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ABSTRACT

A Monte Carlo method is presented which simulates the transport

equations of joint probability density functions (pdf's) in turbulent flows.

(Finite-difference solutions of the equations are impracticable, mainly

because of the large dimensionality of the pdf's.) Attention is focused

on an equation for the joint pdf of chemical and thermodynamic properties

in turbulent reactive flows. It is shown that the Monte Carlo method provides

a true simulation of this equation, and that the amount of computation required

increases only linearly with the number of properties considered. Consequently,

the method can be used to solve the pdf equation for turbulent flows involving

many chemical species and complex reaction kinetics. Monte Carlo calculations

of the pdf of temperature in a turbulent mixing layer are reported. These cal-

culations are in good agreement with the measurements of Batt (1977).



1. INTRODUCTION

The closure problem associated with non-linearities in the equations

governing turbulent flow is avoided by considering the joint probability

density function (pdf) of the flow variables. The joint pdf of velocity

p(v;x,t) provides a complete statistical description of the turbulent velocity

fluctuations, and, in reacting flows, a complete statistical description of

the chemical and thermodynamic properties is provided by their joint pdf,

p(_;x,t).

These favorable attributes have led several authors to base turbulence

closures on the transport equations for the joint pdf's. Lundgren (1969) and

Ribeiro (1977) have suggested closure approximations for the transport equation

for p(v;x,t). For reacting flows, the transport equation for p(_;x,t) is

particularly attractive since the effects of reaction appear in closed form,

irrespective of the complexity and non-linearity of the reaction scheme.

Closure approximations for other terms in the equation have been suggested by

Dopazo (1975), by Pope (1976) and by Janicka, Kolbe and Kollmann (1979).

The attraction of the pdf approach appears to diminish when solving the

transport equations is considered. Analytic solutions have been obtained in

a few simple cases, but in general numerical methods are required. Such

methods have to cope with the integro-differential nature of the equations

and with the large dimensionality of p(v;x,t) and p(_;x,t). For example,

in a steady, two-dimensional flow, the joint pdf of velocity is

p(V,v 2 ,v 3; x 1 ,x2)--a five-dimensional quantity. Consequently, no numerical

solutions of the transport equation for p(v;x,t) have been obtained. Janicka,

Kolbe and Kollmann (1978) used a finite-difference method to solve the



transport equation for a single scalar -- that is, for p( ; xlx2). This is

the most general solution that has been obtained so far.

Reactive flows of practical interest usually involve many species. Con-

sequently the dimensionality of the pdf p(i,P2... pa; x,t) is large because

a is large. An order-of-magnitude analysis (section 3.5) shows that the finite-

difference solution of the pdf transport equation is impracticable for a

greater than 3. (This is a generous estimate.) More importantly, the compu-

tational expense is found to rise exponentially with a. Therefore no conceiv-

able improvement in computational ability can make possible finite-difference

solutions for a = 10, say.

In this paper, a Monte Carlo method is presented which makes possible

the solution of the pdf transport equation for the general case. The compu-

tational expense of the method rises only linearly with a which is the best

that can be achieved by any algorithm. Consequently, the solution of the pdf

transport equation by the Monte Carlo method can be envisaged for turbulent

flows involving many reactive species. Although it is specific to the transport

equation for p( ; x,t), the method contains the ingredients essential to

simulating other joint pdf equations. Thus, solutions to the equations for

p(v; x,t) and p(v, ; x,t) can be obtained.

In general, for simple problems Monte Carlo methods are inefficient

compared with standard numerical techniques; but for multi-dimensional

problems Monte Carlo methods remain practicable while other methods demand

prohibitive amounts of computation. The works of Shreider (1966) and

Handscomb and Hammersley (1965) describe various applications of the

Monte Carlo method.
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In the next section the transport equation for the joint pdf p(4; x,t)

is presented and the modelling assumptions are discussed briefly. The Monte

Carlo method is described and analysed in section 3. Test calculations (reported

in section 4) demonstrate the method and are used to check the error estimates

obtained in section 3. The method was used to calculate pdf's of temperature

in a turbulent mixing layer: the results, reported in section 5, are in good

agreement with the measurements of Batt (1977). In the final section the method

is discussed starting with a summary of the more important findings.



2. THE JOINT PDF EQUATION

The equations presented here are taken from Pope (1979). A detailed

description of the formulation and a discussion of the equations can be

found in that work.

In a low Mach number flow, the mean pressure, the species concentrations

and the enthalpy provide a complete description of the chemical and thermo-

dynamic properties of the fluid at each point. Let ) (x,t) (a=l,2,...a)

denote one of the species mass fractions or the enthalpy at the location x

and time t. Then, from conservation principles, the following equation for

4 is obtained:

p- + U + J = pS . (2.1)
t i Dx. ax. a1 1

U.(x,t) is the velocity in the x.-direction; J is the flux of 4 in the
1 _1 1 a

x.-direction due to molecular transport; p is the density; and S is the
1 a

rate of creation of 4). The set of quantities 1,2" .,a is denoted by

4, and p and S can be expressed as functions of 4: thus,

p = p(M) and S = S (4). (2.2)

The joint pdf of 4 is p(k;x,t). _ (= a1 2' . ,4 ) is the a-dimensional

composition space corresponding to 4 -- a given location in composition

space, p = ' say, corresponds to fluid of properties 4 = i'. If Q() is

any function of 4 then its expected value (denoted by angled brackets) is

<Q((x,t))> = fp(i;x,t)Q()d. (2.3)
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d is written for d 1 di2 .... .di indicating that integration is over the

whole of 4-space. In order to simplify the notation, q(x,t) will also be

used for the expected value of Q:

q(x,t) E <Q(q(x,t))>. (2.4)

(The expected value of Q is sometimes called the ensemble average of Q:

however, that term is reserved for a different use below.)

In variable-density flows the use of density-weighted averages has

advantages both theoretically and practically. Density-weighted averages,

denoted by a tilde, are defined by

q(x,t) Q(4(x,t)) E <p(x,t)Q(4(x,t))>/<p>. (2.5)

And from the definition of the density-weighted joint pdf

p(;x,t) p(i)p(P;x,t)/<p> (2.6)

it follows

q(x,t) = J p( ;x,t)Q()d. (2.7)

Henceforth, p(i;x,t) is written p(*), the dependence upon x and t being

implied.

A transport equation for p( ) can be obtained from the conservation

equation for , equation (2.1). If the turbulent transport is modelled by

simple gradient diffusion (with the turbulent diffusion coefficient being

P (x,t)), the equation for p() is
rT(t



+ U - + _ ( -a0
-t - i Dx 3-

1 __ Bp(Ip)
D x + E(_;x,t). (2.8)

<p> Dx. T ax.
1 1

Summation is over repeated indices (i and a) and E(_;x,t) represents the

effect of molecular mixing. The terms on the left-hand side are exact

whereas those on the right are modelled or (in the case E) need to be

modelled. The two leading terms represent the rate of change of p(M)

along a density-weighted streamline; the third term represents the trans-

port of p(_) in composition space due to reaction. It is noteworthy

that, in this formulation, reaction -- however complicated the scheme --

can be treated without approximation.

Models for the molecular mixing term E have been proposed by Curl (1963),

Dopazo (1975), Pope (1976) and Janicka et al. (1979), but none is entirely satis-

factory. Here, Curl's model is employed since it alone is applicable to an

arbitrary number of quantities (i.e., any a) and can be expected to produce

qualitatively correct results. Accordingly, we take

E(_;x,t) = 2%f (_p+_p') (_p-_p')d_' - w(_) (2.9)

where w(x,t) is the appropriate turbulent frequency. A more complete dis-

cussion of the modelling of the turbulent transport and of E is given by

Pope (1979).



3. THE MONTE CARLO METHOD

The Monte Carlo method described in this section provides a simulation

of the density-weighted joint pdf equation (2.8). The usefulness of the

method depends on three results obtained below: the simulation converges

to the solution of equation (2.8); the numerical error is independent

of a (the dimensionality of ); and, the computational effort is propor-

tional to a. Consequently, for given accuracy, the amount of computation

rises only linearly with U.

3.1 Dependent Variables

The simulation is performed on a finite-difference grid, of uniform

spacing h, which extends over the region of interest, 0 < x < hL, say.

The node denoted by k is located at x = _h. If x-space is m-dimensional

(in general m=3), then L and R are m-vectors of integers and 0 < ki < Li.,

i=l,2,...,m. Each cycle of operations in the simulation advances time by

an interval k. Hence, if initial conditions are supplied at t=0, after

Scycles the time is t = kX.

Rather than considering p(4;x,t) explicitly, the dependent variables

in the simulation are representative values of . An ensemble of N such

representative values is located at each grid node. The ensemble at

(x,t) = (hk,kX) is denoted by ((hP,,kX) and one of the N members of the

ensemble is denoted by (n ) (hQ,kX). Although each member of the ensemble

(or element) is ascribed a unique number, 1 < n < N, no ordering is implied.

In fact, operations are performed either on all members of the ensemble or

on some selected at random. Thus, the numbering is a convenience that has

no effect upon the outcome. Recalling that _ represents a quantities, we

may write the ensemble as,



b(hZ,kX) = (hkt,kX) = , M .... ( .... ()-1 2

(2) (2) (2) (2) (2)
(h 9k ) = 1 " 2 ... O . .

(n) (n) (n) (n) (n)n)(h_,k)= I 1 2 a.... .... ac

(N) (N) (N) (N) (N)
(N(h,kX) = 1 ' 2 .... ""

The general element is (n)(h_,kX).

The ensemble average of any function Q( ) is defined by

1 N Q((n) ( k) 3i

q(h_,kX) = Q(4(ht,kX)) - 1 (n)(hkA)) . (3.1)
n=l

The ensemble average q is intended to simulate the density-weighted average

q.

3.2 Initial Conditions

In most applications the initial conditions are likely to be simple --

a uniform composition for example. Consequently the task of specifying the

initial ensembles is also likely to be simple. However, a consideration of

the general case is informative.

At the node h_, the initial values of the elements are chosen to be

( ,n) (h,O) = (n) . (3.2)

(n) th

(n) is the value (on the nth trial) of a random vector C which is distributed

identically to (hk,O) -- that is,

p(_)d5 = ~(J;hk,O)dj . (3.3)



For any function Q(_), the expected value of Q(_(n)) is

E Q ((n) (h,31O)) = f Q(_)p(§)d

= f Q(j)P(;h!,0)dI

= q(h_,0) . (3.4)

It clearly follows that the expected value of the ensemble average of Q is

also q:

E q(hZ,0) = q(h_,0) . (3.5)

The above shows that q(hk,0) is an unbiased estimate of q(h_,0).

The error in this estimate can be determined from the Central Limit

Theorem (Gnedenko 1962): since q is the average of N independent random

samples,

Q(n) (h,0)), n = 1,2...N,

as N tends to infinity the inequality



I (h,O) - q(hk,O) < q'N -  (3.6)

holds with probability erf (///-2), for B>O. q' is the standard deviation

(q')2 D Q =f ( Q - q)2d (3.7)

Two important conclusions can be drawn. As N tends to infinity, with

probability one, the error tends to zero: the standard error is q'N- 2

(with 68% probability the error is less than the standard error).

The expression for the standard error -- q'N - 
2 -- is common to most

Monte Carlo methods. The factor N-  indicates that the error decreases

slowly with increasing N which, clearly, is a disadvantage. The great

advantage of the method is that the error is independent of a -- the

dimensionality of --space. Consequently, for given accuracy, the number

of elements that are needed does not increase with a. While this



argument applies only to the initial conditions, it is shown in sections 3.6

and 3.7 that the conclusions are true in general.

In the subsequent analysis, ensembles are related to the joint pdf

through the following definition of equivalence. If, for all functions Q,

the ensemble average ((hk,t) converges in probability to the expected

value q(hk,t), then 0(hk,t) and -(J;hk,t) are equivalent. Equivalence

is denoted by an arrow:

D (h, t) + (; h, t)

or

q(ht,t) + ((hkt) .

Clearly, the initial ensembles are equivalent to the initial pdf's.

3.3 Operator Splitting

At successive time steps the ensembles are altered in such a way

that they remain equivalent to the joint pdf. The ensembles change

both by shifting elements from node to node (simulating transport in

physical space) and by changing the values of p(n) (simulating transport

in composition space). The precise manner in which these processes are

to be performed can be determined by examining the governing transport

equation.

Equation (2.8) shows that Q(~;x,t) changes due to the simultaneous action

of convection, reaction, diffusion and mixing. These four processes can be

simulated sequentially by using the technique of operator splitting. Hence

the following operators are defined:

That is, converges as N tends to infinity for fixed h.



C - U
(i) (i) 3x(i)

9S
S-S ( ) + ( ) I

and

1 3 9
(i) <p> x T x(i) (i)

I is the identity operator and the summation convention is suspended for

bracketed suffices. The operator E is defined by

E p(I;x,t) - E(f ;x,t) ,

E being given by equation (2.9). For an m-dimensional flow (in general

m=3) the transport equation for p can be written,

-p (S) m

9t = {E- S- i C
i=1 (i

m

i= 1 D

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

By approximating the time derivative by the forward difference

k ( (4;x,t+k) - i(Q;x,t)) = 9 t + 0(k)
--'-'= t

(3.13)

we obtain

2(gxt+k) = {I+kE-kS-k C +k D } (j;x,t) + 0(k 2 ) . (3.14)i 1 (i) i l(i)" "

The term in braces is the sum of operators which can be factored into

products of operators plus terms of order k2 . For example, the first
products of operators plus terms of order k .For example, the first

three operators can be factored as,



(I+kE-kS) = (I+kE)(I-kS) + k2ES (3.15)

2= (I+kE)(I-kS) + 0(k 2 )

The sum of operators in equation (3.14) is factored similarly to produce,

m m
p( ;x,t+k) = (I+kE)(I-kS) H (I-kC ) 1 (I+kD. )(g~;x,t) + 0(k 2 ) (3.16)

i=1 (i) j=l

The operator product that acts on p(J;x,t) can be split into a sequence

of operators acting on the intermediate values p(j;x,t'), where t < t' < t+k .

(This is a device that aids the notation: t' is not intended to correspond

to any particular time.) The notional times td(i) and t(i) refer to thed~i) c(i)

pdf's after diffusion and convection in the x.-direction. After reaction1

and mixing the notional times are t and t . These times are relatedr m

by

t = td() < td()... < t = t < t ...* <t < t < t+k.d() d1 ~ ) c(0) c(1) r m

(This relation also defines td(O) and t c(.) In terms of these intermediatec(0)

times, the sequence of operations is

p(_ ;xtd(i)) = (I+kD(i)) (_;xtd(i-1)) ,  i = l,...,m, (3.17)

j3(4;x,t ) = (I-kC ) (iP;x,t ) i=1 ,
(;x- tc(i)) = (i-kC ) -(;x- tc(i-1) i = 1,... ,m, (3.18)

p(_;Xtr) = (I-kS) p( ;xtc(m) ) (3.19)

p(';x,t m) = (I+kE) p(i;x,tr )  (3.20)

The value of p after the mixing operation is an approximation to

p(k;x,t+k), and according to equation (3.16),

p(4;x,t+k) = p(J;x,t ) + 0(k 2 ) . (3.21)p m



3.4 Monte Carlo Simulation

A method is devised to modify the ensembles I(hk,t) so as to simu-

late each of the four processes -- diffusion, convection, reaction and

mixing. The effect that each process has upon _ can be determined by

multiplying equations (3.17) - (3.20) by Q(_) and integrating. The

simulations are constructed so that, to within truncation error, the effects

upon q are the same. To be more precise, let t' and t" be the notional

times before and after a particular process, and let the ensemble and

pdf be equivalent at t':

-(hR,t') -* (h,t') . (3.22)

We seek a simulation of the process such that

q(hz,t") q(h_,t") + kO(h,k) . (3.23)

This condition is sufficient to ensure that, as N, h- I and k- I tend to

infinity, the ensemble O(h_,t) converges to the pdf p(i;hk,t). In other

words, if this condition is satisfied for each simulated process, then the

Monte Carlo method as a whole provides a true simulation of the pdf

transport equation (2.8). In section 3.6 it is estimated that finite values

of N, h-1 and k-1 cause an error of order (h,k,N ).

Diffusion

The effect upon q of diffusion in the x.-direction is determined by
1

multiplying equation (3.17) by Q(_) and integrating:

q(xtd(i)) = (I + kD(i))q(x) . (3.24)

Here, and below, q(x) refers to the value before the process, i.e. to



q(x, td(i-1)). As a first step to developing a simulation, the differ-

ential operator is replaced by the three-point centered difference

operator. At (x,t) = (h_,kX) this yields

(h_,td(i)) = (1 - yi+ - yi - )(h - ) + yi+ q(h( + e(i)

+ Yi- q(h(k- e(i) ) + kO(h 2 ) , (3.25)

where e is the unit vector and the Fourier numbers y are

k 1
Yi+  2 <p> 1T (h(k ± e.), kA). (3.26)

-± h -- <p

Thus, q(h_,td(i)) is a weighted average of q(hk) and the values at the two

neighboring nodes qh(b( ± e.)).

This process is simulated by forming I(h_,td(i)) from elements selected

at random from 0(h_) and O(h(_ ± e.)) in appropriate proportions. The
1

numbers of elements selected from $(h(_ ± e.)) are
-- 1

ndi+± = N iy± (3.27)

and the remaining n (= N - n - nd ) elements are selected from
di di+ di-

O(h). Thus, with J* denoting an element selected at random without

replacement, the ensemble average after diffusion is

q(htt d ) N n Q( (h(k + e )))q( -'td(i) ) N (i)-ndi+

+ 1 Q( (h( - e ())) + 1 Q(q*(hL)). (3.28)
N Ndi-n

ndi- ndi

The expected value of the last term is



EI Q(i*(h£)_) = n N E i Q (j*(h£)_)
nd. di ndi

= (1i- y -y.i- )  (hk) (3.29)

Applying the same procedure to the other terms yields

E (htd(i)) = (1 - Yi+- Yi - )q(h) + yi+ q(h(_ + e ))

+ Y.i- q(h(Z - e )). (3.30)
1- (i)

As N tends to infinity ((h_,td(i)) converges to its expected value.

Thus, if q + q prior to diffusion, a comparison of equations (3.25) and

(3.30) reveals that

q(httd(i)) + (h ,td(i)) + kO(h 2 ). (3.31)

This result confirms that the simulation of diffusion is valid (c.f. equation

(3.23)).

An efficient implementation of the simulation of diffusion is the

following. Each line of nodes in the x.-direction is taken in turn. At1

each node along theline, groups of ndi+ and ndi- elements are selected

at random without replacement from the ensemble. The group of ndi+ elements

at h_ is then commuted with the group of ndi - elements at h(_ + e.).

(From the definition of ndi± it may be seen that the sizes of these groups

are the same.) This process is performed for each node along the line and

for each line of nodes. The resulting ensembles are D(h_,td(i) )

Convection

The development of a simulation of convection is similar to that for

diffusion. Multiplying equation (3.18) by Q() and integrating shows the

effect of convection in the x.-direction to be
i



(xt c(i)) = (I - k C (i))q(x). (3.32)

q(x) refers to the value prior to the process, q(x,tc(i-1)

Replacing the differential operator by the two-point upwind difference

operator yields,

q(ht ) = (1 - c.) (hP,) + c.i(h9_ - e' ) + k 0(h). (3.33)
c~)1 1 (i)

e' is the unit vector in the same direction as Ui., i.e.
1 1

e'. =e. , U. > 01 1 1 -- (3.34)

e' = -e. , U < 0,1 1 1

and the Courant number c. is
1

kc. =-- U .(hkX) . (3.35)1 h i -'"

Thus, q(h,tc(i)) is the weighted average of q(h_) and the value at the

upwind node q(h(k - e'.)).
-- 1

Convection is simulated along each line of nodes in the x.-direction
1

taken in turn. At each node, n .ci = N c. elements selected at random are

replaced by nci elements selected at random from the upstream node. The

resulting ensembles are 4(hk,tC )- c(i)"

By arguments similar to those employed for the diffusive process, it

can readily be shown that, if q + q, then

q(hk,tc(i)) + q(h,t c(i)) + k 0(h). (3.36)

This confirms the validity of the simulation of convection.

Reaction

Both convection and diffusion transport p(;x,t) in x-space. Con-



sequently they are both simulated by the transfer of representative values

from one node to another. Reaction and mixing, on the other hand, transport

p(j;x,t) in I-space. This is simulated by changing the composition of

elements at each node. Of the four processes, only reaction is simulated

deterministically.

The effect of reaction upon q is determined by multiplying equation

(3.19) by Q(J) and integrating. At x = hk this gives:

q(hZ,t r ) = q(h,t c(m)) + k r(h_,tc(m)) (3.37)

where - is the expected value of R(l),

R(±) = S () (3.38)(n) =(n -(3 cm38)

For each element ( ( n )  (n)(h9,t ()) reaction proceeds according

to

I(n) (h r=,tr (n) + A ( n )  (3.39)

where the undetermined quantity Al(n) is of order k. The effect of reaction

upon q is determined from equation (3.39) by use of a Taylor expansion:

N
a"(h,,t ) 1 N (n) + A(n)

r N Q(
n=l

1 N (n) (n) 9Q(! ( n))

N I Q((n) (+ Aj n) + 0(k 2 )} . (3.40)
n=l 3

The appropriate choice for A4 ( n ) is

Sa ( n) = k S (n)) +0(k 2) (3.41)

since equation (3.40) then becomes



q(hk,t r ) = q(hk,tc(m)) + k r(h,t (m)) + 0(k 2 ), (3.42)

where r is the ensemble average of R. And a comparison of equations (3.37)

and (3.42) shows that, if q prior to reaction, then the required result

is obtained, namely:

q(hk,t r ) (h.,t r) + 0(k 2 ). (3.43)

A physical interpretation of the reaction process is simply that

each element reacts independently for an interval of time k according to

the ordinary differential equations

da (n(n)
= S ( ), =1,2,...,q . (3.44)

dt -' '

The resulting change in (n) is in accord with equation (3.41). The

implementation of reaction is discussed further in section 3.5.

Mixing

The effect of mixing upon q is determined by multiplying equation

(3.20) by Q(f) and integrating. At x = hk the result is

4(hZ,tm) = (1 - wk)((ht,t r ) + Ak v(ht,t r ) , (3.45)

where,

v = f J Q02I + 11 ddj (3.46)

In the simulation, 0(h_,t m ) is composed of N(l - wk) elements selected

at random from 0(hk,t r ) with the remaining nm = Nwk elements being "mixed".

The elements from 0(h_,t r ) simulate the first term on the right-hand side

of equation (3.45): the composition of the "mixed" elements should be



such that they account for the second term. This composition is determined

by simulating the double integral v. If a(t ) + -(tr) then for the innerrr

integral of equation (3.46),

1 N (n)
p (Q)Q( (i + Y'))d Q( ( ( n ) + ')). (3.47)

n=l

Thus, for the outer integral,

N (n)
V f N Q( ( n ) + ')) (')dg'

n=1

( N (n) (n')-- -- Q( (N + 4 )). (3.48)N N ,---
n=l n =1

In tiis equation, ((n) + (n'))is the average value of the

composition of two elements, and the summation is over all N2 pairs of

elements. The same result is obtained if a random sample of size n
m

is used:

1 mix

v -- I Q(ix ) (3 49)n
m nm

mix.
where each value of mix is the average composition of a pair of elements

selected at random with replacement from D(h_,t ).

In summary, nm - Nok mixed elements are formed from 4(t ): these
m r

are then used to replace nm elements selected at random from P(tr ) . The

resulting ensemble is O(t ).
m

With _P denoting an element selected at random without replacement

from 0(hk,t ), the ensemble average (hk,t ) is-- r -- m

q(hkt ) 1 1 mix
m  = QN*) Q( m x (3.50)

N-n n
m m



If i(t ) q(t ) then from (3.45), (3.49), (3.50) and the definition of n
r m m

(hk,t m) + (1 - wk) (hP,t r ) + wk v(ht,t r )

+ ((hQ,tm), (3.51)

which is the required result.

Conservation

The Monte Carlo simulation has been obtained by requiring that ensembles

be equivalent to pdf's in the limit of large N. Numerical experiments show

that the sampling error due to finite N is reduced if the simulation is made

approximately conservative. Conservation requires that certain qualitative

properties of the pdf equation are retained for any N. For example, the pdf

equation shows that mixing does not affect the value of the means 4. In the

simulation of mixing described above, the means are affected, although their

expected values are not. A conservative simulation of mixing is to perform

the following process n times: two elements are selected at random,m

(n) and (n'), and their values are replaced by their mean ( (n) + (n')

This is a valid simulation of mixing and, clearly, it does not affect the means .

The effect of convection and diffusion on the volume integral of <p>p(T)

is solely due to the flux of (J) through the surface of the volume. In

the Monte Carlo simulation of these processes there is an additional effect

caused by the random sampling errors (although the expected value of this effect

is zero). These random errors can be minimized by making the simulation approxi-

mately conservative. Consider diffusion in the x.-direction in a constant-
1

density flow. For the node at hk, ndi+ elements are replaced by ndi + elements

selected from the ensemble at h(Z + e i). For the node at h(Z + e.), exactly
- 1



the same number of elements are replaced by elements selected from the node

at ht. Thus a conservative simulation of diffusion is obtained by commuting

elements between neighboring ensembles. For variable-density flows the numbers

of elements passed each way are not exactly the same and so the simulation

becomes approximately conservative. In a similar way an approximately con-

servative simulation for convection is obtained by passing elements from node

to node in the direction of the flow.

The proof of convergence of the method is unaffected by the use of approxi-

mately conservative simulations because the processes performed at each node

are unaffected. The difference is that the sampling error at one node is

approximately compensated by the sampling error at a neighboring node.

Time-step Restrictions

The processes described above can be performed only for the time

step k being less than some limit. For example, after the mixing process, the

ensemble contains n "mixed elements". If k is too large, n can exceedm m

N and hence the process cannot be performed. The restrictions imposed

by diffusion, convection and mixing are

(ndi+ + ndi- ) < N, (3.52)

n .i < N, (3.53)Cl -

and

n < N. (3.54)
m -

From the definitions of the n's, the above inequalities are satisfied for

r k/h < , (3.55)

UI k/h < 1, (3.56)

and

kw < 1,

_ _~j_~~(___ _II~~~--BL~--Y7-I- I~I1- (1~ C-~-~C- _ _~_~_~~_1~__ .~._1_~~11_1. ._..

(3.57)
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where T , IU and w are to be taken as the maximum values of these

quantities over the whole flow field.

These time-step restrictions are of no consequence since (it is

shown in the next section) the computational effort required per step is

proportional to k. Hence a small value of k can be chosen (with a consequent

gain in accuracy) without any penalty in computational expense.

(It can be noted that, as N tends to infinity, the Monte Carlo simula-

tion converges to the finite-difference scheme given by equation (3.16)

with the differential operators C and D replaced by finite-difference

operators. This is an explicit scheme which is stable, conditional on

(3.55) and (3.56).)

Boundary Conditions

In most applications either the boundary values of p(Q) are specified,

or the normal gradient of '(1) is zero (corresponding to a plane of

symmetry or an outflow boundary). The first condition can be implemented

by choosing the boundary ensembles in the same way as the initial ensembles

are chosen. The zero-normal-gradient condition is implemented by equating

the boundary ensemble (after each operation) to its inward neighbouring

ensemble.

3.5 Computational Efficiency

In this section it is shown that the computational effort required

for each cycle of the simulation is linearly proportional to Nka. This

result is important for two reasons. That the work rises only linearly with

a (the dimensionality of _-space) shows that the method is practicable for

large a. (This is in marked contrast to a finite-difference scheme for which
aa

the work is estimated to rise as e a, a = 6.) The second significance of

the result is that the work per step is proportional to k. If the simulation



is performed for a time T, then T/k steps are required. The total work is

then proportional to (Nka)(T/k) = NTo. Consequently, since the total work

is independent of k, there is no penalty in choosing a small time step and

hence virtually eliminating the associated truncation error.

The dependence of the work upon a, N and k is now determined assuming

h and m to be fixed.

Interestingly, both the diffusion and convection processes involve no

arithmetic, only data manipulation. Of order ndi or n .i elements are involveddicl

and the number of operations per element is proportional to U. Since ndi

and n .i are of order kN, the number of operations per node per time stepCl

is of order kNa. A similar argument leads to the same result for the mixing

operation.

The implementation of reaction as described in section 3.4 is not compu-

tationally efficient. An efficient algorithm exploits the fact that, between

mixing operations, only reaction affects the composition of an element. If

a given element has not been involved in mixing for Xr steps, then its composi-r

tion can be obtained by integrating the equations

dis
dt = S =1,2,...,o, (3.58)

for a time T = kX r, taking the composition after the last mixing as the

initial condition. Thus, rather than integrating equations (3.58) for all

N elements for an interval k, the efficient algorithm integrates the equations

for the 2n elements involved in mixing for the longer intervals T. (The

maverage value of is -1-iaverage value of T is L )



The amount of work required by this algorithm depends upon the complexity

of the reaction scheme. We assume that the work required to evaluate one

reaction rate S (J) is independent of a, and that equations (3.58) are

integrated using a scheme such as that of Young and Boris (1977). Then the

total work requirement at one node for one cycle is proportional to kNG.

For each of the four processes, and hence for the scheme as a whole,

the number of computations per time step is of order kNa. Hence to perform

the simulation for a time T (i.e. for T/k steps) requires of order NTO opera-

tions. This confirms that the computer requirements are independent of k

and rise only linearly with a.

By comparison, the number of computer operations required by a straight-

forward finite-difference scheme increases exponentially with a. If I-space

is discretized into, say, 20 divisions in each direction, then the number of

nodes in the space is (20). The double integral in equation (2.9) requires

the evaluation of a volume integral in I-space for each _-node: this requires
2a

of order (20) operations. Thus, at each node in I-space, for each time step,

20 60
of order (20) a e operations are required. The values shown on Table 1

6 -1may be compared with current computation rates of order 106s .

approximate number
of operations

dimensionality required by
Table 1: of the finite-difference

Computer operations joint pdf scheme
6arequired by a a e

finite-difference
scheme. 1 4.0 x 102

2 1.6 x 10'

3 6.6 x 10 7

4 2.6 x 1010

5 1.1 x l10'



If not impracticable, solutions for a=3 would be very expensive. For

a=4, finite-difference solutions are definitely impracticable. The main

point to note, however, is that the operation requirement increases expon-

entially with r. As long as this is so, no conceivable refinement to the

finite-difference scheme or improvement in computing speed can facilitate

solutions for large r.

3.6 Estimation of Error

The error in the simulation is due to both truncation and sampling error.

As N tends to infinity, the sampling error tends to zero, thus isolating

the truncation error. This--according to equation (3.23)--is of order

k and h, and hence the scheme is first-order accurate in space and time.

The sampling error caused by a finite value of N is more difficult to deter-

mine. Here we estimate that the standard sampling error is of order N
2

and independent of k and a. These error estimates are supported by test

calculations in section 4.

For each process, the sampling error is defined as the difference between

q and its expected value based on a knowledge of the ensemble prior to the

process. Thus, for the mixing process at (x,t) = (hk,kX) the sampling error is

m(hkkX) = (h,t m ) - Eq(h9,t ) . (3.59)

And for diffusion and convection in the xi-direction, the sampling errors

C di and ci are similarly defined. It follows trivially from equation (3.59)

that the expected value of Cm is zero; so also are the expected values of

Cdi and ci.

Consider the performance of the Monte Carlo simulation for a time interval

0<t<T. If A steps are taken then the time increment k is



k = T/A . (3.60)

In order to estimate the total sampling error at the end of the simulation

SET(ht), we make three assumptions: that the individual errors (6m etc.) are

small, that they are independent, and that they are neither amplified nor

attenuated in successive time steps. Subject to these assumptions, the total

sampling error is just the sum of the individual errors:

A m m
T (h) = m (_(h_,kX) + E di (h_,kX) + E ci(h_,kX)) . (3.61)

X=1 i=l i=l

The assumption that the errors are small and independent is valid for large

N. Although it is necessary to the present analysis, the remaining assumption is

unlikely to hold. The consequences of this are discussed at the end of this section.

Since the expected values of C etc. are zero, the expected value ofm

CT given by equation (3.61) is also zero. Thus, the method provides an

unbiased estimate of Q for any N.

The standard error c st(h) -- which is the standard deviation of CT(h) --

is a measure of the probable sampling error. With the argument hk being

implied (here and below) est is given by
st

C2st D T  (3.62)

(D is the variance operator)

Substituting for CT from equation (3.61) and making use of the independence

property, we obtain

A m m
2 = E m(kX) + E di (kX)+ E DFci (kX)) . (3.63)

X=1 i=l i=l

Since the right-hand side is the sum of A(2m+l) variances, it is clear that



st satisfies the inequalityst

£2 < A(2m+l) sup { D m(kX) Ddi(kX), D ci(kX) } . (3.64)st - m ' di ' ci""
X,i

We show below that for fixed h each of the three variances is of order

k/N. Hence,

C2 < 0(A k/N) (3.65)st --

or, recalling that A = T/k,

C 2 < 0(1/N) (3.66)st -

Thus, the standard error is of order N- 2 and independent of k and C.

It remains to be shown that the variances of the individual sampling

errors (£ etc.) are of order k/N. The value of q after the mixing process
m

is given by equation (3.50):

1 * 1 mix
Q(hZt ) - Q( ) +- E Q(o ) . (3.67)

m N -- N n
N-n n

m m

Taking the variance of both sides of this equation we obtain

D c(hk,t ) = f n (1 - n /N) D Q(*) + n D Q(0 mix) }m m 2 m m m

= (k/N)& f (l-ok) D Q(M) + D Q( (P++')) }

= 0 (k/N) . (3.68)

Similarly for diffusion and convection the sampling error variances are

D edi (h_,kX) (k/N)(4rDQ(_)/h2 )

= 0 (k/N) (3.69)



aad

D ci(h,kA) (k/N) (21U1 D Q( )/h)

= 0 (k/N) (3.70)

Equations (3.68) - (3.70) contain the required result that, for fixed

h, all the variances are of order k/N. In the expressions for the sampling

error variance, the only functions of the composition space that appear

are variances such as D Q(P). These are not functions of a per se, and so

neither is st"

-2
The last two equations show that D edi and D 6ci are proportional to h-

-i

and h1 respectively. Consequently the analysis predicts that the standard

error varies as 1/(hN ). The calculations reported in the next section show

that, fortunately, this does not happen and in fact the standard error is inde-

pendent of h. The likely reason is that the conservative simulations of con-

vection and diffusion ensure that the sampling error is confined to the highest

wave numbers that the grid can resolve. Since diffusion damps out fluctuations

at a rate proportional to the square of the wave number, it is to be expected

that these errors rapidly disappear. In other words, contrary to the earlier

assumption, the sampling error is rapidly attenuated. (In support of this

explanation is the finding that with a non-conservative scheme the sampling

error does increase with decreasing h. In this case the sampling error is

uniformly distributed over all wave numbers.)

3.7 Accuracy

The Monte Carlo method has been shown to be first-order accurate in

both space and time. In spite of this low order of accuracy, accurate re-

sults can be obtained without excessive computation.

It has already been shown that the work required to perform the
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simulation for a given time interval is independent of the time step k.

Consequently there is no penalty in taking small time steps to reduce the

associated truncation error to any desired level.

The Monte Carlo method can only be applied to difference operators

with positive weights. It is for this reason that the first-order accurate

upwind difference is used for the convective terms instead of the second-

order accurate central difference. However the method can be made pseudo-

second-order accurate by using a hybrid difference scheme (see Gosman

et al. 1969). In this scheme the upwind difference is replaced by a

central difference wherever the convective and diffusive operators com-

bined result in positive weights: the two processes would then be simulated

together. With this modification the Monte Carlo method has the same

spatial truncation error as most current turbulent flow calculation pro-

cedures (see for example, Gosman & Pun 1973).

The third source of error is the sampling error due to finite N. It

has been shown that as N tends to infinity the standard error st in q is

of order q'N1/2 and independent of the dimensionality a. As well as the

obvious dependence upon N, the error depends upon the function being sampled

Q(J) through its standard deviation q'. Consider, for example, Q(_) being

a spike function centered in a region of low probability - the tail of the

distribution, say. Then since q' is large the sampling error is large. This

situation is encountered in the construction of histograms and then

indeed many samples are required to determine the tails accurately.

More often, however, simpler functions such as means are of more interest: then

the results of the next section indicate that with one hundred elements the

sampling error is less than 5%.



4. TEST CALCULATIONS

In order to test its performance, the Monte Carlo method was used

to simulate the pdf transport equation for a model problem. The cal-

culations reported here demonstrate the use of the method and consoli-

date the error estimates of the previous section. The results show

the following:

i) the Monte Carlo simulation converges to

the solution of the differential equation,

ii) the expected value of the error is inde-

pendent of N (i.e. the method is unbiased),

iii) the standard error is proportional to N ,

and iv) the standard error is independent of h.

4.1 The Model Problem

The model problem corresponds to a plug-flow reactor with imperfect

mixing. The flow is one-dimensional with the uniform velocity U being

in the x-direction. The density p, the turbulent diffusion coefficient

FT and the turbulent frequency w are also uniform. A single scalar 4

represents the concentration of reaction products which is zero at the

start of the reactor (4=0 at x=0) and is everywhere bound by zero and

unity (0 < < 1). Two cases are considered: in the first--the linear

case--the reaction rate of is a linear function of ; in the second--

the non-linear case--there is an Arrhenius reaction rate.

The velocity U and the length of the reactor L are used to define

the following dimensionless quantities:



x t x/L

F* - FT/(p UL) * -- w L/U ,

S*(Q) S()L/U and E*(p;x,t) E E(p;x,t)/w .

The pdf of (x,t ) is p(;x,t ). The pdf transport equation for

the model problem is obtained from equation (2.8) and the above defi-

nitions:

S+ + (pS ()) = +
t D9x

2 (4.2)

The boundary conditions are

p(i;O,t ) = 6() ,

92 ,

- p(i; 1,t ) = 0 ,
3x2

(4.3)

(4.4)

and the initial condition--corresponding to complete reaction--is

p(i;x,0) = 6(1-) . (4.5)

The normalized reaction rate for the linear case is

S (G) = al( - 4V ) (4.6)

where a1 is a constant. The main reason for considering this case

is that there is an exact solution for the mean value <p> in the steady

state:

<> = 1 - exp(-bx)

(4.1)

and

t* - t U/L

(4.7)



where

b = { ( + 4alF ) - 1 }/ (4.8)

(In fact this solution satisfies the downstream boundary condition only

approximately, but the effect of the discrepancy is unimportant.)

The Arrhenius expression used in the non-linear case is

S (i) = a2 x 2183. i(l-)exp(-20/(+3)) . (4.9)

a2 is a constant and the multiplier 2183 is chosen so that the maximum

value of S () is a2.

The values of the constants are selected so that each of the four

processes--convection, diffusion, reaction and mixing--are of approxi-

mately equal importance. The values are

a1 = 3., a2 = 10., w = 20., = 0.1. (4.10)

In general, the Monte Carlo calculations reported below were

performed with N=40 and h=0.1. The smallest possible time step was

used which, for the given N and h, is k=0.0025.

4.2 The Linear Case

All the results for the linear case are at t =2, by which time the

steady state has been reached. The mean < > and standard deviation 4'

are plotted against x on figure 1. The dashed line is the exact solution

equation (4.7) and the full circles are the ensemble average values $.

The expected value of 4 was estimated by taking the arithmetic mean of

Ation being the random numberlations (thused). sole difference between each calcula-

tion being the random numbers used). The expected value is shown as



the solid line on the figure. Sampling error is evident from the

differences between $ and E .

According to the theory of the previous section, as N tends to

infinity, the Honte Carlo simulation converges to the finite-difference

scheme given by equations (3.17) - (3.20) with the differential operators

C and D replaced by finite-difference operators. Because the pdf

equation is linear, the value of the mean given by the finite-difference

equations < >fd can readily be computed. It is found that < >fd is

equal to the expected value : . This observation provides strong

evidence for the convergence and lack of bias in the method. As N tends

to infinity, $ tends to E which is equal to < >fd: as h tends to zero

<>fd converges to the exact solution. Thus, as N and h-1 tend to

infinity, c tends to the exact solution. The difference between the

values of 4 and E is sampling error due to finite N: the difference

A

between E and the exact solution is truncation error due to finite

h-1. The fact that E is equal to <P>fd for finite N (N=40) strongly

suggests that the method is unbiased.

The standard deviation ' and its expected value are also shown on

figure 1. ' reaches a maximum of almost 0.2 at x=0.2 and then decays

monotonically.

In order to study the dependence of the solution upon N, calculations

were performed with values of N ranging from 10 to 400. Plotted against

N on figure 2 is the expected value E# at x=0.5 with error bars

showing (twice) the standard error st

£2 A (4.11)st D •



The exact value of E cannot be determined from a finite number of

calculations: the dashed lines correspond to plus and minus one standard

deviation uncertainty centered on the finite-difference solution < >fd"

The plot shows (to within the uncertainty of the test) that the expected
A

value EP is equal to the finite-difference solution <>fd for all N. In

other words, $ is an unbiased estimate of <#>. It may also be seen from

the error bars that the standard error rises linearly with N .

An unfavourable prediction of the error estimates obtained in the

last section is that the standard error varies inversely with h. Figure

3 shows the difference between E^ and < >fd at x=0.5 (with error bars
-l

showing the standard error) this time plotted against h . It appears

that the standard error is independent of h--a fortunate result. (The

likely reason for the erroneous prediction is given in section 3.6.)

In order to estimate the magnitude of the sampling error, the

quantity

= N st /4' (4.12)
st

is plotted against x on figure 4 for N=10, 40 and 400. Although there

is considerable scatter, it is clear that c is of order unity: the

maximum value is 1.4. Consequently, inverting equation (4.12), the

standard error can be estimated from

5st = _ 'N 2  (4.13)

where (at least for this case) 6 is of order unity.



4.3 The Non-linear Case

A transient non-linear case was investigated to confirm the generality

of the conclusions drawn from the steady-state linear case. In this

series of tests the Arrhenius reaction rate was employed and the solution

examined at times before the steady state had been reached.
A

The expected values Et are plotted against x on figure 5 for the

times t* = 0.5, 1.0 and 1.5: the dashed line is the expected value of
A ,

#' and the circles are values of C at t = 1.0. It may be seen that the

maximum value of 4' is about twice that of the linear case which accounts

for the larger sampling error.

For x = 0.5 and t = 1.0, the expected value D is plotted against

N 2 on figure 6. The error bars show (twice) the standard error and,

as in figure 2, the dashed lines correspond to plus and minus one standard

deviation uncertainty. Again, it appears that (to within the uncertainty

of the test) E$ is independent of N and the standard error Est is pro-st

portional to N - . That E is independent of N confirms the lack of bias

in the method.

Figure 7 shows a plot of £ (see equation 4.12) against x for N=10,

40 and 400. As in the linear case, there is a good deal of scatter but

,
the mean value of S is close to unity: the greatest value is 1.65.

In summary: test calculations for both a steady-state linear case

and a transient non-linear case show that the Monte Carlo method is

unbiased, and that the standard sampling error (of c) is

st = Nst

where S is of order unity and independent of h.



5. MIXING LAYER CALCULATIONS

The Monte CarLo method in conjunction with the k - E turbulence model

was used to calculate pdf's of temperature in a turbulent mixing layer. The

results reported here show good agreement with the experimental data of

Batt (1977). These data were obtained in a two-dimensional mixing layer in

which the velocities of the two streams were 23 ft/s and 1.6 ft/s. The

temperature difference between the streams was 50 C.

In the calculations the slight density variation was ignored and,

because of the nature of the flow, the boundary layer assumptions were

invoked. The single scalar represents the normalized temperature

( = 0 in the high speed stream, ' = 1 in the low speed stream). For this

flow there is no heat source and hence S() is zero. Thus, with U and V

being the velocities in the x and y (flow and normal) directions, the

transport equation for p(1;x,y) is

U + V P() = T + E(i;x,y) (5.1)
Dx Dy 3y p Dy

Equations are also solved for the velocity U, the turbulent kinetic

energy k and its rate of dissipation c. These equations are:

U (5.2)
-+ - 0, (5.2)3x + y

U + V -v , (5.3)
Dx Dy y T Dy



Sk 9k VT k U 2
U x + V y + V (-a ) - , (5.4)

9x 9y y k9  ~ T 9

and

9 vc + __ = 6 D VT Dg c Tg E: U )2
U + V y - y T y + C T ( )2 - C /k, (5.5)

x Dy Dy a 3y E 1k Dy E2

where the turbulent viscosity VT is given by

V = C k 2/F. (5.6)T

The constants C , Ce1, CC2, ak and G are ascribed the standard values 0.09,

1.45, 1.9, 1.0, and 1.3.

It remains to specify FT and w in terms of k and E. This is achieved

by requiring that the pdf equation (5.1) be consistent with the standard

model equation for <'2> (Spalding 1971). This yields,

F = PT/' (5.7)

and

= 2 C /k, (5.8)

where the constants o and C take the values 0.7 and 2.0.

Equations (5.2) - (5.6) were solved by a finite-difference procedure

(Pope 1977) with boundary and initial conditions appropriate to the mixing

layer. The pdf equation was solved by a variant of the Monte Carlo method



which exploits the fact that equation (5.1) is parabolic. Rather than

marching in time (as described in section 3) the method marches in the down-

stream direction x. Thus initial ensembles are specified at x = 0 and

each step of the simulation advances the ensembles a distance Ax downstream.

In the cross-stream direction there were 24 nodes at each of which there

was an ensemble of 100 elements. The step length Ax was very small - typically

one tenth of the mixing-layer thickness.

In order to make comparisons with measured pdf's, histograms (with 20

intervals) were constructed from the calculated ensembles. Figure 8 shows

a comparison of these histograms with measured pdf's at seven cross-stream

locations at x = 15.5 inches. It may be seen that in general the agreement

is good: for the five central pdf's, the locations of the peaks and the

shapes and spreads of the distributions are closely matched. (The measurements

at the extreme locations are suspicious: in neither case does the

pdf integrate to unity and, from similar data [e.g. Birch et al. 1978], a

spike resembling an exponential decay can be expected at the bounds i = 0

and 4 = 1.)

These calculations demonstrate the use of the Monte Carlo method and the

good agreement with experimental data is encouraging considering the known short-

comings of some of the modelling assumptions.



6. DISCUSSION

Summary

A Monte Carlo method has been developed to solve the pdf equations of

turbulent flow. At each node of a finite-difference grid covering the solution

domain, the joint pdf is represented by an ensemble of N elements. Each element

is ascribed a complete set of values of the relevant fluid properties. In a

simulation of the scalar pdf equation (2.8), elements are commuted between

neighboring nodes (simulating diffusion) and they are transferred from node to

node in the flow direction (simulating convection). Two elements mix by adop-

ting the average values of their properties and, between mixing operations, the

properties change according to the instanteous reaction rates. The precise

manner in which these operations are performed is determined in section 3.

The performance of the method has been determined by analysis and by com-

putational experiments. For large N, the truncation error is proportional to

the grid spacing h and the time step kti A finite value of N results in a ran-

dom sampling error. The expected value of this error is zero (i.e. the method

-1/2is unbiased) and the standard error is of order N- / 2 . From computational

tests it appears that the standard sampling error (in determining the mean

<P>) is

st N -1/ 2  (6.1)

where E* is of order unity and independent of h.

t The scheme can be made pseudo-second-order accurate in h by using the hybrid

scheme instead of straight forward upwind differencing (see Gosman et al 1969).

Also, it has been shown that there is no penalty in choosing a very small value

of k and hence eliminating that source of error.



The usefulness of the method stems from the fact that the computational work

required increases only linearly with a, the dimensionality of the joint pdf.

Consequently, calculations of turbulent flows with many reactive species are

possible.

The Monte Carlo method in conjunction with the k - e turbulence model

has been used to calculate pdf's of temperature in a mixing layer. The results

agree well wtih the measurements of Batt (1977).

Computer Requirements

It has been shown in section 3.5 that the computer time required is pro-

portional to Na: it is also approximately proportional to the number of nodes

n. For the non-linear test case (N = 40, n = 11, a = 1) the computer time on

a VAX 11 was 4s. Using this information, the cost of a two-dimensional cal-

culation can be estimated. With a 20 x 20 grid (n = 400) and N = 100 (which,

according to equation (6.1) gives a standard error of less than 5%) the esti-

mated time is 360 a s -- that is, six minutes per species. On the VAX instal-

lation used, the cost of such a calculation would be $10. per species.

The method does not make great demands upon computer storage. At first

sight, the two-dimensional calculation mentioned above requires 40,000 storage

locations per species which, on some computers, would be prohibitive. However,

the storage requirement can be reduced at will by splitting the calculation

into several smaller calculations. Because the method is unbiased, the average

of ten calculations with N = 10 has the same statistical error as one calcula-

tion with N = 100: the smaller calculations require the same computer time

(altogether) but require only one tenth of the storage.



Relationship to other approaches

For homogeneous turbulence, where p(J;t) is independent of x, the Monte

Carlo method reduces to a simulation of reaction and mixing. Then the method

differs only in detail from that of Spielman and Levenspiel (1965), which has

subsequently been used by Flagan and Appleton (1974), Pratt (1976) and others.

Indeed, the idea of the ensemble representation was taken from these works.

It has been known for some time that the Monte Carlo method in the form

of random walks can be used to solve elliptic differential equations; Courant,

Friedrichs and Lewy (1928). In these random walks, a "walker" passes from

node to node of a finite-difference grid according to prescribed probabilities.

At each node the value ascribed to the walker can be modified according to

another prescription. Eventually the walker reaches the boundary of the

solution domain where, we assume, the boundary value is specified. An es-

timate of the solution of the differential equation at the walker's point of

origin can then be obtained from the boundary value and the final value of

the walker. The accuracy of the result is improved by taking the average

of the estimates obtained from many random walks.

Similarities between random walks and the present method are obvious.

Minor differences are that, in the present method, an estimate of the solution

is obtained over the whole field and that the walker's (element's) values

originate from the boundary conditions. The major difference is that in the

present method the walkers (elements) interact in the mixing process. For

this reason ensembles of many elements are required rather than requiring

a single walker to take many walks. Because of these differences the pre-

sent analysis is completely different from that used for random walks.



Physical interpretation

A physical interpretation of the Monte Carlo method is unnecessary and,

in the author's opinion, should be avoided. It may be tempting to interpret

a representative value (n) as referring to the properties of a "particle" or

"element of fluid." Since these "particles" conserve neither mass nor volume

and since they can simply disappear, such an interpretation is likely to be

misleading. Neither should the randomness of turbulence be seen reflected in

the randomness of the Monte Carlo method. The method simulates a deterministic

A

equation: random fluctuations in 1 are not due to turbulence but to sam-

pling error (caused by finite N). Nor should the method be thought of as a

physical model.

The physics is embodied in the pdf transport equation. The joint pdf is

a well-defined, measureable quantity for which an exact transport equation can

be derived. Modelling is applied to the exact equation in order to obtain

equation (2.8), and the Monte Carlo method is no more than a numerical method

for solving this equation.

Applications

The direct application of the method is to turbulent reactive flows. In



spite of modelling uncertainties, the pdf equation most likely provides the

best theoretical description (available at present) of such flows. Conse-

quently, the Monte Carlo method is of direct practical value in enabling the

solution of the equation, even when many species and complex kinetics are

involved.

In recent years, many measurements have been made of pdf's and joint pdf's

of velocity and a passive scalar in turbulent shear flows. Riberio and

Whitelaw (1975) measured the joint pdf of velocity p(vl,v2 ;x,t) in a fully

developed turbulent jet, and Wallace and Brodkey (1977) obtained similar

measurements in a turbulent channel flow. For a heated turbulent jet,

Venkataramini, Tutu and Chevray (1975) measured the joint pdf of velocity

P(vlv 2 ;x,t) and also the joint pdf of velocity and temperature p( V1;xt).

None of these data has been compared with theoretical calculations. Applica-

tion of Monte Carlo method to the transport equations for p(v;x,t) and

p(v,4;x,t) would make such a comparison possible.
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