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Executive Summary

The electric power planning process is complex, involving tradeoffs between

many different options with many different impacts. Participants who do not agree

on how to value these impacts have difficulty agreeing on their choice of options,

which can, and sometimes has, led to regulatory deadlock. This report describes the

development, application and results of an Open Planning Process performed by the

M.I.T. Energy Laboratory's Analysis Group for Regional Electricity Alternatives

(AGREA) for, and with the support and close cooperation of the Commonwealth

Electric Company (COM/Elec).

Building consensus in this public policy debate requires rigorous

development and analysis of the wide variety of options available, and more

importantly, clearly communicating the results of those analyses in a forum where

participants in the electric power debate can communicate freely with each other. In

order to meet these objectives, the M.I.T. and COM/Elec team has developed an

Open Planning Process, involving both an advisory group and an analysis team.

The advisory group is composed of the different stakeholders in the planning

debate, including consumers, business customers, regulators, community activists,

and environmentalists. The analysis team is composed of the M.I.T. analysis group,

working in conjunction with COM/Elec personnel.

This Open Planning Process was developed for use in the power planning

debate for the entire New England region. This report describes its application to a

single utility, Commonwealth Electric. This application is part of COM/Elec's

initiative to increase public and customer input into its decisionmaking, while

incorporating all supply and demand-side options, their interactions and non-price

impacts, as will be necessary under the new regulatory process of "Integrated

Resource Management."
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The Open Planning Process as it was tested by this project was comprised of an

iterative and interactive series of three meetings between four different consumer

advisory groups and the analysis team. Once the advisory group was formed, the

first meeting concentrated on those issues of concern to the advisory group, and

how those concerns could be evaluated. The analysis team took these concerns and

structured the technical analysis, forming options and uncertainties into scenarios

that were then modeled and analyzed. The second meeting presented the options

and uncertainties back to the advisory group for discussion and confirmation.

Following their comments, the analysis team took the revised scenarios, modeled

them, analyzed the results, and presented them back to the advisory group at the

third meeting. The advisory group then attempted to reach a consensus on what

type of options should be incorporated into COM/Elecs's long term strategy, based

on the system-wide interactions and tradeoffs involved. Based on the full or partial

consensus reached, COM/Elec can then structure its own response to Integrated

Resource Management process.

This Open Planning Process was developed through a series of meetings,

using an initial advisory group composed of COM/Elec personnel. Beginning in

June 1989, these meetings followed the general process described above, although

the development of the analytic techniques and the open planning process itself

required more than three meetings. Meanwhile the analysis team gathered data on

the COM/Elec system, modeled initial test scenarios, and constructed the automated

computer modeling tools necessary to perform the analysis.

A set of four external advisory groups was then formed of COM/Elec

customer "decision makers." These Consumer Advisory Groups corresponded to

the COM/Elec's Cambridge, Plymouth, New Bedford, and Cape Cod service districts.

A "cross section of leading citizens" were identified by COM/Elec's district service

representatives and requested to participate by a letter of invitation. Each of the four
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groups met for the series of three meetings and participated in the Open Planning

Process steps outlined above. The first series of meetings took place the first two

weeks in March, 1990 and identified four major areas of concern - environmental

impacts, cost of service, reliability of service, and efficiency. The advisory groups

reviewed the option-sets and uncertainties forming the scenarios at the second

series of meetings in late April, and a set of preliminary results were shown to

acquaint members with different methods of presentation and to check with

members on which measures, or attributes of the results best reflected their concerns

on various issues. The final set of meetings took place in mid-May, where the

participants were presented with a full set of results and requested to reach a

consensus given the options considered. Based on the results presented, an

additional set of scenarios were chosen. These were modeled in June and July, and

are presented as part of this report.

The scenarios modeled were formed by combining different utility choices or

options and different uncertainties about future events beyond utility control.

Supply and demand-side options were each combined into separate option-sets that

represented reasonable possibilities of what COM/Elec could implement itself and

with its customers. Supply and demand-side option-sets were then combined into

strategies. Uncertainties were also divided into separate possibilities (e.g. low, base,

and high load growth), and these uncertainties were then combined to form

different futures. Finally, strategies and futures were combined to form scenarios.

Within this framework, the supply-side option-sets incorporated three major

choices. First was the choice of technology mix (the blend of new technologies

COM/Elec can use to meet future demand). The analysis team modeled eight

different technology mixes, including different combinations of gas-fired, coal-fired,

repowering, nuclear, and photovoltaic technologies. Second was the choice of

supply-side operation, specifically fueling oil-fired capacity with low sulfur Oil 6 vs.



the high sulfur Oil 6 currently burned in their plants. Third was the choice of

supply-side planning; scheduling new capacity to meet a base target reserve margin

of 23% vs. a higher target reserve margin of 30%.

The demand-side options were combined into two option-sets, the

Collaborative process option-set (COM/Elec's current level of demand-side

management programs), and an Enhanced Collaborative process option-set.

Futures were combined from three uncertainties; 1) low, medium and high

load growth, 2) low, medium and high customer response to DSM programs, and 3)

medium and high natural gas prices relative to base oil prices.

All possible combinations of these different strategies and futures gave a total

of 1152 scenarios which were modeled using the LMSTM production costing model.

For each scenario, the analysis team calculated over sixty different attributes to use

in measuring and understanding the four consumer advisory groups' concerns.

Based on these concerns of environment, cost, reliability, and efficiency, a subset of

primary attributes were designated to measure cost of service, rateshock, total sulfur

dioxide and carbon dioxide emissions, and reliability.

Results for these scenarios told a number of stories. The predominant stories

are listed below for the major choices.

Technology Choice Option-Sets - The choices of technology mix, fuel,

and reserve margin had major effects on cost, emissions and reliability.

However these impacts were mixed, with each choice having good and

bad effects for different environmental, cost, and reliability attributes.

For this reason, no set of choices was a clear winner, but several

appeared most often as dominant choices for different attribute
tradeoffs. Repowering and Coal & Repowering did well for cost vs. S02
and cost vs. CO2, while the Nuclear & Gas dominated for S02 vs. CO2.
Photovoltaics and refueling the Canal plant with coal gas were inferior

choices.



* Demand-Side Option-Sets - The Enhanced Collaborative programs option-set
was a clear winner over the Collaborative programs option-set for both cost
and emissions. Increasing Demand-Side Management measures was cleaner
and cheaper for most futures, but movement in the results was small
compared to other options.

* Fuel Oil Sulfur Content - Requiring the use of low sulfur Oil 6 made a major
and consistent reduction in SO02 emissions for all supply-side option-sets, and
the reduction was cheaper than that by any choice of technology mix.

* Target Reserve Margin - Increasing the reserve margin yielded significantly
higher reliability, whether from choice of higher target reserve margin, or
from linkage to load growth or technology mix option-set. Cost for this benefit
was relatively low, due to increased generation from newer, cleaner and more
fuel efficient plants.

The analysis team draws the following conclusions about the Open Planning

Process for the policy planning and technical analysis results.

As a public policy planning process, this project succeeded in its goals "to

provide integrated resource planning assistance" and "to enhance planning

processes and develop a framework for useful public discussion of utility planning

issues." The process developed was successful in e';dting participants' relative

concerns about major issues, generating significant new alternative options, and

receiving participant feedback. The modeling effort was successful in automating

analysis so that meetings could be held on a reasonable schedule. Results in

achieving consensus were mixed. Where clear winning options were revealed,

consensus was possible, but where difficult tradeoffs existed, more time and possible

alternate strategies were needed. Despite sometimes limited attendance, the

advisory group meetings generated significant positive results in goodwill,
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enthusiasm, and a better understanding of the complexities and tradeoffs of the

planning process.

The results of the technical analysis led to the following overall conclusions.

" There must be a balanced consideration between generation and end-use
efficiencies to obtain the most good from new capital expenditures.
Concentrating on either supply or demand options to extremes may reduce
benefits.

* Analysis of new options must take into consideration their interactions with
the existing system and with each other, rather than simply looking at their
individual technology specific characteristics.

*. Systemwide analysis must be extended to strategies that contain specific
components related to system operation options. Choice of fuels and other
planning and operating policies can be as important as choice of new supply or
demand investment.

Both policy process and technical analysis results confirm the value of the

Open Planning Process in gathering concerns from the public and revealing back to

them how power planning options interact on a systemic basis with tradeoffs

between different attributes. The M.I.T. Analysis Group for Regional Electricity

Alternatives thanks Commonwealth Electric for the opportunity to work with them

in developing this Open Planning Process, and looks forward to the process being of

continuing service as COM/Elec seeks to meet the requirements of the Integrated

Resource Management process and to better serve its customers.
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1.0 Introduction

The electric power planning process involves making choices among options

that have significant cost, environmental, reliability, and other impacts.

Participants in. the electric power planning debate differ widely in the way that they

value these impacts, and therefore differ in the choices they would make.

Discussions which have considered only a single issue such as cost or air emissions,

or which have valued different issues with a common denominator, have had on!v

a limited impact on electric power problems facing the region. To achieve the

desired impacts, all participants must acquire a better understanding of the overall

picture - an understanding of the relationships between the issues, and the tradeoffs

implicit in the variety of options available to improve the way electric service is

provided. It is important to look at the electric power system as a system, and to

understand the interactions within the system. By understanding these

interactions, debate can focus on the best available set of options; options which are

clear winners or which embody the best possible tradeoffs. This understanding can

form the basis for consensus on positive action, not just for today's problems, but to

avert future crises.

1.1 Bac kpound

Consensus-building on technically complex electric power planning issues is

both an analytical and procedural challenge. It requires public explanation of the

performance of many options across a variety of uncertain future conditions using

credible modeling tools.
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Several years ago, a group of Massachusetts Irstitute of Technology faculty,

staff, and graduate students offered to provide the analytic support for such an effort

in order to help a deadlocked policy debate get back on track for the New England

region as a whole. By early 1988, regulators, environmentalists, utility personnel,

and electricity customers started meeting at MIT on a regular basis. Funding from a

consortium of regional utilities and industrial customers allowed the group to

expand its analytic capabilities, and by 1989 every state in the region was represented

on the advisory group for the New England project.

On December 8, 1988, one of the officers of the Commonwealth Electric

Company (COM/Elec) attended our presentation to the NEPOOL Policy

Planning Committee of the New England Project's first round of regional

tradeoff analysis. The following month, Mr. Donald LeBlanc (Vice President,

Resource Planning and Development) asked the MIT Energy Lab to help

develop an analytic capability at COM/Electric similar to that being developed

for the entire region.

This request was motivated by several things. First, COM/Electric had

been ordered by the Massachusetts Energy Facilities Siting Council (EFSC

Decision No. 86-4) to improve its resource planning method so that (among

other things) it would in the future: (1) include demand-side programs using

a "level playing field," (2) plan more thoroughly for contingencies; (3)

compare a larger range of generation and non-generation alternatives; and (4)

model supply plans in a more plausible manner.

Second, the Massachusetts Department of Public Utilities had issued an

Order (DPU 86-36-F) on November 30, 1988 that paved the way towards

requiring utilities to use an "all resource solicitation" process within an

"integrated resource management" framework, for future resource plans (see

discussion of this order in Chapter Five). Two major implications of this
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order were the need to account for environmental externalities in the

planning process, and the need to better integrate demand-side and supply-

side planning. The Department was casting around for ideas about the best

way to include something as subjective as environmental externality'

evaluation in a rigorous, reviewable planning framework.

In January 1989 COM/ Electric contracted with MIT to provide "integrated

resource planning assistance" in order to "enhance their planning processes and

develop a framework for useful public discussion of utility planning issues".

Specific tasks included reviewing current planning methods, expanding the

company's ability to function in open planning processes, developing their multi-

attribute tradeoff analysis capabilities, performing public education on utility

planning issues, and exploring issues relating to the interactions between the utility

and the region.

1.2 The Open Planning Process

The process developed for both the New England project and the

Commonwealth Electric project involves the iterative interaction of an analysis

team and an advisory group. The advisory group indicates its concerns in the

electric planning process. These concerns may be either issues that can be addressed

by the choice of various options, or uncertainties about the future which cannot be

controlled. Options and uncertainties are defined and combined into scenarios by

the analysis team. The data to model these scenarios is then collected and checked,

and the software chosen, developed, and integrated to automate the modeling

process. The results of the scenario analysis are evaluated statistically and then

presented to the advisory group in order to obtain their reactions on the tradeoffs
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between various issues when evaluating different strategies, and to elicit their

preferences on current or improved strategies which should also be considered in

the analysis.

For the Commonwealth Electric project, the analysis team was composed of

the MIT Energy Lab's Analysis Group for Regional Electricity Alternatives (AGREA),

and staff of Commonwealth Electric's planning department. An initial "internal"

advisory group was formed, consisting of Commonwealth Electric staff from several

departments. Regular meetings with the internal advisory group provided feedback

about COM/Elec's concerns, the choice of test scenarios, interim results, and the

methods developed to present results and elicit opinions from an "external"

advisory group.

The process developed for interacting with an advisory group and performing

scenario analysis was then employed to bring some of COM/Elec's customers into

the planning process, using four external, consumer advisory groups (CAGs). These

groups were composed of community activists and decision makers representing

the broad range of interests from COM/Elec's four service territories. Through a

series of three meetings these consumer groups were asked to express their

concerns, to confirm that the scenarios chosen by the analysis team reflected these

concerns, and to attempt to reach a consensus based on the tradeoffs and other

information presented in the 720 scenarios analyzed in response to their input.

Based in part on consumer input, COM/Electric may then select a strategy

(i.e., a specific portfolio of options) to pursue. COM/Elec could then incorporate the

consumer advisory groups' preferences into their third party bids to implement

specific options, rank proposals, test to see that actual award group projects formed a

similarly attractive portfolio as its generic precursor (considering multiple attributes

and uncertainty), and sign contracts.
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1.3 Organization of the Report

This report presents the methodology and results of the Commonwealth

Electric Open Planning Project, and is divided into two main sections. Chapters 2

through 4 present the theory, development, and application of the methodology.

Chapters 5 through 7 describe the final set of scenarios analyzed, present the results,

and give the conclusions of the report, based on the analysis and experiences with

the consumer advisory groups. Appendices A through D present the details of the

consumer advisory group participants, the attributes calculated, the LMSTM model

inputs and assumptions, and the graphical results.
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2.0 Theory of Analytic Apprnach

This chapter describes the approach used by the MIT Analysis Team to

interact with the advisory groups and perform scenario analysis in the COM/Electric

Open Planning Project. First described is the general method of interaction between

the Analysis Team (MIT) and the Advisory Groups (first with the COM/Elec

internal advisory group and later with the external consumer advisory groups).

Next, the terms used to describe the open planning process are defined - in the order

used - as the planning process is followed. Finally, the methods of analyzing,

understanding and presenting the results are discussed.

2.1 Advisory Group/Analysis Team Interactions

The interactions between the consumer advisory groups and the MIT analysis

team were set up in the form of a public public policy analysis exercise. The diverse

concerns of participants in the exercise (the advisory group) were channeled into

analyzable form by the MIT analysis team and results were then presented back to

the advisory group for further consideration. This interactive, iterative approach

was intended to reduce the "black box" nature of the analysis work, and to build the

advisory groups' confidence in the results. It was also designed to tap the creativity

of the advisory group members, in order to invent better options than those

currently on the table. Figure 2.1 below shows this Analysis Team/Advisory Group

interaction, and the steps involved in the process.
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Figure 2.1 - Interaction and Analysis Procedure

The Advisory Group I

Communication with
Constituencies in the Open
' Decision Environment

Discussion of Issues,
Options, Uncertaintres and

Tradeoff Results

Results and Team
Tradeoffs

1) Identify Issues and Attributes

2) Develop & Analyze Scenarios

3) Understand Tradeoffs & Elicit Consensus

The objective of the group's first meeting with the MIT analysis team was to

identify the issues of concern to the various advisory group members, and the

attributes by which these concerns may be measured. These were formulated by the
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analysis team into specific option-sets of actions available to Commonwealth

Electric (strategies) and specific sets of uncertainties which mapped out relevant

futures of concern. Individual supply-side and demand-side management (DSM)

options were solicited from the advisory group as part of the first meeting, but due

to their technical knowledge it was the responsibility of the analysis team to

construct realistic strategies which addressed the issues important to the advisory

group.

These strategies and futures were then presented back to the advisory group

to make sure that they accurately reflected their concerns. Appropriate changes were

then made, and the strategies and futures were combined into scenarios for analysis

by computer. The results of these runs were then reviewed by the analysis team to

make sure that they were reasonable and consistent before interpretation of the

underlying stories began. These results were then presented to the advisory group

in a variety of formats, so that the tradeoffs could be clearly presented and the stories

explaining them supported. With this knowledge the advisory group could then

attempt to reach a consensus on which strategies produced the most acceptable and

robust results in response to their concerns.

Both the advisory groups and the analysis team had certain roles to play

within the framework. The responsibilities of the advisory group members in this

process were to:

* Identify issues and concerns
* Accept or reject modeling approaches and assumptions

* Express the concerns of their constituencies in discussions about the

tradeoffs among options
* Work creatively towards a consensus on the choice of favored sets of

options
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The responsibilities of the analysis team in this process were to:

* Assemble data and models

* Construct scenarios
* Articulate assumptions, methods, and results clearly (minimize black

box modeling)
* Respond to the interests, queries, and proposals of advisory group

members
Assist the advisory groups in inventing better options and packaging
them into coordinated strategies
Assist the advisory group in moving towards a shared understanding
of problems, options and system interactions.

The interactions between the advisory groups and the analysis team were

structured so that three steps carry them through a full iteration of the process.

These steps are listed below, with step three described in detail in Section 2.3.

I. Identify issues to focus the analysis upon, and attributes by which to

compare the performance of different strategies.

2. Develop scenarios examining the performance of combinations of

options (strategies) across a variety of uncertain future events (futures).
Learn about their behavior in the context of a complex electric power
system, and test the credibility of the anLalysis by sharing interim
results.

3. Explore the tradeoffs between strategies, given the uncertainty about

the future, and the multiple-attribute impacts of each strategy as

revealed by the analysis, and understand preferences of different

stakeholders for the various strategies.

2-4



2.2 Definition of Terms

Even the brief description above has used a handful of terms that have

specific meanings in the context of the open planning process. These terms are

defined here so that their consistent use will clearly understood.

Concerns - Any concern which a member of the advisory group has about an

aspect of the electrical utility planning and operation problem. Concerns

which reflect desired goals in operation are referred to as issues. Concerns

over uncontrollable events such as changes in fuel prices or the customer

response to company sponsored DSM programs are referred to as

uncertainties.

Issues - An issue is any concern about the utility planning problem which can

be controlled by a choice or decision in the plan. For example, cost, emissions,

and reliability of service are all issues which are influenced by planning

decisions. Issues may be influenced by factors which cannot be controlled,

called Uncertainties (defined below).

Attributes - An attribute is some measure by which performance relative to

some issue can be determined. For example, air pollution is an issue which

can be measured by attributes such as tons of sulfur dioxide (SO2) or carbon

dioxide (CO2) emitted over time. The choice of attributes to measure various

issues is an important task. The issue of cost can be measured by total dollars

spent to provide electrical service over the study period, by the discounted

present value of those dollars, by the cost per kWh paid by the consumer, or

bysome cost of service which accounts for energy services provided by utility

DSM measures as well. In addition, volatility of cost may also be an

important factor. The way an issue is resolved is, in part, determined by the

way the problem is defined and measured.

Uncertainties - An uncertainty is a specific concern about the future which

cannot be controlled. For example, electrical load growth is an uncertainty

which depends on economic growth, and which cannot be accurately
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predicted. Uncertainties are analyzed by choosing several values (e.g. low,
base, or high load growth), and modeling utility plans for all of them.

Futures - A future is defined as some combination of uncertainties. For
example, a specific future may be composed of high load growth, high fuel
prices, and poor public response to DSM measures. The number of futures is
given by all possible combinations of the uncertainties (e.g. 3 load growths x 3
fuel prices = 9 futures).

Options - An option is a specific action which the utility can choose to take.
For example, building combustion turbines or subsidizing household
weatherization are both options.

Option-Sets - Because there are a very large number of possible options, they
are combined into programs of combined options called option-sets. These
are generally divided into supply-side option-sets (such as a mix of new gas
and coal generation technologies) and demand-side option-sets (which
combine different DSM programs like appliance standards, new building
standards, etc.).

Strategies - Option-sets are combined into strategies, as uncertainties are
combined into futures. The number of strategies is determined by all the
possible combinations the individual option-sets (e.g. 10 supply-side option-
sets x 2 demand-side option-sets = 20 strategies).

Scenarios - Strategies and futures are then combined into scenarios.
However, the number of scenarios may not be simply the number of
strategies multiplied by the number of futures. In some instances,
combinations of strategies and futures may be meaningless (for example, a
strategy without any DSM programs could not be combined with a DSM
program cost overrun uncertainty).

This process of combining individual uncertainties and options into

scenarios is shown in Figure 2.2. It should be noted that for graphical clarity, this
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diagram omits the intermediate step of forming option-sets from options before

combining them into strategies.

The number of computer model runs which must be performed is generally

determined by the number of scenarios, although some calculations (usually

financial) may be done afterwards. This means that the choice of option-sets and

uncertainties must balance the number of possible future plans which can be

analyzed against the time the analysis team has to evaluate them. Increasing

supply-side option-sets from 10 to 12 will increase model runs by 20% while

introducing a new uncertainty will double the runs required.

Figure 2.2 - Scenario Construction
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2.3 Analytic Methodology

Once model runs are complete and the data base of input and output results

has been assembled, the task of understanding these results still remains. The

multiple-attribute results of the scenario analysis must be systematically evaluated

in a way that provides useful information to the participants in the open planning

process. It is the task of the analysis team to understand and present both the results

of the analysis and the underlying stories/explanations contained in those results,

in a form that is both conceptually and graphically comprehensible to the advisory

group. This analysis has three primary goals in informing the advisory group; 1) to

develop in them a shared understanding of the tradeoffs involved in different

choices, 2) to help them invent better strategies than are currently on the table, and

3) to seek their informed consensus on a course of action.

There are two major steps in the tradeoff analysis effort:

1) Explore system behavior by observing the the impacts of uncertainties, the

single attribute impacts of different option-sets and strategies, and the

multi-attribute tradeoffs between strategies, for a variety of possible

uncertain future conditions. Develop better strategies based on this

information.

2) Elicit participants' preferences by observing which strategies interest each

party, what uncertainties concern them, and how they weigh the various

attributes relative to one another. Develop strategies with the potential for

consensus based on this information.
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Both of these steps are explored below, although there is more emphasis is on

the first step of building analytical understanding which must underlie the

presentation, and less on the preference elicitation and consensus building process

which follows.

Exploring System Behavior.

In general, the scenario analysis process produces such an overwhelming

number of results that they must be interpreted using a relatively powerful

statistical software package (such as Systat"', which we used, or SAS).

Understanding the graphs produced by such packages can be aided by asking a

structured series of questions.

1) Single Attribute Analysis. The first step is to graph single attributes as they

vary by both 1) uncertainty, and 2) option-set. These may be either

individual uncertainties or option-sets (e.g. by load growth or reserve

margin), or combined uncertainties or options-sets (these may be fewer

than a complete future or strategy). These graphs show the attributes'

absolute and relative magnitudes and their variability. The following

questions should be asked.

a) Over what range do the attributes vary?

b) How relevant are the different uncertainties?

c) How different are the various futures?

d) How consistent is the performance of each option-set across various possible futures?

e) How consistent is the performance of each strategy across various possible futures?

f) How sensitive are particular strategies to individual futures?

g) How do individual options perform along various attributes?

h) How does each option-set perform along various attributes?

i) How does each strategy perform along various attributes?
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In general, the process is one of discovering trends and explaining

variability. Do these trends vary in the direction you expect? Are the

trends consistent for comparable option-sets, or across different futures?

Do the trends reverse, or are there exceptions in some cases? Do the

trends established by single option-sets or uncertainties show up

consistently when you look at a combined future or strategy? What is the

relative size of various trends (especially competing or reversing ones)?

Can variability be explained? For example, are variations in emissions

explained by relative changes in fuel prices, or consistently low for nuclear

supply options? Figure 2.3 gives an example of the statistical output in the

graphical form called a box plot, along with its interpretation.

In the process of developing stories which explain these results, it

may be useful to look at the correlation coefficients for different attributes

and scenario characteristics. Although correlation does not necessarily

imply causality, a strong correlation (e.g. high S02 emissions are highly

correlated with high sulfur Oil 6 consumption) may help explain how the

system behaves.

Figure 2.3 below shows a sample single attribute graph for total S02

emissions versus load growth. This graph is a called a box plot, and the

different statistics it shows are labeled with arrows. This information can

also be shown with column charts or other forms of graphs that show

averages, maxima, minima, etc..
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Figure 2.3 - Single Attr.bute 3raph (Box Plot)

Quartile Limit +
800 1. * I[nterquartile

Range (Fence)

600
• Quartile Limit

40 0 . . (Hinge)
Median Value

200
a %95% Confidence

0 Interval Limit
Low Base High (Notch)

Load Growth Outlier

The central line on each notch shows the median value of the
distribution (half the values are above the median and half below).

The end of each box is the quartile limit (or hinge). For the upper
quartile one quarter of all values are above this line and three quarters
below, and vice versa for the lower quartile limit.

The notch on each box shows the 95% confidence interval limit. If
the notches on two boxes do not overlap, then the probability is 95% that
the median values are different. For example, the low and base notches
overlap so the median values shown have less than a 95% chance of being
different, but the low and high notches do not overlap and therefore the
median values are significantly different with over a 95% confidence.

The outer limit bar (or fence) is given by the most extreme value
within the range between the upper (or lower) quartile limit and that
quartile limit plus (or minus) one and a half times the interquartile range.
That is, the value of the upper fence equals the maximum value between
the upper hinge value and that value plus one and a half times the
difference between the upper and lower hinge values.

If there are values in the distribution beyond the fences, they are
called outliers and shown with asterisks or stars. The outlier shown above
was not in the real results, but added for the purpose of showing an
example.

2-11



2) Multi-Attribute Analysis. Due to cognitive limitations, it is only possible

to examine the tradeoffs between three attributes (in three dimensions) at

a time, and graphic presentation usually limits this to tradeoffs between

two attributes simultaneously. Thus, multiple attribute analysis is

normally performed as a succession of pairwise tradeoffs between

numerous attributes. The task of evaluating strategies using multi-

attribute analysis can be structured by following the steps below.

a) Observe the performance of strategies - considering multiple attnbutes.

i. How does each strategy perform for different attribute pairings?

ii. How consistent is the performance of each strategy across various

possible futures?

iii. How does each strategy perform considering all attributes?

b) Observe the performance of the system.

i. Do different attributes correlate with one another?

ii. Do some attributes explain others?

c) Invent better strategies and explore more relevant uncertainties.

i. Based on what we have learned about the system's behavior, which

additional strategies need to be evaluated?

ii. Are there other uncertainties to consider?

Repeat the steps above if necessary_...

Several concepts related to multi-attribute tradeoff analysis need to

be discussed and illustrated. The first and most important is the concept of

dominance. A strategy is said to dominate another if it is better or equal in

every regard or for every attribute. All strategies which are dominated by

some other strategy are members of the dominated set, and all strategies

which are not dominated are members of the decision, or dominant set.
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These definitions are illustrated by Figure 2.4 below. Strategies 'b'

and 'c' dominate 'd' but not each other for the two attributes shown.

Strategy 'a' does not dominate 'd' and is not itself dominated by any other

strategy shown. Because the dominated set contains strategies which are

clearly worse in every way than at least one other, the strategies which

form the decision set are the only ones which are worth arguing about.

Figure 2.4 - Evaluating Tradeoffs

Evaluating Tradeoffs...

This discussion assumes that the value of each attribute is exactly

known for each strategy. However, these values may not be exact due to

sources of error like uncertainty in modeling assumptions. This raises the

concepts of uncertainty, sensitivity, and significance as they relate to

tradeoff analysis. These concepts are illustrated in Figure 2.5 below.
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The graph on the left shows each strategy as a single point in multi-

attribute space, with all three points forming a decision set in the form of a

tradeoff knee. The graph on the right shows how dominance works under

uncertainty - there is a range surrounding each point representing the

uncertainty in its coordinate values. Thus, while strategy 'f' significantly

dominates 'h', it does not significantly dominate 'g' because 'g' lies within

the range of uncertainty. Different parties' sensitivities to changes in

attribute values could lead to the same effect - the difference between

strategies 'f and 'g' may be functionally irrelevant to some parties - again

making the difference insignificant.

Figure 2.5 - Uncertainty, Sensitivity, and Significance

Uncertaintyi, Sensitivity, and Significance
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The tradeoff curves shown above are all for a single future which is

considered fixed or certain. In the open planning process, each strategy is modeled

for many different futures. This leads to the important concept of robustness. A

robust strategy is one that performs well under a range of futures. Under a single

attribute analysis, this may be seen where a strategy has a good value for some

attribute and a low variance across the range of futures. Under a multi-attribute

analysis, a robust strategy will be one that is consistently on or near the tradeoff

curve. Robustness is illustrated in Figure 2.6 below. In this example only strategy 'c'

is considered robust, as both 'a' and 'b' moved well away from the tradeoff curve in

at least one future.

Figure 2.6 - Robustness

Robustness
aI
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Robustness is closely related to the questions of how probable

different futures are, and to how risk averse stakeholders are to bad

results. In the current analysis, both these issues have been set aside.

Futures were initially assumed to be equally likely in the evaluation of

average results. For tradeoff analysis, performance was examined for the

range of futures by looking at three different futures. The best and worst

futures were those that consistently had the lowest and highest cost,

emissions, reliability, etc.. A questionaire was used to determine advisory

group preferences for the future of highest interest, or greatest concern

(hereafter called the "highest-interest" future).

In analyzing tradeoff curves, the analysis team and the advisory

group have two different goals, as shown in Figure 2.7. The analysis team

has the responsibility to create appropriate scenarios and identify the

resulting tradeoffs to the advisory groups. The left hand graph shows this

identification of strategies comprising the decision set. The advisory

group then has the responsibility to add normative decisions regarding

equity and other subjective issues to the facts presented. The right hand

graph shows how the advisory group may shift back and forth along the

decision set to form a consensus on the strategy which best balances their

concrns.
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Figure 2.7 - Tradeoff Objectives

Tradeoff Obiectives

Eliciting Participants' Preferences

In order to guide this process of (hopefully) reaching consensus, the analysis

team guides the advisory group by presenting the trends and tradeoffs, and then

eliciting their preferences. This process is guided by the steps outlined below.

While only the advisory group can bring their own, varying positions to this task, it

is helpful if the analysis team fully understands the dominant strategies and how

robust they are, in order to inform and guide the discussion.

a) Sort through the strategies - slowly adding decision guiding rules.
i. Which strategies are dominated by others across all attributes and futures?
ii. Assuming no risk aversion and equally likely futures, how do participants

rank the strategies, based on their tradeoffs?
iii. Assigning different weights to different attributes, how does the ranking

change?
iv. Assigning different probabilities to different futures, how does the ranking

change?
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v. Adding the assumption of risk-aversion, how does the ranking change?

b) Elicit stakeholder values.

i. How do different parties pnontize attributes, rank the likelihoods of vanous
futures, view different strategies?

c) U'ndcrtake conflict analysis.
i. What are different parties willing to trade?
i i. Where are the gaps and overlaps?
iii. What are the characteristics of the most widely favored strategies?

d) Invent better strategies.
i. Are there new packages of options that have more of the characteristics

everyone prefers?
i i. What new strategies have the potential for consensus?

Repeat steps above if necessary.....

e) Seek consensus on a preferred strategy.

This tradeoff analysis approach allows the advisory group members to explore r

the relative performance of different strategies without initially attaching dollar

values to such intangible or hard to quantify - on a cost basis - items as pollution

impacts. Unlike cost-benefit analysis, which requires such social costs to be valued

in dollar terms, tradeoff analysis keeps attributes in their original units (e.g. tons of

SO2). This allows parties with very different perspectives to evaluate the relative

characteristics of the proposed strategies. By the time that parties get down to hard

bargaining on the relative importance of electricity costs, environmental impacts,

and reliability levels, they will be choosing among a much better group of strategies.

These strategies are included in the decision sets by virtue of their physical

performance, and not by an implicit or unquantifiable impact/cost calculation. The

parties are also more likely, having gone through the analysis as a group, to have a

better understanding of the relative importance of each issue in the big, overall

picture.
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3.0 Developing the Open Planning Process

This chapter takes the group process and analysis theory, and describes

how the open planning process was developed through interactions with

COM/Elec's internal advisory group, prior to use with the external consumer

advisory groups. This development included finding out COM/Elec's goals

and concerns for the open planning process, identifying issues and attributes,

and developing scenarios to test the process. The more technical work

performed at this stage included collecting and checking data, developing the

computer tools, and automating and integrating the computer modeling

procedure. Both process development and technical work proceeded

concurrently during the project, punctuated by internal advisory group

meetings, and came together in the development of graphical presentation

techniques to show the scenario results and tradeoffs to the internal advisory

group.

3.1 Identifying Issues, Uncertainties and Attributes

The process of developing trial issues, uncertainties and attributes

began at the first meeting of the internal advisory group on June 27, 1989. A

wide set of issues, attributes, uncertainties and options (divided into utility,

consumer, and societal areas) were shown on viewgraphs to facilitate

discussion, and then distributed in the form of a questionnaire. This was

returned by mail following the meeting, and used as a basis for discussion

during the next meeting on July 25, 1989. From the results of the
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questionnaire, the following overlapping issues and uncertainties were

selected as predominant, although not exhaustive;

Predominant Issues

* Cost of Electricity (includes marginal costs, etc.)
* Environmental Air Quality (emissions, regulations, etc.)
* Quality/ Reliability of Electricity
* Fuel Availability and Fuel Use Flexibility
* DSM Potential/Impacts (real vs. expected costs, savings, etc.)
* Regulatory Environment (externalities, siting, regulated

competition, treatment of investments, etc.)
* Availability/ Ability to Use New Technologies (technology

advances, lead times, technology regulation, etc.)

Predominant Uncertainties

* Changes in Fuel Prices and Availability
* Changing Environmental Regulations
* Changes in Peak Demand and Energy
* Interactions between DSM Efforts and Third-Party Generation
* Technology Cost and Availability
* DSM Impacts and Implementability

Although the first meeting included a list of sample attributes, the

second meeting did not focus on the actual choice of attributes. They were

developed during the course of subsequent advisory group presentations and

meeting discusions. Examples of such attributes or measures include

Averagw.Unit Cost of Electric Service (to measure both the supply-side and

demand-side electrical service provided), a rate shock measure (the

maximum percentage change in the unit cost of service), and supply,

demand, -. I total system efficiency measures. In all, over 50 attributes were

calculated for each scenario (see Appendix B for a complete list of these

attributes and the methods of their calculation).
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3.2 Developing Scenarios

The issues and uncertainties raised in the first advisory group meetings

were translated into analyzable form by defining scenarios. As briefly

described in Section 2.2 above, supply and demand options available to

COM/Elec are combined into separate option-sets. These option-sets are then

combined into strategies. Likewise, uncertainties are combined into futures

(each one a possible combination of events), and strategies and futures are

combined into Scenarios.

Following the first internal advisory group meeting on June 27, three initial

supply-side option-sets were proposed at the July 25 meeting, as shown in Figure 3.1.

An initial choice was also made of four demand-side option-sets (No further DSM,

the present Collaborative process, an Extended Collaborative process, and the

Technical Potential DSM limiting case). The predominant uncertainties were also

codified into an initial set of six uncertainties, which are also shown in Figure 3.1.
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Figure 3.1 - Initial Strategies and Futures

Strategies
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Supply-Side Option Sets

Utility Gas NUG Gas Coal and
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Combined Cycle 100 60% 30% 20%
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ICCC 20 - - %

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . .
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U Fuel Prices
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DSM Key Dema.d-Side Progam Costs
L On Budget
H Cost Overrun
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H 20% of Contracted MW
H 60% of Contracted MW

These initial strategies and futures were revised following the second

meeting, and an exchange of correspondence and phone calls. The revised set of

options and uncertainties is shown below in Figure 3.2.
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Figure 3.2 - Revised Strategies and Futures

Futures
Uncertemta are ombined into future

Load KeyLo id Growth
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B Base
H High

IOn Schedule
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D Progam Delay

SS Ke ISVPP i a Pror am Costs

H KO Overrun
Sovmrrns ean be aliculam a swhity analysis without ta rums.

As can be seen the chief differences are in combining two supply-side option-

sets, adding another, and changing the uncertainties. First, the utility and non-

utility gas dependent supply-side option-sets were combined, under the assumption

that generation ownership questions were less important and more amenable to
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post-modeling financial analysis. Combustion turbin2 and combined cycle target

ratios were averaged, and cogeneration reduced. The repowering supply-side

option-set was added to explore the impacts of adding 472 MW of new and

refurbished capacity to three sites otherwise planned to retire. The coal and

cogeneration supply-side option-set adds the technological option of atmospheric

fluidized bed combustion (AFBC), while reducing the share of coal gasification

combined cycle units. This was based on the assumption that catalytic NOx

reduction will increase the cost of coal gasification and make AFBC more

competitive. In addition, the assumption was added to all three supply-side option-

sets that the life of the Canal plant will be extended indefinitely through the end of

the study period (2013).

The range of futures was also modified. The uncertainty for the NUG facility

contract rate was dropped, due to COM/Elec's expressed confidence in its contracting

procedures. The uncertainty for regulatory treatment of DSM investment was also I
dropped, since this was felt to be better left to post-modeling financial sensitivity

analysis. In response to discussion, two new uncertainties were added to cover the

possibilities of schedule and cost overruns for supply-side options, symmetric with

those same uncertainties for DSM options.

Multiplying all 12 option-sets by all 144 futures gives a total of 1728 scenarios.

Since the two uncertaintles for supply-side and DSM cost overruns do not require

additional LMSTM runs, the number of computer simulations drops to 432.

However, two of the DSM option-sets are not subject to delay (No DSM, and

Technical Potential), which reduces the number of total simulations to 324 and total

scenarios to 1296.

From this initiallis of scenarios, 18 runs were performed to provide

preliminary results for the November 20 meeting (1 supply-side option-set, 3 DSM

option-sets, 3 load growth, and 2 fuel price uncertainties). Feedback from this
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meeting confirmed the revised initial set of scenarios, with one addition proposed.

It was requested by Mr. B. L. Hunt, Manager of Integrated Planning that an

additional uncertainty be added to consider both firm and spot prices for natural gas

Rather than double the number of runs, it was proposed to handle this with

sensitivity runs on existing scenarios.

By the February 2nd internal advisory group meeting, a total of 108 runs had

been performed (4 DSM option-sets - 2 with delays, 3 supply-side option-sets, 3 load

growths, and 2 fuel prices) while work on the run automation procedures

continued. These results were presented for review on March 2, just before the first

external consumer advisory group meeting. The number of scenarios, and the

number of simulation model runs required and performed are shown in Figure 3.3,

which summarizes the initial and revised test scenarios as well as that of the final

scenario set whose development is described in Chapter 4.
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Figure 3.3 - Initial, Revised and Final Scenarios

Scenarios Sets Evaluated by the
MIT - COM/Elec Analysis Team

Strategies
Date/Meeting25-Jul 20-Nov 2-Feb 23-Apr 14-May IO-Jul

Demand-Side Option Sets * 4 4 2 2
Supply-Side Option Sets 3 3 10 8

Reserve Margins 2 2
High/Low Sulfur Oil 2

Total No. of Strategies 12 12 40 64

Futures
Date/Meeting25-Jul 20-Nov 2-Feb 23-Apr 14-May 10-Jul

Load/Economic Growth 3 3 3 3
Fuel Prices 2 3 2 2

DSM Option Delay 2 2
DSM Option Cost Overrun t 2 2

DSM Regulatory Treatment t 2
DSM Customer Response 3 3

Supply Option Delay 2
Supply Option Cost Overrun t 2

NUG Dropout Rate 2
Cost of Capital (Interest) t 2 2

Total No. of Futures 96 144 36 36

Scenarios
Date/Meeting2S-Jul 20-Nov 2-Feb 23-Apr 14-May 10-Jul

Total No. of Sceseries 864 1296 1440 2304
Total Rxas Requbvd 216 324 720 1152

Total Ruas Perfaerd 18 108 48 720 1152

Stamags with 4 DSM Options have 2 options which cannot be delayed (No DSM
& Tei ical Penotial) so the number of runs and scearios are reduced by 6/8.

t Effects of these uncertainties can be calculated after the simulations are performed,
and were done selectively as sensitivity analyses.
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3.3 Collecting and Checking Data

The work of collecting and checking data began when the first scenarios

were defined, and continued as they were modified. This painstaking work of

forming the model input is the foundation upon which the numerical

analysis and the resulting credibility rest. For this reason it is necessary not

only to collect the correct data from appropriate sources, but to understand

how the data has been based and how it is to be applied. The primary sources

for the supply- and demand-side data are discussed below. The data are

presented along with their sources in Chapter 5.

Supply-Side Data. The primary source for the supply-side data was the

existing LMSTM supply input for COM/Elec's existing and firmly committed

units. This data was reviewed, and checked with Mr. Paul Krawczyk and

other COM/Elec staff members on the analysis team. During the course of the

study this information was updated as new data became available. Such

updates included new plant capital cost and O&M escalation rates from Data

Resources, Inc. (DRD.

Data for new generating units came from tu major sources. The

primary source was the NEPOOL Generation Task Force (GTF) December 1989

report, and the secondary source was the Electric Power Research Institute's

(EPRI's) 1989 Technology Assessment Guide. Assumptions for the

Repowering and Canal 3 options came from conversations with COM/Elec's

engineers and planning staff, as well as EPRI and MIT sources. Cogeneration

data came from a COM/Elec cogeneration survey, Office of Technology

Assessment technology characterizations, and conversation with the engineer

for the firm 25 MW of cogeneration planned at MIT.
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Fuel prices were taken from the DRI price forecasts prepared for

COM/Elec. As part of the review process, it was judged that the high prices

forecast for natural gas and oil were inconsistent relative to each other.

Modifications to the high natural gas prices are described in Chapter 5.

Emissions data was linked to the fuel price data, but came from a

variety of sources. Average emissions for existing units was taken from the

EPA report AP-42, and data for new units was taken from trade journals and

sources at EPRI, the Northeast States for Coordinated Air Use Management

(NESCAUM), and MIT.

Demand-Side Management Data. The data for the Collaborative and

Enhanced Collaborative option-sets was developed through COM/Elec's

participation in the Collaborative Process with the Conservation Law

Foundation. This participation is reported in the company's Massachusetts

State Collaborative Phase II report of October 1989 (or a more recent version),

and all data entered into the model came directly from an August 1, 1989 draft

of that report. This data for individual DSM programs were extensively

reviewed, including data on load profiles, penetration rates, savings, measure

costs, general and administrative costs, and seasonal savings distributions.

This data was then combined into the various programs making up the DSM

option-sets

Although the Technical Potential option-set, developed as a limiting

test case during the development process, was not used in the scenarios

analyzed for the external consumer advisory groups, it was also a carefully

developed and reviewed option-set representing the maximum amount of

DSM technically available in the COM/Elec service territory. This option-set

was based on work by Mr. John Farley of COM/Elec, an assessment of
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COM/Elec's technical potential by Xenergy, Inc, and work with Mr. Mort Zajac

of COM/Elec. Over 90 DSM measures were applied to 11 different building

types and aggregated into DSM programs. These programs included some

assumptions developed for the collaborative programs, including use factors

and load shapes.

The data for these option-sets were used to modify COM/Elec's own

Icad forecast which already included estimates of DSM savings due to general

market forces.

3.4 Modeling Procedure and Software Tools

Once scenarios have been defined and data collected, the input files are

assembled, and computer simulations are run. Attributes are calculated from both

the input and output data. This section covers the technical flow of the computer

modeling process, and describes the computer programs and tools developed to

automate the file construction, model run, and analysis processes. This process is

illustrated in Figure 3.4, which has been divided into two pages for the sake of

clarity.
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Figure 3.4a - The Modeling Process
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Figure 3.4b - The Modeling Process (Continued)
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The mechanics of this process are laid out step-by-step and discussed in the

run book presented to COM/Elec during a tutorial session in June. This discussion

will expand upon Figure 3.4 by presenting the software programs developed and

tying them to the process sequence.

Demand Side Management Modification and Conversion Programs

The process of constructing the demand-side LMSTM input files began with a

2020 spreadsheet template, into which information about each conservation

technology was entered. All information for the base-case DSM option, the

Collaborative Process Programs, came directly out of August 1, 1989 Phase II report

on that effort. As conservation programs were modeled on an end-use basis, each

program had several conservation technologies, and thus several 2020 spreadsheets

to describe each of them. With these 2020 spreadsheets constructed, simple 2020 J
macros were written to perform the modifications necessary to model the Enhanced

Collaborative option-set and the Customer Responsiveness uncertainty. To

automate this modification process, a VMS command file called SUPERMAC was

written. SUPERMAC accepts a list of the conservation technology spreadsheets to be

processed, and runs a Fortran program called MAC"ITE. MACRITE, in turn, writes

a long 2020 macro based on the file list and one of the task-specific macros

mentioned above. When MACRITE has finished, SUPERMAC regains control and

tells the VAX to run the long 2020 macro that was just written. The resulting files

are appropriately modified DSM technology-specific spreadsheets.

The 2020 template was used for data entry because of its flexibility and its

familiarity to COM/Elec personnel. Before it could be used however, the data in

each of the spreadsheets had to be converted into the specific format required by

LMSTM. This was accomplished in two steps. First, a process very similar to that
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described above was used to export data in the spreadsheets into a text format. For

this a command file called EXPORT was used. EXPORT accepts a list of spreadsheet

names and calls EXPORT.FOR, a Fortran program which writes a 2020 macro based

on the list of spreadsheets. That macro successively reads each spreadsheet into 2020

and calls a very brief macro which has the task of exporting the data in each

successive spreadsheet. With the data for each DSM technology now in text format,

a Fortran reformatting program called DEMAND-CDF.for was used to compile the

technologies into blocks C, D, and F of the LMSTM demand input file. The

remaining blocks, which are invariant from scenario to scenario, are appended to

blocks C, D, and F just before each scenario is run.

The Prespecified Pathway Program

Most of the programs developed to perform or automate scenario analysis are

straightforward and do relatively simple jobs without any hidden assumptions.

However the Prespecified Pathway (PSP) program which does the capacity planning

for each scenario contains an algorithm which should be understood by the user in

order to have confidence in the simulation results. This section therefore presents

the PSP program and how it operates at a more detailed level than the rest of this

section.

Planning the number and on-line dates of new units in the prescribed ratio

required to meet projected loads plus a reserve margin would require a prohibitive

effort if dome individually "by hand" for each scenario. For this reason, the PSP

program was developed. It emulates the process of planning new capacity,

committing and cancelling new units in the correct amounts. The PSP algorithm is

shown in Figure 3.5 and further discussed below.
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Figure 3.5 - PSP Algorithm Flowchart

Read list of run names.
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For each PSP run, the program first reads the actual historical loads for the

near past and the expected peak loads, based on load growth and adjusted for the

demand-side option-set and related uncertainties. The program then reads the

expected trajectory of existing and committed new capacity, and the new capacity

technical characteristics and target ratios.

In the first planning year, PSP finds the average growth rate for the previous

three years, and projects load growth at this constant rate over the remainder of the

study period. It then plans capacity to meet this projected demand. When this is

done, PSP advances to the next planning year, moves the three year running

average forward one year, and recalculates the expected demand based on this

revised growth rate. PSP plans to meet this revised demand plus a reserve margin,

committing or cancelling additional units as required. In this way, the PSP emulates

the way utility planning is influenced by the recent past, and preserves the effects of

random, unexpected changes in load growth. If load grows unexpectedly, only units

with low lead times can be built to meet demand, and if load drops only those units

which have not progressed too far can be cancelled.

Utility load forecasts tend to be much smoother than actual demand,

especially further out in the forecast period. In order to model the effect of unsteady

growth, the load forecast can be randomized by varying it around the projected

trend. However, the analysis team judged that the COM/Elec load forecast already

varied suffMiently so that this step was not necessary. If the analysis team has

overriding expectations regarding load growth, the 3 year running average can be

bounded by minimum and maximum limits. This was done for the final set of 1152

runs to limit the impact of the 18.4% historical growth between 1986 and 1987.
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As the PSP plans supply-side resources from the current planning year

forward, the commitment and cancelling of plants takes place in two stages as

follows:

Cumulative Ratioing - Future units are added or cancelled from the pathway

to attain the cumulative new MW target ratios for each technology as read

from the input file.

Annual Ratioing - If cumulative ratioing cannot commit or cancel sufficient

capacity, then technologies are added or cancelled in any one year based on

their relative ratios with other technologies available in that year. For

example, if the only technologies available in a given year are combustion

turbines (target ratio 25%) and combined cycle units (target ratio 25%), the PSP

will attempt to build or cancel 50% of the required MW using each

technology. Commitment or cancellation priorities can be specified to

determine the order in which each technology is considered under this

procedure.

To simulate limited gas availability, the PSP allows an upper limit to be

placed on gas-fired capacity that may be added in each year. The limited availability

of new technologies can also be simulated by specifying a cumulative limit for each

technology in each year.

Once the PSP planning process is complete, the program writes a file that

gives the number of units committed and the reserve margins for each year. A line

is also written to a summary output file which records the total number of units

built and reserve margin data for the entire planning period.
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Unit Trajectory Construction Program

As shown in Figure 3.4, a program is required to assemble the unit

description input file based on the PSP capacity trajectories determined. A Fortran

program called BUILD-GEN was written that reads the PSP unit trajectory, and

repeatedly copies generic unit descriptions to an output file, inserting appropriate

names and on-line years for each new unit. Unit descriptions, and so the unit

trajectory files, are in the form of spreadsheet output text files, which must next be

converted to LMSTM input files.

Reformatting Programs

In addition to the new unit trajectory data, the reformatting programs must

also combine the correct group definitions, system data, fuel prices, emissions data,

existing and fixed-size unit descriptions, and OP-4 reliability unit descriptions. Four

Fortran programs were written to perform these conversions to LMSTM format

(SUPPLY-MISC, SUPPLY-GD, SUPPLY-BF, and SUPPLY-UNITS). A Fortran

program was also written (COM-WRITE) that reads each scenario name, parses it to

choose the correct input files, and writes a VMS command file (a corn file) that

automatically runs the four reformatter programs, appends their outputs into a

single LMSTM input file, and deletes all intermedi 3 files.

LMSTM Automation Programs

In order to automate the process of running the LMSTM model, a Fortran

program was written called COMRIT. This program reads a list of run names and

writes a VMS editor (EDT) command file. This EDT cornm file repeatedly edits a VMS

corn file template, and writes a series of VMS cornm files. These corn files give

LMSTM the correct input and output files, run the LMSTM model, run a Fortran

program to read the output data, and then submit the next LMSTM run.
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Data Extraction and Reduction Programs

Once the LMSTM model runs have been performed, it is necessary to extract

the necessary data from the input and output files, and reduce it for attribute

calculations. The Fortran program FILEPROC takes the group, fuel, and unit input

files, processes these files and condenses the attributes into a single output file. In

order to run this program repeatedly, a Fortran program called RUN-BATCH was

also written to read a list of LMSTM run names and write the appropriate com file

to run the file processor. Due to the time required for FILEPROC to read all the

input data, a second program was written (FILEPROC2). This variation processes

related groups of runs to reduce the redundancy to reading some files over and

over.

Data from several output files created by LMSTM during each run are

extracted by a Fortran program called READER.FOR. This program does no attribute

processing, but simply locates and reads pertinent data, then stores it in a condensed

data file which is in a convenient form for importation by 2020.

Attribute Processing Program

The calculation of most of the final attributes for each scenario is performed

in 2020. As with input preparation and run processing, attribute processing is highly

automated. A command file called GRINDER accepts a filename list telling it which

LMSTM runs to process. It then runs a Fortran program which writes two 2020

macros called GRINDER.C20 and DBASE.C20. GRINDER.C20 first imports the

condensed output data file for a given run (i.e. the file created by READER.FOR) into

2020, and then calls a macro named NEWCHUG.C20. NEWCHUG is the real

workhorse of the process, first locating and appending the corresponding FILEPROC

data (which is condensed data from the LMSTM input files), and next performing a
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series of calculations based on the imported data. Once the attributes have been

calculated, they are compiled into an "attribute vector" at the bottom of the

spreadsheet. Each LMSTM run is processed in turn, and a large spreadsheet

containing all pertinent data and attributes is saved for each run. When the last run

has been processed, control briefly transfers back to GRINDER, which then calls

DBASE.C20. The task of DBASE.C20 is simply to collect the attribute vectors from

each spreadsheet and place them into a single attribute database. The final step prior

to statistical analysis of the data was to convert the database into the text format

suitable for use by standard statistical packages.

3.5 Statistical Analysis Techniques

Once the computer modeling runs have been completed, it is necessary to

interpret the mass of results. The theoretical questions that guide this interpretation

have been covered in Chapter 2. During this part of the open planning

development process methods were created to answer these questions using a

variety of statistical tools.

The first issue for the statistical analysis was the choice of a software package,

and whether it should be mainframe or microcomputer based. The two primary

considerations are the ability to handle a sufficiently large database, and ability to

produce the desired results and graphics on flexible subsets of the data. The analysis

team chose to use Systat on microcomputers. An important secondary

consideration is that the software should have the capability of reading or recording

macros so that related groups of graphs can be easily produced (e.g. all attributes vs.

all uncertainties). Graphs should also be easily imported into a graphics package for

easy conversion into presentation quality plots.
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Once a statistics package was chosen, graphs were produced for an exhaustive

set of data relationships. The graphs produced were boxplots and tradeoff

scatterplots (both described in Chapter 2). Because statistical packages (like Systat")

will not parse the unique scenario name given in each row of the database, it was

necessary to create other columns in the database which contained labels indicating

supply-side option-set, future, etc. using subsets of the scenario name. Using these

labels it was possible to group the results as required. In some cases it was also

necessary to create subsets of the master database for analysis (e.g. to analyze three

futures - best, worst, and highest-interest - out of all eighteen).

Throughout the process of both single and multiple attribute graphical

analysis, it is important to keep asking, "Does this result make sense?", because it is

at this point that errors in the analysis process first become readily apparent - if you

are looking for them. Errors in unit conversions, confusion of input files (e.g. a low

versus a high sulfur oil run), etc., can all become evident when the pattern of results

is inconsistent. Counter-intuitive results can lead to real and important insights,

but they must be the result of an understandable underlying story, rather than an

overlooked error.

3.6 Presentation and Elicitation Techniques

Aftw developing, modeling, and analyzing scenarios it is necessary to

present the results to the advisory group and elicit thdir responses. As part of

the open planning development process with COM/Elec's internal advisory

group these presentation and elicitation techniques were also developed.

During the series of advisory group meetings different results were presented

in different graphical formats to judge whether the correct balance was struck
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between information density and clarity of presentation. In particular, after

the boxplots used by the analysis team were presented to the COM/ Elec

internal advisory group, it was judged that these would be too complex for

presentation to a less utility-sophisticated external consumer advisory group.

Instead column charts and arrow charts were developed to simplify

presentation (arrow charts simply use up or down arrows to identify linked or

countervailing trends in a non-quantitative way). These presentation

methods are used to discuss results in both Chapters 4 and 6.
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4.0 Appling the Open Planning Process

This chapter describes the formation of the external consumer advisory

groups, the conduct of the meetings, and the interactions, feedback, and conclusions

obtained. It also discusses in some detail how the issues and uncertainties

concerning these groups were developed into the final set of scenarios, modeled,

and how these scenarios differed from the initial set of scenarios developed with the

COM/Elec internal advisory group. This final set of scenarios is described in detail

in Chapter 5.

4.1 Organizing the Advisory Groups

On November 7th, 1989, COM/Electric, MIT, and the public relations firm of

Moore and Isherwood met to organize the logistics of forming the external advisory

groups. For this initial experiment, it was decided that there should be four

advisory groups, one for each of the company's service districts: Cambridge,

Plymouth, New Bedford, and Cape Cod. Each group would have three meetings,

about two hours in length, about three weeks apart, facilitated by a member of the

MIT team. The goal was to have about a dozen regular participants in each advisory

group. Th public relations firm began developing letters of invitation, while

COM/EDcic's district service representatives identified a "cross section of leading

citizens" who should participate.

The next internal advisory group meeting was on November 20th, 1989. The

focus of that meeting was on an initial set of results: eighteen scenarios exploring

one supply-side option-set, three demand-side option-sets, three load growth

uncertainty values, and two fuel price uncertainty values. The meeting had two
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goals, first, to check the credibility of the results with the COM/Elec internal

advisory group, and second, to discuss techniques for communicating technical

information to non-technical audiences.

Following minor technical comments by COM/Electric personnel, the public

relations experts made suggestions about ways to get MIT's technical message across

to a lay audience. They stressed that the meetings must be enjoyable to the

participants, and recommended using a pre-packaged video or slide show so that

interruptions would not dilute the presentation's desired impact. They warned that

the audience was likely to be intimidated by the MIT speaker, and that the initial

presentation should therefore use non-technical language, and be as accessible as

possible.

The detailed objectives of the three external advisory group sessions were

spelled out in a meeting with the vice president in charge of the project at

COM/Electric on January 5th, 1990. These objectives are listed in Table 4.1.
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Table 4.1 - Objectives

SESSION I
* Introductions
* Describe Open Planning Concept
* Explain COM/Electric's Desires for Open Planning
* Outline Known Issues of Importance
* Discuss Base Resource Plan and Alternatives
* Identify Major Uncertainties
* Elicit Consumer Issues and Concerns
* Outline Work to be done for Session 2

SESSION 2
* Present Composite Results of Outlined Work
* Identify Tradeoffs
* Revisit Issues and Concerns
* Outline Additional Work for Session 3 to Develop Composite Plan

SESSION 3
* Present Composite Plan
* Seek Areas of Consensus
* Evaluate Project

The initial sessions were prefaced by a mailing providing the overall agenda,

a note on the goals of open planning, and newspaper clippings on recent electric

power issues involving COM/Elec. It was agreed to develop a slide show for the

first meetings to cover basic background information on COM/Electric, the concepts

and vocabulary of the open planning process, and examples of the types of tradeoffs

to be confronted in subsequent meetings. The remainder of the first meetings

would be interactive, with a facilitator eliciting issues, uncertainties, and possible

options from the advisory group members, followed by a prioritization of the issues.

The remaining meetings would rely on viewgraphs instead of slides to convey

information because a quicker turn-around time was required.

From a planning perspective, the points that COM/Electric hoped to get across

in the external advisory group sessions included: (1) the company's desire to open
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up its planning process; (2) the company's obligation to serve all of customers' loads;

(3) the characteristics of the available options; (4) the existence of multiple decision

criteria: economics, environment, level of service, etc.; (5) the need for the company

to make tradeoffs among criteria when choosing options; and (6) the company's

desire to incorporate the customers' preferences regarding tradeoffs.

Related factors looming on COM/Electric's horizon included a new resource

plan to be filed with the Energy Facilities Siting Council and the Department of

Public Utilities, the need to develop a sound environmental externality evaluation

approach, and the impending switch to all resource bidding for new increments of

capacity.

On February 2nd, 1990, MIT presented a dry run of the slide show to the

COM/Electric internal advisory group, based on the results of the 108 scenarios

calculated to date. These were then turned into finished slides. A month later MIT

presented a detailed technical exposition of these results to the internal advisory

group; giving them their last chance to catch technical errors. The following week

the first external advisory group sessions began.

The citizens that COM/Electric invited to the meetings came from a variety of

backgrounds (see participants' list in Appendix A). Their letters of invitation

included the overview of the open planning project as shown in Figure 4.1.
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Figure 4.1 - Overview of the COM/Electric Open Planning Project

4.2 First Meetings: Introduction, Prioritizing Issues, and Brainstorming

for Options

Although the schedule, presentation, and meeting organization were similar

for the four advisory groups, each of ther. quickly evolved in a unique direction.
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This could be seen in the attendance, issues raised, pattern of discussion, and final

outcome. The population of the COM/Electric service territory was clearly not

homogeneous, even for the small and non-random sample participating in this

experiment.

In Cambridge, eight of the ten citizens who had accepted invitations attended

the first meeting on March 5th, 1990. These included a state representative, and

spokespeople for the City of Cambridge, neighborhood assocations, major

industries and institutions, the Chamber of Commerce, and anti-development

interests. All of the attendees were active in the discussion, but three were

especially vocal. Out of a total of 36 comments made, they made seven or more

comments each, compared to a group average of 4.5. These three represented

Polaroid, the City of Cambridge, and the Hastings Square Neighborhood

Association. The highest priority issue for the group was environmental impacts,

with electricity cost and reliability tied for second place. Participants were asked to

identify their most important issues, based on a show of hands in which each

participant was allowed two votes. See Tables 4.3, 4.4, and 4.5 for a complete list of

issues, uncertainties, and options generated at these meetings.

The Plymouth meeting, held on March 6th, 1990, the evening of the year's

worst snowstorm, had low attendance, with only four attending out of the eleven

who had accepted invitations. These four included the state representative, a

representative of the Board of Selectmen, president of the local newspaper chain,

and president of a local bank. Again, all of the attendees were active in the

discussion, although one person (from the Board of Selectmen) was particularly

vocal. This person provided ten of the 27 comments, compared to a group average

of 6.75. Reliability was the only issue that garnered more than a single vote (out of

2x4=8 possible). Environment, cost, energy education, and the value of commercial

demand-side management subsidies each received one vote.
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New Bedford enjoyed a higher turnout than expected at its meeting on March

8th, 1990. Although only six people had accepted invitations, ten showed up. These

included representatives of the mayor's office, other nearby municipal

governments, local industry, local newspapers and television, the United Way, a

county development council, and a cranberry grower. Participation in the

discussion was much more uneven, with individuals contributing from zero to

seven comments each, for a total of 31 comments. The most vocal person was the

president of a local industry (whose electricity costs had recently increased), all of

whose comments were about different aspects of electricity cost: its average level,

volatility, rate structures, the resulting competitive position of the region, and the

corporate productivity or operating efficiency of COM/Electric. Not surprisingly, the

highest priority issue in the voting was electricity cost, followed by environmental

impacts. The credibility and operating efficiency of the utility tied for a distant third

place.

The first meeting in Cape Cod was on March 14th, 1990. Seven of the ten

people who had accepted invitations showed up. They included a state senator and

his aide, and representatives of the regional planning and development

commission, a hospital, a bank, a retail chain, and the Chamber of Commerce. This

group enjoyed the most active discussion among the four initial sessions, making 51

comments, an average of 7.3 per person. Three participants were especially vocal:

the retailer made fifteen comments, many revolving around adequacy of supply; the

state senator made eleven, covering a range of company credibility, public health,

and policy issues; and the planning commission staffer made nine, focusing on

environmental impacts and innovative technical options. The group had a

thorough discussion of the various levels of environmental impacts - local,

regional, and global - and their different types - aesthetic impacts on sites,

emissions, waste disposal, electromagnetic fields, land and water use - as well as
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expressing concern for the uncertainties, such as threshold effects, associated with

many impacts. In voting, they ranked environmental issues as their highest

priority, with reliability and Company communications efforts equally sharing the

remaining votes. Unlike the other groups, cost issues received no votes on the

Cape.

All of the meetings were orgarized in a similar manner, beginning with a

slide show (see Table 4.2 for the script). The slides served to introduce the

participants to the project, COM/Electric, and the open planning process. It also

discussed the desired results, and provided examples of options, impacts, and

uncertainties. It closed with a request for input from the group. Using a blackboard,

the facilitator led the group in identifying electric power-related issues of concern to

them, followed by uncertainties that affected these issues, and finally options that

COM/Electric could bring to bear over the next twenty five years to address the

issues. After the brainstorming session, the facilitator went back and asked the

group to prioritize the issues by voting for their favorites. Uncertainties and options

were not prioritized.

4-8



Table 4.2 - Slideshow Script for First COM/Electric Advisory Group Meetngs

Segment Slide TitleiContents Point/Bridge
No.

n tro to 1 The Open Planning Process /Boardroom

Project and 2 COM/Elec-MIT Logos MIT Analysts-COM/Elec Initative

Participants 3 COM/Elec Service Terntones & Companies Dealing w/ Complex Svsterns

Intro to 4 The Open PLanning Process/Plaun Need to Address the Complexityv

Open S Componens-ssues

Planning 6 Components- Uncertainties

Process 7 Components-Opons
8 Components-All Together
9 [ssues Uoals/Concerm
10 Issues-Cost of Electrinaty
11 Issues-Envronmental Impacts
12 Issues-Rehability, etc.
13 Uncertainties Consanlts/ Concerns
14 Uncertainties-Fuel Prices
15 Uncertanties-Load Growth
16 Uncertainties-many others...
17 Options
18 Options-DSM
19 Options-Supply-Side
20 Options-Both/Strategies How to Implement?

21 Analysis Process Many, Many Scenarios

22 Issues-All How to Measure?
23 Cost of Electncity-Measures
24 Environmental Impact-Measures
25 Reliabdity-Measures

Results from 26 What are the Trade-Offs?/Boardroom What knd of results do we get?

Such a Process 27 Three Sample Classe-Cost/Environ./Uncer. Need to review set of Options

What are the 28 DSM Prop~ r Lots of other options viewed...

options? 29 Current Prorams Actual

30 Additional Programs Feasible
31 No Proranm Comparative

32 Theoretical Maximum Hypothetical/Comparative

33 Three Sample Classe-Encore

Cost Impacts 34 Cost Impacts

35 DSM Invzwmnt Up/TouI Cow Down
36 Unit Coebf Up/Total Use Down
37 Monthly Bill Down ...but only if you Conserve

nvironmesntal 38 EIronmenWa Impect

Impacts 39 Fewer Plant Sites-Bullet
40 Fewer Plant Sites-Graph
41 Mbed Emission-Bullet
42 CO2 Down-Bullet
43 SO2 Can Incresse Bullet
44 CO2 & SO2 Graph DSM doesn't pollute.

45 Why Don't Emissions Decreaserphhic but deter Supply-Side effciency

46 C02 & S02 Graph DSM doen't ollute...

Ef of47 Effects of Uncrtunie Driven by Fuel Price Forecast

Uncertant es 48 Load Growth-n. Nat.GC /Eficiency/Env.Q and Relative Fuel Prices

Planning for 49 Planning for the Futur

the Future 50 Require your input
51 Prioritize sues/Concerm
52 Develop Strategie
53 End-Issue/ Uncertainites/Optiom ?? Open up discusmio -.
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After the initial round of advisory group meetings was finished, the analysis

team aggregated the results to guide them in preparing for the next meetings. Issues

and uncertainties were divided into those that could be analyzed in detail, and

others for which the team could only summarize existing research. Across all

meetings, many of the same issues surfaced without prompting from the facilitator,

but they were often accorded different priorities. As Table 4.3 shows, issues that

were highly-ranked in most of the groups included environmental impacts,

electricity costs, and reliability of supply. These formed the basis for the analytic

work. For other issues, such as regional competitiveness and the health effects of

electromagnetic fields (EMF), an information package containing short summaries

and excerpts of articles was prepared. The high priority issues guided the choice of

options to be modeled, and the attributes to measure those options' outcomes.

Many of the same uncertainties surfaced in each of the four meetings (see

Table 4.4). Based on the aggregated input from the groups, the analysis team

modeled the following uncertainties in detail: economic and electricity load growth,

fuel prices and availability, and customer response to utility conservation measures.

Likewise, a limited set of options were repeatedly suggested (see Table 4.5).

The analysis team combined the issues and uncertainties into modeling

scenarios, incorporating the options suggested into the strategies formed. Using the

integrated modeling setup that had been developed over the previous year, and the

information on options and uncertainties that had been explored to date, the

analysis team was able to quickly model new strategies reflecting the aggregate

interests and concerns of the four advisory groups. During the one month between

the first and second sets of meetings, the group defined the new scenario set,

acquired data needed for accurate modeling, and ran the first 48 scenarios.
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Table 4.3 - Issues

Resuks of Discussions with COM/Elec Consumer Advisory Giroups during March 5 - 14, 1990.
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Table 4.4 - Uncertainties

Results of discussions with COM/Electric

Consumer Advisory Groups during March 5 - 14, 1990.
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Table 4.5 - Options

Results of discussions with COM/Electric

Consumer Advisory Groups during March 5 - 14, 1990.

Analyze

Analyze

A nalyze

A nalyze

Analyze

Analyze

Analyze

Summarize

Analyze

Renewables

Conservation
and Load
Management

Nuclear

Clean Coal

Natural Gas

Non-Utility
Generation

Power
Purchases

Wheeling/Access
Restructuring/

Competition

Repowering

Summarize lOthern

Renewables

Conservation
and Load

Management

Nuclear

Clean Coal

Natural Gas

NUsGa/IPPs
Cogeneration

Power

Purchases

Wheeling

Repowering

Scnrbbs on

existing plants
Do nothing
Diversity

Location
Competition

PV, Wind, Local

Hydro,Trash

Expanded
Conservation
and Load

Management

HVAC subsidies

Nuclear

Clean Coal

Cogeneration

Canadian hydro

Repowering

Diversity

Trashburners

Conservation
and Load
Management

Innovative rates

Clean Coal

NUCs/IPPs
Cogeneration

Power

Purchases

Repowering
w/coal

Competition
I --

Renewables

Conservation
and Load
Managerrent

Innovative rates

Electric Heat-
Fuel Substitut'n
Standards

Nuclear

Clean Coal

Natural Gas

Power

Purchases

Wheeling

Repowering

Competition
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On April 4th, 1990, a mailing was sent to the participants providing a

schedule of the next meetings, a summary of issues, uncertainties, and options

discussed in the initial meetings, and fact sheets about selected options. The mailing

also identified the strategies that would be modeled.

4.3 Second Meetings: Interim Results, Prioritizing Attributes and

Uncertainties

The second round of external advisory group meetings began in Cambridge

on April 23rd, 1990. The purpose of these meetings was to review the overall

concerns expressed by the four consumer advisory groups, to present to each group

the issues, uncertainties, and options being included in the scenario analysis, and to

examine the results for a subset of the scenarios in order to familiarize the

participants with various technical concepts.

The predominant issues identified by the four consumer advisory groups

were broken down into four general areas: environmental quality, cost of electric

service, reliability of electric service, and the efficiency of electric service provision.

Sub-issues, and the attributes used to measure them are listed in Table 4.6.
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Table 4.6 - Issues and Attributes for the COM/Electric Project

Issue
Sub-lssue ............................. .... ... . Attributes. or M easures

Environmental Quality
Acid Rain.................................... SO02, NOx, and Particulate Emissions
Ground Level Ozone/Smog ......... NOx Emissions
Global Warming ................ C0..............CO2 Emissions
Land Use .................................... No., Size and Footprint of New Powerplants
Nuclear W aste.............................. High Level W astes

Cost of Electric Services
Level of Cost.................................. Total and Unit Cost of Electric Services
Volatility of Costs ............ Max. Ann. Increase in Cost of Service

Reliability/Adequacy of Electricity Supplies
Frequency of Shortages ............ Hours in NEPOOL Emergency Operating Levels

Efficiency of Electric Service Provision
End-Use Efficiency.....................Percent Reduction in Peak Load
Supply-Side Efficiency..............Percent Increase in Powerplant Efficiency
Total System Efficiency ................. Product of End-Use and Supply-Side Reductions

The predominant uncertainties identified by the four consumer advisory

groups were broken down into three areas: low, base and high (L, B & H)

economic/load growth, low and high (L & H) fuel prices, and low, base and high (L,

B & H) customer response to demand-side management programs. Changes in

capital costs were relegated to secondary status by the analysis team and modeled

with base values only, with possible changes for future sensitivity runs. Combining

these uncertainties gives a total of 18 futures.

Likewise, the issues and option-sets identified were formulated into 8 supply-

side option-sets and 2 demand-side option-sets. The supply-side option-sets could be

built to either a base or high target reserve margin, and operated using either low or

high sulfur Oil 6 where appropriate. For the consumer aCvisory group meetings,
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only two supply-side option-sets were modeled using low sulfur oil, giving a total of

40 strategies and a total of 720 scenarios.

Results from these runs strongly indicated benefits in S02 emissions, by

switching from high sulfur fuel oil to low sulfur fuel oil. As a result, this fuel

substitution was also done for the other six supply-side option-sets. The additional

432 runs required were performed during the months of June and July, bringing the

final total to 64 strategies and 1152 scenarios. This final set of strategies and futures

is shown in Table 4.7 below.

I
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Table 4.7 - Final Strategies and Futures

Strategies
Option Sets are combined

into Strategies

Supply Option Sets
(High, Low Sulfur Oil)

A, B - Gas Dependent
C, D - Repowering
E, K - Gas & Coal
F, L - Coal Dependent
G, M - Coal & Repowering
H, N - Canal 3 & Gas
I, O - Nuclear & Gas
J, P - Photovoltaic & Gas

Demand Option Sets
IC - Collaborative Process E - Enhanced Collaborative

Combined Strategies (key)
High Sulfur Low Sulfur High Sulfur Low Sulfur

AC BC AE BE
CC DC CE DE
E KC EE KE

. LLC FE LE
GC MC GE ME
HC NC HE NE
IC OC IE OE
JC JE PE

Note: All Supply-Side Options Sets were modeled with both low (23%) and high (30%) reserve margins.

Futures
Uncertainties are combined into futures.

Load Key Load Growth DS
L Low
B Base
H High

Fuel Key Natural Gas Price Ra
L Low
H High

Note Cost of capital was left as an uncertainty for sensitivity analyo

M Key DSM Responsiveness
L Low
B Base
H High

te Key Cost of Capital

H Hig

These strategies and futures incorporate a number of significant changes from

the strategies and futures devised in cooperation with the COM/Elec internal

advisory group. These revisions and additions include the following;

1) Technological Supply-Side Option-Sets. The three existing option-sets

were modified, two new option-sets were added as modified combinations

of the existing sets, and three new options (listed below) were added.
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a) Existing Options. The chief change here was a realistic reappraisal of
cogeneration potential in COM/Elec's service territory, as compared to the
amount of cogeneration built in previous runs. A comparatively small,
fixed amount of cogeneration was estimated based on past COM/Elec
studies, and added to all option-sets. The relative technology ratios were
adjusted for the Gas Dependent, Repowering and Coal & Cogeneration
(now just Coal Dependent) option-sets, keeping a minimum of 20%
combustion turbines to ensure adequate peaking capacity. In particular,
one coal technology option was dropped (Atmospheric Fluidized Bed
Combustion), because it was slightly more expensive than coal gasification
combinc. cycle units with no real compensating advantages.

b) Modified Combinations. To determine the effect of intermediate
combinations of existing option-sets, the Gas & Coal and Coal &

Repowering options sets were added. Since Repowering is a large option

of fixed size, the relative contribution of combustion turbines for peaking
purposes was increased to 40% of the additional capacity required.

c) New Options. In response to requests from the advisory group, two
new technologies (photovoltaics and nuclear) were added. The nuclear

option was chosen to be an Advanced Light Water Reactor, with the

reduced lead time and costs deemed necessary for the option to be
seriously considered. In response to a suggestion by Mr. B. L. Hunt,
Manager of Integrated Planning, a hypothetical option converting the

Canal units I and 2 from oil to coal was also added. This option was

referred to as Canal 3. All these new options are described in detail in

Chapter 5.

2) Operational Supply-Side Options. In addition to the above changes in
generation technology choices, two new construction and operation

supply-side options were also added.

a) Reserve Margin. In order to see the effect on reliability and service cost,

this option of building new capacity to both low (current) and high reserve

margins was added for all technological supply-side option-sets.
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b) Low Sulfur Oil. Prior runs emphasized the fact that generation by
Canal (COM/Elec's only Oil 6 fired plant) has a major effect on S02
emissions. For this reason two supply-side option-sets were repeated (Gas
Dependent and Repowering), substituting low sulfur Oil 6 (0.5 %) for the
current high sulfur Oil 6 (2.2 %).

2) DSM Option-Sets Reduced from Four to Two. Due to the results of the
previous analysis, the Collaborative Process (base case) was retained. The
Extended Collaborative process was upgraded slightly to the Enhanced
Collaborative set, and the No DSM and Technical Potential Cases (used for
initial comparison cases) were eliminated.

3) Uncertainties Changed. Based on the previous analysis, several
modifications, additions, and subtractions were made to the existing
uncertainties.

a) Fuel Prices. Low, base and high fuel prices were initially used for all

fuels. In order to study the effect of changes in natural gas availability,

base fuel prices were used for all fuels except natural gas, and the price for
natural gas was varied between base and high forecasts. This was
combined with seasonal use of both spot and firm natural gas for dual-

fueled combustion turbine and combined cycle units, as suggested earlier

by Mr. B. L. Hunt, Manager of Integrated Planning.

b) Uncertainties Reduced. Due to the very small effect of the Supply
Construction and DSM implementation delays (relative to the load

growth and fuel price uncertainties), these two delays were eliminated

from the analysis.

c) Cost of Capital. The supply-side and DSM 50% capital cost overrun

uncertainties were eliminated, and replaced with an uncertainty to

investigate the impacts of variable interest rates and the cost of capital.

Due to time constraints, this uncertainty was left to be run as an

additional, limited sensitivity run.
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d) DSM Response Added. In order to study the effect of various customer

responses to the different levels of DSM effort, this uncertainty was added.
Customer response was modeled as 50% below expected response, 100% of

expected response, and 50% above expected response.

The progression of these changes from the initial, internal advisory group

scenarios is shown in Table 4.8, along with dates for model runs and meetings.

(This table is repeated from Chapter 3 which details the development of initial

scenarios by the COM/Elec internal advisory group.)
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Table 4.8 - Progression of Scenario Development

Scenarios Sets Evaluated by the
COM/Elec - MIT Analysis Team

Strategies
Date/Meeting 25-Iul 20-Nov 2-Feb 23-Apr 14-May 70-Jul

Demand-Side Option Sets 4 4 2 2
Supply-Side Option Sets 3 3 10 8

Reserve Margins 2 2
Hi/Lo Sulfur Oil 2

Total No. of Strategies 12 12 40 64

Futures
Date/Meeting 25-Jul 20-Nov 2-Feb 23-Apr 14-May 10-Jul

Load/Economic Growth 3 3 3 3
Fuel Prices 2 3 2 2

DSM Option Delay 2 2
DSM Option Cost Overrun t 2 2

DSM Regulatory Treatment + 2
DSM Customer Response 3 3

Supply Option Delay 2
Supply Option Cost Overrun t 2

NUG Dropout Rate 2
Cost of Capital (Interest) t 2 2

Total No. of Futures 96 144 36 36

Scenarios
Date/Meeting 25-Jul 20-Nov 2-Feb 23-Apr 14-May 0l-Jul

Total No. of Scenarios 864 1296 1440 2304
Total Ruus Required 216 324 720 1152

Total Runs Performed 18 108 48 720 1152

Strategies with 4 DSM Options have 2 options which cannot be delayed (No DSM
& Technical Potential) so the number of runs and scenarios are reduced by 6/8.

t Effects of these uncertainties can be figured after runs are done, and were performed
selectively as sensitivity analyses.
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A large portion of the second meetings was devoted to bringing the

participants up to speed on the details of the scenarios as they were modeled. Thus

time was spent exploring the characteristics of the individual supply-side and

demand-side options, as well as proportions by which they were combined into

option-sets. These characteristics and combinations are covered in Chapter 5 -

Description of Final Scenarios, with details in Appendix C.

Results from an initial set of 48 scenarios provided the vehicle for

familiarizing the participants with the behavior of COM/Elec's system, and with our

methods of presentation (results and conclusions for all 1152 scenarios are presented

in Chapter 6 and Appendix D). Using a pared down version of the data analysis

strategy described in Chapter 2, we first presented single attribute results. For

example, Figure 4.2 shows the performance of selected strategies along the attribute

of sulfur dioxide emissions, given uncertainty about gas prices and customer

responsiveness to demand-side programs. This quickly revealed that clean coal was

the most robust supply-side option-set, because it was impervious to uncertainty

about natural gas prices. While the minimum SO2 values were similar across

strategies, the maxima for strategies with gas were higher than those for clean coal.

On the demand-side, the Enhanced DSM option-set showed slight benefits over the

Collaborative one when coupled with repowering or gas/coal on the supply side.

However, increased DSM worked against the clean coal supply-side option-set,

leading to higher emissions for reasons that will be explained below. It appeared

relatively neutral when combined with a gas-dependent supply-side option-set.

The factors influencing sulfur dioxide emissions (see Figure 4.3) helped to

explain this story. As in the New England study, high gas prices led to switching

towards dirtier, cheaper fuels such as Oil 6 in the loading order of powerplants.

However, since coal was always cheaper than either gas or oil, the coal-dependent

strategy was not dramatically affected by one level of gas prices. Further, clean coal
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plants were able to displace a significant amount of existing base load Oil 6 capacity

in the loading order, making coal the new base load technology. On the demand

side, the Enhanced option-set in the gas-dependent, repowering, and gas/coal cases

displaced new intermediate loaded power plants, never reaching the existing base

loaded plants that primarily burned SO2-producing Oil 6. However, in the clean

coal case, DSM displaced some of new base loaded coal plants, preventing them

from coming on line and reducing the use of existing Oil 6-fired capacity.

The participants were also introduced to bivariate scatter plots, or tradeoff

curve graphs, which showed that choices among strategies often involved tradeoffs,

and that uncertainty affected the relative attractiveness of different strategies.

Figure 4.2 - COM/Electric Sulfur Dioxide Emissions for a Subset of Strategies

Sulfur Dioxide Emissions - By Strategy

800000

600000
SO2Emisio Range of Uncertainty

(Tons) M Minimum Value
400000

Coil. Enh. Coll. Enh. Coll. Enh. Coll Enh. Demand-Side Option Set

Gas Repowering Gas/Coal Clean Coal Supply-Side Option Set
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Figure 4.3 - COM/Electric Factors Infiucncing Sulfur Dioxide Emissions

To the surprise of those analysts who had worried that quantitative

information would be incomprehensible, the participants asked the types of
questions that suggested that they understood the presentation. For example, in the
Cambridge meeting, the head of a neighborhood association remarked after
reviewing the SO2 information shown in Figures 4.2 and 4.3, that "when I save a
kilowatthour through conservation, it's just a generic kilowatthour. I'd like to save
a dirty old kilowatthour instead of a clean new one." In Plymouth, the president of
the local radio station noticed that the change in costs across strategies, especially on
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the supply side, was relatively small. Therefore, he said, "It seems to be worth

investing some capital in insuring against fuel risks and other uncertainties."

The participants asked a variety of questions about underlying assumptions

not shown in the viewgraphs. For example, participants in both Hyannis and

Plymouth wanted to know what the basis for the electric load forecasts was.

Likewise, the county commissioner from Hyannis wanted to know what was the

existing fuel mix in the COM/Electric system. Similar questions were asked about

the connection between fuel use, investments, costs and rates, DSM response, the

operating relationship between COM/Electric and the regional electric grid, specific

technologies, trends in electric consumption, emissions reduction strategies, the

characteristics of different pollutants, the natural gas marketplace, and other things.

One participant (Polaroid's facilities manager) even caught an inconsistency between

the MIT numbers and COM/Electric's published data on S02 emissions from clean

coal power plants (COM/Electric's source was more recent).

The good news was that the people who participated in the second set of

meetings were curious, attentive, and benefitted from the sessions. The bad news

was that attendance was much lower than in the first meetings. There were only

four participants each at the Cambridge, Plymouth, and Hyannis meetings. New

Bedford had six, although one was a Cambridge pe -on who preferred the New

Bedford meeting date. The small turnout (a classic problem in open planning) was

ascribed to various causes by the participants. The head of the newspaper in

Plymouth said that the slide show in first meeting had been "overwhelming; we

were left wondering what we could possibly contribute to such a complex planning

task." In direct contrast, the aide to the state senator in Hyannis said the slide show

and issues/uncertainties/options discussion had "aimed too low so that people felt

they were being asked to make a complex decision based on inadequate

information." The Polaroid representative said that "the lack of numbers on the
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axes of the graphs in the slide show [removed so as not to "scare" a lay public] had

left him and others worried that the discussion would be too general to be of value.

The remaining time in the second meetings was devoted to a questionnaire

soliciting the participants' views on the most important attributes to measure, and

the types of uncertainties to consider in the planning exercise (see Figure 4.4). The

main purpose of the instrument was to find out how to structure the tradeoff

analysis discussion in the final set of meetings. The highest priority attributes

would form the axes of the initial tradeoff curves, and the values shown would be

those for the highest-interest future. It would also provide a measure of the

importance the participants placed on different attributes, their aversion to different

types of risks, and the degree of consensus attending these value judgements.
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Figure 4.4 - COM/Electric 2nd Meeting Questionnaire

What Are Your Views?

Questionnaire to participants in the COM/Electric-MIT open
planning project at end of the second meeting. Answers kept confidential.

Please prioritize these issues in order of their importance for this planning effort:
(l=most important, 2=important, 3=less important, .... 8=1east important)

Cost of electric service (average level)
Cost of electric service (variability)*

Reliability/outages (average level)
Reliability/outages (variability)*

Local site-related environmental impacts/land use/noise/visual

Regional environmental impacts/acid rain/smog

Global environmental impacts/greenhouse effect

Solid/liquid/nuclear waste streams

Other (specify)

Please select the combination of future possibilities that y, consider to
for COM/Electric to anticipate in its plans. Check one in each column.

be the most important

Electric Load

Low
Med
High

Fuel
Prices

Consumer
Response to Utility
Conservation Programs

Low

High

Low

Med
High

Your name (optional)

Please hand this in before you leave. Thank you for your input.

The average level of cost or reliability is its magnitude, on average, over the long run. Its
variability reflects the degree to which it changes from one year to the next, and its sensitivity to
uncertainties.
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4.4 Third Meetings: Final Results and Eliciting Preferences

The final set of advisory group meetings began in Cambridge on May 14th,

1990. Their goal was to understand the participants' preferences regarding

COM/Electric s planning choices. The specific agenda included reviewing the scope

of the study, reporting on the participants' views as shown in the questionnaire,

evaluating the performance of the options to thereby identify the small set of "best

strategies", and discussing tradeoffs - characterizing the preferred strategy(ies) from

the participants' points of view.

All 720 of the scenarios described in the previous section had been run for

this meeting. Thus, the multi-attribute performance of forty strategies across

eighteen different futures was available to be shared with the groups. The

questionnaire responses guided the presentation of this material, as described above.

Table 4.9 shows how the participants prioritized the issues in order of their

importance for this planning effort. Overall priorities were based on the rank sums

(not scores as in previous questionnaires) of individual questionnaire responses,

including three questionnaires mailed by people who had not been able to attend

the previous meeting.

Table 4.9 - COM/Electric Issue/Attribute Prioritization

Priority
Issue........................... Attributes, or Measures ............... ... Rank Sum

I Regional Environment ................. SO2, NOx, and Particulate Emissions..................58
2 Cost of Electric Service................Total Cost of Electric Services.............................69
3 Reliability....................Hours in NEPOOL Emergency Operation Level ... 80
4 Global Envircnment.............. CO2 Emissions ................................................... 91
5 Variability of Costs....................Maximum Ann. Increase in Cost of Service ...... 94
6 Local Environment..................No., Size and Footprint of New Plants .......... 103
7 W aste Streams............................High Level W astes .......................................... 105
8 Variability in Reliability .......... Minimum Annual Reserve Margin ..................... 116
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Only the top two attributes - regional environment and cost of service - were

consistently highly ranked across all service districts. Others such as reliability,

global environment, and waste streams were highly ranked in some meetings and

ignored in others. The participants' profession also seemed to matter, with business

people, for example, placing a higher emphasis on cost than others. The data set as a

whole had a Friedman test statistic of 22.65, which implied consistency at the .998

level of probability (assuming a chi-square distribution with seven degrees of

freedom, per Pindyck & Rubinfeld, 1981). Based on these responses, the analysis

team focused first on SO 2 and cost tradeoffs, and later brought in reliability and CO2

emissions.

According to the groups, the most important future possibilities for

COM/Electric to anticipate in its plans deserved to be prioritized as shown in Table

4.10. Overall priorities were based on the sums of individual questionnaire

responses.

Table 4.10 - COM/Electric Uncertainty Prioritization

Level ....................... Uncertainy ............................... (Votes Received/Total Votes)

Low (2)
Medium .................... Electric Load Growth ..................................... (12/21)

High (7)

Low (6)
High ....................... Fuel Prices ..................................... (15/21)

Low (3)
Medium (9)

High ..................... Customer Response to Utility Conservation Programs ............ (9/21)

Steady.........................Capital Costs ................................ (16/21)
Higher (5)
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The highest-interest future, based on the questionnaire responses, was that

with Base load growth, Base capital costs, High DSM responsiveness, and High

natural gas prices, or BBHH in the modeling terminology. This showed fuel-side

risk-aversion, but optimism regarding DSM investments. This was the future for

which the initial tradeoffs were presented.

Before tackling real tradeoff curves with the advisory groups, the facilitator

reviewed the concepts of dominance, uncertainty, and robustness as they relate to

tradeoff curves. These concepts were then tied to the way different tradeoff curve

decisions are related to the analysis team's and advisory groups' roles. This

discussion and the related graphs are covered by Figures 2.3 through 2.6 in Chapter

2.

Discussion of real tradeoff curves then commenced. Starting with the highest

priority attributes (cost and 0S2 emissions), and using values for future BBHH, the

performance of the various strategies was examined. Figure 4.5, for example, J
revealed several important things. In this figure the strategies were identified by

supply-side option-set, so that there were four of each (2 DSM option-sets x 2 reserve

margins). The figure clearly showed that several strategies were inferior: all of the

'H's' and 7's', for example.

Supply-side option-set 'H' (or Canal 3 & Gas, as mentioned earlier in this

chapter) was based on a proposal by one of the COM/Electric planners to add a clean

coal unit to the existing Canal site, and to convert the existing units from Oil 6 to

coal gas by building an over-sized coal gasification system. The high capital costs

and low operating efficiency of such an arrangement made it an inferior option.

Supply-side option-set 'J' (or solar photovoltaics with gas) was proposed by the

advisory groups, and consisted of placing solar cells on 50% of the existing

residential roof area and 20% of the commercial roof area in the COM/Electric

service territory by 2005, at a unit price of one half of today's price. The remaining
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capacity needs would be met with gas-dependent technologies. The weak point in

this concept turned out to be the fact that COM/Electric's annual peak demand

occurred on winter evenings when the sun did not shine; therefore the

photovoltaic arrays did not avoid the expense of building new capacity, but only

reduced the annual energy production by other sources.

Figure 4.5 - COM/Electric Total Cost of Electric Service vs. S0 2 Emissions
- by Supply-Side Option-Set

100 200 300 400

Cumulative S02 Emissions

500 600 700T

(Thousand Tons)

Future BBHH: Base Load
Growth, High DSM
Responsiveness, &
High Natural Gas Prices

o A-Gas Dep

* B-Cas Dep/LS Oil
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* D-Repwr/LS Oil

A E-Gas/ CCoal

O F-CLCoal Dep

* G-C.Coal/Repwr

+ H-Canal3

a I-Nuclear

W J-PV/Gas Dep.

Strategies lying along the frontier consisted of low sulfur oil #6 and clean coal

(B, D, F, G). The low sulfur Oil 6 strategies (B, D) cost about 5% more than the clean

coal strategies (F, G), but had 70% lower SO02 emissions.

A close look at the patterns within each supply-side option-set's grouping of

four strategies revealed important information about the demand-side. The

4 - 31

6600

6400

6200

6000 -

5800 -

5600-

5400

ROMtlt

S0Tro

ea~ O

11Waa
is

4 GM
4.~



Enhanced DSM option-set (_EJ -iways had lower costs than the Collaborative

(_Cj with approximately the same level of SO2 emissions. Thus the Enhanced

strategies claimed the frontier in every case (except for 'BCH/BEH', when both made

it).

Examining the groupings of four for the effects of reserve margin was also

useful. The high reserve margin strategies (_H) always had lower SO2 emissions

and a slightly higher cost than those with the lower reserve margin (_L). Looking

at the (8_) grouping, most participants agreed that the preferred combination was

to choose Enhanced DSM to lower costs, but then to "buy" some SO2 reduction by

selecting the higher reserve margin, thus choosing strategy 'BEH', for example.

The benefits of this approach were reinforced when the participants viewed a

tradeoff graph incorporating the third-ranked attribute of reliability (see Figure 4.6).

There the high reserve margin cases (_H) consistently claimed the tradeoff frontier

from the lower reserve margin strategies (_L).
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Figure 4.6 - COM/Electric Total Cost of Electric Service vs. Reliance on Emergency
Interruptions- by Reserve Margin
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The fourth-ranked attribute was CO 2 emissions. The global environment vs.

regional environment tradeoff shown in Figure 4.7 made decision making more

difficult. While some previously favored strategies such as 'BEH' remained on the

frontier, C02 concerns brought nuclear (I), a non-fossil option, into the picture. This

in turn brought the production of nuclear wastes, heretofore ranked low at seventh

priority, to be shown as a decisionmaking attribute.

When planning for the meetings, the analysis team discussed the idea of

eliciting the participants' preferences regarding which decision rule to use in dealing

with uncertainty. Should tradeoffs be weighed using the most popular future, based

on the questionnaire? Should a risk-averse (maximin) approach minimizing

down-side risks be used by weighing tradeoffs based on the worst future? Should an

optimistic (maximax) approach maximizing the up-side benefits be used by
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weighing tradeoffs based on the best future? Or should an approach emphasizing

accountability (minimax regret) that minimized the difference between the best and

worst futures be used? The team decided to simply show all three futures to the

advisory groups, and let the decision rule remain implicit in their final choice of a

strategy.

Figure 4.7 - COM/Electric CO2 vs. S02 Emissions
- by Supply-Side Option-Set
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The effects of uncertainty were explored by showing (in Figure 4.8) the

decision sets or tradeoff frontiers for each of three futures: the highest-interest

(BBHH), the worst (HBLH), and the best (LBHL). Bracketing the results by displaying

the best and worst futures made the participants more comfortable with the

4 - 34

41

a4%
a 4

em



robustness of the findings. Some of the most interesting strategies (BEH, for

example) maintained the same relative positions in all three futures.

Figure 4.8 - COM/Electric Total Cost of Electric Service vs. SO2 Emissions
- by Supply-Side Option-Set for Highest-Interest, Best, and Worst Futures

7000

6500 ~ . U.
0 -J a 0* B-Gas Dep/LSOil1

' * C-Repwr
S 6000 -BLH

o * D-Repwr/LS Oil

5 50*C * 0 F-Cl.Coal Dep

S1 a C-C1.Coal/Repwr

50, 00 I-Nuclear
5000

LBHL

4500 1 1
0 100 200 300 400 500 600 700 800 900

Cumulative S02 Emissions (Thousand Tons)

However, the comparison across futures also revealed the vulnerability of

some strategies to uncertainty. Figure 4.9 showed the migration of strategies

through cost/SO2 space for different futures. As can be seen, they all migrated about

the same distance along the cost axis between the best and worst futures. Differences

were revealed along the S02 axis.
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Figure 4.9 - COM/Electric Total Cost of Electric Service vs. SO2 Emissions -
Migration across Highest-Interest, Best, and Worst Futures for Dominant Strategies

Strategies 'CEH' and 'GEH' showed much larger SO2 emissions in the worst

future than in the best Iture in Figure 4.9. Both of these strategies included

repowering of existing plants with gas, and using expensive oil 2 as the backup fuel.

These strategies were particularly vulnerable to changing gas prices, because with

higher gas prices cheaper but dirtier existing plants (burning Oil 6) would operate

more, leading to higher SO2 emissions. Similar strategies incorporating low sulfur

Oil 6 did not suffer this weakness (compare 'CEH' to 'DEH' , for example).

The participants waded through the graphs shown here, plus many others, in

sessions that were designed to be much more interactive than the second set had

been. Backup graphs explaining the effects of uncertainty and reviewing modeling

assumptions were all available if needed by the group. Such viewgraphs included
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the univariate performance of strategies for a large variety of attributes ranging from

the consumption of specific fuels to levels of spent nuclear waste. Most of the

backup material was not needed, because most questions were adequately answered

verbally.

To assist the participants in selecting their preferred strategy, a table

summarizing the trends identified by the tradeoff analysis was presented (see Table

4.11). A '+' symbol meant that the strategy helped along that attribute (where lower

was better), a '-' symbol meant that it hurt, a '1' symbol meant that the outcome was

highly sensitive to uncertainty, and a blank space meant that the strategy made little

difference one way or the other. Larger and bolder symbols indicated larger impacts.

One reason for providing the summary table was to ensure that participants

considered the whole range of attributes in their decisions. However, most of the

groups found that the information in the matrix had been reduced too much to be

useful, and that, when creating it, the analysts had imposed subjective judgements

different from their own, thereby tainting it. They therefore preferred to work off of

the tradeoff graphs Figures 4.5 through 4.9 in making their decisions.
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Table 4.11 - Trends Identified by the Tradeoff Analysis
in the COM/Electric Data Set

Trends Identified by the Tradeoff Analysis

Issue Regional Cost Reli- Global Waste Local Variab. Variab Ote,
Envir. ability Envir. Streams Envir. of Costs of Rel. tsswcs

Attribute S02 Tal Ca Envr Hn. CO2 NucL Waso New Seos Max. 4 AS ML. RM

Strategy/Option

Demand-Side Management + + +

Higher Reserve Margin + + + +

A- Gas Dependent +

- Gas Depend't & Clean Oil +
C- Repowering +

- Repowering & Clean Oil +

E- Gas & Clean Coal -

F- Clean Coal Dependent

G- Clean Coal & Repow 'g *

H - Canal 3 (Clean Coal) + -

I- Nuclear + + -

- Photovoltaics & Gas + " +

The analysts sought to develop a method for the facilitator to use in eliciting

the participants' preferences that revealed the groups' valuations of environmental

externalities. One part of this method was to put cost on one axis of many of the

tradeoff plots, so that the tradeoffs of various environmental attributes against cost

would be clear (see Figures 4.5, 4.8, and 4.9, for example). A second part of this

method was in the voting order: they would start with the cheapest strategy, and

tally the number of votes for each strategy in order of increasing cost. This would

reveal: (1) the implicit valuation, or shadow price of the environmental attribute in

dollar terms assuming all else constant, and (2) any thresholds or non-linearities in
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attribute valuations. The third part of this method was to develop "synonym

attributes" to help the participants get a feel for what the differences among

strategies really meant. For example, in addition to showing graphs using total cost

of electric service as the cost attribute, the analysts also had backup graphs displaying

c/kWh differences, unit cost of electric service differences, and percent cost

differences. This valuation method was not closely followed in practice, for reasons

discussed below.

How did the decision making exercise turn out? The Cambridge meeting, as

before, had four participants, with a fifth attending the New Bedford meeting

because of a scheduling conflict. The meeting ended in consensus, with strategy

'BEH' (gas-dependent supply capacity, clean Oil 6, Enhanced DSM, and high reserve

margin) being the first choice, followed by 'DEH' (which included repowering).

They also expressed interest in seeing how a hybrid strategy consisting of 'GEH' plus

clean Oil 6 for existing plants would perform. The nuclear option (IEH) was taken

off the table on the strength of one participant's demand to "throw it out" and no

objections from the other participants not to do so.

The Plymouth meeting on May 15th, 1990 had only two participants, so the

time was used for a discussion of how to make an open planning process work,

instead of the technical discussion of tradeoffs.

There were five participants at the Hyannis meeting, and they engaged in a

fairly spirited discussion of tradeoffs. They were able to reach a consensus on the

concept of paying higher electricity bills to clean up the environment, at least to the

6% range shown in Figure 4.5 as the difference between the cheapest and least-S02-

emitting strategies ('GEL' and 'BEH'). They also endorsed the concepts of high-DSM

and a higher reserve margin. However, they were unable to reach consensus about

whether to minimize SO2 emissions by choosing a strategy such as 'BEH' or to

minimize CO2 emissions with a hybrid strategy using new nuclear and clean Oil 6 in
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existing plants. One of the sticking points in this discussion was that nuclear wastes

were an overriding concern of one of the participants, who preferred the known

problems of S02 and CO 2 emissions rather than the less-known problem of nuclear

waste disposal.

The final New Bedford meeting had a low turnout, with only three

participants, including one from Cambridge. However, the discussion was quite

animated, and the group was unable to reach a consensus. They did agree on the

value of high-DSM and a higher reserve margin, but could not agree whether to

choose a low-cost or low-emissions supply-side option. While all agreed that an

80% SO02 reduction for a 6% cost increase sounded quite cost-effective, an industrial

electricity customer pointed out that industries worked very hard to shave 6% off of

their electric bills, and that this amount significantly affected their competitiveness.

All of the participants said that they "needed more time to chew on it and toss it

around."

Several things thus hindered a definitive outcome of the experiment. First,

the small number of participants negated any possible claim to having elicited truly

representative public preferences. Second, seemingly better hybrid options were

invented during the preference elicitation process. These would have to be

modeled and placed on the tradeoff curves before the participants would be willing

to negotiate tough strategy-specific tradeoffs between cost and environmental

quality. Finally, the participants ran out of time. They were just warming up to

their arguments when the last meetings ended; participants in New Bedford, for

example, stayed on for an extra hour of discussion with the analysis team about the

experiment.
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4.5 Efficacy of the COM/Electric Open Planning Project

The COM/Electric open planning project was initiated for several reasons, as

stated earlier: to improve the credibility of the Company's resource planning

method, to better integrate demand- and supply-side planning, to include

environmental impacts in the planning process, and increase the level and quality

of public participation. The initial experiment with four consumer advisory groups

revealed a number of useful things about both the analysis technique and the

process.

The experiment demonstrated that it was feasible to conduct exhaustive

analysis in a scenario-based multi-attribute tradeoff framework with a quick turn

around time - just over two months separated the first advisory group meeting

from the last. In that time, issues were defined, 720 scenarios were developed and

analyzed, presentations replete with graphics were prepared, and a dozen meetings

were facilitated. It took a year to get the integrated modeling system up and

running, but once in place, the scenario analysis task was manageable.

The experiment demonstrated the value of the technique for finding robust

strategies that: (1) integrated demand- and supply-side options together into a

coherent plan, (2) explored the effects of uncertainty on performance, and (3)

incorporated consideration of environmental impacts. This suggests that it may be a

useful part of the overall planning method that the company is developing to satisfy

regulatory concerns.

Some of the information sharing techniques used in the presentations

worked, while others did not. They are listed and rated in Table 4.12.
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Table 4.12 - Efficacy of Techniques as Applied on the COM/Electric Project

Techniques Used on the COM/Electric Project Useful to Useful to
Analysis Advisory
Tea m? Groups?

Line graphs to show trends over time Yes Yes

Column graphs to show performance of strategies
along a single attribute,
plus the range of uncertainty Yes Yes

Arrow charts to show the factors influencing an
attribute's value, and the direction of that
influence, including uncertainties, options,
and correlations Yes Yes

Scatterplots to show tradeoffs between two
attributes. for many strategies, within
a single future Yes Yes

Scatterplots to show tradeoffs between two
attributes for many strategies,
across several futures Yes Yes

Line plots to show migration of strategies
in two-attribute space across futures Yes Yes

Matrix (strategies by attributes) summarizing
trends identified by the tradeoff analysis Yes No

Questionnaire eliciting preferences Yes Yes

Voting by show of hands for priority issues Yes Yes

Showing results for the best and worst futures
to bracket the analysis of uncertainty Yes Yes

Asking the participants to prioritize attributes Yes Yes

Asking the participants to prioritize uncertainties
for utility to anticipate in its plans Yes Yes

Asking the participants to choose a specific
preferred strategy Yes No

Asking participants to characterize a preferred
strategy in multi-attribute space Yes Yes

Sharing intermediate results with participants Yes N2
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The biggest single surprise to the analysts was that most participants preferred

to look at scatterplot tradeoff curves rather than summary matrices when making

choices. Even though one participant said that the dots representing strategies

"looked like bugs squashed on the screen" he still liked that form of display.

At the end of each of the third sessions, the participants were asked to answer

to a series of wrap-up questions. These are discussed below.

Was there a consensus? The answer was yes in Cambridge, but it was a qualified no

elsewhere. In Plymouth, the president of the radio station said that he felt

uncomfortable deciding among strategies; that he was willing to offer philosophy

but not make technical choices. In Hyannis, participants agreed on some "all-gain"

components (high-DSM and higher reserve margin) and were willing to make final

choices among strategies, but could only agree on a philosophical point - that

increasing costs by 7% to reduce environmental damage was a good idea. In New

Bedford there was also agreement on more DSM and the higher reserve margin, but

not on the level of cost vs. environment tradeoff to make. Participants pointed out

that there was agreement that certain strategies (such as H - Canal 3 & Gas) could be

ruled out.

Were there differences of opinion? The answer here was unanimous - yes.

Participants held different views on which attributes were most important, which

uncertainties ought to be planned for, and which differences in attribute values

were significant. However, this did not prevent them from agreeing about some

things such as the value of demand-side management and a higher reserve margin.

Were the presentations comprehensible? The slide show in the first session

received low marks from many people. One participant said it was "overpowering,"

while another said that "it didn't offer enough substance to busy people who, it

seemed, were being asked to make complex decisions on the basis of inadequate
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information." These same people said that the second and third meetings resolved

both problems, and that the presentation graphics in those meetings were generally

good. Specific parts of those presentations were rated in Table 4.12 above.

Were the presentations credible? The answers to this question were largely

yes. Several people said that the movements of points on the graphs registered

intuitively, and that it was useful to be shown the big picture. One person said that

the credibility of the results was "unquestioned," but others added qualifiers, one

asking herself "what was left out of the model?" while another stated that "the

presence of academics built the credibility." During the meetings there were lots of

questions about the modeling assumptions used that were answered either

immediately or in subsequent meetings. One participant felt that the long, three

session process was important in establishing credibility, saying "it can't go into a

single session, you'll just get blank looks." However, another insisted that

"perception is the key to credibility, not strength of detail."

Were the sessions useful, constructive, and on the mark? The participants

provided a variety of answers. One said that "the process could have gone on

without the participants - except for the attribute prioritization stage." Another

"appreciated the openness of the process, but felt uncomfortable offering untutored

opinions." Another stressed its educational value, saying, "I learned what to do in

my own home regarding conservation, and that there exist tradeoffs between cost

and the environment." Similarly, another said "a different understanding of the

power industry has certainly developed in me." For one participant, it was

refreshing "to get off single option solutions" and look at multi-option strategies,

and to identify some "win-win situations." Another commented that he was glad

that the utility sought feedback on its plans, and appreciated the need to get into the

complexities of the problem, but felt that the utility should make the expert choice

after asking peoples' general preferences. He used the analogy of the auto mechanic,

4 - 44



who "is the only one who knows how the engine works" and who should therefore

fix the engine.

All of these comments suggested that, at a minimum, the meetings had

public relations value. In fact, several of the participants said "what's going to

happen with this input?...Don't let it die here...Get across to the public that

COM/Electric is trying to get people involved."

Participants, while mentioning that the "canned" first meeting had been

something of a turn-off, also pointed out that "attrition rates are high in all public

meetings' and that it probably will be necessary to develop a multi-faceted program

to keep in touch with people. Several stressed the need to ensure that a more

representative sample of the public should participate, including especially the poor

elderly and young families for whom a 6% price increase might be significant.

In conclusion, the initial experiment with open planning at COM/Electric

seemed more successful at getting public input for prioritizing attributes and

assessing risk aversion than for achieving consensus on specific planning choices

involving tradeoffs. Where all-gain outcomes were revealed, as with high-DSM

and higher reserve margins, consensus was possible. Where tradeoffs had to be

made, it was more difficult. Both more time and more analysis (of hybrid strategies)

were needed. The process certainly inspired both the participants and analysts to

suggest improved hybrid strategies, such as clean coal with repowering and low

sulfur oil, plus high-DSM and higher reserve margin. As such, it played a vital role

in spurring inventiveness in the planning debate, and in improving the image of

the company, but did not reach closure on decision making.
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5.0 Description of Final Scenarios

This chapter describes the input for the final set of LMSTM model runs

performed for and following the external consumer advisory group meetings. It

also includes the additional "hybrid" strategies recommended by the consumer

advisory groups for additional analysis. First, the naming convention for each

scenario is presented. Next, the supply-side option-sets are described, followed by

the demand-side option-sets, the uncertainty information, and finally input

assumptions such as emissions rates, and reserve capacity under NEPOOL Operating

Procedure 4 actions. Trends are graphed, and sources are mentioned. For detailed

numbers and references, the reader should refer to Appendix C.

5.1 Scenario Name Definition

Each scenario modeled was given a unique 7 character name. Within this

seven character name, each letter represents the choice or state of a different

uncertainty or option-set. This naming convention is shown in Figure 5.1 below.
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Figure 5.1 - Run Naming Convention

LMSTM Run Namin_ Convention

Load Growth Uncertainty
(Low, Base, High)

Supply Option Sets

A: Gas Dependent
C Repowering
E: Gas & Coal
F: Coal Dependent
G: Coal & Repowering
H: Canal 3 & Gas
1: Nuclear & Gas
J: Photovoltaic & Gas

Re

Cost of Capital
(Base,High)

Low, High) (Colla

serv Magi Dol

B: w/ Clean Oil
D. w/ Clean Oil
K w/ Clean Oil
L: w/ Clean Oil
M w/ Clean Oil
N: w/ Clean Oil
Q w/ Clean Oil
P: w/ Clean Oil

Fuel Prices
(Low, High)

SM Option Set
borative, Enhanced)

DSM Customer Response
(Low, Base, High)

Notes: A Z in any location means a wild card.
E.G. LALBCLZ means low load growth, supply option set A. Low reserve margin, Base
cost of capital. Collaborative DSM option, low DSM response, and any fuel price.

5.2 Supply-Side Options

Supply-side options are made up of different amounts and types of generating

capacity which the LMSTM model may dispatch in order to meet electrical load.

This includes existing powerplants, new powerplants (planned as either firm or

scenario-specific), and "virtual" units which emulate either power purchase

contracts or OP-4 outage states. In addition to new or existing powerplants, a supply-
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side option-set may also consist of how these plants are planned (the target reserve

margin) or operated (fuel changes). Each of these options is described below.

Existing and Firm Capacity

This category includes all existing capacity and firm commitments for the

future, as summarized in Figure 5.2 - COM/Elec Existing and Firm Capacity. This

figure shows each unit, purchase contract and small hydro and cogeneration

purchase, with the fuel and on-line or retirement dates.

The data for these units was obtained from Mr. Paul Krawczyk in the form of

an existing LMSTM input file. It was thoroughly reviewed and uncertain data

confirmed by phone conversations. The information was checked and updated as

new data became available (e.g. fuel and O&M cost escalation data from Data

Resources, Inc.). Because this data was obtained from COM/Elec, it is excluded from

Appendix A - Detailed Input Assumptions. However, new firm commitments that

apply in every scenario (such as new cogeneration) are included in Appendix A and

Figure 5.2.
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The existing capacity base is not described here because it and all updates were

obtained from COM/Elec and because it is too long to summarize. However, it does

incorporate some assumptions which should be mentioned.

1) Power Purchases. These contracts are modeled as generating units, which

"retire" when the contracts expire. All contracts are with Northeast Utilities

(NU'), except for a single purchase from Hydro Quebec, and represent either a

specific type of capacity (steam or peaking units) or a "slice" of the entire NU

system. Pollution exported from the COM/Elec service territory through

power purchases was included in total emissions, and the emissions from

each purchase "unit" reflect the blend of capacity types given by the contract.

Because projected regional capacity is limited, no further contracts are

indicated beyond those currently in place.

Due to the nature of these contracts, and the fact that both Northeast Utilities

and COM/Elec are in the same power pool, the question was raised whether

power purchases could be included as capacity available during peak load

hours, and used in calculating the reserve margin for planning new capacity

required. The choice was made to include such contracts in peak capacity, but

the impact was small since the last contract expires in 1995, and subsequent

planning was unaffected.

2) Retirements/Life Extension. The only retirements included in the initial

LMSTM database were for COM/Elec's share of the Pilgrim and Pt. LePreau

nuclear units (74 MW in '94 and 25 MW in '92, respectively), and for several

cogeneration units. In view of the advanced age of the Blackstone, Cannon,

and Kendall units, it was felt that a finite life was more reasonable than the

alternate default choice of indefinitely prolonged operation (life extension). It
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was therefore chosen to retire these units in '94, '98, and '02 respectively.

Only for the repowering strategies were these sites upgraded with additional

capacity and returned to service following the retirement dates. In contrast, it

was assumed that the Canal plant would receive sufficient maintenance

and/or life extension to keep its units operating through the end of the study

period (2013).

3) Cogeneration. COM/Elec's LMSTM database includes 10 cogenerators

totalling 358.5 MW as firm present and future capacity. However, working

from COM/Elec's February, 1988 survey of 87 customers (including 17

feasibility studies), it was decided that only an additional 30 MW might be

available, based on the size, number, and required payback period of projects

studied. This cogeneration was assumed to be in the form of gas turbine

topping cycle units, and was phased in between 1992 and 1996 as a single j

must-run unit. Because the estimated size of this resource was so small, it

was considered as a firm, fixed capacity resource added to the existing unit

database for all scenarios. The currently planned MIT cogeneration project of

20.8 MW was modeled to come on line as projected in 1993.

4) Thermal/Steam Load. The original COM/Elec LMSTM database included

as firm capacity 6 MW of steam supplied by the Kendall plant for district

heating purposes (unit KSTEAM). Since this capacity was not available to

meet peak load (or any electrical load), the unit was removed from the model

for the final set of runs. Fuel consumption results are therefore based on

electrical demand only, and will be slightly lower than actual. Given the

small size of this unit, the effect of this change on total emissions was

negligible.
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New Capacity

New, scenario-dependent capacity options for the model were broken into

two different types; those of fixed size, and those of fixed ratio. Fixed size options are

just that - a fixed number of MW in one or more units that may come on line all at

once or over time. Fixed size options depend only on the supply-side option-set,

and do not depend on uncertainties which affect load growth. For example,

repowering is a fixed size option where several rebuilt and expanded units are

brought (back) on line over several years.

For fixed ratio options as many identical units are built as required to fill

some target ratio or fraction of the gap between existing capacity and the anticipated

capacity required. The number of fixed-ratio units built for a given supply-side

option-set varies between scenarios, depending on net load growth. Planning the

number of fixed ratio units to be built under different future loads and automating

the construction of supply input files was performed by Fortran programs described

in Chapter 3.

An abbreviated list of operating characteristics for both new fixed-size and

fixed-ratio supply technology options is shown below in Figure 5.3 - COM/Elec

Supply-Side Option Characteristics. This is then followed by a basic description and

block diagram for each technology.

It may be noted that the supply-side options shown have an addition or

purchase size that is smaller than the absolute unit size. Because COM/Elec is a

relatively small system, a single medium to large generating plant is a relatively

large fraction of total capacity. Building such a plant solely for COM/Elec increases

the reserve margin above what is desirable for reliability purposes. In order to avoid

this problem, it is assumed that COM/Elec can buy or sell fractions of new units to

effectively add capacity in smaller, more manageable amounts.
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Figure 5.3 - COM/Elec Supply-Side Option Characteristics

Fixed Ratio Technologies Fixed Size Technologies

Characteristics
Size (net new MW)
Addition/Purch Size (MW)

Fuel - Primary
- Secondary
(months fueia by spoffirmIkuo)

Heat Rate (BTU/kWh)
Capital Cost ('89$/kW)
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Land Requirement (acres)

CT CC IGCC ALWR
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6
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0.18
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0
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0
95
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6
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0
0
0
0

34.48
503

Repowering

472 MW
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(012
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3
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Cainal 3
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0
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3.3 Supply-Side Option Technologies

Combustion Turbine (CT)

Natural gas or distillate (kerosene) fuel is mixed with compressed air and

burned. The hot combustion exhaust gases drive a turbine generator for electric

power.

Figure 5.4 - Combustion Turbine

Source: EPRI 1989 Technical Assessment Guide

Fuel Stack 1000 T- Conventional
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Compressor Gas Turbine Generator

Air
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Combined Cycle (CC)

Natural gas or distillate (kerosene) fuel is used to fire a combustion turbine

which generates power. Exhaust heat from the gas turbine boils water in a heat

recovery steam generator, powering a steam turbine which drives a second electrical

generator.

Figure 5.5 - Combined Cycle

Source: EPRI 1989 Technical Assessment Guide
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Coal Gasification Combined Cycle (CGCC)

Coal is gasified through a partial combustion process, and the cleaned synfuel

gas is used to fire a combined cycle unit, as described above. Heat is recovered from

both the gasification process and the combustion turbine in order to drive the steam

turbine. Particulates and sulfur removed during the gasification process are sold as

byproducts. These plants can be built in stages, building the combined cycle unit

first, and adding the coal gasifier later. High sulfur coals can be burned very cleanly,

and natural gas or distillate may also be burned if the gasifier is bypassed.

Figure 5.6 - Coal Gasification Combined Cycle

Source: EPRI 1989 Technical Assessment Guide
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Passive Safety Advanced Light Water Reactor (ALWR)

As in a conventional light water reactor, heat is generated in the reactors core

and used to boil water for steam, either directly or through an intermediate

pressurized water heat exchanger loop. Unlike current designs, the reactor is

designed to cool itself without active operator intervention in the event of an

accident. Standardized design and smaller unit size are aimed at increasing

acceptance and reducing construction time.

Figure 5.7 - Advanced Light Water Reactor

Source: EPRI 1989 Technical Assessment Guide

600 F Steam, 975 psia
39,300 TPH 544 IF, 3950 TPH
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Photovoltaics (PV)

Photovoltaics convert sunlight directly to electricity using a photovoltaic

semiconductor cell. The direct current electricity is then converted to alternating

current for distribution and use. Electricity generated is not stored, and depends on

season, weather, and time-of-day. Advanced materials and cell designs are aimed at

increasing efficiency, and advanced materials and manufacturing techniques are

aimed at reducing costs.

Figure 5.8 - Photovoltaic Cells

Source: EPRI 1989 Technical Assessment Guide

Solar Radiation

DC AC

Photocells DC/AC Electricity
Converter

5.4 Supply-Side Option-Sets

The supply-side technology options above were combined into sets, and these

supply-side option-sets, A through P, are shown below in Figure 5.9 - COM/Elec

Supply-Side Option-Sets, which summarizes their composition from various fixed

size and fixed ratio supply technology options.
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Figure 5.9 - COM/Elec Supply-Side Option-Sets

TECHNOLOGIES
SUPPLY-SIDE OPTION-SETS
(High, Low Sulfur Oil)

- Gas Dependent
- Repowering

- Gas & Coal
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Each of the supply-side option-sets is described below, giving the rationale for

the option-set design. The primary characteristic of the technology dominating each

option-set is its fuel. In addition to option-sets depending on only a single fuel for

new capacity, there are option-sets which represent a blend of these extreme cases.

Thus, the Gas Dependent, Repowering and Coal Dependent options have base load

capacity which is either all gas or all coal. The Gas & Coal, Coal & Repowering, and

Canal 3 & Gas option-sets blend these "pure-plays" together. The Nuclear & Gas and

Photovoltaic & Gas option-sets also represent blended strategies, because the

dominant technology is limited by either the date or size available.

The target ratios for each option-set are based on three considerations - 1) the

desired fuel blend discussed above, 2) the need for peak vs. base load capacity, and 3)

the size of the fixed size option (if any). Based on the current mix of units in the

COM/Elec system, base load and must-run capacity accounts for about 76% of total

MW (nuclear, cogeneration, hydro and the Canal plant total 708 MW). The

remaining 24% (225 MW) are predominantly peaking units, of which 18% are

scheduled to retire (Blackstone, Cannon, and Kendall total 163 MW). To preserve

this peak to base load ratio, roughly 20% of future capacity additions were chosen to

be combustion turbines (CTs). This minimum target ratio for combustion turbines

was increased when fixed size, base load units accounted for a large percentage of

new capacity required.

Each description is for both of the two option-sets listed (e.g. A & B), which

are identical in their technological mix, except that the second set substitutes low

0.5% sulfur Oil 6 fuel for the normal 2.2% sulfur Oil 6 fuel at the Canal plant.

Supply-Side Option-Sets A & B - Gas Dependent

These option-sets were designed to study the impact of greatly increased

dependence on gas fired generation by making 80% of new capacity combined cycle
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units for base to intermediate loading, and 20% combustion turbines for peaking

capacity. COM/Elec does not currently have any gas fired generation, except for

cogenerators, and all of its combustion turbines currently burn kerosene or distillate

Both of the technologies added under these option-sets are assumed to burn spot gas

for 6 summer months, firm gas for 5 winter months, and kerosene for 1 winter

month.

These option-sets do not distinguish between utility owned and non-utility

owned capacity, and do not limit the amount of gas available in the region (a low-

availability, high price uncertainty is discussed under fuel prices in the uncertainty

section below). These option-sets do allow us to study the impact on emissions

because natural gas burns very cleanly and has the lowest C02 content of any fossil

fuel. These technologies are low relative capital cost, high fuel price options that

allow the study of total cost impacts and sensitivity to fuel prices changes.

Supply-Side Option-Sets C & D - Repowering

These option-sets explore the possibility of repowering the existing

Blackstone, Cannon, and Kendall sites by adding capacity at each site. All three

plants retire in all option-sets, but in the Repowering option-sets these units come

back on line in two to three years as larger units in rporating new technology.

Specifically, the repowered units would include;

* Blackstone - The two existing boilers would be updated and a new turbine

generator retrofitted. The plant would increase in capacity from 21 to 35 MW

and come back on-line in 1996.

* Cannon - Two combustion turbines and two heat recovery steam

generators would be added to drive the existing steam turbines, essentially

turning the plant into a combined cycle unit. The plant would increase in

capacity from 61 to 215 MW and come back on-line in 2001.
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* Kendall - As with Cannon, two combustion turbines and a heat recovery
steam generator would be added to drive the existing steam turbines. One of
the existing steam boilers would be retained to make up the balance of the
steam required and to supply the existing thermal steam load. This
conversion would again in effect create a combined cycle unit that increases
total electrical capacity from 66 to 222 MW, and comes back on-line in 2005.

The three units combined provide a fixed-size option of 472 MW. Additional

new capacity required would be composed 40% combustion turbines and 60%

combined cycle units. It is assumed that the repowered sites would be intermediate

to base load units (like the other combined cycle units), so the relative fraction of

combustion turbines in the variable size options was increased from 20% to 40% to

provide sufficient peaking capacity.

These options-sets are also gas dependent, since it is assumed that the

repowered sites will also burn natural gas in their combustion turbines. This

natural gas is assumed to be a mixture of 9 months spot and 3 months firm. Oil

would still be burned in the Blackstone and Kendall steam boilers, but these are

comparatively very small. As a result, these option-sets should resemble Option-

Sets A & B in their emissions performance.

The capital cost for these options is relativel- low for both the repowered sites

($375/kW) and for the combustion turbine and combined cycle units ($442/kW and

$627/kW respectively). Repowering is less expensive because it is assumed that

capacity can be added to an existing site without major structural changes, thereby

avoiding clearing the site and erecting new buildings.

These option-sets were based on previous COM/Elec studies done for the

Blackstone and Cannon sites, and on conversations with COM/Elec planners (Mr.

Paul Krawczyk) and engineers (Mr. Dave Wilson). The Repowering option-sets

were evaluated as a "what if" option to see what benefits might actually be available.
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In reality, there are a number of unresolved issues the t could be problematic. Site

licensing and opposition for these urban sites, and how they would compare to

obtaining new site licenses, are unknown. The availability of sufficient natural gas

at the sites may be a problem if no large pipelines run nearby. Environmental

opposition may occur due to perceived emissions, but may be more easily satisfied,

since these units would be very clean. Thermal emissions would increase, but the

additional combustion turbine heat rejection would be up the stack with the exhaust

and would not increase cooling water requirements.

Supply-Side Option-Sets E & K - Gas & Coal

These option-sets are a combination of the Gas Dependent and Coal

Dependent option-sets. The intermediate/base load units are split into 40%

combined cycle and 40% coal gasification combined cycle units, while the 20% of

combustion turbine units for peak load is held constant. Results are expected to be

intermediate of those for set A and F, especially for C02 emissions and fuel price

sensitivity. For further discussion of assumptions and expectations, please see the

sections on the Gas Dependent and Coal Dependent option-sets above and below.

Supply-Side Option-Sets F & L - Coal Dependent

These option-sets explored the use of clean coal technology to reduce S02

emissions and reduce the effects of fuel prices and fuel price volatility. Required

new capacity is targeted to be 80% integrated gasification combined cycle units

(IGCC), also called coal gasification combined cycle (CGCC) units. The remaining

20% of needed capacity was chosen to be combustion turbine (CT) units to meet peak

loads. Initial runs for the COM/Elec internal advisory group split this coal capacity

equally between IGCC and atmospheric bed fluidized combustion (AFBC) units.
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However, because AFBC had no advantage in emnissions and a slightly higher cost, it

option was dropped from the final set of scenarios modeled.

These option-sets contrast with the gas dependent option-sets in that they

have relatively high capital costs, lower fuel costs, and are much less sensitive to

fuel price variations. It also has low air emissions, except for C02, due to the high

carbon content of the coal fuel, which highlights the S02 vs. C02 tradeoffs.

Supply-Side Option-Sets G & M - Coal & Repowering

These option-sets are a combination of the Coal Dependent and Repowering

option-sets. The intermediate/base load units are split into the 472 MW fixed size

repowering option and the integrated gasification combined cycle option which

makes up 60% of remaining required capacity. As before with repowering, the

combustion turbine peak load contribution was increased from 20% to 40% of the

required variable size option capacity, due to its reduction by the fixed size option

contribution. Results are expected to be intermediate of those for the Coal

Dependent and Repowering option-sets. For further discussion of assumptions and

expectations, please see the sections on the Coal Dependent and Repowering option-

sets above and below.

Supply-Side Option-Sets H & N - Canal 3 & Gas

The present Canal plant is made up of both the Canal 1 and Canal 2 units,

sited on the Cape Cod canal. These option-sets investigated the possibility of

replacing the 2.2% sulfur Oil 6 burned by both units with synthetic medium-Btu gas

made from coal and also adding two coal-syngas fired units to the Canal site.

Beyond the addition of this fixed capacity, further capacity is chosen to be 40%

combustion turbines and 60% combined cycle units, similar to the Repowering

option-sets.
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These option-sets are based upon a design for an Integrated Gasification

Combined Cycle (IGCC) unit done for the Electric Power Research Institute, where

coal is gasified to burn in a combustion turbine, and waste heat drives a smaller

steam turbine.

Based on the size and heat flows of this unit, it was determined that 4 similar

coal gasification units would be required to supply the present Canal units I and 2

with the same heat input as the oil currently burned. The waste heat from the 4

gasifiers is used to generate 110 MW from a steam turbine, which offsets half the 220

MW required to separate oxygen from air for the gasification process.

In order to provide new net capacity, two new, complete IGCC units of the

same design were included, providing 732 MW of power. The refueled Canal 1 and

2 units and the two new IGCC units would come on-line sequentially between 2000

and 2009, for a new total capacity of 1746 MW. Total cost is 3.51 billion 1989 dollars,

or or 2013 $/kW of both old and new capacity. Total coal consumption would be

19,566 tons per day, with a net plant heat rate of 11,930 Btu/kWh. This heat rate is

high, because the four gasifiers which fuel the existing Canal 1 & 2 units do not have

the same efficiency as an integrated combined cycle unit, which recycles more of the

heat flows.

As with an IGCC alone, the plant is environmentally very clean with regard

to SO2, NOx and particulates. High sulfur coal may be burned because the sulfur is

reclaimed and sold for a market credit. Coal ash is also reclaimed and sold.

However, there is a net increase in C02 emissions due to the higher carbon content

of coal and the poorer heat rate.

This option was studied for its possible benefits, without consideration of

certain site limitations. Although the Canal site is excellent for receiving coal and

cooling water, it is likely that site size and the availability of fresh water would be

constraints.
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Supply-Side Option-Sets I & O - Nuclear & Gas

These option-sets were added because the external consumer advisory group

felt that it should not be disregarded, despite public opposition. Even more than

coal, this is a capital intensive option with low fuel costs and very low air emissions.

Unlike coal, this technology has zero C02 emissions - the chief source of possible

renewed public support - and the risks of safe operation and waste disposal. Because

nuclear is a base load option, it was chosen to make up 60% of required new capacity',

with 20% combined cycle units for intermediate load, and 20% combustion turbine

units for peak loads.

The nuclear technology chosen for this option-set was the Advanced Light

Water Reactor (ALWR). The smaller size, reduced lead time, and lower capital cost

are based on EPRI assumptions, which are subject to some uncertainty. They

compare very favorably to current designs, but such improvements were deemed

realistic because they will have to be proven for a new generation of nuclear plants

to have any chance at all of acceptance. The first year an ALWR could come on line

was chosen to be the year 2000, so that nearer term requirements will have to be

made up by the combined cycle unit component ot ..iis option-set (another reason

for its 20% share).

Supply-Side Option-Sets J & P - Photovoltaic & Gas

These option-sets respond to the advisory groups' interest in the impact of

renewable energy sources on the costs, reliability, and especially environmental

characteristics of the electric power system. One of the most promising and well

developed of these technologies is the photovoltaic (or solar) cell. Photovoltaic (PV)

cells are semiconductor devices which convert sunlight directly into electricity.
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Although this technology is currently too expensive for large scale application, it has

significant potential for cost reductions. As of today, even the lowest-cost

photovoltaic power systems cost about $5,000 per kilowatt of peak generating

capacity (i.e. under full summer sun). This is several times the cost of many other

generating technologies, but industry analysts believe that the cost for PV-generated

electricity may be cut in half by the middle of this decade.

Although PV is a supply-side option, it was modeled in a fashion similar to

the demand-side options because it modified the net electric load seen by the units

that can be dispatched. We modeled a very optimistic scenario for PV, in which

Commonwealth Electric underwrites the cost of installing a photovoltaic power

plant on the roofs of half of the single-family residences in its southeastern

Massachusetts service area. By the year 2005, this amounts to 108,000 homes, each

with 20 square meters (about 214 square feet) of PV collector area. In addition, we

modeled an area equal to about 20% of the commercial roofspace in Commonwealth I
Electric's service territory as being covered by photovoltaic cells (934,000 square

meters). By 2005 then, the total PV collector area in service is just over 3 million

square meters or about 763 acres. This investment takes place over the course of ten

years starting in 1995, and is based on Commonwealth Electric's projections of single

family residences and commercial floorspace.

By the year 2005, the photovoltaic power system we modeled is providing

about 240 megawatts to supply the summer peak load. Assuming that the cost for

PV does drop to $2,500 per kW, this amounts to an investment of almost $600

million in 1995 dollars (or about $470 million today, accounting for inflation). The

system generates more than 6.3 billion kilowatt hours over the course of the study

period. For purposes of comparison, the Collaborative process and Enhanced

conservation programs (described later) save approximately 2.6 billion and 7.5

billion kilowatt hours respectively over the same time period.
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Although PV could make a significant ccatribution toward meeting the peak

summer load, the annual system peak load that Commonwealth Electric must plan

for occurs in the winter after sundown. Because a PV system only generates when

the sun shines, the system we modeled is incapable of contributing to this peak.

Therefore, in addition to the PV system, new generating capacity must still be added

which is identical to the amount required under the gas dependent strategies (A &

B).

5.5 Planning and Operation Supply-Side Options

As initially mentioned, supply side option-sets may combine planning and

operation, as well as new technologies for generating units. Two different non-

technology options were explored in the final set of scenarios modeled. These were;

Target Reserve Margin

To explore the benefits on reliability of a higher reserve margin, new units

were built to meet expected new net electrical load plus both COM/Elec's standard

reserve margin of 22.8% and a higher reserve margin of 30%, for all the technology

option-sets described above. The Fortran program that plans the number and date

of new fixed-ratio units attempts to meet this target minimum reserve margin by

commiting and canceling planned units as expected load growth fluctuates. New

units generally have lower variable operating costs and are more reliable, so it is

expected that this option-set will have the effect of offsetting higher initial capital

costs with lower operating costs, while reaping the reliability benefits of more new

units and higher overall capacity.
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Under the higher reserve margin, option-sets that have fixed size units (such

as the Repowering, Canal 3 & Gas, or Photovoltaic & Gas option-sets), will show a

shift in results due to the relatively larger size of the total new fixed-ratio capacity

built to meet the higher reserve margin. This will in effect dilute the benefits or

problems due to the fixed size units.

Low vs. High Sulfur Oil 6

COM/Elec has no coal-fired units, so the majority of its S02 emissions come

from the Canal plant, its only Oil 6 fired plant which currently burns 2.2% sulfur oil.

In order to explore the effects on system costs and emissions of fueling this plant

with lower sulfur oil, each combination of generating technology and reserve

margin was also modeled with both Canal units 1 & 2 (totalling 435 MW) burning

0.5% sulfur oil at a slightly higher price. The benefits of this fuel substitution were

very apparent in the set of 720 scenario model runs presented to the external,

consumer advisory groups.

5.6 Demand-Side Options

As discussed above in Chapter 4, the number of demand side options was

reduced from four to two in the final set of scenarios investigated for the external

advisory groups. Both the No DSM and the Technical Potential option-sets were

eliminated in order to keep the number of modeling runs manageable and because

neither of these option-sets realistically represented a path that Commonwealth

Electric would pursue. The remaining Collaborative Process and Enhanced

Collaborative option-sets are are summarized in Figures 5.10 through 5.13, and are

described below.
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Figure 5.10 - COM/Elec Demand-Side Option-Sets
Collaborative and Enhanced Collaborative Programs

Targeted End-Uses
Existing

End-Use/Demand

Electric Space Heating Program
Hot Water/General Use Program
Cambridge Energy Fitness Program
Multi-Family Electric Efficiency
Public Housing Efficiency Investment
Energy Efficient Lighting

Energy Efficiency Program for
Existing Commercial Customers

Schools Efficiency Renovation
Energy Efficiency Program for

Non-Profit Buildings

Energy Efficiency Program for

Existing Industrial Customers

Efficient Motor Rebate Program

Future
End- lUse/l)euinjn

New Residential Construction

Energy Efficient Lighting

Architect and Engineer
Liason Program

Energy Efficiency IProgram for

Industrial New Construction

MaiiAc,

Appliance Labecliig Progrnam

Customer Class

Residential

Commercial

Industrial

~



Figure 5.11 - COM/Elec DSM Option-Set Characteristics

Program Name Per Annual Total
End Use Customer kWh Number of

Investment Savings Participants
Residential Programs_

Electric eat Program
Hot Water Measures 40 500 5000
Lighting Measures 50 250 5000
Heating Measures 1045 1650 5000
Air Conditioning Measures 10 100 3150

Hot Water/General Use Program
Hot Water Measures 40 360 20050
Energy Management Training 0 100 16600
Lighting Measures 50 200 30500

Multi-Family Electric Efficiency Program
Hot Water Measures 40 300 840
Energy Management Training 0 200 3100
Lighting Measures 50 250 4200
Heating Measures 850 1500 1500
Air Conditioning Measures 10 50 1034

Public Housing Efficiency Investment Program
Hot Water Measures 40 300 1022
Lighting Measures 50 200 5700
Heating Measures 750 750 750

Energy Efficient Lighting Program
Catalogue Sales 22 200 28080
Retail Sales 11.25 115 13750

Cambridge Energy Fitness Program
Hot Water Measures 40 500 500
Energy Management Training 0 100 7000
Lighting Measures 50 300 10000
Air Conditioning Measures 10 100 3500

Appliance Labeling Program
Refrigerators 45 105 6725
Freezers 45 100 1050
Room Air Conditioners 45 40 3275

New Residential Construction Program
Heating Measures 1500 2800 1400
Other End-Uses (unspecified) 150 400 420

Commercial & IMrustrial Programs
Commercal Retrofit Programm

Small Buildings 1903642 8187297 5
Large Buildings 634390 5311022 5

Industrial Retrofit Programt 449200 2579555 5
School Efficiency Renovation Programt 1026878 4454570 5
Architecht and Engineer Liaison Program 64100 208800 200
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Figure 5.12 - Peak Impacts of DSM Option-Sets

Reduction in Peak Demand from Collaborative and Enhanced
Utility Conservation Option Sets
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Figure 5.13 - Energy Impacts of DSM Option-Sets

Electricity Savings from Collaborative and Enhanced
Utility Conservation Option Sets
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Collaborative Process Programs

This option-set reflects the programs developed through Commonwealth

Electric's participation in the Collaborative Process with the Conservation Law

Foundation and a number of other Massachusetts electric utilities. These programs

target every market sector served by Commonwealth Electric, and the reader is

referred to the company's Massachusetts State Collaborative Phase II report of

October 1989 (or a more recent version) for detailed program descriptions. All data

entered into the model came directly from an August 1, 1989 draft of that report. As

LMSTM models DSM programs on an end-use basis, the kWh savings and costs of

each Collaborative program had to be disaggregated into multiple end-uses. For

example, the Hot Water General Use program addresses water heating, air

conditioning, appliance efficiency, lighting, and consumer energy management.

The LMSTM input file therefore represents this program with five technologies,

each with its own savings and cost figures, as well as appropriate load shapes and

participation rates. Many of the programs address multiple end-uses in this way,

and measures targeted at a given end-use, say lighting, may be a component of more

than one program. While the draft report concerns itself chiefly with the total costs

and savings expected for each program, it does contain estimates of expected

measure costs and energy savings for each end-use. These are the figures used in

the model. Penetration rates for each end-use technology also come directly from

the draft report.

Each end-use measure has an effective energy-saving lifetime associated with

it. For the majority of measures, this lifetime is shorter than our 25 year study

period. As a result, most measures installed during the planned five year duration

of the programs will have ceased to provide energy savings by the end of the study

period. Replacement-in-kind is assumed due to a maturation in the market towards

5 - 28



energy-conserving equipment aided by increasingly stringent appliance efficiency

standards. These effects were already included in the demand forecasts provided by

Commonwealth Electric and are thus accounted for. This demand-side strategy

models only that conservation available to the company through its five-year

investment in the Collaborative Process programs.

Enhanced Collaborative Programs

Early modeling work on the Technical Potential option-set (based on work by

John Farley and an assessment of COM/Elec's technical potential by Xenergy Inc.)

indicated that there was a sizeable gap between the energy savings available through

the Collaborative Process programs and this theoretical maximum. Accordingly, the

Enhanced Collaborative option-set was developed to investigate the behavior of the

COM/Elec system under a level of DSM investment designed to tap a greater

fraction of this potential.

Under this option-set, the penetration of each of the Collaborative Process

programs is tripled after a two year delay to allow for program "ramp-up". In

increasing the participation rates in these programs, the utility would be likely to

face diminishing returns, so that the investment required to triple program impacts

would be more than three times the investment required under the original

programs. To account for diminishing returns, the costs for these additional

participants were escalated by 20 percent. Energy savings per-participant remain

constant.

5-29



5.7 Uncertainties

The predominant uncertainties identified by the four consumer advisory

groups were broken down into four general areas: Load/Economic Growth, Fuel

Prices, Customer Response to Demand-Side Management Programs and Changes in

Interest Rates.

Load/Economic Growth

Projected peak electric load growth was obtained from the COM/Elec

planning department, including market driven DSM responses. The low, base, and

high load trajectories were then adjusted for either the base case collaborative or

enhanced DSM option-sets. The curves shown shown below in Figure 5.14 include

the savings from the collaborative process DSM measures with expected customer

responsiveness to DSM. Although the collaborative process savings are significant,

they do not shift the load curves very much relative to the absolute magnitudes of

the No-DSM growths projected. For comparison, Figure 5.14 also shows COM/Elec's

current trajectory of existing and firm future capacity. New capacity construction is

necessary to fill the gap between the capacity and net load trajectories, plus the

reserve margin.

5 - 30



Figure 5.14 - COM/Elec Load Growth Trajectories
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Fuel Prices

Fuel prices are a key uncertainty, especially relative to each other as they affect

the dispatch and loading order of generating units, and hence environmental

emissions, costs, and other attributes. This uncertainty studied the effect of base and

restricted natural gas availability, reflected as base and higher natural gas prices

respectively, relative to base fuel prices for other fuels. This choice of uncertainty

was prompted by the desire to study the effects of natural gas availability relative to

other fuels with stable availability and prices. In order to determine a reasonable

high gas price trajectory for futures with low gas availability, the MIT analysis team

looked at the high prices forecast for all fuels by Data Resources, Inc. (DRI). The

spread between DRIs natural gas and oil prices did not appear reasonable for the

high growth fuel price forecast when compared to DRI's other low and base fuel
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price forecasts. These high forecast fuel prices are shown in Figure 5.15, with all fuel

prices in current $/MMBtu, and in Figure 5.16 with all fuel prices shown as rat:os

relative to the price of 2.2% sulfur Oil 6. As shown in these figures, the prices of

natural gas forecast by DRI are significantly lower than the prices for oil 6, and

especially for diesel and kerosene, to such an extent that seems unreasonable, given

the substitutability of gas for these fuels.

Figure 5.15 - DRI High Fuel Price Forecast ($/MMBtu)

Fuel Price Uncertainty - High Fuel Prices
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Figure 5.16 - DRI High Fuel Prices Forecast Relative to Oil 6
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For this reason, the MIT analysis team posited their own high natural gas

price trajectory shown in Figure 5.17. In this figure, the price of natural gas rises

relative to the base oil price, but then is bounded from above by the dropping price

of synthetic gas produced from coal. This upper bound was based on an EPRI

estimate that syngas would be competitive now at $5 to $6 per MMBtu (1989 EPRI

Technical Assessment Guide, page 7-47). This price was escalated based on the

similar rates for coal gasification capital costs and coal prices. Both capital costs and

coal prices rise more slowly than oil prices, so the relative price of syngas falls. Both

syngas fuel price trajectories are shown in Figure 5.17, and the analysis team made

the conservative choice that the $6 syngas fuel price trajectory would serve as an

upper limit to the high natural gas prices.
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Figure 5.17 - MIT High Natural Gas Price Trajectory Relative to Oil
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Based on this reasoning, the final set of fuel prices were established as shown

in Figure 5.18. DRI's base forecast fuel prices were used for all fuels, except that the

MIT natural gas price determined as above was used for the high spot and firm

natural gas prices.
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Figure 5.18- Fuel Prices Used in Model Scenarios
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As shown, gas prices were estimated for both firm and spot natural gas. Units

burning natural gas were assumed to burn spot gas for 6 summer months, firm gas

for 5 winter months, and distillate or kerosene for the remaining 1 winter month.

This fuel substitution was achieved in the model by splitting each unit into three,

each with a different fuel and complementary maintenance schedules.

No assumptions were made about the actual amount of natural gas or

pipeline capacity available. The high gas price uncertainty is intended to reflect the

supply and demand cost impact of such a constraint. The results for the amount of

gas burned in both cases should be compared to COM/Elec's estimates of gas

available for the region.
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Customer Response to Utility Conservation Initiatives

As many of the conservation programs currently being implemented by

Commonwealth Electric are untested, a high degree of uncertainty remains as to

their energy-saving effectiveness. To bracket the probable range of energy savings

that will actually result from these programs, the analysis team modeled three

levels of conservation measure effectiveness: 1) conservation impacts as planned, 2)

50% more conservation than expected, and 3) 50% less conservation than expected.

These multipliers were applied to the per-participant energy savings for each end

use technology modeled in both the Collaborative and Enhanced Collaborative DSM

option-sets. Per-participant costs remained unchanged.

5.8 Other Inputs

Emissions Data

In order to understand the environmental impacts of capacity construction

and operation decisions in the scenarios studied, a number different environmental

attributes were calculated. Air pollution emissions included sulfur dioxide (SO2),

nitrous oxides (NOx), total suspended particulates (TSP), and carbon dioxide (CO2).

Because of the uncertain and value-laden process of calculating emissions transport

and subsequent damage, emissions were reported as total tons emitted over the 25

year study period, rather than trying to assess their environmental damages.

Similarly, nuclear waste was calculated as tons of spent fuel because of uncertainties

in the (re)processing and disposal process. To measure land use impacts relevant to
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new site opposition, the number of new plants and acres required to site them were

also calculated.

Air pollution data was unavailable on a plant specific basis, either from

COM/Elec (except for ambient Canal data), or from the Massachusetts Division of

Air Quality. As a result, both emissions and spent nuclear fuel were figured on the

basis of fuel consumed, using the following equation for the calculation of plant

specific emissions.

Pollutant
Fuel Input Content Emissions

SO2 Total Energy (Btu) (Ibs) (Ibs)
Emissions = Produced x x x

(Ibs) (kWh) Unit Energy Unit Fuel Unit Pollutant
(kWh) (Btu) (lbs)

In order to account for old vs. new units, and different technologies burning the

same fuel, a number of new fuels were created with identical price trajectories but

with technology or unit specific emissions data. For example, the units representing

power purchase contracts burn a "fuel" that reflects the Northeast Utilities system

mix of nuclear, oil, and kerosene consumption.

Emissions data for old, existing units were largely taken from the EPA

Document AP-42. New unit pollution data was taken from technology specific

sources and conversations with sources at COM/Elec, MIT, the Electric Power

Research Institute (EPRI), and the Northeast States for Coordinated Air Use

Management (NESCAUM). In general, the new technologies chosen were

inherently low in emissions. No major additions or retrofits of pollution

abatement equipment was made on existing units. New combustion turbines

however are fitted with selective catalytic reduction (SCR) equipment, which

reduces NOx emissions by adding ammonia to the exhaust before passing it over a
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catalyst. For specific emissions rates, sources, and assumptions please refer to the

emissions spreadsheet in Appendix A.

NEPOOL Operating Procedure 4 Action Capacities

When peak load exceeds generating capacity, there is a series of steps that are

taken before customer outages become necessary. For the New England Power Pool

(NEPOOL) these steps are codified as Operating Procedure 4 (OP-4) actions. In order

to represent system reliability, these various actions were represented by modeling

them as high cost generating units in LMSTM. By knowing the electricity

"generated" by these OP-4 units and their size, the hours spent in each OP-4 Action

level can be determined. This "virtual unit" method is the same way that LMSTM

calculates unserved energy.

By examining NEPOOL documents and conversations with NEPOOL and

COM/Elec personnel, the capacity of each action level was determined. These

actions are defined and their size shown below in Figure 5.19. Actions 1 and 2 are

grouped together, and vary between summer and winter due to the variation in

seasonal unit capacities. Load curtailments in actions 8 and 9 were also grouped

together. These OP-4 Actions and their related generation or load reduction capacity

are graphed and shown in Figure 5.20, which shows only those actions mentioned

above and omits all other OP-4 actions which contributed zero MW to reducing

COM/E s peak load.

It was assumed that the OP-4 action levels would maintain their potential

contribution as a constant fraction of COM/Elec's peak load. Each of the five

"generating units" representing these actions was therefore assumed to grow in

capacity at the same rate as total system load. Thus, different sets of OP4 units were

used depending on whether the load uncertainty in the scenario was low, base, or

high growth. Because DSM measures have a relatively small fractional impact on
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total load, the OP-4 capacity trajectories were not adjusted for either DSM option. In

order to make sure that these OP-4 units were dispatched last and in the correct

order they were given very high variable O&M costs that increased as the OP-4

action became more severe. The cost of unserved energy was also increased, so that

LMSTM's internal "unit" representing outages was dispatched last.

Figure 5.19 - OP-4 Action Definitions and Capacities

Operating Procedure 4 - Actions During a Capacity Deficiency
Estimates of Additional Generation and Load Relief

Action 1989 Capacity (MW) Description
Number Summer Winter All Year

1 6.00 14.62 Steam generation to max claimed capability.

2 9.25 9.25 All on-line internal combustion units to max claimed capability

3 .00 Curtail NEPOOL Block E dispatchable load.
4 .00 Curtail NEPOOL Block D dispatchable load.

5 .00 Curtail NEPOOL Block C dispatchable load.

6 .00 Purchase emergency capacity and/or energy.
7 .00 Curtail NEPOOL Block B dispatchable load.

8 4.10 Curtail NEPOOL Block A dispatchable load.
9 1.00 Voluntary load curtailment at NEPOOL participants' facilities

10 .00 Request customer generation contractually available.

.00 Curtail NEPOOL special interruptible loads.

11 .00 Allow 30 minute reserve to go to zero.

12 .00 5% voltage reduction requiring more than 10 minutes.

13 19.00 5% voltage reduction requiring less than 10 minutes.

14 3.00 Request customer generation not contractually available.

18.00 Request voluntary load curtailment by large customers.

15 9.00 Broadcast public appeals for voluntary load curtailment.
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Figure 5.20 - OP-4 Action Level Capacities

Load Relief from OP4 Actions in 1989

1-2 8-9 13 14

Operation Procedure No. 4 Action

Transmission and Distribution Assumptions

When DSM options are implemented, they not only save the construction of

new generating capacity, but they also save the con~auction of new transmission

and distribution (T&D) lines which would otherwise be required. Because of this,

there should reasonably be a T&D cost/new kW charge that should either be

subtracted as a credit from DSM costs, or added to the capital cost of new capacity.

Unfortunately, this amount is very difficult to ascertain. By tracking past COM/Elec

data on T&D investment and load growth, it was clear that T&D expenditures are

much more closely correlated with system size than load growth. The net present

value of additional T&D costs over the 30 year life of a plant required to meet new
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load were calculated and found to be $780/kW. For the NEPOOL region as a whole

the ratios of T&D to production plant were found for both plant-in-service and net

plant. This ratio suggested a cost multiplier of approximately 1.5 for new capacity

capital costs. Both of these estimates were thought to be first approximations, and

neither included the intangible costs of public opposition to new transmission,

which may be as much or more than that to new power plants. As a result, the total

costs calculated did not include either of these additional T&D costs. However, the

certain existence and probable magnitude of these costs should not be ignored in

interpreting the results presented by this project.

I
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6.0 Results and Discussion

This chapter presents the results of analyzing the complete set of 1152

scenarios described in Chapter 5, as opposed to the results for 720 scenarios which

were presented to the consumer advisory group and briefly described in Chapter 4.

These results are presented using the following steps. First, a set of primary issue-

oriented attributes are chosen for describing the most important results. All other

attributes are relegated to secondary, supporting roles. Second, the overall range of

variability for the primary attributes is examined, so that the relative impacts of the

different uncertainties and strategies can be compared later. Based on this initial

examination of variability some scenarios are then eliminated, so that trends in the

reduced subset of results are more easily identified. Third, single attributes are

interpreted, according to how they vary with respect to uncertainties, options-sets,

and strategies. Fourth, pairs of attributes are considered using multi-attribute

tradeoff curves showing the tradeoffs between the single attribute trends already

identified.

The approach taken in presenting the impacts of different uncertainties and

strategies loosely follows the analysis steps described in Chapter 3. While these steps

help the analysis team interpret the results in a cov-nlete and consistent manner,

presentation of the results in this chapter focuses on the communication of those

results discovered through the use of that method, rather than presenting the

analysis in step-by-step detail. This chapter identifies and interprets the chief trends

and stories of the technical analysis. Chapter 7 then restates these findings, and

integrates this information with those lessons learned by performing the analysis in

an open planning context.
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6.1 Identifying the Primary Attributes

The final results calculated include over sixty attributes for each of the 1152

scenarios modeled. Each of these attributes is defined in Appendix B, with units and

method of calculation. However, to comprehend such a large number of results, it

is necessary to divide them into the most important, primary attributes which tell

the main stories, and the supporting, secondary attributes which explain the reasons

behind the primary results. This division may be gradual, rather than clear cut and

absolute. Nevertheless, the analysis team focused on a limited set of primary

attributes, and only those secondary attributes necessary to explain them.

As identified by the external Consumer Advisory Group (see Table 4.6), the

issues of primary concern identified were divided into four main areas; Cost of

Electric Service, Environmental Quality, Efficiency of Electric Service Provision, and

Reliability of Electricity Supplies. This section takes these four main areas and

identifies the primary attributes picked for each area, explaining why these attributes

were chosen and why others were relegated to secondary status.

Cost of Electric Service

The choice of attribute used to measure an issue can be key in determining

the choice of strategy. This can be especially true in the area of cost, where different

measures include total cost of service (discounted and non-discounted), the cost of

investing in supply-side and demand-side resources, annual revenue requirements,

the cost of electricity to the ratepayer, and the cost for electric services.

The analysis team chose as the primary attribute the average cost per unit of

electrical service, or the average unit cost of service (UCS). This attribute was

chosen for several reasons. First, it is a unit cost, and so is independent of the

demand for electricity. Demand depends mostly on economic and population
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growth, neither of which are controlled by the utility, and total cost does not

measure the cost to the individual consumer. Thus, results presented in this

chapter are different from the initial results presented in Chapter 4, which show

total cost vs. total emissions.

Second, this attribute measures the cost of service, whether that service (heat,

light, etc.) is provided by building new generating capacity, or by installing

conservation or load management measures which provide the same amount of

service using less electricity. To do this, the real annual revenue requirements

(adjusted for inflation and in 1989 dollars) are divided by the energy that would

have been sold if no DSM measures had been implemented. Including the energy

saved by increased DSM means that the unit of service includes service provided by

both electricity and increased end-use efficiency.

The unit cost of service is essentially an adjusted cost of electricity, but it

differs from the usual cost in an important way. DSM measures are included in the

cost of electricity, but decrease the amount of electricity purchased. Thus the rate

paid for electricity may increase while the total bill decreases. The unit cost of

service tracks changes in the total bill paid for a constant amount of service.

The average cost of service results in this Chapter show trends for the bill of

an average customer. The rate and the total bill will increase for customers who do

not participate in DSM programs (thus failing the so-called "No Losers Test").

However, because DSM measures are cheaper than new sources of generation, the

bill will increase less for those customers than it would if new capacity alone were

added. Massachusetts state regulatory policy ensures that DSM programs are

available to all customer classes, so that each customer has the opportunity to save.

While the cost of electrical service is important, it may also be important to

customers that this price not fluctuate wildly or unexpectedly. Thus, the variability

of the unit cost of service (or "rateshock") may also be considered as a primary
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attribute, particularly by large business customers for whom electricity is a

significant cost, and therefore a significant factor in their planning decisions. This

variability was measured both by the standard deviation of the annual unit cost of

service, and the maximum annual increase in the unit cost of service. The analysis

team chose to use the maximum annual increase of the UCS as the primary

attribute for this concern.

Environmental Quality

In choosing attributes to measure environmental quality, the analysis team

chose to concentrate on air pollution measures. This was because air pollution is

the area of greatest environmental impact and public concern produced by

production of electricity. The analysis team calculated attributes for the production

of sulfur dioxide (SO2), nitrous oxides (NOx), total suspended particulates (TSP), and

carbon dioxide (CO2). These emissions were calculated as total number of tons

produced over the 25 years of the study period. There are two relevant comments

here. First, air quality depends not just on emissions, but also upon the atmospheric

conversion and transport of pollutants. These processes are understood but difficult

to quantify, so it was chosen to concentrate simply on emissions. Second, emissions

were not discounted in the same way that costs wee. That is, a ton of emissions in

25 years in the future counts for just as much as a ton next year (likewise,

cumulative kWh energy totals over the study period were not discounted). The

analysis team chose to do this, rather than to impute a discount rate for future

health, environmental damages, or energy consumption.

Of the four emissions attributes, SO2 and C02 were chosen as primary

attributes, while NOx and TSP were relegated to secondary status. This was done for

two major reasons. First, SO2 and CO2 measure the two major issues of acid rain

and global warming. SO2 can be considered a regional problem, because acid rain
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precipitates downwind of the emissions site, while C02 emissions are a global

problem, contributing to possible climate changes which are still statistically

indeterminate.

Second, NOx and TSP are both correlated with 502 emissions, so SO02 can be

considered a proxy attribute for NOx and TSP emissions. This correlation depends

upon whether low sulfur Oil 6 or high sulfur Oil 6 is burned, as shown in Table 6. 1,

which gives the Pearson correlation coefficients between pollutants. Where the

correlation is statistically significant, the figures are given in bold type. This

correlation occurs because the different kinds of emissions are linked to the

operation of old, existing powerplants. The correlation is not perfect because of

variation in these plants, and and because relative generation by these plants shifts

under different scenarios. This correlation is also diluted by new construction to a

degree that depends on total load growth, because all the new forms of generation

considered were very clean in both NOx and TSP emissions.

Table 6.1 - Correlations between Emissions

Scenarios Burning Scenarios Burning
Low Sulfur Oil 6 High Sulfur Oil 6
Sulfur Nitrous Suspended Carbon Sulfur Nitrous Suspended Carbon

Dioxide Oxides Particulates Dioxide Dioxid. Oxides Particulates Dioxide

Sulfur 1 1
Dioxide

Nitrous .972 1 .957 1
Oxides

Suspended .628 .736 1 .906 .933 1
Particulat

Carbon .585 .547 0.364 1 .497 .556 0.417 1
Dioxide
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Other measures of environmental quality include solid waste, land use (the

number and MW of new plants, and the acres required by them) and spent fuel

produced from nuclear plants. Solid waste is not a significant problem because the

new coal technology considered (coal gasification combined cycle) gasifies the coal

before combustion, and sell the ash and sulfur as byproducts. Land use measures

were considered less important, or at least less easy to quantify, because public

opposition (the "not in my back yard" or NIMBY problem) is very site specific, and

the planning model used in the analysis does not specify geographic sites. Nuclear

waste produced was also relegated to secondary status. This problem is linked more

to waste from existing plants and the method of long-term disposal chosen than to

new construction, and opposition to new construction will depend on many other

factors beside just the issue of waste.

Efficiency of Providing Service

Measures of efficiency included fossil and system heat rates, and percent

changes in supply, demand, and system efficiencies. All of these attributes were

chosen to be secondary, supporting attributes. Efficiency has a strong and important

effect on system operation, but it does this through educed fuel consumption

which in turn reduces the primary attributes of cost and emissions. Efficiency thus

plays a supporting role and is mentioned in the rest of this chapter only when this

supporting role in important in understanding the story underlying a primary

attribute result.

Reliability of Electric Service

To measure the impact of reliability, the primary attribute was chosen to be

the total number of hours spent in OP-4 Action 13 over the entire 25 year study
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period. This OP-4 Action corresponds to a 5% voltage reduction, which precedes

requests for large consumers to voluntarily reduce consumption and maximize se!i

generation (see Figure 5.19 for the definition and resource size of all OP-4 Action

levels).

This measure of reliability was originally developed for the Open Planning

Process to express reliability in a way that is more meaningful to customers than the

traditional outage probability or energy deficit measures. This attribute is not

discounted (an hour of voltage reduction is the same next year or 25 years hence),

and ignores possible variations in amount of hours spent in lower OP-4 levels

(interrupting customers with interruptible rates, etc.).

Because the Prespecified Pathway planning program (see Chapter 3, page 15)

used to plan future unit additions uses a maximum percentage cap on the expected

load growth rate for each year, there are a small number of years in most scenario

capacity trajectories that have low reserve margins. These do not persist, so overall

reliability results are meaningful, but very fine differences in OP-4 hours cannot be

counted as significant trends.

6.2 Attribute Variability and Reduction of Data Set

The first step in analyzing the results is to look at the range and variability of

the single attribute results for different uncertainties and option-sets. The analysis

team did this, examining all the results using both single attribute box plots, and

multi-attribute scatterplots. The result of this examination was that one group of

results stood out from all the rest. The Canal 3 supply-side option-sets (supply-side

option-sets H and N) were markedly higher in cost (15% higher average than the

next most expensive photovoltaic option-set) and had no corresponding advantages
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in the other primary attributes for cost or reliability. The cause for this disadvantage

was clear. As explained in Chapter 5, the Canal 3 option refuels two very efficient

oil-fired units at the Canal site with synthetic gas made from coal. The refueled

units do not have the efficiency of combined cycle operation, and are very expensive

due both to high capital costs and a poor heat rate.

Based on these observations, the results for all the Canal 3 option-set

scenarios were removed from the final data set before further analysis. This was

done for two reasons. First, the Canal-3 option-set would clearly be rejected in any

analysis because it is dominated by other strategies. Second, and more important,

keeping (and ignoring) the Canal 3 results would obscure the spread in results for

more competitive strategies. Including the Canal 3 results requires the graph scale

to be compressed to show these very high values. Eliminating the Canal 3 results

allows the scale to expand and show the relative differences of the remaining

options more clearly. This effect is shown in Figures 6.1 and 6.2 below. In reading

this type of graph throughout the rest of the chapter, the minimum value is actually

the border between the blank and dark-hatched blocks in each column, the mean

value is actually the border between the light-hatched and dark-hatched blocks, and

the maximum value is the top border of the light-hatched block.
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Figure 6.1 - Average Unit Cost of Service by Supply-Option Set
(Canal 3 Results Included)
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Figure 6.2 - Average Unit Cost of Service by Supply-Option Set
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Excluding Canal 3 in this way is a good example of how graphical

presentation (scale compression) can influence how results are perceived. This is

also important when considering whether absolute or relative results should be

shown. Absolute results are typically shown by a scale that starts at zero, while

relative results are shown more clearly by a scale that brackets the minimum and

maximum values. This report generally presents results on an absolute basis with a

zero-based scale, unless specifically focusing on presentation of relative results.

Figure 6.3 shows this effect, emphasizing the relative differences between the same

results shown above in Figure 6.2.

Figure 6.3 - Average Unit Cost of Service by Supply-Option Set
(Canal 3 Results Excluded)
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While this type of graph clearly shows minimum, average, and maximum

values, it can obscure some of the underlying results. Results which depend upon

fuel price or load growth may may have individual data points grouped into 2 or

three ranges. Such bi-modal or tri-modal distributions can be seen later in the two

attribute tradeoff curves.

6.3 Single Attribute Trends Due to Uncertainties

This section of the chapter presents how the primary attributes are affected by

the three different uncertainties considered; load growth, fuel price, and customer

responsiveness to DSM programs. These attributes are divided in the order as they

were described in section 6.1; namely by cost, emissions, and reliability.

Unit Cost of Service

Although the total cost of providing electricity naturally follows electrical

load growth, the cost per unit of service actually declines as load growth increases.

This is shown in Figure 6.4.
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Figure 6.4 - Unit Cost of Service vs. Load Growth
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This dependence of cost on load growth is small compared to the effects of

other uncertainties and strategies (from low growth to high growth the mean cost

only decreases by 0.135, or 1.9%). This decline is due to the fact that increased load

growth requires new generating capacity, which has a higher efficiency than existing

capacity and hence lower fuel costs, to be added at an increased rate. Higher load

growth scenarios had lower average reserve margins, due to the smaller size of new

units relative to overall system size. This lower reserve margin reduces slightly the

effect of adding new, more efficient capacity, but the trend is still apparent.

The average cost per unit of electric service increases as natural gas prices rise

relative to the cost of oil, as shown in Figure 6.5.

6-12

I V'O"IOrIr'OIIjrO4r'-IIf-IIr004 0410 ' r4I 0 17 rI



Figure 6.5 - Unit Cost of Service vs. Fuel Price and DSM Responsiveness
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This is also a relatively small shift in cost (the mean increases by 0.143, or

2.0%). Some generation shifts from gas to other fuels, but not enough to offset the

relative increase in gas price. However this slight increase is averaged in the graph

above over all strategies. By looking ahead at the tradeoff curves, we can see that gas

dependent strategies are slightly more sensitive to this uncertainty.

The average unit cost of service also decreases as DSM responsiveness

increases (from low to high DSM response, the decrease is 0.144, or 2.0%). This

slight decrease is logical because the DSM responsiveness uncertainty specifies

greater or lesser response to DSM programs with no change in cost, but the efficiency

gains are relatively small and greatly diluted by all other costs. It should also be

noted the maximum UCS increases with DSM responsiveness, indicating a trend

counter to the average in at least some cases. This may be due to the fact that in

some cases high DSM responsiveness cuts the need for new generating capacity, and

hence loses the relative benefits of new, higher efficiency units.
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In general, none of these uncertainties have a major impact on the cost of

service, averaged over all strategies and other uncertainties. The cost differences are

small, and the variability differences are also small. Thus, any important cost

results will be due to different strategies, and whatever gains may be realized

without large cost increases due to the uncertainties shown here.

Emissions

Total SO2 emissions, the primary attribute chosen to reflect "regional" acid

rain environmental effects, increase significantly with load growth as shown in

Figure 6.6, even though emissions per kWh of electricity decrease (from low to high

load growth, emissions increase by 94,600 tons, or 34.4%).

Figure 6.6 - SO2 Emissions vs. Load Growth
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Despite the fact that all new generating technologies considered were very

clean in SO2 emissions, increased load growth requires more generation, and hence

higher total emissions. While the maximum, average, and minimum emissions aill

increase, there is a relatively large variance in emissions for each load growth. This

is due to the range of emissions produced by different technology mix and alternate

fueling option-sets.

Total emissions of SO2 also depend on the price of natural gas relative to oil,

as shown in Figure 6.7.

Figure 6.7 - SO2 Emissions vs. Fuel Price and DSM Responsiveness
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As might be expected, lower gas prices produce less SO2, while higher natural

gas prices drive a fuel shift to burn more oil, producing higher SO02 emissions.

From lower to higher gas prices the increase in mean emissions is 81,500 tons, or

28.9%). This increase in SO2 is consistent for maximum, average and minimum

values, and the large variation for each case reveals a dependence on other factors.
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There is also a very slight trend for SO2 emissions to decrease as customer

response to DSM measures increases. This is a consistent and reasonable trend, as

DSM savings reduce emissions, but the amount of reduction is almost insignificant

compared to the total variation (from low to high DSM response the reduction in

average S02 emissions is only 2600 tons, or 0.8%).

Total C02 emissions, the primary attribute chosen to reflect "global"

environmental concerns over climate change also increase with load growth, as

shown in Figure 6.8 below. From low to high load growth, the average C02

emissions increase by 33.9 million tons, or 85.1%.

Figure 6.8 - C02 Emissions vs. Load Growth
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The C02 emissions per kWh may or may not increase, based on the fuel

carbon content and efficiency of the strategy's technology mix (the tradeoff of SO2 vs.

C02 emissions per kWh is explicitly addressed later in section 6.5). In this case, the
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range of variation in C02 emissions also increases as load growth increases,

reflecting the increased impact of different technology mixes as total load grows.

Total CO2 emission depend upon the other uncertainties to a much smaller

extent, as shown in Figure 6.11.

Figure 6.9 - C02 Emissions vs. Fuel Price and DSM Responsiveness
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Total C02 emissions decline very slightly with lower natural gas prices (on

average only 1.00 million tons, or 1.8%). Higher natural gas prices shift some

consumption to oil, but the CO2 decline is much less than for SO 2 because the

carbon content advantage of natural gas over oil is much less than its sulfur content

advantage. Once again, this result is consistent for the maximum, average and

minimum, but very small compared to the variation in either the lower or higher

natural gas price case.

As with SO2 , higher DSM responsiveness means a small decrease in total C02

emissions, due to increased DSM energy savings (from low to high DSM response
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average emissions increase by 2.41 million tons, or 4.4%). The trend is consistent,

but again almost insignificant compared to the overall range of variation.

As mentioned above, the SO2 results and to a lesser extent the C02 results

seen are determined by the relative consumption of natural gas vs. Oil 6. In

particular, SO2 emissions are strongly correlated to the amount of 2.2% sulfur Oil 6.

This correlation is shown in Table 6.2 below. As could be expected, this correlation

depends strongly upon whether high or low sulfur Oil 6 is burned. Where the

correlation is statistically significant, the correlation is shown in bold type.

Table 6.2 - Correlation of Fuels Burned (in Btu's)
and Emissions (in Tons)

Scenarios Burning

Low Sulfur High Sulfur Coal -
Oil 6 Oil 6

Sulfur Dioxide .365 .985 .041

Nitrous Oxides .450 .919 .013

Suspended Particulates .100 .914 -.153

Carbon Dioxide .488 .360 .716

Figures 6.10 and 6.11 below present the total cumulative consumption of Oil 6

over the range of all three uncertainties. In particular, the significant decrease in Oil

6 consumption for base natural gas prices vs. higher natural gas prices support the

decline in total S02 emissions (from base to higher gas prices, average Oil 6

consumption increases by 70 trillion Btu's, or 16.8%).
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Figure 6.10 - Cumulative Oil 6 Consumption vs. Load Growth
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Figure 6.11 - Cumulative Oil 6 Consumption vs. Fuel Price & DSM Responsiveness
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Reliability

The number of hours spent in 5% voltage reductions (OP-4 Action 13)

increases as load growth increases from low to high (on average by 850 hours, or

29 3%), as shown in Figure 6.12 below.

Figure 6.12 - Hours 5% Voltage Reduction vs. Load Growth

8000

u 0 Maximum

.0 II Mean

> 2000 1 0Minimum

0'
Low Lad Med. Load High Load All Futures

Uncertainty Set

Since new plants are more reliable than old plants, and high load growth

requires a larger proportion of newer plants, this result is not straightforward to

explain. The reason for this trend was an algorithmic bias in the results of the

Prespedfied Pathway (PSP) planning program. It planned capacity additions with

higher reserve margins for low load growth scenarios and lower reserve margins for

high load growth scenarios. Although the Prespecified Pathway planning program

attempts to meet its target reserve margin without going below it, it is able to do so

more easily when new MW requirements are large in comparison with unit sizes.

6- 20



Thus, the results seem reasonable since the Prespecified Pathway program mimics a

realistic planning process.

System reliability does not depend significantly on the other

uncertainties of natural gas fuel prices or DSM responsiveness, as shown in Figure

6.13.

Figure 6.13 - Hours 5% Voltage Reduction vs. Fuel Price & DSM Responsiveness
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Thus, any shifts between older oil-fired capacity and newer gas-fired capacity

driven by the relative price of natural gas do not seem to have any effects on

reliability. The DSM Responsiveness uncertainty shows some slight variations

without any clear trend, and the variations are clearly insignificant.
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6.4 Single Attribute Trends Due to Option-Sets

This section of the chapter describes how the results for single primary

attributes depend upon the different choices available to the utility. As described in

Chapter 5, these options include technology mix supply-side option-sets, demand-

side DSM program option-sets, and planning and operational options based on fuel

choice and target reserve margin. The results of these choices are again divided and

presented here by the issues of Cost, Emissions, and Reliability.

Unit Cost of Service

As we have seen before above when eliminating the Canal 3 option-set, the

unit cost of electrical service depends significantly, if not greatly, upon the choice of

the remaining supply-side option-sets. These results are shown again in Figure 6.14

below.

Figure 6.14 - Unit Cost of Service vs. Supply-Side Option-Set
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Three conclusions may be drawn from this graph. First, the cost of service

results may be generally grouped. The repowering option-sets are the cheapest in

average cost (Repowering and Coal & Repowering are both 7.0 c/unit of service).

They are followed by option-sets in rough order of increasing fuel price (Coal

Dependent, Gas & Coal, and Gas Dependent are all 7.2 c/unit of service), and finally

by the nuclear and renewable options (Nuclear & Gas and Photovoltaics & Gas are

7.4 and 7.5 c/unit of service respectively). Second, the range in variation between

these option sets is not great (at most 7.1%), so that if any of the option-sets has any

great advantages, they may be purchased by a relatively modest premium. Third,

the range between maximum and minimum for each supply-side option-set is

relatively small and constant over all option-sets (0.6 to 0.7 c/unit of service). This

means that variations due to uncertainties and other choices are about the same as

the differences due to technology mix, and will probably not make an

overwhelming difference. Although the difference is slight, the Coal Dependent

option set has the lowest variability, reflecting the fact that coal is the cheapest fuel,

which insulates this option-set from fuel price changes due to natural gas scarcity or

changes in oil prices.

The variations in cost of service due to DSM program choice, low vs. regular

sulfur Oil 6, and 23% vs. 30% target reserve margins are shown in Figure 6.15.
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Figure 6.15 - Unit Cost of Service vs. DSM Option-Set,
Sulfur Content, & Reserve Margin
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The Enhanced Collaborative DSM option-set is slightly cheaper than the

Collaborative DSM option-set (0.1 t/unit of service for the maximum and

minimum, and not at all for the average). The price premium for burning low

sulfur Oil 6 is slightly larger (0.2t/unit of service, or 2.8%), and the price premium

for the higher target reserve margin is just barely perceptible (0.1 c/unit of service in

the maximum case, or 13%). These cost differences are so small that any advantages

the option-aasets may offer with respect to other attributes will cost, at most, a small

premium. These results seem consistent and have a moderate and consistent range

of variability.
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Emissions

Total SO2 emissions depend significantly upon the choice of supply-side

technology mix, as can be seen in Figure 6.16 below.

Figure 6.16 - Total SO2 Emissions vs. Supply-Side Option-Set
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SO 2 emissions are lowest for the Nuclear & ,as and Photovoltaics & Gas

option-sets (averaging 273 and 306 thousand tons respectively). These are followed

roughly in order by the coal/gas, coal, and gas fueled mixes (308, 323, and 325

thousand tons respectively), and topped by the Coal/Repowering and Repowering

option-sets (332 and 392 thousand tons respectively). The cleanness of the coal-fired

option sets emphasizes the positive impact of the clean coal technologies used. The

Repowering option-sets are dirtiest on average because they keep dirtier old plants

in service (some are refueled, but all are less efficient), but their minimum
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emissions can be very clean. This large variability is due to a dependence on how

much the old repowered plants are run, which in turn depends upon load growth,

reserve margin and fuel prices. While the variability is largest for Repowering (710

thousand tons), it is striking for all single option-sets, revealing that uncertainties

(like fuel prices) and especially other options (like Oil 6 sulfur content) must play a

major role, regardless of technology mix.

This dependence of SO 2 emissions on other option choices is strongly shown

in Figure 6.17.

Figure 6.17 - Total S02 Emissions vs. DSM Option-Set,

Sulfur Content, & Reserve Margin
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Here we can see the dramatic impact of requiring the burning of low sulfur

Oil 6. Under this requirement, average S02 emissions decrease by 368 thousand

tons, or 72.7%). As we saw in the cost section above, this large reduction S02 is
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purchased by a relatively small increase in the cost of service (only 2.8%). This

tradeoff will be made more explicit in Section 6.5 below. The Enhanced

Collaborative DSM option-set shows a slight reduction in maximum and minimum

emissions over the Collaborative option-set, but the average emissions are

approximately equal (322 vs. 323 thousand tons). High 30% target reserve margin

shows a slight reduction in average emissions over the base 23% target reserve

margin (335 to 311 thousand tons, or 7.2%). Reductions from both the DSM or

reserve margin options are available for a small or even negative cost.

Total cumulative emissions of C02 also depend significantly upon the

supply-side choice of technology mix or option-set, as seen in Figure 6.18.

Figure 6.18 - Total CO2 Emissions vs. Supply-Side Option-Set
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As before, the Nuclear & Gas and the PhotovoPlaic & Gas option-sets have

low emissions with relatively low variability (average emissions are 34 and 50

million tons, respectively). However, the order for the next best option-sets is

changed relative to those which perform well for SO2 emissions. The Gas

Dependent and Repowering option sets are the next best (54 and 58 million tons on

average), due to the lower carbon content of natural gas, while the coal-burning

option-sets come last in order of their increasing coal dependence. Coal &

Repowering and Gas & Coal have average emissions of 64 million tons each, and

the Coal Dependent option-set has average emissions of 70 million tons. Thus we

can see that there are tradeoffs between the S02 and C02 performance of different

option-sets, as well as between CO2 and cost. The overall variability of results for

each option set is less than for SO 2, because the effects of changing fuels are much

smaller. Repowering remains the most variable option-set (26 to 81 million tons on

average), again reflecting a dependence on how much older, more inefficient plants

are used.

The effect of choices other than technology mix on C02 emissions is much

smaller, as shown in Figure 6.19.
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Figure 6.19 - Total C02 Emissions vs. DSM Option-Set,

Sulfur Content, & Reserve Margin
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Although the choice of sulfur content for Oil 6 has a dramatic impact on SO2

emissions, Figure 6.19 shows that (as we would expect) it has no impact on C02

emissions. The Enhanced Collaborative DSM option-set has a small average CO2

emissions advantage over the Collaborative option-set (average emission decrease

from 58 to 55 million tons, or 8.6%), which compares with no advantage either way

for both average SO2 emission and average cost. The higher 30% target reserve

margin has no advantage over the base 23% target reserve margin in average CO2

emissions, although the minimum emissions are slightly reduced. Finally, all three

choices have a consistent and high variability in the results (approximately 75

million tons, or 77% of the maximum), reflecting the effect of technology mix and

load growth on total emissions.
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Reliability

The reliability of the COM/Elec system depends primarily upon the reserve

margin of the system, and only secondarily upon options or uncertainties that are

correlated with reserve margin. The cumulative number of hours spent in 5%

voltage reduction (OP-4 Action 13) depended upon the supply-side option-set only

insofar as the reserve margin was correlated to the technology mix chosen. This

correlation is a by product of the Prespecified Pathway planning program, based

upon unit lead times for different technologies, and the effect of unit sizes

("lumpiness") by technology vs. the amount of capacity required. Because the 5%

voltage reduction hours were correlated to technology mix reserve margins, and not

to the technology mix outage probabilities, graphing reliability vs. supply-side

option-set was not reasonable.

Instead, Figure 6.20 shows reliability directly against the other options of

target reserve margin, Oil 6 fuel choice, and DSM program choice.
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Figure 6.20 - Total Hours 5% Voltage Reduction vs. DSM Option-Set,
Sulfur Content, & Reserve Margin
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As can be seen, the higher 30% target reserve margin has a strong effect in

increasing reliability (decreasing voltage reduction hours). The average reduction in

hours spent under 5% voltage reduction is from 3996 to 2645 hours, or 33.8%. In

addition to there simply being more capacity to handle peak loads, the higher

reserve margin gives additional weight to new vs. ,.d plants, which are more

reliable as well as more efficient. As we recall from the cost part of this section, this

improvement comes at no average increase in cost. There is some cost for the

improvement in reliability which does not show in the averages, and this is further

illustrated by a tradeoff curve in Section 6.5 below.

As might be expected, the sulfur content of Oil 6 has no effect on reliability.

However the demand-side DSM option-set has a mixed effect. Increasing DSM from

the Collaborative to the Enhanced Collaborative option-sets decreases the average
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and worst reliability while improving the best reliability. This happens because the

scenarios with Enhanced Collaborative DSM span a wider range of reserve margins,

so that the worst reliability decreases and the best reliability increases. The average

decreases (605 hours, or 16.7%), because for a fixed average reserve margin

Collaborative scenarios are more reliable than Enhanced Collaborative scenarios

(except for the photovoltaic scenarios). These effects are due to increased

"lumpiness," because under increased DSM less new capacity is needed and new

units planned by the Prespecified Pathway planning program are a larger fraction of

total generating capacity. This is not true for the photovoltaic scenarios, where peak

capacity is determined by load during winter nights.

6.5 Pairwise Multiple Attribute Tradeoff Curves

Having examined the effects of single uncertainties and strategies on the

outcomes of the various primary attributes, we are now prepared to see what

tradeoffs are given by the different strategies under different futures. These tradeoffs

are shown for two attributes at a time in the form of a scatterplot, as described in

Chapter 2. Each point on the scatterplot represents a single strategy, with its position

showing its performance on each of the attribute axes.

As was shown in Chapter 2, the strategies which are worse in both attributes

are dominated, and can be eliminated from consideration, leaving the dominant set

which embodies the real tradeoffs available in -he form of a tradeoff curve. Points

which are sufficiently near to the tradeoff curve (within some uncertainty

bandwidth) may also be considered significantly dominant, and those strategies

which are on or near the tradeoff curve over the range of futures can be considered

robust.

6- 32



A scatterplot graph may be drawn with points for single, multiple or even all

futures. In general, showing points for all 18 futures is confusing. If the result or

trend being identified does not change significantly with future uncertainties, then

the future identified as being of the highest interest by the Consumer Advisory

Groups has been shown. Where trends do change by future then results are shown

for the best, worst, and highest-interest futures. As described in section 4.4 of

Chapter 4, the Consumer Advisory Groups responded to questionnaires prioritiz:ng

uncertainties. The best and worst futures (based on cost and emissions) and the

future judged to be of highest-interest by the Consumer Advisory Groups were as

follows.

Load DSM Natural Gas
Future Growth Responsiveness Fuel Price
Best Low High Low
Highest-Interest Base High High
Worst High Low High

The Best, Highest-Interest and Worst futures are sometimes abbreviated

LBHL, BBHH and HBLH, with the second character of B indicating the base level

cost of capital used.

Each strategy shown depends on four choices (technology mix, DSM level,

fuel choice, and target reserve margin). Where the effects of a choice are particularly

significant, the scatterplot's strategy points may form a group or "cloud". These

groupings may be shown in the graphs below by a second tradeoff curve or dividing

line.

The tradeoff results below are presented by pairs of primary attributes in

roughly the same order as the single attributes presented above. Cost attributes are

presented first, showing the tradeoff between the cost of service and the maximum

annual change in cost of service, or "rateshock". This is followed by the tradeoffs
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between cost and environmental attributes, and then by the tradeoff between the

regional and global (SO2 and C02) environmental attributes. Finally the tradeoffs

between cost and reliability of service are presented.

Unit Cost of Service vs. Rateshock

The scatterplot for unit cost of service vs. rateshock is shown below in Figure

6.21. As described in section 6.1 above, the cost of service attribute is the average

unit cost of service (abbreviated UCS), and rateshock is measured by the maximum

annual increase in the unit cost of service over the study period. This scatterplot

shows data for the best, worst, and highest-interest futures described above.
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Figure 6.21 - Cost of Service vs. Rateshock

(Best, Worst & Highest-Interest Futures)
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This scatterplot shows several different things. First, rateshock is smallest for

some of the Repowering and Coal & Repowering technology options, but varies a

fair amount. Rateshock then increases from Coal Dependent to Gas & Coal, Gas

Dependent, Photovoltaics & Gas, and finally Nuclear & Gas. The "cloud" of points

for each technology option-set overlaps with the others, so this trend is not

overwhelming. What is striking is that the left (low rateshock) side of the tradeoff

curve is very steep or nearly vertical, so that any decreases in rateshock are

purchased at a very steep cost. The technology choices at the "knee" of the curve are

supply-side option-sets C/D - Repowering and G/M - Coal & Repowering, and this is

true for all three futures. This is not surprising, since repowering is cheap

(especially under the assumptions made for COM/Elec), and the low cost and low

rate shock go together in all futures.
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The high cost side of the scatterplot is more interesting. The Photovoltaics &

Gas technology option is costly, but has rateshock results that are consistently quite

low, even though not the very lowest. In comparison, the Nuclear & Gas option-set

is also costly, but has by far the widest variation in rateshock results. Under the

worst future (high load growth), nuclear power can have rateshock results that are

as low as any, but under medium or low load growth rateshock can be extreme.

Other trends are harder to see from a single tradeoff curve but had small,

consistent effects. Low sulfur oil increased UCS slightly, but decreased rateshock

slightly. Increasing load growth decreased both UCS and rateshock slightly. Fuel

prices, DSM option-set and DSM responsiveness all had no significant effects.

Unit Cost of Service vs. Environmental Effects

Unit Cost of Service vs. Sulfur Dioxide Emissions

The tradeoff between the unit cost of service and the regional, acid rain

environmental effects of sulfur dioxide emissions are shown in Figure 6.22. This

scatterplot includes results and tradeoff curves for the best, highest-interest, and

worst futures. As might be expected from the defi .ion of these futures, these

tradeoff curves show that both cost and total emissions increase as the futures move

from best to worst.
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Figure 6.22 - Cost of Service vs. Total SO2 Emissions

(Best, Worst & Highest-Interest Futures)
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The predominant story shown by this graph is the large reduction in total SO2

emissions that can be purchased by a relatively low cost by using low sulfur Oil 6.

This can be seen in Figure 6.22 by the different symbols representing this fueling

option, and the almost complete separation between these two clouds of symbols.

Given that fuel choice is the single most influential option, what about the

second most important choice of technology option? Four technology-mix option-

sets are consistently in the dominant set for all three futures. These are shown by

Figure 6.23, which focuses on the future chosen as being of highest interest by the

Consumer Advisoiy Groups.
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Figure 6.23 - Cost of Service vs. Total SO2 Emissions

(Highest-Interest Future)
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The Coal Dependent and Coal & Repowering supply-side option-sets were the

lower cost dominant choices, with Coal & Repowering being slightly cheaper and

dirtier. Both of these technology mixes then moved up (more expensive) and to the

left (cleaner) with the addition choice of low sulfur Oil 6. These two technologies

formed the "knee" or turning point of the tradeoff curve. Moving up in cost from

the knee, the technology choice is Gas & Coal, but Gas Dependent is not far from the

frontier and is on the frontier for other futures. Finally up in cost from both of

these gas burning futures at the extremely dean, very expensive end of the curve is

the nuclear option.

What technology choices are dominated on the basis of cost and S02

emissions? Clearly the Photovoltaics & Gas option-set was as clean, but much more

expensive than the Nuclear & Gas option-set. The more expensive options with
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high sulfur oil were also clearly dominated. Finally, Repowering was dirtier and

more expensive for both fuel options.

These two choices of fuel and technology mix had the largest effects.

However, as mentioned in the single attribute trend analysis, the other two choices

of DSM option-set and target reserve margin had smaller effects that were consistent

among technologies, if not always among futures. Figure 6.24 shows scatterplot

results for the highest-interest future with two tradeoff curves for the Collaborative

vs. Enhanced Collaborative DSM option-sets.

Figure 6.24 - Cost of Service vs. Total SO 2 Emissions

(Highest-Interest Future)
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As can be seen, the Enhanced Collaborative programs are consistently both

cleaner and cheaper. Although this result was generally true, the trend was
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reversed for the worst future, where the DSM responsiveness uncertainty was 30%

below expected. This effect was consistent for all technology mixes, except for the

Nuclear & Gas and Photovoltaics & Gas option-sets in all futures when DSM

responsiveness was low.

The higher target reserve margin had a similar effect of being slightly cleaner

and but slightly more expensive. Because this effect was small, and a tradeoff

between cost and emissions (rather than a win-win like the Enhanced Collaborative

choice), both target reserve margins are members of the overall tradeoff curve.

Unit Cost of Service vs. Carbon Dioxide Emissions

Because the carbon content of fuels does not vary as much as the sulfur

content, and because it cannot be removed with current technologies, the cost vs.

C02 emissions tradeoffs are significantly different than those for cost vs. S02.

Figure 6.25 shows the best, worst, and highest-interest futures for unit cost of service

and cumulative C02 emissions.
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Figure 6.25 - Cost of Service vs. Total C02 Emissions

(Best, Worst & Highest-Interest Futures)
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Because emissions are in total tons rather than pounds/kWh, there is a clear

shift in C02 emissions, but not cost, as the futures change from low to medium to

high load growth. This is shown in Figure 6.25, where the "clouds" of points shift

directly from left to right as load growth increases.

Given this general trend, which technology choices show up on the tradeoff

curve? These results are consistent for all three futures, and are shown in Figure

6.26, which concentrates on the most probable future for greater clarity.
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Figure 6.26 - Cost of Service vs. Total C02 Emissions

(Highest-Interest Future)
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Starting from the cheap but dirty end of the tradeoff curve, the first supply-

side option-set is Coal & Repowering. The next option-set is Repowering which is

equally cheap but slightly cleaner since fuel shifts from coal to gas which has a lower

carbon content. The Gas Dependent option-set is next, and is significantly more

expensive with only a marginal decrease in CO2. Finally, the Nuclear & Gas option-

set is up at the clean but expensive end of the tradeoff curve. The Gas & Coal, Coal

Dependent, and Photovoltaics & Gas option-sets were clearly dominated and for all

three futures. The major shift between futures is that as load growth increases, CO2

emissions increase much less for the nuclear option-set relative to all other

technology choices, as could reasonably be expected.

What about the other three choices of DSM option-set, fuel sulfur content,

and target reserve margin? As expected, the fuel sulfur content has no impact in
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this case except to raise cost, so only high sulfur Oil 6 strategies are on this tradeoff

curve. The DSM option set is not quite so clear a story. For the best future and all

but the nuclear option-set in the highest-interest future, increased DSM is a win-w,,:n

improvement in both cost and C02 emissions. However for the worst future, the

results are mixed and both collaborative and enhanced collaborative option sets

appear on the tradeoff curve. As with the SO 2 results, this appears to be the result of

the decreased DSM effectiveness resulting from the low DSM uncertainty associated

with the worst future.

Finally, choice of the higher 30% target reserve margin generally increases

costs without decreasing C02 emissions enough to push these strategies out to the

tradeoff curve. Only in the case of the nuclear option-set does the higher target

reserve margin extend the tail of the curve, so that both 23% and 30% reserve

margin cases are in the decision set.

Regional vs. Global Environmental Effects

Given the fact that different strategies appear on the cost vs. SO 2 and cost vs.

C02 tradeoff curves, it is dear that there exists a tradeoff between total cumulative

S02 and C02 emissions. This tradeoff is shown in the scatterplot Figure 6.27.
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Figure 6.27 - Total SO2 Emissions vs. Total CO2 Emissions

(Highest-Interest Future)
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There are two primary points illustrated by this graph. The first is that the

choice of low sulfur Oil 6 is still a win-no loss choice, since SO2 emissions can be

reduced with no increase in CO02. Second is that only the Nuclear & Gas option-set

performs well for both attributes. In all three futures, the Nuclear & Gas supply-side

option-set is the only technology choice in the dominant set. Photovoltaics & Gas

and Gas Dependent come in a distant second and third in this tradeoff where cost is

not an issue.

The other two choices of DSM level and target reserve margin have relatively

small effects. In the best and highest-interest futures, the Enhanced Collaborative

DSM option-set is a clear winner over the Collaborative process, whereas in the

worst future the Collaborative level of DSM has lower C02 emissions and mixed

results for SO2. Likewise for the target reserve margin option the 30% reserve
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margin is a clear but very small winner in all cases for S02 emissions, but effects on

C02 are mixed.

Unit Cost of Service vs. Reliability

After cost tradeoffs with rateshock and SO2 and C02 emissions, we turn to

cost vs. reliability, as measured by the number of hours spent in OP-4 Action 13, a

5% voltage reduction with ten minutes notice. In this state, COM/Elec's

interruptible customers shift over to self generation, so no one is actually out of

electricity, but it is the next step to requesting large, non-interruptible customers to

reduce consumption and maximize self generation (succeeding steps are public

radio requests for load reductions and rolling blackouts). Figure 6.28 shows this

tradeoff for the highest-interest future, since results for all three futures are

consistent.
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Figure 6.28 - Cost of Service vs. Total Hours 5% Voltage Reduction

(Highest-Interest Future)
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In all cases, the Repowering and Coal & Repowering supply-side option-sets

are the only two technology choices in the dominant set, and both are close to the

"knee" or corner of the tradeoff curve, with Repowering being slightly more

reliable, and Coal & Repowering being slightly cheaver.

In both cases, these technology choices are combined with the choice of a high

target reserve margin (30% vs. the normal 23%). This choice of target reserve

margin has a significant effect, because without it the entire tradeoff curve shifts to

the right, reducing reliability while retaining the same Repowering and Coal &

Repowering supply-side option-sets in the dominant set on the shifted tradeoff

frontier. Tradeoff curves for both these reserve margins are shown in Figure 6.28.

The price of natural gas relative to oil (the fuel price uncertainty) had no

effect on reliability (only on cost), and the DSM option-set (Collaborative vs.
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Enhanced Collaborative) had a mixed impact on reliability due to a mixed

correlation with reserve margin.

As was noted above in the evaluation of single attributes, reliability is

predominantly a function of reserve margin. This is confirmed by the frontier shift

seen above. Repowering and Coal & Repowering are the dominant supply-side

option-sets because repowering older plants is less expensive, and these choices

tended to have higher reserve margins, thereby improving reliability as well. As

mentioned before, the Prespecified Pathway program which simulates the planning

and commitment of new plants has several reasons (besides its given target reserve

margin) for producing different actual reserve margins. Variations in the actual

reserve margin are based on reasonable expectations and constraints faced in the

actual planning process, such as uncertainty over future loads, interactions between

load growth and units already committed, or interactions between load growth rate,

unit size, and construction lead times.

It is clear from the interpretation of Figure 6.28 that the reserve margin is the

driving force behind reliability in the supply of electric service. This dependence is

shown in Figure 6.29 where hours in OP-4 Action 13 is plotted against the average

reserve margin.
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Figure 6.29 - Total Hours 5% Voltage Reduction vs. Average Reserve Margin
(Best, Worst & Highest-Interest Futures)
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Correlation of reserve margin to technology choice is quite weak.

Photovoltaic scenarios determine the "knee" of the curve due to their extra

"hidden" reserve margin. Extra gas-fired capacity built to meet winter night peak

load is also available for added reliability during daylight hours. Repowering

scenarios are built to the highest reserve margins by the Prespecified Pathway

planning program, and hence are the most reliable.

This scatterplot shows the overall relationship between higher reserve

margin and higher reliability by the overall slope of the scatterplot point cloud from

lower right to upper left. However, the reserve margin is also inversely correlated

to overall load growth. Figure 6.29 shows the scatterplot points identified by their

load growth uncertainty. As can be seen, higher load growth means that each new

6-48



additional unit is a smaller fraction of the total system size, and so increases the

average reserve margin by a smaller amount.

Given the dependence of reliability on reserve margin, why does an increase

in reliability, given by building to a higher reserve margin, come at such a low cost?

Basically, new plants are more efficient than the old plants presently in operation,

and a high target reserve margin introduces more new plants which will generate a

greater proportion of the electricity. The increased capital costs of these new units

are partially offset by reduced fuel and operation and maintenance costs associated

with the younger, more efficient new power plants, so that the net result is only a

small increase in the unit cost of service.

By examining the trends present in the single attribute results, and then

examining how these trends interact in pairs of attributes, this chapter has presented

the results and tradeoffs for the COM/Elec Open Planning Process project. These

results are summarized, regrouped and discussed by strategy, and explored for

systemic interactions next in Chapter 7 - Conclusions.
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7.0 Conclusions

This chapter presents the analysis team's conclusions based on experience

with the Consumer Advisory Groups, as described in Chapter 4, and on the

technical analysis results presented in Chapter 6. The technical conclusions are

presented first in parallel order to Chapter 6. The overall single attribute impacts oi

uncertainties first and the single attribute impacts of strategy choices are

summarized second. Third, the tradeoff results are reordered by individual strategy

choice (instead of by attribute) and discussed.

The conclusions of the COM/Elec project are then compared with those for

the winter 1989-1990 scenario set of the New England project. The conclusions

about the Open Planning Process itself are then presented, along with the principal

conceptual conclusions of the technical analysis. Finally, possibilities for study in

future rounds of the Open Planning Process are outlined.

7.1 Single Attribute Uncertainty Conclusions

Three main conclusions can be drawn about the overall effects of the load

growth, fuel price and DSM responsiveness uncertainties. First, for any results

which are absolute, cumulative totals rather than results per kWh, load growth is

the dominant uncertainty. Total cost and emissions are strongly driven by growth,

whereas the unit cost of service and emissions per kWh may rise or fall depending

upon fuel choice, technology mix, efficiency, etc.. Since load growth rates depend

more on population, economic growth, and price elasticity, and less on utility DSM

programs, use of attributes that express results per kWh focuses attention on the

significant, relative effects that utility choices can make.
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Second, the price of natural gas relative to oil has a significant impact on total

SO2 emissions due to a shift in fuels burned through the alternative loading of

power plants. There is no corresponding impact on total C02 emissions.

Third, reliability appears to be linked inversely to load growth, due to a

relationship between load growth and reserve margin. This dependence of

reliability on reserve margin will be seen again, when higher target reserve margtns

are discussed.

Although some other consistent trends due to uncertainties may be

discerned, they are small and relatively insignificant, compared to the much larger

variations in results clue to the choice of strategies. The uncertainties also seem to

have results that are independent of each other, so there does not seem to be

significant interaction that could produce countervailing trends.

7.2 Single Attribute Option-Set Conclusions

The main conclusion that can be drawn from the single attribute results is

that choices are roughly divided into two groups. The first group of choices includes

the Demand-Side options and reserve margin, which have relatively small but

consistently positive effects at little or no cost. These small impact choices present

relatively easy choices.

For DSM, the Enhanced Collaborative option-set is 8.6% cleaner in C02

emissions with S02 emissions and cost essentially unchanged. The Enhanced

Collaborative option-set does have decreased reliability but this effect is mixed, and

can be overcome by choosing a higher target reserve margin. Increasing reserve

margin reaps significant reliability gains (a 33.8% reduction in 5% voltage reduction

hours) for no increase in average cost.
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Technology mix and fuel choice are choices which have larger, but mixed,

effects. The choice of supply-side technology mix can make a large difference, but

have countervailing trends in cost, S02, and CO 2 results. Requiring low sulfur Oil 6

makes a large (73.7%) reduction in average SO2 emissions at a relatively low, but

significant, increase in average costs (2.8%) while having no real impact on CO2

emissions. Inclusion of a non-carbon emitting baseload generating technology, tkhe
Advance Light Water Reactor, significantly reduced average C02 emissions by 32%,

compared to all the other technology mixes evaluated.

A secondary conclusion is that the different option choices do not

interact significantly. Thus, for example, choosing low sulfur oil consistently

reduces SO2 emissions (to different degrees) regardless of the choice of DSM

option-set, supply-side option-set, or reserve margin.

7.3 Summary of Tradeoff Conclusions by Option-Sets

Given the primary attribute tradeoff results presented in Chapter 6, a number

of conclusions can be drawn about the strategies available to Commonwealth

Electric. This section ties together the attribute results by each of the individual

technology, demand-side management, planning and system operation choices

considered. As before, the unit cost of service is abbreviated below as UCS.

Supply-Side Option-Sef

Because each pair of attributes in the scatterplot tradeoff graphs were

discussed separately above, it is necessary to look back at which supply-side option-

sets were in the dominant sets for each tradeoff, and which option-sets were

dominated in all cases and so eliminated from consideration.
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Gas Dependent - This option-set was not quite on the UCS vs. SO02 tradeoff curve for

the highest-interest future, but it was close enough to be considered significantly

dominant, and was on the tradeoff curve for other futures. Its slightly higher cost

put it above the Coal Dependent option-set. This option-set was also on the UCS vs.

C02 tradeoff curve, at a significant cost premium over the Coal and Repowering

option-set.

For both the UCS vs. SO02 and UCS vs. C02 tradeoff curves, the Gas

Dependent option-set was at the clean and expensive end of the tradeoff curve, at a

point with such a steep slope that it is evident that the extra reduction in pollution

comes at a significantly higher cost. This option-set depends only on natural gas for

all new capacity, and it is evident that other option-sets which burn other fuels as

well as gas, or which repower old capacity with gas come much closer to the knee of

these tradeoff curves. The uncertainty in natural gas prices vs. base oil prices did not

make a large difference for this option-set in terms of its position relative to the

curve. This trend seems likely to continue even if oil prices grow at a slower or

faster rate, since it is the relative price of the fuels which is important in terms of

system operation.

Repowering - This option-set was on three different tradeoff curves. Because

repowering on the specific sites considered was an inexpensive option, Repowering

(and Coal & Repowering) did well on both unit cost of service and rateshock. Both

of these option-sets were both on the knee of the UCS vs. Rateshock tradeoff curve.

The Repowering option-set was also on the UCS vs. C02 tradeoff curve, where it

was cleaner than Coal & Repowering but had higher C02 emissions than the Gas

Dependent option-set. This option-set was also on the UCS vs. Reliability tradeoff

curve near the knee where it was slightly more reliable than the Coal & Repowering
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option-set. However since this reliability is more tied to the reserve margin :,an

any inherent reliability in the technology, this result is less important.

This was also a gas dependent option-set, because almost all the refired

capacity burns gas. It is therefore more vulnerable to fuel price shifts than choices

which also use coal or nuclear fuels.

Gas & Coal - This option-set was on the UCS vs. SO2 tradeoff curve, where it was

more expensive than Coal Dependent at the knee and less expensive than the clean,

high cost nuclear option. It does not appear in the decision set for any of the other

tradeoff curves. While it does not perform poorly, it does not stand out from the

others. In fact it is only marginally better than the Gas Dependent option set on the

UCS vs. SO02 tradeoff scatterplot and they are so dose that they can be considered

practically the same for these two attributes. However the Gas Dependent option-set

does have consistently lower C02 emissions. As might be expected, the Gas & Coal

option-set has a less volatility in its unit cost of service than the Gas Dependent

strategy, because it is partially insulated from the gas price increase due to its coal-

burning component. This option set is often beaten out by the Coal & Repowering

option-set, because Coal & Repowering has the same fuel blend (repowered units

almost all burn gas) but at lower capital costs.

Coal Dependent - This option-set was on the UCS vs. Rateshock tradeoff curve, but

only in the future considered to be the worst by the external consumer advisory

group, and even then on the high cost end of the curve. However, it is near the

knee of the UCS vs. S02 tradeoff curve, where is it slightly cleaner and more

expensive than Coal & Repowering. The relatively high carbon content of coal

means that this option-set does not do well on the UCS vs. CO2 tradeoff. However,

the increased use of coal means that it is better protected from fuel prices shifts, not
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just for the gas vs. oil shift modeled, but from ether shifts in the price of oil as we!!

It shares this characteristic with the Nuclear & Gas option-set, but because coal

plants can be built before the Advanced Light Water Reactor nuclear plants will be

available, this advantage with respect to fuel diversity is available for more of the

study period.

Coal & Repowering - This option set is on the tradeoff curve for four different

attribute pairs. This does not mean that it is a clear winner, because its

characteristics put it down the tail of the tradeoff curve away from the knee in some

cases.

Because of the low cost of the repowering component, this option-set is on

the knee of the UCS vs. Rateshock curve, along with Repowering. It is on the UCS

vs. S02 tradeoff curve near the knee, where it is slightly dirtier and cheaper than the

Coal Dependent option-set. This position is due to the very low emissions from the

clean coal-gasification combined-cycle technology. However, although this option-

set is on the UCS vs. CO2 tradeoff curve it is out on the less expensive, high C02 end

of the curve due to the high carbon content of the coal. This option-set is also on

the UCS vs. Reliability tradeoff curve. Again, this is not a great advantage, because

the real story behind reliability is in the reserve ma.gin.

Like the Gas & Coal option-set, this choice is partially insulated from natural

gas price shifts by its coal-burning component.

Canal 3 & Gas - As explained at the beginning of Chapter 6, this option-set was too

expensive and offered no compensating advantages to compete with the other

option-sets. The price disadvantage of trying to refuel an already efficient plant

meant that too large a cost was spread over too small an increase in net capacity.
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Under any reasonable expectations about the future, this option-set is the worst oi

all eight considered.

Nuclear & Gas - This had perhaps the most mixed results of any option-set

considered. It was consistently expensive, but in the worst future (with high load

growth), it can have a low enough rateshock to show up on the high cost tail of the

UCS vs. Rateshock tradeoff curve.

As might be expected it is also on the high cost, low emissions tail of the

tradeoff curves for both UCS vs. S02 and UCS vs. C02. Because of this, it dominates

all other supply-side option-sets for the SO02 vs. C02 tradeoff. The low emissions

strengths of this option-set are enhanced by the fact that nuclear units displace Oil 6

(Canal units 1 & 2) at the bottom of the dispatch order, but are moderated by the fact

that advanced light water reactors are not available until the year 2000. Like the

Coal Dependent option-set, this option set is relatively insulated from both absolute

and relative shifts in the prices of gas and oil, but this benefit occurs only after the

year 2000 when the option-set shifts from a dependence on gas-fired units, and adds

nuclear units.

Photovoltaics & Gas - This option-set was dominated for all tradeoffs, so it was not

on the tradeoff curve in any case. COM/Elec's peak loads occur after dark during the

winter, requiring additional gas-fired capacity. The energy price savings due to the

photovoltaic generation cannot overcome the capital costs for this extra gas-fired

capacity. For COM/Elec's service territory, photovoltaics must compete on energy

savings alone with no credit for reducing other capacity needs.
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Demand-Side Option-Sets

The choice between the Collaborative and the Enhanced Collaborative

programs was clear. The Enhanced Collaborative program option-sets decreased

both SO02 and C02 emissions and decreased prices. The relative benefits in C02

reductions were slightly greater, because efficiency (both DSM and supply-side) is

currently the only way aside from non-fossil fuel generators that C02 emissions can

be reduced. Only in the worst future did increasing DSM have mixed effects, due to

poor customer response to utility DSM initiatives.

Planning & Operation Options

Low Sulfur Oil 6 Option - The operational choice of requiring low sulfur Oil 6 (0.5%)

in place of high sulfur Oil 6 (2.2%) had the strongest and most consistent effect of all

choices for the scenarios modeled. It produced a very large decrease in S02

emissions for a relatively low cost increase, with no other major effects. It was more

effective in reducing S02 and had fewer countervailing tradeoffs than any of the

supply-side technology choices, and worked well in combination with all of them.

High Target Reserve Margin Option - The choice of the higher 30% target reserve

margin vs. the usual base 23% reserve margin basically increases reliability at only a

marginal increase in cost. This option does increase the risk of rateshock, even if

unit cost of service increases only a little, because the capital costs are front-loaded,

while fuel savings due to increased efficiency are spread over the plant lives.

Increasing the reserve margin had a slight, positive effect on air emissions.

Although S02, CO2, particulates and, to a greater extent, NOx emissions decreased,

the risk of greater local opposition to the additional plant sitings must be considered.
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Taking an overall view of the choice by choice conclusions presented here, we

see that the Coal Dependent, Coal & Repowering and Repowering supply-side

option-sets are near the knees on the tradeoff curves most often. Combining these

three technology-mix choices with the Enhanced Collaborative DSM option-set,

greater use of low sulfur Oil 6, and a high target reserve margin appears to define

the region where most of the larger tradeoffs occur. Although the analysis team

cannot tell a consumer advisory group or COM/Elec what its preferences should be,

these combinations point to an overall strategy with promising results.

To illustrate these three strategies, four series of tradeoff graphs are shown

below in Figures 7.1 through 7.4 for cost vs. rateshock, emissions, and reliability.

These graphs show the tradeoff curves for the best, worst, and highest-interest

futures, and highlight the Coal Dependent, Coal & Repowering and Repowering

technology-mixes combined with Enhanced Collaborative DSM, low sulfur Oil 6

use, and 30% target reserve margin.
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Figure 7.1 - Cost of Service vs. Rateshock
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Figure 7.2 - Cost of Service vs. Total SO2 Emissions
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Figure 7.3 - Cost of Service vs.
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Figure 7.4 - Cost of Service vs. Total Hours 5% Voltage Reduction
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7.4 Comparisons with the New England Region

As mentioned in the introduction, the COM/Elec project is one of two

ongoing projects being performed by the MIT Analysis Group for Regional

Electricity Alternatives. The other project continues to study regional alternatives

for all of New England, and exhibits some significant similarities and contrasts to

the COM/Elec project. In particular, the inputs and results of the winter 1989-1990

round of analysis for the New England project differed in significant ways, yet

produced the same general conclusions.

A number of contrasts between the two projects exist in the studies' input

assumptions. On the supply-side, the New England project assumed repowering

was more available and more expensive, Canadian power purchases were a major

option, cogeneration was a relatively larger option, and units on new sites were

limited to gas-fired technologies. On the demand-side, the New England project

combined the same spectrum of program options, but with a much wider range of

total impacts (15 option-sets versus just two). The chief difference was that the

COM/Elec study included the option of requiring low sulfur Oil 6 for oil-fired

generation.

Based on these differences, the quantitative. ults of the two studies were

naturally different. In addition, the primary attributes chosen to study these options

were different as well. The New England study focused on the total costs of

providing electric service (which is largely driven by load growth), while the

COM/EIec project focused on the total cost per unit of electric service provided.

Both studies looked at total cumulative emissions of S02 and C02, but the New

England study also looked at the number of new MW that would need to be sited

under different strategies. Finally the COM/Elec study focused more on the issues of
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rateshock and reliability, and included measures of both these issues as primarv

attributes.

Given the differences in inputs and results, conclusions for both studies were

still quite consistent, and include the following:

* Load Growth - In both studies, load growth is the primary uncertainty that
drives total results, including S02 and C02 emissions, and total costs.

* Relative Impacts - Both studies also showed that supply-side option-sets had
larger impacts on cost and emissions than DSM options. There is also a wider

range of impacts between different supply-side options, whereas DSM options

were consistent in the size of their impacts.

* Fuel Impacts - In both studies, gas-dependent strategies reduced SO02 (and the

related attributes of nitrous oxides and particulates emissions) more than they
reduced C02 emissions, and these effects shifted in similar ways when the

price of gas was high relative to oil.

* Demand Side Management - In both studies, increasing demand side
management decreased C02 emissions but had mixed impacts on SO02. In the

New England project, high levels of DSM allowed higher SO02 emissions since

they inhibited construction of new, cleaner generating units. This effect was

less evident for COM/Elec because the range of DSM options was smaller (only

the Collaborative and Enhanced Collaborative programs). The Enhanced

Collaborative programs were generally better, but their relative positions often

changed for the worst futures where customer participation in utility

sponsored DSM programs was low.

* Efficiency - In both studies, higher load growth and in the COM/Elec case,

higher reserve margins increased the efficiency of generation and reduced

emissions, due to lower relative use of older and dirtier plants. This effect was

clearer for New England as a whole; for COM/Elec it was partially hidden by an

inverse correlation between load growth and average reserve margin.
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* Nuclear Tradeoffs - The nuclear option included in the COM/Elec study
dominated the S02 vs. C02 emissions tradeoff where cost was ignored. This

tradeoff was more gradual and shifted over more technology choices for the

New England scenario set which included new generation from nuclear
sources only as a component of the Canadian power purchases option.

7.5 Primary Project Conclusions

Open Planning Process Conclusions

As mentioned in the introduction, the initial project goals were for MIT to

provide "integrated resource planning assistance" in order to "enhance their

planning processes and develop a framework for useful public discussion of utility

planning issues". Specific tasks included reviewing current planning methods,

expanding the company's ability to function in open planning processes, developing

their multi-attribute tradeoff analysis capabilities, performing public education on

utility planning issues, and exploring issues relating to the interactions between the

utility and the region.

The project has succeeded in meeting these goals and tasks. The project

developed an open planning multi-attribute tradeoff analysis methodology.

COM/Elec's current planning methods were reviewed, and the most suitable

production costing model was chosen as the "analytic engine" for the process. The

success in automating the modeling process meant that large numbers of runs could

be performed in a reasonable amount of time, thereby allowing the feedback of

results to the advisory group within a reasonable schedule of meetings.

The advisory groups were also successful in educating people about the

complexities of the utility planning process and exploring the issues that concerned

them. Beyond these initial goals the groups were able to form a limited consensus
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on some of the resulting tradeoffs and indicated directions for further analysis. This

initial experiment with open planning had success in getting public input for

prioritizing issues and assessing risk aversion, but had mixed success in achieving

consensus on specific planning choices. Where all-gain (or win-win) outcomes

were revealed, such as with greater amounts of DSM and higher reserve margins,

consensus was possible. Where tradeoffs had to be made, it was more difficult. Both

more time and analysis (of hybrid strategies) were needed. The process certainly

inspired both the participants and analysts to suggest improved hybrid strategies,

such as clean coal with repowering and low sulfur oil, plus high DSM and higher

reserve margins. As such, it played a vital role in spurring inventiveness in the

planning debate, and in improving communications between COM/Elec customers

and staff on long-term issues, but did not reach closure on decisionmaking. The

advisory group did come to appreciate the value of developing integrated, robust

strategies based on system-wide analysis, rather than a limited evaluation of supply-

side or demand-side options, based solely on their individual characteristics.

Group participation was also a mixed success. COM/Elec was successful in

attracting participants from different consumer sectors and interests who were

community activists and decision makers of the type who might be expected to

participate in future planning or rate case hearings. Unfortunately, the number of

participants who actually attended was lower than desired, and dropped off for the

second and third meetings. The consumer advisory groups were too small and too

narrowly selected to be able to claim that they were representative of general public

opinion (this was not even an original goal). This demonstrated the conflict

between the time required for quality public participation and the number of people

who could make the necessary, continuing time commitment. More time was

needed to evaluate customer feedback, such as the new hybrid planning options

suggested based on results presented at the third meeting. However, during actual

7-17



use of the open planning process in the regulatory setting it seems likely that ar.n

interest groups who could offer sustained interventions and opposition would aso

have the most interest in contributing to the open planning process with sustained

participation.

However, given the attendance, the response of participants was positive anr.d

enthusiastic. The meetings proved that the process of educating participants to the

complexities of utility planning problems, obtaining their concerns, and conveyi. g

back to them credible and understandable results was readily possible. The

participants came away appreciative of the complexity of certain problems, and

understanding that both win-win and tradeoff situations could result from the

choice of planning options. The good-will and enthusiasm generated in those

participants who were able to attend all three meetings bode well for future use of

open planning techniques in the regulatory process. Many of the advisory group

members urged that the open planning process should be continued beyond this j

initial phase.

Technical Analysis Conclusions

These results of the COM/Elec project combined with those of earlier New

England project results to confirm two overarching conclusions. First, that there

must be a balanced consideration of generation and end-use options if competing

goals of cost, reliability and environmental quality are to be achieved. Strategies that

push exclusively either supply-side or demand-side options may lose out in the

overall, long-range picture.

Second, strategies need to be judged based on their systemic interactions,

rather than on a option-by-option technology basis. Externality adders or other

judging schemes that work on a technology or option specific basis may miss

7-18



interactions between the existing plant base, the combination of new technology

choices, and different planning and system operation options.

In addition, the COM/Elec project adds a third major conclusion. By show:-,g

the major effects which burning low sulfur Oil 6 can produce, it shows that to

develop a balanced, systemic point of view, we must look beyond the choice of new

supply and demand technology options to include system operation choices.

Effective utility planning requires more than determining what kind of new

capacity to build, and how much can be saved by various demand-side measures. It

must also include how the system is operated. Decisions such as unit-fueling and

alternate dispatch order can carry significant risks and opportunities.

7.6 Possibilities for Future Analysis

Future applications of the open planning process by COM/Elec will depend

upon the utility's concerns and upon the concerns voiced by different groups in

future external consumer advisory groups. However, based on the results explored

in this chapter, some areas of interest appear to be likely candidates for future

investigation.

First, diversify the utility's fuel mix from current dependence on Oil 6 fired

units as base load capacity. Current technology options for new units did not

displace the Canal plant from base load operation under the Oil 6 price forecast used.

The low sulfur Oil 6 option analyzed in this study emphasized the large benefits of

reducing (SO2) emissions from the Canal plant, but the only other alternative

analyzed for refueling this plant with a different type of fossil fuel (coal gas) was far

too expensive. A clean, low cost base-load option could have a large impact, but
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given the high efficiency of the Canal plant, it would require an exceptional option

to compete with it.

Second, the current set of scenarios were limited to consideration of the fuel

price sensitivity as natural gas shifted relative to oil. A wider range of oil price

uncertainties would better reveal the costs and benefits associated with a shift away

from Oil 6 a base load fuel, and all the effects which this would imply. This question

would obviously complement with the first suggestion given just previously.

Third, COM/Elec was modeled in this study as a stand alone utility,

independent of the surrounding power pool. Some aspects of this interaction can be

simulated by adding input assumptions to the model used, including the

availability of power interchanges, and how the relative age and efficiency of

COM/Elec's plant base relative to the region's would influence such interchanges.

Other aspects of power pool interactions can be studied by comparing pool results to

stand-alone COM/Elec results for scenarios more comparable than those results for

the COM/Elec and New England projects given above. However, true modeling of

utility/pool interactions requires geographic specificity and transmission constraints

which are beyond current capabilities. This area is one which is seen as a key area of

research for the New England region as a whole.
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Appendix A - List of Advisory Group Participants by Role



COM/Electric Open Planning Project Participants

Cambndge

State Senator, Cambrdge

Facilities Manager ('attended New Bed.)
Polaroid Corporation

Chairperson
Neighborhood Nine Association

President
Dole Publishing

Manager of Physical Plant
Harvard University

Director of Community Relations
Harvard University

Chairman
Cambridge Chamber of Commerce

City Planner
Community Development Department
City of Cambridge

Energy Planner

Associate Director of Physical Plant
Massachusetts Institute of Technology

State Representative, Cambridge

Chairperson
Hastings Square Neighborhood Associat'n

Cambridge Totals

Attendance Record
Accepted Ist 2nd Question 3rd

Invite 'Mecthn I Meetin I naire I Meetine

'4 v '* 4 '*

v4

.4 4 . .

'1 .4

.4 .4 .4 .4

.4 .4

.4 .4

4 4 .4 .4

.4 4

.4 .4 4 .4

10 8 5 5 5
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COM/Electric Open Planning Project Participants, cont'd.

Plymouth
Attendance Record
Accepted I1st 2nd Question 3rd

Invite I Meeting I MeetinL naire Meetin

Executive Director, South Shore
Community Action Council

Executive Director, Plymouth
County Development Council

Chairman/(Alt.-City Planner)
Plymouth Board of Selectmen

President
MPG Communications (Newspapers)

President
WATD Radio Station

Chief Executive Officer
Cordage Park Company

Representative
Plimouth Plantation

Banker, Plymouth

State Representative (Alt.- Aide)
Wareham

State Representative, Plymouth

President
Plymouth Federal Savings Bank

Selectman
Board of SelcU tm Bourne

Plymouth Totals

4 (4) (4)

11 4
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COM/Electric Open Planning Proiect Participants, cont'd.

Attendance Record
Hvannis Accepted 1st 2nd Queshtion 3rd

[nvite Meenng Meehng naire Meetng

Speaker
Assembly of Delegates
Barnstaple County

Executive Director (Alt.- Planner), Cape
Cod Planning and Develop't Commission "4 ('v)

President
Cape Cod Hospital '4 '4

General Manager
Cape Cod Mall

Executive Director
Cape Cod and Island Board of Realtors '4 ' '4 '4

Owner
Puritan Clothing '4 '

State Senator, Hyannis ' '

Aide to State Senator, Hyannis '4 '

Publisher
Cape Cod Times

President
Radio Station WOCB

Executive Director
Cape Cod Chamber of Comnnerce

Executive Director
Association for Preservation of Cape Cod '

President
Cape Cod Bank & Trust Company

County Comaisioner
Barnstaple County '4

Hyannis Totals 10 7 4 4 5
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COM/Electric Oven Planning Project Particivants, cont'd.

Attendance Record
New Bedford Accepted 1st 2nd Queston 3rd

Invite I Mecting I Meeng I naire lecting

Editor
New Bedford Standard Times

Editor/(Alt.-Reporter)
The Portuguese Times Newspaper

President
Acushnet Company

Executive Secretary
Fairhaven Town Hall

State Senator, New Bedford

Manager, Public Works Department
Town of Dartmouth

General Manager
Whaling City Cable TV

President
New Bedford Institution for Savings

Chairman
United Way of Greater New Bedford

Mayor (Alts.- City Planners)
City of New Bedford

Chairman
Bristol County Development Council

Selectman
Town of Freetown

Owner/ Eir
The Cape Verdea Newspaper

Cranberry Grower

New Bedford Totals

(4) (4) (4)

4

10 5

Anonymous
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Appendix B - Attribute Definitions



IAttribute Calculations

Attributes are calculated from LMSTM input and outputs, and from PSP
summary planning information. The following attributes are defined in the
order in which they are presented in the final Systat database, along with their
abbreviations and units.

Total Cost of Service: Net present value of revenue requirements stream
discounted at 12.813%. (TCOST, Millions of Constant 1989 Dollars)

Undiscounted Cost of Service: Sum of annual revenue requirements,
discounted at the assumed rate of inflation (5%). (UTCOST, Millions of
Constant 1989 Dollars)

Average Revenue Requirement: Previous attribute divided by 25 (the
number of years in the study period. (ARR, Millions of Constant 1989
Dollars)

DSM Investment: Net present value of stream of DSM investments,
discounted at 12.813%. (DSMINV, Millions of Constant 1989 Dollars)

Supply Investment: Net present value of capital costs for new utility-owned
plants (excludes cogenerators). (SSINV, Millions of Constant 1989
Dollars)

Cogeneration Investment: NPV of investments in cogeneration plants.
(COGINV, Millions of Constant 1989 Dollars)

Average Unit Cost of Service: Real (inflation adjusted) annual revenue
requirements divided by unadjusted (no DSM) energy sales. This
attribute is thus a measure of the cost of pro iding energy services, not
just kWh. (UCS, 1989 c/unit of electric service provided by one kWh
in 1989)

UCS Standard Deviation: The standard deviation in the stream of annual
UCS values. (UCSSD, standard deviation in 1989 t/unit of electric
service)

Maximum Annual Percentage Increase in UCS: Maximum of [[(UCS in year
i+1) - (UCS in year i)]/(UCS in year i)] * 100, a measure of volatility in
consumer bills. (UCSMAX, percent)

Total Pollutant Emissions: For each power plant group, FPROC generates
annual emission rates for each pollutant in lb/MWh. These values are
multiplied by annual generation by group. The resulting stream of
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annual values is converted into more manageable units (yielding the
pollutant trajectories) and summed without discounting. Individual
pollutants, their abbreviations and units are listed below

Sulfur Dioxide - S02 .............. (S02, thousand tons)
Nitrous Oxides - NO................................ (NOX, thousand tons)
Carbon Dioxide - CO 2 .............. ........... . . . (CO2, million tons)
Total Suspended Particulates .............. (TSP, thousand tons)
Nuclear W aste ........................................... (NUCW ST, tons)

OP-4 Hours: Each of the OP4 levels is modeled as a separate "reliability
generator." The (fictitious) energy generation by these units is divided
by their MW capacity, yielding the number of hours that the system
was in the given OP4 level.

OP-4, Actions 1 & 2................................ (OP _2, hours)
OP-4, Actions 8 & 9 ................................ (OP8_9, hours)
OP-4, Action 13 .................................... (OP13, hours)
OP-4, Action 14 .................................... (OP14, hours)
OP-4, Action 15 .................................... (OP15, hours)

Unserved Energy: The total number of GWh that the system was unable to
provide, once the reliability generators were exhausted. (UNSGWH,
Gigawatt-hours GWh)

Total Service Shortfall: Sum of OP4-8/9 through unserved energy. This
attribute represents an equivalent of total unserved energy in hours.
This measure double counts outage hours where more than one of the
virtual OP-4 'generators' is operating. This weighting serves as a proxy
for the increasing severity of the OP-4 action levels. (SRVSHTFL,
hours)

Total Energy Sale* Sum of the 25 annual values reported by LMSTM.
(TTIWH, Terawatt-hours TWh)

Total Conserved Energy Sales: A trajectory of energy sales from an LMSTM
run with no DSM is pasted into the spreadsheet and the scenario-
specific energy sales are subtracted. The difference is a stream of energy
savings, which is then totaled. (TDSM, Megawatt-hours MWh)

Maximum Peak Reduction: A stream of peak reduction values is calculated
in the same way that energy savings are. The value reported here is
the maximum of that stream. (MAXPR, Megawatts MW)

Demand-Side Efficiency Improvement: Annual energy savings are divided
by annual sales to determine the percentage savings in each year.
Demand efficiency improvement is the maximum of that stream. We
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chose to use the maximum because DSM measure effectiveness decays
with time. If one assumes that a market transition towards more
energy efficient appliances, water heaters, etc. will have occurred by the
time that measures wear out, demand efficiency will continue to
increase, or at least remain stable. (DSMEFF, percent)

Supply-Side Efficiency Improvement: Percentage improvement of system
heat rate between the first and last years of the study period:

[Total BTU content of all fuel in year 25/kWh sales in year 251
( ...........................-------------...............---------------------------------- ) 100

(Total BTU content of all fuel in year I/kWh sales in year ii

(SSEFF, percent)

Cumulative Fossil Heat Rate: Sum of all fossil BTU's consumed divided by
total fossil kWh generation. (FHR_CUM, Btu/kWh)

Average System Heat Rate: Total BTU input from all fuels divided by total
kWh sales. (SHR_AVE, Btu/kWh)

System Efficiency Improvement: Combines demand and supply efficient
improvements:

(1 - (1 - Supply Eff. Improvement) * (1 - Demand Eff. Improvement)) 100

(SYSEFF, percent)

Energy Content of Fuel Consumed: Each FPROC file contains a stream of
annual heat rates for each group. These are multiplied by annual
group generation yielding BTU consumption by group. These streams
of annual BTU consumption are totaled and then aggregated by fuel
type. Because combustion turbines and combined cycle plants use gas
or kerosene depending on the season, BTU input is calculated
seasonally for these plants. (all units are in Millions of MMBtu, one
MMBtu is a million Btu's)

Oil 6 - 0.5% ............................. (0116 0.5)
Oil 6 - 1.0% ................................................ (0116 _1.0)
Oil 6 - 2.2% .......................... ..... ........... ( 116_2.2)
Kerosene ........................................ (KERO)
Diesel .................................... (DIESEL)
Slice of Northeast Utility System........... (SLICE)
Cogeneration Units ............................... (COGEN)
Nuclear...................................................... (NUCLEAR)
Natural Gas ................... ..................... (NATGAS)
Coal .................................... (COAL)

All Oil 6........................................................ (OIL6_ALL)
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All Fossil Fuels ........................................ (FOSS_ALL)

Final Reserve Margin: (RM_FINAL, percent)

Average Reserve Margin: (RMAVE, percent)

Minimum Reserve Margin: (RLM_MIN, percent)

Number of Years Below Target Reserve Margin: (RIM_BEL)

Number of Years Below 20% Reserve Margin: (RM_20)

Number of Years Below 18% Reserve Margin: (RM_18)

Number of Years Below 16% Reserve Margin: (RM_16)

Number of Years Below 14% Reserve Margin: (RM_14)

Number of New Units by Technology:

Combustion Turbines ............. (CT_NO)
Combined Cycles............................ (CC_NO)
Coal Gasification Combined Cycle......... (CGCCNO)
Advanced Light Water Reactors....... (ALWR_NO)

Total Number of New Units: (Total_NO)

Megawatts of New Units by Variable Ratio Technology:

Combustion Turbines ........................... (CT_MW, MW)
Combined Cycles............................ (CC MW, MW)
Coal Gasification Combined Cycle......... (CGCC_MW, MW)
Advanced Light Water Reactors............. (ALWR_MW, MW)

Total MW of New Variable Ratio Units: (RATIO_.AW, MW)

Total MW of New Fixed MW Units: (FIXED_MW, MW)

Total MW of New Units: (TOTAL_MW, MW)

Total Acres Required by New Units: (ACRES, ACRES)
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