilization. Existing survey data sets
would permit some of these assumptions to be tested and modified
if they conflict with actual behavior. New data will be needed
to map out fully consumer behavior with respect to efficiency,



capacity, usage, and service quality decisions. More

comprehensive and better documented engineering analysis is

.needed.

o The appliance saturation module giving fuel shares suffers from

inadequate data, particularly lack of equipment price data, and

unsatisfactory model specification and statistical analysis. A

simpler, more data-analytic model structure is suggested.

Survey data sets along with careful construction of cost data

for alternatives should yield a more plausible saturation model.

o The usage module parameters are almost entirely judgemental.

Survey data sets'should permit testing of these assumptions or

substitution of behavioral estimates.

o The ORNL model needs much more careful and comprehensive

validation than it has received so far. If a new type of

airplane is designed and built, it is unthinkable that it would

be put into service carrying passengers without first being

carefully tested. Judgements on energy policy reached using the

ORNL model can also have a profound effect on people's lives,

and it should also be unthinkable that it would be used without

thorough testing.

Policy Simulation Methodology

The ORNL model is currently used as a tool for baseline midterm

forecasting, and for policy studies of specific programs such as

insulation standards for water heaters.

o The ORNL model has few proven advantages and a number of

potential pitfalls as a baseline forecasting tool, when compared

to aggregate econometric forecasting models. Prudent

-forecasting suggests it be used only as a backup to more

traditional forecasting tools until it has established a track

record of superior performance.

o The ORNL is designed for policy studies, and is generally well

.suited to their performance; Care should be taken not to push

the model beyond its design limits. It should not be used to

analyze very heterogeneous or localized policies, or to attempt

to answer distributional questions.



o Despite its end-use detail, the ORNL still lacks the richness of

technological description or components of behavior necessary to

make policy analysis easy. For example, it is non-trivial to

translate specific policies such as credit programs for

insulation into technological or behavioral parameters in the

model. Future model changes should take this translation

problem into account.

o The ORNL is not designed for application to small geographic

areas, and is entirely inappropriate for this purpose. While

the ORNL model contains many useful ideas for the analyst faced

with policy analysis at the state level or below, such major

structural changes would be required for it to perform

acceptably at this level that the analyst would be better off

starting with a clean slate.

Recommendations

This evaluation has reached the conclusion that the ORNL model is

potentially a useful forecasting tool for the range of policies it is

designed to handle. The model should immediately be revised to correct

weaknesses and improve documentation. A program for recalibration and

validation should be started. This program should include improving

model specification and logic where appropriate.

o Development of a portfolio of policy models, varying in

complexity and purpose, is recommended. These should range from

"simple" econometric baseline forecasting models, through the

ORNL model, to "complex" microsimulation models of individual

household behavior. An overall "model management plan" should

be adopted to maintain a degree of commensurability and

compatibility between these models, and to guide the placement

of models in the portfolio.

o Future data collection efforts for the residential sector should

be expanded to provide behavioral information in four

areas:household appliance efficiency decisions; improved

engineering studies on the technological relationship between



cost, comfort, and energy efficiency; prices of appliances as a function

of efficiency and service characteristics; and experiments with consumer

response to policies for which there are no close historical analogies,

such as load management devices.
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Section 1'

ENERGY POLICY ANALYSIS

POLICY PROBLEMS

Energy production and consumption extend through the fabric of the

United States economy. Dependence on foreign suppliers, a relatively

concentrated industry, non-renewable resource limits, innovations in

supply technology requiring massive risky investments, and pervasive and

substantial distributional consequences make the operation of the energy

market a matter of national concern. Policies of government and major

private sector suppliers over the remainder of this century will nave

substantial impacts on the energy market, and consequently on the

vitality and viability of the American economy. To make energy policy

decisions on the basis of casual opinion or political ideology without

careful analysis of the consequences for the economy is dangerous and

foolish. The best interests of the nation will not be served either by

resurrection of the'ham-handed government interventions of the past in

this market, or by romantic lassiz faire policies which ignore the impact

of OPEC and industrial structure on the development of energy resources.

A reasoned course requires weighing the benefits and costs of the

spectrum of policy instruments available to government and private

suppliers.

The pervasiveness and variety of energy policy impacts, and the

importance of consumer accommodation of these impacts, make the
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measurement of benefits a difficult task. Many policies or market

futures involve changes for which there is almost no historical precedent

- examples are imposition of appliance efficiency standards, electricity

load management devices, and time-of-day pricing. Others involve changes

which are well outside the range of historical experience -- examples are

drastic changes in energy prices or in tax treatment of energy-saving

equipment. In these circumstances, traditional tools of the policy

analyst, reasoning by analogy with historical cases, and use of simple

forecasting models which exploit the continuity and inertia of real

dynamic systems, lose their effectiveness. The best alternative is, then,

to turn to tools which capture the salient aspects of the structural

interdependencies and limitations of the system, and thus have some

promise of permitting reasonable extrapolation. Policy models provide an

organizing framework for this analysis.

POLICY MODELS

The most direct way to describe and quantify the impacts of policy is

to construct a model of the system under study. A well-designed model

can capture the main features of the real system, while stripping away

the irrelevant complexities, and provide reasonable, logically consistent

forecasts of system response to new conditions. However, models can also

be poorly designed, in which case they may be unable to answer the policy

questions at hand, or may provide false and spuriously precise answers.

Murphy's Law applied to models suggest that they usually do poorly what

they are designed to do, and worse what they are asked to do.

The short history of policy models is littered with many failures and
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few successes. Further, most successes have been for relatively

precisely defined problems (such as inventory control) rather than for

policy problems involving large and complex systems, where answers are

most needed. This has led to serious questioning of the usefulness of

models for policy analysis. There are four answers to this criticism.

First, large-scale policy models are very complex systems which

require substantial time and money to bring to maturity. I would guess

that various measures used to describe system complexity would conclude

that a policy model of the scale of the ORNL model is comparable in

complexity to an automobile. One might expect the lead times and design

costs for a well-running policy model to then also be comparable to those

for an automobile. Furthermore, the policy model building industry is in

its infancy, and has still not reached the point where the basic

principles of good design are well articulated or widely understood.

Just as it would have been tempting but incorrect to conclude on the

basis of the early automobiles that they would never replace the horse, I

believe it is incorrect to conclude that models will not become an

effective tool in policy analysis. Two further conclusions can be drawn

from the automobile analogy. First, one should expect a new policy model

to be subject to the same kinds of design flaws, repairs, and recalls as

a newly designed automobile. Further, the more time and budget pressure

at the design stage, the more likely problems in operation. Second, just

as vehicles are designed for a limited range of operation, and

differentiated by purpose, policy models will have design limits. A

vehicle designed to do too many things will do none well, and is inferior

to an array of special-purpose machines. Similarly, a policy model

designed to answer all questions is likely to be too complex and
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cumbersome, and will be dominated by a portfolio of simpler models with

more limited objectives. Finally, it is worth repeating that development

of a good policy model cannot be done "on the cheap" -- the design of

software, calibration, and validation tasks require the same kinds of

resources as the design of hardware, fabrication, and testing.

A second answer to criticism of policy models is that the market for

model builders is open to all comers, with no standards for entry or peer

review. There are certainly unqualified and unscrupulous suppliers in

the market, often with the most ambitious claims and most elaborate

models. The intelligent consumer of models must learn to discriminate

good models and modelers from bad, and should judge the value of policy

models in terms of what a discriminating consumer can obtain.

Third, the limitations of the current generation of policy models

should be assessed in comparison with the limitations of policy analysis

without models using traditional tools. The advantage of non-model

approaches is that they can in principle take more factors into account

more quickly than any formal model. The drawback is that it is difficult

to maintain logical consistency and perspective in an informal analysis,

to reproduce results, or to convince others that the analysis is

unbiased. That the assumptions and weaknesses of a formal model are more

explicit and vulnerable than the implicit assumptions of informal

analysis should be good for policy analysis, although possibly

uncomfortable for the analyst.

Fourth, legitimate reservations about the usefulness of current

policy models should be separated from a "kill the messenger" response to

unpalatable model forecasts.
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Section 2

APPROACHES TO ENERGY USE MODELING

MODELING STRATEGY

The purpose of developing a policy simulation model is to provide a

device which can produce plausible quantitative forecasts of the impacts

of alternative energy policies. This establishes certain features the

simulation system should have - it should accept as inputs the policy

alternatives of interest, ideally in a form in which they are naturally

described by policy makers. It should provide as outputs the full range

of information required to assess impacts, through time and across

economic actors.

Any forecasting system, whether simple or complex, can be viewed as a

"black box" in which background factors and policies are linked and

modulated to produce forecasts; see Figure 2-1. The internal workings

Background inputs

climate -- Policy Outputs

demography FORECASTING Energy consumption

MODEL by fuel

Policy inputs 
Appliance saturations

appliance standards

fuel prices

Figure 2-1 A Simulation Model
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of the black box may be constructed from historical data on technology

and behavior using econometric/statistical techniques, or by some method

of engineering design and simulation. One criterion for assessing the

plausibility of a forecasting model is realism in process: Are the

detailed technical and behavioral linkages inside the black box realistic

descriptions of how energy-using equipment is acquired and operated, and

how this behavior is influenced by external factors? A second criterion

for assessing plausibility is realism in performance: Is the model

successful in "backcasting" response to historical events?

In general, satisfaction of one of these criteria is neither

necessary nor sufficient for satisfaction of the other. A complex model

whose elements each appear to be plausible descriptions of the linkage

process may contain falacies of composition or "ecological" instabilities

which result in implausible performance. It is extremely difficult to

design large dynamic models without unintentionally building in unstable

feedbacks which lead to implausible long-run behavior. On the other

hand, a model with a good record for realism in performance may exploit

inertia in the real system and be right for the wrong reasons.

Realism in performance is the bottom line for a forecasting model.

Since the whole objective of modeling is to abstract the key linkages of

reality, it is not the case that a more realistic model is always

better. When the task of the analyst is primarily to prepare baseline

forecasts or consider policies which are mild variations on historical

experience, there are many advantages to simplistic econometric/time

series analysis models which exploit system continuity. On the other

hand, when policy alternatives depart radically from historical
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experience, it is re4sonable to expect that a realistic process model

will extrapolate more plausibly than a simpler forecasting system. These

comments have two implications. First, it may be useful for the analyst

to have a portfolio of simulation models ranging from simple models

designed primarily for short term baseline forecasting to complex process

models designed primarily for long term forecasts of the impacts of

significant policy innovations. Second, in any specific simulation

model, it is desirable to build in a structure in which short-run

baseline behavior is modulated by historical continuities and long-run

behavior under alternative policies is bounded by realistic process

linkages.

A second feature of the "black box" containing the forecasting model

is its flexibility in being able to address a wide range of policy

alternatives, or provide outputs answering a wide range of policy

questions. A related characteristic is the robustness of the system in

being able to respond to policy questions not anticipated at the time of

design. Generally, the more flexible or robust a model, the more complex

it must be made to capture the required degree of realism in process, and

the greater burden in time and cost placed on the analyst. Most of the

energy simulation models developed to date, including the Oak Ridge

National Laboratory model reviewed in this paper, have been rather

ambitious in accepting model complexity in order to gain flexibility.

Taking a broad view, it would probably be desirable to develop limited

and specialized versions of existing models, or new simplified models,

for a series of more specialized policy arenas.
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A final feature of the "black box" is its internal organization. A

simulation system can be viewed as having a structure much like the

internal organization of a firm, as illustrated schematically in Figure

2-2. The core of a simulation model is the "line" function of accepting

model inputs, processing them through the equations that link inputs to

outputs, and producing policy outputs. A good simulation system will be

organized functionally under a supervisor which has the capacity to

tailor the production process to specific tasks.

A variety of staff functions in the simulation will service the line

function. An accounting and auditing function will organize input and

output files, run consistency and validation checks, and maintain records

of simulation model performance and cost. A processing technology

function will provide and update linkage equations and system parameters,

integrating information such as household survey data as it becomes

available. This function is in turn served by a research and development

function which evaluates model validation results and results from

alternative systems, and determines where model improvements are most

productive. In most current simulation models, only the line productidon

function resides as software in a computer. The remaining functions are

less formal, and are often not developed as part of the model design

process. Good practice in systems design places more stress on

integrating the supervisory and monitoring functions into the

architecture of the system.

In most current energy simulation models, the line-processing

function is designed as a single-purpose top-down recursive process. The

same sequence of steps is performed, in the same order, no matter what

the.policy under consideration or the policy outputs desired. This is
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the simplest of a variety of ways of organizing a processing system. For

example, one could house several independent models within one simulation

system, perhaps with common input and output structures, with the

supervisor assigning work to the most appropriate model. With vertical

modularity and/or parallel processing, one may achieve economies in some

stages of the simulation or build in redundancy to be used for

consistency checking and validation. Good systems architecture will

choose modular and functional model designs that are amenaDle to

operation in various mixed modes. One ideal is to develop the models in

terms of some high level "simulation language" permitting easy

modification, rather than as "hard-wired" modules. However, the current

generation of simulation languages do not appear to be powerful or

efficient enough to handle systems of the complexity of the current

energy simulation models.

INPUTS AND OUTPUTS

A key question in simulation design is the extent to which the system

should be "vertically integrated" to accept inputs adiu provide outputs in

the "natural language" of policy analysts. A fully vertically integrated

system will be hignly user oriented; however, building in user

convenience usually requires building in rigidities which may limit what

the system can do. The best solution to this problem is to provide the

user with an operating language which defaults to a very simple form for

inexperienced users, but with flexibility for experienced users who

choose to override the defaults. This has so far not been an issue for

energy policy models, which have mostly been written without

consideration for user operation.
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A second aspect of simulation model inputs and outputs is that large

quantities of data are often involved, requiring data base management.

If the simulation system runs within the environment of a good data base

manager, then the latter system can be used to provide some of the

user-oriented capacities desired, such as provision for modifying and

checking inputs and summarizing and tabulating outputs. It is a good

idea to choose a data base manager which has the capacity to do some

arithmetic and statistical calculations, to aid in constructing inputs

and summarizing outputs. There are advantages in using a standard data

manager language, such as SAS, SPSS, QUAIL, or TROLL.

STRUCTURE

The usefulness of modular functional structure in design of the

simulator processing system has already been stressed. Ideally, a

processor can be organized as a "job shop" in which flexibility and

robustness in handling a variety of policy problems are achieved by

employing a selection of appropriate modules. The capacity to

"hand-craft" critical steps and use standard or simplified outputs for

non-critical steps is an advantage.

One way of achieving flexibility and economy in the same system is to

have interchangeable modules which process the same intermediate inputs

and outputs at various levels of precision and complexity. For example,

one may have a very precise module which forecasts appliance purchases by

explicit aggregation over a large simulated population, and a simpler

alternative which forecasts the same behavior directly for regional

aggregates. A second example is a simple "reduced form" module which
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forecasts energy consumption as a function of price, in place of more

complex modules for appliance purchases, determination of appliance

efficiency, and appliance usage.

It is possible to develop interchangeable modules independently,

perhaps by drawing blocks of equations from various existing systems.

However, an approach which has a better chance of preserving the

integrity of the system is to develop the simpler modules as models of

their more complex alternatives. For example, a simple model for

aggregate appliance purchases could be estimated as a response surface

fitted to inputs and outputs of the disaggregate model. In this way, one

could construct a consistent hierarchy of models in which the very

precise and complex modules would be utilized only when they are critical

to a particular policy analysis.

These ideas have been applied piecemeal in many simulation systems.

For example, the "Elasticity Estimator" module in the Oak Ridge National

Laboratory model can be interpreted as providing a response surface for a

more complex system (in a "staff" rather than a "line" capacity).

However, they have not been applied systematically, at least for energy

policy simulators, and there are some research questions involved in

their implementation: Is it practical in sequential modular calculations

to go from a simplified "coarse" module to a complex "fine" one, without

compromising the consistency of the complex calculation, and what is the

best way to make the transition? In fitting simple response surfaces to

complex modules, how should real data at the grain of the response

surface be weighed, and how should this information be used in assessing

and upgrading the complex module?
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CALIBRATIONS

The calibration of contemporary energy simulation model parameters in

the presence of a variety of innovative policies has placed an impossible

burden on model builders. Behavioral response parameters are required in

areas where data have never been collected or the appropriate experiments

have never been performed. Technical parameters are required in areas

where the experiments or working models required for careful analysis are

unavailable. The possible responses are to restrict model structure and

limit model objectives, or to make up model parameters, depending on

downstream consistency checks to limit the damage caused by poor

judgements. Quality control with the second alternative is very

difficult. Widespread and sometimes cavalier judgements about model

parameters are a weakness in current energy forecasting models which

should be flagged by careful documentation and checked against data

wherever possible.

The statistical and specification errors certainly present in complex

data-poor systems.should be faced resolutely, and not ducked by use of

spuriously precise judgemental or engineering parameters. Error

transmission should be modeled and reported as part of simulation

outputs.. The demand of policy-makers for point estimates is legendary

(Lyndon Johnson said in response to bounds on a GNP forecast, "Ranges are

for cattle.") Novertheless, modelers only damage their own cause by

implying false precision. Instead, non-model analysts must be invited to

step through decision trees to establish error distributions for their

forecasts.
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VALIDATION

The need for policy tools has led to the uncritical use of simulation

models without adequate testing and validation. Energy policy simulators

are complex systems which are relatively innovative and untested. If

these models are to be an input to important policy decisions, then it is

important that they be right *and that they be widely accepted as reliable.

A common method for validation is within-calibration-period

forecasting compared with actual outcomes. This is a useful exercise,

but requires two cautions. First, since model development and

calibration is an on-going process, it is important to freeze the system

and conduct arms-length validation on outputs which have not previously

been used in calibration. Second, in a parameter-rich system, it is very

easy to over-fit in the calibration period and thereby lose accuracy in

the forecast period.

A valuable validation method.is to backcast prior to the calibration

period. If the model cannot simply be reversed and run backward in time,

then it must be provided with starting values and exogenous variables for

the backcast period. Validation is sufficiently important to make

availability of these variables a consideration in model design.

Sensitivity analysis of model parameters and equation specifications

is a useful way to learn about model characteristics and consistency.

However, note that while sensitivity analysis may invalidate a model by

showing that it is implausibly sensitive (or insensitive) to some

factors, it cannot by itself validate a model.

The-most valuable information on validity comes from the cumulative
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experience in using the model for policy forecasting. The primary

difficulty is that the policy user has little day-to-oay interest in

model validation or in systematic data collection for validation.

Impressionistic reports on model performance are clearly often biased. A

serious evaluative effort requires a systematic arms-length monitoring of

policy applications and consequences.
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Section 3

DATA LIMITS ON ENERGY USE MODELS

CALIBRATION REQUIREMENTS

An energy simulation model is required to forecast baseline energy

consumption by fuel and year given exogenous forecasts on demography,

income, and prices; and to forecast the variations in consumption induced

by various policies such as fuel price changes, time-of-day electricity

pricing, appliance standards, or insulation tax credits. Behavioral

models of response require either historical or experimental analogies

from which parameter values can be inferred. In addition, a simulation

model requires baseyear starting values.

At the level of geographical aggregates such as states, time series

data are generally available on energy expenditures and physical

consumption levels, incomes, prices, and demographic variables. These

permit calibration of some baseline forecasting models, but lack the

detail on interactions necessary to calibrate even baseline models with

full end-use disaggregation. For many policy alternatives, indirect

evidence on response can be deduced by translation into price

equivalents; however the behavioral-engineering judgements required for

the translation are often difficult to justify.

Cross-section surveys of individual households which have recently

become available permit calibration of more detailed behavioral models of

appliance choice and consumption. However, these are generally not

sufficient to determine appliance efficiency and provide a behavioral

foundation for the current life-cycle cost minimizing models of appliance

efficiency choice. These data do not provide time-of-day information.
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AVAILABLE DATA

Time-series cross-section data by state on residential energy

consumption and economic variables is available from published U.S.

government sources. In particular, a data base has been compiled by Oak

Ridge National Laboratory. State appliance holding data is generally

available only in census years. However, recent Annual Housing Surveys

provide considerable data on appliances for selected regions.

There are a number of cross-section surveys available which describe

the energy consumption behavior of individual households:

(1) BLS consumer expenditure survey, 1972

(2) WCMS survey, 1973 and 1975

(3) MRI survey, 1976

(4) NIECS survey, 1980

The BLS data is now somewhat dated, and lacks critical variables for

analysis of appliance choice. The MRI data provides reasonable appliance

detail, but its use has been limited by data quality. The WCMS and NIECS

surveys provide good quality data with reasonable appliance detail. None

of these surveys provide sufficient detail for a full calibration of a

stock-purchase-replacement model for appliances, or of a behavioral model

of appliance efficiency choice. Load data is also absent. The WCMS data

has been.used fairly extensively in energy demand studies, although

apparently not in the version of the Oak Ridge National Laboratory model

currently used in policy studies. The NIECS data has only recently

become available.
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In addition to these surveys, there are extensive data available from

time-of-day electricity pricing experiments and from utility customer

surveys required by state regulatory agencies for the PURPA process.

Major data preparation efforts would be required in most cases to ensure

data quality, provide additional variables, and recode information to a

form suitable for model calibration.

General use of energy simulation models for policy analysis will

require a continuing program of data collection for calibration and

validation. The particular areas in which new data are needed are

appliance replacements, appliance efficiency decisions, end use specific

load curves, behavioral response to load management programs and related

non-price regulatory mechanisms, and product and market data on appliance

availability and prices.
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Section 4

OVERVIEW OF THE ORNL MODEL

OBJECTIVES

The ORNL model is designed to provide forecasts of residential energy

use at highly aggregate national or DOE regional levels. It is intended

for analysis of policies which are quite localized and heterogeneous in

their impacts, such as mandatory insulation standards in new houses. To

some extent, these objectives are incompatible, given the limits of

contemporary data and modeling art. On one hand, it is possible to carry

out detailed engineering studies of the impact of policies such as

insulation standards at the "test house" level. However, it is extremely

difficult to project such impacts up to a regional level -- the required

demographic and behavioral data are simply unavailable. On the other

hand, it is possible to develop fairly satisfactory aggregate-level

models to forecast the impacts of policies which are relatively uniform,

such as energy price shifts due to a tax on imported oil. However, it is

very difficult to assess the impacts of heterogeneous policies such as

insulation standards within an aggregate model. To do so requires some

assumption on how these effects aggregate, and these conditions tend to

be ad hoc and subject to significant aggregation errors.

The ORNL model is a compromise intended to satisfy the most pressing

requirements for regional forecasts of the impacts of heterogeneous

policies. The unit of analysis is aggregate -- all consumers in a

region. However, energy consumption is disaggregated by end use --

refrigerators, gas water heaters, etc.. The end use disaggregation

penmits the assessment of policies which affect individual appliances, at

4-1
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least in principle. A model of this sort will in general have difficulty

handling aggregation appropriately -- if a policy affects the purchase

and operation of gas water heaters, the aggregate impact of changing

usage and saturation is generally a non-linear function of the effects on

individuals. These aggregation problems are eased somewhat in the ORNL

model by permitting some demographic variation, by type of fuel used, for

example. However, the ORNL model specification has not been designed to

minimize aggregation problems.

The primary output of the ORNL model is total residential energy

consumption, classified by fuel. What the model cannot provide is

information on the distributional impacts of energy policy by

geographical area other than region (e.g., urban/rural) or by demographic

group (e.g., rich/poor, young/old, owners/renters). Thus, while the

model can provide the demand detail necessary to drive a planning model

for energy production, it does not produce all the outputs necessary to

carry through a full benefit-cost analysis of policy.

INPUTS

The ORNL model forecast changes from base year energy consumption,

taking into account changing demographics, economic conditions, and

technological possibilities for conservation. Simulation inputs fall

into three broad catagories: base year data on all variables (including

variables which become model outputs in forecast years such as appliance

saturation levels and energy consumption), rates of change for variables

exogenous to the model such as population and fuel prices, and behavioral

and technological parameters which translate exogenous variable changes
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into model output changes such as changes in energy consumption. Table

4-1 lists the principle inputs. A crude count of dimensions gives 153

technological parameters, 971 behavioral parameters, 636 base year

values, and 8840 exogenous forecast values. In practice many of these

values are redundant, either because they are not used in the model

(e.g., because of excluded fuel/appliance combinations), are assumed to

be zero or have common values, or are obtained by a relatively simple

interpolation as part of the pre-processing of the input files. There is

an obvious ambiguity in the number of inputs depending on at what stage

in pre-processing they are counted. I estimate that 500 behavioral and

technological parameters which are uniform across regions, plus

approximately 450 base year data points plus inputs to preprocessed

exogenous forecasts for each region must be determined by engineering or

econometric study or by substantive judgemental assumption. In practice,

most of these values in the ORNL model have a significant judgemental

component, based on indirect and weak engineering or econometric

evidence. This is inevitable in any attempt to construct a model of this

complexity from existing data, but is also grounds for extreme caution in

applying model outputs.

Ordinarily one anticipates that base year values of variables and

exogenous forecasts are readily obtainable and non-controversial.

However, a number of the base variables in the ORNL model correspond

poorly or not at all to published data sources. In particular, base year

energy consumption by end use is not obtainable, even approximately, on

any systematic basis. When confronted with such a problem, the

model-builder should make this level of detail endogenous to the model,

so the exogenous driving variables are publicly measured and reported.
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Table 4-1. ORNL Model Inputs

Variable Symbol Typel n  Inut 2

New equipment market shares e.g. const. a BY 240 A,B
Air cond. - space heat load reduct. ratio acc T 3 A,B
Appliance mkt. share elast. w.r.t. op. cost ao B 400 A,B
Usage elast. w.r.t. op. cost au B 160 A,B
Interest rates for PV cost minimization b B 320 A,B

Equipment market shares, 1970 c70 BY 120 A,B
New equipment market shares, 1970 cn70 BY 80 A,B
Market share equation "slope" coeff. coef B 80
Ratio of regional to nat'l. new equip. mkt. shares crat BY 32 A,B
New equipment technological parameter oealfa T 32 A,B

New equipment technological parameter oebeta T 32 A,B
New equipment technological parameter oeinf T 32 A,B
Annual average energy use, new equip., 1970 eu70 BY 120 A,B
Ratio of short to long run usage elasticities gan B 1 B
A market penetration rate parameter nval B 1 B

A horizon after which life-cycle cost is min. nyr B 1 B
New construction technological parameters otalfa T 12 A,B
New construction technological parameters otbeta T 12 A,B
New construction technological parameters otinf T 12 A,B
New equipment prices, relative peg F 3720 A

New equipment prices, 1970 )g70 BY 120 A,B
Interest rate rate BY 1 B
Interest rate ratei BY 1
Interest rate ratet BY 1 B
Retrofit technological parameters rtalfa T 3 B

Retrofit technological parameters rtbeta T 3 B
Retrofit technological parameters rtinf T 3 B
Ratio of 1969 to 1970 usage factors ru BY 4 A,B
Maximum saturation sat B 8
Average equipment lifetimes teg T/B 8 A,B

Lifetime of investments in thermal shell ttin T 1 B
New equipment installations, 1970 un70 BY 32
Real prices for fuels plus income x F 155 B
Fuel prices plus income, 1970 x70 BY 5 8
Average size of existing housing units ehs F 93 B

Average annual energy use, new equip., before adjust. eun F 3720 B
Thermal integrity of retrofit homes rti F 24 B
Number of homes which are retrofit rtr F 93 B

- -- ---- ------d~--~r~_ - __ __~
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Table 4-1. ORNL Model Inputs
(cont.)

Total number of occupied housing units stoke F 93 B
Total number of new housing units stokn F 93 B

Fractions of new homes with room/central AC f F 2 B
"Status quo" new equipment energy use eun70 F 72 B
Size of new housing units nhs F 31 B
Average thermal integrity, new structures tin F 744 B

Notes:
1. Types are base year data (BY), technological parameters (T),

behavioral parameters (B), and exogenous forecasts (F).

2. Named variables are those defined in program documentation.
Input A indicates the variable is documented as an input. Input B
indicates the variable is included in a file of initial values.
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The alternative, apparently adopted in the ORNL model, is to use

judgement and scattered end use results to fill in the base year data.

OUTPUTS

The ORNL model is designed to forecast residential energy

consumption, classified by 5 fuel types, 3 dwelling types, and 8 end

uses, for 31 years starting from 1970. Table 4-2 lists the

classification for which these forecasts are provided. Auxiliary outputs

are expenditures on new equipment, classified by fuel, end use, dwelling

type, and year; expenditures on retrofitting space heat in existing

dwellings, classified by fuel, dwelling type, and year; expenditures on

new dwelling thermal integrity, classified by fuel, dwelling type, and

year; retrofit fuel market shares, classified by dwelling type and year;

and total number of new equipment units installed, classified by fuel,

dwelling type, end use, and year.

Fuel type:

Dwelling type:

End use:

Year:

Table 4-2. ORNL Classifications for Outputs

electricity, gas, oil, other, none

single-family, multi-family, mobile home

space heating, air conditioning (room, central), water

heating, refrigeration, freezing, cooking., lighting,

other

1970 to 2000

In addition, the model contains a number of variables used internally
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which could be obtained as outputs if needed, such as indices of

efficiency and usage levels of equipment and structures. The model

cannot provide any disaggregation of outputs by sub-regional geography

(e.g., urban/rural or climate zone) or by demographic group (e.g.,

young/old or rich/poor).

STRUCTURE

The ORNL model has a block recursive structure, illustrated

schematically in Figure 4-1. Base year data, exogenous variable

forecasts, and behavioral parameters drive a housing submodel which

produces forecasts of new construction by dwelling type, and average

size. The outputs of this model plus base year data, exogenous base

costs, and parameters drive the simulation model, which gives as outputs

forecasts of energy consumption classified by fuel, dwelling type, end

use, and year.

A more detailed schematic diagram.of the housing sub-model is given

in Figure 4-2. This model first predicts the ratio of households to

total population, then allocates these households to regions. Based on

the 1970 dwelling stock by type (single-family, multiple-family, mobile

home), very crude assumptions on the 2000 dwelling mix, linear

interpolation of the mix, and number of regional households, the model

constructs a demand for dwellings of each type. New construction of each

type is assumed to equal demand for that type less existing stock after

(exogenous) retirements. Finally, a model predicts average size of new

single family dwelling units. The housing sub-model is not sensitive to

energy policy.
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Figure 4-1. Structure of ORNL Model
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Figure 4-2. Structure of Housing Sub-Model
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Figure 4-3 gives a more detailed schematic diagram of the simulation

model. The principle underlying this model is that residential energy

consumption is the sum of consumptions by end use: heating-

ventilating-air-conditioning (HVAC), refrigerators, etc. Further, the

energy consumption of equipment such as a refrigerator is determined by

its efficiency and by the intensity with which it is used. Knowing the

number of units of a type of equipment and its efficiency and

utilization, its energy consumption can be computed. This picture is

complicated because energy policy impacts old and new equipment

differently. Therefore, the model keeps track of existing stocks,

replacements in existing dwellings, and installations in new dwellings.

Quite a few modeling compromises are made here to isolate decisions and

avoid interdependencies, and to limit the scale of information required.

The result is almost certainly some degree of aggregation error, plus

some potentially serious misspecifications of behavioral response.

CALIBRATION

The ORNL model contains a large number of technological and

behavioral parameters which could be determined with a satisfactory

degree of precision only with very careful empirical study, including

probably rather substantial engineering and behavioral experiments. In

practice, ORNL has carried out limited engineering and econometric

studies which shed some light on a selection of these parameters. This

analysis is not generally extensive enough nor sufficiently well

documented to be definitive. Beyond this, judgement has been used to set

many parameters.
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Figure 4-3. Structure of Simulation Model
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As a practical matter, substantial judgemental input is probably

mandatory in a model of this complexity, given the 'urrent state of

data. However, it would be highly desirable to document judgements,

isolate speculative parameters, and identify weak points in order to

focus further research. Calibration of the ORNL model is discussed in

further detail in Section 6.

VALIDATION

Complex models such as the ORNL model tend to have systemic

characteristics which are not detectable in calibration. For example, a

complex model with a dynamic structure may compound negligible

misspecification errors at the individual equation level into unstable

transients which cause forecasts after some period of time to become

totally unrealistic. On the other hand, such a system may have a

"dynamic imperative" which makes the system quite insensitive to some

specification errors. Thus, it is quite important to carry out an

extensive model validation.

The usual method of validation is to forecast, or backcast, outside

the calibration period, and compare the forecast error with an absolute

standard of accuracy or with alternative models using the same

information. The most critical and interesting test is the ability of

the model to make long term forecasts using only the base year

information, since this most closely parallels policy applications.

A second validation procedure examines the sensitivity of forecasts

to variations in model parameters or equation specifications. When there

are classical or Bayesian measures of precision associated with model
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parameters, it is possible to formalize this and establish confidence

bounds on the model forecasts.

The ORNL model has not been systematically validated. Hirst-Carney

(1978) report on a within-calibration-period validation for six years

starting in 1960 or starting in 1970. Since the model parameters are

essentially tuned into reproduce historical experience through this

period, this is more a test of the completeness of the tuning than a

validation test. The tuning problem is greatly compounded by the methods

used to supply missing base year values. The authors adjust these inputs

"until the model's predictions for the first few years after the

simulation begins are reasonably accurate." A better validation test,

but still within calibration period, has been carried out by Freedman,

Rothenberg, and Sutch (1980). They find that a five-year forecast from

1970 by the ORNL model is more accurate for electricity consumption, but

less accurate for consumption of all other fuels, than a naive model that

forecasts 1970-consumption levels to remain constant.

In some ways, the preceding result may be too stringent a test of

the ORNL model. First, in building a complex policy model like the ORNL

.model, one is probably willing to sacrifice baseline predictive accuracy

in order to obtain reasonable predictions of relative impacts of

alternative policy scenarios. Second, the place where a non-linear

dynamic system will shine, if it is working well, is in long-run

forecasts where substantial exogenous changes and long-run responses can

be anticipated. For example, if one could run a 1960 base naive forecast

against the ORNL model for the 17 year period until 1976, with the latter

model initialized "fairly" using only 1960 data, it is likely the ORNL

* model performance would look better. However, the apparent failure of



4-14

the ORNL model to pick up short run responses to price shocks in the

early 1970's in the Freedman analysis may indicate that the ORNL model

seriously underestimates short run price response.

Hirst-Carney (1978) have also done a limited sensitivity analysis of

selected model parameters. They argue that forecasts attenuate fairly

strongly the percentage impact of changes in key parameters. However,

such a conclusion is very sensitive to the base chosen for the

comparison. For example, a more relevant quantity for policy analysis

may be the forecast of the relative reduction in consumption due to a

conservation program, and this may be quite sensitive to parameter

changes. Using the Hirst-Carney forecasts in year 2000 (Hirst-Carney,

1978, Fig. 27, p. 66 and Fig. 28, p. 67), one obtains Table 4-3. In this

table the effect of a variation of 25 percent in the key parameters to

give the low and high cases chosen by Hirst-Carney implies variations in

the predicted policy impact of the conservation program around 30

percent. By this policy-relevant standard, the model is quite sensitive

to parameter specification. Freedman, Rothenberg-Sutch (1980, p. 14)

suggest that the sensitivity analysis should be extended to base year

variables, lag coefficients, interest rates, and functional forms.

POLICY APPLICATIONS

The ORNL model is currently being used in two policy applications.

First, it is being used by EIA as a demand driver for the Midterm Energy

Forecasting System. In this mode, it is apparently used primarily to

make baseline forecasts at the DOE region level. Second, it has been

used by ORNL to carry out a series of impact analyses of specific energy
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Table 4-3. Sensitivity Analysis for Conservation Impact

Low Paramaters Nominal Parameters High Parameters

consumption

(1015 BTU) Base Cons. Impact Base Cons. Impact Base Cons. Impact

Electricity

Gas

Oil

16 14.1

4.6 3.8

1.7 1.6

1.9 17 14.5

0.8

0.1

5 4.1

1.9 1.7

2.5 18.2 14.8

0.9

0.2

5.8 4.6

2.1 1.8

4.4 27 21.2 5.8

year 2000

3.4

1.2

0.3

Total 23 19.8 3.2 25 20.6
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policies. Table 4-4 lists some of these studies.

The study of regional impacts of water heater options by O'Neal,

Carney, and Hirst is a prototypical policy analysis using the ORNL

model. The policy scenarios analyzed are (1) baseline, (2) efficiency

improvements in conventional heaters, (3) electric heat pump water

heaters, and (4) solar water heaters with electricity backup, with or

without a tax subsidy. The outputs of the study are (undiscounted)

cumulative energy savings in Btu for each DOE region, and net economic

benefit (= present value of fuel bill reductions less incremental capital

cost). The primary effort is to develop the technological tradeoffs

available in each scenario. For efficiency improvements in conventional

heaters, an engineering calculation is done, and is assumed to apply

nationally. Water heat pump efficiency is weather-sensitive; however,

this was apparently not accounted for in the regional analysis. Solar

water heaters are extremely weather-sensitive, a factor handled in the

analysis by using climate in one city in each DOE region. The potential

for a significant bias is obvious here -- Denver climate is not

representative of Fargo, N.D. in Region 8, and Atlanta, Georgia is not

representative of Miami in Region 4. Thus, this particular scenario is

at the edge where a regionally aggregate model may be inadequate to

reflect the interaction of climate and policy impact.

The new water heating technologies are restated in ORNL model inputs

in terms of shifts in a three-parameter approximation to the available

efficiency-envelope. This step may again introduce somre bias; the

authors comment that they "were unable to find values for the three

parameters to accurately fit both conventional and solar water heaters."

This is a model deficiency. It would be better to have the flexibility

to describe the efficiency-cost tradeoff as it comes from the scenario.
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Table 4-4. ORNL Policy Applications

Top ic

E lison

Hirst-Carney

O'Neal-Carney-Hirst

Impact of heat pumps, combined
with thermostat adjustments
Federal residential energy
conservation programs

Regional analysis of' water
heating options

ORNL/CON.4

ORNL (1977)

ORNL/ICON-31

Energy Conservation potential
of Winter thermostat adjustments ORNLINSF-EP-80

Author Report

Pilati
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It is necessary to specify in the model the penetration of the new

technology. The assumption is made that within fuel type, the technology

with the lowest life-cycle costs is chosen. Thus, in region 4, all new

water heaters will be heat pump, or solar, or conventional, rather than

some mixture. Some ad hoc adjustments are made to reduce inconsistencies

in market share equations across fuels. The ORNL model is then run under

the alternative scenarios to produce regional forecasts of the impacts on

energy consumption and net economic benefit.



5-1

Section 5

EVALUATION OF MODEL STRUCTURE

END USE APPROACH

The strategy of the ORNL model is to forecast energy consumption by

end use, and then aggregate over end uses to obtain overall consumption.

This approach has several attractive features. First, there is

considerable intuition and casual experience with the characteristics of

individual appliances, and they are amenable to engineering study. For

example, inspecting the rating of a refrigerator motor and timing its

cycle can give a quick, and not grossly inaccurate estimate of its

operating cost. Furthermore, for the analysis of policies which affect

different appliances differently, such as appliance-specific efficiency

standards, this level of disaggregation is essential. Finally, to the

extent that the behaviors determining the ownership, replacement, and use

of different appliances are independent, it is a useful simplification to

analyze them separately, and then add them up to get total energy

consumption.

However, end use analysis also has drawbacks. The scale of the model

is now multiplied by the number of appliances. End use specific

consumption levels are not readily observed, and a careful study of

individual appliance characteristics and usage requires detailed data

collection and analysis. Further, there are some important exceptions to

the proposition that behaviors affecting different appliances are

independent. First, households tend to treat heating-ventilating-air-

conditioning (HVAC) systems and decisions on the thermal shell
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interdependently. Second, there is an obvious link between water heater

usage and the use of appliances such as dishwashers and washing

machines. Third, the overall type and size of dwelling and the

availability and installation cost of natural gas or 220V service is a

common factor in the fuel type and usage decisions of several

appliances. Finally, there is the "phantom appliance" problem: the end

use approach may tend to under-forecast future energy consumption because

it fails to allow for the introduction of appliances not currently in

existence or in widespread use. The historical pattern in this century

has been the steady introduction of energy using appliances, from washing

machines to hot tub heaters. The argument is made that energy economics

and the technology of electronic control have caused a sharp break from

historical trends. On the other hand, this may be a transient, and one

may well see before year 2000 the penetration of new appliances that

increase energy consumption or offset reductions in consumption achieved

elsewhere.

The ORNL model considers 8 end-use categories: space heating, air

conditioning (sub-divided room/central), water heating, refrigeration,

freezing, cooking, lighting, and others. The miscellaneous category

includes such disparate uses as dishwasher, clothes washer and dryer,TV,

swimming pool pumps and heaters, irons, portable electric heaters, pumps,

tools, and farm equipment. The ORNL model covers only energy use in the

home - transportation is excluded.

The model analyzes separately each end use; e.g., the fuel choice on

space heating is independent of the air conditioning decision, and the

usage levels for hot water and other are independent. This is almost

certainly the source of some specification error for the two cases given
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as an example. There is a clear relationship between the choice of a

heating system with or without ducting, and the choice of central air

conditioning. Consumption of hot water is strongly affected by a

dishwasher or clothes washer.

Energy consumption in each end use is modeled as the result of the

number of units of equipment held, the efficiency of the equipment

(measured in energy consumed per unit of service), and the intensity of

utilization. The heart of the model is the accounting relationship

Average
Energy consumption, Number Energy/ Average

(v.1) end use k, dwelling = of X Service X Utilization
type 1, fuel i units Ratio (ESR) rate (U)

If either the energy service ratio or the utilization rate is constant

over all units of equipment in the category, then this accounting

relationship is valid. Otherwise, it is an approximation containing an

aggregation bias due to the fact that the product of averages is not

equal to the average of products. In general, one would expect a

negative correlation between ESR and U, because a priori a household

anticipating heavy utilization will find it advantageous to purchase a

more efficient appliance, and ex post the more efficient appliance will

be more attractive to use. This aggregation bias may be substantial.

For example, if ESR and U are jointly lognormally distributed, each

varies in the population with a standard error of the same magnitude as

its mean, and the correlation of In ESR and In U is -0.3, then the

accounting relationship above will be biased downward by 19 percent. The

ORNL model reduces aggregation biases somewhat by considering separate
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categories for existing equipment, retrofit equipment, and new

equipment. However, the mechanics used by the model to combine these

categories may reintroduce bias.

In operation, the ORNL model has one module to predict number of

units of equipment (by fuel, dwelling type, and status: existing,

retrofit/replacement, new). A second module uses the accounting

relationship to predict consumption, carrying through adjustments of ESR

and U. These modules will be examined in the following sections.

THE HOUSING MODULE

The housing module of the ORNL model forecasts number of households

in a region, additions to housing stocks required to accomodate these

households, and the average size of new dwellings. The structure of the

module was outlined in Figure 4-2. First, number of households,

classified by age group, is predicted for each region and year by

multiplying regional population in the classification by predicted

proportion which are heads of households. The latter prediction is

obtained from a regression on national age-specific marriage and divorce

rates and income. Next households are allocated among three dwelling

types (single-family, multiple-family, mobile home) in proportions

determined by linear interpolation between existing 1970 housing type

shares and assumed year 2000 housing type shares. Third, new

construction of each dwelling type is assumed to equal demand aetermined

by the allocation of households less the supply of existing dwellings of

that type after retirement of an exogenously set fraction. Finally, size

of new single family dwellings (in square feet) is forecast using a
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regression of square footage on income, persons per household, cost

($/sq. ft.), and regional dummies. The method used to forecast size of

multi-family and mobile home dwellings is not documented. However,

inputs to the simulation module provided by ORNL contain the following

representative values:

Percentage Increase in Square Footage over 1970

Single-Family Multiple-Family Mobile Home

1980 2.2 2.7 7.2
1990 7.6 9.1 21.8
2000 13.4 15.6 35.0

The primary deficiency of the ORNL housing module from the standpoint

of policy analysis is that it is insensitive to energy policy. In

practice, both housing type and size decisions are likely to show some

sensitivity to energy costs. An approach which would be consistent with

the logic of other parts of the ORNL model would be to assume housing

type and size choices are functions of life-cycle costs of housing

acquisition and space conditioning. Such models could be calibrated

using the census data already employed in this module and elsewhere.

A few other features of the housing module could potentially be

improved. First, it is not clear that marriage and divorce rates are

predetermined in the equation determining proportion of heads of

households, or that reliable external forecasts for these variables are

available. Second, rates of retirement or conversion of existing

dwellings may be sensitive to net demand and to energy price changes.

Third, new construction may not respond instantaneously to excess demand,

and this may influence type choice, and possibly even rate of household

formation. Finally, the equations for housing size should incorporate
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energy cost, and the econometric estimation of these equations should

take into account self-selection by housing type.

EFFICIENCY DECISIONS

The ORNL model assumes that appliance efficiency is determined by

life cycle cost minimization, taking into account the tradeoff between

capital and operating cost for various levels of efficiency. The key

ingredients of this analysis are the schedules of efficiency vs. cost

postulated to be available in the market, and assumptions on household

discount rates and expectations about future energy prices, durability,

and intensity of use.

Before analyzing the specifics of the ORNL model, it is helpful to

review the basic logic of consumer decisions on the characteristics and

usage of consumer durables. The consumer ordinarily has choice along

several dimensions: energy efficiency, durability, capacity, and various

aspects of service quality (quietness, appearance, convenience,

flexibility). For example, in the refrigerator purchase decision the

consumer will consider efficiency, storage capacity, and convenience

features such as automatic defrost. As in this example, there is often a

trade-off between efficiency and service quality. Thus, the consumer

typically does not face a simple trade-off between capital and operating

costs with capacity and service quality fixed. Rather, the.consumer can

be expected to optimize jointly with respect to capacity, service

quality, and efficiency.

An economic consumer can be expected to approach the capacity-service

quality-efficiency decision as a problem of maximizing preferences,

considered over the lifetime of the household, subject to a lifetime
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budget constraint. When decisions are not fully reversible, as in the

case of consumer durables with substantial installation costs or

inadequate resale markets, the purchase decision must be evaluated in

terms of its strategic consequences. This can be interpreted as

requiring the consumer to solve a dynamic programming problem in which

current choices are evaluated in terms of their strategic consequences

when future decisions are optimal. When elements of uncertainty about

future energy prices or equipment failures are introduced, the

programming problem is stochastic, and consumer expectations become a key

ingredient. In practice, such a problem may be too complex for the

consumer (or analyst) to solve, and some hueristic may be adopted. In

the following commentary, we shall not attempt any general solution of

this optimization problem, but rather concentrate on special features

which may help to illuminate the adequacy of the minimum life cycle cost

criterion assumed in the ORNL model.

Exercise 1. Suppose an appliance of fixed life L, and consider the

simplest problem of intertemporal untility maximization subject to an

intertemporal budget constraint, with future prices known with

certainty. We use the following notation:

(v.2) t = time, O1 t L

h = energy service ratio (ESR), giving the energy
consumption of the appliance per unit of service

x(t) = rate of utilization of the appliance

p(t) = real energy price

P = rate of impatience

r = interest rate

y(t) = real rate of expenditure

W = wealth
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(v.3)
v(y(t), hp(t))

(v.4)

= instantaneous indirect utility as a function of
real rate of expenditure and energy price per
unit of service

C(h) = purchase price of appliance

The consumer's problem is

(v.5) Max e-  v(y(t)
y,h Jo

(v.6) subject to C(h) + f
0L

, hp(t)) dt

e rt y(t) dt = W.

The utilization rate, given by Roy's identity,

v2(Y, hp)
(v.7) x(t) (, hp)v1(y, hp)

The first-order condition for intertemporal maximization is

(v.8) v1 (y(t), hp(t)) =e - ( r - ) t

and for optimal ESR is

(v.9) oL

0

e"Pt v2(y(t), hp(t)) p(t)dt = X C'(h)

e"Pt p(t)[-x(t) e-(r-p)t]dt =(v.10) L
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implying

L

(v.11) C'(h) + e-rtp(t)x(t)dt= 0
0

This is precisely the first-order-condition for minimization of

life-cycle cost for the appliance conditioned on the chosen utilization

rate x(t). However, in general the ESR and utilization are determined

jointly, and the effect of price changes on the ESR may be moderated by

adjustments in the utilization rate.

Suppose, for example, the instantaneous indirect utility function has

the form

(v.12) v(y(t), hp(t)) = y(t) - y(hpt))1-a 1-

with a, B, y > 0. Then

(v.13) x(t) = y(hp(t))"a

Note that a is the elasticity of utilization with respect to the price of

energy. Substituting this expression in the first-order-condition for

minimization of life-cycle cost yields

(v.14) C'(h) + y h" f e-rt p(t)1 a dt = 0
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If C(h) = c h", then the optimal ESR satisfies

L

(v.15) PCoh-P-1+a e-rt p(t)1-a dt

0= y p(t) dt

or

(v.16) h = c/f ert p(t)l - a dt] + a'

0

The impact of a uniform one percent increase in energy price is a

(1-a)/(1+p-a) percent net decrease in ESR. The magnitude of this

.expression decreases as a increases from zero (where utilization is

perfectly price-inelastic). For a = 1, utilization is sufficiently

price elastic so that an energy price increase sharply lowers

utilization,' and consequently makes it desirable to raise the ESR.

Consider, for example, central air conditioners. Typical parameter

estimates for this appliance are g = 1.0 and a = .85, implying an

elasticity of ESR with respect to energy price of -0.13 and with respect

to purchase price level of 0.87. These differ substantially from the

respective values -0.5 and +0.5 of these elasticities calculated under

the assumption of a fixed level of utilization (a=O).Also, the elasticity

of energy consumption with respect to energy price is -0.87, in contrast

to an elasticity of -0.5 when utilization is price-inelastic.

Exercise 2. Consider the case of discretionary retirement of

appliances. From the preceding exercise, we obtain the expected result



5-11

that if the elasticity of usage with respect to energy price is low, then

expected growth in energy prices leads to more efficient fixed-life

appliances. Intuitively, if appliances can be retired and replaced

voluntarily, one would expect a partially offsetting effect in which

households reduce the length of time they plan to hold an appliance

before it is replaced with a unit with more appropriate energy

consumption characteristics. This decrease in planned lifetime has two

effects. First, the chosen ESR is more appropriate for current energy

prices than in an appliance chosen strategically for optimization over a

longer lifetime. Second, the reduction in planned lifetime generally

raises the attractiveness of appliances with higher ESR.

To examine this by example, use the model and notation of exercise 1,

except now assume for simplicity that households and appliances are

infinitely lived, and all replacements are voluntary.

The objective function is

(v.17) U = Lit)+1 - p( )hi ) e ' t dt,

where Lii s the date of the ith replacement, Lo = 0.

This is maximized subject to the budget constraint

(v.18) W = e'rLi LC(h + Li+1 e-r(t-Li) y(t)dt,
" ~ I=0 [hl)Ji yL~d]

by choice of hi , y(t), and Li .

1-11 111 1 __~~~ _~ _~- i.r...i .~....I IIY.llil
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The first-order-conditions are

(v.19) v'(y(t) - y - ePt = Ae-rt

IL (P(t)h.)1-a -rL

(v.20) Y1+1 p(t) Y e dt + C((h)e =0-rL

or

(v.21) i+ p(t)- e -r(t-Li) dt + hi C'(h i) = 0(v.2) Y L:

implying the life-cycle cost minimizing condition

(v.22)
and

dt + C'(h i) = 0,

(v.23) v((L)- (p(Li )hi- 1) 1-a - (p(Li)h) 1-) -pL
(v.23) v(y(Li)-Y - ) e pLi - v(y(ti )- 1- )e1 ~-a 11

-rL
+ xe (rC(h i ) - y(Li-) + y(L+)) = 0

From (v.19),

p(L.)1-a
(v.24) y(L') - y(L) = y [h-a -

- -a [h i-1 hila

fLLi+1 p(t)x(t) e-r(t-Li)
Li
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and (v.23) implies

P(Li) 1 - a il(v.25) rC(h i) = - [hl-a - h 1-h

Equations (v.21) and (v.25) are difference equations in Li and hi . To

simplify their analysis, consider the case a < 1, C(h) = c h'1, and p(t)

= poe gt  Then these equations have a solution with Li+-Li=L constant

and hi = Kexp[-iLg(1-a)/(1+M-a)] with K a constant. Substituting yields

the equations

(v.26) p-a (1-e ( r  = (l ) ) L  -1+-a)
(v.26) r-g(1-a) 0

(v.27) rcK p-a K1-a(eg(1-a) L/(1-+) -1)

Eliminating K,

(v.28) 1-e-(r-g(l-a))L , y(r-(l-a) ) (eg ( l - a ) L/ ( l - a+p )

r(l-a)

This equation can be solved numerically for L, and has the property that

increasing the rate of growth of energy price g leads to a decrease in L,

as expected. For the central air conditioner, the assumptions of

infinite life, no maintenance cost gradient, and no technical progress

plus parameter values p=1.0, a=.85, r=.1, and g=.15 imply a voluntary

replacement interval of 60 years, and an elasticity of replacement

interval with respect to g at this point of 0.8. If g rises and po is

fixed, then the ESR ho falls. However, if one considers combinations of

Po and g such that the presentvalue of the cost of a constant unit

stream of energy consumption is fixed, then increasing g causes ho to
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fall for small g, but causes ho to rise for g approaching the interest

rate r.

If in this exercise one considered increasing maintenance cost with

appliance age, or technical progress improving the cost-efficiency

tradeoff, retirement interval would decrease.

The introduction of uncertainty about future energy or equipment

replacement prices substantially complicates the optimization problem.

The objective function (v.17) is modified to permit risk aversion and the

strategic possibility that plans can be modified in light of added

information as it is received. No attempt will be made here to solve

this stochastic dynamic programming problem. However, it should be noted

that risk aversion will in most cases induce a conservative response to

increased uncertainty, with reduced expected life (and an associated

increased ESR) giving greater flexibility.

Exercise 3. Consider the case where appliances have characteristics such

as capacity or service quality which are subject to choice. Assume for

simplicity a fixed appliance life L. Assume the consumer has a direct

instantaneous utility function u=U(S,K,z) of S=units of service provided

by the appliance, K=appliance capacity (or service quality), and

z=consumption of other goods. Units of service satisfies S=HK, where

H=hours of usage. The consumer faces a price p(t) per unit of energy.

If the energy-service ratio (ESR) is h, then the price per hour of use is

p(t)hK. The instantaneous consumer problem is to maximize U(HK, K, z) in

H,z subject to z+p(t)hKH=y(t), where y(t)=instantaneous expenditure. Let

u=V(y(t), p(t)hK,K) denote the indirect instantaneous utility function

giving the value of the maximized direct utility. Roy's identity implies
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the optimal H(t) satisfies H(t)=-V 2/V 1, and hence energy consumption x(t)

satisfies x(t)=-hKV2/V1.
The consumer's life-cycle optimization problem is

L

(v.29) Max L
y(.),h,K J0

subject to 1L
0

e-pt V(y(t),p(t)hK,K)dt

,-rt y(t)dt + C(h,K) = W.

The first-order conditions for this maximization are

(v.30)

(v.31)

ePt V1(y(t), p(t)hK,K) = xe- r t

SL
0

e- t p(t)KV2dt = xC1

or

(v.32) L e- rt p(t)x(t)dt + hC (h,K) = 0
0

and

(v.33) /
L L

e ptp(t)hV2dt +

0

(v.34) oLe-rt p(t)x(t)dt + KC2 (h,K) =e-t dt

-PtV3 dt = AC2
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The condition (v.32) states that given capacity and units of service, the

consumer chooses the ESR h to minimize life-cycle cost, as in the

previous examples. However, condition (v.34) involves both life-cycle

cost and preferences, stating that capacity will be increased until the

marginal life cycle cost per unit of capacity equals the dollar value of

the marginal utility gain from added capacity. Qualitatively, one would

expect higher energy prices to discourage the purchase of high capacity

or high service quality appliances which consume extra energy. This

should induce larger price elasticities than Exercise 1. For example,

higher electricity prices may induce smaller refrigerators and fewer

energy-consuming service quality features such as automatic defrost or

ice makers. The picture may be complicated by the technological and

market relationship between ESR, capacity, and service quality. For

example, there is a strong complementarity between air conditioner

capacity and efficiency, and strong substitutability between capacity and

hours of use. For water heaters, efficiency can be increased by lowering

recovery rate, which lowers service quality. This can be offset (with

some offset of the efficiency gain) by increasing capacity.

Suppose the instantaneous indirect utility function has the form

(v.35) V(y(t),p(t)hK,K) = 1 - (y(t) - _ (p(t)hK)1-0)18 + K-e

with a,B,e,y,6 > 0. Suppose appliance purchase cost has the form

(v.36) C(h,K) = c h-PKn

with c ,p,>O. Then x(t)=yp(t)-a(hK) 1-a. Define
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(v.37) ,' = e-rt p(t)1-a

(v.38) R = 6(1-e - p L )/ p

(v.39) Q = (1-e-(P+(s-l)r)L/)o/(p+(l-1)r)

Then the first-order conditions, from the budget constraint, (v.32), and

(v.34), are

(v.40) yr(hK) 1-a = hPKn

(v.41) (--') yw(hK)a = RK-e/x

(v.42) 1-a+1 ) yw(hK)1-a =W -1/Q

To obtain the price elasticities, it is sufficient to differentiate these

conditions and solve. One obtains, for a permanent proportional change in

energy prices,

alnK(v.43) 1 n= -(1-a)(.+t(l+p))/A

(v.44) aln(hK)
S(v.44) 1 p

..
..
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alnx -a-(1-a)2e+(1+E)( P /A

1 -1 -1/8

where c = -1/ Q/(W-1/ Q) and

(v.46) A = ec(1-a+p) + (1-a(l+C))(q+P).

For typical parameter values, an increase in energy price reduces

capacity, energy consumption per hour of use, and overall energy

consumption. For example, typical values for air conditioners are 1=1.0,

n=0.4 , a=.85. The expression x-1/ Q equals the present value of

expenditure on other goods z. If life cycle cost for the appliance is 10

percent of wealth, then e=9/B. Then for typical values s=0.5 and e=2

(corresponding to a relatively sharp determination of capacity), one has

an elasticity of capacity with respect to price of -0.275, an elasticity

of energy consumption per hour of use with respect to price of -0.465,

and an elasticity of total energy consumption with respect to price of

-0.92. (By contrast, the elasticity of total energy consumption with

respect to price in Exercise 1 without capacity adjustments is -0.87.)

Generally, greater flexibility in choice of capacity will increase price
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elasticities. For example, taking o=1.2 in the example above yields

elasticities of -1.61, -1.99, and -1.15 for capacity, energy consumption

per hour of use, and total energy consumption respectively.

Two general conclusions can be drawn from this exercise. First, the

ability of the consumer to adjust capacity or service quality may

contribute substantially to overall price elasticity; this effect is not

captured by the choice of efficiency level to minimize life-cycle cost.

Second, an engineering analysis of the relationship between appliance

attributes and cost should take into account the significant impact of

capacity.

I now review the determination of efficiency in the.ORNL model. This

system forecasts the efficiency of the equipment in each end use and the

thermal integrity of the housing shell. In principle, the calculation is

straightforward: consumers are assumed to choose efficiency to minimize

life-cycle cost, with some partial adjustment introduced to capture

market imperfections. The life-cycle cost calculation takes into account

expected usage, which in turn depends on energy prices. Hence, this

approach is in principle consistent with the utility-maximizing behavior

described in Exercise 1. However, it does not consider optimization with

respect to capacity (Exercise 3), or voluntary replacement decision

(Exercise 2).

The efficiency calculations for heating, air conditioning, and the

thermal shell are interrelated. Efficiency decisions for the remaining

end uses are assumed to be made independently. Since the latter

calculations are simpler, they will be discussed first. For

concreteness, consider water heaters. For each fuel type, the life cycle
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cost of a new water heater is the sum of initial cost and present value

of operating cost. Initial cost is expressed as a simple function of the

energy/service ratio h,

1-h 1/
(v.47) C(h) = c0 + b((- 1),

where in 1970 h is normalized to one and co is the new equipment price.

Equipment capacity, service quality (e.g., recovery rate), and durability

are assumed fixed and not subject to choice. The parameters a, b, and ho

are fitted to engineering data on the material and fabrication costs of

achieving alternative energy service ratios. The assumption is then made

that this also gives the locus of market prices. Several features of

manufacturing behavior suggest that the connection of manufacturing cost

and price is less simple: Consumer equipment manufacturers are

relatively concentrated, and appear to follow mark-up pricing rules to

cover development and administrative overhead at anticipated production

levels. As a consequence, the markup over cost is least on "popular"

models, and the engineering analysis may underestimate the cost of moving

to efficient but historically low demand models. The ORNL model could be

strengthened by establishing firmly the relationship between engineering

cost calculations and market prices.

The present value of operating cost is defined by

present present fuel Energy/Service Expected
value = worth x price x Ratio (h) x usage

(v.48). operat- factor
ing cost
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Several features of this formula deserve commeot. First, the present

worth factor is defined assuming fixed equipment life and an interest

rate individualized for each end use. In reality, equipment survival

curves have ogive shapes, and empirical survival curve data could be

incorporated into the present worth factor calculation. This still does

not address the choice problems posed by stochastic survival or voluntary

retirements. Economic theory would suggest a common interest rate for

most consumer decisions (an exception may be distinctions between

portable appliances and those attached to the dwelling, since the latter

may share some of the tax and credit benefits of home mortgages); the

alternative assumption in the ORNL model needs justification.

Second, fuel price is taken at the date of purchase, corresponding to

the assumption that consumers expect no future changes in real price.

Since influencing consumer expectations may be an important aspect of

energy policy, this is a point where refinement of the ORNL model could

be beneficial. Also, maintenance cost should be included in operating

cost.

Third, expected usage is taken to equal average 1970 base year usage

for the appliance, an undocumented input to the program. This excludes

joint determination of efficiency and usage level of the sort treated in

Exercise 1, and suggests that in the later years of a simulation or for

extreme policy scenarios the model may calculate efficiency choice on the

basis of assumed usage which differs markedly from actual usage. An easy

partial remedy would be to set expected usage equal to one year lagged

actual usage (net of last year's energy/service ratio). A full remedy
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would require efficiency and usage to be determined jointly, as in the

exercises.

The optimal energy/service ratio is determined by minimizing

life-cycle cost, and can be derived analytically. The ORNL model assumes

this optimum will be attained gradually. Two partial adjustment

mechanisms are introduced (in sequence). First, due to "market

imperfections," consumers are assumed to purchase less than optimally

efficient equipment. The modeling choice for representing this partial

optimization is awkward, leading to an equation requiring iterative

solution: "Observed": efficiency levels in 1970 when compared to the

computed optimal level implies a difference (D) in observed and optimal

life-cycle cost. This difference is assumed to persist into the future,

possibly attenuated when fuel costs rise or time passes. No behavioral

justification for this assumption is given. The second partial

adjustment assumes adaptive adjustment in energy/ service ratios to the

level determined by the first stage -- in ORNL runs,

(v.49) hn = .25 h* + .75hn-1'

where hn is the ESR in year n and h* is the ESR determined in the first
stage.

There would appear to be several advantages to replacing the

adjustment mechanism just described with something computationally

simpler and behaviorally appealing. First, consumers appear to utilize

relatively high interest rates when evaluating alternatives. This may be

due to credit constraints, uncertainty about the effectiveness of

promised energy efficiency, or the inability of mobile consumers to

capture the full value of efficient appliances in imperfect second hand

markets. This can be captured in the model simply by minimizing
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life-cycle cost with a correspondingly low present worth factor. The

second adjustment (v.49) seems unnecessary, but could be retained if it

is realistic to argue that there are.significant delays in delivering

equipment with desired efficiency levels to the market.

The determination of the efficiencies of heating and air conditioning

equipment and the thermal integrity of the shell follows the same pattern

as the water heater calculation, with the added complication that the

decisions are interrelated by the effect of thermal integrity on heating

and air conditioning operating cost. The most logical way to carry out

this computation would be to write down the joint life-cycle cost of

these three decisions and optimize jointly. This could be done by

solving for the equipment efficiencies as functions of the level of

thermal integrity, substituting these expressions back in to get joint

life-cycle cost as a function of thermal integrity alone, and finally

optimizing in this decision variable. Note that since the dwelling and

equipment have different assumed lives, it is necessary to make some

adjustments to the life cycle cost formula to express all costs to a

common horizon. This in turn requires assumptions on how the prospect of

future decisions affects current choice, making the problem in principle

a dynamic programming problem. A simpler and perhaps realistic approach

would be to assume stationary expectations so that joint life cycle cost

is written as a renewal equation:

2

(v.50) LCC = Ck(hk)/(l-e- r l k) + pf(hlhoul+h2hou2 )/r,

where
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LCC = joint life-cycle costs including present value of replacement
costs (to an infinite horizon)

ho * ESR (inefficiency) of the thermal shell
hi a heating ESR

h2 = air conditioning ESR
Ck(hk) = capital cost

pf = fuel price

Uk = expected usage in end use k

Lk = equipment life
r = interest rate

This formulation has the unrealistic feature that surviving equipment is

assumed to move when the dwelling is replaced. Alternately, one could

consider LCC only for dwelling life and assume premature retirement of

surviving equipment:

t 2t -rtL1 -rtL
(v.51) LCC = C(h o ) + (h e + C(h(h2 ) = e 2

0 0 1 1 t=0e 2 t=O
-rL

+ pf(h1hou l + h2 h u2 ) (1-e 0)/r,

where t k is the largest integer less than Lo/Lk. For Lo=25 and values of

r around 0.1, these formulae will have virtually identical solutions.

The computation actually carried out by the ORNL model differs from

the procedure outlined above in several respects. First, the computation

is done sequentially rather than jointly. Heating and air conditioning

equipment efficiencies are calculated by minimizing their respective

life-cycle costs, with thermal integrity set at its value in the previous

period. Capital and operating costs in these calculations are defined

and computed in the same manner as the water heater calculation discussed
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earlier, and the earlier comments on the limitations of the procedure

apply. An additional factor in the definition of expected usage of heat

and air conditioning is dwelling size, which is appropriate. However,

heating and cooling equipment capacity is assumed to be independent of

dwelling size. This is clearly an error which in the presence of growing

dwelling sizes leads to an underestimate of capital cost. For example,

an increase of 13.4 percent in the size of single family homes by the

year 2000 can be expected to cause an increase in air conditioner

equipment cost of 5.2 percent (at the historical elasticity of cost with

respect to capacity of 0.4). As for other equipment, a two-phase partial

adjustment mechanism is introduced for short-run response and the effect

of "market imperfections."

Once heating and air conditioning efficiencies are calculated, the

thermal integrity of the shell is computed by minimizing the expression:

(v.52) Initial present Thermal fuel Expected
LCC = cost of + worth . ESR for .. price . heating

thermal factor heating usage
improvements

present
+ worth

factor

Thermal fuel Expected
. ESR for . price . cooling

cooling usage

In this formula, the present worth factor is calculated for an assumed

dwelling life of 25 years. The thermal ESR for cooling is assumed to

vary from its 1970 base as a fraction of the variation of the ESR for

heating. Fuel prices are taken at the date of construction, with no

adjustment for expectations. Expected usage quantities are set to 1970

values. Dwelling size does not enter expected usage in this formula.
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This calculation has several deficiencies. First, unless cost of

thermal improvements is proportional to dwelling size, the term for

dwelling size will enter the determination of optimal thermal ESR.

Further, this term should enter life-cycle cost difference calculations

if the first partial adjustment mechanism of the ORNL model is utilized.

Second, fixing expected usage at 1970 levels excludes the tradeoff

between usage and efficiency of the sort considered in Exercise 1 and

implicit in the usage elasticities permitted later in the simulation

model. This will tend to lead the model to forecast too high a level of

optimal efficiency.

Third, the ORNL calculation excludes the present value of future

heating and cooling equipment replacements in the life cycle cost

optimization, which biases downward significantly the cost of added

efficiency. Compare (v.51) with the equations optimized by the ORNL

model. For simplicity, ignore the difference in heating and cooling

ESR. The first-order conditions for optimization of (v.51) are

-rL
(v.53) Co(h o ) + pf[h 1ul+h2u2](1-e o)/r = 0

-rL
(v.54) C(hk)o k + Pfhouk(l-e )/r = 0 (k=1,2)

tk -rtL
where ok = e . For the assumed equipment lifetimes Lo=25,

t=O
-rL0

L1=15, L2=10 and r=.06, one has 1-e -rL=.777, i=1. 4 1, and a2=1.85. In

comparison, the first-order conditions for the optimization in the ORNL

model are

-rLk
(v.55) C (hk + Pfhouk(l-e )/r = 0, (k=1,2)
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-rLo
(v.56) Co(h o) + Pfhlul+h2u2)(1-e /r = 0

where we ignore the modest error caused by solving the equations (v.55)

using lagged ho rather than solving the system simultaneously. For the
-rL1  -rL2

assumed values, 1-e =.593 and 1-e =.451. For the system

(v.55)-(v.56) to give the same solution as the correct jointly optimized

system (v.53)-(v.54), it would be necessary to increase C1 by 7.6 percent

and C2 by 7.4 percent. This error and the previous two errors in the

ORNL calculation all go in the direction of underestimating the relative

capital cost of increasing efficiency.

Fourth, the ORNL model does not solve the system (v.55)-(v.56)

separately for the classes of consumers without air conditioners, with

central air conditioners, and with room air conditioners, but rather

obtains a single solution of (v.56) for a "representative" consumer

holding fractions of a central and a room air conditioner (equal to 25

percent and 55 percent, resoectively, in the ORNL inputs). These

saturations may deviate substantially from the penetrations of air

conditioners under alternative energy scenarios, so this method may

employ a biased formula for average life-cycle costs. More importantly,

the solution of this non-linear optimization problem for average costs

may deviate from the average of the solutions for alternative

households. The ORNL input parameters imply that the elasticity of the

optimal thermal ESR with respect to total utilization is -0.75. Expected

usage from the ORNL inputs for a single-family home, gas heat is
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127.2 mil. Btu for heating, 28.8 mil. Btu if a room AC, and 52.7 mil. Btu

if a central AC. The impacts on the optimal thermal ESR are summarized

below:

type consumer proportion relative ESR

gas heat only .20 1.0 average
room air cond. .55 0.858 ( 0.865
central air cond. .25 0.771
"representative" --- 0.857

In this case, the optimum for the representative consumer deviates by

0.008 from the average of the relative ESR for the various consumer

types. This results in an error of 0.8 percent in the energy consumption

forecast.

Fifth, it should be noted that the introduction of the partial

adjustment mechanisms in the determination of equipment efficiencies

leads in the second step to the calculation of an "optimal" thermal ESR

which is lower than would result from joint optimization of life cycle

costs. The partial adjustment toward this solution may then be going too

far relative to the true joint optimum. In terms of logic, simplicity,

and computational ease, there appear to be strong arguments for

simultaneous solution of the heating, cooling, and thermal efficiency and

usage decisions, and for incorporation of market imperfections in the

consumer discount rate. This modification would change the heart of the

computer code of the ORNL model, but would be consistent with its

underlying logic and input requirements.
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USAGE

Given appliance holdings, and the fuel type and efficiency of these

appliances, the consumer will adjust intensity of utilization in light of

prevailing income and prices. In a model of intertemporal utility

maximization with perfect foresight, utilization decisions will be

planned ex ante, and efficiency will be set commensurately. More

generally, utilization will be determined by ex post utility

maximization, given efficiency levels set by earlier strategic

decisions. One simple approach would be to approximate this adjustment

by a constant elasticity response,

(v.57) In Un = (1-y)InUn-1+Y011nF+Ya21nY-(1-y)1nU1969

where Un=intensity of use.in period n, F=cost per unit of intensity

(normalized to one in 1970), al and a2 are long run elasticities, and y

is a partial adjustment rate. The ORNL model uses essentially this

approach, but places bounds on the range of intensity of use, 0.5<U<1.5,

by replacing InU throughout (v.57) by 0.25 In(u-0.5)/(1.5-U). This is

unobjectional, although the non-constant elasticities of this

transformation may make calibration of the parameters more difficult.

The variable F in this analysis incorporates the efficiency decisions

discussed in the preceding section.

~IIYYloll 0 1111111 l .vilim III I J I WU
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APPLIANCE SATURATION MODELS

The ORNL model predicts number of appliances by predicting total

number of households in a class and proportion of households owning the

particular type of appliance (saturation). Perhaps the best way to

discuss this model is to first outline a realistic description of

appliance choice behavior, and then indicate the assumptions and

compromises necessary to go from this to the ORNL module. Figure 5-1

gives the flows one would expect to be associated with individual

behavior. First note that capacity, efficiency, and vintage are properly

characteristics of an appliance determined at time of purchase, and

should ideally be analyzed as part of the appliance choice module.

Further, to avoid aggregation bias, the full classification of appliances

should be maintained.

Second, existing stocks are reduced by involuntary scrappage, which

is primarily a technological function of age, and by voluntary

scrappage. The latter is a behavioral function of economic conditions,

and is particularly sensitive to mobility and turnover rates since most

retrofitting is done at the time of moves. Note that there may be an

important distinction between scrappage and gross retirements. There are

active second-hand markets in some appliances, and voluntary retirement

decisions by some households may lead to units being recycled. The

result may be a different socioeconomic composition of household holding

particular types of appliances, and at the end of the chain an increase

in appliance saturations or scrappage of appliances with quite different

capacity, efficiency, and vintage characteristics than those initially

supplied to the second-hand market. For example, a sizable fraction of
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Figure 5-1.A Description of Appliance Choice Behavior

Stock of appliances, classified by fuel type,
capacity, efficiency, dwelling type, vintage,
and socioeconomic characteristics of owner.

involuntary
scrappage

behavioral parameters
economic conditions

voluntary scrappage

" choice model for
retrofit, replace-
ment, and upgrading

new appliances,
old construction

new
construction

choice model for
new construction

surviving
appliances

new appliances,
new construction

Updated stock of appliances, classified by fuel type,
capacity, efficiency, dwelling type, vintage, and socio-
economic characteristics of owner.

I
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the voluntary refrigerator retirements creating qdemand for new units are

recycled, and replace or supplement refrigerators of older vintage and

smaller capacity. Consequently, an appliance with poor

capacity-efficiency characteristics relative to current energy prices may

stay in the system a long time, with succesive owners absorbing capital

losses on resale which reflect the inappropriateness of the appliance

characteristics. The reduced second hand price makes the appliance

attractive in terms of life-cycle costs conditions to successive buyers.

This phenomenon has been extensively studied only for used cars, where

old "gas guzzlers" remain in operation at purchase prices which make

their life-cycle-costs attractive to low-income buyers. In principle, it

would be possible to replicate the used car studies for refrigerators,

ranges, washing machines, and other appliances which have active

second-hand markets. Short of this, it may be feasible to model

voluntary scrappage, ignoring inter-household transfers, without

introducing unacceptable biases. Note that in calibration of any of

these models, it is essential to distinguish scrappage and resale data.

After scrappage, the stock of surviving appliances is determined,

with the same classification detail as before, taking into account any

significant shifts in the distribution of a particular type of appliance

across dwelling types and socioeconomic classes. The vacancies created

by scrappage are inputs to a choice model for replacement, retrofit, and

upgrading decisions in existing dwellings. At this point, fuel type,

capapcity, and efficiency of replacement units is determined. Inputs to

this decision are purchase, installation, and operating costs of

alternative appliances, and the household's evaluation of the quality of

service provided. -As part of this decision, the household will form
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expectations on future prices and utilization. A classical economic

decision-maker will choose the appliance characteristics to maximize

lifetime utility subject to a lifetime budget constraint. Note that this

is not the same as minimization of life cycle costs except in the extreme

case that service quality and utilization are fixed. Beyond this, if

there is uncertainty about the future and the possibility of ex post

revision of operating plans, the consumer's maximization problem becomes

a stochastic dynamic programming problem. It is probably beyond the

realm of practicality to incorporate a decision model of'this complexity

in a simulation system. However, any practical consumer decision model

should be viewed as an approximation to the full stochastic dynamic

program, and should mimic its most important qualitative features.

In addition to replacement decisions in existing dwellings, there may

be net additions; e.g., increasing penetration of room air conditioners

in existing, non-air-conditioned dwellings. The decision process on such

upgrading presumably parallels that for replacement.

The most important differences in appliance choices between existing

and new dwellings is probably not in behavioral parameters, but rather in

differences in availability and cost of alternatives. Appliance choices

in existing dwellings are often severely constrained by availability or

installation costs of fuels, size limitations, etc.

Next consider appliance choices in new dwellings. There is a

delicate question of who makes these decisions, depending on the

structure of the market for new structures. One (extreme) possibility is

that all structures are built to order, so that the household makes all

appliance decisions, taking into account construction costs. A more

plausible possibility is that some structures are built to stock, but the

IMIRIMlAlit I llIbI l li
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supply of dwellings is perfectly elastic and builders are highly

sensitive to profit signals, so the household can choose among appliance

portfolios by choice of dwelling at competitive prices. This has the

same final effect as dwellings built to order -- households determine

appliance shares. The last possibility is that supply is not perfectly

elastic, and builders build to stock without clear signals on household

preferences. Then the prices of dwellings will adjust to reflect the ex

post desirability of their appliance portfolio, witn builders taking

windfall gains or losses if they guess right or wrong on future economic

conditions and tastes. In this case, the mix of appliance types in new

housing reflects builder's decisions, which are influenced by the

builder's expectations about households and by the ouilder's economic

environment, including financing of new construction. From the point of

view of buyers, dwelling price adjusts to make the life cycle costs of

alternatives comparable. This last possibility raises one real problem

and one modeling problem. The real problem is that the lag in builder

response to changes in household expectations may be long. The modeling

problem is that in the last case, a model of new appliance shares as a

function of economic conditions is a reduced form which may be

inappropriate for forecasting if the new housing market structure shifts,

and may be specified incorrectly if economic factors affecting builders

are important.

The final step in Figure 5-1 is to collect the various sources of

appliance stock changes and produce an updated cross-classified appliance

stock.

'The next question is how the ORNL appliance saturation model works,

and how it related-to the "ideal" module just presented. The sources for



this description are Hirst-Carney (ORNL/CON-24, 1978) and

Lin-Hirst-Carney (ORNL/CON-3, 1976), plug program documentation.

The starting point of the ORNL appliance model is an econometrically

estimated model of equipment ownership, classified by type of equipment

and fuel type, as a function of equipment and fuel prices. The

estimation is done principally on 1970 Census data at the state level,

and is described in Lin-Hirst-Carney. The specification chosen is of the

form

(v.58) log (s (l-s )) = aik + k X + Ci

k
where s i is the share of fuel i among appliances of type k, X is a

vector of income, fuel prices, and appliance prices, and a, 8 are

parameters. This is estimated as a multivariate system across fuels by

three-stage least squares subject to the parameter restrictions

(V. 59)-kk 4 k
(v. 59) (-s ) = 0,

-k
where si is the 1970 national share of fuel i. The purpose of this

restriction is to ensure that "on average" the fitted shares will sum to

one, In the estimation, the T are treated as arithmetic rather than as

random variables.

When the fitted share equations are used in the simulation program,

they are normalized so that the shares in any region and year sum to

one. Consequently, the model finally used to forecast appliance

saturations is

k exp(- - X)]- 1 k ) 1

(v.60) si - [1 + exp( ) ] + exp(-j - X 1)

5-35
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where a, 0 are the estimated parameters.

This model has several severe shortcomings. First, note that the

final forecasting model (v. 60) is in fact a multinomial logit model

k k

(v.61) sk = e / e ,
iJ

where the scale function Vi has the unconventional non-linear form

(v. 62) V = -ln[1 + e ]

rather than the standard linear-in-parameters form

(v.63) Vk = e + i X

Lin-Hirst-Carney claim that their model is based on the conditional

multinomial logit model of discrete behavior developed by McFadden,

modified to relax restrictions on cross-elasticities imposed by the

multinomial logit form. However, their model is inconsistent in both

form and logic with McFadden's treatment, which emphasizes the derivation

of the multinomial logit model from individual preference maximization

and leads to scale values Vk which are functions solely of attributes

of alternative i and household characteristics. It is this last property

which restricts cross-elasticities. The standard multinomial logit

functional form (v. 61), with scale values (v. 63) which depend on

attributes of all alternatives, imposes no cross-elasticity

restrictions. It is unnecessary to adopt the non-linear form (v. 62) to

achieve flexible cross-elasticities.

Second, the method used to fit the Lin-Hirst-Carney saturation model

- ---;-- ----- -P---Y~;~~-_~=- -r--iPEIC%- ~4=~~ --E-~t=i~-~Lf~Pq= ----_ -- - ~~~En~-~=_~=--=_____ --r~= ~=
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has several shortcomings. The model is heteroscedastic with a parametric

covariance structure depending on expected shares and on the size of the

state observation units. The authors' estimation procedure is not

efficient for this problem, and may in fact be asymptotically inferior to

ordinary least squares. The parameter constraint (v. 59) complicates the

estimation without making any positive contribution. The normalization

of shares in the forecasting equation (v. 60) would be required whether

(v. 59) were imposed or not, and reduces (v. 59) to the role of an

arbitrary and unnecessary side constraint on parameters. Further, the

dependence of this constraint on observed national shares makes it

stochastic and most probably correlated with the equation errors,

implying that the authors' estimates will contain some asymptotic bias.

A third comment concerns the empirical identification of the model.

The authors do not have linearly independent equipment prices, and

therefore fit equipment price parameters by imposing judgemental

restrictions on o's, choosing a set of restrictions which yield

"reasonable" elasticities (see ORNL/CON-3, Appendix E). This procedure

lacks a statistical foundation, and erases any desirable statistical

properties of the estimates obtained prior to this stage.

The authors use equipment and operating cost coefficients to

calculate appliance and fuel specific implicit interest rates which are

used subsequently in determining life-cycle cost. I am aware of no

behavioral studies which suggest varying discount factors for different

purposes; theory would suggest the contrary.

Freedman et al. note that in this model equipment is assumed to have

a fixed lifetime, whereas in simulation the inconsistent assumption is

made that there is a geometric failure rate for each appliance.
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Finally, there are some problems in variable specification in

(v.58). Fuel type is expected to be sensitive to life cycle costs, which

depends on efficiency and intensity of use. For some appliances,

utilization is weather-sensitive; this enters the model only through

possibly unrepresentative 1970 utilization rates. A more subtle problem

here is that level of utilization and fuel type are jointly determined.

Then using actual utilization as an explanatory variable creates a

simultaneous equations problem, while using "representative" utilization

causes an errors-in-variables problem.

The model.and statistical deficiencies of the Lin-Hirst-Carney

analysis could be remedied relatively simply. If the standard

multinomial logit (v. 61) and (v. 63) is adopted, with the normalization

k keG = 0, = 0, then the system of equations

log (s /s ) k e + k X + c (i>1)

.can be estimated by generalized least squares. Berkson and Theil have

provided the appropriate transformations to adjust for heteroscedasticity

and cross-equation correlation. Collinearity in equipment prices can be

avoided by careful measurement, using published construction cost

indicators. These vary with regional installation labor costs and with

equipment capacity which depends on dwelling size, climate, and household

size. Aside from the aggregation issues implicit in the use of

state-level data, this approach should provide a simpler and sounder

model of saturations than ORNL currently employs.

The shares model is transformed in the simulation system to forecast

shares in retrofit and new construction. The computer code is complex
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and opaque. However, at least in terms of generalities, the ideas

underlying the applications are simple:

1. Base year data on market shares by fuel and dwelling type of

existing appliances is expanded to a classification by fuel, dwelling

type, and old or new dwellings, by assuming the shares in each

sub-classification are the same. The rather extensive code has the

capacity to alter this assumption parametrically by specifying different

overall new equipment fuel shares in the base year, which are then

allocated in proportion to shares of existing equipment across dwelling

type and vintage (new, old). Then new equipment shares are assumed to

equal existing equipment shares.

2. Next the non-linear multinomial logit model (v.60) is used to

forecast new equipment shares. The program does this by a series of

indirect steps which obscure the core of the computation. A principal

complicating factor in this computation is that the econometric model

coefficients are translated into elasticities evaluated (apparently) at

national mean shares and national means of the explanatory variables.

These elasticities are input to the simulation model and then translated

back into model coefficients. However, the second translation is carried

out at the values of shares and explanatory variables prevailing in the

region of application and year of simulation. This double translation is

logically inconsistent -- the simulation model no longer equals the

calibrated model, and there is no judgemental or common sense

plausibility in the nature of the deviation. There are a number of

detailed mechanical questions regarding the manner in which weighting is

done and parameters are adjusted. Shares of existing equipment by

dwelling type are weighted by "conventionalized" shares of "vacancies"
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for equipment by dwelling type to obtain overall shares. No rationale

for these particular weights is given.

The ORNL appliance share simulation could be simplified and made

logically consistent by scrapping the double translation through

elasticities, and using the econometric model coefficients directly.

This would circumvent most of the mechanical problems.

The ORNL appliance model assumes all scrappage is involuntary, with a

geometric survival curve for each appliance. This is clearly unrealistic

-- energy price increases have accelerated retrofitting.

In light of this critique, what are the primary differences between

the ORNL appliance model and the "realistic" choice scheme outlined in

Figure 5-1? First, capacity, efficiency, and vintage detail are not kept

in the ORNL model, introducing aggregation biases. Second, no

possibility of voluntary scrappage, based on economic behavior, is

included. Third, the choice model for new equipment fuel shares is

behaviorally weak and contains logical inconsistencies. Fourth, the

capacity and efficiency decisions are not analyzed as part of a joint

appliance decision. Of these differences, the first and fourth are

intrinsic to the architecture of the ORNL model, and cannot be changed.

The second and third could be modified within current architecture by (1)

fitting cleaner, more data-analytic models of fuel shares, (2) using

model parameters directly, and (3) adding a voluntary retrofit model by

employing some combination of judgement and econometric analysis of

currently available data sets. In principle, the fuel share choice can

be based on the same model of intertemporal utility maximization as the

efficiency and utilization decisions -- this would impose a strong
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consistency on all aspects of the consumer decision, and potentially

economize considerably on the number of behavioral parameters requiring

estimation or judgement.

AGGREGATION ISSUES

At many points the ORNL model aggregates results in order to reduce

the scope of data handling and computation. For example, all non-new

dwellings are aggregated into a single class with "representative"

efficiency, usage levels, and fuel share levels; room and central air

conditioners are aggregated together; all income classes are aggregated

to a representative level, etc. Aggregation weights correspond generally

to population or energy consumption shares, and are generally sensible,

although sometimes poorly documented.

Because many of the relationships in the ORNL model are non-linear,

errors are introduced by the aggregation process. The reason is

essentially that a non-linear function of averages is not equal to the

average of the corresponding non-linear function. If the non-linearity

is predominately concave or convex, then this aggregation bias tends to

be systematic. As was noted in the overview of the ORNL model, the

errors introduced by aggregation bias can be quite substantial.

A substantial degree of aggregation is intrinsic to the architecture

of the ORNL model. Computationally feasible methods of calculating the

distribution of energy consumption before aggregation require

fundamentally different approaches -- classification of consumers into a

large number of relatively homogeneous classes or approximating the
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distribution using a random sample of households. However, it should be

possible to reduce aggregation bias within the ORNL model architecture.

Some suggestions for doing this follow:

(1) A few aggregates could be eliminated without causing excessive

computation. An example would be separate treatment of room and central

air conditioners.

(2) Appliance counts should be kept by vintage class (e.g., new, 1-3

years, 4-10 year, ll+ years), to avoid aggregation over units of

substantially different efficiencies.

(3) Households should be disaggregated into a few catagories by

income and family size.

(4) In cases where the aggregation bias in a fonmula can be clearly

identified, as in the case of consumption equal to the product of fuel

share, energy/service ratio, and utilization, it may be possible to

introduce analytic or empirical factors to reduce bias. A study of these

quantities on a household by household basis could provide the foundation

for a relatively realistic correction factor.

DISTRIBUTIONAL IMPACTS

The outputs of the ORNL model are summarized in Table 5-1. These

permit calculation by region of the present value of the economic cost of

energy consumption and various sumnary statistics on physical energy

consumed. These figures can be disaggregated by end use, fuel, and

dwelling type. However, the program does not permit disaggregation by

income class, dwelling tenure, family size, or other demographic
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dimensions. Consequently, the ORNL model can provide the information

necessary to assess energy policies in tdrms of overall and regional

impacts, but is not designed to answer questions about the distributional

impacts of policy along such dimensions as income, age, or housing

tenure. Furthermore, given the nature of aggregation in the model, it is

clear that policies which are quite heterogeneous in their impacts on

different demographic groups are likely to be assessed with larger

aggregation errors than are policies whose impact is relatively

homogeneous. Consequently, the ORNL model is likely to perform best for

the analysis of policies whose impact is relatively homogeneous and whose

assessment depends primarily on overall impacts rather than on

distri butional effects.
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Table 5-1 Outputs of the ORNL Model

Description

energy/service ratio (ESR), new equipment

price of new equipment

ESR, thermal, new dwellings

price of thermal improvements, new

ESR, thermal, retrofit

price of thermal improvements, retrofit

number of units retrofit

market shares for exisitng equipment

number of new units

market shares for new equipment

average ESR, all equipment

average ESR, thermal, all dwellings

usage intensities

housing size

housing stock

fuel consumption

Classification*

i, k, 1, n

i, k, 1, n

i, 1, n, (k=1,2)

i, 1, n

i, 1, n

i, 1, n

i, 1, n

i, k, 1, n

i, k, 1, n

i, k, 1, n

i, k, 1, n

is 1, n

i, k, 1, n

is 1,I n, m

1, n, m

i, k, 1, n

* i = fuel type

k = end use

1 = dwelling type

n = year

m = new/old
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Section 6

EVALUATION OF MODEL CALIBRATION METHODOLOGY

MODEL PARAMETERS

The ORNL model requires, by crude count, approximately 500 behavioral

and technological parameters, and for each region analyzed approximately

450 data points giving base year values of variables plus exogenous

forecasts. Most of the parameters and many of the base data points are

not observed directly, and must be calibrated by indirect construction,

engineering calculation, econometric estimation, or judgement. The

informational requirements of the model exceed considerably what can be

learned from existing data sets. Further, the model has not been

structured to maximize compatability with existing data sources.

Consequently, it is infeasible to take a unified approach to model

calibration, or to dispense with judgemental factors. Nevertheless, all

the parameters in the model should be viewed as provisional, and should

be refined by further calibration exercises. A useful initial step would

be to provide adequate documentation of what has been done so far.

The behavioral and technological equations in the ORNL model can be

broken into four groups: housing stock, energy/service ratio, fuel

market share, and usage. Generally, the approach to calibration has been

to fit the housing stock and fuel market share equations by least squares

regression analysis, to fit the parameters of the equations determining

ESR by engineering cost calculations and normalization to 1970 base

values, and to determine the usage equations by judgement. The

combination of these models implies overall price and income elasticities

for energy consumption. These implied elasticities are compared with
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"experience," which is based on historical econometric studies of energy

demand and an ORNL analysis of state cross-section data (ORNL-CON-7). An

ORNL module, termed the "Elasticity Estimator", carries out this

computation, and permits the user to adjust detailed elasticities

judgementally to reconcile imputed and estimated overall elasticities.

However, the model provides no guidelines or statistical foundations for

such judgemental adjustment. (Within an empirical Bayes framework, one

could develop a decision criterion for parameter reconciliation which

would concentrate adjustments on poorly determined parameters.)

As detailed in the discussion of model structure, a variety of

partial adjustment factors are introduced to capture short run rigidities

and response lags. For the most part these short-run factors are ad hoc

in structure, with parameter values set on the basis of rather simplistic

judgements (e.g., a widely used assumption that the ratio of short to

long run elasticities is 1/4).

Suggestions for upgrading ORNL parameter estimates fall into four

general catagories: (1) improve the compatability and generality of

model elements, and systematically test model specification, (2) use more

informative data sets, (3) improve statistical method, and (4) provide a

statistical framework for combining and reconciling parameter estimates.

The following sections give specific suggestions for each of the groups

of behavioral and technological relationships in the ORNL model.

THE HOUSING MODULE

The housing equations are estimated from national time-series data,

1952-1976. The following questions can be raised about model
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specification: (1) Do energy costs affect housing type and size choice ?

.(2) Are marriage and separation rates exogenous to the determination of

the household/population ratio? (3) Is there a cultural shift after 1970

in household formation rates? (4) Are the models specified with

forecasting in mind, with trustworthy external forecasts for all

exogenous variables?

The national census data used in the calibration has several

drawbacks. First, data for intra-census years is partly estimated rather

than measured, and the analysis may be simply approximating the Census

interpolation rule. Second, there may be significant regional variations

in rates of household formation, and in dwelling size choice. More

informative data sets are now available, such as the Annual Survey of

Housing and the National Interim Energy Consumption Survey (NIECS).

However, two notes of caution are necessary regarding the use of

individual household data for calibration. First, there tends to be

considerable noise in individual behavior, and sample sizes-and

statistical methods should be chosen with this mind. Second, the use of

individual data purges the calibrated model of the confounding effeacts

of aggregation. This is desirable in principle. However, sometimes

biases in behavioral parameter estimates resulting from calibration oq

aggregate data will tend to offset errors introduced by aggregation in

the simulation. An example illustrates the point: Suppose a household i

purchases an air conditioner if eyi + ci >0, where yi = income, e is a

behavioral parameter, and ci is an unobserved factor. Suppose yi and i

have independent normal distributions, with means , 0 and variances a2,

1, respectively. The probability that an individual with income yl

purchases an air conditioner is then given by Pi =.O(eyi), where * is the

1-ill L--~ --_P--I1L--. .Il.~ll~tllY-III---C -.E ̂-1~~I IICI_-__WIIII~_ err. ~ -- -- --- - ;- ~ M11I
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standard normal cumulative distribution function. Estimation from a

disaggregate data set will give a consistent estimate of the behavioral

parameter e. Noting that oy. + c. is normal with mean ey and variance 2o 2 +1,
1 1

the share of this Dopulation purchasing air conditioners is P =

*(oey//i1 +o0~2). Estimation using regional data would give consistent

estimates of el J1 + ~ 0T , which combines the effects of behavioral

response and non-linear aggregation, and is less than the individual

behavioral response e. When simulation is done by applying a model P = $(cy)

without adjusting for aggregation errors, but the parameter a is

obtained from the behaviorally inconsistent estimate from regional data,

the errors exactly offset. Going to a behaviorally consistent estimator

of a would then uncover the aggregation bias in the simulation. This

example cannot be taken as a justification for using inconsistent

methods. Exact offset occurs only in special models, with the

distribution of the explanatory variables stationary (i.e.,

unchanging). Use of consistent procedures throughout places the

simulation on much firmer ground.

ENERGY/SERVICE RATIO MODULE

The key ingredients in the model determining equipment efficiencies

are equations giving the capital cost of alternative efficiencies and the

discount rate entering the expression for life-cycle cost which is

minimized to determine demand. The cost-technology tradeoffs are

calibrated using engineering calculations of materials and fabrication

cost. The analysis and judgements entering these calibrations are

partially documented for water heaters, and are almost totally
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undocumented for other equipment. Major questions about the model

specification are (1) What is the interaction of efficiency, capacity,

and service quality in reality, and how pre the omitted capacity and

service quality dimensions treated implicitly in the current analysis?

(2) How stable is the cost-attribute frontier over time? If it is

shifting, what are the trends? (3) What is the relationship between

engineering cost and market price? How is it affected by the structure

of the equipment-producing industry, the structure of the product line,

and the product life-cycle? (4) How suitable is the current

three-parameter formulation, compared say with explicit choice among a

finite set of alternatives?

Some analysis of these questions could be carried out using

construction cost and consumer price data sources. A complete study

would probably require primary data collection.

FUEL MARKET SHARE

The ORNL model determining fuel market shares is estimated on state

cross-section data for the census year 1960 and 1970. The model selected

is a very awkward and implausible non-linear variant of a multinomial

logit model, with most of the limitations of this functional form and

none of its advantages. A prequisite to improving the calibration of the

fuel market share model is specification of a behaviorally plausible

structure. One alternative which would be computationally attractive for

choice among three fuels, and sufficiently flexible to accomodate

plausible patterns of cross-elasticities, would be a trinomial probit

model. It is also likely that a simple linear multinomial logit model
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with fuel-specific cross-price effects would prove to be sufficiently

accurate to be satisfactory for practical analysis. As discussed in

Section 5, the latter model need not exhibit the severe restriction on

cross-elasticities often attributed to logit models.

A combined cross-section, time-series analysis of state census data

may prove adequate for estimation. A problem not addressed in the ORNL

statistical analysis, which should be treated, is heteroscedasticity and

interdependence of errors in regressions of log relative fuel shares on

explanatory variables.

Because share models are intrinsically non-linear, calibration on

state aggregate data (e.g., household income) will introduce an

aggregation bias. One method of correcting this bias when the

distribution of explanatory variables is known is to estimate an

analytically (or numerically) aggregated share model as a function of

parameters of the distribution of explanatory variables. Alternately,

the model system could be estimated using household data (from the Census

public use sample or from energy consumption surveys such as WCMS or

NIECS), and then aggregated numerically.

It would be desirable in re-estimation of this system to incorporate

several improvements in the model specification suggested in Section 4.

Capital costs should reflect equipment market price rather than

fabrication cost, and should include installation cost. Operating cost

should include maintenance, and should incorporate a factor for expected

changes in real fuel prices. Ideally the expected fuel price changes

should themselves be behaviorally modeled as functions of historical

patterns and announced energy policy. Costs should reflect expected

useful appliance life, taking into account household moves,
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obsolescence, and resale market conditions. Consumer discount rates

should, in the absence of strong behavioral evidence to the contrary, be

specified at a common level across appliances and fuels, as indicated by

intertemporal consumer theory. The heating-ventilating-thermal

efficiency decision should be estimated as a joint choice, and the costs

of alternatives should reflect the joint nature of some system costs

(e.g., gas connection to main).

A deficiency of all the data sets currently available on appliance

fuel choice is that they provide information on holdings rather than

purchases, and hence represent decisions made at various dates in the

face of different relative prices and price expectations. This fact

could be turned to advantage, permitting estimation of the behavioral

response to different price environments, if acquisition dates are

identified and prices at date of purchase are collected. In practice,

acquisition dates are unavailable for most appliances in most data sets

except for recent purchases. A further complication is the purchase of

appliances along with a house purchase. In this case, the total price

reflects the revaluation of the appliance portfolio at the dates of the

dwelling purchase to reflect the appropriateness of the appliance

technology. Existing data sets generally provide no information on

dwelling purchase price, or any means of attributing house price

differentials to individual appliances. The collection of historical

price data is also difficult. Geographic detail on fuel price is often

unavailable historically, particularly for fuel oil, and location

information on disaggregate data sets is sometimes limited. For these

reasons, most analysis to date has estimated holdings models and made

rather simplistic assumptions on the relation of holdings and purchases.

. - --- "-^ ~IW
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Exploitation of Annual Housing Survey data or NIECS data to study new

purchases would be one useful step in quantifying fuel choice behavior.

Beyond this, primary data collection would probably be required to

develop fully the dynamic of appliance purchase, holdings, and resale.

USAGE

The ORNL model employs usage elasticities based on "engineering

possibilities and our judgements" (ORNL/CON-24, p.27). Assumed long run

usage elasticities in the ORNL model are reproduced in Table 6-1.

Short-run elasticities are assumed to be half these values, so the total

impact of price on usage is felt in two years.

Table 6-1 ORNL Long-Run Usage Elasticities

Appl iance

Space heating

Air conditioning

Water heating

Refrigeration

Food freezing

Cooking

Lighting

Other

Own-Pri ce

-.4

-. 4

-.25

-.05

-.05

-.10

-.10

-.10

Income

.10

.30

.05

.02

.02

.04

.10

.10

There is almost no documentation of the

elasticities. The ORNL cites as an example

analysis underlying these

of their reasoning the
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argument that a 1 degree F setback in winter temperature for a full 24

hour day cuts space heating fuel use by about 5%. First, this conclusion

holds only for a moderate climate (such as Oak Ridge, Tenn.). Table 6-2

gives the percentage saving from a 1 degree F thermostat setback in

various U.S. Cities. One sees that the saving is quite sensitive to

Table 6-2 Fuel Savings from 1 degree F Thermostat Setback

City Heating degree days % Saving

Chicago 6872 3.8

Duluth 10015 3.1

Dallas 2504 6.6

New York 4258 6.3

Seattle 3333 7.2

climate. If the behavioral response of comfort level .to price is

relatively uniform for families in different cities, then the elasticity

of usage with respect to price in moderate climates will be approximately

double the magnitude of the usage elasticity in cold climates. Missing

from the ORNL documentation is any description of the factors which led

to their implicit judgement on the behavioral response of comfort level

to price.. The point of this comment is that the judgements used by ORNL

may have a significant impact on the forecasts produced by the model, and

that careful reflection may suggest that some of these judgements are

implausible. This portion of the model needs careful documentation and

evaluation.
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Because the functional form for usage in the ORNL model does not in

fact exhibit constant elasticities, there is an ambiguity about how the

assumed elasticities in Table 6-1 are translated into model coefficients.

A number of recent studies of electricity consumption have fitted

appliance-specific consumption levels as functions of prices and income.

While there is some difficulty in untangling the contributions of

capacity, efficiency, and usage in these studies, they do provide some

behavioral foundation for judgements on usage elasticities. To the

extent that any pattern emerges from these studies, it suggests that

usage elasticities are somewhat higher than those assumed in the ORNL

model.

VALIDATION

In a complex simulation model containing judgements on equation

specification as well as parameter values, and containing lagged impacts

which induce model dynamics of unknown character, model validation

becomes a crucial part of the calibration process. The ORNL model has

been subjected to some within-sample validation. This analysis has

focused primarily on adjusting parameters to fit base year data and

provide "reasonable" short-run response. The long-run dynamics of the

model have not been studied systematically, and the documentation

currently available does not report on any "arms length" out-of-sample

validation. If this model is to be used as an input to important policy

decisions, then it deserves far more extensive and systematic validation

and documentation.
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Section 7

EVALUATION OF POLICY SIMULATION METHODOLOGY

OVERVIEW

One current use of the ORNL is as a baseline demand forecasting

system driving the Midterm Energy Forecasting System. A second is to

carry out a series of impact studies of specific energy policies.

As a baseline forecasting model, the ORNL model has some structural

advantages over simpler "macroeconometric" energy demand forecasting

systems. Because the end use detail of the model permits obvious

technological limits to be built in, one would expect the long run

forecasts to be more reasonable than macroeconometric forecasts. On the

other hand, the complexity and lack of validation of the ORNL model make

its use more risky than the traditional alternatives. This is likely to

be particularly true for short-term forecasts, where macroeconometric

models which exploit the "inertia" of the system are relatively reliable,

and the short-run behavioral judgements and possible over-fitting to

base-year data which weaken the ORNL model are not balanced by the

long-run technological limits. Scientific prudence suggests that the

ORNL model not be chosen over simpler models constructed explicitly for

baseline forecasting until it has demonstrated clear forecasting

superiority.

The second use of the ORNL model, analyzing policy scenarios,

conforms to its primary design purpose. The end use detail of the model

and its ability to capture the dynamics of appliance acquisition make it

particularly suitable for analyzing the impacts of policies which affect

specific appliances.

7-1 -
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Some features of the ORNL model limit its policy applications.

Because the model operates on geographical aggregates (DOE regions), it

is difficult to analyze policies which have highly localized and

heterogeneous impacts within a region, such as support of solar

technologies which are sensitive to micro-climate, or lifeline rates

which affect only a segment of the population. Further, model outputs

are limited to these geographical aggregates. Thus, the model can

forecast the impact of natural gas price deregulation by DOE region, but

cannot forecast the distribution of this impact by income group or by the

service areas of various natural gas distributors. For many energy

policies which are national in scope, the geographical detail of the ORNL

model will be quite adequate, and distributional impacts are of secondary

interest. For these, the ORNL model should provide satisfactory

forecasts. For these applications, it would be desirable to incorporate

the corrections and enhancements discussed previously, and validate the

model carefully.

For policy studies requiring distributional impacts, the ORNL model

will be useful only with fundamental architectural changes or with ad hoc

methods for distributing aggregate impacts. It should be noted that the

first alternative is not beyond the bounds of practicality - the

accounts maintained.by the model could be disaggregated by a few income

classes, and the behavioral equations could as a first approximation be

assumed unif9rm across classes. There would be a substantial task to

provide base-year data and exogenous forecasts by income class. The ad

hoc approach seems less promising, in that the ORNL model provides

"representative" impacts based on implicit assumptions about

distributional homogeneity. Any ad hoc assumption on differential
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impacts introduces a modeling inconsistency whose consequences are almost

certainly unpleasant.

The energy policies for which the ORqL model might be used fall into

four broad categories - policies affecting energy prices, voluntary

conservation policies, mandatory conservation policies, and

seasonal/time-of-day (STD) rates for electricity. The suitability of the

model for each area is discussed in turn.

POLICIES AFFECTING ENERGY PRICES

The ORNL model accepts as inputs exogenous forecasts of prices of

various fuels. No allowance is made in the behavioral equations or

inputs for non-linear price structures, such as block rate structures or

two-part tariffs for electricity and gas. Hence the ORNL model

interprets fuel prices as average = marginal prices. In terms of model

architecture, no changes would be required to extend the scope of the

model to handle two-part tariffs. In this case, marginal prices would be

inputs, and the incomes input would be adjusted downward by the fixed

charge portion of the tariff. There remains a behavioral question as to

whether the current appliance choice, efficiency, and usage models would

adequately describe consumer response to two-part tariffs.

A variety of price-related policy issues affect only overall price

levels, and not rate structure. Examples are decontrol of oil or natural

gas prices, taxation of oil imports, and alternative scenarios for OPEC

pricing policy and development of new oil or non-oil energy resources.

For these alternatives, the ORNL model detail should be adequate. Of

particular interest is the impact of price scenarios on appliance
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saturations and fuel choices, and the long-run consequences for energy

consumption levels and flexibility. The ORNL model should be able to

provide this information by region with acceptable accuracy.

The ORNL model has two deficiencies as a tool for analyzing pricing

scenarios. First, the behavioral equations employ simplistic (and

sometimes inconsistent) assumptions on price expectations and behavioral

response to expectations. In practice, consumer perceptions of future

prices and the effect of announcements or public committments to price

policies may be important policy issues. The ORNL model cannot provide

satisfactory answers to questions of how energy consumption patterns will

respond to different tactics for introducing and publicizing price

policies. A second deficiency of the ORNL model as a tool for analyzing

pricing policy is that it represents only one segment of one side of the

energy market, residential energy demand at home. Transportation,

commercial, and industrial demand are outside the model, as is supply.

Consequently, the feedbacks from demand to price through the

equilibration of demand and supply that occurs in the real world are not

easily accounted for in operation of the ORNL model. Put another way, it

is awkward to analyze prices and consumption levels in energy markets

without marrying the ORNL model to commensurate models of other demand

segments and supplies, and simulating market equilibria. The ORNL model

does not appear to have been designed with such a marriage in mind, and

so far as I am aware compatible mates are not on the horizon.

For price policies which affect rate structures or apply only to

segments of the population, such as introduction of inverted block rate

structures or lifeline rates, the ORNL model is not designed to provide

satisfactory forecasts. (An exception where the model should work is
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policy affecting appliance-specific rates, such as special rates for

electric heat or for all-electric homes, which with easy modifications

could be analyzed within the end-use specific format.) The model will

also have trouble handling broad price policy-changes when their impact

is heterogeneous within a region. For example, a policy alternative

which retards oil price increases should have a heterogeneous impact

between utility service areas on electricity prices, due to the impact of

various utility fuel mixtures on fuel adjustment cost clauses.

As discussed earlier, it is not feasible within the spirit of the

current ORNL model architecture to disaggregate below the regional or

state level. Consequently, the aggregation biases implicit in analyzing

policies which are heterogeneous at the utility service area level limit

fundamentally the usefulness of the model. On the other hand, it is

feasible, although not trivial, to modify current mouel architecture to

distinguish two or three income classes, permitting analysis of policies

such as lifeline rates and some more general inferences on the

distributional impacts of policy.

VOLUNTARY CONSERVATION POLICIES

A voluntary conservation policy is one in which government or energy

suppliers subsidize the development, production, installation, or

information about energy-efficient appliances or dwelling modifications.

The consumer then faces a market choice of whether to acquire a more

energy-efficient unit. Examples are tax credits for home insulation,

labeling of appliance efficiencies, and utility-supplied energy audits or

credit.
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The ORNL model can in principle provide satisfactory forecasts of the

impacts of many voluntary conservation policies. The primary task in

this application is to link the specific policy to the model inputs which

affect efficiency choices. Within the model, the two proximate inputs to

efficiency decisions are the parameters of the curve describing the

capital cost of equipment at various efficiencies, and the discount

factor which determines the behavioral tradeoff between capital and

operating cost. These inputs are not direct market variables, and hence

substantial analysis is required to translate market changes implied by

policies into parameter changes. An example is the ORNL analysis

(ORNL-CON-31) of the impact of various conservation policies on water

heaters, where extensive work is needed to refit the three-parameter

efficiency-cost curve for water heaters to the alternatives presumed

available under different scenarios. Becuse this curve reflects an

engineering calculation of fabrication cost rather than market price,

there is further room for errors to enter. Similarly, since the discount

factors reflect some (unknown) combination of market and behavioral

factors, it is not immediately obvious how they would be modified by

policies making credit available for energy investments, or subsidizing

interest rates.

The translation required above could be reduced considerably by

moderate architectural changes to make the ORNL model run directly off a

file of alternative appliances projected to be available in the

marketplace, and by reestimating behavioral models to identify a market

component and a behavioral premium in consumer discount factors. This

will work best for policies affecting appliance market price or credit

cost. Accurate forecasts of the impacts of improving consumer
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information or relaxing direct credit constraints are beyond the capacity

of the ORNL model, and at best can only be obtained by very intensive,

expensive, and problem-specific market research methods.

MANDATORY CONSERVATION STANDARDS

A mandatory conservation standard is one in which government requires

that new appliances or dwellings meet specific design standards.

Examples are insulation or burner efficiency standards on water heaters,

and insulation standards for dwellings constructed with

government-insured mortgages.

The ORNL model is well-suited for forecasting the impacts of

mandatory standards. The modules determining efficiency accept minimum

and maximum efficiency bounds which can be set to reflect mandatory

standards. The program modification suggested in the preceding section

to input directly a list of available appliances could accommodate

mandatory standards even more readily.

One potential problem in analyzing mandatory standards in the ORNL

model is the question of the interactions between'efficiency and other

appliance attributes such as capacity and service quality, and behavioral

response in these dimensions to efficiency standards. For example, there

appears to be a strong technological relationship between the efficiency

and capacity of room air conditioners. Will minimum efficiency standarus

for this appliance lead to oversizing, and consequent inefficient usage

patterns? Another example is water heaters, where burner efficiency

standards have reduced recovery rates, with a consequence that consumers

may move to larger units to maintain service level.
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SEASONAL AND TIME OF DAY PRICING AND LOAD MANAGEMENT

An important area of energy policy has been the management of

electric loads and reduction of peak capacity requirements by

introduction of seasonal and time-of-day (STD) pricing, or direct load

management methods such as timed or interruptable service. Analysis of

behavioral response to such policies requires an understanding of how

consumers utilize appliances through time, and the extent to which they

will reschedule activities to accommodate peak prices or periods of

unavailable service. Of particular importance is the long run

penetration of appliances such as storage water heaters or air

conditioners which facilitate shifting activities out of peak. While STD

experiments are beginning to shed some light on this behavior, there is

still no consensus on STD response patterns, particularly the critical

question of the extent to which peak shaving is accompanied by valley

filling.

The ORNL contains no module to forecast residential load or STD

response, and is unable to address policy questions in this area. It

would probably be feasible within the framework of current ORNL model

architecture to introduce appliance-specific relative load curves to

allocate total appliance energy consumption over time. With appropriate

input modifications, this allocation could be made sensitive to STD

prices. This is the approach proposed by Hausman, Kinucken, and McFadden

(1979). A much more difficult task would be introduction of feedbacks

from STD consumption to the forecasts of total appliance usage and

forecasts of long run decisions on appliance characteristics. These do
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not appear feasible in the ORNL framework, but must be addressed if the

basic question of the relation between relative load shape and total

consumption is to be answered.
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Section 8

RECOMMENDATIONS

REVISIONS AND EXTENSIONS OF THE ORNL MODEL

The detailed review of the ORNL model has pointed out a number of

weaknesses which could be corrected with modest effort, and are worth

correcting if the model is to be used for policy analysis. The most

limited and critical revision would be to clean and document the computer

code for the model, and eliminate logical inconsistencies, as detailed in

Section 5. Some of the suggested revisions require fairly substantial

changes in equation specification in some modules. For the most part,

these could be implemented without new calibration, and would require new

computer code only at well-defined program locations. However, some

modifications may affect data management in the program. While these

changes could probably be made on a piecemeal basis, I recommend that

when changes are made, the architecture of the model be reviewed with an

eye to rationalizing the input and output data management and improving

program flexibility.

A more ambitious revision of the ORNL model would reexamine the

calibration of model equations, and bring data now available to bear to

reduce unsupported judgements and refine behavioral estimates. 'It is

critically important that this not be done for the model in its current

form with basic flaws in logic and specification, but rather on a revised

model after the cleaning and respecification recommended in the first

paragraph.

Beyond the corrections and revisions suggested above, there are
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several directions in which the ORNL model could be usefully extended.

These extensions should be compatable with the general architecture of

the program:

a. Make housing behavior dependent on energy prices.

b. Disaggregate by two or three income classes.

c. Add a module to produce appliance-specific seasonal and daily load

curves.

ALTERNATIVE MODEL DEVELOPMENT

In addition to refinement of the ORNL model, a program for general

improvement of policy simulation methods would benefit from the following:

1. Continue development of large general purpose simulation models

using micro-simulation methods, as a way of overcoming the aggregation

biases and blindness to heterogeneities inherent in geographically

aggregated models like the ORNL model.

2. Explore development of a family of compatable simplified models

which could be operated in a "mix and match" mode with large general

purpose simulation models.

3. Integrate seasonal and time-of-day experiment data and models

into end use consumption simulation.

DATA COLLECTION

Currently available data on energy behavior is not yet adeqeuate to

construct a judgement-free simulation system. There are four areas in

which specific data are needed:
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1. Survey data on household appliance efficiency decisions, and on

voluntary replacement of appliances;

2. Improved engineering studies on tie technological relationship

between cost, comfort, and energy efficiency in structures and HVAC

systems, and on the production cost of other appliances of various

efficiencies, capacities, and service qualities;

3. Market price studies of the purchase, installation, and

maintenance costs of appliances of various efficiencies;

4. Experiments with consumer response to voluntary conservation

programs, load management devices, information programs, tax incentive

and credit programs, and other policies for which there are no close

historical analogies.

VALIDATION

The ORNL model should be the subject of a continuing program of

validation. Particularly useful would be an effort to monitor policy

applications of the model, policies adopted, and model accuracy in

predicting results. A second, but more costly, form of validation would

be to seek policy case histories, run the model with the information

available at the time of an actual policy decision, and compare model

recommendations and predicted outcomes with those actually observed.
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Section 9
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I have attempted to make this an objective review of the Oak Ridge

National Laboratory (ORNL) model, judged on its own merits. My opinions

on desirable and undesirable features in energy policy simulation models

are influenced by my own experience in designing simulation models in

this area. Some of the limitations and suggestions for improvements of

the ORNL model coincide with innovations in the simulation models witn

which I have worked, some made with benefit of hindsight from experience

with the ORNL model. Other suggestions concern deficiencies shared by

the ORNL model and my models. I have not in this report drawn.any

overall conclusions on the merits of the ORNL model in comparison with

other models including those with which I have been involved. It is my

opinion that at this stage of development, policy analysis is best served

by continued investment in refining and reworking a portfolio of parallel

simulation models.

To clarify the relationship between the ORNL model and the models I

have helped design, I shall give brief descriptions of the latter:

First, I designed an electric utility simulation model built by

Teknekron, Inc. for the National Commission on Water Quality in 1975.

This model operates at the state aggregate level, and does not forecast

end use consumption or appliance holdings. Second, I designed an
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electricity demand model developed by Cambridge Systematics, Inc. as a

subcontractor to Teknekron for the Federal Energy Administration in

1977. This model forecasts residential electricity consumption for eight

residential appliance portfolios, plus appliance saturations, at the

state level. Housing construction and appliance efficiency decisions are

implicit, and their effects cannot be isolated for policy analysis. This

model had three features not contained in the ORNL model: commercial and

industrial demand as well as residential demand was forecast; the size

distribution of residential electric bills within a state was forecast,

permitting analysis of lifeline rates; and the residential

appliance-portfolio-specific load curve was forecast, permitting analysis

of load management and peakload pricing policies. This model was

constructed to drive a full-scale industry simulation model which has

never been implemented. Consequently, the demand forecasting system has

never been used or validated.

Third, I am a designer of the Residential End-Use Energy Policy

System (REEPS) develdped by Cambridge Systematics for the Electric Power

Research Institute in 1981. This model was designed in light of

experience with the ORNL system, and shares a number of its features --

comparable end-use detail, explicit modeling of new construction and

appliance purchase behavior, determination of appliance efficiencies to

minimize life-cycle cost. The primary difference is that the REEPS model

operates on a simulated population of individual households rather than

on regional aggregates. It thereby avoids the aggregation problems

inherent in the ORNL model. The cost is introduction of statistical

sampling error which for some outputs can be reduced to an acceptable

range only by using a large and expensive simulated population. The
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REEPS model can be operated at a national level, but is primarily

designed for simulation at a state or utility service area level.

Validation of this model is incomplete. Many of the innovations in model

specification and estimation in the REEPS Model could be utilized in a

reworking of the ORNL model. Until such time as the regional scale of

the ORNL model is shown to be clearly superior or inferior to the

household scale of the REEPS model in all policy applications, a

conservative research-strategy would be to continue parallel development

of the models.

----' - IHIM
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i. Introduction

We are pleased to have been given an opportunity to comment upon

an evaluation of the residential end-use model developed here at Oak

Ridge National Laboratory. This evaluation is one of several critical

analyses of the ORNL model-including critiques by John Herbert; 1 David

Freedman, Thomas Rothenberg, and Richard Sutch; 2 and Robert Weatherwax. 3

What distinguishes Daniel McFadden's analysis from the others is that

he is generally more thorough, and that he accompanies his criticisms

with remedial suggestions. Because some of these criticisms were cited

previously (by. other critics), and because some of his recommendations

had previously suggested themselves as ways of better depicting policy

impacts,.we have been working in many of the areas of weakness noted.

On the other hand, there are other areas where McFadden's comments have

prompted either remedial modifications or contemplation of remedial

modifications to come. That we have been pursuing model development in

areas of weakness cited suggests an appropriate format for our comments-that

of discussing recommendations in terms of data availability, sensibility,

and implementation results and/or problems.

Therefore, in Section II we shall look at McFadden's recommendations

which appear only to be implementable with more and "better" data than

1John H. Herbert, "Selected Comments on the ORNL Residential Energy
Use Model," DOE/EIA/TR-0244, June 1980.

2David Freedman, Thomas Rothenberg, and Richard Sutch, "Analysis
Quality Report on Midterm Energy Demand: The Hirst-Carney ORNL Model
for the Residential Sector," reported submitted to NBS under contract
NB805BCA0492, June 1981.

3Robert Weatherwax, "Task 2.3: Comparison of the Capabilities of
the ORNL and CEC Residential Energy Consumption Forecasting Models,"
Information Validation of Energy Consumption in California, Final Report,
Report No. ERG-81-1, July 1981.
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currently exists. In Section III, we discuss areas of evaluation in

which we question the practical sensibility of, recommendations made.

In Section IV, we report those areas in which we are implementing, or

have implemented, McFadden's suggestions.

In following this format, we shall be specific and non-comprehensive.

We shall not attempt to respond to every issue raised. But in Section

V, we shall conclude our remarks with some brief comments about modeling

philosophy.

II. Model Shortcomings Related to Data Shortcomings

The ORNL residential model's original development was by Eric Hirst

and Janet Carney. Hirst has been recently involved in data analysis and

program evaluation. After reviewing McFadden's evaluation, Hirst has.

discussed with us several areas where remedial suggestions seem to

outrun data availability.

(1) McFadden's discussion of efficiency choices is excellent. His

examples are very helpful in clarifying the importance of different

aspects of these decisions. We shall later discuss implementation of

McFadden recommendations concerning usage in efficiency choice, and

simultaneous optimization.

But he also suggests that we try to incorporate (in our models) re-

lationships among capacity and service quality, as well as efficiency,

capital cost, and usage. We agree that this is desirable, but know of no

data on service quality and of very little data on capacity. The en-

gineering portions of the model could be expanded to include capacity

for heating equipment, air conditioners, and perhaps, water heaters and
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refrigerators. As McFadden points out, this is a particularly important,

consideration for heating/air conditioning systems. As will be described

later, we have instituted an implicit capacity adjustment (as a function

of new housing size) for space conditioning and water heating.

(2) McFadden also suggests that we not use fixed equipment life-

times. Yet, so far as we know, data on decay rates for household equip-

ment and appliances are sparse and non-comprehensive. 4 Moreover, McFadden

agrees that empirical survival curve data "does not address the choice

problems posed by stochastic survival or voluntary retirements." His

"Exercise 2" very nicely illustrates these problems. And surely, this

is an area in W*hich the future will be sufficiently unlike the past to

make the fabrication of an econometric relationship (determining life-

times) a tenuous proposition.

(3) McFadden recommends the inclusion of maintenance costs in life

cycle cost. We are unaware of the existence of significant data on

these costs.

(4) McFadden comments that "it is essential to distinguish (equip-

ment) scrappage and resale data." We agree, but know not where to find

such distinguishing data.

The issues of appliance filtering and scrappage were also discussed

by Freedman, et. al. They comment that:

Exponential scrappage may not be a good model for the actual
retirement process, on empirical grounds. Also, there are
some logical difficulties. The scrappage factor.q applies
uniformly across the stock, to efficient stoves as well as

4See, for example, data on cooking, refrigeration, freezing, and
washing and drying in-Consumer and Food Economics Institute, "Life
Tables for Major Household Appliances-July 1972 Survey," Aqricultural
Research Service, U.S. Department of Agriculture, Hyattsville, Md.,
July 1975.
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inefficient ones. This is questionable on economic grounds:
rational consumers might get rid of the bad stoves first.
Another problem is that the scrappage factor depends only
on the appliance, not on the fuel type. This may be un-
realistic. Finally, the decision to buy an appliance is
linked in a peculiar way to the scrappage process. Thus,
consumers with no freezers are represented in the model as
having "other/none" -fired freezers. Every eighteen years,
such shadow appliances break down, and only then do their
owners get to buy real freezers. (Eighteen years is the
assumed lifetime for freezers.)5

The authors' first point is well taken, and is germane to McFadden's

commentary in that it identifies the primary "scrappage" deficiency for

the residential model as a "macro-simulation model." We believe that it

is less important that the model keep track of appliance filtering than

it is that stock appliance efficiencies accurately reflect the efficiencies

of appliances retired. To this end, we are incorporating the necessary

bookkeeping in the "housing-stock-vintage" model currently under develop-

ment (and discussed below).

On the other hand, the authors' last point is specious, and is an

example of the fallacy of composition. Appliance choices are not associated

with particular micro-decision-unit-households tracked over the lifetimes

of their appliance stocks. The amorphous non-ownership category receives

an opportunity to be increased or diminished in each year of model simu-

lation.

(5) McFadden recommends "scrapping the double translation through

elasticities, and using the econometric model coefficients directly."

This particular comment begs the question of data sufficiency to supply

all the necessary partial derivatives of fuel-and-equipment choice

sFreedman, op. cit., p. 12 fn.
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relative to its determinants. The elasticity filter ("Elasticity Esti-

mator") was employed so that Hirst and Carney could apply judgment about

relationships among household fuel-and-equipment demands-in the face of

spotty data. It would be more difficult-and foolhardy-to apply judgmental

assessments to coefficient magnitudes. Nonetheless, we believe that

McFadden is correct on logical-consistency grounds, and his (later)

suggestion of a Bayesian framework implies recognition of the data

deficiencies.

A related logical-consistency issue is raised in McFadden's comment

that "the second translation is carried out at the values of shares and

explanatory variables prevailing in the region of application and year

of simulation." Translation in the year of simulation has never been

true of the Oak Ridge version of the residential model. However, Lawrence

Berkeley Laboratory uses a modified version which makes this logically

inconsistent translation.

III. Model Shortcomings Related to the Practical Sensibility
of Proposed Solutions

There are recommendations in two areas in which we have reservations

about the sensibility and feasibility of the modifications required:

(1) McFadden recommends a feedback loop from energy prices and

policies to housing numbers and size. Such a loop would include life-

cycle cost consideration of housing acquisition and space conditioning.

We have three reservations:

a. No program sponsor has expressed interest in financing
such an endeavor.

I sD
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b. It's unlikely that we would find much statistical re-
lation between household formation/housing choice and
energy prices. We had considerable difficulty (and
little success) in predicting housing choice as a function
of housing price (let alone energy price).

c. Perhaps, the "detectable" relationship exists between
household formation/housing choice and energy prices/
monetary authority-and-credit-market-response to energy
price changes. However, modeling this relationship
would imply confidence in our ability to supply "credit-
restrictiveness" explanatory variables over the fore-
cast horizon of the residential model. Merely developing
a minimal number (i.e., boundary cases) of monetary
scenarios would seem to be intractable.

(2) As a result of his very nice comparison of intertemporal utility

maximization and life cycle cost minimization, McFadden recommends the

joint determination of utilization and efficiency. His "Exercise 1"

illustrates the desirability of this procedure. However, we have two

reservations about joint determination within the current life-cycle-

cost-framework:

a. Of course, it is trivial that the LCC minimizing utili-
zation is zero. But also, if we simultaneously optimized
subject to a long run usage constraint such as that im-
posed by residential model function FU with long-run
coefficients employed, we would select the lower bound
.utilization of 0.5. Joint determination necessitates
changing the objective criterion.

b. If instead, we pursue a sequential determination (as
McFadden suggests as a second-best tack, and as we report
implementation of below) of usage and efficiency, we
confront problems with the behavioral foundations of
our analysis. The "more is better" principle of non-
satiation is not well suited to the analysis of "warm",
and "cool," and "intensity of light." One might argue
that the "current" optimal tangencies between isoamenity
curves and iso-life-cycle-cost lines are at bliss points
for the end uses-from which movement in any direction
is sub-optimal. (Incidentally, it is not true that
"current" efficiency choice in the ORNL model takes
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into account expected usage, as McFadden maintains.
Efficiency choices are made at constant amenity levels,
e.g., 70* space heat.) Short of the bliss-point ex-
treme, convexity of preferences should perhaps explain
usage variation within a restricted range-and do so
in an asymmetric fashion. For example, in the light
of night setback possibilities, an average usage which
translates into 80* space heat may be considerably
more suspect than is an average usage which translates
into 60* space heat.

But again, we may find ourselves suffering from the be-
havioral assumption of fixed preferencesj There is at
least casual evidence that individuals who have be-
come accustomed to lower thermostat settings find the
former settings uncomfortable and undesirable (relative
to other goods and services). Perhaps,.the problem is
in the oft-cited view that demand is for the end-use

.services; whereas, these services are "better" viewed
as (substitutable) inputs in household work and leisure
activities.

Notwithstanding our reservations, the McFadden comparison is persuasive

in its demonstration of the necessity of considering usage in efficiency

choice. Our methodology consists of minimizing life cycle cost at long

run expected usage levels determined by long run usage coefficients

applied to lagged values of operating cost and income determinants. Con-

sidering usage in efficiency choice (in the manner described) results in

"Hicks compensated" substitution along the isoamenity curve, given the

usage-induced perceived change in "energy" operating cost. Because

the chosen efficiencies are still relative to a "utilization level =

1.0" isoamenity curve, and because these efficiencies determine operating

costs which determine fuel-and-equipment market shares, these market shares

are adjusted to reflect expected usage different from that paid for

(in operating costs). 6

6 Daniel M. Hamblin, "Conversions from ORNL/CON-3 Estimation Coefficients
to Residential Model Simulation Coefficients, Oak Ridge National Laboratory
Working Paper, September 1981, pp. 17-18.



A-8

IV. Model Improvements Related to McFadden Recommendations

The consideration of usage in efficiency choice is one of many sug-

gestions which have been implemented, or which we plan to implement. From

our viewpoint, the salient characteristic of McFadden's evaluation was

the number of recommendations, the implementation of which should improve

the credibility of residential model simulations. The following is a

list of improvements/modifications which relate to specific recommenda-

tions:

(1) Elasticity corrections "in the direction of logical consistency",

(2) Addition of housing vintage structure/endogenous retrofit
consideration/energy data by income class,

(3) 'Associating housing-size-growth-induced increases in equipment
capacity with concomitant increases in equipment prices,

(4) Considering usage in efficiency choice,

(5) Correcting interest rates employed in fuel-and-equipment
switching,

(6)- Elimination of duplicative lags in LCC optimum efficiency
choices,

(7) Employing fuel price expectations in present value of energy
cost calculations for determining LCC optima, and

(8) Simultaneous optimization with equipment replacements over
the life of the structure/elimination of fractional-ownership-
aggregation-error.

We shall discuss each of these in turn:

(1) El'asticity corrections "in the direction of logical consistency."

As noted above, the fuel-and-equipment-switching simulation occurs

after a so-called double translation through elasticities. The existence

of this double translation poses two problems:
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a. Because judgment is employed to adjust the (intermediate)
elasticities, the simulation.coefficients are not logi-
cally consistent descendants of the estimated parameters.

b. Once judgment is given free rein, the human tendency is
to employ it again and again to make predictions of the
future conform to pre-conceived notions.

We would argue that the existence of the first problem (as a problem) is

an artifice without the existence of the second problem. Logical con-

sistency is a discipline imposed upon model practitioners.

The "Elasticity Estimator" filter was initially employed because

the data did not seem sufficient to permit sound estimation (of 272

needed parameters) by standard econometric techniques. Eric Hirst, et.

al., developed judgmental criteria which they applied to distribute

overall elasticities of household fuel demands among various components.
7

On the one hand, it would be the height of an econometrician's pretentious-

ness to suggest that the "logical" impurity of this procedure ordains it

with poorer predictions than would the direct employment of coefficients

estimated from spotty data. On the other hand, (as McFadden infers) an

"Elasticity Estimator" filter (or similar decision criterion) could be

employed to suggest values of priors (and constraint relationships among

elasticities) to be employed in a logically consistent mixed estimation

or Bayesian procedure. Moreover, new data sources such as the National

Interim Energy Consumption Survey (NIECS) 8 would help shift the basis

for inference from judgment to evidence. What has been lacking in the

Eric Hirst, Jane Cope, Steve Cohn, William Lin, and Robert Hoskins,
An Improved Engineering-Economic Model of Residential Energy Use, ORNL/CON-8,
April 1977.

Energy Information Administration, Residential Energy Consumption
Survey: Conservation, U.S. Department of Energy, DOE/EIA-0207/3,
February 1980.
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pursuit of a logically consistent tack is sufficient sponsorship to get

the job done.

But there is always pressure (from sponsors and others) to produce

year 2000 forecasts which are consistent with pre-conceived notions.

And it was discovered that Hirst's elasticities simply forecast too much

electricity in the year 2000. (The existence of documentation of a sound

rationale for this ex ante discovery is not known). But for this reason,

ad hoc adjustments in elasticity magnitudes were made without reconciling

the resultant elasticities with the "Elasticity Estimator" judgmental

criteria.

Understandably, the corrunity of residential model practitioners

and consumers has felt nervous about the defensibility of all this.

Therefore, we (at ORNL) re-examined the conversion procedures employed

to implement fuel-and-equipment-switching simulations in the model. A

number of inconsistencies were found which could affect the "severity"

of switching entailed by the original elasticities. In addition, other

problems and associated corrections (suggested by McFadden) impact upon

switching. The fuel-and-equipment-elasticity-specific issues and corrections

are discussed in an ORNL Working Paper.9 Moreover, a comparison was

made-employing a set of preliminary delivered prices (developed by Brookhaven

National Laboratory) reflecting accelerated deregulation of natural

gas-among three models: the model with ad hoc elasticity adjustments; the

model with original elasticities and original "conversions".; and the model

with original elasticities, corrected "conversions", and modifications

associated with improvements (3), (4), (5), (7), and (8) noted above.

9Hamblin, op. cit.
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The duplicative lags (noted in (6)) were eliminated in all three models.

Table 1 reports electricity shares.

Table I. Electricity shares forecast by tre
ORNL residential model

1985 1990 1995 2000

Uncorrected model with
ad hoc elasticities 0.30 0.35 0.38 0.40

Uncorrected model with
original elasticities 0.35 0.42 0.47 0.52

Corrected model with 0.33 0.41 0.46 0.51
original* elasticities

nf delivered Btu.

Over the historical period 1978-1980, with actual values of exogenous

variables, the differences among the three models' forecasts are quite

small. Of course, what is needed is a comprehensive calibration and

validation exercise employing the forwards-and-backwards methodology

recommended by McFadden. And, of course, such an effort is invariably

delayed in light of the hope that resources will come together to sponsor

implementation of a logically consistent fuel-and-equipment switching

methodology. But until either occurs, we recommend the "maximum-defensible-

forecasting tool" currently embodied in the corrected model with Hirst's

original elasticities.

(2) Addition of housing vintage structure/endogenous retrofit

consideration/energy data by income class.

A comprehensive architectural modification of the model is currently

underway. However, its accomplishment requires considerable expansion

of the model-and promises concomitant increases in core requirements

and run time. For example, energy use calculations will be embedded in

- -f-' i'..li---- ~- __ __ Ir - ;--=;dC- i:_xiam~a_ I-- -- --i-
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a by-income-class loop; and within each class, shell and equipment choices

will be relative to the birthdate of the house and the birthdate of the

shell (last previous retrofit). Evidence such as that which Hausman used

to infer income-class-specific discount rates employed in appliance choicelo

is suggestive of analagous income-class distinctions determining decisions

to retrofit (and by how much). In an outside-the-ORNL-Residential-Model-

context, the NIECS data have been utilized to estimate the influence

(upon retrofit actions) of income and other factors. 11

The anticipated "size" of this modified model appears to raise a

practical compatibility issue concerning its integration into the known

overgrown model which optimizes simultaneously (see improvement (8)

below) across configurations of fuels assigned to end uses, e.g., all-

electric-room-air-conditioned, gas-heated-central ly-air-conditioned,

etc. However, future attempts to drive the model with samples of house-

hold specific micro-data would seem to necessitate the combined implemen-

tation of this improvement and improvement (8).

(3) Associating housing-size-growth-induced increases in equipment

capacity with concomitant increases in equipment prices.

This very sensible recommendation not only affects equipment prices,

but also, the optimal equipment efficiencies chosen and the associated

energy use forecast. And in a model which optimizes simultaneously, the

tradeoff between equipment efficiencies and optimal thermal performance

of the shell is additionally affected. We implemented this recommendation

loj. A. Hausman, "Individual Discount Rates and the Purchase and

Utilization of Energy-Using Durables," The Bell Journal of Economics,
10(1), Spring 1979.

11Eric Hirst, Richard Goeltz, and Janet Carney, Residential Energy
Use and Conservation Actions: Analysis of Disaggregate Household Data,
ORNL/CON-68, March 1981.

- - ---~- .-*~rx~- ILIILl~eC asrah~r~Ber~er~ I I
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with respect to space heating, cooling, and water heating choices in

new buildings.

In response to a reviewer's comments, we have also implemented the

recommendation for replacement space heating, cooling, and water heating.

In this case, use of the existing-housing-size index to adjust equipment

price/capacity implies the representation of a weighted average of re-

placements in pre-base-year households and of replacements in post-base-

year households.

A worrisome aspect (of this modification) which is unaddressed by

most critics is that significant energy-use-efficiency gains may stem

from correcting the oversizing common in space conditioning equipment.

A compensating adjustment for this factor awaits additional analysis of

what equipment purchase and use data reveal.

(4) Considering usage in efficiency choice.

The methodology employed was described earlier in the discussion

of our reservations about the joint determination of usage and efficiency.

Implementing this improvement is subject to a caveat concerning the

operating cost explanatory variable determining usage in replacement

equipment. The architecture of the current model (inclusive of improvement

(8) below) does not permit knowledge of lagged-stock thermal performance

at the point where long run expected usage needs to be calculated. This

is because the model makes ca-lculations in several (sequential) N (= year

of forecast) loops, in lieu of, in one master N loop (as will be employed

in improvement (2) above). The lagged-stock thermal integrity index was

taken to be 1.0 in the calculation of operating cost to determine expected

long run usage of replacement equipment.
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As expected, this modification has compounded impacts upon equipment

efficiencies and thermal performances chosen, upon short-run usage factors,

and upon energy use forecasts. Generally, in the light of increasing

energy prices, less efficient equipment and shell were chosen given dimin-

ished long-run usage expectations, and more energy use was forecast than

was forecast in a ceteris paribus case in which efficiency choice was

not adjusted for usage.

(5) Correcting interest rates employed in fuel-and-equipment

switching.

Much commentary from various critics has been concerned with the model's

use of an array of interest rates, when economic theory seems to entail.

a single rate. Also, there is an underlying logical inconsistency

in the model's use of interest rates which seems to have been mostly

overlooked. That is, that the discount rate employed in efficiency

choice is logically inconsistent with the interest rates input to de-

termine equipment-price coefficients 12 for predicting fuel-and-equipment

switching. On the one hand, the residential model (with duplicative lags

removed) currently employs a single rate in efficiency choice-a rate

which declines temporally as a function of average-across-fuel energy

price increases. On the other hand, rates input for fuel-and-equipment

switching vary in three dimensions-between those employed for new structures

and those for old; among space heating (one rate)., water heating (another

rate), and all other end uses (a third rate); and between "own" and

"cross." Were these rates to vary temporally, analagous variation in

equipment price coefficients would be implied-a variation which neither

12Hamblin, op. cit., pp. 9-12.
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McFadden (see our earlier comments on parameter conversions in the year-

of-simulation vis'a vis base year) nor we deem appropriate.

At this juncture in model development, .we have implemented McFadden's

suggestion that rates might be distinguished between those applying to

portable appliances and those applying to attachments to the dwelling.

We have therefore dropped the new vs. old rate distinction noted above, and

drawn a new line between new-attached-to-the-dwelling-home-mortgage related,

and all other cases. We recognize that replacement space heating, air

conditioning, and water heating purchases can also benefit from mortgage-

rate-conditioned financing, but we lack credible data on the preponderance

of these benefits.

We are unhappy with the rate distinctions among end uses which exist

independently of the attached-portable distinction. However, until we

agree upon an appropriate, "defensible", single datum, we shall continue

to employ the different end-use-specific rates noted in the ORNL/CON-24

model documentation.

Prior to the implementation of a logically consistent fuel-and-

equipment-switching methodology, we are less sanguine about the removal

of the "own" vs. "cross" rate distinction. The interest-rate-determined

equipment price -coefficients are a substitute good for a smaller set of

very suspect equipment price coefficients estimated (in ORNL/CON-3) from

very poor equipment price data. The notion of the rate distinction is

that, in capitalizing expected fuel savings in equipment purchase price,

a savings premium is required if the consumer must undergo the hookup-

and-attendant costs of switching fuels. Hence, as a working through



A-16

(with "own" and "cross" rates) of equation (14) of the (above-cited)

ORNL Working Paper demonstrates, 13 the higher "cross" rates engender an

inertial effect on the fuel choice associated with equipment purchases.

(6) Elimination of duplicative lags in LCC optimum efficiency

choices.

We have followed McFadden's recommendation and retained the "sluggish-

ness" in discount rate adjustment, while throwing out the adjustment in

"bottom-line" efficiency away from the optimum. McFadden asserts that

the latter lag is defensible "if it is realistic to argue that there are

significant delays in delivering equipment with desired efficiency

levels to the market." But it might also be argued that greedy profit-

taking entrepreneurs might inundate markets with efficient equipment

before sluggish-discount-rate consumers are "ready" to purchase. As a

result, equipment would be offered at discounts unanticipated by the

relative prices along our technology curves. In the light of the alter-

native possibilities, it seems appropriate to un-obfuscate the issue,

and simply employ one lag.

(7) Employing fuel price expectations in present value of energy

cost calculations for determining LCC optima.

We have expanded the model structure to accommodate an expected

fuel price escalation factor in the present worth calculations. We have

not yet achieved the McFadden "ideal" in an endogeneous characterization

of expected fuel price changes "as functions of historical patterns and

announced energy policy." Rather, we compute an average price escalation

factor from the vector of forecast fuel prices input into the model.

1 3 1bid., p. 11.
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This procedure may approach the "ideal" in the sense that (someone

else's) behavioral determinants underlie,the forecast fuel prices;

however, as the forecast horizon progresses, the credibility of the

procedure weakens, and in the boundary case of the last year of forecast,

the fuel price escalation factor implies that the next twenty years will

be just like the past twenty years.

We know of little sound evidence on the nature of consumer price

expectations. A cross-sectional analysis of consumer discount rates

which employs consumer-specific fuel price in determination of operating

costs 14 might-be interpreted as a long run characterization of behavior

under rational price expectations. Rather than forecasting energy use

predicated on efficiency choices which (in turn) depend upon non-falsi-

fiable assumptions about price expectations, it might be preferable to

assume rational price expectations and to examine the cost-effectiveness

of policies in fulfilling the efficiency demands conditioned upon this

"private" rationality. For contrast, we might obtain a conservative

lower bound for conservation policy impacts with the present-value-of-

energy-costs price vector obtained by applying adaptive expectations

parameters to present and past values of (exogenously) forecast-and/or

actual-energy-price observations. 15 Adaptive and rational expectations

converge when only past values are available for prediction.

14Hausman, op. cit., p. 39.

IThe seeds of this suggestion were sown in recommendations by
John Holte of the Energy Information Administration.
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(8) Simultaneous optimization with equipment replacements over the

life of the structure/elimination of fractional-ownership-aggregation

error. 16

McFadden recommends the joint determinati,on of space conditioning

and thermal efficiency. However, given the non-trivial magnitude of

water-heating costs 17 and the provision of water heaters with the structure,

we have included this end use in the joint optimization problem. Simul-

taneous optimization also provides the opportunity for discerning shadow

prices associated with energy policies which can be characterized as

constraints. For example, building energy performance standards (which

do or do not permit tradeoffs among the shell, space conditioning, and

water heating) can be considered directly in the constrained optimiza-

tion framework.

What needs to be noted about implementing this recommendation is

that it considerably enlarges model structure. For each building type,

simultaneous optimization (for new building equipment and thermal effi-

ciency) is relative to sixteen configurations of fuel assignments to end

uses. Table 2 delineates these assignments.

The (Table 2 noted) distinction between room air configurations and

central air configurations eliminates the aggregation error inherent in

the optimization of thermal integrity for a structure with a fraction of

central air and a fraction of room air. Moreover, the amenability of

16 1n implementing these structural modifications, we would like to
gratefully acknowledge the programming assistance of Kathryn Ann Hall,
formerly of ORNL), and the helpful critical comments and encouragement

of Richard Barnes and Eric Hirst.

17Residential (national) base period and forecast values of primary
energy consumption in water heating are approximately three times primary
energy consumption in residential air conditioning.
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Table 2. Building configurations for which life cycle
cost is minimized

Heat Room air Central air Water

Electric

Electric

Gas

Gas

Gas

Gas

Oil

Oil

Oil

Oil

Oil

Oil

Other

Other

Other

Other

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Electric

Gas

Gas

Electric

Electric

Oil *

Oil

Electric

Electric

Gas

Gas

Other

Other

Electric

Electric
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the Table 2 breakdown to household-configuration-specific energy use

data suggests potential for a further assault on aggregation error in

the model. Another desirable "aggregation" feature that simultaneous

optimization currently provides is in its allowance for less-than-

baseline efficiencies (indices greater than 1.0) when marginal rates of

substitution and of product transformation so dictate. A salient example

is in the case of all-electric households, where efficient space heating

is optimally associated with a "loose" shell. And because optimization

occurs over the life of the structure, McFadden's recommendation that

the present worth of equipment replacements be incorporated in the joint

determination problem is followed.

For each configuration, constrained simultaneous optimization re-

quires the joint determination of the three equipment efficiencies, shell

thermal performance efficiency, and the Lagrange multiplier. Additional

implicit constraints are the non-linear cost-performance isoamenity.

technology characterizations. The Lagrange solution method employed re-

quired implementation of a double convergence iterative technique (using a

quick-convergence "golden rule" algorithm) in which convergences are on

space heating thermal integrity and the Lagrange multiplier. A nice

aspect of this technique, applied to the analysis of a "binding" building

energy performance standard, is that the initial thermal integrity index

convergence-obtained with the Lagrange multiplier set at zero-is the

lower bound. It is the maximum thermal performance required, if no

tradeoff help were permitted from efficient equipment choice. If desired,

the shadow price associated with this extreme can be obtained by "fixing"
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equipment efficiencies in the constraint (only) at baseline values. The

all-electric household result cited above suggests that this can be an

expensive way to conserve energy.

The enlarged-mode structure required for the simultaneous optimi-

zation described necessitates almost three times as much core as the

model without this modification, and needs approximately twice the run

time. The latter is a function of convergence tolerances set. The

tolerances currently employed are 1000 Btu's/unit/year on outside-loop

constraint convergence and 500 Btu's/unit/year on inside-loop thermal

performance convergence. The former is a function of the degree of in-

tegration of the simultaneous optimization into the pre-existing model

structure. The modification was executed with a core-intensive minimal

amount of integration. The preservation of pre-existing and modified

structures permits one (by incrementing a counter) to contrast the pre-

dictions of sequential optimization with those of simultaneous optimiza-

tion. .There is also a significant tradeoff. between labor (development)

costs associated with integrated structural treatment of simultaneous

optimization for new buildings and "vintage structure" characterization

of Qold buildings and core requirements associated with tandem treatment

of these two modifications.

Perhaps, the most glaring unachieved accomplishment-which would

address recommendations by most model critics-is the completion of a

comprehensive calibration, validation, and updated-documentation exer-

cise. We believe that McFadden's recommendations for forward calibra-

tion/backward validation, and for sensitivity analysis on conservation

program impacts are appropriate and should be incorporated in the exer-
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cise. There have been two primary hindrances to accomplishing this

task:

(1) The revealed preference of sponsors has been to want calibration,

validation, and documentation and not to want to pay for calibration,

validation, and documentation.

(2) Eric Hirst's original brainchild is in a phase of maturation

and public exposure in which problems are recognized, solutions identi-

fied, and remedial actions taken. Resource scarcity dictates that

calibration, validation, and documentation be delayed until the model is

as ship-shape as possible.

V. Conclusion: Modeling Philosophy

Daniel McFadden's recitation of Murphy's Law applied to models is

an appropriate warning to both model builders and model consumers. It

seems to be the inherent nature of things that model availability in-

vites model question asking which ought to breach the credulity of the

least cynical onlooker. And as Britton Harris likes to point out, the

problem with computer models is that the GIGO acronym-Garbage In, Garbage

Out-bedomes anthropomorphized into Garbage In, Gospel Out. When there

are three or more figures to the right of the decimal point, the impulse

is overwhelming to anoint the answer with the mantel of absolute truth.

Our position is that the ORNL residential model is an imperfect,

capable-of-being-improved, but nonetheless useful tool for providing in-

sights on a limited (but significant) number of policy issues-analyzed

at a reasonable cost. We hope that we (as model builders) and our

sponsors (as model consumers) can and will make better predictions than

our model makes. Paul Sameulson's method for beating the macro-models
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is appropriate. He employs the models' predictions, as well as his

knowledge of the restrictive assumptions and limitations of the models,

to educate his judgment about what the future holds. We hope that

sponsors come to recognize that their ability to operate successfully in

this mode, with respect to energy models they employ, requires the

existence of up-to-date calibration, validation, and documentation.

Finally, as model builders whose products may engender further

evaluations, we would like to reserve the human frailty option of occa-

sionally mixing.wrong ideas with right ideas, and bad ideas with good

ideas. On this, we agree with Freud:

Only believers who demand that science shall be a substitute
for the catechism they have given up, will blame an investigator
for developing or even transforming his views.18

18 Sigmund Freud, "Beyond the Pleasure Principle," The Standard
Edition of the Complete Psychological Works of Sigmund Freud, Vol. 18,
James Strachey and Anna Freud, Translators, London: The Hogarth Press,
1955.
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