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Pion production in nuclear collisions at the Super Proton Synchrotron (SPS) is investigated with the aim to
search, in a restricted domain of the phase diagram, for power laws in the behavior of correlations that are
compatible with critical QCD. We analyzed interactions of nuclei of different sizes (p + p, C + C, Si + Si,
Pb + Pb) at 158A GeV adopting, as appropriate observables, scaled factorial moments in a search for intermittent
fluctuations in transverse dimensions. The analysis is performed for π+π− pairs with an invariant mass very
close to the two-pion threshold. In this sector one may capture critical fluctuations of the sigma component in
a hadronic medium, even if the σ meson has no well-defined vacuum state. It turns out that for the Pb + Pb
system the proposed analysis technique cannot be applied without entering the invariant mass region with strong
Coulomb correlations. As a result the treatment becomes inconclusive in this case. Our results for the other
systems indicate the presence of power-law fluctuations in the freeze-out state of Si + Si approaching in size the
prediction of critical QCD.

DOI: 10.1103/PhysRevC.81.064907 PACS number(s): 25.75.−q

*Deceased.

I. INTRODUCTION

The experiments with nuclei at the CERN Super Proton
Synchrotron (SPS) are dedicated to the search for evidence of
a deconfined state of quarks and gluons at high temperatures,
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separated from conventional hadronic matter by a critical line
in the two-dimensional phase diagram (µB, T ). Close to this
line significant fluctuations associated with the quark-hadron
phase transition occur. In principle, the experimental study
of these fluctuations becomes feasible in a class of nuclear
collisions whose reaction volume freezes out in this area.
The underlying theory of strongly interacting matter (QCD)
suggests that, across the critical line, the phase transition is
of first order, at least for large values of µB , whereas at zero
chemical potential (µB = 0) the transition becomes a smooth
crossover [1]. This picture implies that there is a point in the
phase diagram, located at nonzero baryonic density, where
the first-order transition line stops (endpoint). On the basis
of general considerations, this endpoint is characterized by a
second-order phase transition and it becomes a distinct prop-
erty of strongly interacting matter (QCD critical endpoint).
The related critical phenomena give rise to density fluctuations
that obey appropriate power laws, specified by the critical
exponents of this transition [1,2]. This critical endpoint of
QCD matter is the remnant of the chiral phase transition and
its existence is due to the fact that light quarks acquire a small
but nonzero mass that breaks the chiral symmetry of strong
interactions explicitly [1].

Quantitatively, the power laws of QCD matter at criticality
describe the density fluctuations of zero mass σ particles
produced abundantly in a nuclear collision at the critical
point [1,2]. In particular, critical fluctuations of the σ field
[(δσ )2 ≈ 〈σ 2〉] in the transverse configuration plane, with
respect to the beam axis, are characterized by a power law at
large distances of the form [2] (δσ )2 ∼ |�x⊥|dF −2, where dF =
2(δ − 1)/(δ + 1) and δ is the isothermal critical exponent of
hot QCD matter (δ ≈ 5). Any experimental attempt to verify
this power law as a signature of the QCD critical point must rely
on the corresponding effect in momentum space in analogy to
conventional matter at criticality, where a similar power law in
configuration space leads to the spectacular observable effect
of critical opalescence [3] in momentum space (scattering of
long wavelength light). In fact, the correlator in momentum
space 〈n �pn �p+�k〉 associated with the occupation number of
sigmas in transverse momentum states obeys in the case of
critical QCD matter a power law for small |�k| of the form
〈n �pn �p+�k〉 ∼ |�k|−dF , which reflects the critical nature of density
fluctuations (of sigmas) in configuration space. The singularity
in the limit |�k| → 0 of the correlator and the associated inter-
mittency pattern provide the basic observables in the search
for measurable effects related to the critical behavior of QCD.

The sigma states in this approach are identified with
π+π− pairs of invariant mass distributed near the two-pion
threshold according to a spectral enhancement of the form

ρσ (mπ+π− ) ∼ (1 − 4m2
π

m2
π+π−

)−1/2 [4]. In this restricted domain of

the phase space, the π+π− system has the quantum numbers
of the sigma field (I = J = 0), whereas the singularity of
ρσ (mπ+π− ) at threshold is related to partial restoration of
chiral symmetry [4] as we approach the critical point in a
hadronic medium (finite temperature and baryon density).
With this prescription one expects, by studying the behavior of
π+π− pairs (near threshold) in the freeze-out states of nuclear
collisions, to be able to capture the properties of the sigma field

(order parameter) at the critical point. It is of interest to note
that the spectral function of sigma in a thermal environment
and near the two-pion threshold is based on general principles
(partial restoration of chiral symmetry) and is not affected by
the controversial issue of the σ meson (a broad resonance) in
a vacuum (T = 0, ρB = 0), which remains an open question
in hadronic physics [4,5].

In this work an experimental search for the QCD criti-
cal point is performed along these lines in the freeze-out
environment of nuclear collisions at the CERN SPS. The
investigation is based on the NA49 measurements of multipion
production in central collisions at 158A GeV in a series of
systems of different sizes (p + p, C + C, Si + Si, Pb + Pb).
The motivation for this search comes from theoretical studies
suggesting that the QCD critical point is likely to be within
reach at the SPS energies [6]. Moreover, the anomalies in the
energy dependence of hadron production reported recently [7]
indicated that a first-order quark-hadron phase transition starts
in central Pb + Pb collisions at beam energies around 30A GeV
[8]. As a consequence, the second-order critical endpoint is
likely to be located in a region of lower baryon chemical
potential, which, presumably, can be reached by varying the
system size with energies close to the highest SPS energy
(158A GeV).

The observables in this search are chosen to be sensitive
to the power laws of the correlation functions that are valid
at the critical point of QCD matter. To this end we follow
the proposal in Ref. [2] where two-dimensional (2D) scaled
factorial moments of order p, Fp(M), defined in small
transverse momentum 2D cells δS (δS ∼ M−2 where M2

is the number of cells) are suggested as the most suitable
observables in the sigma mode (π+π− pairs) near the two-pion
threshold. In accordance with our previous discussion, the
counterpart in momentum space of the QCD critical power
law in configuration space is the phenomenon of intermittency
[9] with a linear spectrum of indices (critical intermittency)
Fp(M) ∼ M2φ2(p−1) (M � 1), φ2 = (δ − 1)/(δ + 1), directly
observable in the reconstructed sector of sigmas [2].

In Sec. II we describe the experiment and the pion data
sets obtained by imposing appropriate event and track cuts. In
Sec. III the method of analysis is explained with an emphasis
on the reconstruction of the σ sector near the two-pion
threshold. In particular, it is shown that the elimination of
the combinatorial background from the correlation of pion
pairs (π+π−) can be achieved to a large extent by a suitable
subtraction of the factorial moments of mixed events [2]. In
addition, Coulomb correlated π+π− pairs are excluded by
imposing appropriate kinematical cuts in the invariant mass.
In Sec. IV we apply this method to data sets from p + p,
C + C, Si + Si, Pb + Pb collisions at 158A GeV and perform
a systematic search for a power-law behavior of factorial
moments in the sigma mode. Moreover, a study is made of
the compatibility of the results with the predicted behavior
of critical QCD matter. A comparison is also performed
with conventional Monte Carlo (HIJING) and critical Monte
Carlo (CMC) predictions. Finally, in Sec. V our findings are
summarized and discussed together with the limitations of the
method and the prospects for further investigations in current
and future experiments concerning the QCD critical point.
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FIG. 1. The NA49 experimental setup.

II. EXPERIMENTAL SETUP AND PION PRODUCTION
DATA AT THE SPS

The NA49 experimental setup [10] is shown in Fig. 1. The
main detectors of the experiment are four large-volume time
projection chambers (TPC’s). Two of these, the vertex TPC’s
(VTPC-1 and VTPC-2), are located in the magnetic field of
two superconducting dipole magnets. This allows separation
of positively and negatively charged tracks and a measurement
of the particle momenta. The other two TPC’s (MTPC-L
and MTPC-R), positioned downstream of the magnets, are
optimized for precise measurement of the ionization energy
loss dE/dx, which is used for the determination of the
particle masses. Additional information on the particle masses
is provided by two time-of-flight (TOF) detector arrays that
are placed behind the MTPC’s. The centrality of the collisions
is determined by a calorimeter (VCAL), which measures the
energy of the projectile spectators. To cover only the spectator
region, the geometrical acceptance of the VCAL was adjusted
by a proper setting of a collimator (COLL) [10,11]. The beam
position detectors (BPD-1, BPD-2, and BPD-3) are used to
determine the x and y coordinates of each beam particle at the
target. Alternatively, the main vertex position is reconstructed
as the common intersection point of reconstructed tracks. A
detailed description of the NA49 setup and tracking software
can be found in Ref. [10].

The targets are C (561 mg/cm2) and Si (1170 mg/cm2)
disks and a Pb (224 mg/cm2) foil for ion collisions and a liquid
hydrogen cylinder (length 20 cm) for proton interactions.
They are positioned about 80 cm upstream from VTPC-1.
A total of 33,689 C + C, 17,053 Si + Si, 30,000 Pb + Pb,
and 408,708 p + p events after all necessary rejections with
respect to beam charge and vertex position were selected from
1998, 1998, 1996, and 1998 run periods, respectively. For the
Si + Si and C + C systems, all of the 10% most-central events
were used. The Pb + Pb events analyzed here were selected
as the 5% most-central ones. Further selection cuts were
applied at the track level. To reject double tracks or partially
reconstructed tracks a requirement is set on the number of
reconstructed points in the TPC’s between 20 and 235 and a
ratio of reconstructed over potential points above 0.5. Tracks
were selected in a momentum band of 3–50 GeV/c to allow
pion identification by using dE/dx information recorded in

the TPC. A cut of 1 sigma around the momentum-dependent
pion peak of the dE/dx distribution was applied, reducing the
residual background of other particle types to a very low level
(less than 0.3%). This contamination probability is estimated
through the overlap of the tails of the kaon and baryon dE/dx

distributions with the 1 sigma region around the peak of the
pion dE/dx distribution.

III. OPTIMAL RECONSTRUCTION OF THE π+π−

CRITICAL SECTOR USING CMC SIMULATIONS

The guideline for the development of an efficient algorithm
for the reconstruction of the sigma sector and its density fluc-
tuations is obtained through the analysis of events generated
by the critical Monte Carlo (CMC) code [2]. The sigma sector
of the CMC events is characterized by self-similar density
fluctuations corresponding to a fractal set with dimension
Df = 2/3 in transverse momentum space. These fluctuations
are not transferred to the daughter pions directly due to decay
kinematics. Using the fact that the critical sigma sector as
well as its geometrical properties are known in the CMC
events one has a measure for the efficiency of a reconstruction
algorithm using the observed momenta of pions of opposite
charge (π+, π−). In such a scheme the direct observation of
the critical sigmas is not possible as they are hidden in a large
background of π+π− pairs, formed from pions originating
from two different sigmas. However, even if the sigma itself
is not observable its self-similar fluctuations in the isoscalar
sector of pions can be revealed by using a suitable algorithm
which was developed and extensively described in Ref. [2]. Its
basic steps are summarized in the following:

(i) For each event in a given data set, consisting of
identified positive and negative pions, all possible pairs
π+π− with invariant mass in a small kinematical
window of size �ε = ε2 − ε1 above the two-pion
threshold are formed

(2mπ + ε1)2 � (pπ+ + pπ−)2 � (2mπ + ε2)2, (1)

with εi 	 2mπ, i = 1, 2. The sum of the momenta of
π+ and π−, constituting a pair, determines the momen-
tum of the corresponding dipion �pππ = �pπ+ + �pπ− .
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The parameters ε1, ε2 in Eq. (1) can be used to displace
the kinematical window of analysis along the dipion
invariant-mass axis as well as to modify its size. Such
a displacement can be useful to avoid the presence of
Coulomb correlations in the considered data set. In fact
if ε1 fulfils the constraint ε1 >∼ 5 MeV (Qinv >∼ 53 MeV)
the domain of Coulomb correlated π+π− pairs is
excluded from the considered kinematical window in
the reconstructed dipion sector [12]. After this filtering
procedure, only π+π− pairs satisfying the condition of
Eq. (1) are retained for further analysis.

(ii) The pion pairs produced from the previous step are
used to analyze the density fluctuations in the isoscalar
sector, employing as a suitable tool the 2D transverse
momentum factorial moments [9]

Fp(M) =
〈

1
M2

∑M2

i=1ni(ni − 1) · · · (ni − p + 1)
〉

〈
1

M2

∑M2

i=1ni

〉p , (2)

with M2 the number of cells in transverse momentum
space and ni the number of reconstructed dipions in the
ith cell. A power-law dependence F2 ∼ (M2)s2 for large
M (s2 is the corresponding intermittency exponent)
indicates the presence of self-similar fluctuations in
transverse momenta. However, before judging the
power-law behavior of the factorial moments one has to
eliminate the effect of noncritical dipions present in the
events (step i) as a result of combinatorial background
(see step iii).

(iii) The second factorial moment calculated in step ii is
built by the density-density correlation between any
two dipions (π+π−) consisting both of critical sigmas
(critical dipions) and noncritical dipions. The domi-
nant background in F2(M) consists of density-density
correlations between two noncritical dipions and must
be subtracted to reveal the self-similar correlations
between two critical dipions, if they exist. Practically,
to achieve this subtraction, we assume that the number
of dipions ni in the ith transverse momentum space cell
occurring in Eq. (2) is decomposed in signal nσ,i (crit-
ical sigmas) and background nb,i (noncritical dipions),
which are (approximately) statistically independent

ni = nσ,i + nb,i

〈ni(ni − 1)〉 = 〈nσ,i(nσ,i − 1)〉 + 〈nb,i(nb,i − 1)〉
+ 2〈nσ,inb,i〉 (3)

〈nσ,inb,i〉 ≈ 〈nσ,i〉〈nb,i〉,

Inserting Eq. (3) in Eq. (2) and assuming further that the
background is efficiently simulated by mixed events we
obtain the following formula for the subtracted factorial
moment �F2

�F2(M) = F2(M) − x2
MF

(m)
2 (M) − 2xM (1 − xM );

(4)

xM = 〈n(m)〉M
〈n〉M ,

where F
(m)
2 (M) is the second factorial moment in

transverse momentum space calculated using dipions
originating from mixed events while 〈n〉M and 〈n(m)〉M
are the mean numbers of reconstructed dipions in a
cell obtained from data and mixed events, respectively.
In �F2 a large part of the noncritical dipions are
expected to be eliminated and the fluctuations carried
by the critical π+π− pairs can be revealed to a
large extent. Therefore in the following analysis we
will exclusively use the correlator in Eq. (4) in our
search for critical fluctuations. For the simulated CMC
events or for an A + A system freezing out exactly
at the critical point, �F2 is expected to possess a
power-law behavior: �F2 ∼ (M2)φ2 with the critical
index φ2 = 2/3 determined by the universality class
of the transition [2]. It must be noted that the effect
we are looking for is associated with small momentum
scales. Therefore we perform the intermittency analysis
using for the number of cells the condition M2 � 2000.
In this way we avoid in real data the influence of
possible structures at large momentum scales on the
determination of the critical index φ2. In practice, φ2

is obtained through a power-law fit of �F2 while
the quality parameters χ2 and R2 are used to verify
its validity1. The resulting values χ2/dof < 1 (dof =
number of degrees of freedom) and R2 approaching 1
indicate that the dependence of �F2 on M2 is consistent
with a power-law behavior. The proposed subtraction
method is an approximate one, its validity is discussed
in the following based on the results of the Critical
Monte Carlo.

(iv) It is known in the literature that the intermittency ex-
ponents are sensitive to the multiplicity of the analyzed
events [14]. As a consequence, to compare the results of
intermittency analysis in systems having different sizes
A, and therefore different charged pion multiplicity, we
have to remove this bias. This is achieved if the mean
multiplicity of reconstructed dipions is, as closely as
possible, the same for the various systems. To this
end one should tune appropriately the size of the
kinematical window in Eq. (1). One can show [2]
that when the mean number of reconstructed dipions
decreases the relative weight of critical to noncritical
dipions in the reconstructed events increases. However,
decreasing the multiplicity, in general, worsens the
statistics and an optimization with respect to the choice
of �ε = ε2 − ε1 in Eq. (1) is in order depending on
the particular data set considered. This optimization
procedure has also to take into account the limited ex-
perimental invariant-mass resolution δm which restricts
the kinematical window �ε accordingly (�ε > δm).

1The coefficient of determination R2 is defined through [13]

R2 = (〈yỹ〉 − 〈y〉〈ỹ〉)2

(〈y2〉 − 〈y〉2)(〈ỹ2〉 − 〈ỹ〉2)
,

where y are the experimentally observed values for a given observable
Y while ỹ are the corresponding values of the fitting function.
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FIG. 2. (Color online) (a) The spec-
tral density of sigmas at the critical point
according to Ref. [4] and (b) the corre-
sponding dipion invariant-mass distribu-
tion resulting from reconstruction using
simulated CMC events. In (c) we show the
second factorial moments F2 (full circles)
and F

(m)
2 (open circles) in transverse mo-

mentum space of the CMC dipion sector
using dipions with invariant mass in the
kinematical window [280, 280.6] MeV
(optimal reconstruction of critical fluc-
tuations) and in (d) we show the corre-
sponding subtracted moment �F2. The
solid line is the result of the power-law
fit leading to φ2 = 0.67 ± 0.01.

(v) The critical sigmas, as explained in the Introduction,
are expected to have an invariant-mass distribution
peaked at the two-pion threshold. Since the number
of critical sigmas within the kinematical domain of
Eq. (1) is crucial for the efficient reconstruction of the
power-law discussed previously, one has to look for
an interval with enhanced content in critical sigmas,
scanning for this purpose an extended kinematical
range of dipion invariant mass. This is achieved by
varying ε1 in Eq. (1). To suppress the influence of other
hadronic resonances one should restrict the position of
the kinematical window to a narrow region just above
the two-pion threshold. A safe choice would be, for
example, ε2 � 70 MeV [15].

The efficiency of the above algorithm can be tested by
applying it to data sets consisting of CMC critical events. In
this case, the observable pionic sector is produced through
the decay of the critical sigmas, generated by the CMC
code, into pions. At this point we need to incorporate in
the CMC, along with the universal power laws, the fact
that the σ activity just above the two-pion threshold is
associated with the partial restoration of chiral symmetry as
the system approaches the critical point [4]. In particular,
the π+π− invariant-mass distribution follows a characteristic
spectral enhancement in the σ mode [4] at the 2mπ threshold,

ρσ (mπ+π− ) ∼ (1 − 4m2
π

m2
π+π−

)−1/2, which plays a crucial role in

the reconstruction of self-consistent critical σ correlations in
our treatment.

In Figs. 2(a) through 2(d) we illustrate how the previous
spectrum leads to the reconstruction of the critical index φ2

in the immediate neighborhood of the 2mπ threshold. It is
seen that although the spike in the invariant-mass spectrum
of the sima [Fig. 2(a)] is not observable in the reconstructed
dipion sector [Fig. 2(b)], owing to combinatorics and finite
statistics, the fluctuations of the underlying critical sigmas can
be revealed by intermittency analysis in transverse momentum

space if the invariant-mass window of the reconstructed π+π−
pairs is chosen to be located close to the 2mπ threshold
[Figs. 2(c) and 2(d)]. In Fig. 2(c) we present the second
factorial moments F2 (full circles) and F

(m)
2 (open circles)

in transverse momentum space of reconstructed dipions in the
case of optimal reconstruction of critical fluctuations using
in Eq. (1) the kinematical window [280, 280.6] MeV. The
mean multiplicity of reconstructed dipions in this interval is
1.6. The subtracted moment �F2 is shown in Fig. 2(d). The
solid line is the result of the power-law fit. The reconstruction
of the critical fluctuations measured through φ2 leads to the
theoretically predicted value (φ2 = 0.67 ± 0.01) with R2 = 1
(χ2/d of ≈0.4).

We also explored how the results of the analysis change
as we get off the optimal scenario by changing the location
or the size of the dipion invariant-mass window used in the
reconstruction as well as by contaminating the ensemble of
pions originating from the decay of critical sigmas with pions
produced from a random source. The results of this analysis are
shown in Figs. 3(a) through 3(d). More specifically in Fig. 3(a)
we show the decrease of the φ2 value as well as the reduction of
the quality of the corresponding power-law fit (increasing error
bars) when the location of the kinematical window used in the
analysis is placed at increasing distance from the two-pion
threshold. Each window used in Fig. 3(a) has an appropriate
size, varying in the range [0.6, 1] MeV, so that the correspond-
ing mean number of pions is 〈nπ+π−〉�ε ≈ 2. For the decay of
the sigmas into pions the spectral density shown in Fig. 2(a) is
used. The vertical solid line at 285 MeV is drawn to indicate
the dipion invariant mass value below which the Coulomb
correlations are strong. In Fig. 3(b) we show the correlator
�F2(M) for the dipion invariant mass window [285, 286] MeV
in double logarithmic scale. The dashed line indicates the
associated linear fit used for the estimation of φ2. To determine
the dependence of the results of the fluctuation analysis on the
size of the kinematical window we calculated φ2 employing in
the reconstruction dipion invariant-mass windows [280 MeV,
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FIG. 3. (Color online) The results of an analysis of simulated CMC events are presented. In (a) we show the φ2 values calculated using
nonoverlapping dipion invariant-mass windows (with 〈nπ+π−〉 ≈ 2) located at an increasing distance from the two-pion threshold. The vertical
line at 285 MeV indicates the upper limit of the dipion invariant mass region affected by Coulomb correlations. In (b) the log-log plot of the
correlator �F2(M) for CMC events is shown, calculated in the invariant-mass window [285, 286] MeV. The dashed line indicates the result
of the linear fit in the range M2 ∈ [2000, 22500]. In (c) we show the dependence of φ2 on �ε using for the analysis dipion invariant-mass
windows [280 MeV, 280 MeV + �ε] with �ε increasing from 1 to 50 MeV. Two different ensembles of CMC events with 〈nσ 〉 ≈ 31 (full
circles) and 〈nσ 〉 ≈ 18 (stars) were analyzed. Finally in (d) we plot the φ2 value at threshold calculated using an ensemble of 15,000 CMC
events contaminated with random pions as a function of their percentage.

280 MeV +�ε] with increasing size �ε. The exact profile
of this dependence is expected to be sensitive to the mean
multiplicity of initial critical sigmas that decay into pions
forming the ensemble of CMC events. When the mean number
of initial sigmas gets smaller, the corresponding combinatorial
background (noncritical dipions) decreases as well. Since the
number of noncritical dipions 〈nb〉 depends quadratically on
the mean number of decaying sigmas 〈nσ 〉 the relative weight
〈nσ 〉
〈nb〉 increases for decreasing 〈nσ 〉. This behavior is illustrated
in Fig. 3(c) where the dependence of φ2 on �ε is displayed
for two ensembles of CMC events differing in the mean mul-
tiplicity of initial critical sigmas [〈nσ 〉 ≈ 31 (full circles) and
〈nσ 〉 ≈ 18 (stars)]. For both sets φ2 decreases with increasing
�ε, however, when 〈nσ 〉 is smaller the decrease is significantly
slower. It must be noted that the quality of the power-law
fits remains very good (R2 ≈ 0.98) even for �ε ≈ 50 MeV
and therefore the associated errors δφ2 are small. Finally,
we examined the influence of random pions not originating
from the decay of critical sigmas on the obtained φ2 value. In
Fig. 3(d) we present the results for φ2, calculated at threshold
using the dipion invariant-mass window [280, 281] MeV, as
a function of the percentage of random pions per event in
the considered ensemble. We observe that the variation of φ2

is relatively slow and beyond 80% φ2 drops rapidly to zero.
In the same figure it is shown that up to 20% background,

the obtained critical index remains at the level of the QCD
prediction. This last observation indicates also the limitations
of the proposed subtraction method based on the correlator
�F2 [Eq. (4)]. Finally it is of interest to note that in the actual
system of π+π− pairs at threshold, weakly correlated pions of
opposite charge originate mainly from the I = 2 (isotensor)
channel and form a negligible background of the sigma
component [5,15]. As a result we expect a small percentage
of uncorrelated (weakly correlated) pions as we approach
the critical point. This admixture, however, does not affect
the extraction of the critical index φ2 from the experimental
data [Fig. 3(d)].

In our calculations we used an ensemble of 15,000 CMC
events with mean critical sigma multiplicity 〈nσ 〉 ≈ 31 leading
after the decay to 〈π+〉 ≈ 20 with the exception of the analysis
shown in Fig. 3(c), where we used in addition an ensemble
of 15,000 CMC events with mean critical sigma multiplicity
〈nσ 〉 ≈ 18. A conclusion drawn from this study is that moving
the π+π−-mass interval away from the mass of the critical
sigma enhancement or increasing its size clearly decreases the
fitted value of φ2. This behavior is attributed to the increasing
contributions from combinatorial pair background. In addition
the φ2 value decreases and the quality of the power-law fit is
reduced if the pion sector is highly contaminated by random
pions.
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It is of interest to note here that, when the distance of the
freeze-out state from the critical point increases, the spike in
Fig. 2(a) is transformed to a smooth maximum located at an
increasing distance away from the two-pion threshold [4]. Our
experience from the analysis of CMC data suggests that, in this
case, the results of the fluctuation analysis in the reconstructed
dipion sector should be characterized by three effects signaling
the departure from the critical point:

(i) A decrease of the maximum φ2 value,
(ii) a displacement of the location of this maximum to

invariant-mass values greater than the two-pion thresh-
old, and

(iii) a reduction of the quality of the power-law fits of �F2

(larger χ2/dof, smaller R2).

The CMC data do not incorporate Coulomb correlations
between charged pions and therefore no lower limit in the
value of ε1 in Eq. (1) is necessary. However, in the analysis of
a real system one has to take the constraint ε1 � 5 MeV into
account. Based on the results of the sigma reconstruction in
the CMC events [Fig. 3(a)], we expect that the signature of
the critical sigma correlations is a global maximum in φ2 as
a function of mπ+π− the location of which tends toward 2mπ

with its value approaching the QCD prediction φ2 = 2/3. In
the search for this maximum one has also to verify the quality
of the power-law behavior. Having as a guide the experience
gained by the reconstruction of the critical sigma sector in the
CMC events, we will present in the next section the results of
a similar analysis applied to the four SPS data sets described
previously.

IV. RESULTS OF THE DATA ANALYSIS AT THE SPS

The algorithm described in Sec. III can be directly applied to
the A + A data sets (A = p, C, Si, Pb) measured at 158A GeV.
The results of this analysis are presented step-by-step in
the following. For each system A we first determine the
size �ε of the kinematical window in Eq. (1) to achieve
an optimal mean multiplicity of dipions in the considered
domain allowing at the same time for sufficient statistics.
It turns out that 〈nπ+π−〉�ε ≈ 4 is a good choice leading to
small statistical fluctuations in the calculated φ2 values for
the C + C and Si + Si systems. To achieve this multiplicity
in the p + p system one has to choose a large mππ mass
window. However, to obtain this multiplicity value in the
Pb + Pb system one has to decrease �ε below the experimental
invariant-mass resolution δε of the NA49 detector. This is seen
in Fig. 4 where the functions �ε(mπ+π− ) for 〈nπ+π−〉�ε = 4
are presented for the systems C + C (crosses), Si + Si (full
circles), and Pb + Pb (open triangles). In the same plot the
solid line displays the experimental invariant-mass resolution
δε as a function of the dipion invariant mass mπ+π− as-
suming constant momentum transfer resolution δQ ≈ 5 MeV
(where Q =

√
−(pπ+ − pπ−)2 for a pair of oppositely charged

pions).
It is obvious that the analysis is meaningful only as long

as �ε(mππ ) is larger than δε(mππ ). This constraint does not
affect the C + C system, while it restricts the region of analysis

FIG. 4. The functions �ε(mππ ) corresponding to 〈nπ+π−〉�ε ≈ 4
for the systems C + C (crosses), Si + Si (full circles), and Pb + Pb
(open triangles). For comparison, the line δε(mππ ) corresponding
to the NA49 experimental resolution of the momentum transfer
δQ ≈ 5 MeV is also shown.

for Si + Si to the domain [285, 320] MeV. For the Pb + Pb
system it is impossible to satisfy the constraint �ε > δε for
〈nπ+π−〉�ε ≈ 4. Thus, in this case one can only use �ε values
which are larger than δε.

The fluctuation analysis of the four SPS systems can be
summarized as follows:

(i) For the p + p system we considered a single mππ mass
window with ε1 = 5 MeV and �ε = 290 MeV (much
larger than δε) leading to 〈nπ+π−〉�ε ≈ 4. The index φ2

is found to be close to zero with R2 ≈ 0 indicating
the absence of power-law sigma correlations in the
considered kinematical region.

(ii) In C + C data the region [285, 350] MeV was covered
using nonoverlapping mass intervals of varying size
to achieve 〈nπ+π−〉�ε ≈ 4 within each interval and the
corresponding φ2 is calculated. To scan completely
the considered kinematical region we used three dif-
ferent sets of nonoverlapping invariant-mass intervals
differing in the starting ε1 value: ε1 = 5 MeV (set 1),
ε1 = 15 MeV (set 2), and ε1 = 25 MeV (set 3). It turns
out that also in the C + C system the calculated index φ2

is around zero becoming also slightly negative in some
invariant-mass intervals [see Fig. 6(a)]. The dependence
on the location of the invariant-mass window used in
the analysis is weak and the quality of the power-law
fits poor [R2 → 0, see Fig. 6(c)]. No obvious maximum
of φ2 occurs in the considered region. In fact, for C + C
it is possible to perform the intermittency analysis
using smaller invariant-mass intervals to approach
the condition of optimal multiplicity 〈nπ+π−〉�ε ≈ 2
for the suppression of the combinatorial background
[2]. We also performed this analysis in the region
[285, 320] MeV and the results remained practically
unchanged. The largest value of φ2 was found to be
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FIG. 5. The invariant-mass distribu-
tion for π+π− pairs obtained from the
(a) p + p, (b) C + C, (c) Si + Si, and
(d) Pb + Pb NA49 data at maximum SPS
energy.

φ2 = 0.02 ± 0.02 in the interval [285, 290] MeV with
R2 ≈ 0.01. Thus, the C + C system shows no signature
of critical transverse momentum fluctuations in the
sigma-sector according to our analysis.

(iii) For the Si + Si system the dipion invariant-mass region
([285, 320] MeV) is covered using nonoverlapping
intervals of varying size, as in the case of C + C, to
achieve 〈nπ+π−〉�ε ≈ 4. Similarly to the C + C case,
we use three different sets of invariant-mass intervals
differing in the initial ε1 value to achieve a complete
scan of the aforementioned kinematical region: ε1 =
5 MeV (set 1), ε1 = 7 MeV (set 2), and ε1 = 8.5 MeV
(set 3). A clear maximum of φ2 at mπ+π− ≈ 302 MeV
is here observed [see Figs. 6(b) and 6(d)] leading to

φ2,max ≈ 0.33 ± 0.04 (χ2/dof ≈ 0.3 and R2 ≈ 0.71).
Thus, Si + Si shows properties characterizing a system
freezing out at a relatively small distance from the
critical point such that remnants of critical fluctuations
are present in the transverse momenta of the produced
pions. In fact the location of the maximum is close to
the two-pion threshold, its value φ2,max is large and the
quality of the corresponding power-law fit, measured
through R2, is good.

(iv) Finally, the analysis of the Pb + Pb system was
restricted to the interval [285, 286] MeV using �ε =
1 MeV for ε1 = 5 MeV leading to 〈nπ+π−〉�ε ≈ 20.
The corresponding experimental resolution of the di-
pion invariant mass in this region is δε ≈ 0.93 MeV.

FIG. 6. (Color online) The function
φ2(mππ ) (a) for the C + C system and
(b) for the Si + Si system. The R2 values
of the corresponding power-law fits are
displayed in (c) and (d), respectively.
The errors here are determined by the
fit. The different symbols are used to
indicate the three different sets of dip-
ion invariant-mass intervals used in the
analysis as described in the text.
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The critical index φ2 is found vanishingly small (φ2 ≈
0.04) with a fit error of δφ2 ≈ 0.02, and R2 ≈ 0.07.
To clarify the role of high multiplicity near threshold
we performed a CMC simulation using an ensemble
of 1500 events with 〈nσ 〉 ≈ 250 in two intervals of
the invariant mass: (a) at the 2mπ threshold where
the singularity of the σ enhancement prevails, taking
〈nπ+π−〉 ≈ 29 in the mπ+π− window [280, 280.6] MeV.
We found a pattern close to the critical one with
φ2 = 0.47 ± 0.01, R2 = 1.00 which is robust against
changes of the average multiplicity 〈nπ+π−〉 and (b) in
the nearby mπ+π− interval [285, 285.3] MeV where the
actual analysis of the experimental data for Pb + Pb
was performed, taking 〈nπ+π−〉�ε ≈ 38. We found a
noncritical pattern with φ2 ≈ 0.07 ± 0.01, comparable
to the value measured in the previous analysis for
Pb + Pb. This drastic change in the CMC result is
due to the high multiplicity of noncritical π+π− pairs
in windows of invariant mass at a distance from the
singularity (σ enhancement) at threshold. However, the
correlator �F2 of the CMC system remains close to
a power law (R2 ≈ 0.93) in contrast to the situation
in Pb + Pb (R2 ≈ 0). The conclusion drawn from
this study using CMC events is that in large systems
the reconstruction of critical fluctuations in the dipion
sector seems not possible with our method.

In Figs. 5(a) through 5(d) we show the dipion (π+π−
pairs) invariant-mass distributions with a characteristic smooth
maximum for all the A + A systems we analyzed. The
maximum of the distribution for C + C is located at mπ+π− ≈
421 MeV while for Si + Si it lies at mπ+π− ≈ 386 MeV. Apart
from this slight displacement of the maximum of the dipion
invariant-mass distribution toward the two-pion threshold for
Si + Si, the plots are similar to that of Fig. 2(b) obtained from
CMC events. As expected, the reconstructed invariant-mass
distribution alone cannot reveal the underlying activity of
critical sigmas in the freeze-out state. Obviously the study
of fluctuations is a necessary tool for this purpose.

The detailed results of the search for critical fluctuations
in the C + C and Si + Si systems are presented in
Figs. 6(a) through 6(d). In particular, Fig. 6(a) shows φ2

for C + C in the kinematical range [285, 350] MeV while
Fig. 6(b) shows the corresponding plot for Si + Si in
the kinematical range [285, 320] MeV. One can clearly see
the absence of power-law fluctuations in C + C for the entire
range of analysis and the formation of a pronounced maximum
with φ2,max ≈ 0.35 located at mπ+π− ≈ 302 MeV in Si + Si.
The quality of the power-law fits in this analysis is presented
in Figs. 6(c) (for C + C system) and 6(d) (for Si + Si system)
where we plot the corresponding R2 values. It is seen that
in the C + C system there is no mπ+π− region where the
correlator �F2(M) is close to a power law since all the
R2 values are found to be small. However, in the Si + Si
system there is a peak in R2 at the same position as in φ2

(mπ+π− ≈ 302 MeV) with a value (R2
max ≈ 0.7) indicating that

in this invariant-mass window the correlator is well described
by a power law. The form of the factorial moments in transverse
momentum space for Si + Si both for the real data as well as

FIG. 7. (Color online) The second factorial moment F2 for Si + Si
data (solid squares) and the corresponding mixed events (crosses)
obtained by intermittency analysis in three different invariant-mass
intervals: (a) [296.4, 297.2] MeV, (b) [302.1, 305.1] MeV, and
(c) [312.7, 315.4] MeV. The corresponding subtracted moments �F2

are shown in (d), (e), and (f), respectively.

for the mixed events at the maximum and at a distance (below
or above) from it are shown in the left column of Fig. 7. The
corresponding correlator �F2 is presented in the right column.
In the region of the maximum one can clearly distinguish F2

of the data from F2 of the mixed events. However, when the
interval of analysis lies at a distance from the maximum then
the values of F2 for the data overlap with those of F2 for
mixed events. As a consequence, the calculated value of φ2

decreases and the quality of the power-law fits is significantly
reduced. A possible dependence of the obtained results for
φ2 on the set of mixed events used for the background
subtraction is suppressed by averaging in all the calculations
of �F2 over ten sets of mixed events generated using different
sequences of random numbers. To avoid systematic biases
adequate two-track and momentum resolution are required.
The effects of momentum resolution were investigated by
smearing the measured track momenta by the upper limit of
the momentum uncertainty of �p

p2 ≈ 7 × 10−4 (GeV/c)−1 and
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FIG. 8. (Color online) The second factorial moment in transverse
momentum space for (a) p + p (window of analysis [280, 570] MeV),
(b) C + C (window of analysis [285, 314] MeV), (c) Si + Si
(window of analysis [300.9, 304] MeV), and (d) Pb + Pb (window
of analysis [285, 286] MeV) systems. The full triangles represent the
moments of NA49 data while the open triangles the moments for the
corresponding mixed events.

then recalculating the correlator �F2 in the mass window
[302.1, 305.1] MeV. No significant change of either �F2 or φ2

was observed. Possible effects of limited two-track resolution
were investigated as follows. Distributions of average track
multiplicities (cell occupancies) in dependence of the cell
number M2 were computed for both real and mixed events.
The ratio of these distributions was found to be independent
of M2. In particular, there was no decrease at the largest M2

(smallest phase space cells) used in the analysis demonstrating
fully sufficient two-track resolution.

To test the validity of the error attached by the fit to the
value of φ2 we subdivided the C + C and Si + Si data each
into four subsets with an almost equal number of events. As
the uncertainty estimate of φ2 for the full data samples we
take half the spread of the φ2 values determined for the four
independent subsamples. It turns out that this estimate is close
to the error given by the fit for φ2 from the full data samples.
We observe that the worsening of the statistics has an impact

on the quality of the power-law fits, but retains the signature
of the maximum in the Si + Si system.

For a complete presentation of the performed reconstruction
analysis we show in Figs. 8(a) through 8(d) the factorial
moments of the four considered SPS systems. For Si + Si
we show the moment (full triangles) calculated in the dipion
invariant-mass window for which φ2 is maximized while for
the C + C system we show the moment for the invariant mass
window located as close as possible to the two-pion threshold
(mπ+π− ∈ [285, 314] MeV). In the same plot we also display
the second moments for the corresponding mixed events (open
triangles). In addition in Figs. 9(a) through 9(d) we give the
subtracted moments �F2.

In Fig. 10 the dependence of φ2 on the size A of the
considered system is illustrated. The horizontal straight line at
φ2 = 2/3 is drawn to indicate the critical QCD prediction [2].
In addition we show the line φ2 = 0 to guide the eye. The
shaded region in Fig. 10 indicates the A values for which the
algorithm of reconstruction described in Sec. III fails to reveal,
even partially, existing critical fluctuations without entering
into the Coulomb region (mπ+π− � 285 MeV). The limiting
value A = 82 is determined using CMC simulated events. As
previously described, the errors are determined by the spread
of the φ2 values calculated after subdivision of the entire event
ensemble in four equally large subsets. We do not include in
the plot the result for the Pb + Pb system since A > 82 and also
because the actual measurements, in this case, cannot fulfill
the constraint of mean dipion multiplicity, 〈nπ+π−〉 ≈ 4.

Finally in Figs. 11(a), 11(b), and 11(c) we present a
comparison of �F2 for Si + Si (a) with the corresponding
moments in CMC (b) and HIJING (c). The analysis for HIJING
was made using the same detector acceptance and mππ mass
windows as employed for the NA49 data. The CMC result
is obtained from the reconstruction analysis in the dipion
invariant-mass window [280, 280.6] MeV leading to a mean
dipion multiplicity of 1.6 and optimal reconstruction of critical
fluctuations (φ2 = 0.67 ± 0.01 and R2 = 1). The quality of the
power-law fit and the slope for the NA49 data show a similar
behavior with the CMC events and deviate significantly from
the behavior found for the HIJING data where no reasonable
power-law fit gets possible since the corresponding R2 value
tends to zero (φ2 = 0.02 ± 0.09 with R2 = 0.002). Contrary
to Si + Si, the fluctuations in the C + C NA49 system, as
shown in Figs. 11(d) and 11(e), are comparable with those in
the HIJING events (φ2 = −0.003 ± 0.03 with R2 = 0.01).

V. DISCUSSION AND CONCLUSION

In this work the behavior of pion pairs (π+π−) produced
near the two-pion threshold in nuclear collisions at the
CERN SPS is investigated. The motivation for such a study
originates from the fact that the previously mentioned system
(π+π−,mπ+π− >∼ 2mπ ) has a strong component in the σ

mode [4,5] (scalar and isoscalar) and therefore it is sensitive
to the order parameter of the QCD critical point [1]. As a
consequence, it develops unconventional density fluctuations
with a power-law behavior, characteristic of a second-order
phase transition, provided that the particle system produced
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FIG. 9. The combinatorial back-
ground subtracted moments �F2 in trans-
verse momentum space for (a) p + p,
(b) C + C, (c) Si + Si, and (d) Pb + Pb
systems.

in these collisions freezes out close to the critical endpoint in
the QCD phase diagram [1,2]. Using critical events generated
by the CMC algorithm, it is shown that a global maximum
of the suitably defined critical index φ2 appears at a value
approaching the QCD prediction (φ2 ≈ 2/3) when moving
toward the two-pion threshold. This behavior constitutes a
signature for the existence of the critical point and the partial
restoration of chiral symmetry.

To search for such a signature we analyzed π+π− pairs
from p + p, C + C, Si + Si, and Pb + Pb collisions at the
maximum SPS energy of 158A GeV. We chose scaled factorial
moments of second order in the transverse momentum plane
and in the σ mode as the basic observables in which the power

FIG. 10. (Color online) The fitted values of φ2 for the A + A
systems (A = p, C, Si) studied by NA49 as a function of the size A.
All three systems obey 〈nπ+π−〉 ≈ 4 in the corresponding window of
analysis. The upper horizontal line presents the theoretically expected
value (2/3) for a system freezing out at the QCD critical point while
the lower horizontal line is at φ2 = 0. The shaded region indicates
the A values for which the reconstruction algorithm of Sec. III is
not conclusive. The shown error bars were obtained by analyzing
subsamples (see text).

laws of critical QCD fluctuations can be revealed. In particular,
the exponent φ2 of the power-law behavior in small domains
of the momentum space (intermittency) provides us with a
signature of critical fluctuations when compared to the QCD
value φ2 = 2/3. The results of our analysis are summarized as
follows:

(i) Large power-law fluctuations, measured through the
index φ2 of factorial moments are developed in the
system Si + Si at 158A GeV (φ2 ≈ 0.35).

(ii) The observed fluctuations may have an unconventional
origin as suggested by comparison with the correspond-
ing moments in HIJING and CMC.

(iii) In Pb + Pb collisions, the high multiplicity of the
produced pions combined with the restrictions imposed
by the necessity to exclude the Coulomb correlations
and the resolution of the experiment decrease the
sensitivity to the sigma fluctuations near the two-pion
threshold. Whether the vanishingly small value of φ2

found in this case is due to the effect of high multiplicity
or to a genuine noncritical nature of the freeze-out state
of the system cannot be resolved without penetrating
the Coulomb region to reach the 2mπ threshold.

In conclusion, a sizable effect of π+π− pair fluctuations
with critical characteristics was found in Si + Si collisions
at 158A GeV (the chemical freeze-out parameters extracted
using the hadron gas model [16] for this reaction are µB ≈
253 MeV, T ≈ 163 MeV). This effect may be associated with
the presence of the QCD critical point in the wider SPS region.
Complementary studies in the baryonic sector are necessary
to clarify the picture [17] and overcome the limitations and
uncertainties still remaining in the reconstruction of the critical
σ mode.

The overall outcome of this investigation combined with
theoretical estimates [6], based in particular on lattice QCD
at high temperature, suggest that an intensive experimental
search for the QCD critical point in the region of the phase
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FIG. 11. (Color online) The correlator �F2 corresponding to the best solution for Si + Si at 158A GeV using (a) NA49 data, (b) CMC
generated events, and (c) HIJING events. The lines display the corresponding linear fit in log-log scale. For comparison we also show
representative results for C + C at 158A GeV using (d) NA49 data and (e) HIJING events.

diagram 180 � µB � 400 MeV, 150 � T � 170 MeV is of
high interest. Such a program is proceeding both at the CERN
SPS [18] and BNL Relativistic Heavy Ion Collider (RHIC) [19]
and will hopefully strengthen the evidence for the critical point.
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