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Abstract. The affine rank minimization problem consists of finding a matrix of minimum rank that
satisfies a given system of linear equality constraints. Such problems have appeared in the
literature of a diverse set of fields including system identification and control, Euclidean
embedding, and collaborative filtering. Although specific instances can often be solved with
specialized algorithms, the general affine rank minimization problem is NP-hard because
it contains vector cardinality minimization as a special case. In this paper, we show that
if a certain restricted isometry property holds for the linear transformation defining the
constraints, the minimum-rank solution can be recovered by solving a convex optimization
problem, namely, the minimization of the nuclear norm over the given affine space. We
present several random ensembles of equations where the restricted isometry property holds
with overwhelming probability, provided the codimension of the subspace is sufficiently
large. The techniques used in our analysis have strong parallels in the compressed sensing
framework. We discuss how affine rank minimization generalizes this preexisting concept
and outline a dictionary relating concepts from cardinality minimization to those of rank
minimization. We also discuss several algorithmic approaches to minimizing the nuclear
norm and illustrate our results with numerical examples.

Key words. rank, convex optimization, matrix norms, random matrices, compressed sensing, semidef-
inite programming
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1. Introduction. Notions such as order, complexity, or dimensionality can often
be expressed by means of the rank of an appropriate matrix. For example, a low-rank
matrix could correspond to a low-degree statistical model for a random process (e.g.,
factor analysis), a low-order realization of a linear system [38], a low-order controller
for a plant [30], or a low-dimensional embedding of data in Euclidean space [48]. If
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the set of models that satisfy the desired constraints is convex, then choosing the
simplest model can be cast as a rank minimization problem,

(1.1)
minimize rankX
subject to X ∈ C,

where X ∈ R
m×n is the decision variable and C is some given convex constraint set.

This problem arises in various application areas; see, for example, [37, 52]. In certain
instances with very special structure, the rank minimization problem can be solved
by using the singular value decomposition (SVD), or can be exactly reduced to the
solution of linear systems [54, 60]. In general, however, the problem (1.1) is a challeng-
ing nonconvex optimization problem, and even when C is an affine subspace it seems
to require worst-case exponential running time in both theory and practice. For the
general case, a variety of heuristic algorithms based on local optimization, including
alternating projections and its variations [42, 58], alternating matrix inequalities [68],
linearization [31], and augmented Lagrangian methods [34], have been proposed.

A recent heuristic introduced by Fazel et al. in [37, 38] minimizes the nuclear
norm, or the sum of the singular values of the matrix, over the constraint set. The
nuclear norm is a convex function, can be optimized efficiently, and is the best convex
lower approximation of the rank function over the set of matrices with spectral norm
less than or equal to one; see Theorem 2.2 below. When the matrix variable is
symmetric and positive semidefinite, this heuristic is equivalent to the trace heuristic
sometimes used by the systems and control community (e.g., [6, 54]). The nuclear
norm heuristic has been observed to produce very low-rank solutions in practice,
but a theoretical characterization of when it produces the minimum-rank solution
has not been previously available. This paper provides the first such mathematical
characterization.

In this paper, we focus on the scenario where the set of feasible models or designs
is affine in the matrix variable, and we consider the affine rank minimization problem,

(1.2)
minimize rankX
subject to A(X) = b,

where X ∈ R
m×n is the decision variable and the linear map A : R

m×n → R
p and

vector b ∈ R
p are given. Our work is built upon a large body of literature on a related

optimization problem. When the matrix variable is constrained to be diagonal, the
affine rank minimization problem reduces to finding the sparsest vector in an affine
subspace. This problem is commonly referred to as cardinality minimization, since one
seeks the vector whose support has the smallest cardinality, and is known to be NP-
hard [56]. Just as in the case of rank minimization, a variety of heuristic algorithms
have been proposed to solve cardinality minimization problems including projection
pursuit [40, 51, 62] and orthogonal matching pursuit [19, 24, 61].

For diagonal matrices, the sum of the singular values is equal to the sum of the
absolute values (i.e., the �1 norm) of the diagonal elements. Minimization of the �1
norm is a well-known heuristic for the cardinality minimization problem, employed as
early as the 1970s by geophysicists attempting to deconvolve seismic activity [21, 74].
Since then, �1 minimization has been applied to a variety of cardinality minimization
problems including image denoising [65], model selection in statistics [76], sparse
approximation [20], portfolio optimization with fixed transaction costs [50], design
of sparse interconnect wiring in circuits [80], and design of sparse feedback gains in
control systems [43].
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Recently, results pioneered by Candès and Tao [16] and Donoho [25] have charac-
terized a vast set of instances for which the �1 heuristic can be a priori guaranteed to
yield the optimal solution. These techniques provide the foundations of the recently
developed compressed sensing or compressive sampling frameworks for measurement,
coding, and signal estimation. As has been shown by a number of research groups
(e.g., [4, 14, 15, 16]), the �1 heuristic for cardinality minimization provably recov-
ers the sparsest solution whenever the sensing matrix has certain “basis incoherence”
properties, and, in particular, when it is randomly chosen according to certain specific
ensembles.

The fact that the �1 heuristic is a special case of the nuclear norm heuristic sug-
gests that these results from the compressed sensing literature might be extended to
provide guarantees about the nuclear norm heuristic for the more general rank mini-
mization problem. In this paper, we show that this is indeed the case, and the parallels
are surprisingly strong. Following the program laid out in the work of Candès and
Tao, our main contribution is the development of a restricted isometry property (RIP),
under which the nuclear norm heuristic can be guaranteed to produce the minimum-
rank solution. Furthermore, as in the case for the �1 heuristic, we provide several
specific examples of matrix ensembles for which the RIP holds with overwhelming
probability. Our results considerably extend the compressed sensing machinery in a
so far undeveloped direction, by allowing a much more general notion of parsimonious
models that rely on low-rank assumptions instead of cardinality restrictions.

To make the parallels as clear as possible, we begin by establishing a dictionary
between the matrix rank and nuclear norm minimization problems and the vector
sparsity and �1 norm problems in section 2. In the process of this discussion, we
present a review of many useful properties of the matrices and matrix norms neces-
sary for the main results. We then generalize in section 3 the notion of restricted
isometry to matrices, and show that when linear mappings are restricted isometries,
recovering low-rank solutions of underdetermined systems can be achieved by nuclear
norm minimization. In section 4, we present several families of random linear maps
that are restricted isometries with overwhelming probability when the dimensions are
sufficiently large. In section 5, we briefly discuss three different algorithms designed
for solving the nuclear norm minimization problem and their relative strengths and
weaknesses: interior point methods, gradient projection methods, and a low-rank
factorization technique. In section 6, we present several numerical experiments and
demonstrate that in practice nuclear norm minimization recovers the lowest rank so-
lutions of affine sets with even fewer constraints than those guaranteed by our math-
ematical analysis. Finally, in section 7, we list a number of possible directions for
future research.

1.1. When Are Random Constraints Interesting for Rank Minimization?. As
in the case of compressed sensing, the conditions we derive to guarantee properties of
the nuclear norm heuristic are deterministic, but they are at least as difficult to check
as solving the rank minimization problem itself. We are only able to guarantee that
the nuclear norm heuristic recovers the minimum-rank solution of A(X) = b when A is
sampled from specific ensembles of random maps. The constraints appearing in many
of the applications mentioned above, such as low-order control system design, are
typically not random at all and have structured demands according to the specifics
of the design problem. Furthermore, in many of these applications, the problem
is formulated as minimizing rank subject to some more general convex constraints
than the linear equalities we are considering. It thus behooves us to present several
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examples where random affine constraints manifest themselves in practical scenarios
for which no practical solution procedure is known.

Minimum-Order Linear System Realization. Rank minimization forms the ba-
sis of many model reduction and low-order system identification problems for linear
time-invariant (LTI) systems. The following example illustrates how random con-
straints might arise in this context. Consider the problem of finding the minimum-
order discrete-time LTI system that is consistent with a set of time-domain observa-
tions. In particular, suppose our observations are the system output sampled at a
fixed time N after a random Gaussian input signal is applied from t = 0 to t = N .
Suppose we make such measurements for p different randomly generated input sig-
nals, ai(t). Then we observe the outputs yi(N) =

∑N
t=0 ai(N − t)h(t) for i = 1, . . . , p,

where h(t) denotes the impulse response. We can write this compactly as y = Ah,
where h = [h(0), . . . , h(N)]′ and Aij = ai(N − j).

From linear system theory, the order of the minimal realization for such a system
is given by the rank of the following Hankel matrix (see, e.g., [39, 69]):

hank(h) :=



h(0) h(1) · · · h(N)
h(1) h(2) · · · h(N + 1)
...

...
...

h(N) h(N + 1) · · · h(2N)


 .

Therefore, the problem can be expressed as

minimize rankhank(h)
subject to Ah = y,

where the optimization variables are h(0), . . . , h(2N) and the matrix A consists of
independent, identically distributed (i.i.d.) zero-mean Gaussian entries.

Low-Rank Matrix Completion. In the matrix completion problem, we are given
a random subset of entries of a matrix and would like to fill in the missing entries
such that the resulting matrix has the lowest possible rank. This problem arises in
machine learning scenarios where we are given partially observed examples of a process
with a low-rank covariance matrix and would like to estimate the missing data. Such
models are ubiquitous in factor analysis, collaborative filtering, and latent semantic
analysis [63, 70]. In many of these settings, some prior probability distribution (such
as a Bernoulli model or uniform distribution on subsets) is assumed to generate the
set of available entries.

Suppose we are presented with a set of triples (I(i), J(i), S(i)) for i = 1, . . . , p and
wish to find the matrix with S(i) in the entry corresponding to row I(i) and column
J(i) for all i. The matrix completion problem seeks to

minimize rankY
subject to YI(i),J(i) = S(i), i = 1, . . . ,K,

which is a special case of the affine rank minimization problem.

Low-Dimensional Euclidean Embedding Problems. A problem that arises in
a variety of fields is the determination of configurations of points in low-dimensional
Euclidean spaces subject to some given distance information. In computational chem-
istry, these problems arise in inferring the three-dimensional structure of a molecule
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(molecular conformation) from information about interatomic distances [78]. In mani-
fold learning, one may be given high-dimensional data with low-dimensional structure
that can be recovered by searching for a low-dimensional embedding of the data pre-
serving local distance information [64, 75].

A symmetric matrix D ∈ Sn is called a Euclidean distance matrix (EDM) if
there exist points x1, . . . , xn in R

d such that Dij = ‖xi − xj‖2. Let V := In − 1
n11T

be the orthogonal projection matrix onto the hyperplane {v ∈ R
n : 1T v = 0}. A

classical result by Schoenberg states that D is an EDM of n points in R
d if and only

if Dii = 0, the matrix VDV is negative semidefinite, and rankV DV is less than or
equal to d [67]. If the matrix D is known exactly, the corresponding configuration of
points (up to a unitary transform) is obtained by simply taking a matrix square root of
− 1

2VDV . In many cases, however, only a random sampling collection of the distances
are available. The problem of finding a valid EDM consistent with the known pairwise
distances and with the smallest embedding dimension can be expressed as the rank
optimization problem

minimize rankV DV
subject to V DV � 0,

A(D) = b,

where A : Sn → R
p is a random sampling operator as discussed in the matrix com-

pletion problem.
This problem involves a linear matrix inequality (LMI) and appears to be more

general than the equality constrained rank minimization problem. However, general
LMIs can equivalently be expressed as rank constraints on an appropriately defined
block matrix. The rank of a block symmetric matrix is equal to the rank of a diagonal
block plus the rank of its Schur complement (see, e.g., [46, section 2.2]). Given a
function f that maps matrices into q×q symmetric matrices, the condition that f(X)
is positive semidefinite can be equivalently expressed through a rank constraint as

f(X)  0 ⇐⇒ rank
([

Iq B
B′ f(X)

])
≤ q for some B ∈ R

q×q.

That is, if there exists a matrix B satisfying the inequality above, then f(X) = B′B 
0. Using this equivalent representation allows us to rewrite problem (1.1) with general
LMI constraints as an affine rank minimization problem.

Image Compression. A simple and well-known method to compress two-dimen-
sional images can be obtained by using the SVD (e.g., [3]). The basic idea is to
associate to the given grayscale image a rectangular matrix M , with the entries Mij

corresponding to the gray level of the (i, j) pixel. The best rank-k approximation of
M is given by

X�
k := argmin

rank X≤k
‖M −X‖,

where ‖ · ‖ is any unitarily invariant norm. By the classical Eckart–Young–Mirsky
theorem [28, 55], the optimal approximant is given by a truncated SVD of M , i.e.,
if M = UΣV T , then X�

k = UΣkV
T , where the first k diagonal entries of Σk are the

largest k singular values and the rest of the entries are zero. If, for a given rank k,
the approximation error ‖M −X�

k‖ is small enough, then the amount of data needed
to encode the information about the image is k(m+ n− k) real numbers, which can
be much smaller than the mn required to transmit the values of all the entries.
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Consider a given image, whose associated matrix M has low rank or can be well-
approximated by a low-rank matrix. As proposed by Wakin et al. [81], a single-pixel
camera would ideally produce measurements that are random linear combinations
of all the pixels of the given image. Under this situation, the image reconstruction
problem boils down exactly to affine rank minimization, where the constraints are
given by the random linear functionals.

It should be remarked that the simple SVD image compression scheme described
has certain deficiencies that more sophisticated techniques do not share (in particular,
the lack of invariance of the description length under rotations). Nevertheless, due to
its simplicity and relatively good practical performance, this method is particularly
popular in introductory treatments and numerical linear algebra textbooks.

2. From Compressed Sensing to Rank Minimization. As discussed above, when
the matrix variable is constrained to be diagonal, the affine rank minimization prob-
lem (1.2) reduces to the cardinality minimization problem of finding the element in
the affine space with the smallest number of nonzero components. In this section we
will establish a dictionary between the concepts of rank and cardinality minimization.
The main elements of this correspondence are outlined in Table 2.1. With these el-
ements in place, the existing proofs of sparsity recovery provide a template for the
more general case of low-rank recovery.

In establishing our dictionary, we will provide a review of useful facts regard-
ing matrix norms and their characterization as convex optimization problems. We
will show how computing both the operator norm and the nuclear norm of a matrix
can be cast as semidefinite programming (SDP) problems. We also establish suit-
able optimality conditions for the minimization of the nuclear norm subject to affine
equality constraints, the main convex optimization problem studied in this article.
Our discussion of matrix norms and their connections to SDP and convex optimiza-
tion will mostly follow the discussion in [9, 37, 79], where extensive lists of references
are provided.

Matrix vs. Vector Norms. The three vector norms that play significant roles in
the compressed sensing framework are the �1, �2, and �∞ norms, denoted by ‖x‖1,
‖x‖, and ‖x‖∞, respectively. These norms have natural generalizations to matrices,
inheriting many appealing properties from the vector case. In particular, there is a
parallel duality structure.

For a rectangular matrix X ∈ R
m×n, σi(X) denotes the ith largest singular value

of X and is equal to the square root of the ith largest eigenvalue of XX ′. The rank
of X will usually be denoted by r and is equal to the number of nonzero singular
values. For matrices X and Y of the same dimensions, we define the inner product
in R

m×n as 〈X,Y 〉 := Tr(X ′Y ) =
∑m

i=1

∑n
j=1XijYij . The norm associated with this

inner product is called the Frobenius (or Hilbert–Schmidt) norm ‖·‖F . The Frobenius

Table 2.1 A dictionary relating the concepts of cardinality and rank minimization.

Parsimony concept cardinality rank
Hilbert space norm Euclidean Frobenius

Sparsity inducing norm �1 nuclear
Dual norm �∞ operator

Norm additivity disjoint support orthogonal row/column spaces
Convex optimization linear programming semidefinite programming
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norm is also equal to the Euclidean, or �2, norm of the vector of singular values, i.e.,

‖X‖F :=
√
〈X,X〉 =

√
Tr(X ′X) =


 m∑

i=1

n∑
j=1

X2
ij




1
2

=

(
r∑

i=1

σ2
i

) 1
2

.

The operator norm (or induced 2-norm) of a matrix is equal to its largest singular
value (i.e., the �∞ norm of the singular values):

‖X‖ := σ1(X).

The nuclear norm of a matrix is equal to the sum of its singular values, i.e.,

‖X‖∗ :=
r∑

i=1

σi(X) ,

and is alternatively known by several other names including the Schatten 1-norm, the
Ky Fan r-norm, and the trace class norm. Since the singular values are all positive,
the nuclear norm is also equal to the �1 norm of the vector of singular values. These
three norms are related by the following inequalities which hold for any matrix X of
rank at most r:

(2.1) ‖X‖ ≤ ‖X‖F ≤ ‖X‖∗ ≤
√
r‖X‖F ≤ r‖X‖.

Dual Norms. For any given norm ‖ · ‖ in an inner product space, there exists a
dual norm ‖ · ‖d defined as

(2.2) ‖X‖d := sup{〈X,Y 〉 : Y ∈ R
m×n, ‖Y ‖ ≤ 1}.

Furthermore, the norm dual to the norm ‖ · ‖d is again the original norm ‖ · ‖.
In the case of vector norms in R

n, it is well known that the dual norm of the �p
norm (with 1 < p < ∞) is the �q norm, where 1

p + 1
q = 1. This fact is essentially

equivalent to Hölder’s inequality. Similarly, the dual norm of the �∞ norm of a vector
is the �1 norm. These facts also extend to the matrix norms we have defined. For
instance, the dual norm of the Frobenius norm is the Frobenius norm. This can be
verified by simple calculus (or Cauchy–Schwarz), since

sup{Tr(X ′Y ) : Y ∈ R
m×n, Tr(Y ′Y ) ≤ 1}

is equal to ‖X‖F , with this bound being achieved if Y is equal to X/‖X‖F . Similarly,
as shown below, the dual norm of the operator norm is the nuclear norm. The proof
of this fact will also allow us to present variational characterizations of each of these
norms as semidefinite programs.

Proposition 2.1. The dual norm of the operator norm ‖ · ‖ in R
m×n is the

nuclear norm ‖ · ‖∗.
Proof. First consider an m×n matrix Z. The fact that Z has operator norm less

than or equal to t can be expressed as a linear matrix inequality,

(2.3) ‖Z‖ ≤ t ⇐⇒ t2Im − ZZ ′  0 ⇐⇒
[
tIm Z
Z ′ tIn

]
 0,
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where the last implication follows from a Schur complement argument. As a conse-
quence, we can give a semidefinite optimization characterization of the operator norm,
namely,

(2.4) ‖Z‖ = inf
{
t :

[
tIm Z
Z ′ tIn

]
 0

}
.

Now let X = UΣV ′ be a singular value decomposition of an m × n matrix X ,
where U is an m×r matrix, V is an n×r matrix, Σ is an r×r diagonal matrix, and r
is the rank of X . Let Y := U V ′. Then ‖Y ‖ = 1 and Tr(XY ′) =

∑r
i=1 σi(X) = ‖X‖∗,

and hence the dual norm is greater than or equal to the nuclear norm.
To provide an upper bound on the dual norm, we appeal to semidefinite program-

ming duality. From the characterization in (2.3), the optimization problem

maximize Tr(X ′Y )
subject to ‖Y ‖ ≤ 1

is equivalent to the semidefinite program

(2.5)
maximize Tr(X ′Y )

subject to
[
Im Y
Y ′ In

]
 0.

The dual of this semidefinite program (after an inconsequential rescaling) is given by

(2.6)
minimize 1

2 (Tr(W1) + Tr(W2))

subject to
[
W1 X
X ′ W2

]
 0.

Set W1 := UΣU ′ and W2 := V ΣV ′. Then the triple (W1,W2, X) is feasible for (2.6)
since [

W1 X
X ′ W2

]
=
[
U
V

]
Σ
[
U
V

]′
 0.

Furthermore, we have Tr(W1) = Tr(W2) = Tr(Σ), and thus the objective function
satisfies (Tr(W1) + Tr(W2))/2 = TrΣ = ‖X‖∗. Since any feasible solution of (2.6)
provides an upper bound for (2.5), we have that the dual norm is less than or equal
to the nuclear norm of X , thus proving the proposition.

Notice that the argument given in the proof above further shows that the nuclear
norm ‖X‖∗ can be computed using either the semidefinite program (2.5) or its dual
(2.6), since there is no duality gap between them. Alternatively, this could have also
been proven using a Slater-type interior point condition since both (2.5) and (2.6)
admit strictly feasible solutions. Interested readers can find an in-depth discussion of
Slater conditions for semidefinite programming in Chapter 4 of [83].

Convex Envelopes of Rank and Cardinality Functions. Let C be a given convex
set. The convex envelope of a (possibly nonconvex) function f : C → R is defined as
the largest convex function g such that g(x) ≤ f(x) for all x ∈ C (see, e.g., [44]). This
means that, among all convex functions that lower bound f , g is the best pointwise
approximation to f . In particular, if g can be conveniently described, it can serve as
an approximation to f that can be minimized efficiently.
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By the chain of inequalities in (2.1), we have that rankX ≥ ‖X‖∗/‖X‖ for all
X . For all matrices with ‖X‖ ≤ 1, we must have that rankX ≥ ‖X‖∗, so the nuclear
norm is a convex lower bound of the rank function on the unit ball in the operator
norm. In fact, it can be shown that this is the tightest convex lower bound.

Theorem 2.2 (see [37]). The convex envelope of rankX on the set {X ∈ R
m×n :

‖X‖ ≤ 1} is the nuclear norm ‖X‖∗.
The proof of this statement is given in [37]. It relies on von Neumann’s trace

inequality [45] and a basic result from convex analysis that establishes that, under
certain technical conditions, the biconjugate of a function is its convex envelope [44].

Theorem 2.2 provides the following interpretation of the nuclear norm heuristic
for the affine rank minimization problem. Suppose X0 is the minimum-rank solution
of A(X) = b and M = ‖X0‖. The convex envelope of the rank on the set C = {X ∈
R

m×n : ‖X‖ ≤ M} is ‖X‖∗/M . Let X∗ be the minimum nuclear norm solution of
A(X) = b. Then we have

‖X∗‖∗/M ≤ rankX0 ≤ rankX∗,

providing an upper and lower bound on the optimal rank when the norm of the
optimal solution is known. Furthermore, this is the tightest lower bound among all
convex lower bounds of the rank function on the set C.

For vectors, we have a similar inequality. Let card(x) denote the cardinality
function which counts the number of nonzero entries in the vector x; then we have
card(x) ≥ ‖x‖1/‖x‖∞. Not surprisingly, the �1 norm is also the convex envelope of
the cardinality function over the set {x ∈ R

n : ‖x‖∞ ≤ 1}. This result can be either
proven directly or can be seen as a special case of the above theorem.

Additivity of Rank and Nuclear Norm. A function f mapping a linear space into
R is called subadditive if f(x+y) ≤ f(x)+f(y). It is additive if f(x+y) = f(x)+f(y).
In the case of vectors, both the cardinality function and the �1 norm are subadditive.
That is, it always holds that the number of nonzeros in x+ y is less than or equal to
the number of nonzeros in x plus the number of nonzeros of y; furthermore (by the
triangle inequality), ‖x + y‖1 ≤ ‖x‖1 + ‖y‖1. In particular, the cardinality function
is additive exactly when the vectors x and y have disjoint support. In this case, the
�1 norm is also additive, in the sense that ‖x+ y‖1 = ‖x‖1 + ‖y‖1.

For matrices, the rank function is subadditive. For the rank to be additive, it is
necessary and sufficient that the row and column spaces of the two matrices intersect
only at the origin, since in this case they operate in essentially disjoint spaces (see,
e.g., [53]). As we will show below, a related condition that ensures that the nuclear
norm is additive is that the matrices A and B have row and column spaces that are
orthogonal. In fact, a compact sufficient condition for the additivity of the nuclear
norm will be that AB′ = 0 and A′B = 0. This is a stronger requirement than the
aforementioned condition for rank additivity, as orthogonal subspaces only intersect
at the origin. The disparity arises because the nuclear norm of a linear map depends
on the choice of inner products on the spaces R

m and R
n on which the map acts,

whereas its rank is independent of such a choice.
Lemma 2.3. Let A and B be matrices of the same dimensions. If AB′ = 0 and

A′B = 0, then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.
Proof. Consider SVDs of A and B:

A = UAΣAV
′
A, B = UBΣBV

′
B .

Since UA and UB are left-invertible, the condition AB′ = 0 implies that V ′
AVB = 0.
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Similarly, A′B = 0 implies that U ′
AUB = 0. Thus, the following is a valid singular

value decomposition of A for A+B:

A+B =
[
UA UB

] [ ΣA

ΣB

] [
VA VB

]′
.

This shows that the singular values of A+B are equal to the union (with repetition)
of the singular values of A and B. Hence, ‖A+B‖∗ = ‖A‖∗+ ‖B‖∗ as desired.

Corollary 2.4. Let A and B be matrices of the same dimensions. If the row
and column spaces of A and B are orthogonal, then ‖A+B‖∗ = ‖A‖∗ + ‖B‖∗.

Proof. It suffices to show that if the row and column spaces of A and B are
orthogonal, then AB′ = 0 and A′B = 0. But this is immediate: if the columns of
A are orthogonal to the columns of B, we have A′B = 0. Similarly, orthogonal row
spaces imply that AB′ = 0 as well.

Nuclear Norm Minimization. Let us turn now to the study of equality-con-
strained norm minimization problems where we are searching for a matrix X ∈ R

m×n

of minimum nuclear norm belonging to a given affine subspace. In our applications,
the subspace is usually described by linear equations of the form A(X) = b, where
A : R

m×n → R
p is a linear mapping. This problem admits the primal-dual convex

formulation

(2.7) minimize ‖X‖∗ maximize b′z
subject to A(X) = b, subject to ‖A∗(z)‖ ≤ 1,

where A∗ : R
p → R

m×n is the adjoint of A. By a primal-dual pair, we mean that
each optimization problem is the Lagrangian dual of the other, and hence that the
minimum of the first optimization problem is equal to the maximum of the second.
This notion of duality generalizes the well-known case of linear programming, and is
in fact applicable to all convex optimization problems; see, e.g., [8, 9].

The formulation (2.7) is valid for any norm minimization problem, by replacing
the norms appearing above by any dual pair of norms. In particular, if we replace the
nuclear norm with the �1 norm and the operator norm with the �∞ norm, we obtain a
primal-dual pair of optimization problems that can be reformulated in terms of linear
programming.

Using the SDP characterizations of the nuclear and operator norms given in (2.5)–
(2.6) above allows us to rewrite (2.7) as the following primal-dual pair of semidefinite
programs:
(2.8)
minimize 1

2 (Tr(W1) + Tr(W2)) maximize b′z

subject to
[
W1 X
X ′ W2

]
 0 subject to

[
Im A∗(z)
A∗(z)′ In

]
 0.

A(X) = b,

Optimality Conditions. In order to describe the optimality conditions for the
norm minimization problem (2.7), we must first characterize the set of all subgradients
(i.e., the subdifferential) of the nuclear norm. Recall that for a convex function
f : R

n → R, the subdifferential of f at x ∈ R
n is the compact convex set

∂f(x) := {d ∈ R
n : f(y) ≥ f(x) + 〈d, y − x〉 ∀y ∈ R

n}.
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LetX be anm×nmatrix with rank r and let X = UΣV ′ be an SVD where U ∈ R
m×r,

V ∈ R
n×r, and Σ is an r× r diagonal matrix. The subdifferential of the nuclear norm

at X is then given by (e.g., [47, 82])
(2.9)
∂‖X‖∗ = {UV ′+W : W and X have orthogonal row/column spaces and ‖W‖ ≤ 1}.
For comparison, recall the case of the �1 norm, where

(2.10) ∂‖x‖1 = {sign(x) + w : w and x have disjoint support and ‖w‖∞ ≤ 1}.
The similarity between (2.9) and (2.10) is particularly transparent if we recall the

polar decomposition of a matrix into a product of orthogonal and positive semidefinite
matrices (see, e.g., [46]). The “angular” component of the matrix X is given exactly
by UV ′. Thus, these subgradients always have the form of an “angle” (or sign), plus
possibly a contraction in an orthogonal direction if the norm is not differentiable at
the current point.

We can now write concise optimality conditions for the optimization problem
(2.7). A matrix X is an optimal solution for (2.7) if there exists a vector z ∈ R

p such
that

(2.11) A(X) = b, A∗(z) ∈ ∂‖X‖∗.
The first condition in (2.11) requires feasibility of the linear equations, and the second
one guarantees that there is no feasible direction of improvement. Indeed, since A∗(z)
is in the subdifferential at X , for any Y in the primal feasible set of (2.7) we have

‖Y ‖∗ ≥ ‖X‖∗ + 〈A∗(z), Y −X〉 = ‖X‖∗ + 〈z,A(Y −X)〉 = ‖X‖∗,
where the last step follows from the feasibility of X and Y . As we can see, the opti-
mality conditions (2.11) for the nuclear norm minimization problem exactly parallel
those of the �1 optimization case.

These optimality conditions can be used to check and certify whether a given
candidate X is indeed a minimum nuclear norm solution. For this, it is sufficient
(and necessary) to find a vector z ∈ R

p in the subdifferential of the norm, i.e., such
that the left- and right-singular spaces of A∗(z) are aligned with those of X , and that
behaves like a contraction on the orthogonal complement.

3. Restricted Isometry and Recovery of Low-Rank Matrices. Let us now turn
to the central problem analyzed in this paper. Let A : R

m×n → R
p be a linear map

and let X0 be a matrix of rank r. Set b := A(X0), and define

(3.1) X∗ := argmin
X
‖X‖∗ subject to A(X) = b.

That is, X∗ is the element of the affine space defined by A and b with smallest
nuclear norm. In this section, we will characterize specific cases when we can a priori
guarantee that X∗ = X0. The key conditions will be determined by the values of
a sequence of parameters δr that quantify the behavior of the linear map A when
restricted to the set of matrices of rank r. The following definition is the natural
generalization of the restricted isometry property (RIP) from vectors to matrices.

Definition 3.1. Let A : R
m×n → R

p be a linear map. Without loss of generality,
assume m ≤ n. For every integer r with 1 ≤ r ≤ m, define the r-restricted isometry
constant to be the smallest number δr(A) such that
(3.2) (1− δr(A))‖X‖F ≤ ‖A(X)‖ ≤ (1 + δr(A))‖X‖F

holds for all matrices X of rank at most r.
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Note that, by definition, δr(A) ≤ δr′(A) for r ≤ r′.
The RIP for sparse vectors was developed by Candès and Tao in [16] and requires

(3.2) to hold with the Euclidean norm replacing the Frobenius norm and rank being
replaced by cardinality. Since, for diagonal matrices, the Frobenius norm is equal to
the Euclidean norm of the diagonal, this definition reduces to the original RIP of [16]
in the diagonal case.1

Unlike the case of “standard” compressed sensing, our RIP condition for low-
rank matrices cannot be interpreted as guaranteeing that all submatrices of the linear
transform A of a certain size are well conditioned. Indeed, the set of matrices X
for which (3.2) must hold is not a finite union of subspaces, but rather a certain
“generalized Stiefel manifold,” which is also an algebraic variety (in fact, it is the rth-
secant variety of the variety of rank-one matrices). Surprisingly, we are still able to
derive analogous recovery results for low-rank solutions of equations whenA obeys this
RIP condition. Furthermore, we will see in section 4 that many ensembles of random
matrices have the RIP with δr quite small with high probability for reasonable values
of m, n, and p.

The following two recovery theorems will characterize the power of the restricted
isometry constants. Both theorems are more or less immediate generalizations from
the sparse case to the low-rank case and use only minimal properties of the rank of
matrices and the nuclear norm. The first theorem generalizes Lemma 1.2 in [16] to
low-rank recovery.

Theorem 3.2. Suppose that δ2r < 1 for some integer r ≥ 1. Then X0 is the only
matrix of rank at most r satisfying A(X) = b.

Proof. Assume, on the contrary, that there exists a rank-r matrix X satisfying
A(X) = b and X �= X0. Then Z := X0 −X is a nonzero matrix of rank at most 2r,
and A(Z) = 0. But then we would have 0 = ‖A(Z)‖ ≥ (1 − δ2r)‖Z‖F > 0, which is
a contradiction.

The proof of the preceding theorem is identical to the argument given by Candès
and Tao and is an immediate consequence of our definition of the constant δr. No
adjustment is necessary in the transition from sparse vectors to low-rank matrices.
The key property used is the subadditivity of the rank.

Next we state a simple condition which guarantees X∗ = X0. The proof follows
the approach in [14], but a few details need to be adjusted when switching from vectors
to matrices.

Theorem 3.3. Suppose that r ≥ 1 is such that δ5r < 1/10. Then X∗ = X0.
We will need the following technical lemma that shows, for any two matrices A

and B, that we can decompose B as the sum of two matrices B1 and B2 such that
rankB1 is not too large and B2 satisfies the conditions of Lemma 2.3. This will be
the key decomposition for proving Theorem 3.3.

Lemma 3.4. Let A and B be matrices of the same dimensions. Then there exist
matrices B1 and B2 such that

(1) B = B1 + B2,
(2) rankB1 ≤ 2 rankA,
(3) AB′

2 = 0 and A′B2 = 0,
(4) 〈B1, B2〉 = 0.

1In [16], the authors define the RIP with squared norms. We note here that the analysis is
identical modulo some algebraic rescaling of constants. We choose to drop the squares as it greatly
simplifies the analysis in section 4.
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Proof. Consider a full singular value decomposition of A,

A = U
[

Σ 0
0 0

]
V ′,

and let B̂ := U ′BV . Partition B̂ as

B̂ =
[
B̂11 B̂12

B̂21 B̂22

]
.

Defining now

B1 := U
[
B̂11 B̂12

B̂21 0

]
V ′, B2 := U

[
0 0
0 B̂22

]
V ′,

it can be easily verified that B1 and B2 satisfy the conditions (1)–(4).
We now proceed to a proof of Theorem 3.3.
Proof of Theorem 3.3. By optimality of X∗, we have ‖X0‖∗ ≥ ‖X∗‖∗. Let

R := X∗ −X0. Applying Lemma 3.4 to the matrices X0 and R, there exist matrices
R0 and Rc such that R = R0+Rc, rankR0 ≤ 2 rankX0, andX0R

′
c = 0 and X ′

0Rc = 0.
Then

‖X0‖∗ ≥ ‖X0 +R‖∗ ≥ ‖X0 +Rc‖∗ − ‖R0‖∗ = ‖X0‖∗ + ‖Rc‖∗ − ‖R0‖∗,(3.3)

where the middle assertion follows from the triangle inequality and the last one from
Lemma 2.3. Rearranging terms, we can conclude that

(3.4) ‖R0‖∗ ≥ ‖Rc‖∗.
Next we partition Rc into a sum of matrices R1, R2, . . . , each of rank at most

3r. Let Rc = U diag(σ)V ′ be the SVD of Rc. For each i ≥ 1, define the index set
Ii = {3r(i− 1) + 1, . . . , 3ri}, and let Ri := UIi diag(σIi )V ′

Ii
(notice that 〈Ri, Rj〉 = 0

if i �= j). By construction, we have

(3.5) σk ≤ 1
3r

∑
j∈Ii

σj ∀ k ∈ Ii+1,

which implies ‖Ri+1‖2F ≤ 1
3r‖Ri‖2∗. We can then compute the following bound:

(3.6)
∑
j≥2

‖Rj‖F ≤ 1√
3r

∑
j≥1

‖Rj‖∗ =
1√
3r
‖Rc‖∗ ≤ 1√

3r
‖R0‖∗ ≤

√
2r√
3r
‖R0‖F ,

where the last inequality follows from (2.1) and the fact that rankR0 ≤ 2r. Finally,
note that the rank of R0 +R1 is at most 5r, so we may put all this together as

‖A(R)‖ ≥ ‖A(R0 +R1)‖ −
∑
j≥2

‖A(Rj)‖

≥ (1− δ5r) ‖R0 +R1‖F − (1 + δ3r)
∑
j≥2

‖Rj‖F

≥
(
(1− δ5r)−

√
2
3 (1 + δ3r)

)
‖R0‖F

≥ (
(1− δ5r)− 9

11 (1 + δ3r)
) ‖R0‖F .

(3.7)
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By assumption, A(R) = A(X∗ − X0) = 0, so if the factor on the right-hand side is
strictly positive, R0 = 0, which further implies Rc = 0 by (3.4), and thus X∗ = X0.
Simple algebra reveals that the right-hand side is positive when 9δ3r + 11δ5r < 2.
Since δ3r ≤ δ5r, we immediately have that X∗ = X0 if δ5r <

1
10 .

The rational number ( 9
11 ) in the proof of the theorem is chosen for notational

simplicity and is clearly not optimal. A slightly tighter bound can be achieved working
directly with the second to last line in (3.7). The most important point is that our
recovery condition on δ5r is an absolute constant, independent of m, n, r, and p.

We have yet to demonstrate any specific linear mappings A for which δr < 1.
We shall show in the next section that random linear transformations sampled from
several distributions of matrices with appropriately chosen dimensions have this prop-
erty with overwhelming probability. The analysis is again similar to the compressive
sampling literature, but several details specific to the rank recovery problem need to
be employed.

4. Nearly Isometric Random Matrices. In this section, we will demonstrate
that when we sample linear maps from a class of probability distributions obeying
certain large deviation inequalities, then they will obey the RIP (3.2) as p, m, and n
tend to infinity at appropriate rates. The following definition characterizes this family
of random linear transformations.

Definition 4.1. Let A be a random variable that takes values in linear maps from
R

m×n to R
p. We say that A is nearly isometrically distributed if, for all X ∈ R

m×n,

(4.1) E[‖A(X)‖2] = ‖X‖2F
and, for all 0 < ε < 1, we have

(4.2) P(|‖A(X)‖2 − ‖X‖2F | ≥ ε‖X‖2F ) ≤ 2 exp
(
−p
2

(
ε2

2
− ε

3

3

))
,

and, for all t > 0, we have

(4.3) P
(
‖A‖ ≥ 1 +

√
mn

p
+ t

)
≤ exp(−γpt2)

for some constant γ > 0.
There are two ingredients for a random linear map to be nearly isometric. First,

it must be isometric in expectation. Second, the probability of large distortions of
length must be exponentially small. The exponential bound in (4.2) guarantees that
union bounds will be small even for rather large sets. This concentration is the typical
ingredient required to prove the Johnson–Lindenstrauss lemma (cf. [2, 22]).

It is often simpler to describe nearly isometric random maps in terms of random
matrices. Let D := mn. For a linear map A : R

m×n → R
p, we can always write its

matrix representation as

(4.4) A(X) = A vec(X),

where vec(X) ∈ R
D denotes the “vectorized” X with its columns stacked in order on

top of one another, and A is a p×D matrix. We now give several examples of nearly
isometric random variables in this matrix representation. The most well known is the
ensemble with i.i.d. Gaussian entries [22]

(4.5) Aij ∼ N
(
0,

1
p

)
.
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We also mention two ensembles of matrices described in [2]. One has entries sampled
from an i.i.d. symmetric Bernoulli distribution,

(4.6) Aij =



√

1
p with probability 1

2 ,

−
√

1
p with probability 1

2 ,

and the other has zeros in two-thirds of the entries,

(4.7) Aij =




√
3
p with probability 1

6 ,

0 with probability 2
3 ,

−
√

3
p with probability 1

6 .

The fact that the top singular value of the matrix A is concentrated around 1+
√
D/p

for all of these ensembles follows from the work of Yin, Bai, and Krishnaiah, who
showed that whenever the entries Aij are i.i.d. with zero mean and finite fourth
moment, then the maximum singular value of A is almost surely 1 +

√
D/p for D

sufficiently large [84]. El Karoui used this result to prove the concentration inequality
(4.3) for all such distributions [32]. The result for Gaussians is rather tight with
γ = 1/2 (see, e.g., [23]).

Finally, note that a random projection also obeys all of the necessary concentra-
tion inequalities. Indeed, since the norm of a random projection is exactly

√
D/p,

(4.3) holds trivially. The concentration inequality (4.2) is proven in [22].
The main result of this section is the following theorem.
Theorem 4.2. Fix 0 < δ < 1. If A is a nearly isometric random variable, then,

for every 1 ≤ r ≤ m, there exist positive constants c0, c1 depending only on δ such that,
with probability at least 1− exp(−c1p), δr(A) ≤ δ whenever p ≥ c0r(m+n) log(mn).

The proof will make use of standard techniques in concentration of measure. We
first extend the concentration results of [4] to subspaces of matrices. We will show
that the distortion of a subspace by a linear map is robust to perturbations of the
subspace. Finally, we will provide an epsilon net over the set of all subspaces and,
using a union bound, will show that, with overwhelming probability, nearly isometric
random variables will obey the RIP (3.2) as the size of the matrices tends to infinity.

The following lemma characterizes the behavior of a nearly isometric random
mapping A when restricted to an arbitrary subspace of matrices U of dimension d.

Lemma 4.3. Let A be a nearly isometric linear map and let U be an arbitrary
subspace of m× n matrices with d = dim(U) ≤ p. Then, for any 0 < δ < 1, we have

(4.8) (1− δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δ)‖X‖F ∀X ∈ U
with probability at least

(4.9) 1− 2
(
12
δ

)d

exp
(
−p
2

(
δ2

8
− δ

3

24

))
.

Proof. The proof of this theorem is identical to the argument in [4] where the
authors restricted their attention to subspaces aligned with the coordinate axes. We
will sketch the proof here as the argument is straightforward.

There exists a finite set Ω of at most (12/δ)d points such that, for every X ∈ U
with ‖X‖F ≤ 1, there exists a Q ∈ Ω such that ‖X − Q‖F ≤ δ/4. By (4.2) and the



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

486 BENJAMIN RECHT, MARYAM FAZEL, AND PABLO A. PARRILO

standard union bound, we have that (1 − δ/2)‖Q‖F ≤ ‖A(Q)‖ ≤ (1 + δ/2)‖Q‖F for
all Q ∈ Ω with probability at least (4.9).

Let X be in {X ∈ U : ‖X‖F ≤ 1} and M be the maximum of ‖A(X)‖ on this
set. Then there exists a Q ∈ Ω such that ‖X −Q‖F ≤ δ/4. We then have

‖A(X)‖ ≤ ‖A(Q)‖+ ‖A(X −Q)‖ ≤ 1 + δ/2 +Mδ/4 .

Taking the supremum of both sides of this inequality yields M ≤ 1 + δ/2 +Mδ/4,
and we thus have M ≤ 1 + δ. The lower bound is proven by the following chain of
inequalities:

‖A(X)‖ ≥ ‖A(Q)‖ − ‖A(X −Q)‖ ≥ 1− δ/2− (1 + δ)δ/4 ≥ 1− δ.
The proof of preceding lemma revealed that the near isometry of a linear map is

robust to small perturbations of the matrix on which the map is acting. We will now
show that this behavior is robust with respect to small perturbations of the subspace
U as well. This perturbation will be measured in the natural distance between two
subspaces,

(4.10) ρ(T1, T2) := ‖PT1 − PT2‖,
where T1 and T2 are subspaces and PTi is the orthogonal projection associated with
each subspace. This distance measures the operator norm of the difference between
the corresponding projections, and it is equal to the sine of the largest principal angle
between T1 and T2 [1].

The set of all d-dimensional subspaces of R
D is commonly known as the Grass-

mannian manifold G(D, d). We will endow it with the metric ρ(·, ·) given by (4.10),
also known as the projection 2-norm. In the following lemma we characterize and
quantify the change in the isometry constant δ as one smoothly moves through the
Grassmannian.

Lemma 4.4. Let U1 and U2 be d-dimensional subspaces of R
D. Suppose that, for

all X ∈ U1,

(4.11) (1− δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δ)‖X‖F

for some constant 0 < δ < 1. Then, for all Y ∈ U2,

(4.12) (1− δ′)‖Y ‖F ≤ ‖A(Y )‖ ≤ (1 + δ′)‖Y ‖F

with

(4.13) δ′ = δ + (1 + ‖A‖) · ρ(U1, U2) .

Proof. Consider any Y ∈ U2. Then

‖A(Y )‖ = ‖A (PU1(Y )− [PU1 − PU2 ](Y ))‖
≤ ‖A(PU1 (Y ))‖ + ‖A ([PU1 − PU2 ](Y ))‖
≤ (1 + δ)‖PU1(Y )‖F + ‖A‖‖PU1 − PU2‖‖Y ‖F

≤ (1 + δ + ‖A‖‖PU1 − PU2‖) ‖Y ‖F .

(4.14)

Similarly, we have

‖A(Y )‖ ≥ ‖A(PU1 (Y ))‖ − ‖A ([PU1 − PU2 ](Y ))‖
≥ (1 − δ)‖PU1(Y )‖F − ‖A‖‖PU1 − PU2‖‖Y ‖F

≥ (1 − δ)‖Y ‖F − (1 − δ)‖(PU1 − PU2)(Y )‖F − ‖A‖‖PU1 − PU2‖‖Y ‖F

≥ [1− δ − (‖A‖+ 1)‖PU1 − PU2‖] ‖Y ‖F ,

(4.15)

which completes the proof.
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To apply these concentration results to low-rank matrices, we characterize the
set of all matrices of rank at most r as a union of subspaces. Let V ⊂ R

m and
W ⊂ R

n be fixed subspaces of dimension r. Then the set of all m × n matrices X
whose row space is contained in W and column space is contained in V forms an r2-
dimensional subspace of matrices of rank less than or equal to r. Denote this subspace
as Σ(V,W ) ⊂ R

m×n. Any matrix of rank less than or equal to r is an element of some
Σ(V,W ) for a suitable pair of subspaces, i.e., the set

Σmnr := {Σ(V,W ) : V ∈ G(m, r), W ∈ G(n, r)}.
We now characterize the number of subspaces necessary to cover this set to arbitrary
resolution. The covering number N(ε) of Σmnr at resolution ε is defined to be the
smallest number of subspaces (Vi,Wi) such that, for any pair of subspaces (V,W ),
there is an i with ρ(Σ(V,W ),Σ(Vi,Wi)) ≤ ε. That is, the covering number is the
smallest cardinality of an ε-net. The following lemma characterizes the cardinality of
such a set.

Lemma 4.5. The covering number N(ε) of Σmnr is bounded above by

(4.16) N(ε) ≤
(
4π
ε

)r(m+n−2r)

.

Proof. Note that the projection operator onto Σ(V,W ) can be written as PΣ(V,W ) =
PV ⊗ PW , so for a pair of subspaces (V1,W1) and (V2,W2), we have

ρ(Σ(V1,W1),Σ(V2,W2)) = ‖PΣ(V1,W1) − PΣ(V2,W2)‖
= ‖PV1 ⊗ PW1 − PV2 ⊗ PW2‖
= ‖(PV1 − PV2)⊗ PW1 + PV2 ⊗ (PW1 − PW2)‖
≤ ‖PV1 − PV2‖‖PW1‖+ ‖PV2‖‖PW1 − PW2‖
= ρ(V1, V2) + ρ(W1,W2).

(4.17)

The conditions ρ(V1, V2) ≤ ε
2 and ρ(W1,W2) ≤ ε

2 together imply the inequality
ρ(Σ(V1,W1),Σ(V2,W2)) ≤ ρ(V1, V2) + ρ(W1,W2) ≤ ε. Let V1, . . . , VN1 cover the
set of r-dimensional subspaces of R

m to resolution ε/2 and U1, . . . , UN2 cover the r-
dimensional subspaces of R

n to resolution ε/2. Then, for any (V,W ), there exist i
and j such that ρ(V, Vi) ≤ ε/2 and ρ(W,Wj) ≤ ε/2. Therefore, N(ε) ≤ N1N2. By the
work of Szarek on ε-nets of the Grassmannian (see [72] and [73, Theorem 8]) there is
a universal constant C0 ≤ 2π, independent of ε, m, n, and r, such that

(4.18) N1 ≤
(
2C0

ε

)r(m−r)

and N2 ≤
(
2C0

ε

)r(n−r)

,

which completes the proof.
We now proceed to the proof of the main result in this section. For this, we use a

union bound to combine the probabilistic guarantees of Lemma 4.3 with the estimates
of the covering number of Σ(U, V ).

Proof (of Theorem 4.2). Let Ω = {(Vi,Wi)} be an ε-net for Σmnr with cardinality
bounded as in (4.16). For each pair (Vi,Wi), define the set of matrices

(4.19)
Bi :=

{
X
∣∣∣ ∃(V,W ) such that X ∈ Σ(V,W ) and ρ(Σ(V,W ),Σ(Vi,Wi)) ≤ ε

}
.
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Since Ω is an ε-net, we have that the union of all the Bi is equal to Σmnr. Therefore,
if, for all i, (1− δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δ)‖X‖F for all X ∈ Bi, we must have that
δr(A) ≤ δ, proving that

P(δr(A) ≤ δ) = P [(1 − δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δ)‖X‖F ∀ X with rankX ≤ r]
≥ P [∀i (1− δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 + δ)‖X‖F ∀ X ∈ Bi] .

(4.20)

Now note that if we have (1+‖A‖)ε ≤ δ/2 and, for all Y ∈ Σ(Vi,Wi), (1−δ/2)‖Y ‖F ≤
‖A(Y )‖ ≤ (1 + δ/2)‖Y ‖F , Lemma 4.4 implies that (1 − δ)‖X‖F ≤ ‖A(X)‖ ≤ (1 +
δ)‖X‖F for all X ∈ Bi. Therefore, using a union bound, (4.20) is greater than or
equal to

1−
|Ω|∑
i=1

P
[
∃Y ∈ Σ(Vi,Wi) ‖A(Y )‖ <

(
1− δ

2

)
‖Y ‖F or ‖A(Y )‖ >

(
1 +

δ

2

)
‖Y ‖F

]

−P
[
‖A‖ ≥ δ

2ε
− 1

]
.

(4.21)

We can bound these quantities separately. First we have by Lemmas 4.3 and 4.5

|Ω|∑
i=1

P
[
∃Y ∈ Σ(Vi,Wi) ‖A(Y )‖ <

(
1− δ

2

)
‖Y ‖F or ‖A(Y )‖ >

(
1 +

δ

2

)
‖Y ‖F

]

≤ 2N(ε)
(
24
δ

)r2

exp
(
−p
2

(
δ2

32
− δ3

192

))

≤ 2
(
4π
ε

)r(m+n−2r)(24
δ

)r2

exp
(
−p
2

(
δ2

32
− δ3

192

))
.

(4.22)

Second, since A is nearly isometric, there exists a constant γ such that

(4.23) P
(
‖A‖ ≥ 1 +

√
mn

p
+ t

)
≤ exp(−γpt2) .

In particular,

(4.24) P
(
‖A‖ ≥ δ

2ε
− 1

)
≤ exp

(
−γp

(
δ

2ε
−
√
mn

p
− 2

)2
)
.

We now must pick a suitable resolution ε to guarantee that this probability is
less than exp(−c1p) for a suitably chosen constant c1. First note that if we choose
ε < (δ/4)(

√
mn/p+ 1)−1,

(4.25) P
(
‖A‖ ≥ δ

2ε
− 1

)
≤ exp(−γmn),

which achieves the desired scaling becausemn > p. With this choice of ε, the quantity
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in (4.22) is less than or equal to

2

(
32π(

√
mn/p+ 1)
δ

)r(m+n−2r)

(24/δ)r
2
exp

(
−p
2

(
δ2

32
− δ3

192

))

= exp
(
−pa(δ) + r(m + n− 2r) log

(√
mn

p
+ 1

)

+ r(m + n− 2r) log
(
32π
δ

)
+ r2 log

(
24
δ

))
,

(4.26)

where a(δ) = δ2/64− δ3/384. Since mn/p < mn for all p > 1, there exists a constant
c0, independent of m, n, p, and r, such that the sum of the last three terms in the
exponent are bounded above by (c0/a(δ))r(m + n) log(mn). It follows that there
exists a constant c1, independent of m, n, p, and r, such that p ≥ c0r(m+n) log(mn)
observations are sufficient to yield an RIP of δ with probability greater than 1 −
e−c1p.

Intuitively, the scaling p = O (r(m + n) log(mn)) is very reasonable, since a rank
r matrix has r(m + n − r) degrees of freedom. This coarse tail bound only pro-
vides asymptotic estimates for recovery, and is quite conservative in practice. As we
demonstrate in section 6, minimum-rank solutions can be determined from between
2r(m+ n− r) to 4r(m+ n− r) observations for many practical problems.

5. Algorithms for Nuclear Norm Minimization. A variety of methods can be
developed for the effective minimization of the nuclear norm over an affine subspace of
matrices, and we do not have space for a fully comprehensive treatment here. Instead,
in this section we focus on three specific methods that illustrate and highlight the
general trade-offs between theoretical guarantees, computational performance, and
numerical accuracy of the resulting solution.

Directly solving the semidefinite characterization of the nuclear norm problem
using primal-dual interior point methods is a numerically efficient method for small
problems and can be used to produce solutions of accuracy up to machine precision.
However, since interior point methods use second-order information, the memory
requirements for computing descent directions quickly becomes prohibitively large for
most practical applications. Moreover, it is preferable to use methods that exploit, at
least partially, the structure of the problem. This can be done at several levels, either
by taking into account further information that may be available about the linear map
A (e.g., the matrix completion problem discussed above) or by formulating algorithms
that are specific to the nuclear norm problem. For the latter, we show how to apply
subgradient methods to minimize the nuclear norm over an affine set. Such first-
order methods cannot yield as high numerical precision as interior point methods, but
much larger problems can be solved because no second-order information needs to be
stored. For even larger problems, we discuss a semidefinite programming heuristic that
explicitly works with a low-rank factorization of the decision variable. This method
can be applied even when the matrix decision variable cannot fit into memory, but
convergence guarantees are much less satisfactory than in the other two cases.

5.1. Interior Point Methods for SDP. For relatively small problems where a
high degree of numerical precision is required, interior point methods for SDP can be
directly applied to solve the affine nuclear norm minimization problem. As we have
seen in earlier sections, this optimization problem can be directly posed as a semidef-
inite program via the standard form primal-dual pair (2.8). As written, the primal
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problem has one (n +m) × (n +m) semidefinite constraint and p affine constraints.
Conversely, the dual problem has one (n+m)× (n+m) semidefinite constraint and
p scalar decision variables. Thus, the total number of decision variables (primal and
dual) is equal to

(
n+m+1

2

)
+ p.

Modern interior point solvers for SDP generally use primal-dual methods and
compute an update direction for the current solution by solving a suitable Newton
system. Depending on the structure of the linear mapping A, this may entail con-
structing and solving a potentially large, dense linear system.

If the matrix dimensions n and m are not too large, then any good interior
point SDP solver, such as SeDuMi [71] or SDPT3 [77], will quickly produce accurate
solutions. In fact, as we will see in the next section, problems with n andm around 50
can be solved to machine precision in a few minutes on a desktop computer. However,
solving such a primal-dual pair of programs with traditional interior point methods
can prove to be quite challenging when the dimensions of the matrix X are much
bigger than 100× 100 and the number of equations is in the thousands. In this case,
the corresponding Newton systems can become quite large, and, without any specific
additional structure, the memory requirements of such dense systems quickly limit
the size of problems that can be solved. This can be controlled to some extent by
exploiting the problem structure when assembling and solving the Newton system, as
in the recent work of Liu and Vandenberghe [49].

Perhaps the most important drawback of the direct SDP approach is that it com-
pletely ignores the possibility of efficiently computing the nuclear norm via an SVD,
instead of the less efficient eigenvalue decomposition of a bigger matrix. The methods
we discuss next will circumvent this obstacle by working directly with subgradients
of the nuclear norm.

5.2. Projected Subgradient Methods. The nuclear norm minimization (3.1) is a
linearly constrained nondifferentiable convex problem. There are numerous techniques
to approach this kind of problem depending on the specific nature of the constraints
(e.g., dense vs. sparse) and the possibility of using first- or second-order informa-
tion. In this section we describe a family of simple, easy-to-implement, subgradient
projection methods to solve (3.1).

The standard Euclidean projected subgradient method computes a sequence of
feasible points {Xk}, with iterates satisfying the update rule

Xk+1 = Π(Xk − skYk), Yk ∈ ∂‖Xk‖∗,
where Π is the orthogonal projection onto the affine subspace defined by the linear
constraints A(X) = b and sk > 0 is a stepsize parameter. In other words, the method
updates the current iterate Xk by taking a step along the direction of a subgradient
at the current point and then projecting back onto the feasible set. Alternatively,
since Xk is feasible, we can rewrite this as

Xk+1 = Xk − skΠAYk,

where ΠA is the orthogonal projection onto the kernel of A. Since the feasible set
is an affine subspace, there are several options for the projection ΠA. For small
problems, one can precompute it using, for example, a QR decomposition of the
matrix representation of A and store it. Alternatively, one can solve a least squares
problem at each step by iterative methods such as conjugate gradients.

The subgradient-based method described above is extremely simple to implement,
since only a subgradient evaluation is required at every step. The computation of the
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subgradient can be done using the formula given in (2.9), thus requiring only an SVD
of the current point Xk.

A possible alternative to the computation of the SVD for the subgradient compu-
tation is to directly focus on the “angular” factor of the polar decomposition of Xk,
using, for instance, the Newton-like methods developed by Gander in [41]. Specifically,
for a given matrix Xk, the Halley-like iteration

X → X(X ′X + 3I)(3X ′X + I)−1

converges globally and quadratically to the polar factor of X , and thus yields an
element of the subdifferential of the nuclear norm. This iterative method (suitably
scaled) can be faster than a direct SVD computation, particularly if the singular values
of the initial matrix are close to 1. This could be appealing since presumably only a
very small number of iterations would be needed to update the polar factor of Xk,
although the nonsmoothness of the subdifferential is bound to cause some additional
difficulties.

Regarding convergence, for general nonsmooth problems, subgradient methods do
not guarantee a decrease of the cost function at every iteration, even for arbitrarily
small step sizes (see, e.g., [8, section 6.3.1]), unless the minimum-norm subgradient
is used. Instead, convergence is usually shown through the decrease (for small step-
size) of the distance from the iterates Xk to any optimal point. There are several
possibilities for the choice of stepsize sk. The simplest choice that can guarantee con-
vergence is to use a diminishing stepsize with an infinite travel condition (i.e., such
that limk→∞ sk = 0 and

∑
k>0 sk diverges).

More recently, several nonlinear projected subgradient methods, under the rubric
of mirror descent, have been developed (e.g., by Nemirovski and Yudin [57]), followed
by a subsequent rederivation and analysis by Beck and Teboulle [5]. These algorithms,
and their accompanying analysis, provide improved theoretical guarantees and practi-
cal performance over the standard Euclidean projected subgradient method described
above. It would be of great interest to analyze to what extent these methods can be
applied to the nuclear norm minimization problem.

In many scenarios, even the computation of an SVD or a Halley-like iteration
can be too computationally expensive. The next section proposes a reduction of the
size of the search space to alleviate such demands. We must give up guarantees of
convergence for such convenience, but this may be an acceptable trade-off for very
large-scale problems.

5.3. Low-Rank Parametrization. We now turn to a method that works with an
explicit low-rank factorization of X . This algorithm not only requires less storage
capacity and computational overhead than the previous methods, but for many prob-
lems does not even require the ability to store the decision variable X in memory.
This is the case, for example, in the matrix completion problem where A(X) is a
subset of the entries of X .

Given observations of the form A(X) = b of an m × n matrix X of rank r, a
possible algorithm to find a suitable X would be to find a factorization X = LR′,
where L is an m× r matrix and R an n× r matrix, such that the equality constraints
are satisfied. Since there are many possible such factorizations, we could search for
one where the matrices L and R have Frobenius norm as small as possible, i.e., the
solution of the optimization problem

(5.1) minimize 1
2 (‖L‖2F + ‖R‖2F )

subject to A(LR′) = b.
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Even though the cost function is convex, the constraint is not. Such a problem is a
nonconvex quadratic program, and it is not evidently easy to optimize. Surprisingly,
minimization of the nuclear norm subject to equality constraints is in fact equivalent
to this rather natural heuristic optimization, as long as r is chosen to be sufficiently
larger than the rank of the optimum of the nuclear norm problem.

Lemma 5.1. Assume r ≥ rankX0. The nonconvex quadratic optimization prob-
lem (5.1) is equivalent to the minimum nuclear norm relaxation (3.1).

Proof. Consider any feasible solution (L,R) of (5.1). Then, defining W1 := LL′,
W2 := RR′, and X := LR′ yields a feasible solution of the primal SDP problem (2.8)
that achieves the same cost. Since the SDP formulation is equivalent to the nuclear
norm problem, we have that the optimal value of (5.1) is always greater than or equal
to the nuclear norm heuristic.

For the converse, we can use an argument similar to the proof of Proposition 2.1.
From the SVD decomposition X∗ = UΣV ′ of the optimal solution of the nuclear norm
relaxation (3.1), we can explicitly construct matrices L := UΣ

1
2 and R := VΣ

1
2 for

(5.1) that yield exactly the same value of the objective.
The main advantage of this reformulation is to substantially decrease the number

of primal decision variables from nm to (n +m)r. For large problems, this is quite
a significant reduction that allows us to search for matrices of rank smaller than the
order of 100 and with n +m in the hundreds of thousands on a desktop computer.
However, the formulation (5.1) is nonconvex and is thus potentially subject to local
minima that are not globally optimal. This nonconvexity does not pose as much
of a problem as it could, for two reasons. First, recall from Theorem 3.2 that, if
δ2r(A) < 1, there is a unique X∗ with rank at most r such that A(X∗) = b. Since
any local minimum (L∗, R∗) of (5.1) is feasible, then X∗ = L∗R∗′ and we have found
the minimum-rank solution. Second, we now present an algorithm that is guaranteed
to converge to a local minimum for a judiciously selected r. We will also provide a
sufficient condition for when we can construct an optimal solution of (2.8) from the
solution computed by the method of multipliers.

Low-Rank Factorizations and the Method of Multipliers. For general semidef-
inite programming problems, Burer and Monteiro have developed in [10, 11] a non-
linear programming approach that relies on a low-rank factorization of the matrix
decision variable. We will adapt this idea to our problem, to provide a first-order
Lagrangian minimization algorithm that efficiently finds a local minima of (5.1). As
a consequence of the work in [11], it will follow that for values of r larger than the
rank of the true optimal solution, the local minima of (5.1) can be transformed into
global minima of (2.8) under the identification W1 = LL′, W2 = RR′, and Y = LR′

(cf. Lemma 5.1). We summarize below the details of this approach.
The algorithm employed is called the method of multipliers, a standard approach

for solving equality constrained optimization problems [7]. The method of multipliers
works with an augmented Lagrangian for (5.1),

(5.2) La(L,R; y, σ) := 1
2 (‖L‖2F + ‖R‖2F )− y′(A(LR′)− b) + σ

2 ‖A(LR′)− b‖2,
where the yi are arbitrarily signed Lagrange multipliers and σ is a positive constant. A
somewhat similar algorithm was proposed by Rennie and Srebro in [63] for applications
in collaborative filtering. In this work, the authors minimized La with σ fixed and
y = 0 to serve as a regularized algorithm for matrix completion. Remarkably, by
deterministically varying σ and y, this method can be adapted into an algorithm for
solving linearly constrained nuclear norm minimization.
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In the method of multipliers, one alternately minimizes the augmented Lagrangian
with respect to the decision variables L and R, and then increases the value of the
penalty coefficient σ and updates y. The augmented Lagrangian can be minimized
using any local search technique, and the partial derivatives are particularly simple
to compute. Let ŷ := y − σ(A(LR′)− b). Then we have

∇LLa = L−A∗(ŷ)R,
∇RLa = R−A∗(ŷ)′L.

To calculate the gradients, we first compute the constraint violations A(LR′)−b, then
form ŷ, and finally use the above equations to compute the gradients.

As the number of iterations tends to infinity, only feasible points will have finite
values of La and, for any feasible point, La(L,R) is equal to the original cost function
(‖L‖2F + ‖R‖2F )/2. The method terminates when L and R are feasible, as in this case
the Lagrangian is stationary and we are at a local minimum of (5.1). Including the
y multipliers improves the conditioning of each subproblem where La is minimized
and enhances the rate of convergence. The following theorem shows that when the
method of multipliers converges, it converges to a local minimum of (5.1).

Theorem 5.2. Suppose we have a sequence (L(k), R(k), y(k)) of local minima of
the augmented Lagrangian at each step of the method of multipliers. Assume that
our sequence of σ(k) → ∞ and that the sequence of y(k) is bounded. If (L(k), R(k))
converges to (L∗, R∗) and the linear map

(5.3) Λ(k)(y) :=
[ A∗(y)R(k)

A∗(y)′L(k)

]

has kernel equal to the zero vector for all k, then there exists a vector y∗ such that
(i) ∇La(L∗, R∗; y∗) = 0,
(ii) A(L∗R∗′) = b.
Proof. This proof is standard and follows the approach in [7]. As above, we

define ŷ(k) := y(k) − σ(k)(A(L(k)R(k)′)− b) for all k. Since (L(k), R(k)) minimizes the
augmented Lagrangian at iteration k, we have

0 = L(k) −A∗(ŷ(k))R(k),

0 = R(k) −A∗(ŷ(k))′L(k),
(5.4)

which we may rewrite as

(5.5) Λ(k)(ŷ(k)) =
[
L(k)

R(k)

]
.

Since we have assumed that there is no nonzero y with Λ(k)(y) = 0, there exists a left
inverse and we can solve for ŷ(k):

(5.6) ŷ(k) = Λ(k)†
([

L(k)

R(k)

])
.

Everything on the right-hand side is bounded, and L(k) and R(k) converge. Therefore,
we must have that ŷ(k) converges to some ŷ∗. Taking the limit of (5.4) proves (i). To
prove (ii), note that we must have that ŷ(k) is bounded. Since y(k) is also bounded,
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we find that σ(k)(A(L(k)R(k)′) − b) is also bounded. But σ(k) → ∞ implies that
A(L∗R∗′) = b, completing the proof.

Suppose the decision variables are chosen to be of size m × rd and n × rd. A
necessary condition for Λ(k)(y) to be of full rank is for the number of decision variables
rd(m+n) to be greater than the number of equalities p. In particular, this means that
we must choose rd ≥ p/(m+n) in order to have any hope of satisfying the conditions
of Theorem 5.2.

We close this section by relating the solution found by the method of multipliers
to the optimal solution of the nuclear norm minimization problem. We have already
shown that when the low-rank algorithm converges, it converges to a low-rank solu-
tion of A(X) = b. If we additionally find that A∗(y∗) has norm less than or equal
to one, then it is dual feasible. One can check using straightforward algebra that
(L∗R∗′, L∗L∗′, R∗R∗′) and y∗ form an optimal primal-dual pair for (2.8). This anal-
ysis proves the following theorem.

Theorem 5.3. Let (L∗, R∗, y∗) satisfy (i)–(ii) in Theorem 5.2 and suppose
‖A∗(y∗)‖ ≤ 1. Then (L∗R∗′, L∗L∗′, R∗R∗′) is an optimal primal solution and y∗

is an optimal dual solution of (2.8).

6. Numerical Experiments. To illustrate the scaling of low-rank recovery for a
particular matrix M , consider the MIT logo presented in Figure 6.1. The image has
46 rows and 81 columns (3726 elements), with three distinct nonzero numerical values
corresponding to the colors white, red, and gray. Since the logo only has 5 distinct
rows, it has rank 5. For each of the ensembles discussed in section 4, we sampled
constraint matrices with p ranging between 700 and 1500 and solved the semidefinite
program (2.6) using the freely available software SeDuMi [71]. On a 2.0 GHz laptop
computer, each semidefinite program could be solved in less than four minutes. We
chose to use this interior point method because it yielded the highest accuracy in the
shortest amount of time, and we were interested in characterizing precisely when the
nuclear norm heuristic succeeded and failed.

Figure 6.2 plots the Frobenius norm of the difference between the optimal solution
of the semidefinite program and the true image. We observe a sharp transition to
perfect recovery near 1200 constraints, which is approximately equal to 2r(m+n−r).
In Figure 6.3, we display the recovered solutions for various values of p, under the
Gaussian ensemble.

To demonstrate the average behavior of low-rank recovery, we conducted a series
of experiments for a variety of the matrix size n, rank r, and number of constraints p.
For a fixed n, we constructed random recovery scenarios for low-rank n× n matrices.

Fig. 6.1 MIT logo test image. The associated matrix has dimensions 46× 81 and rank 5.
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Fig. 6.2 Error, as measured by the Frobenius norm, between the recovered image and the ground
truth, for different random ensembles. Observe that there is a sharp transition to near zero
error at around 1200 constraints.

(a) (b) (c)

Fig. 6.3 Example of recovered images using the Gaussian ensemble. (a) 700 constraints. (b) 1100
constraints. (c) 1250 constraints. The total number of pixels is 46× 81 = 3726. Note that
the error is plotted on a logarithmic scale.

For each n, we varied p between 0 and n2, where the matrix is completely determined.
For a fixed n and p, we generated all possible ranks such that r(2n − r) ≤ p. This
cutoff was chosen because beyond that point there would be an infinite set of matrices
of rank r satisfying the p equations.

For each (n, p, r) triple, we repeated the following procedure 100 times. A matrix
of rank r was generated by choosing two random n× r factors YL and YR with i.i.d.
random entries and setting Y0 = YLY

′
R. A matrix A was sampled from the Gaussian

ensemble with p rows and n2 columns. Then the nuclear norm minimization problem

(6.1) minimize ‖X‖∗
subject to A vec(X) = A vec(Y0)

was solved using the SDP solver SeDuMi on the formulation (2.6). Again, we chose to
use SeDuMi because we wanted to distinguish precisely between success and failure of
the heuristic. We declared Y0 to be recovered if ‖X−Y0‖F/‖Y0‖F < 10−3. Figure 6.4
shows the results of these experiments for n = 30 and 40. The color of the cell in the
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Fig. 6.4 For each (n, p, r) triple, we repeated the procedure in the text 100 times. The results are
shown for (a) n = 30 and (b) n = 40. The color of each cell reflects the empirical recovery
rate (scaled between 0 and 1). White denotes perfect recovery in all experiments, and black
denotes failure for all experiments.

figures reflects the empirical recovery rate of the 100 runs (scaled between 0 and 1).
White denotes perfect recovery in all experiments, and black denotes failure for all
experiments.

These experiments demonstrate that the logarithmic factors and constants present
in our scaling results are somewhat conservative. For example, as one might expect,
low-rank matrices are perfectly recovered by nuclear norm minimization when p = n2

as the matrix is uniquely determined. Moreover, as p is reduced slightly away from
this value, low-rank matrices are still recovered 100 percent of the time for most
values of r. Finally, we note that despite the asymptotic nature of our analysis, our
experiments demonstrate excellent performance with low-rank matrices of sizes 30×30
and 40× 40, showing that the heuristic is practical even in low-dimensional settings.

Intriguingly, Figure 6.4 also demonstrates a “phase transition” between perfect
recovery and failure. As observed in several recent papers by Donoho and collaborators
(see, e.g., [26, 27]), the random sparsity recovery problem has two distinct connected
regions of parameter space: one where the sparsity pattern is perfectly recovered,
and one where no sparse solution is found. Not surprisingly, Figure 6.4 illustrates
an analogous phenomenon in rank recovery. Computing explicit formulas for the
transition between perfect recovery and failure is left for future work.

7. Discussion and Future Developments. Having illustrated the natural con-
nections between affine rank minimization and affine cardinality minimization, we
were able to draw on these parallels to determine scenarios where the nuclear norm
heuristic exactly solves the rank minimization problem. These scenarios directly gen-
eralized conditions for which the �1 heuristic succeeds and ensembles of linear maps
for which these conditions hold. Furthermore, our experimental results display similar
recovery properties to those demonstrated in the empirical studies of �1 minimization.
Inspired by the success of this program, we close this paper by briefly discussing sev-
eral exciting directions that are natural continuations of this work, building on more
analogies from the compressed sensing literature. We also describe possible extensions
to more general notions of parsimony.

Incoherent Ensembles and Partially Observed Transforms. It would be of
great interest to extend the results of [13] to low-rank recovery. In this work, the
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authors show that partially observed unitary transformations of sparse vectors can
be used to recover the sparse vector using �1 minimization. There are many prac-
tical applications where low-rank processes are partially observed or measured. For
instance, the matrix completion problem can be thought of as partial observations
under the identity transformation. As another example, there are many cases in two-
dimensional Fourier spectroscopy where only partial information can be observed or
measured due to experimental constraints.

Noisy Measurements and Low-Rank Approximation. Our results in this paper
address only the case of exact (noiseless) measurements or observations. It is of natural
interest to understand the behavior of the nuclear norm heuristic in the case of noisy
data. Based on the existing results for the sparse case (e.g., [14]), it would be natural
to expect similar stability properties of the recovered solution, for instance, in terms
of the �2 norm of the computed solution. Such an analysis could also be used to study
the nuclear norm heuristic as an approximation technique where a matrix has rapidly
decaying singular values and a low-rank approximation is desired.

Factored Measurements and Alternative Ensembles. All of the measurement
ensembles considered require the storage of O(mnp) numbers. For large problems this
is wholly impractical. There are many promising alternative measurement ensembles
that seem to obey the same scaling laws as those presented in section 4. For example,
“factored” measurements, of the form Ai : X !→ uT

i Xvi, where ui, vi are Gaussian
random vectors, empirically yield the same performance as the Gaussian ensemble.
This factored ensemble only requires storage of O((m + n)p) numbers, which is a
rather significant saving for very large problems. The proof in section 4 does not
seem to extend to this ensemble, thus new machinery must be developed to guarantee
properties of such low-rank measurements.

Alternative Numerical Methods. Besides the techniques described in section 5,
there are a number of interesting additional possibilities for solving the nuclear norm
minimization problem. An appealing suggestion is to combine the strength of second-
order methods (as in the standard interior point approach) with the known geometry
of the nuclear norm (as in the subgradient approach), and develop a customized inte-
rior point method, possibly yielding faster convergence rates while still being relatively
memory-efficient.

It is also of much interest to investigate the possible adaptation of some of the
successful path-following approaches in traditional �1/cardinality minimization, such
as the Homotopy [59] or LARS (least angle regression) [29]. This may be not be
completely straightforward, since the efficiency of many of these methods often relies
explicitly on the polyhedral structure of the feasible set of the �1 norm problem.

Searching for Lower-Rank Solutions via Iterative Methods. Often, in the ab-
sence of an RIP condition, the nuclear norm heuristic does not return a sufficiently
low rank solution. A variety of algorithms have been proposed to attempt to further
reduce the rank below the value returned by nuclear norm minimization. Fazel et al.
proposed an heuristic that employs the logarithm of the determinant as a smooth
approximation for rank and locally optimized this function to obtain a sequence of
SDP problems [37, 39]. The initial iteration is equivalent to (2.8), and the method
often provides sparser solutions than the nuclear norm heuristic in practice. This al-
gorithm has been adapted to cardinality minimization, resulting in iterative weighted
�1 norm minimization, and has been successful in this setting as well [50, 17]. An-
other heuristic involves �p minimization (locally) with p < 1 [18]. These algorithms
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do not currently have any theoretical guarantees, and it bears investigation if the
probabilistic analysis developed in this paper can be applied to determine when these
iterative algorithms can find low-rank solutions beyond the guarantees derived for
nuclear norm minimization.

Geometric Interpretations. For the case of cardinality/�1 minimization, a beau-
tiful geometric interpretation has been set forth by Donoho and Tanner [26, 27]. Key
to their results is the notion of central k-neighborliness of a centrosymmetric polytope,
namely, the property that every subset of k + 1 vertices not including an antipodal
pair spans a k-face. In particular, they show that the �1 heuristic always succeeds
whenever the image of the �1 unit ball (the cross-polytope) under the linear mapping
A is a centrally k-neighborly polytope.

In the case of rank minimization, the direct application of these concepts fails,
since the unit ball of the nuclear norm is not a polyhedral set. Nevertheless, it seems
likely that a similar explanation could be developed, in which the key feature would
be the preservation under a linear map of the extremality of the components of the
boundary of the nuclear norm unit ball defined by low-rank conditions.

Jordan Algebras. As we have seen, our results for the rank minimization problem
closely parallel earlier developments in cardinality minimization. A convenient math-
ematical framework that allows the simultaneous consideration of these cases, as well
as a few new ones, is that of Jordan algebras and the related symmetric cones [33].
In the Jordan-algebraic setting, there is an intrinsic notion of rank that agrees with
the cardinality of the support in the case of the nonnegative orthant or the rank of a
matrix in the case of the positive semidefinite cone. Besides mathematical elegance,
a direct Jordan-algebraic approach would transparently yield similar results for the
case of second-order (or Lorentz) cone constraints.

As specific examples of the power and elegance of this approach, we mention
the work of Faybusovich [35] and Schmieta and Alizadeh [66] that provides a unified
development of interior point methods for symmetric cones, as well as Faybusovich’s
work on convexity theorems for quadratic mappings [36].

Parsimonious Models and Optimization. Sparsity and low rank are two spe-
cific classes of parsimonious (or low-complexity) descriptions. Are there other kinds
of easy-to-describe parametric models that are amenable to exact solutions via convex
optimizations techniques? Given the intimate connections between linear program-
ming and SDP and the Jordan algebraic approaches described earlier, it is likely that
this will require alternative tractable convex optimization formulations.
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