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We investigate chains of d-dimensional quantum spins (qudits) on a line with generic nearest-neighbor
interactions without translational invariance. We find the conditions under which these systems are not frustrated,
that is, when the ground states are also the common ground states of all the local terms in the Hamiltonians. The
states of a quantum spin chain are naturally represented in the matrix product states (MPS) framework. Using
imaginary time evolution in the MPS ansatz, we numerically investigate the range of parameters in which we
expect the ground states to be highly entangled and find them hard to approximate using our MPS method.

DOI: 10.1103/PhysRevA.82.012318 PACS number(s): 03.67.−a

I. INTRODUCTION

A system with local interactions is not frustrated if the
global ground state of the Hamiltonian H = ∑

k Hk is also
a ground state of all the local terms Hk , each of which
involves only a few particles. Frustration in a classical or
quantum system (e.g., a spin glass [1]) is often the reason
why finding its ground-state properties is hard. A locally
constrained unfrustrated system could still have ground states
that are hard to find (e.g., 3-SAT where one needs to test
whether a Boolean formula, made up of 3-literal clauses, is
satisfiable by an assignment of the Boolean variables [2]).

We choose to investigate chains of d-dimensional quantum
spins (qudits) with two-local nearest-neighbor interactions.
Our first result is an analytic derivation of the necessary
and sufficient conditions for such quantum systems to be
unfrustrated. Second, we look at their ground-state properties
and find a range of parameters where we conjecture that these
states are highly entangled and thus may be difficult to find
computationally. We then corroborate this by a numerical
investigation using a matrix product state (MPS) method.

The MPS description of a quantum state has proved to be a
very useful tool for the investigation of one-dimensional (1D)
quantum spin chains [3–5]. A pure state of a system of N

interacting d-dimensional quantum spins can be written in the
computational basis as |�〉 = ∑d

ik=1 ψi1i2...iN |i1〉|i2〉 . . . |iN 〉,
with dN parameters ψ {i}. For a 1D chain the coefficients ψ {i}
can be conveniently expressed in an MPS form [6,7],

ψi1i2...iN =
χ∑

α1,...,αN−1=1

�i1,[1]
α1

�i2,[2]
α1,α2

· · · �iN ,[N]
αN−1

, (1)

providing a local description of the system in terms of matrices
�ik,[k]. One arrives at this form using a sequence of Schmidt
decompositions [8]. The required size of the matrices is related
to the number χ of nonzero Schmidt coefficients required for
a decomposition of the state into two subsystems. In general,
χ needs to grow like dN/2 for the MPS to be exact.

Is it possible to capture the essential physics of the system
accurately enough with an efficient simulation with a much
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smaller χ ∼ poly(N ), spanning only a small part of the
full Hilbert space of the system? In our case, the qudits are
arranged on a 1D lattice and only have nearest-neighbor
interactions. We could thus expect that a reduced space might
suffice for our needs. This concept is common for the various
approaches proposed for efficient (tractable on a classical
computer) numerical investigation of quantum many-body
systems such as the density matrix renormalization group [9],
MPSs [6], tensor product states [10], and projected entangled
pair states (PEPSs) [11].

While the MPS formulation has been shown to work very
well numerically for most 1D particle systems, complexity
theory issues seem to show that there must be exceptions to
this rule. Finding the ground-state energy of a 1D qudit chain
with d = 11 has been shown to be as hard as any problem
in quantum Merlin Arthur (QMA) [12,13]. It is believed that
classical computers cannot efficiently solve problems in QMA.
However, to our knowledge, until now there have not been
any concrete examples (except at phase transitions) for which
MPS methods do not appear to work reasonably well. This
research was undertaken to try to discover natural examples
of Hamiltonians for which MPS cannot efficiently find or
approximate the ground states.

The paper is organized as follows. First, in Sec. II we show
that the question of nonfrustration for qudit-chain Hamil-
tonians with general nearest-neighbor interactions can be
addressed using only Hamiltonians that are sums of projector
terms [14]. We then analytically show under what conditions
zero-energy ground states for this system exist. Second, in
Sec. III we show how to search for and approximate the ground
states numerically and analyze the efficiency of finding the
required MPS. We identify an interesting class of unfrustrated
qudit-chain Hamiltonians, for which our MPS methods do not
work well. Led by our numerical work, we conjecture that these
ground states are highly entangled. Finally, we summarize
our results and conclude with an outlook to further work in
Sec. IV.

II. WHEN IS A QUDIT CHAIN UNFRUSTRATED?

We investigate chains of d-dimensional quantum particles
(qudits) with nearest-neighbor interactions. The Hamiltonian
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FIG. 1. A qudit chain with nearest-neighbor interactions Hk,k+1

given by (2). The matrices �[k] are a local MPS description, (1), of
the state.

of the system,

H =
N−1∑
k=1

Hk,k+1, (2)

is two-local (each Hk,k+1 acts nontrivially only on two
neighboring qudits) (Fig. 1). Our goal is to find the necessary
and sufficient conditions for the quantum system to be
unfrustrated—its ground state is also a common ground state
of all of the local terms Hk,k+1. The local terms can be written
as

Hk,k+1 = E
(k)
0 P

(0)
k,k+1 +

∑
p

E(k)
p P

(p)
k,k+1, (3)

where E
(k)
0 is the ground-state energy of Hk,k+1 and each P

(p)
k,k+1

is a projector onto the subspace spanned by the eigenstates
of Hk,k+1 with energy E(k)

p . The question of existence of a
common ground state of all the local terms is equivalent to
asking the same question for a Hamiltonian whose interaction
terms are

H ′
k,k+1 = I1,...,k−1 ⊗ Pk,k+1 ⊗ Ik+1,...,N , (4)

with Pk,k+1 = ∑r
p=1 P

(p)
k,k+1 projecting onto the excited states

of each original interaction term Hk,k+1. When this modified
system is unfrustrated, its ground-state energy is 0 (all the
terms are positive semidefinite). The unfrustrated ground state
belongs to the intersection of the ground-state subspaces of
each original Hk,k+1 and is annihilated by all the projector
terms.

We now choose to focus on a class of Hamiltonians for
which each

Pk,k+1 =
r∑

p=1

∣∣vp

k,k+1

〉〈
v

p

k,k+1

∣∣ (5)

is a random rank r projector acting on a d2-dimensional Hilbert
space of two qudits, chosen by picking an orthonormal set of
r random vectors (a different set for every qudit pair; we are
not assuming translational invariance).

We now find conditions governing the existence of zero-
energy ground states (from now on, called solutions in short).
We do so by counting the number of solutions possible for a
subset of the chain and then adding another site and imposing
the constraints given by the Hamiltonian.

Suppose we have a set of sn linearly independent solutions
for the first n sites of the chain in the form

ψi1,...,in
αn

= �i1,[1]
α1

�i2,[2]
α1α2

. . . �in−1,[n−1]
αn−2,αn−1

�in,[n]
αn−1,αn

, (6)

similar to MPS, with ik = 1, . . . ,d and αk = 1, . . . ,sk; here
and henceforth all the repeated indices are summed over. The

�s satisfy the linear independence conditions:1

�ik,[k]
αk−1,αk

xαk
= 0,∀ik, αk−1 ⇐⇒ xαk

= 0, ∀αk.

We now add one more site to the chain, impose the constraint
Pn,n+1, and look for the zero-energy ground states for n + 1
sites in the form

ψi1,...,in+1
αn+1

= ψi1,...,in−1
αn−1

�in,[n]
αn−1,αn

�in+1,[n+1]
αn,αn+1

. (7)

The unknown matrix �
in+1,[n+1]
αn,αn+1 must satisfy

〈
v

p

n,n+1

∣∣inin+1
〉
�in,[n]

αn−1,αn
�in+1,[n+1]

αn,αn+1
= 0 (8)

for all values of αn−1,αn+1 and p, with |vp

n,n+1〉 vectors defined
in (5). This results in a system of linear equations,

Cpαn−1,in+1αn
�in+1,[n+1]

αn,αn+1
= 0, (9)

with Cpαn−1,in+1αn
= 〈vp

n,n+1|inin+1〉�in,[n]
αn−1,αn

a matrix with di-
mensions rsn−1 × dsn. If dsn � rsn−1 and the matrix C

has rank rsn−1, the conditions (9) are independent and we
can construct dsn − rsn−1 linearly independent, �

in+1,[n+1]
αn,αn+1 ,

corresponding to solutions for the n + 1 qudit chain (see the
Appendix for further discussion of the rank of C). The freedom
we have now is to use only a subset of them for constructing
solutions. Thus, we obtain the formula

sn+1 � dsn − rsn−1, (10)

valid for all n. The question now is how to choose sn as we go
along the chain.

The only constraint on �[1],i1
α1

is linear independence, which
requires s1 � d (s0 = 1, as the first pair has r constraints). If we
choose the equality sign in the recursion relationship, Eq. (10),
at each step, we obtain Dn linearly independent zero-energy
states, where

Dn = dDn−1 − rDn−2, (11)

for all n with D0 = 1 and D1 = d. The solution of this
recursion relation is

Dn = f n+1 − gn+1

f − g
,

with f + g = d and fg = r . Hence,

f = d

2
+

√
d2

4
− r, g = d

2
−

√
d2

4
− r.

There are three interesting regimes for r and d, which yield
different behaviors of Dn (Fig. 2):

1. r > d2

4 gives Dn = r
n
2

sin(n+1)θ
sin θ

with cos θ = d

2
√

r
. Dn

becomes negative when n + 1 > π
θ

, and thus no zero-energy

states can be constructed for a long chain if r > d2

4 .

1Note that this is not the standard MPS form, which also requires
linear independence in the other direction, that is,

yαk−1�
ik,[k]
αk−1,αk

= 0,∀ik, αk ⇐⇒ yαk−1 = 0, ∀αk−1.

In this case sk would be the Schmidt rank for the partition of the
qudits into (1, . . . ,k) and (k + 1, . . . ,n).

012318-2



UNFRUSTRATED QUDIT CHAINS AND THEIR GROUND STATES PHYSICAL REVIEW A 82, 012318 (2010)

FIG. 2. (Color online) The existence of zero-energy ground states
for a qudit chain with d-dimensional qudits and r projectors per pair.
We highlight two notable cases: d = 2,r = 1 and d = 4,r = 4.

2. r = d2

4 results in Dn = ( d
2 )n(n + 1), an exponential

growth in n (except when d = 2, which gives linear growth).
3. r < d2

4 implies f > d
2 and f > g, so for large n, Dn ∼

f n(1 − g

f
)−1 and the number of zero-energy states grows

exponentially.
Any set of sn that satisfies the inequality (10) must have

sn � Dn. To show this, we rewrite (10) as

s0 = 1,

s1 − ds0 = −u1,

sn − dsn−1 + rsn−2 = −un, n � 2,

with un � 0, n � 1.

These relations can be inverted to give

sn = Dn −
n∑

l=1

ulDn−l , n � 1,

from which sn � Dn follows at once.
This means that in regime 1, it is still not possible to

construct solutions for a long chain. In regimes 2 and 3,
we can construct sets of states with sn growing more slowly
than Dn.

1. For example when d � r � d2

4 , the recursion rela-
tion (10) can be satisfied also by sn = hn, provided that
h2 − dh + r � 0. This requires g � h � f , so the lower
bound on h is the least integer � g.

2. In contrast, for r < d the simple choice sn = 1 also
satisfies the recursion (10). This means that one can just solve
the system from left to right as a linear system of equations.
This results in a product state solution in the form

ψi1i2...in = ψ [1],i1ψ [2],i2 · · · ψ [n],in , (12)

which we can construct by starting with any ψ [1] and finding
every ψ [n+1] from the previous ones.

FIG. 3. (Color online) Ground-state energy from imaginary time
evolution vs. χ for different ranks of the Hamiltonian. This is a plot for
a chain of N = 20 particles, with d = 4 states per site, and projector
ranks of 2, 4, and 6. Exact description would require χ = dN/2 ≈ 103.

III. NUMERICAL INVESTIGATION USING MATRIX
PRODUCT STATES

In this section we numerically search for the ground states
of our class of random projector Hamiltonians (4). We probe
the relations obtained in the previous section and see how
well the energy coming from our small-χ MPS imaginary
time evolution converges to 0. The numerical technique we
use is similar to Vidal’s [7,15]. We use imaginary time
evolution to bring the system from a known state to its
ground state: |�grd〉 = limτ→∞ e−Hτ |�0〉

||e−Hτ |�0〉|| . In our numerical
work we normalize the state after every time step [5]. We start
from a uniform superposition of all the states and Trotterize
by evolving first the odd pairs of sites and then the even
pairs. Our experimentation with the parameters for a linear
chain of length N = 20 is shown in Figs. 3–5; all the plots
are on semi-log scale and the quantities being plotted are
dimensionless.

We see that for r < d the final energy converges to the
zero-energy ground state relatively rapidly with χ 
 dN/2.
This can be seen in Figs. 3–5 by the lowest curves (down-
ward triangles). As shown, the final energy obtained from
imaginary time evolution tends toward 0 with a steep slope,
indicating that the ground state can be approximated efficiently
with a small χ in the MPS ansatz.

The r > d2/4 case, represented by squares, is shown as
the top curve in Figs. 3–5. One sees that the final energy
plateaus relatively quickly in all three cases. This shows that

FIG. 4. (Color online) Final energy vs. χ for N = 20, d = 5,
and projector ranks of 4, 6, and 8. Exact description would require
χ ≈ 105.

012318-3



RAMIS MOVASSAGH et al. PHYSICAL REVIEW A 82, 012318 (2010)

FIG. 5. (Color online) Final energy vs. χ for N = 20, d = 6, and
projector ranks 5, 7, 9, and 11. Exact description in general would
require χ ≈ 108.

the numerics have converged to a nonzero value and that
increasing χ will not yield a lower value of energy. Therefore,
the numerical results suggest that there are no ground states
with zero energy.

In the previous section we analytically showed that when
d � r � d2/4, there are many zero-energy ground states.
However, when we try to find these states numerically we see
that the final energy converges to 0 slowly. This is shown in
Figs. 3–5 by the middle curves (circles). Of these, there are the
critical cases, where r = d2

4 . These correspond to the curves
with circles in Figs. 3 and 5. The numerical investigation of
the case d � r � d2/4 is interesting because it suggests that
for a large number of spins, finding the ground state with small
χ , tractable on a normal computer, is very hard. We interpret
this as a high amount of entanglement among the zero-energy
ground states and leave the analytical proof of this statement
for a follow-up paper.

IV. CONCLUSIONS

We have investigated the no-frustration conditions for
a system of qudits on a line with d states per site and
random rank r local projector Hamiltonians acting between
the nearest-neighbor sites. We proved that there are no ground
states with zero energy for r > d2

4 and sufficiently large N .

The system is not frustrated for r � d2

4 . This second parameter

region further splits into two. For d � r � d2

4 , many entangled
zero-energy ground states exist. In contrast, for r < d we can
also construct separable zero-energy ground states (see also
Fig. 2).

We have verified the preceding statements numerically; in
particular, we have shown that when d � r � d2/4, approxi-
mating the ground-state energy (finding the ground states) is
hard, as the states seem to be highly entangled. Future work
entails the investigation of the energy gap [16] and the amount
of entanglement in the system as a function of the parameters of
the chain. Furthermore, we would like to address how far from
an eigenstate of the Hamiltonian the wave function is after
the truncations are made (i.e., as a function of χ ). Finally,
we would like to quantify the nature of the convergence
to the ground state starting from an arbitrary state in this
framework.
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APPENDIX

We now address the question of the rank of the matrix C in
Eq. (9). This C, which gives the constraints on �[n+1], depends
on |vp

n,n+1〉 and, through �[n], on all the |vp

k,k+1〉 with k < n.
We would like to say that for random |v〉 and when sk < Dk

for random choices of the sk-dimensional subspace, the rank of
C is generically the maximum rank allowed, min(rsn−1,dsn).
This is not obviously true. In particular, for the case sk = Dk in
the regime r � d2

4 , to which we restrict ourselves henceforth,
Dn grows exponentially in n, while the number of parameters
in the |vp

k,k+1〉 on which C depends only grows linearly. Thus
C is far from a generic matrix of its size, but we now prove
that its rank is indeed rDn−1.

The argument used by Laumann et al. [17] to prove their
“geometrization theorem” also applies to our problem. It shows
that for a chain of N qudits with random |vp

k,k+1〉, that is, for
a Hamiltonian H as in Eqs. (2), (4), and (5), the number of
zero-energy states, namely, dim[ker(H )], is, with probability
1 (which is what we mean by generic), equal to its minimum
value. The calculation in Sec. II leading to the recursion
relation (11) and its solution shows that in the regime r � d2/4,
this minimum is � DN, since if the rank of the rDk−1 × dDk

matrix C is ever less than rDk−1, we can choose sk+1 = Dk+1.
Hence it is sufficient to find a single set of |vp

k,k+1〉 for which
dim[ker(H )] = DN to prove that DN is the generic value, that
is, that greater values occur with probability 0. This implies
that the rank of each C is generically rDk−1, since otherwise,
at the first k where C had a smaller rank, we could construct
more than Dk+1 solutions for a chain of length k + 1.

We construct |vp

k,k+1〉 with the property 〈vp

k,k+1|ikik+1〉 =
0 unless ik � d

2 and ik+1 > d
2 . This can be done for r

linearly independent |vp〉 if r � d2

4 . We now assume that
d is even; the modifications for d odd are obvious. We
proceed by induction on n. Assume that in each �ik,[k]

αk−1,αk

with k � n, αk runs from 1 to Dk . From the definition
of C [following Eq. (9)] and the special choice of |v〉,
Cpαn−1,in+1αn

= 0 for in+1 � d
2 and so from Eq. (9) �

in+1,[n+1]
αn,αn+1

is unconstrained for in+1 � d
2 . This allows us to choose, for
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1 � αn+1 � d
2 Dn,

�in+1,[n+1]
αn,αn+1

= 1 when αn+1 = d

2
(αn − 1) + in+1,

with 1 � αn � Dn, 1 � in+1 � d
2 , and

�in+1,[n+1]
αn,αn+1

= 0 otherwise.

As part of our induction, we assume that for 1 � αn �
d
2 Dn−1,

�in,[n]
αn−1,αn

= 1 when αn = d

2
(αn−1 − 1) + in,

with 1 � αn−1 � Dn−1, 1 � in � d
2 , and

�in,[n]
αn−1,αn

= 0 otherwise.

Now we can show that the rows of Cpαn−1,in+1αn
are

linearly independent: for if
∑

p,αn−1
yp,αn−1Cpαn−1,in+1αn

= 0
for all in+1,αn this is true, in particular, for all in+1 > d/2,
αn � d

2 Dn−1, when it becomes
∑

p ypαn−1〈vp

n,n+1|inin+1〉 = 0

for all in � d
2 , in+1 > d

2 , and αn−1 � Dn−1. Since the |vp〉
are linearly independent, this is only true if ypαn−1 = 0 for all
p, αn−1. Hence the rank of C is rDn−1, and αn+1 can take
altogether dDn − rDn−1 = Dn+1 values, which is what we
wanted to prove.
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