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UNCERTAINTIES IN ENERGY TECHNOLOGY ASSESSMENTS

by

DAVID EDWARD COATE

ABSTRACT

In order to make important contributions, energy technology
assessments must be large, interdisciplinary projects, generally becoming
very time consuming and expensive. This small project does not involve
a large assessment, but instead combines several different types of
investigations aimed at exploring the potential for, and significance of,
uncertainty in the energy technology assessment process. First, a
survey and discussion is presented of technology assessments, primarily
from a methodological viewpoint. A general ideal methodology is developed
and the potentials for incorporating uncertainties are described. Second,
there is a detailed development of meteorology, demographic and health
impact components, the key components in energy technology assessments.
There is particular emphasis on the impacts of assumptions and potential
methods for incorporating concepts of uncertainty. Finally there are
included three small examples of energy technology assessments. These
have been tailor-made to demonstrate the possibilities and importances
of the concept of uncertainty in these assessments.
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1. INTRODUCTION

We are at a pivotal point in the history of our civilization. The

prevailing theory of historians is that the fall of every civilization

(Chinese dynasties, Egyptian, Greek, Roman, etc.) has come as a result

of energy supplies falling below the minimum energy demands necessary to

sustain the infrastructure of those civilizations. For example, the

collapse of some is believed to have been caused by the unavailability

of wood and slave transportation energy, and the resultant lack of heat,

food, and other supplies.

Our industrialized civilization has grown quickly as a result of

technologies that have been developed to extract and utilize the hydro

and fossil fuels as energy sources. Up to this point in time, not much

attention has been paid to energy issues because hydro and fossil fuel

costs were so low and supplies were abundant. As these energy resources

have depleted, leaving us closer to minimum required energy demands, and

as environmental issues have become increasingly more important to the

public, assessments of future directions for energy sources and energy

technologies will be under more public scrutiny and will have

substantially greater importance.

In this study, "technology forecasting" will be included in the term

"technology assessment."

Definition:

Technology assessment is the process of taking a

purposeful look at the consequences of technological change.
It includes the primary cost/benefit balance of short-term,
localized marketplace economies, but particularly goes beyond

1100M



-5-

these to identify affected parties and unanticipated impacts in
as broad and long-range fashion as possible. It is neutral and
objective, seeking to enrich the information for management
decisions. Both "good" and "bad" side effects are investigated
since a missed opportunity for benefit may be detrimental to
society just as in an unexpected hazard (Carpenter, 1973, p.
41).

Energy technology assessments are generally conducted using

assumptions, methodologies, and data that can considerably bias the

results. "Moreover, unless and until Technology Assessment is seen in a

broader social and philosophic framework, it is bound to be a one-sided

apologia for the prowess of existing technology. Genuine Technology

Assessment must be essentially critical, not apologetic, with regard to

technology" (Skolimowski, 1976, p. 421). Skolimowski says that

technology assessments are done by technicians while paying lip service

to "social aspects." He adds that "methodology takes precedence over

values and we gently ride on the high horse of quantitative techniques

toward the instrumental paradise" (ibid., p. 424). This point, that the

assessing of a system should be done by those outside of the system to

remain unbiased, is difficult to achieve in practice because those with

expertise about technologies will naturally have invested considerable

personal resources in those technologies and thus will tend to have

optimistic biases.

It is clear that either faulty assumptions, methodologies, or data

can propound error. "Methodology expresses (and traces the implications

of) core assumption reflecting the forecaster's fundamental outlook.

Sophisticated methodology cannot save a forecast based on faulty core

assumption" (Ascher, 1979, p. 149). William Ascher stresses the
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importance of-the assumptions compared with methodology: "The

development of greater methodological sophistication has not

significantly improved forecast accuracy. The (often [greater than]

linear) deterioration of accuracy with lengthening of forecast time

horizons proceeds regardless of method" (ibid., p. 149). However, the

complexity and large data requirements for a methodology are not

inherent in the methodology. "It is the real-world situation and not

the methodological analysis which presents the complex interrelationship

and the necessity of a large data pool. No model nor methodology can

greatly simplify a complex situation without losing some validity"

(Bareano, 1972, p. 189).

It is instructive to compare technology assessments conducted by

institutions with the differing special interests of those

institutions. A university study done from a national point of view

would likely have a different goal orientation than a corporation or

private interest (Humes, 1974, p. 145). Also, assessments may be

undertaken to gain support for a favorite project or decision already

reached. "Thus it is important to know not just how a forecast was

made, but why it was done as well, in evaluating its worth" (Kiefer,

1973, p. 140). These considerations are the motivation for this study,

which includes a systematic investigation to determine the areas and

extent of biases in energy technology assessments. Both methodological

and data biases are evaluated, primarily through the use of equally

defendable or superior alternative methodologies or data.
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1.1 Historical Perspective

It is interesting to look at past technology assessments in order to

see what not to do. History provides us with many examples of

technological innovations that were total failures simply because of

inccmplete technology assessments. Many of these past technology

assessments "...have been undertaken in response to a specific problem

created by the introduction of new technology into society, rather than

in anticipation of innovation... Assessment in the past has often been

on a trial-and-error, hit-or-miss basis, with little perspective beyond

short-term hazards, opportunities, and alternatives. It has viewed the

future narrowly--if at all--as no more than an extension of the

immediate past" (Kiefer. 1973, p. 137). Looking back 75 years, experts

might have predicted that a gasoline-powered machine would replace the

horse-drawn vehicle. But it is unlikely if they could have anticipated

that the automobile would be directly responsible for one out of every

seven jobs, that it would kill 60,000 U.S. citizens each year, and that

it would cause significant impacts on public health via the emission of

harmful air pollutants (Jones, 1973, p. 143).

Clearly, we are idealistic and naive if we suppose every nuance of a

future technology can be predicted. "To use a historical example, it is

doubtful that, given the time and manpower..., we could have predicted

the contribution the elevator would make to traffic congestion in cities

(assuming continued reliance on individual transit). It is these highly

indirect impacts which are, of course, the hardest to foresee and which

sometimes have the most far-reaching effects upon the society. They



-8-

usually becom evident only after prolonged experience with the

technology..." (Humes, 1974, p. 156).

No technique of assessment can really envision the flashes of

innovation or the unpredictable discoveries which lead to great

technological change. The occurrence of technological breakthrough

really cannot be predicted. For example, an aircraft industry

researcher of the 1940s would have predicted the maximum air speed of a

prop plane based on the theoretical limit being the speed of sound. He

could not take into account the advent of the jet engine.

Another great deterrent to technology assessment is technological

dependence upon sociopolitical influences. "The fundamental difficulty

in foretelling social and political change-or of even divising

meaningful social indicators for measuring such changes

statistically--remains a serious obstacle not only for technological

forecasting but for technology assessment as well" (Kiefer, 1973, pp.

139-140). Value systems of society and political authorities are hard

to define, and even harder to describe how they will change with time.

.. '~~" -IIII IIIIYII1111 Yllllllul- ---- ---- -- -- - -- ' -
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1.2 Alternative Methodologies

There are numerous methodologies for technology assessment. Some

may work better than others but still depend heavily on the core

assumptions. The Delphi technique "...is designed to apply the

collective expertise and intuition of a panel of anonymous experts by

developing a consensus through several steps of systematic questioning

and polling about future events. The polling process is carefully

organized so as to minimize the biases that might otherwise arise from

interacting personalities or other psychological influences within the

expert panel" (ibid., p. 138). Delphi techniques work best when

historic data are unavailable, sociopolitical considerations are needed,

or qualitative or subjective information is necessary.

Other methodologies including parameter-fitting, curve-fitting, and

structural-fitting are used when the appropriate data are available. A

refinement of curve-fitting is the envelope curve technique (Kiefer,

1973, p. 138). A general curve is superimposed to a number of specific

curves. For example, the maximum speed of transportation could be

forecasted by superimposing a curve onto specific historical data of

various modes of transportation. Curve-fitting is based on the

assumption that there are predictable trends in the manner in which

"...the technology that will be put in use tomorrow is foreshadowed by

the science of today or is a direct outgrowth of current technological

knowledge" (ibid., p. 138).

Other techniques include the jury system, market system,

cost-benefit analysis, and adversarial processes. The adversarial
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process facilitates the articulation of all relevant facts both pro and

con. Unfortunately, this and other assessment methodologies, are

particularly susceptible to the biases in the situation where the

proponents of a technology have an advantage over the opponents because

of organizational and financial resources. This is when technology

assessment becomes "...slanted in a subtle and often an explicit way in

favor of the assumptions underlying the technological civilization, of

which it is supposed to be an assessment" (Skolimowski, 1976, p. 422).

Figure 1-1 shows a generic seven-step methodology laid out by MITRE

(Jones, 1973, p. 148). This scheme illustrates how assumptions are built

into a methodology. Usually, the assumptions are not quite as evident.

Weighting schemes are frequently used in technology asessments,

probably because of their easy implementation and easy interpretation.

For example, one methodology computes a score for a technology and

allows comparisons of technologies by comparing scores (Humes, 1974, p.

152). The weights are assigned by a panel of "experts" and thus the

scheme is essentially subjective. "Even with detailed printed

instructions, examples and close supervision, it is impossible to

enforce consistency of interpretation and scale on a group of diverse

individuals on the first round of assessments" (ibid., p. 154). There

is nothing wrong with this type of subjective assessment, except that

the highly quantitiative methodology sometimes presents the appearance

of greater objectivity than is warranted.

An intuitive, hence subjective, method is scenario writing: "A

scenario attempts to describe, in systematic but hypothetical and

largely qualitative terms, the future sequence of events that would

i. - -. ' ".l-a- -- -- ___ - ._--------+-=~E;~-~~n-~._l- r~--~L-~I~l -------ii~-----~--- _ __ _~ ~___ _~__
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STEP 1 DEFINE THE ASSESSMENT TASK

Discuss relevant issues and any major problems
Establish scope (breadth and depth) of inquiry
Develop project ground rules

STEP 2 DESCRIBE RELEVANT TECHNOLOGIES

Describe major technology being assessed
Describe other technologies supporting the major

technology
Describe technologies competitive to the major and

supporting technologies

STEP 3 DEVELOP STATE-OF-SOCIETY ASSUMPTIONS

Identify and describe major nontechnological factors
influencing the application of the relevant
technologies

STEP 4 IDENTIFY IMPACT AREAS

Ascertain those societal characteristics that will be
most influenced by the application of the
assessed technology

STEP 5 MAKE PRELIMINARY IMPACT ANALYSIS

Trace and integrate the process by which the assessed
technology makes its societal influence felt

STEP 6 IDENTIFY POSSIBLE ACTION OPTIONS

Develop and analyze various programs for obtaining
maximum public advantage from the assessed
technologies

STEP 7 COMPLETE IMPACT ANALYSIS

Analyze the degree to which each action option would
alter the specific societal impacts of the
assessed technology discussed in Step 5

Figure 1-1 Various Stages in the Process of Technology Assessment
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appear logically to evolve, step by step through cause-and-effect

relationships, from any given set of conditions or recognized trends.

Enphasis is placed on those critical decision points from which

alternative chains or events might arise and on the simultaneous

interactions between events and their environment. A single set of

assumed initial circumstances can generate an entire family of related

scenarios (or alternatively futures), any one of which may be plausible"

(Kiefer, 1973, p. 138).

"Normative" forecasting starts with some future need "...and

attempts to work backwards in time toward present capabilities so as to

define the technological pathways and means by which a goal might be

reached and to identify the technological barriers which must be

overcome in the process. The aim is less to prophesy than to "invent"

the future, with the focus not on that which might happen but on that

which should happen" (Kiefer, 1973, p. 139). It is clear that such an

analysis can be highly subjective and rests on such assumptions as

unchanging social values.

The role of methodology in technology assessment should be as a

thinking and decision making tool. Assumptions and qualitative aspects

inherent in the methodologies should be viewed as flaws and pointed out

clearly. If the public is going to take technology assessment

seriously, especially in the controversial area of energy, current

methodologies and reporting techniques will have to change.

"Forecasters frequently seem more enthralled with the entertaining tasks

of model building, manipulating and massaging series of data, and
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imposing some'sort of formal stylized structure on the seemingly random

process of scientific discovery and technological innovation than they

are with the more mundane chore of explaining to the world outside what

their studies and speculations are all about or how they might find

practical application. Increasingly sophisticated and complex

methodology may appear designed, as a result, less to make forecasting

more reliable and rational than to conceal its shortcomings and veil its

relevance to the world at large" (Kiefer, 1973, p. 140).
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1.3 The Role-of Uncertainty

Uncertaihties in technology assessments become very important when

comparing different energy technologies. Many uncertainties are beyond

the scope of a technical assessment, for example, those uncertainties

that result from national priorities shifting substantially over short

intervals. Such a shift within our recent experience is the fast-rising

concern over energy issues, at the expense of a rapid deemphasis of the

space program.

There are, fortunately, many uncertainties that are amenable to

treatment within current technology frameworks. Where the accuracy of

forecasts often deteriorates linearly with time, one can set rough

confidence intervals. Also, much can be done to use data that is as

current as possible. Using outdated data propounds error

unnecessarily. But there is "...uncertainty as to whether recent data

actually represent a new pattern that negates the old assumption"

(Ascher, 1979, p. 152).

Probably the greatest uncertainty in technology assessment, and the

hardest one to reduce, is due to sociopolitical factors. The nuclear

power industry is a good example of this. "The greater uncertainty in

forecasting technological developments requiring political decisions and

large-scale programs indicates the importance of improving

sociopolitical analysis. The social indicators and scenario approaches

are two means for achieving this improvement" (Ascher, 1979, p. 149)

William Ascher lists three types of uncertainties in technology

assessment in order of increasing uncertainty (Ascher, 1979, p. 153):
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I. Smallest disperson: Technological areas in which advancement
depends on engineering refinements and the disaggregated market
diffusion of such innovations.

II. Less certainty: For predictions of advancement in large-scale
programs, the political aspect adds an additional degree of
uncertainty to that already surrounding the technical
feasibility of the programs.

III. Most uncertainty: innovations requiring basic scientific
breakthroughs.
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2. -ASSESSMENT METHODOLOGIES AND GENERAL ASSUMPTIONS

In technology assessment the methodologies and the assumptions are

usually so intertwined that it is not possible to discuss them

separately. Since the methodology can be viewed as the framework of the

assessment, as well as the vehicle of the principal assumptions, the

alternative methodologies will be treated first.
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2.1 Alternative Methodologies

It is anextremely difficult task to try and characterize the range

of all possible energy technology assessments. Part of this difficulty

is due to the scattering of the methodologies into apparently every

possible analytic direction. The rest of the difficulty stems frcm the

lack of any real formalism to the modeling science. As an attempt is

made here to develop some of this formalism. Figure 2-1 illustrates a

schematic diagram of a proposed methodology that includes all the

desirable qualities in an energy technology assessment. One possible

starting point for the discussion of methodologies comes from the

natural origin for all modeling activities: a definition of objectives.

"It is difficult to to make a simple statement of the purpose of

integrated assessment; there is a hierarchy of objectives, and the order

will change with time and will contain hitherto unknown dimensions.

Broadly speaking, there is a need for the timely development of relevant

knowledge and its diffusion to a broad audience -- but especially to the

general public, regulators, scientists, and engineers" (Gruhl, 1979).

The research and academic communities for generally responded to these

needs by identifying complex energy technology assessment methodologies,

with few actual applications.

Modeling undertaken in an application-oriented, integrative
context (i.e., the synthesis and integration of current
knowledge) has a better chance of facilitating decision making
than modeling undertaken as basic research. This is not to
belittle the role of basic scientific research, but to suggest
that modeling must be undertaken with different and perhaps more
pragmatic objectives (SCOPE, 1976).
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From an examination of the literature it appears that another

natural starting point in the investigation of a technology assessment

comes from the data used to characterize the Performance Measures of the

Technologies, as shown near the center of Figure 2-1. There are two

types of assumptions that pervade the choice of these performance

measures. First is the Value System used by the assessor/modeler. Few

authors of the assessment literature have reorganized the inherent bias

in the types of performance informations that are collected about the

technologies. The principal focus of the capabilities of a model is

fixed at the point when data is collected about the technologies. The

academic and professional backgrounds of modelers also bias the modeling

procedure at this stage, due primarily to familiarities with sources and

techniques for handling certain types of data. It would be instructive

for modelers to begin their modeling activities by stepping back and

taking a global perspective to their assessment problem, and documenting

the motives for including or excluding data of certain types such as

data types listed in Table 2-1.

The second assumption of great importance to the performance

characterization is the extent to which the performance measures are

coupled to energy system requirements. The most simplistic technology

assessments just provide evaluations of performance that are not in the

context of the specific needs of the energy system. Whether the

technology is to be added to some local area, or to be added massively

nationwide, it can be the most dominant part of the assessment to

evaluate the manner with which that technology can both respond to the
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Table 2-1

SOME OF THE VARIOUS DISCIPLINES
THAT HAVE BEEN ASSOCIATED WITH ENERGY RESEARCH (Gruhl, 1979)

Economics

Policy Analysis

Decision Analysis

Operations Research

Management

Law

Institutional Analysis

Energy Planning

Energy Engineering

Analytic Chemistry

Seismology

Mining

Transportation

Atmospheric Dispersion

Hydrology

Waste Management

Land Management

Ecology

Environmental Management

Health Studies

Psychology

Sociology

Demography

Urban Studies

----m- ---- ~-~-. __,, ~ C .-_ -- I~ ._.~I~... ~--I r^r------ --- 9 ---- s------rply~a _~~__ _ _~ _ __



-21-

peculiarities of the other energy supply sources. Recognizing this

need, several modelers have provided coupling of the performance

measures and the energy system, again as shown in Figure 2-1. Of lesser

importance, frcm the standpoint of energy technologies, is the extent of

coupling of the non-energy system to both the energy system and the

performance measures (e.g., might there be rate-constraints on the

availabilities of certain materials or manpower). The method, format,

and data used for the construction and calibration (also shown in Figure

2-1) of the performance measures, energy system model, and non-energy

system model, provides another key difference between various energy

technology assessments. The concept of uncertainty could generally

introduce itself at this calibration stage, being represented by

probabilistic characterization of inputs and parameters in the

assessment models.

For some reason the Decision Rules portion of Figure 2-1 has

presented the principal preoccupation of technology assessors. Perhaps

it is because it is usually the non-engineers that conduct assessments

and the Decision Rules segment represents the primary part of the

assessment that does not deal with engineering problems. Table 2-2

(Gruhl, 1979) shows many of the modeling technologies currently

available and it can be seen that any of these can probably be used to

capture the essence of the decision rules.

Again as shown in Figure 2-1, the Value System, or the manner of

measuring desirability, of the modeler will impose itself strongly on

the selection of the Decision Rules. Even for models that do not
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Table 2-2

Methodologies Available for Representing the
Decision Rules for a Technology Assessment

Static Optimization

o Linear Programming

o Nonlinear Programming

o Integer and Mixed-Integer Programming

o Gradient Searches

Dynamic Optimization

o Dynamic Programming

o Dynamic Parametrics

o Optimal Control

o Stochastic Optimization

o Algorithmics

Simulation

o Descriptive, Prescriptive

o Holistic, Causal, Normative

o Continuous, Discrete

o Stochastic Representation

o Parametric Analysis

o Allocation and Equilibriun

o Input/Output

o Econometric, Trend Analysis

o Regression

o Organizational Modeling

o Interpretive Structural

Nonmodeling

o Judgment Eristics

o Expert Opinions

o Hedonic

o Decision Analysis

o Individual Behavior

o Bidding and Simulation Games

o Cross-Impact and DELPHI

I-- - --- ,IUIl M o
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include decision logic, there are value systems implicit in the types

and displays of outputs. Some value systems that have been used in

energy/environmental models include:

o Bureaucratic (exhaustive) display,

o Noninferior sets,

o Multiattribute decisions,

o Infinite value or uncompromised protection,

o Cost-benefit or economic optimum, and

o Surrogate indexes or weighting schemes

In addition, each of these systems can be operated with or without

explicit quantifications of the risks involved in the decision-making

process. The obvious problem with value systems is that impacts not

predicted by the model will carry no weight in the model's decisions.

Extremely important issues such as stability of the establishment,

survival of the private electric power sector, or intergenerational

equity therefore generally are not considered in models because

vulnerability to foreign disruptions, infrastructure problems,

intervenor effects, and public perceptions of problems are not included

in model outputs.

Despite the obvious importance and uncertainty inherent in the Value

System, we found no models that offered alternative system nor discussed

the biases of the system presented. In an assessment it would seem to

be very important to be able to separate the "value judgments" from the

methodology. An assessment technique will not be useful if the user

cannot use his own value system or clearly see the author's.
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L. Thiriet urges the use of caution when dealing with quantified

sybjective judgments: "We feel that one's first concern should be to

make the method used acceptable both to the authorities and to the

public. (We think the influence of the public should probably only

increase in the future). One should therefore avoid resorting to too

hermetic a language, using a too canomplicated system of notations,

aggregation, evaluation of probabilities. This would save one from the

temptation of believing in the rationality of choices in the field of

environment, when these contain an irreducible and very important part

of non-rationalizable elements. Moreover, the results of such a

sophisticated study would not convince the public" (Thiriet, 1974, p.

230). L. Thiriet prefers a study that "...avoids all quantitative value

indicators which would risk letting the reader in a hurry believe in a

rational and scientific estimation. It should, on the other hand,

suggest options judged preferable to others by arguing -- one might also

say by pleading -- in a sufficiently detailed manner to allow the

authorities to make their decision by the light of a clearly expounded

document" (Thiriet, 1974, p. 233).

I __ I___ ~_~ - -- ~~ ____ II IY I YIII IIYIIYYI YIYIIIYIIYIII i ~ ~
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2.2 Imbedded Assumptions

Ascher points out the importance of assumptions: "It must be

recognized that behind any forecast, regardless of the sophistication of

methodology, are irreducible core assumptions representing the

forecaster's basic outlook on the context within which the specific

trend develops. These core assumptions are not derivable from

methodology; on the contrary, methods are basically the vehicles, or

accounting devices, for determining the consequences or implications of

core assumptions that were originally chosen more-or-less independently

of (and prior to the method)" (Ascher, 1979, p. 150).

Ascher states that forecast accuracy is dependent on the core

assumptions and the ethodology is obvious or secondary when the

assumptions are valid. A methodology cannot redeenm a forecast based on

faculty core assumptions. One source of faculty assumptions is due to

the specialization of most forecasters. Obsolete assumptions are

sometimes used unknowingly due to the forecaster's specialization and

the broad context of the assessment. This is why a panel of experts can

be so effective for interdisciplinary technology assessments.

"Since the choice of methodology, which largely determines the cost

of the study, is not as crucial to forecast accuracy as is the

appropriate choice of core assumptions, recent inexpensive studies are

likely to be more accurate than older, elaborate expensive studies.

...multiple-expert-opinion forecasts, which require very little time or

money, do quite well in terms of accuracy because they reflect the most

up-to-date consensus on core assumptions. When the choice is between
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fewer expensive studies and more numerous, up-to-date expensive studies,

these considerations call for the latter (Ascher, 1979, p. 152). More

emphasis should be placed on establishing core assumptions and testing

their validity.

In most energy technology modeling a deterministic approach is

used. This study contends that there are often unacceptable and

unnecessary assumptions involved in such an approach. A probabilistic

approach would be inherently less biased and the appropriateness and

difficulties of its use will be discussed. In addition, in the use of

nonlinear models, deterministic approaches may have significant errors

even with respect to expected values. When the inherent risk aversion

in the energy decision process is also factored in, it should be clear

that deterministic approaches must be very crude or inappropriate.

Another caution in using probabilities in technology assessments is

"Maintaining uniformity and consistency of interpretation...; it is the

great weakness of methods based on quantified subjective judgments"

(Humes, 1974, p. 152).

A major advantage of a probabilistic scheme would be in dealing with

a complex model with many inputs. For example, it seems clear that

decisions based on multiplying probabilities (assuming independence of

parameters) would be inherently less biased than decisions based on a

complex document stating all the relevant issues. It would have to be

made clear how the probabilities were arrived at and any uncertainty in

independence of parameters would need to be discussed. Another

advantage of a probabilistic scheme is the ability to quantify

(_ I ~ __ I I__ . 0. 100 111411 m I1mll igl uY imm ililI mm millm manioial miI 1m 1h
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uncertainty. Thus uncertainties could be traced through the model, and

proper attention could be focused on parameters needing most reduction

in uncertainty for decision making and RaD planning.

Energy decisions are inherently risk aversive due to the inelastic

demand for energy and the long time lags associated with increasing

supply. However, most technology assessments use deterministic

approaches which lead to the use of an expected value in fuel pricing,

supply, etc. But the use of an expected value is at best only

appropriate in a risk neutral analysis. Thus, for energy analysis, a

probabilistic approach would be much more appropriate due to the

availability within such an approach of the capabilities for

incorporating inherent risk aversion.

Another imbedded assumption in most technology assessments is the

level of detail or resolution at the decision points of the model. This

resolution is of three types:

(1) geographic

(2) temporal, and

(3) informational.

The first two types of resolution are quite obvious. It may be less

obvious that models may work at two or more levels of resolution,

performing computations at one level of resolution, then aggregating

those results to yield outputs or information for decisions at broader

levels of aggregation. Informational resolution is the final type of

detail that will be mentioned. Aside from the disciplines that are

included in a model's methodology, the model builder is faced with
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myriad decisions and implications concerning the types of information

that are carried in model components and linkages. Unfortunately, three

of the principal criteria used for the selection of information to be

incorporated are: 1) availability of data, 2) computational burden, and

3) the degree of amenability of this information to the chosen modeling

methodology. Ideally the criterion for selection should be the

information's relative importance to the policy applications of interest.

--- I IIYIYI~~~~- "
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2.3 An Illustrative Example

A decision-making model developed by Irwin D.J. Bross separates the

value system and uses a probabilistic scheme: "Bross evaluates the data

relative to the values of the assessor and the probability of real world

events occurring. The 'prediction system' is the process by which

forecasts are made based upon the data; application of probability

theory 'leads to predicting systems which associate a probability with

each possible outcome, and this probability can be used to make

decisions'" (Bareano, 1972, p. 180). Figure 2-2 shows a schematic

diagram of this model.

These probabilities can be determined by a variety of methods: they

could be determined by a Delphi technique, "...they could be

predetermined, they could be selected by a jurying and discussion

process, or assigned by experts based on their experience and expertise"

(Bareano, 1972, p. 183).

Some further examples, such as the comparison of fluidized bed

combustion to MHD, illustrating some of the concepts related to

resolutions, are presented in the final chapters of this thesis.
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Decision Maker

Figure 2-2 Bross Decision-Maker for Incorporating Concepts of
Probability Into Technology Assessments
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3. INVESTIGATION OF SOME ASSESSMENT COMPONENTS

It would literally be impossible to investigate in depth all of

the various components of an energy technology assessment. For this

research a single area of connected assessment components has been

chosen for evaluation, these being the components that evaluate the

dispersion and health impacts of air pollutants from energy facilities.

Not only are these particular components becoming increasingly important

in assessment activities, but they appear to be poorly modeled in the

several assessments investigated. Thediscussions presented here

relate to the effects of the various assumptions and the possibilities

for modeling uncertainties.
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3.1 Characterizing the Meteorology at a Site

Energy policy has in the past not been defined well enough to

address generic versus specific power power plant siting problems in

relation to pollutant emissions and meteorological factors. Plants that

would not be appropriate at one site might be desirable at another site

simply due to wind patterns. The fact that siting is a variable over

which there is considerable control implies that the use of national

average meteorological characteristics will put a technology in a much

poorer perspective than would be appropriate.

The state of the art with respect to the characterization of the

meteorology in technology assessments has generally been, at best, a one

or two parameter representation solely of the background concentrations.

These one or two parameters are usually the 24-hour maximum and the annual

average concentrations of one or two of the regulated pollutants (usually

SO2 and total suspended particulates). More detailed characterizations

of sites generally must await the site selection process, when hour-by-

hour chronologic representations of background pollutants are sometimes

collected.

In many ways it is obvious that the diversity of available sites

cannot possibly be a factor in assessments as they are currently

conducted, with the one or two parameter representations. However, it

doesn't seem as though the chronologic representation is the only

other resort. In fact there is some literature (Gruhl, et al, 1979) on

"exposure profiles" that would seem to be suitable in some modified

form for assessment purposes. An exposure profile, as shown in Figure

3-1, is a time-collapsed representation of the hour-by-hour pollutant
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information that is important for pollutant regulations and health

impact modeling. The time-collapsed format effectively collects and

displays the probability distributions for the various pollutants at

the different averaging times. Figures 3-2 and 3-3 show the tremendous

contrast that can exist between the exposure profiles for different

neighboring sites. This data, available from the Chestnut Ridge area of

Pennsylvania (Gruhl, et al, 1979), shows the magnitude of the problems

that can be encountered in the usual two-parameter characterizations

of air pollution at a site.

Figure 3-4 shows the relatively similar shapes of the exposure

profiles for other air pollutants. The representation of air pollution,

however, cannot be made using a single index such as SO2 . Table 3-1

from (Gruhl, et al, 1979, p. 28) shows that the rankings of various

population areas, according to cleanest and dirtiest pollutant conditions,

is very different for the different pollutants.

The conclusion of this brief excursion into background pollutant

characterization is that

(1) the important pollutants must be individually represented,

(2) the various averaging times should be separately treated,
and

(3) probability distributions of each pollutant at each
important averaging time seems ideal.
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Table 3-1

Ranks of Study Areas
by Individual Pollutants,

Study
Area

I
2
3
4
5
6 ,
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Tota I

Samp I e
Size

5
31
77
24
9
37
79
66
68
46
41
114
110 .
103
220
524
284
53

385
77
129
370
161
52
66
60
63
191
322
126
233
192
233
421
279
197

1975

SO
Ran?

9
12
II
13
14
27
36
28
26
16
15
19
25
35
29
31
33
23

3
18
21
17
22
24
8
20
6
10
2
7
I
4
5
30
32
34

NO
*RanRi

10
11II
22
12
20
21
23
26
19
18
13
14
25
24
34
33
29
32
35
28
27
17
16
30
31
36
15
7
2
.8
I
3
4
5
6
9

5448

I = dirtiest
36 = cleanest

COH
Rank

5
6
32
7
9
27
I
2
4
10
13
12
31
3
30
23
33
22
29
15
11
28
34
36
16
8
21
35
25
26
14
17
19
20
17
24
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3.2 Air Pollutant Dispersion Modeling

Dispersion models tend to be very inaccurate but are important

in an overall assessment. Some of the uncertainties in dispersion models

are discussed here. Specifically, proposed here is that exposure patterns

to surrounding populations be simulated using emission patterns and

various different air pollutant dispersion models. It seems clear, for

example, that the use of Gaussian models will make unwarranted exaggera-

tions in peak concentrations compared with sector-averaging models or

real situations.

The equations for the modecular diffusion of gases were developed

by the physiologist Fick in analogy with Fourier's laws of heat conduction.

Fick's law states that the diffusion of a gas is in the direction of

decreasing concentration and is proportional to the concentration gradient.

The following differential equation has been derived from this principle:

dXa Kx + a (Ky+L ( z (
dt x ax). ay ay z\ az)

Where X is the concentration, Kn=x,y,z are the coefficients of diffusion,

and x,y, and z are distances in three-dimensional space. The values of

the K's can vary widely, and in practice one cannot readily determine

the magnitude of the K's as a function of time. As an approximation, most

models assume that the distribution of pollutants in a plane is Gaussian,

which represents the simplest set of solutions to the diffusion equation.

The following equation is often used in determining ground level

concentrations downwind from a continuous-point source (Slade, 1968):

XX0 Q U exp - h 2 + y
Y) oz U 2a 2y
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where

X = concentration (Ci/m 3

Q = source strength (Ci/sec)

U = mean wind speed (m/sec)

ay ,oax= crosswind and vertical plume standard deviations (m)
oy= y (x), oz=az(x)

h = effective stack height (m)

x,y = downwind and crosswind distances (m).

Numerical values for a and ay depend on the roughness of the

terrain and weather stability conditions. If any accuracy is required;

az and ay must be determined experimentally at site locations. Figures

3-5 and 3-6 show order of magnitude values for az and ay for different

classifications of weather stability. Such a calculation involves

many uncertainties and should only be used as an order of magnitude

calculation.

Monitoring specific power plants for pollutant concentrations can

be plagued by uncertain data. For example, comparing measured and

calculated concentrations of SO2 from coal plants depends on the

reliability of the coal sulfur content data. The calculated values of

hourly SO2 emissions for the Clifty Creek power plant were uncertain

because "...only monthly average coal sulfur content could be obtained

from FPC Form 67 for the plant as a whole" (Mills, Lee, 1980).

Fay and Rosenzweig's model is used to provide estimates of long

term average pollutant levels at large distances from a large collection

of sources (Fay and Rosenzweig, 1978). This model is applicable for

time periods of months to a year and for pollutants travelling distances
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greater than about 100km.

This diffusion model has several advantages. Compared
with any of the trajectory models, it is not necessary
to time-average over a large spatial domain for which
very detailed wind speed and precipitation input data
are required in order to calculate trajectories for each
of a large number of sources. This greatly reduces the
cost of a practical computation. In contrast with the
short-term averaged models...whose characteristics may
be expressible in analytical form, our model will be
valid at the very large travel distances and for the
long averaging times which are of interest in long-
distance pollutant transport phenomena.
(Fay, Rosenzweig, 1980).

Although this model uses a simplifying assumption in deriving the

analytical form which probably limits the accuracy, it compares well

with other more complicated (and expensive) trajectory models.

The difficulty of achieving accuracy in atmospheric transport

models is demonstrated even in this state-of-the-art model. Using

values of sulfate concentrations predicted by the model and comparing

them with U.S. atmospheric sulphate measurements yields "a disappointing-

ly low correlation coefficient of 0.46.... Our model could not account

for the significant variations in concentrations within short distances

which were observed." (Fay, Rosenzweig, 1978). Figure 3-7 shows the

model predictions compared with the observed data. Other models have

similarly poor correlations. "Wendall et al (1977) compared trajectory-

puff model calculations with these same measurements averaged for the

month of April 1974, finding a correlation coefficient of 0.40.

Similarly, they found that the spatial variability of observed data

could not be duplicated by their model". (Fay, Rosenzweig, 1980).

Uncertainties in the observed data could be partially responsible for

the poor correlation. A polynomial surface was fitted to the observed
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Figure 3-7 A comparison of calculated (solid line) and
measured (dashed lineI annual average sulfate
concentrations (pg m- ).
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data points by least squares to smooth out local effects. The best

correlation coefficient of 0.75 was obtained by using a fifth-order

polynomial. The rest of the uncertainty is primarily in the emissions

data, and to a lesser extent in the structure of the model.

Since both long and short distance transport models are fairly

inaccurate, it would be best to include a standard deviation with

predicted concentrations. This standard deviation could be carried

through health and environmental impact models to obtain a range in

uncertainty. Certainly using a point-source concentration would not be

warranted in most cases but does provide an upper bound for pollutant

doses.

Given (1) the format for characterization of air pollution, (2)

the "exposure profile", and (3) the dispersion models, the question now

arises how can these be brought together to make some statement about

the groundlevel air pollution impact of an energy facility. In some

cases, such as in the Chestnut Ridge case, where air pollution data is

abundant, and the power plant is operating, and there are persistent

winds, the impact of the facility can then be inferred from the available

data. Figure 3-8 shows this situation, and here a subtraction (assuming

perfect correlation of concentration peaks and valleys where in fact

about 0.5 correlation would be more appropriate) can yield the ground-

level impact of the facility. This, however, is only applicable for the

one downwind distance, and does not represent a generalizable exposure

profile. In addition, the conditions required for such a development

are almost nonexistent.

There are two other possible ways of developing the groundlevel
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impact information for a facility. One, and the only one we found in

the literature, involves a postulation of a time series of emission

information, and the use of these emissions, along with nearby hourly

meteorological data and the dispersion models, to simulate the hourly

groundlevel concentrations. Again these types of studies are found only

in the expensive and detailed phases of the facility siting process.

It appears that a somewhat more aggregate, but still useful,

technique might be developed. Such a technique would perhaps use time-

collapsed (exposure profile type) representations of emissions, wind

speeds, wind directions, stability, and mixing depths, and the correlations

between these variables, as inputs to some time-collapsed dispersion model.

It would seem that such a research effort on "time-collapsed dispersion

models" would be both very intriguing and highly useful.

In a simple example of some of the effects of site-variability of

meteorologic data, an existing simulator, AEGIS (Gruhl, 1978), was

somewhat modified. This simulator can handle site-specific and tech-

nology-specific cases in which the uncertainties in all data are carried

forward to the uncertainties in the output. Figure 3-9 is a block

diagram of the various modules used for this example. Additional infor-

mation about this probabilistic simulator can be found in (Gruhl, 1978).

The cases generated include:

* Size = 1900 MWe,

e Year = 1998,

* Coal = Southern West Virginia bituminous,

o Plant = Conventional coal-fired boiler

o Capacity Factor = 70%,
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e Stack = 235 m,

* Demographics = 0.8 times Indian Point in 1980 (estimated), and

o Health impact mode = LAMM, a deterministic linear addition
mortality model based upon consensus and recommended standards,
thus representing a consensus "worst case" model.

Given these assumptions, Table 3-2 shows the significant variation in

"worst case" health impact predictions based upon the different

meteorologic assumptions.
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Table 3-2 Probability Distribution of Worst Case Health Impacts from
1900MW Coal-Fired Facility on Sites with Different
Meteorological Conditions

Annual Public Health Mortalities

0% 16% 50% 84% 100%

High Dilution Site

National Average Site

Low Dilution Site

.03 .07

.04 .09

.15

.19

.28

.36

.43

.55

.05 .11 .24
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.44 .67
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3.3 Modeling the Population Surrounding Energy Facilities

Site-specific population densities and distributions must be con-

sidered to address generic versus specific power plant siting problems

properly. Technology assessments usually do not include such a con-

sideration, and again as in the case of generic meteorology there may

be siting opportunities that are two or three orders of magnitude less

dense than national average populations.

It is instructive to survey some of the population density data

bases that can be used for power plant siting and models existing that

take population densities into account. "Spatial Analysis and Suitability

Modeling" (see Appendix) developed by Oak Ridge National Laboratory,

involves routes for suitability, siting, and impact analyses of power

plant siting. Population densities are taken into account by two methods:

a polygonal area method (on the order of counties) and a grid cell

system at the sub-county level. Another package, "Population Analysis

System" (see Appendix) can be applied to power plant siting as well as a

tool for measuring aesthetic impacts of strip mining, for establishing

nuclear power plant restriction zones, and for use in determining siting

factors in waste disposal. The data source is the MESX census tape

containing populating enumeration districts with the centroid locations

given in latitude-longitude. The program computes population densities

from an irregular pattern of enumeration district centroids at which the

population count is known. The program uses a distance-weighted inter-

polating technique and a normalization technique to preserve known county

population totals. The populating densities are computed for a specified

latitude-longitude for any area in the United States. The population
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densities are given in people per square mile, and multicolor contour

maps may be generated showing regions of varying people per square mile.

Another source of populating data is "1950, 1960, 1970 U.S. Human

Populating Counts by County" (see Appendix) which covers all U.S. counties

and states by five year age groups.

In any energy technology assessment, power plant siting is an

important consideration. For example, if the plant is considered as a

health hazard to the public, it must be sited in a low population density

area but not so far from the populating center that significant trans-

mission losses will result. Usually only generic power plant siting

problems are addressed in technology assessments. However, adding

specificity to siting problems can significantly change the assessments.

For example, a coastal site with a high population density inland and

zero populating density (of course) off the coast might (with the proper

meteorological considerations) be more appropriate than a generic assess-

ment would predict. The generic assessment would usually only consider

the population density and the distance from the plant to the population

center.

As an example one might consider a site where prevailing winds are

in the direction away from the population center. An approach including

meteorological factors at a specific site might be to overlay the pre-

vailing wind rose pattern onto a map showing populating densities and

population centers. Preliminary research seems to indicate that such a

site specific analysis should be done by hand rather than by using a

computer code because the cost outweighs the benefit. For these hand

calculations knowing just the county populations may be appropriate,

W INWli Ni 1 ,llll
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depending upon the size of the geographic area to be covered in the

assessment.and the sizes of the counties in the area to be considered,

see Figure 3-10. Supplementary population information can be obtained

from topographic maps, such as for Homer City, PA in Figure 3-11, from

which sizes of towns can be estimated. Aside from some of the material

discussed in the Appendix, the only more detailed information, aside

from expensive on-site surveys, can be obtained from maps for Homer City,

PA in Figure 3-12, which sometimes show every house.

Using the modified AEGIS simulator described previously, and the

average meteorologic characteristics, the effects of the Homer City

populating pattern are compared with two other sites to demonstrate the

potential variations, see Table 3-3.



Figure 3-10 Portion of U.S. Map Showing the Areas of the Country
Where County-Aggregated Population Data is of Greater or
Lesser Resolution
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Figure 3-11 U.S. Government Topographic Map of the Homer City Area
of Pennsylvania, For Use in Establishing Demographic Profiles of
Sizes and Distributions of Towns
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Probability Distribution of Worst Case Health Impacts from
1900MW Coal-Fired Facility on Sites with Different
Demographic Conditions

Annual Public Health Mortalities

0% -16% 50% 84% 100%

Farley 1972

Homer City 1980

Indian Point 1980

.02

.04

.05

.09

.11

.19

.20

.36

.31

.55

1.38 3.09 6.39 11.94 18.15

Table 3-3
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3.4 Modeling the Health Impacts of Air Pollution

Health modeling is an essential part of an energy technology

assessment since it relates various characteristics of a technology to

to the direct health impacts on man. Underlying assumptions of health

models (such models often being the crudest pieces of information in an

assessment) should be clarified in order to signal the limitations of the

model. Uncertainties and biases in the health model output are here

discussed in light of their importance to the overall assessment. Also

in the following materials various health models are discussed with respect

to standard coal-fired plants to see if their predictions are expected

to cluster or not. This is a test of the validity, transferability and

uncertainties associated with the use of such models as part of technology

assessments.

Epidemiology, in environmental health issues, is a markedly different

sort of analysis as compared to, say, an engineering assessment. It is

primarily concerned with humans and is observational rather than experi-

mental. The reason for this is that any experimenting done on humans

must, on ethical grounds, not be harmful. Epidemiology,

... depends on observations of association between ill-
health and exposures that were accidental or inadvertent
and that are distributed capriciously and in biased and
often unknown ways through the population. It is rare
that the observation of association between a particular
disease and a particular exposure in any one study can be
said with confidence to indicate a causal connection
between the two. (MacMahon, 1979)

Since epidemiology rarely involves the treatment of sick people,

only a small number of physicians enter the field. The fact that there is

a small force of manpower in epidemiology today does limit its impact on

society. As additional harmful air and water pollutants are identified
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in the future, many more epidemiologists will be needed for the study of

environmental health issues.

Another limitation of epidemiologic studies concerns the time scales

of the observations. Since the object of study and investigator have

approximately the same lifetime, serious problems may result when the

disease of concern develops on a time scale of a substantial fraction of

a lifetime. Long term studies are also needed even for short-term diseases

because in the process of looking for one-in-a-million levels of impact,

both large numbers of individuals and long years of study are required.

Finally, there are a number of other reasons why it is extremely difficult

to establish a correlation between air pollution and health impacts:

(1) There are a huge number of confounding variables that are
much more important than community air pollution in
causing health impacts, including smoking, previous health
histories, diet, exercise, genetic predispositions, other
ethnic variables, stress, income levels, quality of health
maintenance, educational attainment, and other social
variables,

(2) indoor pollution at home, due to cooking, air and water
heating, can exceed the air pollution standards (e.g.
for natural gas cooking and NOx standards),

(3) occupational exposures to air pollution and other materials
that are synergistic or antagonistic to the community level
pollution exposures,

(4) there are about 60,000 different contaminants of air, and
although not all may be important there are several
hundred that might be of concern, necessitating individual,
and combinatorial, investigations.

(5) people are highly mobile, and, for example, generally work or
go to school in very different air pollution environments
than the locale around their homes presents, (Gruhl, Speizer,
Maher, Samet, Schenker, 1979) shows that 3 to 6 miles can
present a substantially different type of air pollution
exposure.

Thus we see some of the inherent problems in health modeling. Much

)II_ ~~~ __ ___1 1_~~1__1~^~1 1 ~_ _ _ _ 11911



-61-

can be done in improving our observation and analyses to build our

knowledge of the relationship between environment and health. For instance,

epidemiological information could be stored and processed by computers on

a much larger scale than now exists.

The National Commission on Air Quality conducted a study to review

epidemiological studies of air pollution with a statistical emphasis

(Ricci, Wyzga,1979). This study discussed the two major types of epidemi-

ological studies which are cross-sectional and time-series. "Cross-

sectional mortality studies, examine spatial differences in mortality and

attempt to relate them to specific air pollutants. In these studies, it

is necessary to ensure that those factors which influence geographic

differentials in mortality and are correlated with air pollution are

included in the analysis." (Ricci, 1979). Time-series mortality studies

attempt to correlate changes in the ambient levels of pollution with

differences in mortality overtime in a single specified geographic region.

Almost all epidemiological studies use multiple regression analyses.

Uncertainties in these analyses can come from unavailability of data,

infrequency of measurement and the lack of spatial extent of the air

pollution monitoring networks. It has been mentioned that cigarette

smoking exacerbates health impacts from air pollution. However, census

data does not include such information as cigarette consumption. Air

pollution monitoring usually comes from a single monitoring station,

typically located in the center of an urban area. Thus in many cases,

the recorded pollution level may be much higher than the true mean,leading

to biased results. Another consideration cited as important in (Ricci,

Wyzga, 1979) is that most people spend the large part of their time indoors
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(about 85%) and the ambient concentrations that are monitored reflect

outdoor exposures. It may be that humans are exposed to more dangerous

levels of pollutants indoors from cigarette smoking (smokers and non-

smokers) than from airborn pollutants outdoors.

In all of the studies reviewed, there is little discussion of violations

of the assumption underlying the techniques utilized, pretest bias, and

other considerations. The model results do not seem to cluster. For

example, "The Lave and Seskin sulfate results demonstrate considerable

variability. For example, for both the 1960 and 1969 data, the quadratic

and linear spline model specifications perform better, according to the

R2s, than the linear model. These two models, for 1960 data, suggest

that at elevated levels of minimum sulfates health benefits can increase

with increasing sulfate levels." (Ricci, 1979) The Lave and Seskin

results for all analyses but the Chicago analysis show no positive associ-

ation between daily mortality and air quality. The Chicago results show

a statistically significant association between SO2 and daily mortality

but no particular measurements are included in the analysis. "... Hence

it is not clear whether the association attributed to S02...** is real or

reflects the association between SO2 and particulates which may be

associated with mortality." (Ricci, 1979)

Another assumption in time series analyses is that the population is

homogeneous over the length of the study. This assumption may hold over

a short time period but for longer periods it is certain to introduce

inaccuracies. In most studies this is not taken into account. Factors

that might lead to inhomogeneities in population over time include

permanent mobility, seasonal mobility, weather conditions, day of the
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week, and holidays.

It was found that the studies reviewed did not carefully apply the

multiple regression analysis. "A careful scrutiny of existing mortality

studies indicates that they are of little if any value in deriving a

quantitative dose-response model of the health effects of air pollution.

Existing studies contradict each other. They utilize different data

and data sources, covariates, and levels of aggregation. " (Ricci, 1979).

The time series studies show no consistent relationship between SO2 and

mortality. Both the cross-sectional and time series studies suggest a

positive association between mortality and particulate matter. "Although

a majority of those studies which examine SO2 have identified some positive

association between SO2 and mortality, these results are rarely statis-

tically significant. Furthermore, there are many cases where negative

associations between mortality and SO2 occur, and many of the studies

which report positive associations between SO2 and mortality do not include

measures of particulate. Hence SO2 could be serving as an index for other

pollutants in these studies." (Ricci, 1979). In addition, we have found

that the majority of epidemiological research has resulted in no

associations, and these studies are generally left unreported or have little

or no impact on the existing understanding of the problem. Of more than

100 studies investigated there was 'dismissed' research because of:

(1) no correlations with SO2 , SO4 , NO2 , ozone and/or particulates,
and

(2) negative correlations with S02 , NO2 , ozone, and/or oxidants.

If these studies were in fact well conducted then it is obvious the sort

of tremendous bias this selective reporting will exert.
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D.E. Cooper, et al, also point out that the Lave and Seskin study

has some severe data limitations. "The pollution measurements are, at

best, remote approximations to an individual's exposure to a specific

pollutant." (D.E. Cooper, 1979). Although present toxicological evidence

indicates that the acid sulfates are the harmful sulfur species, no

data on acid sulfates were available to Lave and Seskin. In addition to

the lack of data on cigarette smoking, no data were available on the

size distribution of the suspended particulates, despite the fact that

this is a crucial factor.

The D. E. Cooper, et al . study shows that the work of Lave and

Seskin has considerable bias: "Dr. Emanuel Landau, reviewing their book,

notes their regrettable habit of ignoring their own caveats, and'the

selectivity of the authors in choosing those bits and pieces of data

which support their conclusions'. ...He summarizes his review by saying

that 'Lave and Seskin have demonstrated once again that even sophisticated

and innovative analysis cannot compensate for intrinsically poor data' "

(D.E. Cooper, 1979)

Lave and Seskin also fail to use the multiple regression analysis

properly.

Their method involves the addition or deletion of variables
to their regression equation, with a subsequent examination
of whether or not the variable(s) in question make a contri-
bution to the explanatory power of the regression. Although
the number of regression equations they cite in their book is
impressive, they have barely scratched the surface in investi-
gating the goodness of fit of alternative models. For example,
their equation 3.1-2 contains 7 explanatory variables; their
data base contains 60 explanatory variables, from which there
would be 386,206,920 possible regression equations with seven
variables. For an equation containing 10 explanatory variables,
there would be about 75 billion possible equations.
(D. E. Cooper, 1979)
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Lave and Seskin could calculate the statistical significance of the

several coefficients and get a measure of the explanatory power of the

variables. The problem lay in the enormity of the number of possible

regressions they would need to examine. Even though they used high speed

computers, their "deletion - substitution" method limited the number of

regressions they could investigate. D. E. Cooper, et al used a "Leaps

and Bounds Regression Algorithm" which "...permits one to find the best

fitting equation of a given size from a large number of explanatory

variables, without going through the laborious 'substitution' process

used by Lave and Seskin". (D. E. Cooper, 1979). Cooper et al. found

sulfate and particulates not to be statistically significant contributing

factors to mortality. The Lave and Seskin study inferred a causal

relationship between sulfates, particulates and mortality from their

figures of statistical significance. Neither study "proves" that pollution

is or is not related to mortality rates. The only firm conclusion we can

make is that the data base used by both studies was weak and therefore

the conclusions from both studies are tenuous.

Cooper, et al. illustrate the problems associated with publicizing

uncertain results concerning health issues. A Brookhaven National

Laboratory study was publicised saying that 21,000 people east of the

Mississippi River are dying prematurely each year from sulphur dioxide

gas and microscopic sulfate particles. A subsequent report,

said that uncertainties involved with the model calculation
meant that the actual number of premature deaths east of the
Mississippi River could have ranged from zero to about 50,000.
Furthermore, the Brookhaven letter said that implementation
of President Carter's proposal to burn more coal could actually
reduce by about 2,000 (by the year 1985) the number of



-66-

premature deaths each year, rather than increase it
(by the year 2010) by the previously cited 14,000. Moreover,
they added that 'the uncertainties areso large that one
must question the significance of any specific numbers.'
(Cooper, 1979).

The "Community Health and Environmental Surveillance System", called

"CHESS", was a program developed by the EPA to relate air pollution levels

to health effects in a number of American communities. The results of

this study were rather dubious. For example, the paper demonstrated that

people living in unpolluted areas show more symptoms of air pollution

impacts while black people living in highly polluted areas do not show

any symptoms. Other strange results include the indication that children

in Riverhead are healthier because of air pollution and that cleaner air

in the Bronx and Queens causes shortness of breath. Cooper et al conclude

that it is, "...obvious that they [EPA] failed, utterly and completely,

to show a statistical connection between mortality (or morbidity) and

ambient levels of 'suspended sulfate'." (Cooper, 1979).

One might conclude that the uncertainties in aforementioned studies

are not particularly important since such studies are merely "academic"

endeavors. But such studies are actually used in energy policy decisions.

On September 11 , 1978, the EPA administrator Douglas M. Costle proposed

new source emission regulations for steam electric generating facilities.

In substance, the regulations meant that coal plants burning either low-

sulfur or high sulfur coal would have to install SO2 scrubbing equipment.

Senator Lloyd Bentsen posed the question; "'Are we prepared, and can we

afford, to spend somewhere between $26 and $48 billion between now and

1990 to reduce sulfur dioxide emissions by an additional 11%?'"

(Cooper, 1979). The Electric Power Research Institute estimated that the
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new regulations will require utilities to pay $200 billion between now

and the turn of the century. Neither the federal government, nor the

electric utility would actually pick up this tab. It is ultimately the

consumer who will pay this, directly on his electric bill. Thus we see

that environmental impact and health models should be a concern to the

public and uncertainties in the models need to be narrowed. It may be

well worth it to spend some money on some well thought out research

programs to reduce the uncertainty before spending huge sums of money on

possibly unnecessary scrubbing facilities.

Finally, two reports that provide additional insight into the

problems in health modeling are (Viren, 1978) and (McDonald, Schwing, 1973).

The Viren study imbeds the Lave and Seskin and some other investigations

into a larger framework, allowing for the use of additional explanatory

variables that had not previously been examined. Some of the significant

findings of the Viren study were that there were variables, namely

educational attainment and income levels, that were strongly correlated

with mortality, but rarely used as contributing variables in the construc-

tion of health models. In addition, age, sex and smoking have geographic

variations that are correlated with pollution levels, and thus entangle

the modeling problem. Finally, there were significant correlations

between sulfate levels and cigarette sales, age of housing, divorce rate,

use of public transportation, and temperature. In recalibrating the

prominent health models, the Viren study showed that as they added

additional explanatory variables such as those just discussed, they

observed considerable flip-flopping from positive correlations between

air pollution and mortality, to negative correlations, back to positive
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then negative, and so on. The approach used in (McDonald, Schwing,

1973) was ridge regression analysis, in which they bound certain of the

coefficients in the air pollution/health models and recalibrated those

models. They found that the models investigated were virtually indifferent

to large variations in their coefficients. Part of the problem was

caused by high correlation (0.96) between various pollutants.

There are two additional avenues that have been pursued in this

investigation. The air pollution data used was that which was available

from the Chestnut Ridge area of Mid-Western Pennsylvania (Gruhl, Speizer,

Samet, Schenker, 1979). First some correlations were made between the

maximum 24-hour exposures for SO2 , NOx , and COH (coefficient of haze, as

measure of particulates and smog). The correlation between SO2 and NOx

was about 0.65, but the correlation between SO2 and COH was -0.23, and

nearly zero correlation between NOx and COH. The prevailing thesis that

so2 can be used as an index of general air pollution will have obvious

problems.

The second effort to verify standard epidemiological assumptions

concerns the universal contention that general exposure to air pollution

can be characterized by the 24 hour maximum and/or the annual average

concentration. Using exposure profiles for the same Chestnut Ridge area,

several different types of exposure indexes were postulated, see Table 3-4.

These indexes were calculated for each of the 36 districts in the area,

and the results were ranked, see Table 3-5. As can clearly be seen in

this table, indexes 5 and 6, 24 hour and annual averages, are not good

indicators of the various types of exposure to air pollution. For

example, in district 32 indexes 5 and 6 show it to be one of the cleanest
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Table 3-4 Pollution Indexes for SOx

Index - Names

1 General

2 Short-Term Acute

3 Short-Term High

4 3Hr Standard

5 24Hr Standard

6 Annual Standard

7 Short-Term
Cleansing

8 Long-Term
Cleansing

9 Short-Term
Moderated Acute

10 Short-Term
Moderated High

*Note in all cases 99 percentile
into the threshold standards.

Description

-Sum of 99, 84, 50, 16, and 0
percentiles for lhr, 3hr, 8hr, 1 day,
3 day, 1 week, 1 mo, 3 mo, and 1 year

-Sum of 99 and 84 percentiles for
lhr, 3hr, 8hr, 24hr

-Sum of 99, 84, and 50 percentile
for lhr, 3hr, 8hr, and 24hr

-Ratio of 99 percentile to 3hr
threshold standard

-Ratio of 99 percentile to 24hr
threshold standard

-Ratio of 99 percentile to lyr
threshold standard

-Sum of 16 and 0 percentiles for lhr,
3hr, 8hr, and 24hr average times

-Sum of 16 and 0 percentiles for 3 day,
1 week, 1 mo, 3 mo averaging times

-Sum of 90 and 84 percentiles for lhr,
3hr, 8hr, 24hr

-Sum of 90, 84, and 50 percentiles for
lhr, 3hr, 8hr, 24hr.

means second highest value, as written



Table 3-5 Ranking of Neighboring Air Pollution Districts for Various Air Pollution Indexes

Districts

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Index Index Index
1 2 3

12
11
10

9
3
18
8
1
4
7
17
2
22
16
23
26

3
20
34
15
30
25
24
27
19
35
31
36
14
33
29
32

12
11
10

9
5
18

8
1
4
7
17
2
26
16

3
34
25
23
30
24
27
20
19
15
31
35
33
22
14
32
29
36

12
11
10
9
5
18
8
1
4
7
17
2
26
16

3
34
25
23
30
24
27
20
19
15
31
35
22
33
14
36
29
32

Index Index Index Index Index Index
4 5 6 7 8 9

12
11
9
10

5
1
18
4
17

8
7
2
3
26
34
16
25
24
30
19
35
27
23
20
31
15
33
36
32
29
22
14

12
10
18
11
22
34
17
33
20
16
8
9
15
26
19
23
7
14
35
29
31
32
5

5
9
4
2
10
20
18

3
8
17
27
21
30
15

7
16
23
19
26
36
25
14
13
28
35
24
32
6

22
23
15
3
16
12
24
17
18
13
11
2
36
10

7
8
9
20
14
25
26

5
19

4
35
21
1
6
27
28
30
34

22
12
17
18
11
36
3
35
9
10
2
16
5
20

8
15

4
7
1
34
14
23
19
26
21
13
30
29
25
27
24
6

22
12
11
10

9
20

8
18

5
23
4
16
15
1
7
21
30
17
27
2
36
14

3
35
26
19
31
34
24
28
13
25

Index
10

22
12-
11
10
9
20
18
5
8
23
4
1
16
15

7
21
17
30
2
36
27

3
35
14
26
19
24
25
28
34
13
31



Table 3-5 (continued)

29
6

33
32 -
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areas, a ranking of 6, whereas many of the other indexes show it to be

nearly the dirtiest, rankings of 31 to 36. Either the 24 hour maximum

and annual .average values are, by good fortune, the physiologically

important averaging times, or there is considerable change that must be

implemented in the way epidemiologic research is conducted.

It seems apparent that the health impacts that have been used in

past technology assessments can at best be construed as slight hints of

what might possibly be the worst case health impacts. At worst these

estimates are misleading and their use is counterproductive in the

assessment process. It seems clear that adequate measures of the uncer-

tainties in these models would be extremely important for conveying the

levels of speculation associated with any numbers that are turned over to

the policy decision process.
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4.0 TECHNOLOGY ASSESSMENT EXAMPLES

In order to make important contributions, energy technology

assessments must be large, interdisciplinary projects, generally

becoming very time consuming and expensive. This small project

does not involve a large assessment, but instead combines several

different types of investigations aimed at exploring the potential

for, and significance of, uncertainty in the energy technology

assessment process. This chapter includes three small examples

of energy technology assessments that have been tailor-made to

demonstrate the possibilities and importances of the concept of

uncertainty in these assessments.
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4.1 Example of a Single Technology Assessment -- Fusion

Thi's illustrative discussion of an energy technology assessment

example is of the type where a single technology is assessed. In

this type of assessment the basis for the decision at the end of the

analysis simply involves a comparison of the benefits and the costs of

the particular technology. This type of analysis is most useful for

far-future technologies, for which there are generally no comparable

technologies, nor well-defined consequences that can be investigated in

depth. The example described here is fusion power.

The prospect of controlled fusion for producing electric power is

very desirable because it would virtually be a limitless source of

energy. The fuel, heavy hydrogen, would be obtained from seawater at

virtually no cost. However, the obvious advantages must be weighed

against the disadvantages and uncertainties associated with fusion in

order to make a judgment of its net potential benefits. There are

considerable uncertainties associated with the scientific, engineering,

safety, and commercial aspects of fusion power.

The physics of controlled fusion is not fully understood at this

time. Many plasma instabilities have been understood and rectified, but

microturbulence still remains a problem in plasma confinement. Alcator

scaling confinement time,

T= na2  (n = plasma density, a = plasma radius)

is an empirical relation and the physics behind this is not yet

understood. However it seems probable that the uncertainty of the

scientific aspects of fusion will be reduced in the near future because

of the large amount of research being done on the problem.
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The largest uncertainty of fusion power is associated with the

engineering and materials problems. The engineering feats required for

the feasibility of fusion reactors make the engineering for fission

reactors seem trivial. Every technology used in a fusion reactor is a

"high" technology. For example, the neutral beam, first wall, super-

conducting magnet, and lithium blanket technologies are not yet fully

developed.

There is uncertainty associated with the environment to which the

first wall will be exposed. There is a tradeoff between materials

lifetime and machine size: for a given power output a large machine

will have a lower neutron flux on the first wall, hence a longer

lifetime. A smaller machine with the same power output will have a

higher flux, hence a shorter lifetime, but will have a greater efficiency

than the larger machine.

Much uncertainty exists in our neutron damage data base. It is

simply not known what the effects of high energy neutron damage on

materials will be. Most of the neutron damage data comesfrom fission

reactor research involving only low energy neutrons. There is a fair

amount known about neutron damage to stainless steel and nickel-based

superalloys but very little is known about damage to vanadium, titanium,

or molybdenum (exotic materials proposed for use in fusion reactors).

There is also not much data on how accessible these exotic

materials are. In particular, very little is known about available

vanadium resources. Also, there is no existing mining infrastructure

associated with these materials as well as little welding or fabricating

experience.
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In addition to many extremely difficult (if not impossible)

engineering problems, fusion power involves some radioactivity. The

easiest fusion reaction to achieve is the D-T reaction (Chen, 1974,

p. 279):

D + T + 4He (3.5 MeV) + n (14.1 MeV)

Tritium (T) could be produced in a lithfum blanket from neutrons from

the fusion reaction:

n + 6Li - 4He (2.1 MeV) + T (2.7 MeV)

Even a reactor fueled by deuterium alone would involve tritium:

D + D +T( MeV) + p (3 MeV)

Only in the much higher ignition temperature reactions could tritium

be avoided.

Tritium decays with beta radiation with a half-life of 12.3 years.

3H + + 24He

Tritium affects the entire body, that is, it is not organ selective

(Piet, 1979, p. 12). Beta decay from tritium may also alter the DNA

structure. Tritium follows hydrogen in the environment - HTO and HT

are the tritiated forms of water and hydrogen gas respectively. Thus,

tritium is hazardous because there is no biological shield for it and

detection is difficult. Experiments show that 99% of HTO inhaled is

absorbed by the lungs while only .1% of HT is absorbed. Thus HTO is

much more dangerous to humans than HT (Ibid, p. 12). There is room for

improvement in the existing data base for tritium as much of the present

data (chemical and physical) comes from experiments using deuterium or

hydrogen.

We can see from the current controversies involving fission that

ultimately the public determines the United States' energy policy.
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Before the public will allow fusion power as a major energy source,

apparently they must be comfortable about whether tritium releases will

be under.control and not dangerous. To get some feel for what "under

control" means one can set some threshold values for tritium releases.

The natural inventory of tritium consists of approximately 30(10)6 Ci,

where Ci = Curie (Darvas, p. 10). The birth rate is about 1.6(10)6

Ci/year. Many threshold value models use 1% of the natural inventory

as a limit of tritium releases. Another approach is to set tritium

release rates to that of fission fuel reprocessing plants. An accepted

value for this is 10-20 Ci/day. However, a tritium factory at Marcoule,

France, using double jackets for all components, reports a tritium loss

of 4% (Darvas, p. 22). This much release would be too great for a

fusion reactor as the tritium inventory in the reactor is very large.

For example, a 5GW plant circulates 675 g/day of tritium from the

lithium blanket (Darvas, p. 16). This implies that much stricter

tritium control must be used in a fusion power plant. Fusion reactor

design should be determined by using state-of-the-art tritium control,

setting a limit on tritium releases, and from this determining all other

parameters.

With the hundreds of meters of piping in a fusion power plant,

there are many ways for tritium to escape. The main tritium loss

mechanisms are permeation, leakage (pipes, pumps, valves, etc.), losses

through maintenance, and through tritium contaminated wastes. Permeation

is by far the greatest mechanism of loss of tritium. Experiments show

that the tritium permeation rate is proportional to the square root

of the tritium partial pressure. But new evidence suggests that at
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pressures less than 1 Torr the permeation rate is directly proportional

to the partial pressure. "Thkis would substantially reduce our cal-

culated tritium permeation rates, rendering tritium losses via the

permeation mechanism insignificant" (Kabele, p. 40).

Leakage from valves, pumps, and flanges could be trapped by a

containment building, oxidized to HTO, and stored. However, present

technology has 90% efficiency which implies that 10% of the leakage

escapes to the environment.

Maintenance of a fusion power plant may introduce radioactivity

to the environment as well as exposure to plant workers. The first

wall of a fusion reactor must be removed every few years because of

damage due to the high energy neutrons. This allows a path for neutron

induced radioactive material as well as tritium to escape. The large

amount of tritium required for the fusion reactor implies maintenance

problems. Disposing of tritium saturated piping and hardware is still

another mechanism for tritium release to the environment (Kabele, p. 40).

Major maintenance may add 100 - 1000 Ci/year to present tritium release

estimates (Piet, 1979, p. 33).

Many uncertainties are involved with tritium release mechanisms.

For example, oxide films may be used to prevent tritium permeation.

There is the uncertaintly that permeation is significant depending on

which permeation rate law is valid. Also, it is expected tritium

control technology will improve by the time fusion power is technically

feasible. Thus while we cannot predict that public unacceptance of

tritium releases will prevent fusion power from becoming a major

energy source, we can see the potential problems that might arise.

-- MiM1IIO
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Figure 4-1 shows a schematic view of a fusion reactor, including

the tritium flow design (Darvas, p.3.). This also shows the energy

conversion system having the most probable tritium leak. Most fusion

reactor designs (e.g. UMAK I) use a steam/turbine energy conversion

design. The blanket material, lithium, captures the thermal energy

of the neutrons thus serving as a coolant and tritium breeder. Lithium

is an excellent coolant and has the benefit of low partial pressure of

tritium due to the stable Li-T bond (Kabele, p. 41). Again, this implies

less release of tritium.

Carnot efficiency,

S= (1 - Tcold )

Thot

where Thot is the temperature of the coolant, dictates that if one

increases this temperature, better plant efficiency will result. But

increasing the temperature of the coolant increases the partial pressure

of tritium thus increasing the tritium release rate. Thus there is a

trade-off between plant efficiency and tritium release.

Modeling has been done to estimate the amounts of tritium exposed

to man by fusion reactors. The "maximum individual" dose estimate is

- 5 mrem/year (Piet, 1979, p. 16). "Maximum individual" refers to an

individual located on the plant site boundary. A typical fission plant

is required to allow no more than 5 mrem/year exposure to the maximum

individual. It must be remembered that the tritium release for a fusion

plant will increase roughly with the power output of the plant. Thus,

the local exposure limit may set limits on the power outputs of fusion

plants. Cost estimates of fusion plants tend to be independent of the



Figure 4.1 Schematic View of a Fusion. Reactor and of the Flow of Tritium Fuel



design. One reason for this is because designers simply would not get

funding for research if the cost of a fusion reactor were outrageous.

Since so many variables and uncertainties are involved in tritium dis-

persion modeling, one might suspect that it is not a coincidence that

the numbers for tritium exposure are similar for fusion and fission

plants.

It is instructive to note that the 5 mrem/year threshold value

is a value judgment as to what risk is acceptable to society. By the

time fusion power is technically feasible, this value judgment might

change, effecting the design of the facilities and possibly even their

implementation feasibility.

Fusion power proponents are likely to receive public scrutiny

on the tritium issue. When controlled fusion becomes a reality,

engineers will have to design to meet the contemporary tritium release

standards. Government funding of fusion research may decrease due to

anticipation of the tritium issue as well as the immense engineering

problems of fusion. On the other hand, it may turn out that tritium

releases can be kept negligible by some new tritium control technology.

Also, fusion research could head toward using the higher ignition

temperature reactions with no radioactive fuel or products.

Another uncertainty associated with fusion is its commercial

feasibility. Fusion reactors will be very expensive due to the high

technology required. It has yet to be demonstrated whether or not fusion

power will be competitive, in economic terms, with alternative energy

sources.

In summary, uncertainties associated with safety (i.e. tritium

control), scientific, engineering, and economic feasibility of fusion
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power will have to be reduced significantly before sound technology

assessments .can be conducted. At some point in time fusion power may be

abandoned as a possible commercial energy source if these uncertainties

are reduced to the point of recognizing the unfeasibility of controlled

fusion power. On the other hand, the uncertainties may be reduced in

favor of fusion power. A technology assessment methodology that explicitly

incorporates uncertainties, such as those proposed in Chapter 2, will

thus be particularly useful for these far-future technologies. Decision

makers could then keep track of the range and magnitudes of the uncer-

tainties in the performance of the technologies. Such uncertainties,

levels of risk aversion, and expected costs of R & D projects to reduce

uncertainties, can be used together to make the appropriate decisions

at the development, demonstration and commercialization stages of the

evolution of an energy technology.
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4.2 Example of a Comparative Technology Assessment--Fluidized Bed
Versus MHD

Over the next 30 years, two technologies that will be competing

as the primary method for converting coal to electricity are fluidized

bed combusti-on (FBC) and magnetobydrodynamics (MHD).. Although both

technologies are currently receiving substantial R&D funding, the

emphasis in the past has varied from one to the other. At some point

in time it is quite conceivable that a choice will be made to continue

with just one of these technologies. This choice, it would seem, will

depend upon the uncertainties about the two processes. As long as

both technologies are some distance from commercialization, they are

both likely to receive continued funding, not only because a clear

"winner" cannot be predicted, but because at this point it is not

certain that both will even "finish the race." In this type of

technology assessment it seems that the decisions must be made by

watching where the technologies stand with respect to each other as

their performances come into sharper focus. With uncertainty being

such a key issue, the only tool we could find available that explicit-

ly included uncertainty was the AEGIS simulator that we modified for

the examples in Chapter 3. Thus it is used again here.

First a very brief description of the technologies is in order.

Fluidized bed combustion processes use coal ground to about pea size.

This coal is fed uniformly into the combustion chamber, or bed, where

air rushing in from the bottom of the combustor at about 8 feet/sec

actually suspends the small pieces of coal. These suspended coal par-

ticles have the appearance of a fluid, generally seeking a particular
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level and sometimes, even displaying waves. In such a fluidized bed

the coal c6mbusts much more completely than it usually would. When

the coal is burned down to the ash this ash is carried away by the

fluidizing stream of air or is moved out of the bed area. A major

advantage of fluidized bed is that small pieces of limestone can be

introduced into the bed to absorb the sulfur oxide pollutants. Some

of the uncertainties that still exist about this technology are

enumerated in an EPA-sponsored report (Gruhl, Teare, 1978), and

principally involve particulate control and uniform coal feeding

problems.

MHD processes involve the combustion of pulverized coal at

extremely high (50000F) temperatures. At these temperatures the

combustion gases ionize. When moved across a strong magnetic field

electric current is drawn (onto electrodes) directly from the combus-

tion gases. After passing through the magnetic field the gases are

still hot enough to drive a conventional turbine cycle power plant.

The advantage of this combined process is an extremely high efficiency,

but there are still considerable problems, as listed in another EPA-

sponsored report (Gruhl, 1977), including principally the slag coating

of the electrodes and erosion of the turbine blades by the highly cor-

rosive high temperature combustion gases.

For comparative purposes the conditions used to drive the AEGIS

simulations of fluidized bed and MHD facilities are much the same as

those used in Chapter 3, namely:

- ~ --- IIIIIYIY~
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a 19Q MR size

o 1998 startup date

o Wiest Virgi-nia bituminous coal

o 70% design capacity factor

o 155 meter stack

o national average meteorologic conditions Indian Point 1980

population distribution, and

o LAMM - linear additive mortality model of consensus worst case

health consequences of facility generated air pollution.

The MHD facility chosen was an open cycle coal fired design. The

fluidized bed combustor (FBC) was of a standard, moderately pollutant-

controlled design, using raw limestone #1359 as the sorbent.

Table 4-1 shows a seclected set of performance measures that

resulted from these simulations. For comparative purposes the middle

column of Table 4-1 can be used as the value from a deterministic

assessment. In every one of the deterministic comparisons there is a

clear winner. However, examining the probabilistic information, with

these technologies still on somewhat uncertain grounds, only in energy

efficiency and respirable particulates are there clear winners. That

is to say, there appears to be no chance of making a mistaken choice,

i.e. where all values for one technology are superior to all values

for another technology.

There are two caveats to this result. First, for two of the per-

formance measures, investment cost and cost of electricity, there are

common factors of uncertainty, such as cost of capital. Thus the FBC



Table 4-1 Comparison of Some Performance Measures for
Fluidized Bed and MHD Facilities

0% 16% 50% 84% 100%

Investment Cost MHD 1219.8 1364.2 1529.5 2095.7 2736.0

($Mill) FBC 814.0 821.2 829.5 1088.3 1412.5

Cost of Electricity MHD 25.3 28.1 33.2 43.1 54.7

(Mills/kwh) FBC 20.9 22.2 24.6 30.0 36.4

Energy Efficiency MHD 45.9 47.3 48.6 49.1 49.7

(percent) FBC 33.5 34.4 35.6 36.8 39.9

Commercialization MHD 1995 1996 1999 2003 2021 o
Year FBC 1988 1988 1991 1995 2005

Sulfates MHD 10.1 33.6 611.0 1338. 3225.

(gm/min) FBC 157.8 576.3 1602.2 3504. 5662.

NOx MHD 5.7 14.3 17.1 29.5 64.6

(1000gm/min) FBC 15.4 20.1 25.1 32.3 37.1

Particulates MHD 6.0 53.2 55.1 68.4 81.7

Respirable FBC 672.6 1311.0 1869.6 2720.8 3226.2

(1000 gm/min)

Polycyclic Organic MHD .3 .9 2.7 8,9 27.4

Material FBC 3.23 66.5 164. 720. 2360.
(gm/min)

Annual Public Health MHD .15 1.4 4.4 9.3 14.4

(Mortalities) FBC 8.5 34.7 109.4 235. 404.
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may in fact be certainly superior to MHD in costs once the common

factors of uncertainty, are investigated. Second, the respirable

particulate and polycyclic organic materfal (POMI outputs of the FBC

might be intolerable, and thus in a more detailed investigation addi-

tional particulate controls could be added at a cost. In more detail-

ed work, the flexibility within each technology must be part of the

assessment process.

In tracing back the health impacts of the technologies it turns

out that the FBC particulate control will also take care of most of

its health impact difference from MHD. Thus, in general, FBC is

favorable from the cost and commercialization year perspectives, while

MHD is far ahead in efficiency and particulate emission areas. This

leaves the sulfate and NOx problems. As clear cut as the sulfate

issue seems, at the level of uncertainty currently displayed by these

technologies there is about a 30% chance of error from a choice of

MHD as the minimum sulfate producer (a 70% chance of error choosing

FBC). In investigating these emissions in terms of the regulations

or the suspected health impacts it turns out there is no substantial

issue here at all. Although there is great uncertainty, in neither

case do the levels reach the recognition levels.

This leaves the NOx issue, which is not only becoming a health

(cardiac, pulmonary, and carcinogenic) problem, and an acid rain

issue (causing nearly 40% of acid rain), but unlike particulates and

sulfur compounds there are no good control opportunities. Examining

the emissions information, MHD is the more favorable from the
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deterministic (50%) point of view. However, if the decision maker is

risk averse he may well decide that FBC iStmore favorable, particular-

ly where the health impacts are substantially (nonlinearly) greater at

higher levels.

Instead of this being a peculiar situation, it may in fact be

the norm. Farther-future technologies are generally pursued because

they do have an expected advantage. These technologies will, however,

have much greater uncertainty, thus under risk averse decision situa-

tions they will look less favorable. This is a clear demonstration of

the importance, and perhaps the necessity, of technology assessment

methodologies that include measures of uncertainty.

--I- - IlIIbII
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4.3 Technology Assessment from an Issue Perspective -- The Global CO2
Problem

The final illustrative discussion is an example of technology

assessment used in a reverse mode. Once a new problem is identified,

such as the global CO2 problem, then technologies can be reassessed

in the light of this "new" performance measure. In the example

presented here, the long-range CO2 problems of the fossil-fueled

technologies are contrasted with the nuclear power technologies and its

potential health impacts.

The current public debate over nuclear power is a very complex and

sensitive issue. But many people are unaware or selectively ignore the

global CO2 problem which perhaps deserves as much attention. The

reasons for this disparity in national concern have some of their roots

in the inadequacies of current technology assessments -- both funding

and methodological inadequacies.

Atmospheric CO2 is transparent to visible light but will absorb

infrared radiation given off by the land, oceans, and clouds at

temperatures much less than that for solar radiation. The CO2 then

reradiates a portion of this absorbed energy back to the earth. With-

out the atmospheric CO2 , this portion would be lost to space. The

effect of trapping this heat in the atmosphere is called the "Greenhouse

effect" (Keeny, et al, 1977, p. 201). Many uncertainties and feedback

loops are involved; for example, as the temperature rises from the

greenhouse effect, dissolved carbon dioxide in the ocean tends to

escape into the atmosphere thus resulting in an enhanced greenhouse

effect (Keeny, et al., 1977, p. 202).
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Volcanic and geothermal contributions to atmospheric CO2 amount

to approximately .04 billion tons C/year. This is small compared with

the fossil fuel contribution, -5 billion tons C/year. This value in

turn is small compared with the natural carbon fluxes in the atmosphere

and oceans (Baes et al., 1976, p. 3). Figure 4-2 shows the observed

increase in atmospheric CO2 from 1958 to 1974 (Baes, et al., 1976, p. 11).

The CO2 concentration before and after the industrial revolution are

295ppm and 330ppm respectively. Figure 4-3 shows the cumulative CO2

production and observed CO2 increase (Baes, et al. 1976, p. 20). Thus

we see that the burning of fossil fuel is probably responsible for the

observed increase in atmospheric carbon dioxide.

From the known amounts of fossil fuel-produced CO2 and atmospheric

CO2 it has been calculated that -50% of the produced CO2 has been

removed from the atmosphere. This is a crucial point because most of

the modeling done has assumed a 50% atmospheric storage. Figure 4-4

illustrates the possible CO2 release from forest clearing proposed by

R. M. Rotty (Rotty, 1979, p. 8). This implies that much more CO2 is

put into the atmosphere than was taken account for and thus the fraction

of CO2 airborne is reduced. This will drastically change the modeling

results previously obtained assuming 50% storage. However, W. S.

Broecker et al. conclude, contrary to Rotty, that "...current estimates

of ocean uptake are sufficiently firm to exclude the possibility that

appreciably more excess CO2 is dissolved in the sea than has been

estimated through the use of existing models" (Broecker, et al., 1979,

p. 409). They conclude that the regrowth of previously cut forests and

the enhancement of regrowth resulting from the excess CO2 in the
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atmosphere have probably balanced the rate of forest clearing during

the past few decades.

W. S. Broecker et al confirm the 50% storage assumption by cross-

checking several times: the first method is based on the requirement

that the net influx of naturally produced 14CO02 into the ocean be equal

to the rate of decay of 14C residing in the sea. The result is 196

moles of CO2 per square meter per year (Broecker, et al, 1979, p. 411).

the second approach is based on the deficiency of radon gas observed

in the surface ocean mixed layer. The best estimate for the CO2

exchange rate based on radon is 16 moles per square meter per year.

These two independent methods give fairly consistent results. They also

cross-check the vertical mixing in the sea by using bomb produced tritium

data (Broecker, et al . 1971, p. 412) yielding the result of atmospheric

storage, 52%. The basic CO2 modeling results have also been confirmed

by a group of experts convened by the National Academy of Sciences:

"We have tried but have been unable to find any overlooked or underes-

timated physical effects that could reduce the currently estimated

global warmings due to a doubling of atmospheric CO2 to negligible

proportions or reverse them altogether" (Wade, 1979, p. 912-913). Thus

we see that a consensus on the problem is being developed and model

results are clustering. This means that the CO2 problem warrants more

attention than has been previously paid.

The most energy-frugal global strategies coupled with the results

of the aforementioned models, "...would force the world to get its

energy 50% from new non-fossil sources by about the year 2010, if a CO2

level of 500 ppmv is not to be exceeded, and about 2020 if a CO2 level
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of 600ppmv is not to be exceeded. The technology shifts implied ...

will be very difficult, and would require a high degree of global

cooperation, much more than now seems apparent" (Rose, 1980, p.2 .).

Based on the market penetration time of past U.S. technologies,

the most optimistic market penetration time for the non-fossil sources

is 50 years (Rose, 1980, p. 9). This coupled with the uncertainty in

the CO2 level and uncertaintly in the energy growth yields an action

initiation time range of 1970 - 1990 (Rose, 1980, p. 10). Thus we

may have run out of time to rectify the CO2 problem. However, it seems

clear that a firm bound does exist and therefore ignoring the problem

because of disputed models and uncertainty can no longer be justified.

The climatological changes predicted are mainly deleterious since

species and crops are optimized to existing conditions. Regional

dryness, oceans flooding coastal regions from melting ice caps, and

decreasing the world productivity are some of the potential problems.

Although predicting climate change is a somewhat uncertain venture

climatologists are agreeing that drastic climate changes (hence food

production) are inevitable at a CO2 level of 600 ppm. The consequences

of restricting global food production from its currently meager rate

would be devastating, having a much more direct impact on civilization

than the energy crisis (Rose, 1980, p. 11).

The effect of temperature increase on the level of the oceans is

not as catastrophic as imagined previously. Since the ice areas and

oceans are so massive, they serve as very long term heat sinks. Figure

4-5 illustrates the increase on the level of the oceans for alternative
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paths of carbon dioxide concentrations (Nordhaus, 1979, p. 150). Note

that the lev.el increases only 1.5 meters by the year 2160 for the worst

case. Another note of interest is "... that even though the climate as

a whole is warmed, a cooling of continental climates may occur because

of weakened westerlies; Newson's study predicts the continental United

States will cool by 80C (Nordhaus, 1979, p. 134).

William Nordhaus offers some economic and technical strategies for

the control of carbon dioxide: "The problem is a classical example of

economic externality. An externality arises when economic agents do

not pay for the entire social cost of their activities" (Nordhaus, 1979,

p. 135). He suggests that the most efficient way to reduce emissions

is not to reduce consumption but to change the composition of production

away from carbon-based fuels.

Once some notion about an efficient path has been obtained,
there must be a way of assuring that the millions of
economic actors have incentives to reduce emissions. In
the real world, the policy can take the form either of
taxing carbon emissions or of physical controls (such as
rationing). In an efficient solution, the two are inter-
changeable in principle; in practice, the use of taxes is
much simpler because the taxes tend to be much more uniform
than the quantities. I therefore will concentrate on 'carbon
taxes' as a way of implementing the global policy on a de-
centralized, individual, level (Nordhaus, 1979, p. 137).

Nordhaus suggests that CO2 can be compressed and pumped into the

oceans at a depth of at least 2000 meters and will stay there since it

would be at a specific gravity heavier than water. His analysis shows

that the cost of this scheme is only about one-thirtieth of the cost of

putting the CO2 into the atmosphere. "The reason for this anomaly is

that by the time carbon is put into the deep ocean it is locked up there

for about 1000 years: (Nordhaus, 1979, p. 153).
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The nuclear power industry has been widely attacked as a threat

to human health. "Critics are primarily concerned about the possibility

of catastrophic reactor accidents and the health and environmental

problems associated with nuclear wastes and plutonium. These risks

are real and must be considered in any assessment of nuclear power."

(Keeny, 1977, p. 16). Clearly, there is uncertaintly associated with

regarding the effects on health and the environment of radiation and

regarding the probability of nuclear accidents. But in normal operations,

a 1000 MWe nuclear plant has been estimated to cause one fatality per

year from radiation and occupational accients to workers and the public

(Keeny, 1977, p. 17). A comparable coal plant, meeting new standards

causes from two to twenty-five fatalities per year. Thus in normal

operation, nuclear power has smaller adverse health impacts than coal.

Or in other terms, the uncertainty in health impacts for nuclear power

(for normal operation) is bounded by the health impacts for coal. The

most pessimistic case for a nuclear accident still is bounded by the

coal plant estimates. Thus "... even when the possibility of reactor

accidents is included, the adverse health effects of nuclear power are

less than or within the range of health effects from coal" (Keeny, 1979,

p. 19).

The other main public concern about environmental impacts of

nuclear power is waste disposal.

We are convinced that nuclear wastes and plutonium can be
disposed of permanently in a safe manner. If properly
buried deep underground in geologically stable formations,
there is little chance that these materials will reenter
the environment in dangerous quantities. Even if material
were somehow to escape eventually in larger quantities than
seems possible, it would not constitute a major catastrophe
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or even a major health risk, for future civilizations.
(Keeny, 1979, p. 19)

However, the current worldwide temporary management of nuclear waste

appears to constitute a greater threat than permanent underground

storage. On balance, nuclear power has significantly less adverse

environmental impact than coal. Or, the uncertaintly is bounded by

the environmental impact of coal.

We see that the uncertainties associated with nuclear power and

the CO2 problem are fairly well bounded. It also seems clear that the

maximum possible damage to the biosphere by nuclear power is dwarfed

by the maximum possible damage due to the global CO2 problem. Then

why is there such an obvious disparity in national concern between

these two issues? The answer to this question is complex and warrants

much discussion and research. One reason is that the CO2 problem is

a global concern and international efforts tend to be weak compared with

national efforts (Rose, 1980, p. 3). Also, "the CO2 problem has all the

features that lead to present inaction: not easily definable, no

closely affected group (now), no strong institutional mechanism, dis-

puted models, long time before bad consequences, many uncertainties".

(Rose, 1980, p. 12). However, the long time perspective of the CO2

problem is comparable with the long time perspective of nuclear waste

disposal. Both of these issues concern the morality of leaving serious

long term problems with future generations.

The reasons for the apparent disparity in public concern include

poorly developed and poorly presented information about both the CO2
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problem and the actual environmental impacts of nuclear power. Also,

the nuclear debate is much more glamorous: radiation is unseen, unknown

and highly dangerous. CO2 is natural and fossil fuels have been around

for a long time. Further, the prospect of world starvation is much

less glamorous than the idea of a catastrophic nuclear accident.

Much can be done to rectify the current disparity in concern.

Research can further reduce the uncdertainty associated with the CO2

problem. Also, the sooner a consensus on the problem is more fully

developed, the sooner the public will pay more attention. Finally, the

government and other concerned institutions can disseminate accurate and

unbiased information concerning such issues as nuclear power and the

global CO2 problem. The initial steps toward the resolution of this

problem lies squarely in the lap of good solid technology assessment.

There are some initial hurdles to overcome, and perhaps the largest is

the credibility of assessments. There are several reasons why past

assessments have fostered a lack of credibility:

(1) technologies have generally been assessed by experts
in those technologies, who obviously have a
promotional bias,

(2) issue-oriented assessments have generally been con-
ducted by experts or interest groups with strong
negative biases, and

(3) sufficient data have always been lacking, neverthe-
less the presentations of assessments tend to have
an appearance of exactness.

For all of these reasons technology assessments have not stood the test of

time. Through the appropriate makeup of assessment teams and the use of

probabilistic methodologies these credibility problems should, for the

most part, be resolved.
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5. SUMMARY AND CONCLUSIONS

In this study, a systematic investigation was made of energy

technology assessments to evaluate their effectiveness. Most of the

assessments studied contained significant flaws in assumptions, methodolo-

gies, and/or data bases. In addition to assumptions usually being hidden

in the methodology, most technology assessments were biased in some way

because of special interests. Such a biased approach is not "wrong", it

is just inappropriate not to have the assumptions and interests of the

assessor pointed out clearly so that the biases can be separated from

the assessment. Even though probabilistic assessments have potential

problems in implementation and interpretation, their use in a complex

analysis seems more appropriate than the use of a deterministic approach.

Meteorological factors must be considered to address specific

power plant siting problems. A technology assessment that applies

national average meteorological characteristics to a specific site will

most likely be biased against the fossil-fueled technologies. A much

more accurate analysis would result by capturing the characteristics of

the specific meteorological conditions at specific sites.

Atmospheric transport and dispersion modeling used in technology

assessments are generally very inaccurate. It seems clear, from the

studies reviewed, that the simplifying assumptions used make the

pollutant concentration estimates too crudely. What is needed is an

uncertainty bound rather than a specific value. In that way, models

using dispersion results (e.g. health models), would be much more useable

in the policy*environment. It is difficult to have confidence in health

model results, for example, when the dispersion model used is known to
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be inaccurate but does not give uncertainty bounds.

Popul.ating densities and locations must also be carefully charac-

terized to properly address specific power plant siting problems.

An ideal specific siting analysis would include specific meteorological,

and specific population data as well as including an uncertainty bound

on the dispersion modeling results. In large scale technology assessments

where it would be inappropriate to model all available sites, it would

seem to be important to have several categories of generic sites for use

in the analyses.

Current health modeling contains many more uncertainties than any

other portion of the technology assessment process. However, health

model results are used for policy decisions, many times with little

knowledge of the uncertainty. Of the 255 health impact articles surveyed

the majority showed that there was no impact on health from community

air pollution levels. Furthermore, some of the articles showed bene-

ficial effects of air pollution. Most of the 30 models available in

that literature showed severe data and statistical problems. It seems

apparent that the health impacts that have been used in past technology

assessments can at best be construed as slight hints of what might

possibly be the worst case health impacts. At worst these estimates are

misleading and their use is counterproductive in the assessment process.

It seems clear that adequate measures of the uncertainties in these models

would be extremely important for conveying the levels of speculation

associated with any numbers that are turned over to the policy decision

process.

Fusion power is a far-future technology that requires an individual
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cost/benefit assessment since there are really no comparable technologies.

The uncertainties associated with safety (i.e. tritium control),

scientific, engineering, and economic feasibility of fusion power will

have to be reduced significantly before decisive technology assessments

can be conducted. At some point in time fusion power may be abandoned

as a possible commercial energy source if these uncertainties are

reduced to the point of recognizing the unfeasibility of controlled

fusion power. On the other hand, the uncertainties may be reduced in

favor of fusion power. A technology assessment methodology that explicitly

incorporates uncertainties (such as those proposed in Chapter 2) will

thus be particularly useful for these far-future technologies. Decision

makers could then keep track of the range and magnitudes of the uncer-

tainties in the performance of the technologies. Such uncertainties,

levels of risk aversion, and expected costs of R&D projects to reduce

uncertainties, can be used together to make the appropriate decisions at

the development, demonstration, and commercialization stages of the

evolution of an energy technology

The comparison of coal-fired fluidized bed combustion and MHD is

more typical of the setting in which technology assessments have generally

been employed. The results of this example show some of the biases

inherent in deterministic assessments, particularly with regard to

situations where the uncertainties may well be more important than the

expected values of the performance measures of comparable technologies.

An issue-oriented assessment such as an assessment of the global

CO2 problem works backwards, from an identified problem to the possible

solutions. In this study, a comparison was made between the CO2
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problem and the environmental impacts of nuclear power. The CO2 problem

seems to have a much greater damage potential to the biosphere than

nuclear power. The obvious national disparity in concern over these two

issues raises a question about the credibility of issue-oriented

assessments. The initial steps toward the resolution of the CO2 problem

will be realized when such issue-oriented assessments are made more

credible by using sufficient data, explicitly characterizing uncertainties,

minimizing biases. with systematic and comprehensive interdisciplinary

investigations, and making assessments publicly available for peer and

independent evaluations.

R&D priorities should be set up in such a way so as to reduce the

uncertaintly in energy technology assessments. Obviously, where the

greatest uncertainty lies and where this uncertainty crosses over into

critical decision areas, is where the most urgent research is needed.

Probabilistic methodologies can be implemented to provide precisely the

necessary probabilistic information that is necessary for developing

priorities on R&D funding strategies. Here again it would appear that

the information about uncertainty is more important than the expected

values.
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APPENDIX -- POPULATION DATA BASE REFERENCES

(19)
Title - 1950, 1960, 1970 U. S. Human Population Counts by County
Date - 780703
Contact Person - Puja, Phyllis M.

Argonne National Laboratory, Energy and Environmental
Systems Division
9700 S. Cass Ave.
Argonne, IL 60439
FTS 972-3980

Source - Andrew Loebl (615) 483-8611, Ext. 3-6781
Oak Ridge National Laboratory
Regional and Urban Studies Department
P.O. Box X
Oak Ridge, TN 37830

Documentation - Derived from published U.S. Bureau of the Census data
from 1950, 1960, 1970 census volumes on tapes

Subject Coverage - U. S. Census Population counts by 5 year age groups
Geographic Coverage - all U. S. counties; states
Data Time Span - 1950, 1960, 1970
Status - in use
Access - Unlimited
Media - Magnetic tape; 1950 file is 3160 records each 773 bytes long;

1960 file is 3160 records each 869 bytes long; 1970 file is
3135 records each 1013 bytes long

Computer data - IBM 370/195 OS/MVT with a 9-track tape drive; EBCDIC
Abstract - This tape contains the U. S. Census Bureau, 1950, 1960, 1970

Decennial censuses of the population counts by age, sex,
race for all U. S. counties. For 1950 and 1960 totals for
states are also included. The age and race groups covered
are as follows: (1) 1950: (0-4, 5-9,...,75+), (Total,
white, nonwhite); (2) 1960: (0-4, 5-9,...,85+), (Total,
white, nonwhite); (3) 1970: (0-4, 5-9,..., 100+), (Total,
white, negro).

Keywords - human populations; population dynamics; population density;
age groups

(Shriner, 1978, p.7)

(521)
Title - Population Analysis System
Date - 780615
Contact Person - Durfee, R. C.

Oak Ridge National Laboratory
P. 0. Box X
Oak Ridge, TN 37830
615-483-8611 Ext. 3-0106; FTS 850-0106

Source - Developed at ORNL
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(521) - continued

Documentation - None directly. Related documents are: "Geographic
Data Systems Part II: Application to the Environmental
Analysis of Strip Mining in Appalachia," R. C. Durfee
and R. G. Edwards, ORNL/RUS-27 in preparation;
"Assignment of Erts and Topographical data to Geodetic
Grids for Environmental Analysis of Contour Strip
Mining," R. C. Durfee et al, presented at the American
Society of Photogrammetry, American Congress of
Surveying and Mapping in Washington, D.C. on February
22-28, 1976 and symposium on remote sensing application
to North American land use, in Phoenix, Arizona on
October 26-30, 1975.

Subject Coverage - Computation of population densities
Status - under development; in use
Access - limited
Media - disc
Computer Data - IBM; IBM 360; LT. 540K Bytes, Calcomp, Versatec, and

PR-80 Plotters; Fortran
Applications - This package has been applied to problems of determining

population distribution for measuring aesthetic impacts
of strip mining for suitability analysis in power plant
siting, for establishing nuclear power plant restriction
zones, for use as siting factors in waste disposal, for
civil defense calculations, for nuclear radiation studies
associated with environmental impact studies, etc.

Data Source - The MESX census tapes containing population numerations for
enumeration districts with the centroid locations given in
l atitude-longitude.

Abstract - The computer sciences division has developed a program to
compute population densities from an irregular pattern of
enumeration district centroids at which the population count
is known. The technique uses a distance weighted interpolation
technique for all centroids within the window of interest.
The procedure also includes a normalization technique to
preserve known county population totals. The population
densities are computed for a user specified latitude-longitude
grid system. Any area in the United States may be selected
for study. A multi-colored shaded contour map may be
produced showing regions of varying people per square mile.
These polygonal regions may be saved in a separate polygonal
data base. The county outlines may be plotted on the display
as well. The population densities are given as people per
square mile. The interpolation procedure also includes
empirically derived adjustments to reduce the "over-influence"
of densely spaced centroids in highly urbanized areas on
distant rural areas. The contour maps are cartographic in
nature using various map projections and scales to overlay
base maps. The contour regions may be stored as polygonal
data bases for later analysis and display on other maps,
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Abstract (continued) - showing, for example, major cities.
Comments - 'This package consists of a series of modules which are com-

bined by personnel exoerienced in the system. The
individual modules are not transportable to any other
facility at present. Work is planned for FY 78-79 to
implement another interpolation procedure and provide
appropriate documentation. The system is still under develop-
ment and is presently being used in conjunction with ORNL
research applications.

Keywords - population density; computer graphics; maps
(Shriner, 1978, p. 118)

(791)
Contact Person - Durfee, R. C.
Title - Spatial Analysis and Suitability Modeling
Address - Oak Ridge National Laboratory

P.O. X
City- Oak Ridge
State- TN
Zipcode - 37830
Phone - 615-483-8611 Ext. 3-0106; FTS 850-0106
Source - Developed at ORNL
Documentation - None directly. Related documents are: Regional Studies

Program Annual Report January 1 through December 31,
1976, R. M. Davis et al. Oak Ridge National Laboratory,
ORNL/TM-5838, August, 1977; Toward a regional power plant
siting method; AEC-Maryland Regional Siting Factors
Study, FY1974 Progress Report, S. I. Yaffee, C. A.
Miller, Oak Ridge National Laboratory, ORNL-TM-4944,
November, 1974; the Maryland Power Plant Siting Project:
An Application of the ORNL Landuse Screening Procedure,
J. E. Dobson, Oak Ridge National Laboratory, ORNL/
NUROG/TM-79, April, 1977.

Subject - Routines for suitability, siting, and impact analyses of
power plant siting.

Abstract - The computer sciences division has developed a group of
spatial analysis routines for suitability, siting, and
impact analyses of power plant siting. These packages
combine and analyze regional and national data bases to build
indices that are combined together to calculate suitabilities.
One group of packages works with polygonal areas (counties,
BEA's, etc.) at the county level while the other operates
on a grid cell system at the sub-county level. The data
bases represent many variables such as water availability,
population density, seismicity, coal reserves, barge channels,
railroads, energy demand, air quality maintenance areas, etc.
A subset of the polygonal analyses operates on the PDP-O10
interactively. Existing and planned power plants are included
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Abstract (continued) - in the analysis along with new capacity that

.must be sited. Water quality impact analyses are
calculated and mapped also for specific regions, as a
result of siting future facilities. The calculations per-
formed in the software include proximity calculations for
accessibility to coal and energy demand. Exclusion factors
are also included to meet minimal power plant requirements.
The user places importance weightings on the siting factors
before the composite analysis is performed. The results of
the two packages may be plotted with the polygonal mapping
system or.the cell mapping system, respectively.

Geographic Coverage - Maryland; Southern U.S.; Ohio River Basin; U.S.
Status - Under development; in use
Access - limited
Media - disc
Computer - IBM
Configuration - IBM 360, .LT. 540K Bytes; PDP-10, .LT. 50K Words
Language - Fortran
Application - These packages have been used in energy facility siting

problems in Maryland, the South, the Ohio River Basin,
and at the national level. A variety of technologies
have been analyzed including coal combustion, nuclear,
and coal conversion.

Comment - These packages contain a series of modules which must be
combined by personnel experienced in the system for any
particular application. The individual modules are not
transportable to any other facility at present. Work is
planned for FY 78-79 to develop a generalized transportable
system with appropriate documentation. The system is still
under development and is presently only being used in con-
junction with ORNL research applications.

Update - 780615
(Shriner, 1978, p. 304)


