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Final Report on Continued Development of the QUANDRY Code

I. Introduction

This report is a summary of the continued development and testing

of the nodal code QUANDRY as applied to the analysis of detailed power

distributions throughout the lifetime of light water moderated power

reactors. The project has been supported by four utilities, Consolidated

Edison Co., Northeast Utilities Services Co., Pacific Gas and Electric Co.,

and Public Service Electric and Gas Research Corp. The duration of the

project was originally to be from September 1982 to September 1983.

However, in order to provide continued support for students during the

1983 Fall term and to get into phase with utility budgeting schedules,

charges for faculty supervision were reduced and a no-cost extension for

the period October 1983 through December 1983 was requested and agreed

to.

The general goal of the work carried out has been to develop and

test a method for predicting detailed power history throughout the lifetime

of a light water moderated power reactor. We have based the scheme on

the two-group nodal code QUANDRY, and the present work has been con-

cerned with testing and refining that code so that it can be used to predict

accurate values for local fuel-pin power throughout reactor lifetime in a

straightforward, economical manner. The study has been concerned

with three tasks:

1. Testing in three dimensions.

2. Reconstruction of detailed flux shapes for three-dimensional

nodes.

3. The determination of albedoe boundary conditions.
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The completion of these tasks has led us to the conclusion that a

production code embodying the QUANDRY scheme would be more

accurate, more reliable, easier to run, and ultimately cheaper than the

present nodal methods used by utilities.

II. Review of the Theory

Before presenting any results it will be helpful to review the theory,

that underlies QUANDRY.

The basic unknowns in QUANDRY are the two-group volume-

averaged nodal fluxes. Node-face-averaged currents and fluxes also

appear in the basic equations. For the ideal case of reactors composed

of nuclearly homogeneous nodes, QUANDRY predicts the node-averaged

fluxes very accurately (maximum error ~ 2% for nodes 20 cm on a side).

However, real LWR's are not nuclearly homogeneous, and the problem of

finding "homogenized" cross sections that will reproduce the correct

node-integrated reactor rates is a severe one. In fact, it can be shown

that, if the conventional diffusion theory group-parameters and continuity

conditions are employed, there is no set of homogenized cross sections

that will reproduce reference results. QUANDRY circumvents this

difficulty by permitting the face-averaged fluxes to be discontinuous

across nodal interfaces. To accomplish this we have introduced

"discontinuity factors" into QUANDRY. If correct values of these factors

are provided, QUANDRY will reproduce exactly the nodal reaction rates

of the standard model. The discontinuity factors are defined as the ratio

of the true face-averaged group-flux for the node in the heterogeneous

reactor to its value predicted by the basic nodal equations (the so-called

"nodal coupling equations") when node-averaged group parameters and

exact values of node-averaged fluxes, reaction rates, and leakages are
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used in those equations. It follows that, if correct discontinuity factors

are used, the node-averaged fluxes, reaction rates, and the eigenvalue

predicted by QUANDRY will be exact. Moreover, it is then possible to

regenerate exactly face-averaged fluxes for the heterogeneous nodes

making up the reactor. These latter quantities can be used to obtain

approximate values of node corner-point fluxes by an interpolation

method. Knowledge of face-averaged and corner-point fluxes then

permits reconstruction of detailed flux shapes throughout a heterogeneous

node.

Determination of "exact" discontinuity factors requires knowing the

"exact" solution. Thus, in practice we must approximate. A basic

ground rule which we have imposed on our approximate procedures for

finding discontinuity factors and homogenized group parameters is to avoid

quarter-core solutions and to obtain fine-mesh solutions with reactor

heterogeneities represented explicitly only for regions the size of a single

assembly, or, at most, a cluster of several assemblies. In addition, as

is customary, we perform such calculations for only two-dimensional

slices of an assembly. Since, for a given average temperature and

density, the number of such slices that differ from one another at the

beginning of life is significantly smaller than the number of assemblies in

a quarter of the reactor, computing costs are reduced over what they

would be if fine-mesh calculations for full quarter-cores were performed

to obtain homogenized parameters.

Ordinarily this computational advantage would be lost as fuel

depletion takes place since, because of differing flux gradients, the same

type fuel assemblies in different core locations will deplete in different

ways. However, for our test cases, we have been able to account for
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such differences while still performing assembly depletions based on

zero-net-current boundary conditions. If further testing shows this

procedure to be generally valid, the computational advantage will persist

throughout reactor lifetime.

The approximate methods which we have developed for determining

discontinuity factors and for reconstructing fuel pin powers have been

described in our progress report for the period September 1982 to April

1983. Rather than repeat this material we shall instead summarize an

overall QUANDRY approach (yet to be implemented in a production

program) for analysing criticality, nodal and pin power distributions

throughout LWR lifetimes. The method involves several steps:

(1) Run LEOPARD, CASMO, EPRI-CELL, CPM, or some equivalent,

in the usual way to determine cross sections for all the heterogeneous

zones making up a fuel assembly.

(2) Use these parameters to run two-group, 2D, heterogeneous,

PDQ depletion problems based on zero-current boundary conditions for

assemblies or color sets. Edit input for the usual HARMONY tables from

these results, but also edit face-averaged currents and fluxes across the

surfaces of the QUANDRY nodes that make up these regions (4 nodes per

assembly for PWR's, 1 node per assembly for BWR's) and from these

quantities determine discontinuity factors (to be added to the HARMONY

tables). Also store the detailed fluxes from the assembly depletions.

3. Run 3D QUANDRY depletion problems using depletion dependent

homogenized nodal cross sections and radial discontinuity factors from

the HARMONY tables. These problems may be run either with reflector

regions represented explicitly or by use of albedoe boundary conditions

(see section VI ). Section.IV describes how the axial discontinuity
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factors (when they are not unity) can be found internal to QUANDRY.

4. If it is desired to reconstruct fuel pin powers, then node-

corner-point fluxes and average fluxes on line-segments between corner-

points must be interpolated from the QUANDRY output (see section V).

The actual reconstruction need only be carried out for the nodes of

interest (usually high power nodes). For PWR's, fine-mesh assembly

or color set flux shapes modulated by bi-quadratic "form functions"

appear to yield hot fuel pin powers which match detailed quarter-core

PDQ results throughout life to within a few percent. To achieve compar-

able accuracy for BWR's requires that the QUANDRY output be used in

conjunction with response matrices or that it be applied to specify the

boundary conditions for a fine mesh reconstruction involving the assembly

for which the pin powers are desired and (at least some of) its nearest

neighbors. The September 1982 to April 1983 progress report describes

these procedures in more detail.

It should be noted that the QUANDRY approach requires that fine-

mesh calculations be performed only for assemblies or color sets. No

quarter core PDQ's are needed. On the other hand, if quarter core

PDQ's are available, they can be used to edit discontinuity factors which

when used in QUANDRY will reproduce exactly the PDQ node-integrated

reaction rates.

III. Testing in Three Dimensions

Although QUANDRY has been applied with impressive accuracy to

three-dimensional problems with homogeneous nodes, its accuracy for

three-dimensional LWR problems with both radial and axial heterogen-

eities had not previously been tested. The most direct method of solving

problems with axial heterogeneities is to choose the z-direction node

~ _
.. . ... .. . i l liill IIU Yii YiIY I lu liilill Wi i Wind id 11 111INi W1i i i
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boundaries to coincide with material discontinuities. In this manner,

each node is relatively homogeneous in the axial direction and,

consequently, homogenization procedures may only be required in two

dimensions (although possibly corrected for axial leakage effects). It is

clearly desirable to avoid the performance of three-dimensional assembly

calculations to generate nodal parameters.

Unfortunately, two-dimensional assembly shapes provide no

systematic way of estimating the surface flux discontinuity factors at node

boundaries in the z-direction. Hopefully, the choice of axial mesh

boundaries at material discontinuities makes the assumption of homogen-.

ized flux continuity at these boundaries a good approximation. Accord-

ingly we have undertaken to test the QUANDRY nodal procedure with unity

discontinuity factors at axial node boundaries.

The results of doing this for two small 3D problems, representative

of inner portions of a PWR and a BWR, were presented in the September-

April progress report. We shall merely summarize them here.

The PWR benchmark problem was designated CC3. A layout is

shown on Fig. 1. The assemblies used (rodded or unrodded) are shown

on Fig. 2. Two fuel enrichments (1 and 2) are present and one of the

assemblies contains a partially inserted control rod (shaded area in

Fig. 1, composed of 16 shaded regions - not the central one - of Fig. 2).

The other assemblies (non-fuel composition - 3) contain 17 water holes.

The flux boundary conditions are as indicated.

A 3D PDQ reference for this problem was provided by Northeast

Utilities. Table 1 shows errors in nodal power as compared with this

reference. All axial discontinuity factors were taken as unity and radial

discontinuity factors were taken as either unity (UDF) or as those provided
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Fig. 1 Horizontal and vertical sections of the CC3 PWR benchmark problem.
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Table 1: Nodal Pcwer Results for the Three-Dimensional CC3 Problem

Quarter Reference % Error % Error Quarter Reference % Error % Error
Assembly Elevation Relative ADF UDF Assembly Elevation Relative ADF UDF

Power Power
(i,j) (k) (i,j) (k)

0.3189 -0.35 -2.57 2,4 6 0.2614 -2.33 0.77
1,4 6t) 0.6458 -0.50 -2.59 5 0.5250 -2.64 0.69
4 0.9789 0.00 -1.65 4 0.8271 -2.03 1.31
3 1.2705 0.28 0.51 3 1.5072 0.19 0.39
2 1.1683 0.40 1.n00 2 1.4276 0.31 0.52
1 0.6698 0.51 1.11 1 0.8204 0.27 0.60

1,3 6 0.4547 -0.66 -1.85 2,3 6 0.3514 -0.23 -2.16
5 0.9138 -0.64 -1.70 5 0.7063 -0.32 -2.11
4 1.3372 -0.24 -0.91 4 1.0431 0.09 -1.35
3 1.6108 0.01 0.01 3 1.3040 0.23 0.54
2 1.4425 0.24 0.45 2 1.1784 0.39 0.90
1 0.8235 0.36 0.68 1 0.6723 0.48 1.09

1,2 6 0.5186 -0.42 -1.23 2,2 6 0.4194 -0.22 -0.79
5 1.0342 -0.31 -0.99 5 0.8373 -0.14 -0.56
4 1.4669 -0.13 -0.47 4 1.1901 0.00 -0.09
3 1.6740 U.00 0.00 3 1.3651 0.21 0.51
2 1.4603 0.19 0.46 2 1.1933 0.39 0.90
1 0.8278 0.34 0.66 1 0.6758 0.49 1.10

1,1 6 0.4519 -0.13 -0.53 2,1 6 0.5525 -0.27 -0.97
5 0.8980 -0.03 -0.28 5 1.0965 -0.14 -0.68
4 1.2544 0.05 0.05 4 1.5324 -0.09 -0.35
3 1.3986 0.17 0.46 3 1.7100 0.00 0.06
2 1.2034 0.30 0.80 2 1.4720 0.20 0.41
1 0.6782 0.47 1.09 1 0.8307 0.33 0.65

__ ___ _. ___ ____~_ ~ii_ _~___C~_ __
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by a 2D fine-mesh calculation run for the assembly with zero-current

boundary conditions imposed (ADF). The ADF results are superior

everywhere except in the rodded portion. This result is consistent with

previous 2D results, which show that color set determinations of discon-

tinuity factors are superior to assembly calculations for rodded nodes.

In any event the use of unity factors for the axial direction seems satis-

factory.

The BWR benchmark problem (TRD) is shown on Fig. 3, the

assembly geometry and assumed void distribution being shown on Figs. 4

and 5. Nodal powers (as edited from a fine-mesh, 3D, PDQ calculation

provided by Northeast Utilities) and QUANDRY errors arising from the

use of UDF's and ADF's are given by Table 2. Unity axial discontinuity

factors were used in both cases.

Again the ADF's provide superior results except in the rodded

nodes and adjacent to the top reflector. Since 2D results have shown

this same behavior, we conclude again that the use of unity discontinuity

factors for the axial direction is a legitimate approximation.

Both the CC3 and TRD benchmarks involve reflecting boundary

conditions in the radial plane. In order to determine whether the presence

of a radial reflector invalidates the use of unity discontinuity factors for

axial interfaces, we have analysed a small 3D benchmark problem which

incorporates features of a PWR. The geometric characteristics of this

benchmark (called the EPRI-9-3D problem) are shown on Fig. 6. The

assemblies making up the reactor are of two enrichments (F-1 and F-2)

and are geometrically those shown on Fig. 2. The sixteen control rod

fingers (the shaded areas of Fig. 2, excluding the central one) are

present in the shaded regions of Fig. 6.
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-2.82% -0.69%
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0.7636 0.88% -0.90%

0.5150 -0.33% -2.39%

•** ago:* I**at* a**a

0.7442 -4.94% -0.20%

1.1580 -3.37% 1.21%

1.2110 -3.63% 0.50%

1.3230 -1.81% 1.21%

1.3340 1.35% 0.97%

1.0270 0.68% -0.88%

0.7489 1.39% -0.41%

0.5157 -0.48% -2.48%

0.8665

1.3380

1.3570

1.4320

1.3710

"1.0300

0.7507

0.5168

-2.90% -0.54%

-1.27% 0.82%

-1.77% -0.07%

-0.42% 0.35%

1.02% 0.80%

0.29% -0.87%

1.15% -0.55%

-0.62% -2.55%

* 0.3872

* 0.6090

* 0.7984

* 1.0070

- 1.4490

a 1.1600

a 0.7637

S0.5147

*****ew**

* 0.6968

a 1.0880

* 1.1500
*

* 1.2760

a 1.3110

a 1.0210

a 0.7473

a 0.5152

* 0.8412

* 1.3010

8-1.3250

a 1.4070

* 1.3560

a 1.0240

* 0.7486

a 0.5161

4.34% -2.32%

4.93% -2.30%

6.83% -0.90%

9.83% 2.98%

4.90% 2.35%

2.24% 0.69%

1.11% -0.79%

-0.25% -2.35%

-5.17% 0.01%

-3.58% 1.47%

-4.00% 0.70%

-1.96% 1.49%

1.53% 0.99%-

1.18% -0.78%

1.54% -0.36%

-0.43% -2.47%

-2.92% -0.36%

-2.84% 1.08%

-1.74% 0.08%

-0.43% 0.50%

1.11% 0.88%

0.39% -0.78%

1.23% -0.49%

-0.56% -2.54%

th
PLn is the th 15cm plane grouping. n=l1 corresponds to the bottom
fueled slice of the core.

Table 2: Errors in Nodal Powers for the TRD-BWR Benchmark.
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We have already mentioned that, for rodded nodes, radial discon-

tinuity factors based on 2D fine-mesh assembly calculations with zero-

current boundary conditions lead to errors in nodal power of several

percent. Figures 7, 8 and 9 illustrate this situation. Figure 7 shows

comparisons of QUANDRY and PDQ for the 2D unrodded slice of the

EPRI-9-3D problem. All homogenized group cross sections and discon-

tinuity factors for the fuel nodes (4 nodes per assembly) were computed

from assembly calculations (indicated by "A" on the lower figure). Color

set calculations involving quarter assembly nodes and neighboring baffle-.

reflector nodes were used to determine homogenized cross sections and

discontinuity factors for the nodes on the reflector side of the core-baffle

interface (indicated by "C3" on the lower figure). The errors in nodal

power are quite acceptable (< 0. 5%).

Figure 8 shows the results when the same procedure is applied to a

rodded radial slice of the 3D benchmark. The error of 2. 45% in power

for the rodded node is probably acceptable, but it is much greater than

that in the unrodded nodes.

Figure 9 illustrates what happens if color set calculations are used

to determine homogenized cross sections and discontinuity factors for the

rodded slice. Errors in nodal power predictions as compared with PDQ

are again < 0. 5%. Accordingly, in order to obscure as little as possible!

errors due to use of unity-valued axial discontinuity factors,we have used

for the 3D analysis radial parameters based on color set calculations for

the rodded nodes.

On Fig. 10 the 3D QUANDRY predictions of nodal power are com-

pared with those edited from a two-group, fine-mesh (" 130, 000 mesh

point) PDQ, run for us by Northeast Utilities. The comparison is very
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Fig. 8 EPRI-9 Problem - 2D - (60 x 60 PDQ) with Control Rod.
(8 x 8 QUANDRY)
(Color Sets obtained with 1.4 cm mesh int.)
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Fig. 9 EPRI-9 Problem - 2D - (60 x 60 PDQ Reference Solution)
(8 x 8 QUANDRY)
(Color Sets obtained with 1. 4 cm mesh int.)

Btl r3.'*11 -
0 - '1 0/0

9

0.IS6 \3

6 .15 Oo

-o. 0 % -o.IO/o

1-. 249 s
I.6$211-

-02q*

RELATIVE

(a) PDQ
(b) QUAND
(c) % Diffe:

XPDQ

AX

= 0.896628

= 0.8962065

= 0.047%

POWER DENSITY

RY

rence

C4 Igo\ )AV 1,,
w CA~ILtC4 IJell'

(b)

Ic)

A.CS -
CS ago

-- - -" -"'~" ~ ~ -~W1 16 ii

C L-o t et p "
vr-



-20-

Fig. 10 EPRI-9 Problem - 3D - (61 x 61 x 35 PDQ)Relative Power Density
(8 x 8 QUANDRY)
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encouraging. The difference in eigenvalue is 0. 031%, and the maximum

difference in nodal powers is 0. 71%.

These differences are less than those which occur if the PDQ mesh

size in the radial plane is cut in half. This fact is illustrated in Fig. 11

which shows the 2D PDQ and QUANDRY results for the rodded plane when

the radial mesh interval is taken to be 0. 7 cm rather than the 1. 4 cm

used (for both PDQ and assembly-color-set calculations) to produce

Figs. 7 to 10. Comparing the quarter-core PDQ results given in Figs.

9 and 11 shows that the difference in eigenvalue (due to mesh size alone)

is 0. 075%, and the corresponding maximum difference in nodal power is

4. 6%. Presumably, roughly the same difference would be observed if a

finer mesh 3D PDQ were run. However, Northeast Utilities could not

get this larger problem (~ 500, 000 mesh points) to run on their IBM 3033

computer.

At present the preparation of the QUANDRY input must be done by

hand; thus the manpower requirements to obtain the QUANDRY solution

are substantial. Machine CPU time expended is, however, small: about

20 seconds to run the required fine-mesh assembly and color set PDQ's,

another 5 seconds to obtain discontinuity factors from the output and

8 seconds to run the final 3D QUANDRY solution. The CPU time for the

PDQ was - 97 minutes. (All times are on an IBM 3033.)

IV. The Treatment of Partially Rodded Nodes

The test cases described in the previous section suggest that use of

unity-valued discontinuity factors in the axial direction yields acceptably

accurate results, provided there is a nodal interface at any location where

there is a significant change in assembly characteristics, for example at

the tip of a control rod. If a control rod is partially inserted in a node,

-- -- 111,
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Fig. 11 EPRI-9 - 2D - (120 x 120 PDQ) with Control Rod
Relative Power Density
(8 x 8 QUANDRY)
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Shadowed area indicates where the control rod is inserted.

AXS and ADF have been obtained through color set calculations
for nodes near the baffle and neighboring the control rod.
Assembly calculations have been performed for the other inner
nodes.
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the radially homogenized cross sections for that node will change in a

step fashion at the axial location of the tip of the rod, and it is quite

unlikely that unity discontinuity factors at the axial faces of the node and

simple volume weighted cross sections in its interior will lead to

accurate predictions of reactivity and nodal power distribution.

It is of course possible to circumvent this difficulty by requiring

that there be a nodal interface plane positioned at every control rod tip.

But if one is dealing with part-length or stuck rods or is performing a

search for the control rod bank position corresponding to the critical

condition, this procedure can become complicated - particularly if power-

dependent feedback effects (due to Xe, Sm, thermal-hydraulics, etc.) are

being accounted for. For reactor transients during which control rods

are moving, complications become even more severe. Thus there is

considerable motivation for locating axial nodal interfaces at fixed planes

and dealing with the intra-node axial discontinuities associated with

partially inserted control rods by using some combination of non-unity

axial discontinuity factors and/or axially flux weighted homogenized cross

sections.

The September-April progress report showed that the use of discon-

tinuity factors can get rid of the control rod cusping problem in QUANDRY

computations. The possibility of making use of tabulation-interpolation

methods was examined. However, the results of the investigation showed

that these methods are problem-dependent, require complete global

calculations, and demand considerable machine memory space - all

unattractive features.

Since that time we have found a simple systematic, problem-

independent way to solve the cusping problem in QUANDRY using data

I
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internal to the code. Results obtained using the new method have been

compared with those of both the volume-weighted-cross section approxi-

mation method and the quadratic axial flux shape approximation currently

programmed into QUANDRY. In view of the results described in the

previous section, radially homogenized cross sections and discontinuity

factors were assumed to have been found already, and reference solutions

were finer mesh QUANDRY solutions.

For estimation of correct homogenized cross sections (XS) and

axial discontinuity factors (DF) of a partially rodded node (PRN), an

axial flux reconstruction method has been introduced. The purpose of

the flux reconstruction is to predict (in a step called "Predictor") the axial

flux shape within a PRN of the system of interest using information already

available from the same system and collected in another step called

"Collector". If predicted correctly, the XS and DF of a PRN thus obtained

will yield the correct reactor solution for both static and transient

situations.

Actually two such methods have been examined. The first is

relatively simple but, for some situations, somewhat inaccurate. The

second is more complicated but is capable of performing more accurate

predictions adequate for transient calculations.

Method 1

This method makes use of the nodal flux shape information implicit

in the QUANDRY solution for the case of the control rod tip positioned

exactly at an axial nodal interface. Two adjacent nodes, one fully

rodded (r) and the other completely unrodded (u) (see Fig. 12(A) are

solved for the one-dimensional axial flux shapes within them, with

boundary currents on the axial faces and transverse leakages known from
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the global QUANDRY solution. Transverse leakage terms can be approxi-

mated as quadratic in shape. Then the axial flux shapes for the two nodes

are displaced (see Fig. 12(A)) to construct an approximate flux shape within

the partially rodded node (PRN). With this new flux shape, one can calculate

FWC. These homogenized cross sections and the surface currents at the

axial faces of the PRN region (lower portion of Fig. 12(A)) can be used to

calculate hom, surface Thus the discontinuity factors f for the PRN

can be found.

In addition to homogenized cross sections and axial discontinuity

factors for the PRN, one needs to know radial discontinuity factors.

Fortunately, without any supplemental calculation, the radial DF's can be

estimated by making use of the volume-averaged fluxes r, PRN and
u PRNC)

(huPRN for the two regions of a PRN (A' and B' in Fig. 12). Derivation of
(h) +

this approximation is sketched on Fig. 13 for the surface x . Many test

results have shown that this approximation is acceptable (accuracy greater

than 99. 0% for most radial D. F. estimations of a PRN).

The basic assumption of this first method is that the axial flux

shapes around the control rod tip do not vary significantly when the control

rod travels the distance of one axial node.

Method 2

To improve Method 1, we make use of the flux shape already

constructed for a previous partially rodded condition. Thus the shape

between the dotted lines in the upper portion of Fig. 12(B) is translated

and assumed to be valid in the lower PRN region. Thus we solve

(analytically) a one-dimensional, three-region problem for axial flux

shapes throughout regions U, A, and B. Then we edit out the axial flux

shape appropriate to the altered control rod tip position (lower portion of
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Fig. 12(B)). For a displacement shorter than the axial node size, this

second method will predict more accurate homogenization parameters than

Method 1. It is particularly useful for transient rod withdrawal problems.

The Collector-Predictor methods, along with the conventional

volume weighted cross section (VWC) and quadratic axial flux approxima-

tion methods were tested and the results were compared for the CC3-PWR

and TRD-BWR bench mark problems described in section III of this report.

However, to avoid the errors discussed earlier arising from use of

isolated assembly calculations to compute radially homogenized cross

sections and discontinuity factors, two-dimensional calculations for full

planes were done to obtain the radial AXS and DF's for nodes in different

kinds of planes. Thus, errors due to the use of AXS and ADF from single,

isolated assembly calculations were not present in the test problems.

For the CC3-PWR model (see Fig. 1 ) static tests were performed

for the tip of the control rod located at 11 positions ranging from the 85 cm

to the 138 cm axial location (see Fig. 1 ). As mentioned above, radially

homogenized nodal cross sections and discontinuity factors were found

from full planar, fine-mesh calculations with all water hole and control rod

heterogeneities represented explicitly. Three-dimensional QUANDRY

problems making use of the resultant AXS's and DF's, and with an extra

axial plane inserted at the location of the tip of the control rod in the PRN,

were taken as numerical standards (unity valued axial discontinuity factors

were assumed for these standard calculations). Eigenvalues and power

distributions as computed by Method 1 and by the conventional volume

weighted cross section method (VWC-axial discontinuity factors unity and
v V

PRN homogenized cross sections given by "P RN Vr r + u u
v +v v +vr u r U

were compared with these numerical standards. Results are displayed in
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Table 3 and Fig. 14. Clearly Method 1 is far superior to the VWC

scheme. The rod cusping effect can be seen to be present for the VWC

results but absent when Method 1 is used. The same CC3-PWR model

was used for transient tests. The control rod was withdrawn for 0. 1 sec

from the 100 cm to the 120 cm position. The withdrawal was accomplished

in ten time steps. The results are shown in Table 4 and Figs. 15 and 16.

The predictions of both Method 1 and Method 2, along with VWC and the

quadratic axial flux method programmed into QUANDRY (axial f's = 1;

axial flux shape in the PRN a quadratic fit to the average flux levels in that

node and its two axial neighbors), were compared with the standard, which

used unity axial discontinuity factors but had a sufficient number of axial

planes that the control rod tip was on an axial plane at each time step.

The results show that both Methods 1 and 2 are much more accurate

than the VWC or quadratic axial flux schemes. Since the cost is only

marginally greater, Method 2 (the most accurate) is favored.

A similar study was performed for the TRD-BWR model specified

by Figs. 3 to 5. Static results for the rod fixed at various locations

in an internal axial node and in an axial node next to the reflector are

displayed in Figs. 17 and 18. Table 5 provides the numerical data. The

acceptability of Method 1 as well as its superiority to the convensional

VWC method is again demonstrated.

Figures 19 and 20 display the results of a rod withdrawal transient

for the TRD-BWR. The withdrawal rate from the initial critical position

was taken to be 300 cm/sec, and the transient was followed for 0.04

seconds. The inadequacy of the VWC model and the remarkable accuracy

of the two new methods - particularly Method 2 - is again evident.

We believe that these results demonstrate that Method 2 provides a

_ _ -'II I1I11Y
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Table 3

Comparison of keff and Max. Nodal Power Error of

CC3-PWR Model (Static Problem)
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Table 4

CC3-PWR Transient Due to C. R. Withdrawal
(Total reactor power in watts, and %o error.)
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Table 5

Comparison of k pf and Max. Nodal Power for Static TRD-BWR Problems

I I Tip Position
Method

77 cm 72. 5 cm 68 cm 27. 5 cm 23 cm

Reference 0.97855 0.98149 0.98437 0.982364 0. 983052
3x3x11

Method 1 0.97853 0.98140 0.98428 0. 982360 0. 983085

3 x 3 x 10 -0. 0023% -0. 0093%0 -0.010% -0. 0004%0 +0. 0034%0

VWC

3 x 3 x 10
0. 97802

-0. 054%0
0. 98053

-0. 097%
0. 98368

-0. 071%
0. 981672

-0. 070%1o
0. 982609

-0. 045%

Method 1 -0.18% -0.53% -0.51%o 0. 55% 0. 91%

Max.3 x 3 x 10

VWC -3. 2% -4. 1%o -3. 0% -5. 5% -4. 0%
3x3x10

keff



iaLbu'

ToP
REFLECTOK

o0. 2
oW v 0, 40 Y

o'v = 0, 4'oX O,910

So.o 15CTTOM

o(V VOD TPlACTIO) OF cooLA T
w* DIlRECMOW OF ROp MOVEMENT

o.176

-. t --.-

RFF~EWC , K3x I
riFTWPL , 3XVX1o
VWWC- , 3xxblo

AP *. - - - M X.
' '

.- ' "-- "-*-"-- "-m " t 0

COaTRo.. 0 AD&E TIP-
POITIONIV (Cm)

Fig. 17 Configuration and Comparisons of keff and Nodal Power Error

for Rod at Various Axial Positions in a Central Node.

121F.

110.

95.l.,s~

so.

O2*.



Itor
IEFLECTOR

. 9qt

. Ifc
J ,= 0., r7 9

S ,-a O., 4D 0

REFLECTOR

o.4979

-- -0--

-- -*-

REZeR-JCE , gA( A3
*TT , 3A 3( 10

VwTC , 3,3910

i

AP
'• "C" IA

\

.- .0

MIN. A*VVL
POWE- eWOR (%)

+LO

ev i/ vop FtACTIoJ OF cooLA T
S= P)IRNECTIOW OF ROP mcVEMEOt

r 5Ac.
CONTROL 1O9DE TIP
POSTIOv ( C-rr)

Fig. 18 Configuration and Comparisons of keff and Nodal Power Error for Rod

at Various Axial Positions in a Node Adjacent to the Bottom Reflector.

4,
da r

140.

/IO.

39.65'.3S& *



TOP

a o 4, 0

1 0. r

VOID FMATPlo, oF coOL ,AT

.-) = DIRECTIO OF RDE MDPVEP)rET.

Fig. 19 Axial Layout and Numerical Results for the TRD-BWR Rod Withdrawal Transient.

EOP aERr-LE V WC E-THoD i MET P 2

PDITIo 3 x 3 - 3X)3XIO 33E10 3 xIxo

6SCii 100. / 10oo. 100. / (oo. W

14. 02 // . 7- /.2##23. 1i-423

72.
- .87% -2o, 7 g ,o. 13 %

______ -/,A.% -o.4 4, -o. d

.394/ .22$ ; .29/I o3 . 3o3

J. ISr 435$. 3 . 666. 6/ -7/. 3/

- 33s -323 d t/ A/

i/O.

~0o

69.

o4J

3$

A0T'T//~



-39-

pp- REFERJECE . 3X3x1if

--- -- METHOD a , 3X3XI0

-.- ,- M o , , 3 3X 10

+-- - VW. , 3x 3Xto

6o0.

I
Power 4L..

3oo. 
,

300. /

.oo.

6.O
& C. i.. s s. 3.

Control Blade Tip Position (cm)
(rod moves 3 cm every 10 ms)

Fig. 20 Total Power vs Control Rod Position During Transient.

f0o.

o0.

- IIIIIYIIWII



-40-

satisfactory resolution of the rod cusping problem for the QUANDRY

code. The scheme can be applied simply and automatically entirely

within the framework of the QUANDRY equations using data already

generated during normal operation of the code. It is cheap to implement and

appears to yield, consistently, very accurate results.

V. Reconstruction of Fine Mesh 3D Flux

Shapes from Nodal Solutions

In the September-April progress report we summarized tests of

methods for reconstructing local fuel pin power from two-dimensional

nodal solutions. The tests were for two-dimensional PWR and BWR

benchmark problems depleted up to the beginning of a third fuel cycle

with fuel shuffling and assembly rotation taking place between cycles.

The basic assumption underlying this reconstruction is that the flux

within a given heterogeneous node or on the nodal surfaces can be

expressed as the product of a biquadratic polynomial (a "form function")

multiplied by a fine-mesh "assembly" flux shape which reflects the

detailed heterogeneous nature of the fuel assembly. For the PWR test

case, assembly shapes using zero-current boundary conditions were

sufficient to give maximum pin power errors of less than 5% for all the

depletion steps. (Maximum error in the "hot" pin was 1. 02%.)

For BWR's this simple approach led to fuel assembly power errors

as great as 5. 19%, and it was necessary to use an iterative response

matrix approach to obtain accurate assembly powers and then an extended

assembly scheme to obtain maximum fuel pin powers of under 5%.

This response matrix approach, while successful, is expensive

(chiefly because of the cost of generating response matrices) and looks

foreboding if extended to three dimensions. However, the PWR scheme
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is relatively straightforward and appears to be acceptably accurate.

Accordingly we have extended it to the 3D-PWR benchmark shown in

Fig. 6.

Determining the quadratic form function from the nodal solution

is necessary for both the PWR and BWR reconstruction procedures.

Both require that corner point flux values be inferred from the nodal

results. In two dimensions the assumption that the form function is

quadratic on the mesh lines connecting corner points along with values

of the average fluxes along these lines found from the nodal solution is

sufficient to determine the corner point values. However, in 3D, the

line-averaged fluxes must themselves be inferred from the nodal

solution. Accordingly, before presenting numerical results we shall

sketch the overall theory of reconstructing detailed flux shapes using the

output of nodal calculations along with fine-mesh fluxes found from zero-

current assembly (or color set) calculations for the heterogeneous node

of interest.

The basic assumption we make in order to perform a 3D fine-mesh

flux reconstruction is that for each group, g, and within any node (i, j, k)

ijk
the reconstructed flux, k (x, y, z), can be expressed as the product of ang

assembly function, O j (x, y), and a triquadratic polynomial function,
g

k (x, Y,z) = (x, y) Pijk (x,y,z) (g= 1,2) (1)
g g g

where

(x, y, z) is a point in node (ijk);

0k (x, y, z) = unknown reconstructed flux;
g

Oj (x, y) = known assembly flux;
g

RUN Wa l l migulmiloollo lmik ImIIY lihiI YIY ili Mm_ =IYYI 1111111111111111 , 111111 1 il , A 111 11111 l I lill IIY oiI m Y iY 1 01111MI1I 1 I il 1



-42-

pijk (x, y, z): tri-quadratic polynomial in x, y, and z
g

with 27 unknown coefficients.

The assembly flux $~ (x,y) is obtained by performing a fine-mesh,
g

2D flux calculation (a PDQ zero-current assembly or color set calculation).

The polynomial function can be written as:

pijk (x,y,z) = l m n (g = 1,2)

P (xz)m n ag; , m,n *y z
1=0 m=0 n=

(2)

Note that separability is not assumed for this function. Thus there

are 27 independent polynomial coefficients.

Once these "a" coefficients are found, and auxiliary color set cal-

culations have been performed, one can compute the flux in any point

within node (ijk). Thus the major problem consists of finding such poly-

nomial coefficients. In order to find the polynomial coefficients it is first

required that the reconstructed flux, (R' when integrated over the nodal

surfaces and the nodal volume, shall reproduce the nodal averaged values,

which are obtained through a 3-D QUANDRY solution.

Thus, so far, we have a system of 27 unknowns (for each group

and node) and a set of 7 equations (6 for the nodal surfaces and 1 for the

node volume). To determine the "a" coefficients we need to find an

additional set of 20 equations. This additional set of equations can be

obtained by forcing the reconstructed flux gijk (x, z) to satisfy the 2-group
Rg

Neutron Diffusion equations about nodal corner points, and by forcing the

reconstructed flux to satisfy, in an integral sense, the 2-group Neutron

Diffusion equations along nodal lines.

Thus we get one independent equation for each nodal corner point

and one independent equation for each nodal line. Since there are 8 nodal
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corner points and 12 nodal lines, the number of balance equations per

node is 20.

Thus we have (per group and node) a system of 27 equations:

7 obtained matching the nodal solution and 20 derived by satisfying the

two-group neutron diffusion equations about corner points and along nodal

lines. We can solve this system for the 27 unknown polynomial

coefficients, and thus reconstruct the flux by using Equation (1).

By rewriting the polynomial function, p, appearing in Equation (2),

and introducing a proper set of known "integral coefficients", which depend

on the node geometry and assembly flux, it is possible to express this

polynomial explicitly in terms of the 8 unknown corner point fluxes and

12 unknown line averaged fluxes, and in terms of the known surface

averaged and volume averaged nodal values.

By doing this, we transform a general tri-quadratic polynomial, P,

with 27 unknown coefficients into an equivalent polynomial, Q, with only

20 unknown coefficients (the surface averaged and volume averaged fluxes

being known from the QUANDRY solution).

The reconstructed flux, expressed in terms of Q, becomes:

k (x, y, z) = 1ij (x,y) - Qijk (x,y,z) (3)
Rg g g

where the coefficients of Qijk are such that jk will reproduce the (still
g Rg

unknown) corner point fluxes, c' and line averaged fluxes, (L as well as

the (known) face averaged and volume averaged nodal fluxes.

The polynomial function Q k is an analytical function and thus

continuous and differentiable within the node. However, the assembly

function 41 is usually obtained by solving the two-group neutron diffusion

equation by a finite difference approach. Thus it is neither continuous

nor differentiable within the node.
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In order to be consistent mathematically, it is convenient to treat

the polynomial function as piecewise flat within mesh cubes, rather than

as an analytical function, and then to solve the two-group finite difference

neutron diffusion equations, rather than the two-group partial differential

equations.

With this understanding we force the reconstructed flux to satisfy

the two-group neutron balance equation about node corner points and along

node lines in a finite different fashion.

First, the 3D reactor is divided into large nodes; then at any

corner point (ijk) one can set the following system of equations:

1. Balance equation around corner point (i, j, k).

2. Balance equation along the node line parallel to x.

3. Balance equation along the node line parallel to y.

4. Balance equation along the node line parallel to z.

Since the reconstructed flux is expressed in terms of the unknown corner

point fluxes and averaged fluxes along lines, then, the implementation of

these equations at all node corner points will result in a system of

coupled linear equations relating all corner point fluxes and averaged

line fluxes. Since the coupling is very strong, and since both groups are

coupled, one needs to solve the system of linear equations simultaneously

by an iterative scheme.

In order to express a mesh point balance condition about corner

point I, J, K we first note that, for mesh-point-centered difference

equations (those used by PDQ), there will be a number of fine-mesh points

between one corner point and the next, and the finite difference balance

condition about that corner point will relate the group-g flux QI J, K at
gthat corner point to the group-g fluxes of its six nearest "fine-mesh"

that corner point to the group-g fluxes of its six nearest "fine-mesh"
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neighbors and to the other group flux at (I, J, K). But the nearest

"fine-mesh" neighbors all lie on lines connecting (I,J, K) to its six

nearest "corner-point" neighbors I±1, J, K), (I, J±l, K) and (I, J, IKl), and

the flux shape along the line connecting, for example, corner point I, J, K

to corner point I+1,J,K is being expressed as a product of the (known)

assembly shape and a quadratic form function shape, which in turn is

specified by g, J, K, +1,J, K and +1, J, K , the average group-g flux
eg cg gx

along the line connecting I, J, K to I+1, J, K. Thus the "fine-mesh" flux

nearest to I, J, K can be expressed as a linear function of eI, J, K
g

I+1, J, K, and +1, J, K Analogous expressions can be found for the
cg gx

other five "fine-mesh" fluxes nearest to I, J, K. Thus the finite difference

balance condition for the mesh boxes surrounding a corner point connects

I, J, K to its six nearest neighboring corner-point fluxes, the six line-
cg

averaged fluxes between I, J, K and the nearest "corner-point" neighbor,

and the flux for the other group at I, J, K.

In an analogous fashion the unknown line-averaged flux +1,J,K
gx

between I, J, K and I+1, J,K can be coupled to its four nearest parallel,

line-averaged, "fine-mesh" fluxes, and these in turn (because of the

assumed form of Equation (5)) can be expressed algebraically in terms of

the four nearest (unknown) parallel "node-line-averaged fluxes"

+1, J+-il, K i+l, J, KtlSI+,J1K +1 , the (known) face-averaged fluxes on the four
gx gx

planes connecting the node-line I, J, K - I+1, J, K to its nearest parallel

neighboring node-lines and the ten corner point fluxes I, J, K + 1,J,K

I, Jl, K I+1, Jil, K I+1, J,I and , J,gc

gc gc gc gc

Thus there are equations coupling each corner point flux and each

line-averaged flux between corner points to other nearest neighbor corner

point and line-averaged fluosE and to the (known) face averaged and volume

averaged nodal fluxes.

llllillYI l ' ~~'~sYIIUIIIIIYIIIIIIYIIY '~ " "- ~~ ''^ ~IIIIYIIIIIIIIIIIIY IIIYYIYIIYIII,
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A computer program solving for all these unknowns has been

written and found to be very fast-running. We have applied it to finding

corner point fluxes for the EPRI-9 3D benchmark problem shown in

Fig. 6. Recall that the assemblies comprising this benchmark have the

geometry shown in Fig. 2. It is the pin power at any location in these

assemblies which we wish to reconstruct. The fluxes which give rise to

that local power will be those specified by Eq. (3), where the iJ (x, y)

are known, two-dimensional fine-mesh shapes determined by assembly

or color set calculations. Figures 8 and 9 show for the unrodded and

rodded radial slices of Fig. 6 whether the 4 ix, y) for particular nodes

were taken from an assembly or a color set calculation. Recall that we

use four nodes per assembly in the radial plane for these calculations.

Also note that we have extended color set calculations into the baffle-

reflector regions, although we have not used the information generated by

such calculations for the core region.

Since the "fine-structure" shapes $1 (x, y) of Eq. (3) are taken
g

from two-dimensional assembly or color set calculations, all reconstructed

spatial shapes in the z-direction must be accounted for by the tri-quadratic

functions Qijk(x, y, z). Thus at any fixed radial location (fixed x and y) the

z-dependence of c (x, y, z) will be represented as quadratic. However,Rg

because albedoe boundary conditions imposed at the axial surfaces of the

reactor were taken to represent an infinite water reflector, the thermal

flux inside the reactor near these axial surfaces falls off exponentially.

As a result, representing the z-shape of the thermal flux as quadratic in

the upper and lower 15 cm-sized nodes of Fig. 6 leads to severe (, 19%)

errors in reconstructed corner point fluxes in the axial surfaces of the

reactor core. (Note, however, that since QUANDRY implicitly accounts
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for the exponential behavior, the average nodal powers - see Fig. 10 -

are in excellent agreement with the fine-mesh 3D PDQ result.)

Using a zero-flux boundary condition at the core-reflector inter-

face would probably get rid of this difficulty. However, since an albedoe

boundary condition is more realistic and since the reference 3D PDQ has

been run subject to such a condition, we chose to overcome the difficulty

by adding extra nodes, two-centimeters thick, on the core-side of the

axial core-reflector interfaces. Thus for reconstruction purposes we

reran QUANDRY maintaining the radial mesh layouts of Figs. 7 and 9,

but with the axial mesh spacings shown on Fig. 21. Assuming that the

axial mesh shape can be represented by a quadratic in the 2 cm intervals

next to the top and bottom reflectors and then by another quadratic in the

13 cm thick adjacent mesh intervals is far more accurate than assuming

a single quadratic shape throughout the entire 15 cm intervals.

Previous calculations for two-dimensional cases have shown that

the maximum error in the detailed, heterogeneous fluxes reconstructed

throughout a node according to the two-dimensional counterpoint of

Eq. (3) always occurs at the corner points. Accordingly, a good measure

of the accuracy of our reconstruction procedure are the errors in

predicted fluxes incurred at corner points. These errors are shown for

the 3D EPRI-9 problem in Figs. 22 and 23. As can be seen, the maxi-

mum errors ( 7. 5%) occur on the radial periphery of the top and bottom

planes where the fluxes are quite low. For all interior corner points

(including those on the top and bottom axial interfaces) errors are less

than one per cent. At the corner points of the highest-power node (the

central node between planes 4 and 51 the corner point fluxes match the

fine mesh PDQ results to better than 0. 3%. Such agreement with a full
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Fig. 21 Axial View - 3D EPRI-9 Problem.
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core fine mesh PDQ, obtained using only fine mesh, 2D, assembly-

sized calculations, and with no normalization even to 2D quarter core

results, is very satisfying.

VI. The Use of Albedoe Boundary Conditions

for Nodal Methods

The most straightforward way to represent the effects of a

reflector on criticality and power distribution is to treat the reflector

explicitly as a separate region. With two-group nodal codes such as

QUANDRY this is the usual approach. However, for PWR's the

relatively thin baffle region between the core and the water part of the

reflector leads to homogenization problems which require use of color

sets to cure. In addition, explicit representation of reflector regions

increases the running time of nodal calculations by 20-30%, and,

although, except possibly for three-dimensional transient problems,

this does not increase significantly the total dollar cost of running a

calculation, it is an extra expenses which would be worth avoiding if one

could do so without serious penalty. Accordingly, we have for some

time been searching for accurate and inexpensive ways to represent

reflector effects by imposing a boundary condition at the core-reflector

interface.
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Previous work by Kalambokas dealt with the replacement of

reflector and baffle nodes by albedoe boundary conditions in the context of

finite difference methods (here the dollar amount of the saving can be

significant). Analytical formulas for the prediction of such albedoes

were developed and applied to various reactor problems. The purpose of

this present work was to investigate the replacement of reflectors and

baffles by albedoe boundary conditions in nodal calculations.

Computational nodes representing reflectors and baffles may be

replaced by albedoe boundary conditions of the form:

(u) a11(u) 0 J 1(u) (4)

2( u)  a21(u) a22(u) 2(u)

where the reactor core boundary is assumed to be at u. For one-

dimensional, one-region reflectors, exact analytical formulas can be

derived. Specifically, the albedoes required to replace the reflector are:

L
a = TANH () g = 1,2 (5)

gg D r-
g g

a = 21 (D 1  - D 2 a 2 2 ) (6)
21 D 1 - D2 1 ~ 22

where

A = the reflector thickniess

L = the reflector diffusion length for group-g.

Multi-region extensions of Equations (5) and (6) have been derived,

and we have generalized the 1D analytical expressions to allow arbitrary

outer surface boundary conditions. This generalization is of importance
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for "thin" (i. e. A< 2 L ) reflector or baffle configurations.

The approximate analytical albedoe expressions for two-dimensional,

one-region reflectors developed by Kalanbokas are:

L
agg (u) (1 + exp (u)) g = 1, 2 (7)

g g
21(u) (L 1 (1 + exp ()) - L2 (1 + exp )) (8)

2 1  1 1 2

where

21
r =

D2 2)L L

u = the distance along the reflector face from the corner.

The analytical two-dimensional albedoes reduce to the one-dimensional

albedoes for the case of an infinite reflector and u L . Unfortunately,

we have shown by numerical studies that the approximate nature of the 2D

analytical albedoes and their limitation to one-region reflectors precludes

the general use of analytical albedoe conditions at the core interface.

Local fine-mesh finite-difference calculations were then investi-

gated as a method of determining albedoes at the core interface. First,

fixed source calculations were performed for specially chosen sub-

divisions of the reflector. The objective was to generate response

matrices from which the albedoe boundary conditions could be calculated.

However, the high cost of response matrix generation and the inaccuracy

of the fixed source calculations made this procedure very inefficient.

Peripheral assembly color set calculations for PWR's were likewise

found to be insufficient for interface core-albedo prediction. The

primary difficulty in each case was the modelling of the side boundary

conditions at the interfaces between adjacent reflector nodes. Imposing

Jg * n = 0 side boundary conditions makes the local calculations econom-
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ically feasible. However, the resultant fine-mesh flux shapes are not

accurate enough for the albedoes to be estimated without large errors.

The errors are large enough that a nodal calculation performed with

them would have nodal power errors on the order of 15%.

The effort to calculate core-reflector interface albedoes without

recourse to a reference solution was therefore abandoned. Nevertheless,

two specific applications of the analytical albedoes have been developed

and are discussed below.

First, it has been found that the analytical albedoes may be used

to replace the outermost reflector nodes. Although the savings in

problem size reduction are not as great as they would be for core-surface

albedoes, the accuracy of nodal replacement is significantly enhanced.

The notational scheme used to describe problem size reduction by

albedoe boundary conditions is illustrated in Fig. 24 for the LSH bench-

mark problems (a two-dimensional BWR problem composed of Vermont

Yankee assemblies). A two-stage reduction corresponds to the case of

one reflector node all around the core while a four-stage reduction corres-

ponds to a bare core.

The fact that the 2D analytical albedoe formulas are restricted to

homogeneous reflectors is not a restriction when albedoe boundary con-

ditions are not imposed at the core-reflector interface (where in PWR's

there is generally a baffle). In addition, the reactor is less sensitive

to albedoe errors when the boundary conditions are moved away from the

core.

The accuracy of replacing full reflectors by partial reflectors

augmented by analytical albedoe boundary conditions can be tested by

comparing nodal solutions for the truncated reactors to the original nodal

solutions. This has been done for the LSH BWR, the EPRI-9 PWR, and
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2 Stage Reduction

4 Stage Reduction

(Bare Core)

Fig. 24 Notational Scheme Used to Describe Problem Size Reduction.
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the LRA BWR benchmark problems illustrated in Fig. 25. The results

obtained from this comparison of nodal solutions are given in Table 6.

The background error for each problem is determined by comparison of

the original nodal solution with a fine-mesh reference solution. Note

that the LRA benchmark is composed of homogeneous nodes. Hence the

background error is due only to the quadratic transverse leakage

approximation inherent in QUANDRY. The E9 benchmark is composed

of the (rod-free) heterogeneous nodes shown in Fig. 26. Discontinuity

factors based on color set calculations for all interior quarter assemblies

as well as the quarter-assembly-sized baffle-reflector nodes were used

in the QUANDRY calculations. Thus nodal power predictions are good

(< 0. 5% error). The LSH benchmark, composed of Vermont Yankee

assemblies (some of which are rodded), was analysed using only J 0 n = 0

assembly calculations to determine discontinuity factors. Hence (as with

the TRD benchmark - Table 2) the maximum assembly power error (here

'10%) is large. The other errors given in Table 6 are the additional

nodal solution errors caused by problem size reduction. It is seen that

a one or two stage reduction by analytic albedoes (the columns ANAL)

causes virtually no additional error in the nodal solutions. The fact that

such small errors are not obtained when a zero-incoming-partial-current

boundary condition is imposed (the columns a = 2) is evidence that the
gg

reflector is not effectively infinite.

The computational savings realized by 1 or 2 stage reductions is

roughly proportional to the number of nodes which are truncated.

Accordingly, a 1-stage reduction corresponds to a 10-15% savings while

a 2-stage reduction corresponds to a 15-25% savings. Problem size
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reduction by albedoe boundary conditions therefore leads to a modest gain

in calculational efficiency with negligible error. Three-stage reduction

by analytical albedoes did not prove to be acceptable. Errors much

larger than the 2-stage a = 2 results in Table 6 were obtained.
gg

The errors given on Table 7 for the EPRI-9 benchmark show that

cornerpoint flux interpolation from nodal results is not adversely affected

by the replacement of the outermost reflector nodes by albedo boundary

conditions. For comparison the (unacceptable) cornerpoint interpolation

results from a 3-stage reduction are also given.

A second specific application of the analytical albedo boundary

conditions which has been developed is an improved method for PWR

baffle-homogenization. The usual method of baffle-homogenization makes

use of peripheral assembly color set eigenvalue calculations to generate

homogenized cross sections and discontinuity factors for the quarter-

assembly-sized nodes containing the baffle. The EPRI-9 peripheral

assembly color set geometries are shown as the dotted squares in Fig. 26.

The color set calculations were carried out with J * n = 0 boundary

conditions.

The improvement which has been made in this procedure is to

replace the outer face boundary conditions of the A and B color sets with

analytic albedoes. This change results in a more realistic color set flux

shape and therefore in better homogenized cross sections and discontinuity

factors. The changes are especially noticeable in the baffle nodes.

The results given in Table 8 show the improvement in the nodal

solution which results if the modified peripheral assembly color sets are

used. It would appear that about half of the error in the original EPRI-9

nodal solution was due to improper baffle homogenization.
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VII. Conclusions

We believe that our test results show that, at least for PWR's,

the QUANDRY method should be implemented in utility code packages as

a replacement for current nodal schemes. It is far more accurate than

the present methods and achieves that accuracy without fitting any

albedoes or adjustable constants to quarter core PDQ results. Its

computer storage requirements are large. However, a new iterative

scheme suggested by Kord Smith would reduce them by a factor of 3 or 4 so

that there should be no problem with handling realistic problems within

the fast memory on IBM equipment (and possibly CDC equipment). With

two-groups represented explicitly, problem running time should be about

twice that of the conventional nodal codes. However, the extra cost

should be balanced against the savings which result from not having to run

any quarter core PDQ's. Another advantage is that the method can be

extended directly to the analysis of transient problems.

Moreover there are still areas for potential improvement. It may

be possible to replace the four radial discontinuity factors per node per

group by one average value, thereby reducing storage requirements. It

may be possible to use discontinuity factors to reduce the number of groups

from two to one. Also it may be possible to derive the QUANDRY

parameters directly from sophisticated spectrum codes such as CASMO,

thereby avoiding completely the use of PDQ. We hope to investigate these

ideas during the coming year.

For BWR's we feel that more work is needed. Our test cases have

shown that using discontinuity factors based on 2D, J * n = 0 assembly

calculations leads to a considerable improvement in the accuracy of

predicted nodal power over the standard nodal schemes (specifically
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SIMULATE). However, for rodded nodes, errors can still be as large

as 10%, and reconstructed pin power results are even worse. We have

overcome these difficulties by using iterative response matrix procedures.

However, the cost of determining the response matrices is high. We

hope to investigate methods for reducing that cost or to avoid it altogether

by improving our noniterative schemes for finding assembly discontinuity

factors. The use of color sets is one obvious possibility which should

be explored.


