
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-003 January 19, 2011

Probabilistic and Statistical Analysis of
Perforated Patterns
Sasa Misailovic, Daniel M. Roy, and Martin Rinard

Probabilistic and Statistical Analysis of Perforated Patterns

Sasa Misailovic
MIT CSAIL/EECS

misailo@csail.mit.edu

Daniel M. Roy
MIT CSAIL/EECS
droy@csail.mit.edu

Martin Rinard
MIT CSAIL/EECS

rinard@csail.mit.edu

Abstract
We present a new foundation for the analysis and transformation of
computer programs. Standard approaches involve the use of logical
reasoning to prove that the applied transformation does not change
the observable semantics of the program. Our approach, in contrast,
uses probabilistic and statistical reasoning to justify the application
of transformations that may change, within probabilistic bounds,
the result that the program produces.

Loop perforation transforms loops to execute fewer iterations.
We show how to use our basic approach to justify the application
of loop perforation to a set of computational patterns. Empirical re-
sults from computations drawn from the PARSEC benchmark suite
demonstrate that these computational patterns occur in practice. We
also outline a specification methodology that enables the transfor-
mation of subcomputations and discuss how to automate the ap-
proach.

1. Introduction
The standard approach to program transformation involves the use
of logical reasoning to prove that the applied transformation does
not change the observable semantics of the program. This technical
report, in contrast, introduces a novel approach that uses proba-
bilistic and statistical reasoning to justify transformations that may
change the result that the program produces. We call the result-
ing class of transformations rich transformations because of the
broader scope they have to transformation the program (in compar-
ison to the standard class of impoverished transformations, which
always preserve the program semantics).

Our approach is designed to provide probabilistic guarantees
of the following form: P(|D| ≥ B) ≤ ε, ε ∈ (0, 1), where
|D| is the absolute value of the difference between the result that
the original program produces and the result that the transformed
program produces and P(|D| ≥ B) is the probability that |D| is
greater than or equal to some bound B. Users specify ε and B. The
transformation system produces programs designed to satisfy the
probabilistic guarantee for those ε and B.

Our approach is also designed to provide probabilistic guaran-
tees of the form E(|D|) ≤ Bµ and var(|D|) ≤ Bσ2 , where E(|D|)
is the expected value of |D|, Bµ is a user-specified bound on this
expected value, var(|D|) is the variance of |D|, and Bσ2 is a user-
specified bound on this variance.

1.1 Example
Consider the example program in Figure 1, which computes the
sum of a set of numbers. Next consider the transformed program
in Figure 2, which computes the sum of every other number in the
set, then uses extrapolation to approximate the sum of all of the
numbers in the set.

Like many sublinear algorithms [17], the transformed program
operates on a subset of the numbers from the original program, then
uses extrapolation to reconstruct an approximation to the original

double sum = 0.0;
for (int i = 0; i < n; i++) {
sum += f(i);

}

Figure 1. Original Program

double sum = 0.0;
for (int i = 0; i < n; i += 2) {
sum += f(i);

}
sum = sum * 2;

Figure 2. Transformed Program

result. We call the transformation we use to modify the original
program loop perforation because it perforates the loop by skipping
some of its iterations.

1.1.1 Modeling Uncertainty
When we apply this transformation, we are interested in the abso-
lute perforation noise — that is, the absolute value of the difference
between the final value of sum that the original loop produces and
the final value of sum that the transformed loop produces. Obvi-
ously, the absolute perforation noise will depend on the values of
f(i). The standard approach to reasoning about program transfor-
mations considers the worst case. In our example, this worst-case
reasoning would consider the largest possible absolute perforation
noise, then apply the transformation only if this worst case absolute
perforation noise is acceptable.

We choose to take a different approach because, while we do not
have complete information about the values of f(i), we do believe
that this worst case is very unlikely to occur in practice. We pre-
fer to analyze the transformation from a perspective that enables
a more accurate analysis of the effect of the transformation. We
therefore formally characterize our uncertainty about the values of
f(i) by modeling these values as random variables. The distribu-
tion of these random variables captures our uncertainty about their
values.

We then reason about the effect of the transformation by study-
ing the resulting absolute perforation noise, itself a random vari-
able, whose distribution is determined by the original program, the
applied transformation, and the distributions of the random vari-
ables that model the values that the computation manipulates. An
analysis of the resulting properties of the distribution of the ab-
solute perforation noise determines whether the transformation is
acceptable or not, given our uncertainty about the input.

1.1.2 Independent Random Variables
We first consider the case when we believe that the value of each
f(i) is independent of the values of all other f(i) and that f(i)
always takes on a value in the interval [a, b]. We model this situation
by assuming that the f(i) are independent, identically distributed
(i.i.d.) samples chosen from the uniform distribution U(a, b) on
the interval [a, b] with expected value µ = 1

2
(a + b) and variance

σ2 = 1
12

(b− a)2.
We use the following notation. SO is the final value of sum in

the original program, SP is the final value of sum in the perforated
program, and Xi are the n random variables that model the values
f(i). To simplify the analysis, we require that n is even. Because
all of the Xi come from the same distribution, the expected value
E(SO) of SO equals the expected value E(SP) of SP . Conceptu-
ally, SP is therefore an unbiased approximation to SO .

The perforation noise D is the difference D = SO − SP be-
tween the results that the original and perforated programs produce.
Note that

SO =
∑

0≤i<n
2

(X2i +X2i+1) (1)

and

SP =
∑

0≤i<n
2

(X2i +X2i) (2)

so
D =

∑
0≤i<n

2

(X2i+1 −X2i) (3)

and D is therefore a random variable with expected value E(D) =
0 and variance var(D) = nσ2.

The perforation noise D may be either positive or negative. We
may therefore be interested in the magnitude of the difference be-
tween the results that the original and transformed loops compute.
We call the magnitude |D| the absolute perforation noise. To rea-
son about |D|, we write D as

D =
∑

0≤i<n
2

X2i+1 −
∑

0≤i<n
2

X2i (4)

and note that, as n increases, the distribution of the sum of uni-
formly distributed random variables rapidly approaches a normal
distribution. We therefore approximateD as the difference between
two normally distributed random variables, each with expected
value n

2
µ = n

4
(a+b) and variance n

2
σ2 = n

24
(b−a)2. SoD is nor-

mally distributed with expected value 0 and variance nσ2, and |D|
is half-normally distributed with expected value E(|D|) = σ

√
2n
π

and variance var(|D|) = nσ2(1− 2
π

).
We note that over 99.7% of values drawn from a normal dis-

tribution are within three standard deviations of the mean. The
mean of the perforation noise D is 0, the standard deviation is
(b− a)

√
n
12

, and so P(|D| ≥ (b− a)
√

0.75n) ≤ 0.003.
Alternatively, we can use Hoeffding’s inequality (see Section 2)

to bound the probability of observing large absolute perforation
noise. Specifically,

P

(
|D| ≥

√
n(b− a)2

2
ln

2

ε

)
≤ ε, ε ∈ (0, 1). (5)

So, (setting ε = 0.01), with probability greater than 0.99, the
absolute perforation noise |D| is less than (b− a)

√
2.649n.

A comparison with the traditional worst-case analysis is instruc-
tive. Specifically, the (we believe extremely unlikely) worst-case
absolute perforation noise is n

2
(b−a). Note that reasoning about the

computation from the probabilistic perspective as opposed to the

traditional worst-case perspective produces a factor of
√
n asymp-

totic improvement in the bound on the absolute perforation noise.

1.1.3 Correlations via Overlapping Sums
We next consider a case in which we believe that the values of f(i)
are correlated. This can happen, for example, if the f(i) come
from overlapping sums of values from a given domain (this hap-
pens, for example, for some of the computations in the x264 video
encoder application [4]). We model this situation by starting with a
sequence Yj of independent, identically distributed (i.i.d.) samples
chosen from the uniform distribution U(a, b) on the interval [a, b]
with expected value µ = 1

2
(a+ b) and variance σ2 = 1

12
(b− a)2.

For a window size w the sequence Xi is given by

Xi =
∑

0≤j<w
Yj+i. (6)

In this case each Xi is a random variable with expected value
w
2

(a+b) and variance w
12

(b−a)2. However, the differenceXi+1−
Xi is precisely Yi+w − Yi, which has variance 1

6
(b − a)2 (as op-

posed to variance w
6

(b−a)2 for the difference between independent
Xi with the same variance). The perforation noise is:

D =
∑

0≤i<n
2

(Y2i+w − Y2i) . (7)

For simplicity we assume that w ≥ 3 and w is odd. Then the re-
maining analysis is identical to the analysis resulting from Equa-
tion 3 and provides probabilistic bounds of the same form that are
a factor w tighter. Note that the correlation between adjacent Xi
enables the analysis to obtain tighter probabilistic bounds relative
to the variance of the random variablesXi used to model the values
of the summands.

1.1.4 Truncation Perforation for Overlapping Sums
It is instructive to compare the interleaved perforation transforma-
tion in Figure 2 (which skips every other loop iteration) with the
truncation perforation transformation in Figure 3 (which skips the
last half of the iterations). If the values f(i) are independent, the
analysis of the truncated computation is identical to the analysis in
Section 1.1.2 and the resulting probabilistic bounds are identical.

If, however, the values f(i) are correlated as in Section 1.1.3,
the skipped values from iterations n/2 through n-1 are (if n is
significantly larger than w) largely uncorrelated with the values
from iterations 0 through n/2-1. The perforation noise D of the
truncated computation therefore has a factor of w larger variance,
with correspondingly looser probabilistic bounds.

double sum = 0.0;
for (int i = 0; i < n/2; i++) {
sum += f(i);

}
sum = sum * 2;

Figure 3. Loop After Truncation Perforation

As this example illustrates, one reason to prefer interleaved
perforation is that it can deliver smaller perforation noise than
truncated perforation when values from nearby loop iterations are
more strongly correlated than values from distant loop iterations.

1.1.5 Correlations via Random Walks
We next consider another case in which the values of f(i) are
correlated. In this case we believe that the f(i) are generated
by a Markov process in which the difference between adjacent
values is a normally distributed random variable with mean 0 and

variance σ2. We model the value of f(i) with a random variable
Xi, where Xi+1 = Xi + Yi, 0 ≤ i. Here the Yi are independent
random variables chosen from a normal distribution with mean 0
and variance σ2. For simplicity we let X0 = 0. In this case the
perforation noise D is:

D =
∑

0≤i<n
2

(X2i+1 −X2i) =
∑

0≤<n
2

Y2i. (8)

So D is a normally distributed random variable with mean 0 and
variance n

2
σ2. As in Section 1.1.2, the absolute perforation noise

|D| has a half-normal distribution. The analysis of the mean, vari-
ance, and probability of observing large |D| is similar to the cor-
responding analysis in Section 1.1.2, but with the variance of D a
factor of 2 smaller (n

2
σ2 as opposed to nσ2).

The mean of the perforation noiseD is 0, the standard deviation
is σ
√

n
2

, so (because over 99.7% of the values drawn from a nor-
mal distribution are within three standard deviations of the mean)
P(|D| ≥

√
9n
2

) ≤ 0.003.

1.1.6 Truncation Perforation for Random Walks
We next compare the effect of interleaved perforation with the
effect of truncation perforation (see Section 1.1.4) for the random
walk correlated values of f(i) from Section 1.1.5. With truncation
perforation we can write the perforation noise D as:

D =
∑

0≤i<n
2

Xn
2 +i −Xi. (9)

Applying the equality Xi =
∑

0≤j<i Yj , we can rewrite D as:

D =
∑

0≤i<n
2

(i+ 1)Yi +
∑

n
2≤i<n−1

(n− (i+ 1)Yi. (10)

We can rearrange terms to rewrite D as:

D =
∑

0≤i<n
2

∑
0≤j<n

2

if (i < j) Yi else Yn−(i+2). (11)

Because the Yi are i.i.d random variables chosen from a normal dis-
tribution with mean 0 and variance σ2, the variance ofD is (n

2
)2σ2.

Compare this variance with the variance ofD from the transformed
program with interleaved perforation, which is n

2
σ2. Once again,

we see how interleaved perforation can, when values from nearby
iterations are more strongly correlated than values from distant iter-
ations, deliver computations with significantly smaller perforation
noise variance and correspondingly tighter probabilistic bounds
than truncation perforation.

1.1.7 Arbitrary Linear Functions
This example presented a simple sum computation. We note, how-
ever, that the probabilistic analysis (as well as related probabilistic
analyses presented in Section 3) generalizes to include computa-
tions that compute arbitrary linear functions of the input variables
(as well as any abstracted expressions, see Section 5). And as the
analyses in Section 3 show, it also possible to generalize the analy-
sis to handle computations that include non-linear operations such
as minimum and division.

1.2 Loop Perforation
In this technical report we consider the loop perforation transfor-
mation [9, 11]. Loop perforation transforms loops to execute only a
subset of the original iterations. Empirical results demonstrate the
utility and effectiveness of loop perforation in reducing the amount
of time (and/or other resources such as energy) that the program re-
quires to produce a result while preserving acceptable accuracy [9].

The empirical results show that the effect of loop perforation
is different for different loops. In some cases loop perforation
produces small or even negligible changes in the result. In others,
loop perforation can cause large changes in the result or even cause
the program to crash. One of the contributions of this technical
report is the identification of specific computational patterns that
interact well with loop perforation. Included in this identification
is a precise characterization of the effect of loop perforation on
the result that the pattern produces. This characterization provides
the foundation for the reasoning required to justify the principled
application of loop perforation to specific loops.

1.3 Modeling and Analysis
We quantify the effect of the perforation by defining the perfo-
ration noise — the difference between the result that the original
computation produces and the result that the perforated computa-
tion produces. We model the computation as operating on sets of
random numbers selected from different probability distributions.
We identify specific computational patterns that interact well with
the loop perforation transformation. For each pattern our analy-
sis produces simple mathematical expressions that characterize the
expected value and variance of the perforation noise. Our analy-
sis also produces expressions that characterize the probability of
observing large absolute perforation noise. These expressions are
parameterized by values such as the number of iterations that the
original loop performs, the percentage of iterations that the trans-
formed program does not execute, and properties of the probability
distributions such as their mean and variance.

We propose several mechanisms for obtaining concrete values
for the parameters of the mathematical expressions. For probability
distribution parameters (such as the mean and variance), we pro-
pose the use of techniques that fit the distributions to data observed
in representative executions. From a Bayesian perspective, we start
out with a belief about the class of distributions (normal, uniform,
etc.) that accurately model the values that the computation manipu-
lates. We then update this belief in light of observations from repre-
sentative executions to choose a specific distribution. We may then
simply use this distribution for future executions, or we may choose
to continue to observe values and update our distributions accord-
ingly. Periodic sampling techniques such as dynamic feedback [6]
may be able to drive down the dynamic overhead of this approach.

We note that our usage scenario differs from many usage scenar-
ios in that we may be interested in not the most accurate model, but
a model that conservatively overestimates quantities such as the ab-
solute perforation noise. The application of such conservative tech-
niques may cause the transformation system to miss transformation
opportunities, but may also reduce the chances that a modeling in-
accuracy will cause the transformed program to produce unaccept-
ably inaccurate results.

For other values (such as the number of loop iterations), we may
be able to determine the value before the program executes through
traditional program analysis. We may also generate code that dy-
namically tests the value to see if the transformed computation will
produce acceptable results with that value. If so, the generated code
branches to execute the transformed computation. If not, it executes
the original computation.

1.4 Empirical Evaluation
In general, the validity of the expressions that characterize the per-
foration noise may depend on how we model the values on which
the computation operates (for example, we sometimes model the
values as independent and identically distributed). We evaluate the
accuracy of the model by generating instrumented programs to col-
lect execution data. These programs record the values that the com-
putation operates with and the results from both the original and

double sum = 0.0;
double _sum = 0.0;
double _t;
log("start perforated loop %d", n);
for (int i = 0; i < n; i++) {

_t = f(i);
log("expression %d %lf", i, _t);
sum += t;
if (i % 2) _sum += t;

}
log("end perforated loop %lf %lf",

sum, _sum);

Figure 4. Instrumented Program

transformed computations. Figure 4 presents a (high-level version)
of the instrumented program from our example.

We run the instrumented programs on representative inputs and
inspect the collected information. We use the recorded input statis-
tics to obtain concrete values for the parameters of the mathemati-
cal expressions that the analysis produces. We then either perform
statistical tests to evaluate how accurately our distributions model
the numbers on which the computation operates or simply evalu-
ate how well the model predicts the perforation noise observations
from actual executions of the original and transformed programs.
Note that models that conservatively overestimate the observed per-
foration noise may be acceptable in most usage scenarios.

1.5 Probabilistic Accuracy Specifications
To apply transformations that may change the result that the pro-
gram produces, we must understand what kinds of changes are
acceptable. In general, we anticipate that computations for which
rich transformations are appropriate may be embedded inside larger
computations for which symbolic reasoning about the effect of the
rich transformation is infeasible.

We therefore envision the use of probabilistic acceptability
specifications to help the transformation system determine which
transformation to apply. These specifications are designed to al-
low developers to precisely characterize their uncertainty about
the values on which the computation operates. They are also de-
signed to allow developers to express their probabilistic accuracy
requirements for the transformed computation. Each probabilistic
acceptability specification applies to a specific computation. These
specifications include the following components:

• Input Specifications: For each input to the computation, a
specification of an appropriate probability distribution to model
the values of the input. This specification can be symbolic (for
example, a normal distribution with specified mean and vari-
ance or a uniform distribution with specified upper and lower
bounds) or empirical (for example, a histogram that approxi-
mates the distribution of the input values).
We consider several ways to obtain these distributions. First, the
developer may provide the full symbolic distribution, including
distribution parameters such as mean and variance. Second,
the developer may provide the general class of the distribution
(such as normal or uniform), but rely on the system to use
empirically collected data from representative executions to fit
the parameters of the distribution to the collected data. Third,
the system may use statistical reasoning over the collected data
to choose both the general class of the distribution and to fit the
parameters to the chosen data. Finally, the system may simply
use an automatically computed histogram of the collected data
values as its probability distribution.

• Expression Specifications: In some cases it is appropriate for
the analysis to model the values of expressions as random vari-
ables. Examples include complex expressions or function calls
for which the source code is not available in analyzable form.
Each expression specification identifies an expression and an
appropriate probability distribution to model the values of this
expression. As for input specifications, expression specifica-
tions can be symbolic or empirical and specified by the devel-
oper or derived by observing values in representative execu-
tions.
• Output Specifications: For each output of the computation,

a specification of acceptable variation from the value that the
untransformed computation produces. There are two kinds of
output specifications:

Moment-Based: Moment-based specifications identify ac-
ceptable moments of the perforation noise for that out-
put. For example, the developer may specify that the mean
and/or variance of the perforation noise should be below
some value.

Bound-Based: Bound-based specifications identify an ac-
ceptable probability that the perforation noise will exceed a
given bound. For example, the developer may specify that,
with probability at least 95%, the perforation noise should
be less than 1. We anticipate the use of both absolute and
relative measures (absolute measures are simply the differ-
ence between the values that the original and transformed
computations produce; relative measures divide this differ-
ence by the magnitude of the result of the untransformed
computation).

This approach promotes the use of a programming model in
which the developer specifies a maximally accurate version of the
computation, then relies on rich transformations to deliver a version
with an appropriate balance between accuracy and performance.

1.6 Usage Scenarios
The simplest usage scenario involves a single computation with
a given acceptability specification that the transformation system
transforms to maximize performance subject to satisfying the ac-
ceptability specification. A more complex usage scenario involves
multiple optimizable computations embedded within a larger com-
putation. Here the transformations can induce a complex perfor-
mance versus accuracy trade-off space. The transformation system
can use executions on representative inputs to explore this space
and discover Pareto-optimal points within this space. Depending
on the specific usage scenario, the application may choose one of
these versions or even switch dynamically between versions as nec-
essary to preserve computing goals in the face of environments with
fluctuating characteristics [8, 9].

1.7 Contributions
This technical report makes the following contributions:

• New Paradigm: It presents a new paradigm for justifying pro-
gram transformations. Instead of using discrete logic to jus-
tify transformations that preserve the exact semantics of the
program, it uses statistical and probabilistic reasoning to jus-
tify transformations that may, within statistical and probabilistic
bounds, change the result that the program produces.
In this approach, we model the values which the computation
manipulates as random variables. The distributions of these
random variables characterize our uncertainty about their val-
ues. We use these probability distributions (in combination with
the original program and the applied transformation) to rea-
son about the effect of the transformation on the values that

the computation produces. Specifically, we model differences
between the results that the original and transformed computa-
tions produce as random variables. The analysis extracts prop-
erties of these random variables such as their mean, variance,
and probabilistic bounds on their magnitude. These properties
determine whether or not the transformation is acceptable.
• Patterns: It presents a set of computational patterns with trans-

formations that can be analyzed using probabilistic analyses.
Each pattern consists of the description of the computation that
it performs, the transformation that changes the result and the
probabilistic analysis. It uses loop perforation as the transfor-
mation strategy for all of the computations.
• Analysis: It presents a set of probabilistic analyses for iden-

tified patterns. Each analysis provides expressions for the ex-
pected value and variance of the absolute perforation noise. We
also provide bounds that characterize the probability of observ-
ing large probability noise and a comparison with a standard
deterministic worst-case analysis of the effect of loop perfora-
tion.
• Specification: It introduces the concept of probabilistic ac-

ceptability specifications, which specify probability distribu-
tions for modelling the values of inputs and expressions within
blocks of code and probabilistic constraints on the absolute dif-
ference between the results that original and transformed blocks
of code produce.
• Evaluation: It presents a statistical evaluation of our analyses

on a set of transformed computational patterns from the Parsec
benchmark suite [4]. For each computation, the technical report
presents a comparison between the predicted and observed per-
foration noise. We also compare the results of the probabilistic
analyses with standard deterministic worst-case analyses.

The remainder of the technical report is structured as follows.
Section 2 briefly reviews loop perforation and some basic probabil-
ity theory results. Section 3 presents the code patterns and proba-
bilistic analysis of the patterns. Section 3 also presents a more con-
servative worst-case analysis of the perforated patterns. Section 4
presents the results of the probabilistic analyses on a set of repre-
sentative computations from complex programs. Section 5 presents
our probabilistic specification approach. Section 6 discusses ways
to automate the approach. Section 7 discusses related work.

2. Preliminaries
In this section, we review loop perforation and some elementary
probability theory that we use in our analyses.

2.1 Loop Perforation
Loop perforation is a program transformation that modifies the
number of iterations that a for loop performs. It modifies the loop
termination condition, the induction variable initialization expres-
sion, or the induction variable increment or decrement expression
to decrease the amount of work performed in the loop.

If the original loop executes for n iterations, the perforated loop
will execute m, m < n iterations. We take the number of loop it-
erations as a representative measure of the work performed in the
loop. The developer may specify the expected amount of skipped
work using a perforation rate, the expected percentage of loop it-
erations that should be skipped. Given a perforation rate r, the ex-
pected number of iterations of the perforated loop is m̄ = n(1−r).
Note that in a specific perforated computation the number of exe-
cuted iterations, m, is only approximately equal to m̄, because m
must be an integer. Typically, m = bm̄c or m = dm̄e. The actual
number of iterations in general depends on the loop perforation im-
plementation.

Loop perforation can reduce the amount of work in a loop in
various ways. A loop perforation strategy can be represented by a
n×1 perforation vector P where each coordinate corresponds to a
single loop iteration. The number of non-zero coordinates of vector
P is equal to m. The all-ones perforation vector A = (1, . . . , 1)′

corresponds to the unperforated computation.
Patterns may assign additional semantics to the non-zero coor-

dinates of the vector. For example, the extrapolated sum pattern
(Section 3.1) multiplies the summand calculated in i-th iteration of
the perforated version of the code by the extrapolation coefficient
stored in the i-th coordinate of P .

Perforation implementation. Loop perforation can be applied
to any loop that has an induction variable. Loop perforation can
successfully handle loops with arbitrary initial induction variable
values, arbitrary induction variable increments or decrements, and
arbitrary loop termination conditions. Without loss of generality,
we will study loops whose inductive variable takes an initial value
1, whose inductive operation at each step is incrementation, and
whose final condition tests whether the value is less than or equal
to n.

Conceptually, the implementation of loop perforation calculates
the vector P before the loop executes based on the number of
original iterations and the perforation rate. It executes only those
loop iterations for which the coordinate Pi has a non-zero value.

P = calc_perforation_vector(n, r)
for (int i = 1; i <= n; i++) {

if (!P[i]) continue;
...

}

In most cases we will not need to explicit create the P vector.
In this section we will describe a few common perforation strate-
gies and their more specialized implementations. These strategies
include interleaving, truncation and random choice.

Large interleaving perforation. Large interleaving perforation
prescribes the execution of every k-th iteration, where k = b n

m
c.

The standard large interleaving perforation pattern is:

for (int i = 1; i <= n; i+=k) {...}

The corresponding perforation vector without extrapolation has
coordinates Pki+1 = 1, where i ∈ {0, ...m − 1}, and Pki+j = 0
for j ∈ {2, ...k}. Note that we start iterating from the first element
of the vector as a matter of convention. It is trivial to extend the
perforation strategy to start from some other index.

Small interleaving perforation. Small interleaving perforation
skips every k-th iteration, where k = b n

n−mc. The standard small
interleaving perforation pattern is:

for (int i = 1; i <= n; i+= i%k? 1:2) {...}

The corresponding perforation vector has coordinatesPk(i+1) =
0, Pki+j = 1, where i ∈ {0, ...m − 1} and j ∈ 1, . . . , k − 1 oth-
erwise.

Truncation perforation. Truncation perforation skips contiguous
ranges of loop iterations, usually n −m iterations at the end or at
the beginning of the loop. A standard truncation perforation pattern
is (this pattern skips iterations from the end of the loop):

for (int i = 1; i <= m; i++) {...}

The corresponding perforation vector has coordinates Pi = 1,
for i ≤ m, and Pi = 0 otherwise. It is straightforward to extend
this strategy for initial loop induction variable values other than 1.

Randomized perforation. Randomized perforation selects a ran-
dom subset of m elements from the entire set of n elements. This
can be done efficiently without explicitly creating the P vector.

2.2 Perforation Noise
We characterize the difference between the original and perfo-
rated computations using the perforation noise. For an input vector
X = (X1, . . . , Xn) and perforation vectors A and P , let calc be a
perforatable computation that given input vector X and a perfora-
tion strategy P calculates an output. We define the (signed) perfo-
ration noise by

D ≡ calc(X,P)− calc(X,A). (12)

Then the absolute perforation noise is the absolute value |D|.
Specially, if the computation sums its inputs, we can model the

computation by taking the dot product of the perforation vector
with the input vector, calc(X,P) = P ′X . For the original com-
putation the dot product of the two vectors will yield

A′X =

n∑
i=1

AiXi =

n∑
i=1

Xi (13)

For the perforated sum Sm we can derive

P ′X =

n∑
i=1

PiXi =

n∑
i:Pi 6=0

PiXi (14)

Then the absolute perforation noise |D| is:

|D| =
∣∣∣∣∣∣

n∑
i:Pi 6=0

PiXi −
n∑
i=1

Xi

∣∣∣∣∣∣ (15)

2.3 Useful Inequalities
In this section we describe a few useful inequalities that we will use
during the pattern analyses.

Markov’s inequality. For a random variable Y with finite mean,
Markov’s inequality provides an upper bound on the probability of
observing its absolute value exceed a. In particular,

P
(
|Y | ≥ a

)
≤ E

(|Y |)
a

. (16)

This inequality is non-trivial when a > E(|Y |).

Chebyshev’s inequality. For a random variable Y with finite
mean and variance, a two-sided Chebyshev’s inequality gives an
upper bound on the probability of observing an absolute difference
between Y and its mean larger than some value a. In particular,

P
(
|Y − E(Y)| ≥ a

)
≤ var(Y)

a2
. (17)

We can restate Chebyshev’s inequality in the following way.
With probability at least 1− ε, the quantity |Y −E(Y)| is bounded
by √

var(Y)

ε
. (18)

One-sided Chebyshev’s inequality provides the bound on Y
being greater than EY . In particular, we have

P
(
Y − E(Y) ≥ a

)
≤ var(Y)

var(Y) + a2
. (19)

Alternatively, we can say that with probability at least 1 − ε, the
difference Y − E(Y) is bounded by√

var(Y)
(1

ε
− 1
)
. (20)

Hoeffding’s inequality. For a sum of random variables Sn =
X1 + . . . + Xn where all terms Xi are independent and almost
surely bounded, i.e. P (Xi ∈ [ai, bi]) = 1, a two-sided Hoeffding’s
inequality gives an upper bound on the absolute difference between
Sn and its mean larger than some constant t. In particular,

P
(∣∣∣Sn − ESn

∣∣∣ ≥ t) ≤ 2 exp
(
− 2t2∑n

i=1(bi − ai)2
)
. (21)

Because of additional assumptions on the input random variables,
Hoeffding’s inequality often provides tighter bounds than Cheby-
shev’s or Markov’s inequality.

We can restate the Hoeffding’s inequality in the following way.
With probability at least 1− ε, the absolute difference |Sn − ESn|
is bounded by √√√√1

2
ln

2

ε
·
n∑
i=1

(
bi − ai

)2

. (22)

One-sided Hoeffding’s inequality provides the bound on the
sum Sn being greater than ESn. In particular, we have

P
(
Sn − ESn ≥ t

)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2
)
. (23)

Alternatively, we can say that with probability at least 1 − ε, the
difference Sn − ESn is bounded by√√√√1

2
ln

1

ε
·
n∑
i=1

(
bi − ai

)2

. (24)

3. Patterns and Analyses
For each pattern we present an example of the original and the
transformed code. For simplicity, in these examples we use a large
interleaving perforation and assume an even number of iterations
n.

In each pattern analysis section we first present the assumptions
we make on the distribution of the inputs. These assumptions char-
acterize our uncertainty about the values of these inputs. With these
assumptions in place, we derive expressions for 1) the mean perfo-
ration noise, 2) the variance of the perforation noise, and 3) bounds
on the probability of observing large absolute perforation noise. In
some cases we perform additional analyses based on additional as-
sumptions about the input distributions or perforation strategy.

3.1 The Extrapolated Sum Pattern

Original code Transformed Code

double sum = 0.0;
for (int i = 1; i <= n; i++) {

sum += f(i);
}

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {

sum += f(i);
}
sum *= k;

Figure 5. Extrapolated Sum Pattern; original and perforated code

Figure 5 presents an example of the original and the perforated
code for the extrapolated sum pattern. We begin by first presenting
a generalized analysis for the sum of correlated random variables.
We then present specializations of the analysis under additional
assumptions. Special cases that we analyze include independent
and identically distributed (i.i.d.) inputs and inputs generated from
a random walk.

Assumptions. To derive the bounds on the perforation noise, we
will assume only that the terms of the sum have finite mean and
covariance.

Analysis. For i = 1, . . . , n, let Xi = f(i) be the i-th term of
the summation. We will model our uncertainty about the values Xi
by treating X = (X1, . . . , Xn)′ as a vector of n random variables
with mean vector

M = (µ1, . . . , µn)′ (25)

and covariance matrix Σ with elements

(Σ)ij = cov(Xi, Xj). (26)

Let A be the all-ones vector, so that A′X denotes the sum∑n
i=1Xi, and let P be a perforation vector with m non-zero en-

tries. Then P ′X denotes the extrapolated perforated computation.
The signed perforation noise is

D ≡ P ′X −A′X = (P −A)′X. (27)

In the general case, the expected value of the perforation noise is

E(D) =

n∑
i=1

µi · (Pi − 1), (28)

and its variance is given by

var(D) = (P −A)′Σ(P −A) (29)

=
∑
i,j

(Pi − 1) (Pj − 1) Σi,j . (30)

To avoid systematic bias, we can try to choose P so that
E(D) = 0. For a known mean vector, M , this is indeed possi-
ble.1 In particular, choosing P such that

n∑
i=1

µiPi =

n∑
i=1

µi (31)

removes a bias from the extrapolation.
As a special case, if all input variables have the same expected

value, i.e., if µ = µ1 = . . . = µn, then it follows that P will lead
to an unbiased estimate if and only if

n∑
i=1

Pi = n. (32)

One common extrapolation strategy is to assign the same value to
every non-zero coordinate, in which case we would have Pi = n

m
for the non-zero coordinates i.

Under the assumption that P satisfies E(D) = 0, we can use
Chebyshev’s inequality and the variance ofD to bound the absolute
perforation noise by

P(|D| > a) ≤ var(D)

a2
. (33)

This bound will be conservative in practice; additional knowl-
edge (say, bounds on the range of each Xi and independence) can
be used to derive tighter bounds, e.g., by using Hoeffding’s inequal-
ity. Alternatively, from those P satisfying E(D) = 0, we may
choose the one that minimizes the variance, and therefore mini-
mizes the bound.

We will now study a number of special cases where additional
assumptions will enable us to better understand the effect of perfo-
ration.

1 Note that the mean vector and covariance matrix may themselves be
uncertain and so it may not be possible to choose a P for which E(D) = 0.
Distributional assumptions on the mean and covariance would allow one
to, e.g., compute the conditional expectation of the unperforated sum given
the perforated computations, producing an estimate that minimizes a mean
squared error criterion. We leave this approach to future work.

3.1.1 Independent Variables
Assumptions. We will assume that the elements Xi = f(i)

of the summation are i.i.d. copies of a random variable with finite
mean µ and variance σ2. (In order to derive a mean and variance
for the absolute perforation noise, we will consider the additional
assumption that X is normally distributed.)

Analysis. Because X is a vector of i.i.d elements, it follows
that Σ = diagi(σ

2), where diagi(ei) denotes the diagonal matrix
whose (i, i) entry is ei. Moreover, E(Xi) = µ, and so, from (32),
we have

E(D) = 0, (34)

for any perforation P such that
∑
i P = n. From Eq. 30 and the

observation that Σ = diagi(σ
2), it follows that

var(D) = σ2
∑
i

(1− Pi)2 . (35)

It is straightforward to show that this value is minimized by any
perforation P with n − m zeros and the remaining entries taking
the value n

m
. In this case, the variance takes the value

σ2 n (n−m)

m
. (36)

We can immediately bound the probability of observing large
absolute perforation noise using Chebyshev’s inequality (Eq. 33).
In particular, with probability at least 1− ε,

|D| ≤
√
σ2 n (n−m)

mε
(37)

If each Xi is bounded, falling in the range [a, b], we can apply
Hoeffding’s inequality (Eq. 22) to bound the absolute perforation
noise |D|. Let X ′i = (Pi − 1)Xi, and note that the variables X ′i
are still mutually independent. The range of X ′i is [ai, bi], which is
equal to [(Pi − 1)a, (Pi − 1)b]. Then the sum

n∑
i=1

(
bi − ai

)2

= (b− a)2
(
m
(n
m
− 1
)2

+ (n−m)
)

(38)

= (b− a)2
n (n−m)

m
. (39)

It follows that, with probability at least 1− ε,

|D| < (b− a)

√
n (n−m)

2m
ln

2

ε
. (40)

We can get potentially tighter bounds if we make further as-
sumptions. Let D∗ denote the perforation noise in the case where
summand X is normally distributed with mean µ and variance
σ2. Then D∗ is itself normally distributed with mean and variance
given by (34) and (35), and thus the absolute perforation noise |D∗|
has a half-normal distribution with mean

E
(
|D∗|

)
=

√
2

π
var(D∗) (41)

= σ

√
2n(n−m)

πm
(42)

and variance

var(|D∗|) =
(

1− 2

π

)
var(D∗). (43)

3.1.2 Random Walk
Assumptions. We will assume that the sequence X of random

variables is a random walk with independent increments. Specifi-
cally, we assume the sequence is a Markov process, and that the dif-
ferences between the values at adjacent time steps δi = Xi+1−Xi

are a sequence of i.i.d. random variables with mean 0 and variance
σ2. Let X0 = µ be a constant.

Analysis. From the assumption E(δi) = 0, it follows by induc-
tion that the expected value of every element is E(Xi) = µ. (To
see this, note that E(Xi) = E(Xi−1) + E(δi−1) and E(X0) = µ.)
As a consequence, for any perforation vector that satisfies (32), we
have that E(D) = 0.

For i < j, the covariance between Xi and Xj satisfies

cov(Xi, Xj) = E
(

(Xi − µ)(Xj − µ)
)

(44)

= E
(

(Xi − µ)E(Xj − µ|Xi)
)

(45)

= E
(

(Xi − µ)2
)

(46)

= var(Xi) (47)

= iσ2. (48)

Therefore, the covariance matrix Σ has entries

(Σ)ij = σ2 min{i, j}, (49)

and the variance of the perforation noise satisfies

var(D) = σ2
∑
i,j

(1− Pi) (1− Pj) min{i, j}. (50)

We may choose a perforation strategy P by minimizing this vari-
ance (and thus minimizing the Chebyshev’s bound on the absolute
perforation noise). For example, when Pi = 2 for odd i and 0 oth-
erwise, we have that

var(D) =
n

2
σ2. (51)

3.2 Mean Pattern

Original code Transformed Code
double sum = 0.0;
for (int i = 1; i <= n; i++) {

sum += f(i);
}
double mean = sum / n;

double sum = 0.0;
for (int i = 1; i <= n; i+=k) {

sum += f(i);
}
double mean = sum * k / n;

Figure 6. Mean Pattern; original and perforated code

We present an example of the original and the perforated code
for the mean pattern in Figure 6. Note that we can extend the
analysis for the extrapolated sum pattern (Section 3.1) because the
result of the mean computation is equal to the result of the sum
computation divided by n. We denote the output produced by the
original computation as 1

n
A′X , and the output produced by the

perforated computation as 1
n
P ′X .

We denote the perforation noise of the sum as DS . The per-
foration noise of the mean D in the general case with correlated
variables is

D ≡ 1

n

(
P ′X −A′X) (52)

D =
1

n
DS (53)

By the linearity of expectation, the perforation noise has expecta-
tion

E(D) =
1

n
E(DS) (54)

and variance

var(D) =
1

n2
var(DS). (55)

For perforation vectors such that ED = 0, we have that

P(|D| > a) ≤ var(DS)

n2a2
. (56)

Therefore, if 1
n

var(DS) → 0 as n → ∞, then we can expect the
perforated computation to approximate the original computation to
any desired accuracy with high probability for large enough n.

3.2.1 Independent Variables
Assumptions. As we did in the sum case in Section 3.1.1, we

will consider the special case where the terms Xi = f(i) are i.i.d.
copies of a random variable with finite mean µ and variance σ2.
(Again, in order to derive the mean and variance for the absolute
perforation noise, we will make the additional assumption that the
Xi are normally distributed.)

Analysis. We derive the results in this section using the results
from Section 3.1.1.

By construction, the expected perforation noise satisfies

E(D) = 0. (57)

The variance of the perforation noise is

var(D) =
(1

m
− 1

n

)
σ2. (58)

This identity can then be used to derive Chebyshev bounds via (56).
We can obtain tighter bounds on the perforation noise if we

make the additional assumption that the summands Xi are nor-
mally distributed. In this case the perforation noise D is also nor-
mally distributed, and so |D| has a half-normal distribution with
mean

E(|D|) = σ

√
2

π

(
1

m
− 1

n

)
(59)

and variance

var(|D|) = σ2

(
1− 2

π

)(
1

m
− 1

n

)
. (60)

Alternatively, if we constrain the variables Xi to lie in the
interval [a, b], we can use Hoeffding’s inequality (Eq. 22) to bound
the chance of observing a large perforation noise. With probability
1− ε, the absolute perforation noise is bounded by

|D| < (b− a)

√
1

2

(1

m
− 1

n

)
ln

2

ε
. (61)

3.3 Argmin-Sum Pattern
We present an example of the original and transformed code for the
Argmin-Sum computation pattern in Figure 7.

Original code Transformed Code

double best = MAX_DOUBLE;
int best_index = -1;

for (int i = 1; i <= L; i++) {
s[i] = 0;
for (int j = 1; j <= n; j++)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}

return best_index;

double best = MAX_DOUBLE;
int best_index = -1;

for (int i = 1; i <= L; i++) {
s[i] = 0;
for (int j = 1; j <= n; j+=k)

s[i] += f(i,j);

if (s[i] < best) {
best = s[i];
best_index = i;

}
}

return best_index;

Figure 7. Argmin-Sum Pattern

L n r Mean Variance > 95% > 99%
0.25 0.11 0.06 0.67 1.05

4 8 0.50 0.25 0.17 1.15 1.67
0.75 0.42 0.33 1.62 2.24
0.25 0.14 0.09 0.83 1.30

4 12 0.50 0.30 0.25 1.42 2.07
0.75 0.51 0.49 1.98 2.75
0.25 0.16 0.12 0.96 1.51

4 16 0.50 0.35 0.34 1.64 2.40
0.75 0.59 0.66 2.29 3.18
0.25 0.14 0.07 0.74 1.10

6 8 0.50 0.30 0.20 1.25 1.75
0.75 0.52 0.38 1.75 2.34
0.25 0.17 0.10 0.91 1.36

6 12 0.50 0.37 0.30 1.54 2.16
0.75 0.63 0.57 2.15 2.89
0.25 0.20 0.14 1.06 1.59

6 16 0.50 0.43 0.40 1.78 2.51
0.75 0.73 0.76 2.49 3.35
0.25 0.16 0.07 0.78 1.12

8 8 0.50 0.34 0.21 1.31 1.79
0.75 0.58 0.40 1.83 2.41
0.25 0.19 0.11 0.96 1.40

8 12 0.50 0.42 0.32 1.61 2.22
0.75 0.71 0.61 2.25 2.97
0.25 0.22 0.15 1.11 1.63

8 16 0.50 0.48 0.43 1.86 2.57
0.75 0.82 0.82 2.60 3.44

Table 1. Argmin-Sum Simulation Numbers

3.3.1 Simulation
To begin, we use a simulation to analyze the effect of perforating
the inner loop (the j loop) in the argmin-sum pattern. The sim-
ulation models the f(i,j) as random variables Xi,j chosen as
i.i.d samples from a uniform distribution on the interval [0, 1]. The
argmin-sum computation searches a sequence of sums for the min-
imum sum. The original computation produces the index of the se-
quence with the minimum sum as its result. The perforated compu-
tation produces the index of the sequence with the minimum per-
forated sum. The perforation noise |D| is the difference between
the minimum sum from the original computation and the complete
sum (not the perforated sum) of the sequence whose index the per-
forated computation produces.

Table 1 presents the results from this simulation. The perfora-
tion rate is 1

2
. Each row in the table contains the results of a single

simulation run. The first three columns in each row present the val-
ues of L, n, and perforation rate r for the simulation. Column 4
(Mean) presents the mean of the absolute perforation noise. Col-
umn 5 (Variance) presents the variance of the absolute perforation
noise. Column 6 (>95%) presents the 95th percentile, i.e., the value
below which 95% of the recorded perforation noise values fall. Col-
umn 7 (> 99%) presents the 99th percentile. These reported per-
centiles are estimators for the true percentiles, and can thus be used
to bound the occurrence of large perforation noise.

We can use the bounds from Columns 6 and 7 to calculate
bounds for the case when the inputs Xi are i.i.d. samples from
a uniform distribution on an arbitrary interval [a, b]. E.g., we can
estimate the extrapolated bound β′ from the corresponding bound
β by β′ = (b− a)β + a.

3.3.2 Assumptions
For each i ∈ {1, . . . , L}, we assume that Xi,j = f(i, j) are con-
ditionally independent and drawn from a distribution Fi. Moreover,

we assume that the distributions Fi themselves are independent and
distributed according to some distribution G. The perforation vec-
tor P coordinates take only the values from the set {0, 1}.
3.3.3 Analysis
In the argmin-sum pattern, we compute an index which is then used
later in the program. We model the value of an index i as the entire
sum Xi =

∑n
j=1Xi,j .

Therefore, the original computation produces the value

SO = min
i
A′Xi = min

i

n∑
j=1

Xi,j , (62)

while the perforated computation produces the value

SP =

n∑
j=1

Xγ,j , (63)

where

γ ≡ arg min
i

m∑
j=1

Xi,j (64)

and m is the reduced number of steps in the perforated sum.
Note that the independence of the variables Xi,j implies that we
can, without any loss of generality, choose a so-called truncation
perforation vector.

We are interested in studying the perforation noise

D ≡ SP − SO ≥ 0 (65)

Note that the perforation noise D is non-negative because SO is a
minimum sum, and so D = |D| is also the absolute perforation
noise.

Let Yi ≡ ∑m
j=1Xi,j and Zi ≡ ∑n

j=m+1Xi,j . Then, SO =
mini (Yi + Zi) = Yω + Zω and SP = Yγ + Zγ where γ =
arg mini Yi., and ω = arg mini(Yi + Zi) is the index of the
minimum sum. Then the perforation noise satisfies

D = Yγ + Zγ − Yω − Zω (66)
≤ Yγ + Zγ −min

i
Yi −min

i
Zi (67)

= Zγ −min
i
Zi. (68)

Let D̄ ≡ Zγ − mini Zi denote this upper bound. We can obtain
conservative estimates of the perforation noise D by studying D̄.
Note that the perforation noise for this pattern is non-negative
because Zγ ≥ mini Zi.

To obtain the mean and the variance of the perforation noise we
first consider the case where all the distributions Fi are equivalent
(i.e., Fi = F for some distribution F). We can express this by
assuming that the distribution (on distributions) G is a degenerate
distribution that assigns probability one to a single value, namely
F . We write this as G = ∆F . This situation is an extreme example
of the situation where the Fi are all very similar and have overlap-
ping support. In such a situation, it is hard to distinguish between
samples from Fi and Fj . Therefore, we will call this the overlapped
case.

DefineZ to the sum of n−m independentF -distributed random
variables. Then Zi has the same distribution as Z, and, moreover, γ
is independent ofZγ and, in particular,Zγ has the same distribution
as Z. Therefore,

E(D̄) = E(Z)− E(min
i
Zi), (69)

or, put simply, the expectation of our bound D̄ is the difference
between the mean of Z and its first order statistic (given a size L
sample).

We will now consider a different case: Assume that

G = α∆F + (1− α)G′, (70)

where 0 < α < 1, where F is a distribution on the real line and
where G′ is some distribution (on distributions) such that:

∃θ ∈ R, F (−∞, θ) = 1 and G′({F ′ : F ′(θ,∞) = 1}) = 1.
(71)

That is, random values sampled from the distribution F are always
smaller than those sampled from distributions F ′ (that are sampled
from G′). Again, let Z be the distribution of the sum of n −
m independent F -distributed random variables. We will further
assume that

1− (1− α)L > 1− ε (72)

for small ε ≈ 0. That is, with high probability, one of the rows iwill
be sampled from F (i.e., Fi = F for some i with high probability.)
We will call this the separated case. Under these assumptions, Eq.
(69) holds approximately (up to a term bounded by ε.), but now
the second term will be the first order statistic of an expected size
αL < L sample. If F has a light left tail and αL is small, then
the order statistic will not be very different from the mean, and we
can therefore expect the bound on the perforation noise to be much
reduced compared to the overlapped case.

To understand why the perforated computation excels in the sep-
arated case, note that we can think of the perforated sum on each
step i as a quick test of the location of the mass of the distribution
Fi. If there is a distribution that is separated from the rest and con-
centrates its mass on smaller values, the smallest perforated sum
will identify this distribution whenever it is present and the perfo-
rated computation will correctly choose to use the corresponding
index in those cases. In the separated case, the distribution F has
precisely this property and the condition (72) ensures that at least
one row is sampled from F . In particular, the smallest perforated
sum will with probability 1− ε identify a stage i where Fi = F .

The former analysis also suggests situations where we can ex-
pect this perforated computation to not produce satisfactory results.
If thePi are overlapped and have very long tails, then the perforated
sums will not be good approximations to the actual summations, as
it is likely that a very large summand will be missed in the perfo-
rated sum.

We proceed with the analysis of the overlapped case, under
the additional assumption that Z is uniformly distributed on the
interval a± w

2
of width w > 0 and center a.2 Let Zi be i.i.d. copies

of Z.
Define Mm = mini≤m Zi. Then 1

w
(Mm − a + w

2
) has a

Beta(1,m) distribution, and so Mm has mean

a+
w

m+ 1
− w

2
(73)

and variance

mw2

(m+ 1)2(m+ 2)
. (74)

From (69), we have

E(D̄) = E(Z)− E(ML) (75)

=
w

2
− w

L+ 1
. (76)

2Z will never be uniform, however this assumption simplifies the analysis
and is in some sense conservative if we choose the center and width to cover
all but a tiny fraction of the mass of the true distribution of Z. In fact, by a
central limit theorem argument, we would expect the sum Z to converge in
distribution to a Gaussian. In this case, we might take our approximation to
cover some number of standard deviations.

Furthermore, as γ is independent of every Zi, it follows that Zγ is
independent of ML. Therefore,

var(D̄) = var(Z)− var(ML) (77)

=
1

12
w2 +

Lw2

(L+ 1)2(L+ 2)
. (78)

Limit cases agree with our intuition: as L → ∞, we have that
E(D̄) → w

2
and var(D̄) → 1

12
w2. The mean and variance of

D̄ can be used to derive one-sided Chebyshev style bounds on D̄
and, sinceD = |D| < D̄, bounds on the absolute perforation noise
|D|. In particular, using one-sided Chebyshev’s inequality (Eq. 19),
it follows that with probability at least 1− ε

|D| <
√

var(D̄)
(1

ε
− 1
)

+ ED̄ (79)

An analysis of bounds in the separated case is left to future work.

3.4 Sum-Division Pattern
We present an example of the original and the transformed code for
the Sum-Division computation pattern in Figure 8 .

Original code Transformed Code

double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i++) {

numer += x(i);
denom += y(i);

}

return numer/denom;

double numer = 0.0;
double denom = 0.0;
for (int i = 1; i <= n; i+=k) {

numer += x(i);
denom += y(i);

}

return numer/denom;

Figure 8. Sum-Division Pattern

3.4.1 Assumptions
LetXi = x(i) and Yi = y(i) denote random variables representing
the values of the inner computations. We will assume that the
sequence of pairs (Xi, Yi) are i.i.d. copies of a pair of random
variables (X,Y), where Y > 0 almost surely. Define Z = X/Y
and Zi = Xi/Yi. For some constants µ and σ2

Z , we assume that
the conditional expectation of Z given Y is µ, i.e., E(Z|Y) = µ,
and that the conditional variance satisfies var(Z|Y) =

σ2
Z
Y

.
The model computation in our minds that justifies these assump-

tions is one where on each iteration some number of tests Y are
performed, and that each of these tests is a noisy measurement, and
so their average X/Y is a better estimate. The outer loop might
gauge the accuracy in order to run more tests, but we do not model
that aspect here.

3.4.2 Analysis
The perforation vector coordinates only take the values from the
set {0, 1}. Note that the independence of pairs of random variable
implies that the perforation strategy does not influence the final
result. To simplify the derivation, but without loss of generality,
we represent the perforation noise as the sum of first m elements.

Define Y n1 = A′Y =
∑n
i=1 Yi and Y m1 = P ′Y =

∑m
i=1 Yi

and defineXn
1 andXm

1 analogously. Then the value of the original
computation is

SO =
Xn

1

Y n1
=

n∑
i=1

Yi
Y n1

Zi, (80)

while the value of the perforated computation is given by

SP =

m∑
i=1

Yi
Y m1

Zi, (81)

wherem is the reduced number of steps in the perforated sum. Note
that in the previous equations, we used the identity Xi = YiZi.

We will begin by studying the (signed) perforation noise

D ≡ SP − SO. (82)

We have that the conditional expectation of D given Y1:n =
{Y1, . . . , Yn} satisfies

E(D|Y1:n) =

n∑
i=1

Yi
Y n1

µ−
m∑
i=1

Yi
Y m1

µ (83)

= µ

(
n∑
i=1

Yi
Y n1
−

m∑
i=1

Yi
Y m1

)
(84)

= 0 (85)

and that the conditional variance satisfies

var(D|Y1:n) = var

(
m∑
i=1

ZiYi

(
1

Y m1
− 1

Y n1

))
(86)

+ var

(
n∑

i=m+1

Zi
Yi
Y n1

)
(87)

= σ2
Z

(
m∑
i=1

Yi

(
1

Y m1
− 1

Y n1

)2

+

n∑
i=m+1

Yi
Y n1

1

Y n1

)
(88)

= σ2
Z

(
1

Y m1
− 1

Y n1

)
(89)

By the law of iterated expectations, we have

E(D) = E(E(D|Y1:n)) = 0. (90)

In order to proceed with an analysis of the variance of the
perforation noise D, we make a distributional assumption on Y . In
particular, we will assume that Y is gamma distributed with shape
α > 1 and scale θ > 0. Therefore, 1

Ym
1

has an inverse gamma

distribution with mean (θ(mα− 1))−1, and so

var(D) = E(var(D|Y)) (91)

=
σ2
Z

θ

(
1

mα− 1
− 1

nα− 1

)
. (92)

Again, using Chebyshev’s inequality, we can bound the probability
of large absolute perforation noise |D| using (17).

3.5 Worst Case Analysis of the Patterns
In this section we derive the expressions for the worst case perfora-
tion noise of the result of the perforated computation from the result
of the original, unperforated application. We assume that each sum-
mation term xi belongs to a finite interval, i.e. xi ∈ [a, b]. We are
looking for the maximum value of the absolute perforation noise

DWC = max
xi

|D(x1, x2, . . . xn)| (93)

Note that, while we use the expressions for D from the Section 3,
we have replaced all random variables Xi with their deterministic
counterparts xi, making the expressions D deterministic. In some
of the following analyses we make additional assumptions on the
perforation strategy to simplify the algebraic expressions.

3.5.1 Sum of Independent Variables
The perforation noise between the original and the perforated com-
putations is defined by (27) (Section 3.1).

D =
∑
i:Pi 6=0

(Pi − 1)xi −
∑

j:Pj=0

xj (94)

If all non-zero coordinates of the vector P have the same value n
m

,
the perforation noise is equal to

D =
(n
m
− 1
) ∑
i:Pi 6=0

xi −
∑

j:Pj=0

xj (95)

= S+ − S− (96)

Since the function is monotonously increasing, the maximum of
|D| can be obtained by maximizing the distance between sums S+

and S−. We assume the finite range for the values of every input
xi ∈ [a, b], where a, b ∈ R. Maximum distance between S+ and
S− is obtained if all terms in one sum are equal to a, and all terms
in the other sum are equal to b. In this case the absolute perforation
noise becomes

DWC =
∣∣∣(n
m
− 1
)
mb− (n−m) a

∣∣∣ (97)

=
∣∣∣(n
m
− 1
)
ma− (n−m) b

∣∣∣ (98)

= (n−m) (b− a) (99)

If the perforation strategy is interleaving with k = 2, then
m = n

2
, and the perforation noise is equal to n

2
(b− a).

3.5.2 Sum of Random Walk Components
We defined the perforation noise between the original and the
perforated computations in (27) (Section 3.1).

D =
∑
i:Pi 6=0

(Pi − 1)xi −
∑

j:Pj=0

xj (100)

We can express the input variable xi as xi = x0 +
∑n
i=1 δi. We

assume that the variable x0 = x and δ ∈ [−d, d] (a, b ∈ R). By
replacing the values of xi in (100) and using the previous identity,
the perforation noise becomes

D =
∑
i:Pi 6=0

(Pi − 1)

i−1∑
j=1

δj −
∑
i:Pi=0

i−1∑
j=1

δj (101)

Note that in the previous equation, the terms including x sum up to
0, which follows from the definition of the vector P :∑

i:Pi 6=0

Pix−
n∑
i=1

x = x
(∑
i:Pi 6=0

Pi − n
)

= 0 (102)

Note that it is possible for a particular term δi to appear in both
the left and the right summation, which makes the optimization
dependent on the perforation strategy to specify the coefficients
of each δi. The expression for variance will also depend on the
selection of perforation strategy.

As an illustration, we will derive the expression for the max-
imum perforation noise for the interleaving perforation strategy
with rate k = 2, which implies P2i−1 = 2 and P2i = 0. Let set
Qn = {2t+1 : 0 < 2t+1 ≤ n∧t ∈ N0} denote the odd-indexed
iterations, and set Rn = {2t : 0 < 2t ≤ n ∧ t ∈ N0} denote
the even-indexed iterations of the loop. The perforation noise then
takes the form

D =
∑
i∈Qn

i−1∑
j=1

δj −
∑
i∈Rn

i−1∑
j=1

δj (103)

=
∑
i∈Qn

(i−1∑
j=1

δj −
i∑

j=1

δj
)

(104)

= −
∑
i∈Qn

δi (105)

Application Computation Location Exec. Time % Mean Iterations Executions
bodytrack ImageErrorEdge ImageMeasurements.cpp, 122 26.7% 40 400391
swaptions HJM_Swaption_Blocking HJM_Swaption_Blocking.cpp, 157 100% 1250 64
streamcluster pFL streamcluster.cpp, 600 98.5% 52 49
x264 refine_subpel me.c, 665 16.3% 8.30 1339415

Table 2. Execution Statistics for Computations

The range of values of |δ| is [0, d]. The absolute perforation noise
reaches its maximum when all δi have the value d

DWC =
n

2
d (106)

Note that (105) implies that the only relevant differences are those
at odd positions δ2i−1 = x2i − x2i−1 = d. The differences
x2i+1 − x2i may have an arbitrary value from the assumed range
[−d, d]. Examples of potential worst case scenarios include adding
d to the previous term in every loop iteration, subtracting d from
the previous term in every loop iteration, or interchangeably adding
and subtracting d in adjacent iterations.

3.5.3 Mean Pattern
To derive the worst case analysis result for mean pattern, we can
utilize the results from the worst case sum analysis. Since Mn =
1
n
Sn, the perforation noise of the mean of n elements is propor-

tionally smaller than the perforation noise of the sum. For example,
for the case when the summands are independent it can be derived
that

DWC =
(

1− m

n

)
(b− a) (107)

3.5.4 Argmin-Sum Pattern
Recall the perforation noise as given by Equations 65 and 66. We
assume that each term xi of the sums SP and SO take value from
a range [a, b].

To maximize the perforation noise D we can maximize the
differences DY = Yγ − Yω and DZ = Zγ − Zω independently.
Since the sum Yγ is defined to be the minimum sum, the difference
DY reaches a maximum value 0 if Yγ = Yω . The difference DZ is
maximized when all terms in the sum Zγ take the value b, and all
terms in the sum Zω take the value a. Since these sums have n−m
elements, the maximum perforation noise is

DWC = (n−m)(b− a). (108)

3.5.5 Sum-Division Pattern
To perform the worst case analysis for Sum-Division pattern, we
bound the potential values of the variables xi ∈ [a, b] and yi ∈
[c, d]. The perforation noise between the the results of the perfo-
rated and the original computations is defined by Equation 82 (Sec-
tion 3.4).

If the interval [c, d] contains value 0, then the worst case per-
foration noise approaches infinity. We can choose the terms yi in
a way that the first m terms sum up to 0 (i.e.,

∑m
i=0 yi − 0, but,

remaining summands can be chosen such that the sum
∑n
i=m+1 yi

does not equal to 0. As a consequence, the perforated division com-
putation will have an infinite value, unlike the original division
computation.

If the interval [c, d] does not contain value 0, then finding the
maximum perforation noise becomes a non-trivial non-linear opti-
mization problem. In general, we must resort to numerical meth-
ods to find the worst-case perforation noise. As an illustration, if
xi ∈ [15.0, 25.0] and yi ∈ [1000, 1200], then the maximum perfo-
ration noise for n = 10 equals 0.038.

4. Experimental Results
We evaluate the probabilistic analyses from Section 3 on applica-
tions from the PARSEC benchmark suite [4]. In this section we
outline the methodology we used for our evaluation.

We use four computations which Quality of Service Profil-
ing [11] identified as good optimization candidates. These com-
putations consume a significant amount of the execution time and
can trade off accuracy for additional performance gains. For each
subcomputation we identify a set of applicable analyses. Each com-
putation comes from a different benchmark application:

1. The ImageErrorEdge computation comes from bodytrack, a
machine vision application. We identified that this subcompu-
tation is an instance of both the sum and the sum division pat-
terns.

2. The HJM_Swaption_Blocking computation comes from swap-
tions, a financial analysis application. We identified that this
subcomputation is an instance of the mean pattern.

3. The pFL computation comes from streamcluster, an unsuper-
vised learning application. We identified that this subcomputa-
tion is an instance of the sum pattern.

4. The refine_subpel computation comes from x264, a video
encoder. We identified that this subcomputation is an instance
of the argmin-sum pattern.

The organization of this section is as follows. We first discuss
the identification of the patterns in Section 4.1. We describe the
experimental setup in Section 4.2. In Section 4.3 we summarize
the experimental results. In Sections 4.4-4.7 we discuss results
from individual subcomputations in greater detail. In Section 4.8
we compare the results from the probabilistic analyses against the
corresponding worst-case analyses.

4.1 Computation Identification
We use Quality of Service Profiling [11] to identify the loops to per-
forate. The Quality of Service Profiler perforates different loops in
turn. For each perforation it runs the application on representative
inputs, recording the execution time and output. It identifies loops
whose perforation causes a combination of improved performance
and small output changes as potentially profitable optimization tar-
gets.

The Quality of Service Profiler also produces execution statis-
tics for the perforated loops. These statistics include the number of
times the loop was executed, the average number of iterations per
loop execution, and the minimum and maximum number of loop it-
erations in a single execution. We use these loop execution statistics
to calculate the parameters of the probabilistic analyses.

Table 2 presents the execution statistics for the loops that we
perforate. The first two columns present the application and com-
putation names. The third column (Location) presents the file name
and the line where the loop begins. The fourth column (Execution
Time) presents the percentage of LLVM bitcode instructions per-
formed within the computation. The fifth column (Average Itera-
tions) presents the mean number of iterations that the loop executes.
This number usually coincides with the number of inputs consumed

Input Perforation Output Noise
Application Pattern Distribution Output Rate Predicted Observed

Normal 0.25 12.59 (± 9.51) 8.400 (± 6.050)
bodytrack sum (µ = 6.25, 249.97 (± 22.37) 0.5 22.13 (± 16.47) 22.03 (± 14.31)

σ = 4.32) 0.75 38.34 (± 28.96) 79.15 (± 30.20)
sum Gamma 0.25 0.000 (± 0.014) 0.001 (± 0.009)

bodytrack division (α = 12.08, 0.240 (± 0.022) 0.50 0.000 (± 0.024) 0.007 (± 0.016)
θ = 2.13, σ2

Z = 0.57) 0.75 0.000 (± 0.041) 0.032 (± 0.025)
Normal 0.25 0.0007 (± 0.001) 0.0001 (±5 · 10−5)

swaptions mean (µ = 0.05, 0.048 (± 0.047) 0.50 0.0011 (± 0.001) 0.0001 (±5 · 10−5)
σ = 0.05) 0.75 0.0020 (± 0.001) 0.0002 (±5 · 10−5)
Normal 0.25 4874 (± 3683) 5244 (± 7305)

streamcluster sum (µ = 87.81, 6059 (± 10510) 0.50 8324 (± 6289) 9386 (± 26331)
σ = 1237.91 0.75 14349 (± 10841) 17934 (± 30083)

argmin Uniform (a = 421.5, w = 843.0) 0.25 301.1 (± 264.8) 12.53 (± 23.33)
x264 sum Uniform (a = 605.9, w = 1211.8) 654.7 (± 662.0) 0.50 432.9 (± 380.7) 14.70 (± 26.15)

Uniform (a = 892.8, w = 1785.6) 0.75 637.9 (± 560.9) 25.33 (± 41.57)

Table 3. Comparison of the Observed and the Predicted Perforation Noise Means and Variances.

by a single execution of the computation. Finally, the sixth column
(Executions) presents the number of times the loop was executed.
This number usually corresponds to the number of the outputs that
the computation produces during the lifetime of the application.
We use these figures to calculate parameters to plug into the ex-
pressions for the perforation noise from the probabilistic analysis
and the worst-case analysis.

4.2 Experimental Setup
For each subcomputation we record the values of the inputs and
outputs for the subcomputation during the execution of the program
on representative inputs. We perforate each subcomputation using
the sampling perforation strategy with three perforation rates —
0.25, 0.50, and 0.75.

To run the applications, we used the representative inputs that
came with the benchmark suite, or augmented the suite with ad-
ditional inputs from reference data repositories. For bodytrack, we
used part of the sequenceA input provided by benchmark develop-
ers. For swaptions, we used the simlarge input that comes with the
benchmark suite. For streamcluster, we used 105 points from the
animalNorm dataset from UCI Machine Learning Repository [2]
For x264, we used a sequence of 30 frames from the tractor video
sequence from Xiph.org Foundation web site.

We perform the following steps for the analysis of each loop:

• Pattern Identification: We identify the pattern from Section 3
that each loop implements. The probabilistic analysis of this
pattern gives us parameterized expressions for the predicted
mean and predicted variance of the perforation noise.
• Maximum Likelihood Parameter Fit: We use the recorded

execution statistics to obtain numerical values for the symbolic
parameters of the predicted mean and predicted variance of the
perforation noise. Starting with the assumed probability distri-
butions, we use the maximum likelihood fit for the distributions
to the recorded execution statistics.
• Predicted Mean and Variance: Using the maximum likeli-

hood fit, we compute the predicted mean and variance of the
perforation noise for each of the perforated loops.
• Observed Mean and Variance: Using the recorded output

statistics, we compute the observed mean and observed vari-
ance of the perforation noise for each of the perforated loops.

• Comparison: We compare the predicted mean and variance
with the observed mean and variance to determine how well
the predicted mean and variance predict the observed mean and
variance. We discuss potential reasons for mismatches between
the predicted and observed values.
• Bounds: Under the assumption that the inputs are selected from

a finite range, we calculate a bound on the perforation noise
that is, at least 99% of the time, larger than the actual observed
perforation noise (i.e., ε = 0.01). A comparison of this bound
with the bound from the worst-case analysis provides insight
into how accurately the two methods predict the perforation
noise.

We perform the experiments on Intel Xeon E5520 Dual Quad-
core processor, running Ubuntu 10.10. We use LLVM 2.7 to com-
pile the benchmark applications. Our prototype analyzer is imple-
mented in Python, with parts implemented in C++ and R.

4.3 Overall Results
We next present experimental results that characterize the accuracy
of our moment-based and bounds-based analyses of the perforation
noise.

4.3.1 Moment-Based Analysis
Table 3 presents the expected value and the variance of a) the sub-
computation input, b) the subcomputation output, c) the perforation
noise (all are recorded from the application execution) and d) the
perforation noise predicted by the probabilistic analysis. Column 1
of Table 3 (Application) presents the name of the benchmark ap-
plication. Column 2 (Pattern) presents the identified pattern from
Section 3. Column 3 (Input Distribution) presents the parameters of
the assumed input distribution as produced by the maximum like-
lihood fit. Column 4 (Output) presents the mean (the first number)
and the standard deviation (the second number, in parentheses) of
the output of the original (unperforated) computation, as calculated
from the recorded output values from the running application. Col-
umn 5 (Perforation Rate) presents the perforation rate of the loop
for which the results were obtained. Column 6 (Predicted Perfora-
tion Noise) presents the mean (the first number) and the standard
deviation (the second number) of the predicted perforation noise
D. We use the expressions from Section 3 to calculate this mean
and standard deviation. Finally, Column 7 (Observed Perforation

Perforation Observed Noise Predicted Noise
Application Pattern Input Range Rate > 95% > 99% Maximum > 99%

0.25 19.74 25.05 47.99 145.6
bodytrack sum [a, b] = [0.0, 20.0] 0.50 47.98 59.02 95.90 205.9

0.75 130.2 148.9 218.7 252.2
sum [a, b] = [0, 20] 0.25 0.018 0.0231 0.0424 0.1362

bodytrack division [c, d] = [1000, 1200] 0.50 0.034 0.0437 0.0763 0.2361
0.75 0.074 0.0897 0.1422 0.4097
0.25 0.00023 0.00024 0.00024 0.0053

swaptions mean [a, b] = [0.0, 0.2] 0.50 0.00015 0.00015 0.00015 0.0092
0.75 0.00022 0.00026 0.00026 0.0159
0.25 1144 18805 18805 102670

streamcluster sum [a, b] = [0, 12371] 0.50 9542 18805 91252 145198
0.75 18805 19623 28698 177830
0.25 50.00 105.0 1046 2935

x264 argmin-sum [a, b] = [0, 490.1] 0.50 58.00 119.0 1046 4220
0.75 97.00 197.0 1501 6218

Table 4. Comparison of the Observed and the Predicted Perforation Noise Bounds.

Noise) presents the mean and standard deviation3 of the observed
perforation noise (as calculated using the observations from the per-
forated and original computations).

For four out of five benchmarks (except streamcluster) a com-
parison between the mean output value (fourth column) and the
mean observed perforation noise (seventh column) indicates that in
most cases the mean perforation noise is less than 10% of the mean
output value. The perforation noise is greater than 10% only for
x264 at the perforation rate 0.75 and bodytrack sum at the perfora-
tion rate 0.75.

Three of the five theoretical analyses (bodytrack sum division,
swaptions, and x264) conservatively predict the mean and variance
of the perforation noise. The fourth analysis, bodytrack sum anal-
ysis, provides a conservative prediction for perforation rates 0.25
and 0.5. For these two cases the predicted perforation noise is up
to 50% greater than the corresponding mean observed perforation
noise. For swaptions and x264, the predicted perforation noise is
more than a factor of 10 greater than the mean observed perfora-
tion noise.

We attribute the discrepancy between the predicted and mean
observed perforation noise to the analysis assumptions about the
inputs of the computations. The assumptions include independence
properties between input components and distribution assumptions
of the inputs such as normality or uniformity. These assumptions,
as we will see in the detailed application results, may or may not
hold for the data sets that were recorded during program execu-
tions. We nevertheless apply the analysis to the computation even
if some of the initial assumptions may not be satisfied, given that
many probabilistic analyses are robust with respect to moderate de-
partures from the distribution-related assumptions. For two anal-
yses (bodytrack sum for perforation rate 0.75 and streamcluster),
we discuss potential reasons why the predicted perforation noise
is smaller than the observed perforation noise (see Sections 4.4
and 4.6).

For each benchmark we present a histogram of the input data,
together with the fitted analytical distribution (Figures 10, 11, 13,
15, 17). For each figure, the X-axis corresponds to the binned
values of the input. The Y-axis presents the frequency density of
the inputs, with each box representing the frequency of a range
of input values. The area covered by the histogram is equal to 1.

3 This is the standard deviation of the distribution. The standard error of
the noise mean can be calculated as σ/

√
v, where v is the number of loop

executions

The red curve represents the density of the fitted distribution. We
present the parameters of the fitted distributions in the third column
of Table 3.

Often, the empirical distributions are not symmetric. We use the
skewness to characterize the departure of the distribution from as-
sumed symmetry. The skewness coefficient represents the third mo-
ment of the distribution, g = E

[(
X−µ
σ

)3]. The absolute value of
g indicates the amount of asymmetry (with 0 indicating a symmet-
rical distribution). The sign of g indicates the direction of asym-
metry. Values of g greater than 0 indicate that the distribution is
right-skewed, i.e., its right tail is heavier than its left tail and most
of the probability mass is located left from the mean value. Simi-
larly, values of g smaller than 0 indicate a left-skewed distribution.

4.3.2 Bound-Based Analysis
Table 4 presents the observed and the predicted bounds on the
perforation noise. The first and the second columns present the
name of the application and the analyzed pattern. Column 3 (In-
put Range) bounds the interval of input variables for the calcula-
tion of the bound according to Hoeffding’s inequality, where appli-
cable. In particular, for every benchmark we choose the interval to
cover over 95% of the probability mass. Column 4 presents the per-
foration rate. The following three columns present the perforation
noises that we observed from the application executions. Column
5 presents the perforation noises that are greater than 95% of the
observed noises, Column 6 presents the perforation noises that are
greater than 99% of the observed noises, and Column 7 presents
the maximum observed noise. Finally, Column 8 presents the pre-
dicted perforation noise bound that is greater than at least 99% of
the perforation noises.

We calculate the predicted perforation noise bound at level
99% using the equations derived from Hoeffding’s and Cheby-
shev’s inequalities presented in Section 3. For three patterns (body-
track sum, swaptions mean and streamcluster sum) we calculate
the bound from the Hoeffding’s inequality. To calculate the upper
bound, we use the bounds on the input variables specified in Col-
umn 3, while setting ε = 0.01. For the bodytrack sum-division pat-
tern, we calculate a two-sided Chebyshev bound, and in addition
use the input distribution parameters (α, θ, σ2

Z) reported in Table 3.
For the x264 argmin-sum pattern, we calculate a one-sided Cheby-
shev bound, using the input distribution parameter w reported in
Table 3.

For all benchmarks, the noise predicted by the theoretical bound
at level 99% was greater than the observed perforation noise at
the same level. Moreover, the predicted noise was greater than
the maximum observed noise in all cases. That is, the predicted
noise is greater than 100% of the observed perforation noises. We
attribute the conservative bound results to the assumptions that
we made about the properties of the inputs, including the input
intervals, the independence of the inputs. In the cases where we
use Chebyshev’s bound (bodytrack sum-division and x264 argmin-
sum) the distribution assumptions on the inputs, used to calculate
the variance also contribute to the conservative estimates.

4.4 Bodytrack
Bodytrack is a machine vision application which monitors the
motion of human body captured by multiple security cameras.
Bodytrack uses annealed particle filtering to locate body parts and
analyze their motion across multiple frames.

The identified loop is the inner loop in the ImageErrorEdge
function. This loop is located in the ImageMeasurements.cpp
file, starting at line 122. The loop is a part of a larger computa-
tion that approximates a multimodal probability distribution us-
ing Markov Chain Monte Carlo simulation. The loop calculates
the values of the sampled distribution function that are contributed
by edges, which are borders between image regions with distinct
brightness levels.

float error = 0;
int samples = 0;

for(int i = 0; i < ImageMaps.size(); i++){
// Perforatable loop:
for(int j = 0; j < ProjBodies[i].Size(); j++)

error += addError(Body[i][j], ImageMap[i], Positions[j]);
samples += addSample(Body[i][j], ImageMap[i], Positions[j]);

}
}

float div = error / samples;

Figure 9. Bodytrack Computation

Figure 9 presents a simplified version of the computation. We
perforate the loop with induction variable j. In each iteration the
values of the variables error and samples are updated with new
contributions from the functions addError and addSample.

Sum Pattern Analysis. The variables error and samples are
incremented within the loop. The computation produces both val-
ues as its output. We can apply the sum pattern analysis (Sec-
tion 3.1) independently on both variables. Since the sum pattern
analysis for both variables yields similar results, we will concen-
trate in this section on the analysis for the error variable.

We present the results of the probabilistic analysis of the perfo-
rated computation for the variable error in Table 3, Row 1. Be-
cause of the extrapolation that occurs after the loop executes, the
mean observed perforation noise is smaller than 10% of the mean
output of this computation. In addition, the mean observed perfo-
ration noise is, on average, smaller than the predicted perforation
noise.

The analysis assumes that the inputs are normally distributed.
Figure 10 presents the histogram of the densities of the actual
inputs, together with the fitted distribution. The histogram suggests
that the empirical distribution is non-symmetrical, with support
bounded from below at 0. The empirical distribution of errors
has skewness coefficient g = 1.24 > 0, indicating right-skewness
and longer right tail of the distribution.

A comparison of the predicted perforation noise assuming nor-
mally distributed inputs and the mean observed perforation noise

Figure 10. Histogram of values returned by addError and fitted
normal distribution from Sum analysis

shows that the predicted noise tends to conservatively overestimate
the observed noise for the perforation rates 0.25 and 0.50. For the
perforation rate 0.75, the observed noise is greater than the pre-
dicted noise. We attribute the imprecision of the prediction to the
sensitivity of the analysis to the distribution of the sum terms of
the variable errors. The true distribution of the input terms is not
normal (it has only positive values), and the observed mean noise
increases at a higher rate with the perforation rate increases than
the predicted mean noise.

Sum Division Pattern Analysis. The ImageErrorEdge compu-
tation can also be analyzed as a sum division pattern. As we can see
in Figure 9, the computation following the loop divides the sum
of model errors by the sum of samples. We can use the sum divi-
sion pattern (Section 3.4) to analyze this computation. The values
calculated in the loop (error and samples) serve as inputs to the
division operator.

Table 3, Row 2 presents the results of the probabilistic analysis
of the perforated computation for the variable div. The observed
accuracy loss of the division computation (this is the observed
perforation noise divided by the mean output) is somewhat smaller
than the observed accuracy losses of the individual numerator and
denominator, especially when more iterations are dropped — for
the perforation rate 0.75 the accuracy loss of variable div analyzed
in sum division pattern is 6.7% of the original value, compared to
10% for the observed accuracy loss of the variable error analyzed
using the sum pattern.

The analysis makes a few assumptions about the distribution
of the inputs (Section 3.1). We obtain the value of the parameter
σ2
Z from the recorded values of the variables Zi and Yi. Given

a random variable Wi = Zi
√
Yi, σ2

Z = var(Wi). This value is
consistent with the assumption that the E(Z|Y) =

σ2
Z
Y

. To obtain
the value of Wi our instrumentation records the values of Yi and
Zi in the log file. The analyzer uses these values to calculate Wi.

The output of the function addError corresponds toXi and the
output of the function addSample corresponds to Yi. A comparison
of the predicted perforation noise assuming the gamma distribution
on Yi shows that the predicted noise tends to conservatively over-
estimate the observed noise.

Figure 11 presents the distribution of the random variable Y .
Although the fitted input distribution does not completely match
the observed distribution, the results of the analysis are conser-

Figure 11. Histogram of variable samples and fitted gamma dis-
tribution from Sum division analysis

vative. The predicted mean of the noise is equal to 0. The means
of the observed noise deviate by less than one standard deviation
from the predicted mean. Furthermore, the standard deviation of
the observed noise is smaller than the standard deviation of the pre-
dicted noise. And the interval of three observed standard deviations
around the mean of the observed noise is contained within the in-
terval of the three predicted standard deviations around zero (i.e.,
the mean of the predicted noise).

4.5 Swaptions
Swaptions is a financial analysis application that calculates the
price of a portfolio of swaption financial instruments using Monte
Carlo simulation. We present the swaptions computation in Fig-
ure 12. The loop is located in the function HJM_Swaption_Blocking
in the file HJM_Swaption_Blocking.cpp, starting at line 157.
The loop in this computation consumes almost 100% of the execu-
tion time. The loop performs multiple Monte Carlo trials, adding
contributions of the individual iterations to the final price of the
swaption. The accumulated value of the swaption is divided at the
end of the computation by the number of trials.

float dPrice = 0.0;
for (i = 0; i <= lTrials - 1; i += blocksize) {

float simres = runSimulation(this, i)
dPrice += simRes;

}

double dMeanPrice = dPrice / lTrials;

Figure 12. Swaptions Computation

Mean Pattern Analysis. We present the results of the prob-
abilistic analysis of the perforated computation for the variable
dMeanPrice in Row 3 of the Table 3.

The inputs of the analysis are assumed to be independent and
chosen from a normal distribution. As Figure 13 indicates, the ob-
served input distribution is skewed to the right (g = 0.73). How-
ever, given that the predicted perforation noise greater than the
mean observed perforation noise, the normal distribution approx-
imation provides a conservative estimate of the mean perforation
noise.

Figure 13. Histogram of variable simres and fitted normal distri-
bution from Mean analysis

4.6 Streamcluster
Streamcluster is an unsupervised learning algorithm that discovers
patterns in a stream of high-dimensional points. Streamcluster is
designed to operate in small memory environments. Figure 14
presents the computation that we perforate. The computation is
located in the function pFL in the file streamcluster.cpp at line
600. The computation finds an optimal set of cluster centers for
points in working set and a summary of previously seen points.
The function pgain calculates the improvement of the new set
of candidate cluster centers. The algorithm stops if an improved
solution was not found in iter steps. If the calculated improvement
is greater than zero, the points are assigned to their new centers.

float change = 0.0;

for (i = 0; i < iter; i++) {
x = i % numfeasible;
change += pgain(candidates[x], points);

}

Figure 14. Streamcluster Computation

Sum Pattern Analysis. The outputs of the perforated program do
not essentially depend on the loop induction variable — multiple
sets of candidate cluster centers may yield a similar improvement
in the clustering quality. This is reflected by small differences be-
tween the sum returned by the original computation and the sum
returned by the perforated computation. The loop in its essence
performs iterative refinement, where the contributions of each in-
dex do not depend on the skipped iterations. Extrapolation of the
perforated result actually increases the difference between the two
sums beyond the predicted value.

Figure 15 shows that the distribution of the inputs is highly
asymmetric: it has one peak at the value zero, where about 98% of
the probability mass is located, and a number of values greater than
5000. The skewness coefficient of this distribution is g = 24.77.
We attribute the large mass located at a singular point 0 as a
reason for the large standard deviation of the output value for this
computation. Note that the mean output value of this computation
does not change significantly after perforation. Extrapolating the

Figure 15. Histogram of values returned by the function pgain
and fitted normal distribution from Sum analysis

output from the perforated computation therefore causes a large
absolute perforation noise.

4.7 x264
x264 is a video encoder for the new H.264 high-definition video
standard. It takes as input a raw video stream and generates a com-
pressed video file as output. The encoder applies various heuristic
algorithms to find parts of the video stream that are good candi-
dates for compression, causing the final video to have acceptably
good quality and a small size.

A major part of the video encoding is motion estimation — a
process which searches previously encoded images for blocks of
pixels that are similar to those in the image that it is currently en-
coding. If it finds sufficiently similar blocks, it can efficiently en-
code the current block as a delta that references the previously en-
coded block. The computation in Figure 16 assigns the dissimilar-
ity scores between the current block and the list of neighboring
blocks. In each step of the inner loop the program calculates the
similarity between pixels at position p in function ssd. The inner
loop sums the similarity contributions of all pixels.

The similarity score between blocks (i_satd) is compared
against the best score seen so far, and the index of the best block is
updated if the new sum value is the best seen so far. The computa-
tion terminates before exceeding all qpel_iters steps if it has not
seen an improvement in last four steps. We perforate only the inner
loop (with induction variable x) of this computation.

Argmin-Sum Analysis. The computation increments the vari-
able i_satd in every iteration of the inner loop, with a new score
from comparing pixels at position p calculated in the function ssd.
The final value of i_ssd is used for comparison with the best sim-
ilarity score seen so far. We can apply the argmin-sum pattern on
the value of the i_satd variable and the values of the input terms
computed by the function ssd. To calculate the mean and variance
of the predicted perforation noise we obtain the average number of
block comparisons, i.e. the number of iterations of the outer loop.
We use the generated logs to find an average number of compar-
isons L, which is L ≈ 6.

The analysis assumes a uniform distribution of the variables Zi.
We obtain the values of Zi as a difference between the original and
perforated sums. The uniform distribution gives equal probability
of occurrence of smaller and larger perforation noise, with an

int bestidx = 0;
int bestsum = 0;

for(b = 4*qpel_iters; b > 0; i--) {

i_satd = 0;

// perforatable loop:
for(p = 0; x < i_height * width; p += 4) {

i_satd += ssd(current, blocks[index[b]], p, data)
}

if (i_satd < bestsum) {
bestsum = i_satd;
bestidx = index[b];

}

if(i%4 == 0 && early_stop(bestidx, bestsum, i_satd))
break;

}

Figure 16. x264 Computation

expected skewness coefficient equal to 0. The empirical distribution
of the data, however, is right-skewed (g = 2.99). When estimating
the parameters of the uniform distribution, we use the values that
cover over 95% of the empirical probability mass. Since Z is the
sum on m − n terms, the bounds on 95% of the values vary
with the perforation rate. Table 3 presents the bounds for all three
perforation rates.

Figure 17. Histogram of values of variable Zi and fitted uniform
distribution from argmin-sum analysis

Table 3, Row 5 presents the results of the probabilistic analysis
of the perforated computation. The predicted mean and variance of
the perforation noise is considerably larger than the mean observed
perforation noise. We attribute the difference to assumptions in the
computation model. First, the encoded video data is not indepen-
dent, since most of the adjacent pixels, and also pixels in neigh-
boring blocks have similar intensities. Second, the uniform distri-
bution assumption on the values of Z is a conservative estimate of
the true distribution. This assumption assigns much higher scores
to the blocks, thus increasing the predicted perforation noise.

Simulation-Based Bounds. We compare the empirical (ob-
served) 99th percentile perforation noise with the estimates a) ob-
tained through simulation, and b) calculated from the analytical

Perforation > 99% Bound
Rate Empirical Simulation Analysis
0.25 105.0 539.1 2935
0.50 119.0 857.7 4220
0.75 197.0 1147 6218

Table 5. Argmin-Sum Simulation Numbers

expression derived from the Chebyshev’s inequality. We present
the perforation noise in Table 5. Column 1 presents the perforation
rate. Column 2 presents the empirical perforation noise recorded
during the program execution (also present in Table 4). Column 3
presents the perforation noise obtained by extrapolating the sim-
ulation results from Table 1. Column 4 presents the perforation
noise bound obtained from Chebyshev’s inequality (also present in
Table 4). The noise in all cases is calculated for L ≈ 6 and n ≈ 8.

Both the bound obtained from the simulation, and the bound
obtained from the analytical expression, are from 5 to 35 times
larger than the empirically observed bound. The simulation bound
is 4.2-3.3 times smaller than the analytical bound. It therefore
provides a tighter estimate of the true empirically observed bound
for this benchmark.

4.8 Worst Case Analyses
Table 6 presents the worst-case perforation noise described in Sec-
tion 3.5. The first and the second columns present the name of
the application and the analyzed pattern. Column 3 (Input Range)
bounds the interval of input variables for the worst-case analysis.
We repeat the same number we reported in Table 4. Column 4 (Per-
foration Rate) presents the perforation rate. Column 5 (Worst Case
Noise) presents the result of the worst-case analysis. We use the
number of loop iterations from Table 2 to calculate the worst case
perforation noise. For all benchmarks except x264 the mean num-
ber of iterations is equal to the maximum number of iterations. For
x264, we use the maximum number of iterations, 16, that the appli-
cation executes to calculate the worst case perforation noise.

The remaining three columns compare the worst-case analysis
results against the results we previously obtained using probabilis-
tic and statistical techniques. Column 6 (vs Predicted Mean Noise)
presents the ratio between the worst-case perforation noise and the
corresponding predicted perforation noise from Table 3. Column 7
(vs Observed Mean Noise) presents the ratio between the worst-
case perforation noise and the mean observed perforation noise
from Table 3. Finally, Column 8 (vs 99% Predicted Bound) presents
the ratio between the worst-case perforation noise and the predicted
perforation noise at level 99% (i.e., a noise which is greater than at
least 99% of the perforation noise) from Table 4.

Compared to the predicted and the observed mean perforation
noise, the worst-case perforation noise is often an order of mag-
nitude larger. The difference between the worst-case perforation
noise and the predicted mean perforation noise ranges from 7 times
(x264 argmin-sum and bodytrack sum pattern) to 91 times (swap-
tions mean pattern) larger. We do not report the ratio for the body-
track sum division pattern because the predicted perforation noise
is 0. A difference between the worst-case analysis and the obser-
vation from the program execution is even greater. The worst-case
perforation noise is from 7 times (bodytrack sum-division) to 1000
times (swaptions) larger than the corresponding observed mean
perforation noise.

To provide a further insight into the probability of occurrence of
large perforation noise, we calculate ratio between the worst case
perforation noise and the predicted bound on the absolute perfo-
ration noise at the level 99%. For three patterns (bodytrack sum,
swaptions mean and streamcluster sum), the worst case perforation

noise is greater, often by more than 50% than the perforation noise
at the level 99%. For bodytrack sum-division and x264 argmin-sum
the perforation noise at the level 99% is larger than the worst case
perforation noise, indicating an overly conservative estimate. Those
two patterns use looser Chebyshev-style bounds, which make fewer
assumptions about the inputs. For all patterns, the worst case per-
foration noise itself is greater than the maximum observed noise.

Our worst-case analysis operates with a compressed range of
values that excludes many observed values. Nevertheless, a com-
parison of the worst-cast analysis results with the observed per-
foration noise indicates that the worst-case analysis significantly
overestimates the perforation noise from running applications. The
results from the probabilistic analysis often provide tighter, more
accurate, but still conservative bounds.

5. Probabilistic Acceptability Specifications
Probabilistic acceptability specifications provide the transforma-
tion system with the information it needs to apply rich transforma-
tions. Our acceptability specifications apply to individual blocks of
code. Each block of code has inputs (variables that it reads whose
values come from outside the block), outputs (variables or return
values whose values are calculated inside the block), and specified
expressions (expressions whose values the analysis abstracts with
random variables).

5.1 Output Specifications
Each output specification identifies a variable or return value, then
specifies a probabilistic constraint on that variable or return value.
The constraints work either with the moments of the perforation
noise or a probabilistic bound on the perforation noise. Each mo-
ment specification identifies a bound on the mean, variance, or
other moment of the absolute perforation noise |D| introduced by
any transformation. A probabilistic bound on the absolute perfo-
ration noise |D| specifies both a probability p and a bound B. The
specification states that, with probability p, the absolute perforation
noise |D| should be less than B.

5.2 Input Specifications
Each input specification identifies a variable, then specifies a prob-
ability distribution for the values stored in that variable. There are
several base probability distributions (for example, normal distribu-
tions with a specified mean and variance, uniform distributions with
specified bounds, and histograms of recorded or otherwise obtained
values). It is also possible to specify the distribution using compu-
tations over previously specified input variables or ghost variables.
This is the mechanism enables the specification of correlated dis-
tributions such as random walks or ghost variables.

5.3 Expression Specifications
In the analysis of the block of code, the transformation system
may encounter expressions that it should abstract as selected from
a given probability distribution. Conceptually, each evaluation of
the expression is modeled as another choice from the underlying
probability distribution. To enable the construction of correlated
distributions, the choice history is available to specify the value of
the next choice.

5.4 Example
We next present an example that illustrates some of the intended
functionality. Figure 18 presents a block of code with a probabilis-
tic specification. At this point the probability distributions are fully
specified, including parameters such as mean and variance. The dis-
tributions can either be directly specified by the developer or, in a
previous pass, automatically inferred from values collected during
representative executions of the program.

Perforation Worst Case vs Predicted vs Observed vs > 99%
Application Pattern Input Range Rate Noise Mean Noise Mean Noise Predicted Bound

0.25 200 8x 24x 1.4x
bodytrack sum [a, b] = [0.0, 20.0] 0.50 400 7x 18x 1.9x

0.75 600 8x 7.5x 2.4x
sum [a, b] = [0, 20] 0.25 0.084 - 21x 0.6x

bodytrack division [c, d] = [1000, 1200] 0.50 0.142 - 20x 0.6x
0.75 0.227 - 7x 0.6x
0.25 0.05 71x 500x 18x

swaptions mean [a, b] = [0.0, 0.2] 0.50 0.1 91x 1000x 10x
0.75 0.15 75x 750x 6x
0.25 160823 33x 31x 1.6x

streamcluster sum [a, b] = [0, 12371] 0.50 309275 37x 33x 2.1x
0.75 457727 32x 26x 2.6x

argmin 0.25 1960.4 7x 156x 0.7x
x264 sum [a, b] = [0, 490.1] 0.50 3920.8 9x 267x 0.9x

0.75 5881.2 9x 232x 0.9x

Table 6. Comparision of the Worst Case Perforation Noise against the Observed Deviations

block {
inputs: a[i] : N(1, 1),

g[i] : U(1, 2),
b[i] = + { g[j] . 0 <= j && j < 20 };

outputs: P(|s| > 2 * n) < 0.01,
mean(|s|) < 2 * sqrt(n),
var(|s|) < 3 * n;

} {
s = 0;
for (i = 0; i < n; i++) {
expression: f(i) in N(2, 1);
s = a[i] + 2*b[i] + 3*f(i);

}
}

Figure 18. Example Probabilistic Specification

Inputs Clause: The inputs clause specifies that the analysis
should model a[i] as an infinite sequence of random variables.
The distribution is i.i.d. normal with mean 1 and variance 1. g[i]
is an infinite sequence of random variables, i.i.d. uniform with
lower bound 1 and upper bound 2. g[i] is a ghost variable —
its only purpose is to specify the distribution for b[i], which the
analysis models as containing overlapping sums from g[i] with a
window size of 20.
Outputs Clause: The outputs clause specifies that the probability
of the absolute perforation noise |s| for the result s exceeding 2*n
must be less than 1%. It also specifies that mean of the absolute
perforation noise |s| should be less than 2 * sqrt(n) and the
variance should be less than 3 * n.
Expression Clause: The expression clause in the body of the
computation specifies that the analysis should model the sequence
of values for the f(i) expression as a sequence of i.i.d normal
random variables with mean 2 and variance 1.
Analysis: Using techniques similar to those discussed in Sec-
tion 1.1, the analysis can determine that the perforation noise for s
with interleaved perforation at rate 0.5 is a normal random variable
with mean 0 and variance 6n (assuming n is even). The absolute
perforation noise |s| is therefore half-normal with mean

√
12n/π

and variance 6n(1− 2/π). The key facts that the analysis must use
are:

• Means and Variances: The mean of a sum of random variables
is the sum of the means of the random variables. The mean of

the difference of two random variables is the difference of the
means.
The variance of a sum or difference of independent random
variables is the sum of the variances of the random variables.
Multiplying a random variable with mean µ and variance σ2

by a constant c scales the random variable to produce a new
random variable with mean cµ and variance cσ2.
• Sums Of Uniform Random Variables: The sum of uniform

random variables quickly approximates a normally distributed
random variable.
• Sums of Normal Random Variables: The sum of normal

random variables is another normal random variable.

Because the perforation noise for s is normal, over 99.7% of
its values lie within three standard deviations of the mean. The
standard deviation of s is less than 2.5

√
n, so the probability

P(|s| > 7.5*sqrt(n)) < 99.7.
Output Specification Satisfaction Check: The output specifica-
tion for |s| requires that the probability P(|s| > 2*n) < 0.01.
If 2*n > 7.5 * sqrt(n), the specification is satisfied. This in-
equality holds if n > 16. So the compiler will introduce a dynamic
check on the value of n, choosing the original version when n < 16
and the perforated version otherwise.

The mean of |s| is approximately 1.95 * sqrt(n) and the
variance of |s| is approximately 2.18 * n. So the perforated
computation always satisfies the mean and variance output speci-
fication for |s|.

Note that the analysis models a sum of n i.i.d. uniform random
variables as a normal distribution. To ensure the accuracy of the
model, the compiler must ensure that n is large enough to ensure
the accuracy of the model. In general, we anticipate that requiring
n > 4 will ensure sufficient accuracy.

6. Automating The Perforation Transformation
The analysis presented in Section 3 establishes the theoretical foun-
dation for the principled application of rich transformations. The
empirical results presented in Section 4 show that the assumptions
behind the theoretical analysis from Section 3 can be satisfied by
real-world computations. Section 5 presents probabilistic accept-
ability specifications that developers can use to specify acceptable
differences between the results that the original and transformed
computations produce. The remaining step is to automate the ap-

plication of transformations on this foundation. We propose an au-
tomated transformation system that performs the following steps:

• Pattern Recognition: Each theoretical analysis from Section 3
characterizes the perforation noise for a specific computational
pattern under specific assumptions about the distribution of the
values on which the pattern operates. The first step is to build a
static program analysis system that can recognize the analyzed
patterns when they appear in the source code of the program.
We expect that it will be possible to leverage existing analyses
such as reduction recognition [7, 10] for this purpose. It should
also be feasible to build new analyses designed specifically for
this purpose.
• Assumption-Based Analysis Selection: The transformation

system next selects a theoretical analysis to apply for the rec-
ognized pattern (or more generally, patterns). One approach
selects the analysis based on how well its distributional as-
sumptions match the observed values from executions of the
program on representative inputs. The transformation system
first automatically produces an instrumented version of the pro-
gram that, when it runs, records the values on which the rec-
ognized patterns operate. The transformation system then runs
this instrumented version on representative inputs to record the
values on which the patterns operate.
The next step is to use the recorded values to select the set of
assumptions that best match the observed data. For each pattern,
the transformation system will have at its disposal a variety of
different analyses, each of which makes certain assumptions
about the distribution of the data on which the pattern operates
and each of which produces expressions that characterize the
perforation noise under those assumptions. The transformation
system will, for each analysis, fit the underlying distributions to
the recorded values. It can then apply statistical tests to see if the
fitted distributions (conservatively) match the recorded values,
and if so, use the analysis with the best fit.
An alternative to using empirical data is to provide the transfor-
mation system with distribution information (for example, from
a type system) about the values on which the pattern operates.
The transformation then uses the specified distribution informa-
tion to drive the analysis selection.
• Prediction-Based Analysis Selection: Prediction-based anal-

ysis selection can be used either as an additional validation
step for or as an alternative to the above assumption-based
analysis selection. Here the decision is based not on how well
the recorded input values match the distributional assumptions
from the theoretical analysis. The decision is instead based on
how well the theoretical analysis predicts the observed perfora-
tion noise from the instrumented runs. To obtain this prediction,
the transformation system may, if necessary to obtain a quanti-
tative prediction, first fit the underlying probability distributions
from each theoretical analysis to the recorded input values. It
then uses the perforation noise expressions to predict the actual
perforation noise in the computation. A comparison selects the
analysis that best (conservatively) predicts the observed noise.
• Accuracy Specification: At this point the transformation sys-

tem has matched the pattern and found an analysis that can
predict the consequences of perforating the pattern. The next
step is to find a perforation strategy that optimizes some per-
formance goal while probabilistically keeping the perforation
noise acceptably low. We therefore assume the presence of an
accuracy specification that specifies either 1) apply the perfo-
ration strategy that maximizes performance subject to keeping
the perforation noise within specified bounds (typically speci-
fied as an absolute or relative difference between the results that

the original and transformed patterns produce) or 2) apply the
perforation strategy that minimizes perforation noise subject to
meeting a specified performance goal (typically expressed as a
reduction in the running time by a specified integer factor).
• Transformation: The transformation system next takes the ac-

curacy specification and the expressions that characterize the
perforation noise and and generates a corresponding mathemat-
ical programming problem whose solution determines the per-
foration factor k to apply to the pattern. It solves the problem,
derives k, and appropriately perforates the loop.
• Noise Propagation: Perforatable computations often appear

embedded within larger computations. To evaluate the effect
of the perforation on the end to end result that the computa-
tion produces, the transformation system can use sampling to
derive a model of how the computation responds to changes in
the result that the perforated computation produces. Using mul-
tiple sampling runs, the transformation system systematically
replaces the result from the original computation with different
results to derive an empirical perforation response function for
the application [14, 15]. A developer or user can then determine
if the perforation is acceptable within the larger context of the
complete application.
It may also be possible to use a theoretical analysis or type
system to characterize the effect of the perforation on the end
to end application result.
• Combining Transformations: In some applications there may

be multiple perforation opportunities. In such applications we
anticipate sampling or searching the induced multiple pattern
perforation space to find optimal points that perforate multiple
patterns simultaneously [9, 14].

6.1 Simulation-Based Analysis
It is also possible to find potential perforation targets empirically
— perforate each loop in turn, then observe the effect on the end
to end result that the computation produces. This approach may
find perforation opportunities that do not match any of the analyzed
computational patterns. In this case the transformation system can
use directed sampling/simulation to characterize the introduced
perforation noise [16]. The transformation system would run the
perforated pattern on randomly selected input values (potentially
with the distribution obtained by fitting standard distributions to the
values observed during executions of the program on representative
inputs) and recording the resulting perforation noise to derive an
empirical model of how the computation responds to perforation.
This empirical model can then substitute for the theoretical model
to drive the applied perforation strategy as described above.

6.2 Multiple Versions and Dynamic Adaptation
In addition to using perforation to produce a single optimized
version of the application, perforation can also generate multiple
versions of the application, each of which occupies a different point
in the underlying performance versus accuracy trade-off space [9].
The theoretical analyses in this technical report can be used to
understand the shape of the trade-off space and drive the dynamic
selection of perforation policies that satisfy optimization targets
that change as the computation executes.

6.3 General Classes of Computations
The basic analysis presented in this technical report generalizes to
include with large classes of computations such as linear computa-
tions followed by non-linear operations such as minimum and divi-
sion. It is also possible to generalize the proposed program analysis
to recognize these general class of computations (as opposed to pat-
terns). So, for example, any program analysis capable of recogniz-

ing general linear functions could be combined with our probabilis-
tic reasoning approach to enable rich transformations with proba-
bilistic accuracy guarantees.

6.4 Map Reduce
Many distributed computations can be formulated as a combination
of the basic programming language constructs map and reduce —
a map applies a computation to a set of values; a reduce then com-
bines the mapped values to obtain the final result. Formulating the
computation in this way directly exposes the structure to the static
perforation analysis. An analysis of the reduce operator can char-
acterize the effect of perforating the computation (the perforated
computation would simply apply the map reduce computation to
a subset of the original set of values). One advantage of this ap-
proach is the simplicity of the model of computation, in which the
pattern is explicit and therefore directly available for analysis and
transformation without the need for program analysis.

7. Related Work
Rinard uses linear regression to obtain probabilistic timing and ac-
curacy models for computations that skip tasks [14, 15]. These
models characterize the complete application, not subcomputa-
tions. Task skipping is similar to loop perforation in that many of
the skipped tasks correspond to blocks of loop iterations.

Rinard et. al. propose the use of Monte-Carlo simulation to
explore how loop perforation changes the result that computational
patterns produce [16]. In addition to these empirical Monte-Carlo
techniques, this technical report proposes probabilistic reasoning to
derive symbolic expressions that characterize this effect.

Ramsey and Pfeffer define a stochastic lambda calculus [12] for
probabilistic modeling — the programs work directly with prob-
ability distributions. Our techniques, in contrast, work with deter-
ministic programs. We use probability distributions to model uncer-
tainty about the values the program manipulates and probabilistic
reasoning to justify the application of transformations that produce
a transformed program that (deterministically) produces different
results from the original program.

Reed and Pierce present a type system for capturing func-
tion sensitivity, which measures how much a function may mag-
nify changes to its inputs [13]. The type system uses determinis-
tic worst-case reasoning. Chaudhury, Gulwani, and Lublinerman
present a program analysis for automatically determining if a func-
tion is continuous or not [5]. Once again, the reasoning is deter-
ministic and worst-case. In contrast, we use probabilistic reason-
ing, not worst-case reasoning, to obtain probabilistic bounds, not
worst-case deterministic bounds, on how program transformations,
not small changes in the input, change the results that the program
computes.

A purely empirical application of loop perforation can enable
the system to explore the underlying performance versus accuracy
tradeoff that loop perforation induces [9]. This empirical evalua-
tion operates at the level of the complete application (as opposed
to subcomputations). A dynamic control system can use the result-
ing characterization to maximize accuracy while meeting real-time
responsiveness requirements on platforms with fluctuating perfor-
mance characteristics.

Dynamic Knobs [8] converts static application configuration
parameters into dynamic control variables. The system can then
use these control variables to change the point in the underlying
performance versus accuracy space at which the application exe-
cutes. One control strategy maximizes accuracy subject to satisfy-
ing real-time responsiveness requirements on platforms with fluc-
tuating performance characteristics.

Petabricks [1], Green [3], and Eon [18] all allow developers to
provide multiple implementations of a specific piece of applica-

tion functionality, with different implementations exhibiting differ-
ent performance versus accuracy tradeoffs. The system can then
select an implementation that best meets its current needs. There
is no explicit reasoning to justify the acceptability of the different
alternatives — the system relies on the developer to specify only
acceptable alternatives.

8. Conclusion
Traditional program analysis and transformation approaches use
worst-case logical reasoning to justify the application of transfor-
mations that do not change the result that the program produces.
We propose instead to use probabilistic and statistical reasoning
justify the application of transformations that may, within proba-
bilistic bounds, change the result that the program produces. The
goal is to provide a more accurate reasoning foundation that can
enable the application of a richer class of program transformations.

Our results demonstrate how to apply this approach to justify the
use of loop perforation, which transforms the program to skip loop
iterations. We identify computations that interact well with loop
perforation and show how to use probabilistic and statistical rea-
soning to bound how much loop perforation may change result that
the program produces. This reasoning can provide the foundation
required to understand, predict, and therefore justify the applica-
tion of loop perforation. We anticipate the development of similar
approaches for other rich transformations.

References
[1] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,

and S. Amarasinghe. Petabricks: A language and compiler for algo-
rithmic choice. In ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, Dublin, Ireland, Jun 2009.

[2] A. Asuncion and D. Newman. UCI machine learning repository, 2007.

[3] W. Baek and T. Chilimbi. Green: A framework for supporting energy-
conscious programming using controlled approximation. In ACM SIG-
PLAN Conference on Programming Language Design and Implemen-
tation, June 2010.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: Characterization and architectural implications. In PACT-2008:
Proceedings of the 17th International Conference on Parallel Archi-
tectures and Compilation Techniques, Oct 2008.

[5] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. In POPL, pages 57–70, 2010.

[6] P. C. Diniz and M. C. Rinard. Dynamic feedback: An effective
technique for adaptive computing. In PLDI, pages 71–84, 1997.

[7] M. Hall, B. Murphy, S. Amarasinghe, S. Liao, and M. Lam. Inter-
procedural analysis for parallelization. Languages and Compilers for
Parallel Computing, pages 61–80, 1996.

[8] H. Hoffman, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and
M. Rinard. Dynamic knobs for power-aware computing. In ASPLOS
’11, 2011.

[9] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Ri-
nard. Using Code Perforation to Improve Performance, Reduce En-
ergy Consumption, and Respond to Failures . Technical Report MIT-
CSAIL-TR-2009-042, MIT, Sept. 2009.

[10] K. Kennedy and J. R. Allen. Optimizing compilers for modern archi-
tectures: a dependence-based approach. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 2002.

[11] S. Misailovic, S. Sidiroglou, H. Hoffmann, and M. Rinard. Quality of
service profiling. In ICSE, 2010.

[12] N. Ramsey and A. Pfeffer. Stochastic lambda calculus and monads of
probability distributions. In POPL, pages 154–165, 2002.

[13] J. Reed and B. C. Pierce. Distance makes the types grow stronger: a
calculus for differential privacy. In ICFP, pages 157–168, 2010.

[14] M. Rinard. Probabilistic accuracy bounds for fault-tolerant compu-
tations that discard tasks. In Proceedings of the 20th annual inter-
national conference on Supercomputing, pages 324–334. ACM New
York, NY, USA, 2006.

[15] M. Rinard. Using early phase termination to eliminate load imbal-
ancess at barrier synchronization points. In OOPSLA 2007, Montreal,
Oct. 2007.

[16] M. C. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou. Patterns
and statistical analysis for understanding reduced resource computing.
In Onward!, 2010.

[17] R. Rubinfeld. Sublinear time algorithms. In Procedings of Interna-
tional Congress of Mathematicians, 2006.

[18] J. Sorber, A. Kostadinov, M. Garber, M. Brennan, M. D. Corner, and
E. D. Berger. Eon: a language and runtime system for perpetual
systems. In SenSys ’07.

