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Lecture D6 - Equations of Motion: Application Examples

In this lecture we will look at some applications of Newton’s second law, expressed in the different coordinate

systems that were introduced in lectures D3-D5. Recall that Newton’s second law

F = ma , (1)

is a vector equation which is valid for inertial observers.

In general, we will be interested in determining the motion of a particle given that we know the external

forces. Equation (1), written in terms of either velocity or position, is a differential equation. In order

to calculate the velocity and position as a function of time we will need to integrate this equation either

analytically or numerically. On the other hand, the reverse problem of computing the forces given motion is

much easier and only requires direct evaluation of (1). Is is also common to have mixed type problems, in

which we know some components of the force and some components of the acceleration. The goal is then to

determine the remaining unknown terms.

While no general rules can be given regarding the appropriate choice of a coordinate system, we note

that intrinsic coordinates are particularly useful in constrained problems, where the trajectory is known

beforehand.

Example Aircraft flying on a helix

A 10, 000 lb aircraft is descending on a cylindrical helix. The rate of descent is ż = −10ft/s, the speed is

v = 211 ft/s, and θ̇ = 3o ≈ 0.05rad/s. This is standard for gas turbine powered aircraft. We want to know

the force on the aircraft and the radius of curvature of the path.

We have,

v = ṙer + rθ̇eθ + żez = vet
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Since, r = R, ṙ = 0. Therefore, 211 =
√

(0.05R)2 + 102, or R = 4, 215 ft. For the acceleration,

a = (r̈ − rθ̇2)er + (rθ̈ + 2ṙθ̇)eθ + z̈ez = v̇et +
v2

ρ
en ,

and, considering only the non-zero terms,

a = −Rθ̇2
er =

v2

ρ
en .

We see that en = −er, and that,

a = (0.05)24, 215 = 10.54 ft/s
2

=
v2

ρ
, ρ =

211

10.54
= 4, 225 ft .

The normal force on the aircraft is

Fn = man =
10, 000

32
10.54 = 3, 273 lb ,

and finally, the lift, L, is

L = −3, 273 er + 10, 000 ez lb .

Here we see that ρ ≈ r which means that the helix is very tight.

The angle of descent α is calculated as sin α = −ż/v, or, α = −2.72o. This angle is sometimes called the

pitch of the helix.

Example Pendulum

Now, we consider a simple pendulum consisting of a mass, m, suspended from a string of length l and

negligible mass.
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We can formulate the problem in polar coordinates, and noting that r = l (constant), write for the r and θ

components,

mg cos θ − T = −mlθ̇2

−mg sin θ = mlθ̈ , (2)

where T is the tension on the string. If we restrict the motion to small oscillations, we can approximate

sin θ ≈ θ, and the θ-equation becomes

θ̈ +
g

l
θ = 0 .

Integrating we obtain the general solution,

θ(t) = C1 cos(

√

g

l
t) + C2 sin(

√

g

l
t) ,

where the constants C1 and C2 are determined by the initial conditions. Thus, if θ(0) = θmax,

θ(t) = θmax cos(

√

g

l
t) .

Example Aircraft flying a perfect loop (Hollister)

Consider an aircraft flying a perfect loop, i.e. a circle in the vertical plane. Assume that the engine thrust

exactly cancels the aerodynamic drag so that the lift and gravity are the only unbalanced forces on the

aircraft. This assumption makes the problem into the same dynamical model that we have used in the

previous example.

3



Since the lift, L, is perpendicular to the flight path, we have that the force on the aircraft, in normal and

tangential components, is

F = −mg sin θ et + (L − mg cos θ)en .

Thus,

at = v̇ = rθ̈ = −g sin θ

an =
v2

R
=

L

m
− g cos θ . (3)

Since, v dv = at ds = atR dθ = −Rg sin θ dθ. Thus, integrating,

v2 = v2
0 + 2Rg(cos θ − 1) , (4)

where v0 is the velocity at the bottom of the loop when θ = 0. To be able to go over the top we need v > 0

when θ = π. This means that we need v0 > 2
√

Rg.

Note that for v0 < 2
√

Rg, we can calculate the maximum angle the aircraft can reach, θmax. If we set v = 0

when θ = θmax, we have,

θmax = cos−1(1 − v2
0

2Rg
) .

The necessary lift, L, can be calculated as a function of θ. From (3) and (4), we have

L

m
=

v2

R
+ g cos θ =

v2
0

R
+ 3g cos θ − 2g .

We have that, in order for θ to go from 0 to π, the aircraft has to have a range of lift capability that extends

over 5g.

It turns out that most aircraft do not have this capability and consequently do not fly perfect loops.

Example Aircraft flying an “imperfect” loop (Hollister)

It is more common to fly a loop keeping the normal acceleration, an, approximately constant at, say, ng

(n ∼ 3 − 4).

Let β be the flight path angle which the velocity vector (or tangent) makes with the horizontal, and let ρ be

the radius of curvature of the path. Then,

an =
v2

ρ
= vβ̇ = ng

at = −g sin β .

From, v dv = at ds, with ds = ρdβ, we have,

v dv = atρ dβ = (−g sin β)(
v2

ng
)dβ ,

or, integrating,
n dv

v
= − sin βdβ , n ln v|vv0

= cosβ|β0 , v = v0e
−

1

n
(1−cos β) ,
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and

ρ =
v2
0

ng
e−

2

n
(1−cos β) . (5)

A sketch of this path is shown in the figure below.

PULL   UP RECOVERY

In going over the top of the imperfect loop, the aircraft does not go as high or loose as much velocity as

it does going over the perfect loop. Unlike the perfect loop case however, the aircraft does need to pull

up before, and recover after, the point of maximum altitude (see diagram). Note that the solution of this

example and the previous one would have been rather difficult using rectangular coordinates. Note also that

the form of the solution given by equation (5) is rather unusual, e.g. the radius of curvature is given as a

function of the attitude angle. A possible way to plot the trajectory starting from an initial position and

velocity would be to first determine β, and then draw a small circle segment with the appropriate ρ. After

calculating the new position, the process would be repeated to draw the entire trajectory.
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