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We present in a unified manner the existing methods for scalable partial quantum process tomography. We focus
on two main approaches: the one presented in Bendersky et al. [Phys. Rev. Lett. 100, 190403 (2008)] and the ones
described, respectively, in Emerson et al. [Science 317, 1893 (2007)] and López et al. [Phys. Rev. A 79, 042328
(2009)], which can be combined together. The methods share an essential feature: They are based on the idea that
the tomography of a quantum map can be efficiently performed by studying certain properties of a twirling of
such a map. From this perspective, in this paper we present extensions, improvements, and comparative analyses
of the scalable methods for partial quantum process tomography. We also clarify the significance of the extracted
information, and we introduce interesting and useful properties of the χ -matrix representation of quantum maps
that can be used to establish a clearer path toward achieving full tomography of quantum processes in a scalable
way.
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I. INTRODUCTION

The number of parameters describing a quantum map
scale exponentially with ln(D), with D the dimension of the
Hilbert space HD of the system. One can then argue that the
resources required to obtain this exponentially large number of
parameters will also necessarily increase exponentially. This
is why the complete characterization of a quantum map is
considered to be a nonscalable task. The task of characterizing
a quantum map is known as quantum process tomography
(QPT) [1] and the above is the main reason why full QPT is
exponentially expensive. Moreover, many existing methods
have another major defect as they are inefficient also in
extracting partial information about the quantum process (for
a review, see [2]). Recently, however, several works [3–10]
have demonstrated that it is possible to extract partial but
nevertheless relevant information in an efficient way [where
by efficient we mean that it is done at a cost that scales
at most polynomially with ln(D)]. This has opened a new
chapter in quantum information processing toward the scalable
characterization of quantum processes. These new methods
share a common feature. They are based on the idea that the
relevant properties of the quantum map can be obtained by
averaging properties of a family of maps which are obtained
from the original one. The averaging is done by an operation
denoted as twirling [11] (which will be defined in detail later)
and involves the application of certain operations before and
after the application of the map.

In this work we present a review of the recent methods
for partial QPT, establishing connections between them and
adding results. We not only present a unifying perspective of
these methods but also develop a better understanding of the
problem at hand—the tomographic characterization itself.

The paper is organized as follows: In Sec. II we introduce
the χ -matrix description of a quantum process distinguishing
completely positive (CP) maps and others that are not CP.

In Sec. III we present the basic ideas behind the notion
of a twirling operation. We show that the elements of the
χ matrix can be obtained from this type of operation.
Moreover, some important properties of such a matrix (in
particular, some useful relations between diagonal and off-
diagonal elements) are discussed in Secs. II A and III A.

In Sec. IV we review the method of “selective efficient
quantum process tomography,” originally presented in [8,10].
We reformulate this approach by using more general types of
twirlings. Not only do we highlight the power of this method
but also we establish the convenience of one type of twirl over
another. Furthermore, we provide a clear prescription for its
implementation when targeting the scalable measurement of
several χ -matrix elements at a time.

In Sec. V we move to protocols utilizing simpler forms
of twirling, which are substantially less demanding regarding
their experimental implementation. We take the results from
[6] and [9] and present them in a new compact form as a
single protocol enabling us to obtain the diagonal elements of
the χ matrix grouped by “how many” and “which” qubits
are affected by the quantum map. By fully proving the
method by construction, we aim to further clarify its simple
implementation as well as its limitations.

Finally, in Sec. VI, we discuss the potential of these
strategies toward achieving scalable complete tomography
of a quantum process. We believe that the key to this lies
in the hierarchization of the exponentially large number of
parameters (in which the results of Secs. II A and III A play
an important role). The methods described in Secs. IV and V
retrieve the diagonal elements of the χ matrix, and in Sec. VI
we show how the diagonal elements provide information not
only about themselves but also about the off-diagonal ones.
This is what we identify as an information hierarchy.

Furthermore, we hope that this article sets a practical path
for experimentalists looking to implement quantum process
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characterization in a quantum information setting, that is, when
the scalability of the tomographic method matters.

II. THE χ -MATRIX DESCRIPTION OF
A QUANTUM PROCESS

A general quantum process can be described by the action
of an arbitrary map � on the state ρ in HD . Any linear map �

can be expressed as

�(ρ) =
D2−1∑
l,l′=0

χl,l′ElρE
†
l′ , (1)

where the operators {El,l = 0, . . . ,D2 − 1} form a basis for
the space of operators HD . The complex numbers χl,l form
the so-called χ matrix of the map. The χ matrix is obviously
dependent on the operator basis. Without loss of generality,
we can take this basis to be orthogonal, that is, to be such
that Tr[E†

l El′] = Dδl,l′ [12]. It is simple to show that the map
preserves the hermiticity of ρ if and only if the χ matrix is
Hermitian itself (i.e., if χl,l′ = χ∗

l′,l). Moreover, the map � is

trace-preserving if and only if the condition
∑

l,l′ χl,l′E
†
l′El =

I is satisfied. In such a case it is simple to count the number of
independent real parameters defining the quantum map, which
turns out to be D4 − D2 (with the trace preserving condition
implying a reduction of the number of parameters in D2 and
also implying that the condition

∑
l χl,l = 1 must be satisfied).

We remark that this description is valid for any linear map.
For the case of Hermitian maps it is possible to uncover further
structure. In such a case the χ matrix can be diagonalized
by a unitary transformation. In matrix notation we can write
χ = B†SB, where S is a diagonal matrix with real eigenvalues.
The columns of the unitary matrix B define the eigenvectors:
The mth component of the lth eigenvector b̄l is (b̄l)m = Bm,l .
By using this notation it is evident that the elements of the χ

matrix can be obtained as χl,l′ = b̄
†
l Sb̄l′ = ∑

m B∗
m,lSm,mBm,l′ .

Some simple but useful results follow from this expression.
Replacing it in the original formula for the map given in Eq. (1)
we obtain the following alternative expression for an arbitrary
linear Hermitian map:

�(ρ) =
∑

k

Sk,kAkρA
†
k, (2)

where the operators Ak form an orthonormal basis defined
as Ak = ∑

l B
∗
k,lEl . (The orthonormality of Ak follows from

the fact that these operators are a linear combination of the
original El with coefficients that are elements of a unitary
matrix.) It is worth noticing that the coefficients Skk , which
are the eigenvalues of the χ matrix, are necessarily real but
can be either positive or negative. This representation for
the quantum map is closely related to the so-called Kraus
representation (which is obtained only if the eigenvalues Smm

are all positive, which is in turn valid for the case of CP maps
only, as discussed below). In fact, Eq. (2) is a generalization of
the Kraus representation valid for any linear Hermitian map.

More generally, these expressions make evident that an
arbitrary linear Hermitian map can always be written as the
difference between two CP maps [13] (since any matrix S can
be expressed as the difference between two positive matrices).

A. The χ matrix of completely positive maps

Using the above results, we can derive some properties for
the χ matrix of completely positive maps (i.e., when the map �

and any trivial extension of it to a bigger Hilbert space preserve
positivity). Since the matrix S is positive, it is clear that matrix
elements χ are obtained as the inner product between two
eigenvectors b̄l defined through the positive matrix S,

〈b̄l ,b̄l′ 〉 ≡ b̄
†
l Sb̄l′ .

From this observation we can conclude the following: First,
it is evident that diagonal elements must be positive (i.e.,
χl,l � 0 ∀ l). Moreover, as the inner product satisfies the
Cauchy-Schwarz inequality, we can obtain the following
relation between diagonal and off-diagonal elements of the
χ matrix:

|χl,l′ |2 � χl,l χl′,l′ . (3)

This means that, for any CP map, the diagonal elements of
the χ matrix are always nonnegative and that they bound the
corresponding off-diagonal elements. These two simple results
are quite significant and they will prove very useful later on.
Below, we will derive another relation between diagonal and
off-diagonal coefficients for the χ matrix valid for positive
(not necessarily CP) maps. In this way we will be also able to
establish some conditions to distinguish these two important
classes of maps.

III. TWIRLING OF A MAP, AND SAMPLING OF A TWIRL

The action of twirling a map is depicted in Fig. 1. We
have a quantum process characterized by a map � that acts
on a system (for example, a quantum information processor)
originally prepared in an arbitrary state |φ0〉, as depicted in
Fig. 1(a). We twirl the map by applying an operator U before
the map, and an operator U † after, as in Fig. 1(b). Typically
the twirling is considered as the average of this over different
elements U , resulting in a net map �T, the twirled map.
Different families of U ’s will return different types of twirl.

In particular, we are initially interested in the Haar twirl,

�HT(ρ) =
∫

dUU †�(UρU †)U, (4)

where dU denotes the unitarily invariant Haar measure on
U(D).

There is a version of this twirl where the average is over the
Haar measure in state space,

〈φ0|�HT(|φ0〉〈φ0|)|φ0〉 =
∫

dψ〈ψ |�(|ψ〉〈ψ |)|ψ〉. (5)

The relation between the two is straightforward if we notice
that if U is randomly drawn according to the Haar measure

(a) |φ0 Λ Λ(|φ0 φ0|)

(b) |φ0 U Λ U † ΛT (|φ0 φ0|)

FIG. 1. Circuit representation of (a) the action of a map � and
(b) the action of the map, now twirled by U .

062113-2



PROGRESS TOWARDS SCALABLE TOMOGRAPHY OF . . . PHYSICAL REVIEW A 81, 062113 (2010)

on operator space, then |ψ〉 = U |φ0〉 corresponds to the Haar
measure on vector space—for any arbitrary fixed state |φ0〉.

There are several previous results concerning the Haar twirl,
in its forms in both operator space [3,14] and in state space [15].
Summarizing this literature, we limit ourselves to state the
following general mathematical formula:∫

dUTr[A1U
†B1UA2U

†B2U ]

= Tr[A1A2]

D2 − 1

(
Tr[B1]Tr[B2] − Tr[B1B2]

D

)

+ Tr[A1]Tr[A2]

D2 − 1

(
Tr[B1B2] − Tr[B1]Tr[B2]

D

)
(6)

for any operators A1, A2, B1, B2 in HD .
Given this and explicitly using the trace-preserving condi-

tion, the χ -matrix elements can be expressed as the outcome
of a twirl,

Dχl,l′ + δl,l′

D + 1
=

∫
dψ〈ψ |�(E†

l |ψ〉〈ψ |El′)|ψ〉, (7)

as already stated in [8].

A. The χ matrix of positive (but not necessarily CP) maps

Equation (7) is valid for any map � under study. In
particular, for processes that take positive operators into
positive operators, Eq. (7) defines a valid inner product

〈El,El′ 〉 ≡
∫

dψ〈ψ |�(E†
l |ψ〉〈ψ |El′)|ψ〉.

Notice that we have 〈El,El〉 = (Dχl,l + 1)/(D + 1) � 0. This
implies that, for a positive (but not necessarily CP) map, we
have that the diagonal elements of the χ matrix can be negative
but only up to an exponentially vanishing value: χl,l � −1/D.
Also, notice that 〈El,El〉 is a survival probability: the probabil-
ity of the system remaining in its initial state after applying the
twirled map �HT to it. Therefore, (Dχl,l + 1)/(D + 1) � 1,
which implies χl,l � 1.

Moreover, again using the Cauchy-Schwarz inequality on
this inner product, we obtain that for l �= l′

|χl,l′ |2 � χl,l χl′,l′ + χl,l + χl′,l′

D
+ 1

D2
. (8)

So for large systems where we can consider D � 1, the off-
diagonal matrix elements are effectively bound by the diagonal
ones. These bounds also suggest that non-CP but positive
processes are “exponentially close” to CP ones. This is an
interesting result in the framework of open quantum systems,
where there are still important discussions about what mathe-
matical conditions a physical map should fulfill [13,16,17].

B. (Approximate) sampling of a twirl

Equation (7) already demonstrates the usefulness of twirls
in extracting the elements of the χ matrix. This is indeed
what lies at the heart of the methods developed in [3–6,
8–10]. It is evident then that we will need to implement
the twirl experimentally (in either operator or state space).
Unfortunately, as we will see, the number of elements in the
twirls that are of our interest is infinite or grows exponentially

|φ0〉

...

|φ0〉

UM

U1

Λ

Λ

U †
M

U †
1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

FIG. 2. Circuit representation of the twirling of �, approximated
by sampling M times over the elements that constitute the family
of twirl operators (the U ’s). Each time the system is prepared in the
same initial state |φ0〉. The average of these M measurements will
retrieve the desired probabilities.

with ln(D) [18]. Thus implementing the twirl perfectly is a
nonscalable task. However, it was initially suggested in [3,4]
that we can approximate the twirl by sampling randomly over
the family of U ’s, say M times, as depicted in Fig. 2. In the
case of a state twirl, the approach would be the same, since
in practice a state twirl results from implementing a series
of operations (which would take the place of the U ’s) on a
convenient initial state |φ0〉.

If we are interested in measuring the probability of finding
the system in any given state, this outcome will be a boolean
variable retrieved with a standard deviation σ � 1/

√
M

(following the central limit theorem with M → ∞), so for a
desired precision ε we must have M � ε−2. On the other hand,
the Chernoff bound tells us that for a desired precision ε and
an error probability δ � 1, we must have M � ln(2/δ)/(2ε2),
which is a stronger requirement when δ < 2e−2. This is a
bound to the error probability and not to the error itself;
however, it is rigorous for arbitrary M . In any case M should
satisfy both conditions [19]. Since M is independent of the size
of the system, this ensures the scalability of the experimental
implementation if each of the M realizations themselves can
be implemented efficiently. This holds of course unless the
targeted probabilities are expected to be of the O(1/

√
D), in

which case the estimation of each probability would require
an exponentially large number of realizations. However, this
would be the case of a process close to a random channel, and
usually they are of no interest in quantum information and/or
in relatively controllable quantum systems.

Finally, we note that we could separate the average of binary
outcomes (the result of projective measurements) required to
determine the probability for an experiment with a fixed twirl
operator U from the average of experiments with different
U ’s. This is useful in cases where repeating an experiment
with a fixed U is trivial compared to running a new one with a
different twirl operator. In this case, other interesting bounds
to the error can be applied, as for example in the experimental
work in [20].

In what follows we restrict ourselves to a Hilbert space that
is an n-fold tensor product of a two-level system space, so
D = 2n. Moreover, we work with a specific set of operators
{El}: the generalized Pauli operators (also called the product
operator basis). We will specifically denote them as {Pl},
Pl = ⊗n

j=1 P
(j )
l . Each P

(j )
l is an element of the Pauli group

{I,σx,σy,σz} for the j th qubit. P0 = II is the identity operator
in HD , and for l > 0 at least one factor in each Pl is a Pauli
matrix. Notice that P †

l = Pl and that Tr[PlPl′ ] = Dδl,l′ indeed.
From now on, the χ -matrix elements will be always associated
to this basis.
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IV. METHODS USING A FULL SPACE TWIRLING OF THE
MAP UNDER STUDY

In this section we start by studying the methods utilizing
a full twirl over U(D). If the twirl depicted in Fig. 2 is over
U(D), the survival probability is the average fidelity of the
original map � [5,8,10]. This is in fact Eq. (5), which is the
definition of average fidelity of a quantum channel � [21],
F (�).

The tomographic methods in [8,10] are actually presented
not in terms of twirl operators but rather in terms of the
states of mutually unbiased bases (MUBs): {|ψJ,m〉,J =
0, . . . ,D; m = 1, . . . ,D}. Here we introduce their equivalents
using twirls in operator space. Nevertheless, further analysis
will in turn lead to a slight preference toward the former one.

We rely on [5] to establish the equivalence between the
Haar twirl in operator space and the Clifford twirl in U(D) for
D > 2 (and we will explicitly prove it for D = 2 in Sec. V).
On the other hand, the equivalence between a Haar twirl in
state space and a twirl using MUB states, for dimensions that
are powers of prime numbers, is presented in [22]. Altogether,
we can write

〈φ0|�HT(|φ0〉〈φ0|)|φ0〉

= 1

|C|
|C|∑
l=1

〈φ0|C†
l �(Cl|φ0〉〈φ0|C†

l )Cl|φ0〉

= 1

D(D + 1)

∑
J,m

〈ψJ,m|�(|ψJ,m〉〈ψJ,m|)|ψJ,m〉, (9)

where the Cl are the Clifford operators in U(D) and |φ0〉
is an arbitrary fixed state. Both these twirls imply the same
cost, as preparing MUB states starting from the computational
basis and implementing the Cl require the same resources:
O(n2) one-qubit and two-qubit gates [10,23,24]. And again,
the number of Clifford operators |C| scales exponentially with
ln(D), as does the number of MUB states (so in both cases we
will resort to sampling the twirl).

In [8,10] it was shown how to selectively measure any
diagonal χ -matrix element using an MUB twirl. There is an
equivalent to this using a Clifford twirl in U(D). As presented
in [8], if we implement an intermediary extra gate Pl before
completing the twirl (see Fig. 3), the survival probability is

Tr
[|φ0〉〈φ0|�HT

l (|φ0〉〈φ0|)
] = Dχl,l + 1

D + 1
. (10)

This can be proven straightforwardly from Eq. (7).
We are thus able to measure efficiently one χl,l at a time

(selective efficient quantum process tomography, SEQPT [8]).
However, we can modify the protocol to automatically select
and retrieve the largest χl,l : the coefficients such that χl,l �
2/M . The strategy goes as follows.

We first revisit the method as presented in [8] for an MUB
twirl. As depicted in Fig. 4(a), we consider a single experiment
where the system is prepared in a randomly chosen MUB state

|φ0 U Λ Pl U † ΛHT
l (|φ0 φ0|)

FIG. 3. Circuit representation of the action of a map �l with
�l(ρ) = Pl�(ρ)Pl , twirled by U .

(a) |0〉 VJ,m Λ V†
J,m

}
|v̄out〉

(b) |0〉 VJ,m Λ Pout V†
J,m

}
|0〉

(c) |0〉 Ck Λ C†
k

}
|v̄out〉

(d) |0〉 Ck Λ Pout C†
k

}
|0〉

FIG. 4. Circuit representation of equivalent schemes to determine
the largest χl,l , by considering pairs of experiments.

|J,m〉 = VJ,m|0〉.VJ,m represents the change of basis operation
between the computational state |0〉 and the targeted MUB
state. We measure at the end the state in the computational
(Zeeman) basis, obtaining then an n-bit string |v̄out〉 (where
v̄out is a boolean vector of length n that labels the states as
binary numbers). Considering that VJ,m|v̄out〉 = |J,m′〉 is just
another state of the MUB, and that there are D possible Pauli
operators that take |J,m〉 to |J,m′〉 (up to a global phase) [10],
we can regard this experiment as equivalent to the one in Fig. 3,
but where now we have D possible Pauli operators playing the
role of the intermediary Pl .

To gain further insight into the mechanism of this result,
we recall these dynamics using the stabilizer formalism [23].
We describe the state |v̄out〉 with the subset BZ formed by
the n commuting Pauli operators {σ (1)

z , . . . ,σ (n)
z } and a string

s̄out of n signs, ±1, corresponding to the eigenvalues of |v̄out〉
for that subset. These n operators generate the maximally
commuting (Abelian) group of D Pauli operators that stabilize
the computational basis. On the other hand, the state |0〉
is described by BZ with a string s̄0 of all +1 signs. The
action of VJ,m on |0〉 is equivalent to changing (BZ,s̄0) to
(BJ ,s̄0), where now BJ is another subset of n commuting
Pauli operators—the generators of the group that stabilizes the
D states corresponding to the MUB labeled by J . Also, the
action of VJ,m on |v̄out〉 is equivalent to changing (BZ,s̄out) to
(BJ ,s̄out). We now use that the state (BJ ,s̄out) can be thought
as the result of a Pauli operator Pout acting on (BJ ,s̄0), which
leaves us with the scheme depicted in Fig. 4(b). Pout must
fulfill the requisite of commuting (anticommuting) with the
Pauli operators in BJ that have a corresponding +1 (−1) in
s̄out. We express this condition as the commutation relations

[Pout,V†
J,mσ (j )

z VJ,m]± = 0, j = 1, . . . ,n, (11)

where the [,]± stands for commutator or anticommutator,
depending on the signs of s̄out. But, as already stated before,
there will be D possible candidates for the intermediary Pout.
This can be seen as follows. First, we notice that Eq. (11) can
be rewritten as [P ′

out,σ
(j )
z ]± = 0, where we have defined

P ′
out ≡ VJ,mPoutV†

J,m. (12)

It is easy to see that the possible P ′
out will be the tensor products

that have I or σz for the qubits that have +1 in s̄out and σx or σy

for the other qubits. There are D = 2n of these products, and
then the actual Pout’s could be obtained by inverting Eq. (12).
Therefore, we are indeed left with an experiment equivalent
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to the one in Fig. 3 but with D possible intermediary Pauli
operators.

The key here is that for two different sets BJ1 and BJ2

corresponding to two different MUBs, there can be only one
Pout in common for both. This is because the D + 1 subsets
BJ are obtained by partitioning the D2 − 1 nonidentity Pauli
operators into D + 1 different subsets of D − 1 commuting
operators. The BJ are then the generators of these subsets
(plus the identity). Given their properties, any two BJ1 and
BJ2 , plus commutation relations with them [Eq. (11)], define
a unique operator Pout [10]. Moreover, given the nature of the
operators involved (Pauli gates and the operations involved in
the change of basis for MUBs), and the number of equations
(n), Pout can be established efficiently [10].

Therefore, if we consider together two experiments
(J1,m1,s̄

(1)
out) and (J2,m2,s̄

(2)
out) [each like in Fig. 4(b), with

J1 �= J2], there will be only one possible intermediary Pauli
gate compatible with both experiments, and it can be computed
in a scalable way. In practice, we will perform M experiments,
and analyzing all the possible M(M − 1)/2 pairs we will
establish the intermediary Pauli gates that have occurred at
least twice, which will be at most O(M2). Then, we just
count the number of experiments M+ where those operators
have potentially occurred among the D possible choices. The
corresponding χl,l can be estimated as (Dχl,l + 1)/(D + 1) =
M+/M . Notice that χl,l is then estimated with a standard
deviation �1/

√
M . We also recall that

∑
l χl,l = 1, so we can

use this to estimate altogether the magnitude of the smaller
coefficients.

This strategy can be also applied using Clifford gates acting
on the initial state instead of using MUB states, as depicted in
Fig. 4(c). Again, we use the stabilizer formalism as described
before. Since the Pauli group is the normalizer of the Clifford
group, indeed CPkC† ∼= Pk′ (where ∼= means equal up to a
global phase). So this means that the action of Cj on a state
is equivalent to changing (BZ,s̄) to (BP ,s̄), where now BP

is another subset of n commuting Pauli operators. Again we
use that the state (BP ,s̄out) can be thought as the result of
a Pauli operator Pout acting on (BP ,s̄0), which now leaves
us in the scheme depicted in Fig. 4(d). Again, there are
D possible operators that fulfill the requisite of commuting
(anticommuting) with the Pauli operators in BP that have a
corresponding +1 (−1) in s̄out. The argument is completely
analogous to the one for the MUB twirl.

We thus resort again on combining two experiments.
However, the case of two Clifford twirl experiments is not as
simple as the MUB twirl one. It no longer holds that given
two experiments there is one single possible intermediary
Pauli gate, because two different Clifford gates may map
BZ to two subsets BP1 and BP2 that generate two Pauli
subgroups that have some operators in common. So not every
pair of experiments, even if C1 �= C2, will be useful toward
establishing the χl,l above the threshold of 2/M . In practice, we
should determine the 2 × n operators Ckσ

(j )
z C†

k (where k = 1,2
are two randomly chosen Clifford gates) and check whether
they constitute two independent sets of generators. If that is
the case, then there is indeed a unique intermediary Pauli gate,
as it is always the case with the MUB twirl. And thanks to the
Gottesman-Knill theorem, this can be done efficiently with a
classical computer.

To compare both methods, we consider the probability of
successfully determining a unique intermediary Pauli gate
given two different experiments drawn from a pool of M

experiments. In the case of the MUB twirl, the probability of
success is PMUB = D/(D + 1), since there are D + 1 possible
values of J1, and having randomly withdrawn one, there are
D different ones we could withdraw for J2.

For the Clifford twirl case, this probability can be calculated
as the probability that, given two randomly chosen maximal
Abelian Pauli subgroups, the only common element in both
groups is the identity, up to a phase. To compute this probability
we proceed as follows. We fix the first maximal Abelian group
and then compute the probability of adding one by one the
operators belonging to the second group. The fixed group
has, up to a phase, D − 1 nonidentity Pauli operators. If we
randomly choose a nonidentity Pauli operator, namely P1, what
is the probability of it not belonging to the fixed group? It
is straightforward to see that this probability is D2−D

D2−1 . Now,
from the Pauli operators that commute with P1, what is the
probability of picking one Pauli operator P2 that does not
belong to the first group? Again, there are a total of D2/2 − 2
Pauli operators which commute with P1 and are neither P1 nor
the identity, but D/2 − 1 of those belong to the first group. So
the probability of this happening is D2/2−1−D/2

D2/2−2 . We proceed
in the same way, computing the probability of picking a Pauli
operator that does not belong either to the first group nor to
the group generated by the previously chosen operators. The
product of all those probabilities is the probabilityPC of having
only one intermediary Pauli operator given two Clifford twirl
experiments:

PC =
n−1∏
j=0

D2/2j − 2j − D/2j

D2/2j − 2j
. (13)

As shown in Fig. 5, this probability is smaller but asymptoti-
cally equivalent to PMUB. For the experiments that are being
done nowadays, with only a few qubits, the MUB twirl still
requires much fewer experimental runs to obtain the larger
coefficients.

At this point we can conclude that the method introduced
in [8] is indeed the most practical one and that it can retrieve
the largest diagonal elements of the χ matrix in the sense that
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FIG. 5. Success probability of the two methods: � PMUB, using
an MUB twirl; � PC , using a Clifford twirl.
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they are above the threshold of 2/M , for M realizations of the
MUB twirl. This is done in a scalable way, and with a standard
deviation �1/

√
M .

This protocol has been experimentally implemented re-
cently, with photons, to characterize maps on a one-qubit
space [20].

Nevertheless, although efficient, the method demands the
errorless implementation of the VJ,m gates (or of the equally
demanding Clifford gates)—at least relatively errorless com-
pared with any errors in the implementation of �. If we have
a functional quantum device that implements the Hadamard,
phase, and controlled-NOT (CNOT) gates (which are the gates
required to implement the Clifford gates [24] or the MUB
states [10]) and the Pauli operators with enough accuracy, we
will be in position to study more complex maps with twirls
in U(D). If however we are still aiming to study gates and
sequences whose complexity is comparable to the one of a
Clifford gate in U(D), this method is unsuitable. In this case,
a more practical alternative arises from the combination of the
methods presented in [6] and [9] (which will be the object
of the next section). This proposal allows us to establish the
diagonal elements of the χ matrix coarse-grained in direction.
Indeed, this information is particularly useful when seeking
information for quantum error correction codes, where the
particular type of error (σx , σy , or σz) is irrelevant.

The following method is experimentally quite less demand-
ing, since it requires a twirl in U(2)⊗n rather than one in
U(2n). On the other hand, as we will see, it assumes a certain
structure in the map under study. An example of such a scenario
was explicitly shown in the experimental work in [9], using
a liquid-state nuclear magnetic resonance (NMR) processor
with four qubits. A relatively large number of qubits easily
shows the significative difference between required resources;
to our knowledge, this is the largest number of qubits on
which a complete [20,25] or partial [6] quantum process
characterization has been attempted.

V. METHODS USING A ONE-QUBIT TWIRLING
OF THE MAP UNDER STUDY

In this section we concentrate on methods based on a one-
qubit twirling of a map [4,6,9]. That is, the twirl is a tensor
product of twirling operators U acting on each qubit. The
two protocols presented in [6] and [9] can be actually merged
into one. We review the compact method by proving it all
together, which also shows clearly the simplicity and economy
of its implementation (since both [6] and [9] include their
experimental implementation).

In Sec. III we highlighted the promising role of the
Haar twirl. This for example motivated the first works [3,4].
However, as mentioned before, the work by Dankert et al. [5]
pointed out an equivalence between a Haar twirl and a Clifford
twirl.

Rather than starting from the Haar twirl and crossing over
to the Clifford twirl, we will work directly with the Clifford
gates and prove everything from scratch. For this we will use
that the Clifford operators can in turn be decomposed into
Pauli operators (the normalizer of the Clifford group) and the
so-called symplectic operators (the resulting quotient group).

We will follow the notation of [6]. Each index l carries the
following information: w, νw, iw. w is the Pauli weight of Pl ,
that is, how many of the factors in Pl are nonidentity. The
index νw in {1, . . . ,( n

w
)} counts the number of distinct ways

that w nonidentity Pauli operators can be distributed over the n

factor spaces. The index iw is a vector of length w of the form
iw = (i1,i2, . . . ,iw) with each component being 1 = x, 2 = y,
or 3 = z to denote which Pauli matrix occupies that respective
factor position in the tensor product forming Pl . There are 3w

of these iw for given w and νw.
We start first with a Pauli twirl (PT) of the map. Thus �

becomes

�PT(ρ) = 1

D2

D2−1∑
m=0

Pm�(PmρPm)Pm (14)

= 1

D2

D2−1∑
m=0

D2−1∑
l,l′

χl,l′PmPlPmρPmPl′Pm (15)

=
D2−1∑
l=0

χl,lPlρPl. (16)

This result was proven in [24]. It can be also seen as
follows: For l = l′, PmPlPmρPmPlPm = PlρPl since each
Pl either commutes or anticommutes with each Pm. And
if l = l′, for each j th factor in which they differ, we
have P

(j )
m P

(j )
l P

(j )
m ρP

(j )
m P

(j )
l′ P

(j )
m = ±P

(j )
l ρP

(j )
l′ , with each

sign happening for half of the four possible P
(j )
m . Thus they

cancel out in the sum.
We consider now a Symplectic one-qubit twirl (S1T) of the

form

�S1T(ρ) = 1

3n

3n∑
m=1

S†
m�(SmρS†

m)Sm, (17)

Sm =
n⊗

j=1

S(j )
m , (18)

where each S
(j )
m is an element of the set given by

{exp[−i(π/4)σp], p = x,y,z}. It is straightforward to show
that

1

3

3∑
m=1

S(j )†
m σjS

(j )
m ρS(j )†

m σjS
(j )
m = σxρσx + σyρσy + σzρσz

3
,

so after a Clifford (Pauli+Symplectic) one-qubit twirl (C1T)
[26] we get

�C1T(ρ) = 1

3n

3n∑
m=0

S†
m�PT(SmρS†

m)Sm (19)

=
n∑

w=0

(n

w)∑
νw

χ col
w,νw

3w

(∑
iw

Pw,νw,iwρPw,νw,iw

)
, (20)

where the collective coefficients χ col
w,νw

are just the diagonal
χ -matrix coefficients χl,l , re-labeled χw,νw,iw , after disregard-
ing (averaging over) the information given by iw:

χ col
w,νw

≡
∑

iw

χw,νw,iw . (21)
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This is so far what was presented in [6], which can also be
proven as in [4,9] using a different set of tools to handle the
Clifford twirl as a Haar twirl [4,5,14].

Consider the computational state basis |v̄h〉, where v̄h is
a boolean vector of length n and Hamming weight h. (The
Hamming weight h of a computational state is just the number
of ones appearing in its binary representation.) The first result
we can obtain is that the fidelity of a state |v̄h〉 undergoing this
transformation is independent of the actual state,

f (�C1T,|v̄h〉) = Tr[|v̄h〉〈v̄h|�C1T(|v̄h〉〈v̄h|)] (22)

=
n∑

w=0

(n

w)∑
νw

χ col
w,νw

3w

(
3w∑
iw

|〈v̄h|Pw,νw,iw |v̄h〉|2
)

(23)

=
n∑

w=0

(n

w)∑
νw

χ col
w,νw

3w

(
3w∑
iw

〈0|Pw,νw,iw |0〉|2
)

(24)

=
n∑

w=0

(n

w)∑
νw

χ col
w,νw

3w
. (25)

To go from (23) to (24), we only need to realize that
any computational state |v̄h〉 is a result of applying a Pauli
operator P

v̄h

X (that has σx where v̄h has ones and nonidentity
factors otherwise) to |0〉. This P

v̄h

X will either commute or
anticommute with Pw,νw,iw (and the ± will be absorbed by
the modulus squared). The last equality (25) is obtained by
realizing that the only nonidentity Pw,νw,iw that takes |0〉 back
to it (up to a global phase) is the Pauli operator that has σz in
all the positions indicated by νw (and thus only one of all the
possible iw given νw and w).

We must notice that although f (�C1T,|v̄h〉) is then equiva-
lent to the average fidelity F (�C1T) of the process �C1T, this
is not the average fidelity of the process under study, namely
F (�) = (Dχ0,0 + 1)/(D + 1) (c.f. Sec. IV). However, this
weaker twirl gives a different insight into the map structure.
The first result we point out, presented in [6], is that we can
obtain the diagonal elements of the χ matrix grouped by Pauli
weight

pw ≡
(n

w)∑
νw

∑
iw

χw,νw,iw =
(n

w)∑
νw

χ col
w,νw

. (26)

The parameters pw and χ col
w,νw

are just a coarse-graining
of the diagonal elements of the χ matrix. The pw relate
to the probability Prob(v̄h,h) of obtaining any state |v̄h〉
with Hamming weight h when measuring the final state
�C1T(|0〉〈0|). We have

Prob(v̄h,h) = Tr[|v̄h〉〈v̄h|�C1T(|0〉〈0|)]

=
n∑

w=0

(n

w)∑
νw

χ col
w,νw

3w

(
3w∑
iw

〈0|Pw,νw,iw |v̄h〉|2
)

.

For 〈0|Pw,νw,iw |v̄h〉 to be nonzero (i.e., ±1), νw must indicate
nonidentity factors at least where there are ones in v̄h (so it
must be w � h). Also the ij in iw must be 1 = x or 2 = y for
the qubits with ones in v̄h, and 3 = z for the w − h qubits that

have zeros in v̄h but have a nonidentity factor Pw,νw,iw . There
will be exactly 2h of these operators for given w and νw, so

Prob(v̄h,h) =
n∑

w=h

(n−h

w−h)∑
ν∗
w=1

2h

3w
χ col

w,νh+ν∗
w
, (27)

where νh indicates a χ col
w,νw

for Pauli operators that have a non-
identity factor for at least all the qubits whose corresponding
component in v̄h is a one. ν∗

w labels the ( n−h

w−h
) coefficients

with w � h that fulfill this condition. If we now discard the
“which qubit” information given by v̄h, summing over all the
( n

h
) possibilities, then

Prob(h) =
∑
v̄h

Prob (v̄h,h) (28)

=
n∑

w=h

2h

3w

(n−h

w−h)∑
ν∗
w=1

(n

h)∑
νh=1

χ col
w,νh+ν∗

w
(29)

=
n∑

w=h

2h

3w

(
w

h

)⎛
⎝ (n

w)∑
νw=1

χ col
w,νw

⎞
⎠ (30)

=
n∑

w=h

2h

3w

(
w

h

)
pw. (31)

In this way, all the pw are related to the probabilities of
measuring an outcome with Hamming weight h by an n × n

matrix Rh,w = 2h

3w (w

h
), as stated in [6].

We can also keep the “which qubit” information and
use the probabilities Prob(v̄h,h) constructively to gain even
more detail. This strategy was already suggested in [9] but
more oriented to ensemble quantum information processors.
We present it now in a different manner so it can be combined
with the previous strategy.

Let us replace the descriptors w and νw by v̄w, a boolean
vector of length n and Hamming weight w characterizing a
Pauli operator Pl . v̄w has a zero in the j th position if and
only if P

(j )
l = I ; otherwise it has a one. For example, the

operator σ (1)
z σ (3)

x for n = 4 qubits has v̄2 = (1,0,1,0). There
are of course

∑n
w=0( n

w
) = 2n = D of these vectors describing

the Pl .
If we use Eq. (27) and start with the probability of having

all the qubits flipped in the outcome, and go backward toward
the survival probability (i.e., none of the qubits flipped), we
find

Prob(n) = 2n

3n
χ col

v̄n
, (32a)

Prob(v̄n−1,n − 1) = 2n−1

3n−1
χ col

v̄n−1
+ 2n−1

3n
χ col

v̄n
, (32b)

Prob(v̄n−2,n − 2) = 2n−2

3n−2
χ col

v̄n−2
+

∑
v̄n−1

2n−2

3n−1
χ col

v̄n−1
+ 2n−2

3n
χ col

v̄n
,

(32c)
. . . .

So essentially we could determine χ col
v̄n

using (32a), then
insert it in (32b) and obtain the n possible χ col

v̄n−1
from the

different Prob(v̄n−1,n − 1), and then insert that in (32c), and
so on and so forth. These equations define a triangular matrix
that relates the probabilities Prob(v̄h,h) to the collective

062113-7
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coefficients χ col
v̄w

. Notice there is no need to perform different
experiments to obtain the different probabilities: We only
need to implement M realizations of the twirl and keep the
outcome of the measurement for each of the realizations. This
outcome should be a n-bit string indicating whether each j th
qubit was found in |0〉j or |1〉j .

The problem arises not in obtaining the experimental
information, but in its posterior processing. The matrix given
by Eqs. (32) is of size D × D, therefore the cost of the
processing would scale exponentially in n. For this strategy
to work, it is key to relate it hierarchically to the determination
of the pw: The experimental information required is the same
and can be obtained efficiently by sampling. The idea goes
as follows. If we are analyzing a map � that is close to
the identity (a noise channel) or a quantum gate involving
a few qubits (typically one or two), then we would expect that
above a certain cutoff Pauli weight wco, the pw will be null.
This is a reasonable expectation: Since

∑n
w=0 pw = 1 (the

trace-preserving condition), the pw cannot all be arbitrarily
large, and thus it will be possible to bound the coefficients
above the cutoff by a negligible amount. In this scenario, the
matrix relating the Prob(v̄h,h) with the χ col

v̄w
will have a size

Mco × Mco, Mco = ∑wco
m=0( n

m
), which scales polynomially in

n [27]. There is a second caveat though. As explained in [6,9],
respectively, the errors in determining the pw or the χ col

w,νw
scale

inefficiently with w, a consequence of the matrices relating
them with the corresponding probabilities [Eqs. (31) and (32),
respectively]. Although the measured probabilities will have a
standard deviation �1/

√
M , this error will propagate into the

pw or the χ col
w,νw

with a factor that grows polynomially with n

but exponentially with w. Again, we must resort to neglecting
the pw after a certain cutoff. The system can be arbitrary large
(arbitrary n), and as long as the pw are negligible above a
certain wco (with wco independent of or scaling efficiently
with n) we will be able to obtain all the non-negligible χ col

w,νw

efficiently.
Notice that, in the previous section, the requirement that

only a few (�D) coefficients χw,νw,iw are non-negligible is not
a priori. We can indeed run the protocol, efficiently, and arrive
at this conclusion. However, the one-qubit twirling method
poses a stronger condition, since the values of the χ col

w,νw
must

respond to a hierarchy associated to their Pauli weights. Only
then we can establish the Pauli weight cutoff and run the
protocol [in particular, solve the system of equations (32)].

With the twirl in U(D) we obtain the coefficients directly
with a standard deviation �1/

√
M , while with the twirl in

U(2)⊗n we only obtain probabilities Prob(v̄h,h) with standard
deviations �1/

√
M , which still need to be propagated in order

to obtain the estimated error for the χ col
w,νw

.
With the protocol of Sec. IV [8,10], the measurement

of the largest χl,l can be done then more precisely, with
no coarse-graining and with no restrictions on the map
under study. Clearly, the protocol of this section [6,9] is
quite less demanding, requiring the implementation of only
12n one-qubit gates instead of O(n2) one-qubit and CNOT

gates. However, this advantage is counterbalanced: We have
a more restricted and less precise tomographic method. In
practice, nevertheless, the choice between the two will be
given by the extent to which we can control our system
experimentally.

Finally, we must notice that, in both approaches, the
methods are universal in the sense that they do not require
any prior knowledge on the specific dynamics of �. The
protocol twirling in full space is valid for any linear Hermitian
map, while the one with one-qubit twirling only has the extra
requirement of having a structure with a cutoff Pauli weight.
For an example of a characterization incorporating substantial
prior knowledge of the dynamics or specific models for �,
see [28].

VI. THE RELEVANCE OF THE DIAGONAL
OF THE χ MATRIX

If we diagonalize the χ matrix, we will obtain the weights of
an operator-sum representation, where the operators in the sum
are the corresponding basis where the χ matrix is diagonal. Of
course, this basis will not necessarily be the Pauli operator
basis, but in principle a combination of them. Using the
notation of Sec. II, take χ = R†SR to be the diagonalization
of the χ matrix written in the Pauli operator basis. Let R be
the change of basis, so

�(ρ) =
D2−1∑
m=0

Sm,mAmρA†
m Am =

D2−1∑
l=0

R∗
m,lPl,

where the Am form an orthonormal basis, but just as in an
operator-sum representation, they are not necessarily unitary
(otherwise any process would be unital) nor Hermitian. And, as
we already mentioned, the Sm,m are real but could be negative
in principle. Thus in general neither the χl,l nor even the Sm,m

have a simple interpretation.
Nevertheless, despite the different ways of describing the

process under study � in [5,6,8–10], in all the cases they
determine specifically the diagonal elements of the χ matrix
of the map in the generalized Pauli operator basis. Notice
that either the one-qubit twirl or the full-space twirl implies
a Pauli twirl (since the Pauli operators are a subgroup of the
Clifford group in both cases) and that the Pauli twirl erases the
information of the off-diagonal elements of the χ matrix. We
ask then, what is the meaning of the diagonal? It was assumed
in [6] that the pw represented the probability of an operator
of Pauli weight w happening in the process described by �.
In [9], the χ col

w,νw
were regarded as indicators of the locality

or range of the process, that is, the probability of an operator
involving the qubits in νw happening. These are both quantities
that are relevant to quantum error correction and fault-tolerant
quantum computing.

Both these interpretations are fair when the χ matrix in
the Pauli operator basis is approximately diagonal, at least
block-diagonal in blocks characterized by w, νw. But that is
not generally the case, in particular for maps that will be of
our interest—such as quantum computing gates. For example,
the CNOT gate for qubits a and b has a χ matrix with only a
4 × 4 nonzero block,

χCNOT = 0.25

⎛
⎜⎜⎜⎝

1 1 1 −1

1 1 1 −1

1 1 1 −1

−1 −1 −1 1

⎞
⎟⎟⎟⎠ ,
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corresponding to Pl = I,σ (a)
z ,σ (b)

x ,σ (a)
z ⊗ σ (b)

x . Clearly, the
off-diagonal coefficients carry critical information with equal
weight, which for example differentiates the CNOT from a
depolarizing channel with the same Pl .

Thus previous interpretations of pw and χ col
w,νw

are arguable:
We could even have in principle a process involving a set
of qubits given by w, νw that has χl,l′ �= 0 in that block
but χ col

w,νw
= 0 in the diagonal. However, as demonstrated in

Secs. II A and III A, it is possible to draw a relation between
the diagonal and off-diagonal elements of the χ matrix.

For CP maps, Eq. (3) guarantees that if either χl,l = 0 or
χl′,l′ = 0, the off-diagonal χl,l′ is null. And for positive maps
in general, Eq. (8) gives us a bound that is exponentially close
to this result. This a very powerful result, since once we have
established the nonzero diagonal elements, in order to perform
a full characterization we only need to worry about the off-
diagonal elements that correspond to that resulting block. This
hierarchization of the information could potentially allow for
a complete quantum tomography of the process at a scalable
cost—provided that the number of non-null matrix elements
turns out to be O(poly(n)).

It is in order here to point out though that the work in [8,10]
also presents a strategy to measure the off-diagonal elements of
the χ matrix. However, an ancillary qubit which is not twirled
is required for this task. The ancilla is assumed to be error-free
and outside the system we are looking to characterize. This
does not imply an issue when it comes to scalability, since
only one qubit ancilla is required for arbitrary D. Nonetheless,
it puts this method in a different category regarding resources
and assumptions when it comes to its implementation.

VII. CONCLUSIONS

By revisiting previous work [6,8,9] we have stated two
scalable approaches for characterizing the diagonal elements
of the χ matrix in the Pauli operator basis, for any arbitrary
quantum process. We emphasize once more that the work in
Secs. IV and V arises from the revision of these previous
results and goes beyond, which we would like to summarize
here: The general approach discussed in Sec. IV restates the
method originally presented in [8], further clarifying its ability
to measure the largest diagonal elements of the χ matrix
together. We study this protocol by recognizing its familiarity
with other twirling methods and present a natural alternative
approach which, we conclude, is slightly less convenient if we
work with only a few qubits. On the other hand, the approach
discussed in Sec. V combines the two protocols originally
presented in [6] and [9], by building and again proving both
protocols, but simultaneously.

Furthermore, we have analyzed the two general approaches
comparatively, establishing their advantages and disadvan-
tages: While one is more powerful, the other is more realistic
from the implementation point of view.

We have made the point that there are different ways of
twirling that reproduce Eqs. (4) and (5). Moreover, we have
shown that a deeper analysis may lead to advantages of one
form of twirl over another, in particular for working with a
small number of qubits. This is the case in Sec. IV when
comparing the Clifford twirl and the MUB twirl in U(D).
Another example of this, but twirling in U(2)⊗n, can be found
in [9,19], where it is shown that by carefully choosing the
initial state of a twirl experiment, it is possible to reduce the
total number of twirl operators from 12n to 6n.

On the other hand, in the light of Eqs. (3) and (8), our
work establishes the relevance of the diagonal coefficients.
We believe that this type of hierarchization of the information
is key to achieve complete tomography in a scalable way. Since
the number of parameters is indeed exponentially large, it is
necessary to gather them or find relations among them, and
then design protocols that will retrieve information about a
whole group in one parameter.

The coarse-grained coefficients of Sec. V [Eqs. (21) and
(26)] represent one example of grouping. When a sum of non-
negative elements is null, we can conclude that all the elements
in the sum are null. On the other hand, the bounding of the
off-diagonal elements by the diagonals also gives us a form of
grouping. When a diagonal element is null, we can conclude
that all the elements corresponding to that row and column are
also null.

If many of the parameters turn out to be null indeed
in one shot, eventually leaving only poly(n) non-negligible
ones, these strategies become an efficient way to measure all
the coefficients. Nevertheless, notice that designing methods
that retrieve specific partial information is not a trivial task,
even when we assume that we can neglect all the other
parameters. We should continue searching for bounds and
relations between the characterization parameters of different
types of maps. Also, we should further pursue the design of
scalable methods to measure subgroups of information, while
requiring the protocols to rely experimentally on minimum
possible resources.
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