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Measurement based quantum computation, which requires only single particle measurements on a

universal resource state to achieve the full power of quantum computing, has been recognized as one of

the most promising models for the physical realization of quantum computers. Despite considerable

progress in the past decade, it remains a great challenge to search for new universal resource states with

naturally occurring Hamiltonians and to better understand the entanglement structure of these kinds of

states. Here we show that most of the resource states currently known can be reduced to the cluster state,

the first known universal resource state, via adaptive local measurements at a constant cost. This new

quantum state reduction scheme provides simpler proofs of universality of resource states and opens up

plenty of space to the search of new resource states.
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Measurement based quantum computation (MBQC) [1],
an interesting computation model that incorporates pecu-
liar aspects in quantum mechanics such as entanglement
and measurement, achieves the full power of quantum
computing by adaptive local measurements on a resource
state. One-way quantum computing, the first MBQC
scheme, employs the now well-known cluster state [2].
The highly entangled feature of the cluster state indicates
that high entanglement is a key requirement for univer-
sality in MBQC. Although this is true in some sense [3,4],
it is also clear now that too much entanglement could
also undermine universality [5,6]. In other words,
the entanglement should be manageable in a structured
way.

As shown in the recent breakthrough made by Gross
et al. in Refs. [7,8], the matrix product state (MPS) formal-
ism [9,10] or, in higher spatial dimensions, the computa-
tional tensor networks [8,11], provides such an
infrastructure for manipulating the entanglement and
brings a new scheme of MBQC called the correlation space
quantum computation. In this framework, a lot of new
resource states beyond the cluster state are proposed.
Most of the new resource states have different properties
from the cluster state concerning, for example, local en-
tropy, the two-point correlation function, and the locality
of the Hamiltonians of which they are unique ground
states. In particular, some of the new resources are unique
ground states of more practical Hamiltonians [12,13],
thereby overcoming the major flaw of the cluster state of
not being a unique ground state of any two-body nearest-
neighbor gapped Hamiltonian [14].

Here, we introduce the concept of quantum state reduc-
tion for MBQC, and the motivation is twofold. First of all,
state reduction serves as a tool for revealing the entangle-
ment structure of universal resource states [15,16]. Similar
to the common technique to study entanglement by con-
sidering local transformations [17–19], quantum state re-
duction is also a type of local transformation tailored to
meet the nature of MBQC. We find that almost all known
resource states can be locally transformed to a cluster state
via quantum state reduction, indicating that these resource
states possess similar entanglement structure as the cluster
state.
Secondly, although the application of the MPS formal-

ism in the theory of MBQC is elegant and fruitful, the
routine for analyzing the universality of a resource state
remains a complicated procedure, including the initializa-
tion, embedding of universal rotations, the readout, and
compensation for the randomness. The quantum state re-
duction approach largely simplifies the analysis. For ex-
ample, the universality of the Affleck-Kennedy-Lieb-
Tasaki (AKLT) state [20] is now cleanly summarized in
Fig. 2. The simplicity also enables us to find new resource
states, giving the universality of two deformations of
AKLT state almost for free.
To be more precise, our state reduction is a transforma-

tion from one resource state to some other universal target
state (usually the cluster state) using local measurement
and adaptive classical control. This transformation is
named reduction as it resembles the reduction in complex-
ity theory—as long as j�i is reducible to j�i, it is in
principle no harder to construct MBQC schemes for j�i

PRL 105, 020502 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

0031-9007=10=105(2)=020502(4) 020502-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.105.020502


than for j�i. Although the resulting state may consist of a
much smaller number of particles than the state before
reduction, the cost or efficiency of the reduction, measured
by the diminution in the number of particles, is always
expected to be a constant fraction.

Matrix product states.—Following the notion in
Refs. [7,8], a matrix product state j�ni of n particles has
the following form:

j�ni ¼
Xd�1

x1;...;xn¼0

hRjA½xn� � � �A½x1�jLijx1 � � � xni: (1)

The physical dimension of each site is d, while the bond
dimension of the state defined by the size of the matrices is
�. In general, one may consider a MPS where the defining
matrices are site dependent. The matrix product form can
be obtained by a series of Schmidt decompositions [4]. The
defining matrices are usually far more important than the
boundary conditions hRj; jLi, and sometimes we will use
only the d-tuple (A½0�; . . . ; A½d� 1�) to specify a MPS. We
will ignore the effect of a local change of basis on the
physical space. For example, a state may be said to have
some MPS representation even though this is only true up
to some local unitary operations. Also for simplicity, A½x�’s
will be given up to some normalization constant, which can
be figured out from

P
xA½x�yA½x� ¼ I shown in Ref. [9].

A lot of states of particular interest in quantum infor-
mation are indeed matrix product states of small bond
dimension. The 1D cluster state, for example, is a MPS
with defining matrices (H;HZ), where H;X; Y; Z are used
to denote the Hadamard and Pauli matrices, respectively.
Another intriguing example is the AKLT state [20] first
studied in condensed matter theory. It will be shown in the
next section that it has a simple MPS representation
(I; X; Z).

The correlation space quantum computation employs
the structure of MPS as in Eq. (1). It starts with the initial
state jLi of the so-called correlation space, measures the
physical spaces sequentially, and thereby processes the
correlation space, and finally reads out the information
stored in the correlation space. Several new universal
resources for MBQC were introduced in Refs. [7,8] includ-
ing a modified AKLT state with defining matrices
(H;X; Y). Later, the original AKLT state is also shown to
be universal for MBQC [12]. Recently, the concept of
quantum wires is defined and fully characterized in
Ref. [21], which essentially gives the explicit condition
for a MPS with d ¼ � ¼ 2 to be a universal resource.
There are two normal forms of the matrices for quantum
wires. One is the ‘‘by-product normal form,’’

A½0� ¼ W=
ffiffiffi
2

p
; A½1� ¼ WSð�Þ= ffiffiffi

2
p

; (2)

and the other is the ‘‘biased normal form’’ [22],

A½0� ¼ sin�W0; A½1� ¼ cos�W0Z; (3)

where W;W0 are rotations along axes in the X-Z plane of
the Bloch sphere and Sð�Þ ¼ expð�i�Z=2Þ.

There is a higher spatial dimensional generalization of
MPS, known by the names of the computational tensor
networks [8], or the projected entangled pair state [11].
Because of limitations of space, we refer the readers to the
references above for details.
Tabular form.—For the convenience of later discussions,

we introduce a tabular form of MPS. In the tabular form,
one writes the defining matrices of a block of sites explic-
itly in a table, where each column consists of the dmatrices
of a corresponding site. The physical indexes determine a
selection of one matrix from each column, whose product
gives the correct amplitude together with the boundary
conditions hRj and jLi. A k-column tabular form therefore
corresponds to k consecutive particles in a MPS. From the
definition in Eq. (1) and the properties of MPS [9], we have
(1) for any two neighboring columns, multiplication of M
to the right of all matrices in the left column andM�1 to the
left of all matrices in the right column simultaneously does
not change the state, (2) a unitary transformation in the
physical space corresponds to linear combinations of en-
tries in the column with coefficients of the unitary, (3) mea-
surement in the computational basis corresponds to the
deletion of column entries not consistent with the mea-
sured outcome, and (4) columns of single entry can be
removed by absorbing them to a neighboring column. We
will use binary relations¼ , ’ , and� to represent equality,
local unitary equivalence, and quantum state reduction,
respectively.
As an example, Table 1 of Fig. 1 consists of a block of

two sites of the AKLT states which will be discussed in the
next section and it equals Table 2 by property (1) of the
tabular form.
Reduction of the AKLT state.—The AKLT state [20] has

become one of the prototypical states of spin systems. It
also gives an excellent example for quantum state
reduction.
As the origin of matrix product states, the AKLT state

bears a simple MPS representation with

A½0� ¼ Z; A½1� ¼ ffiffiffi
2

p j0ih1j; A½2� ¼ ffiffiffi
2

p j1ih0j: (4)

Up to a local unitary operation, the matrices of the AKLT
state can also be chosen as (X; Y; Z). In fact, any three
different matrices of the identity and the Pauli matrices will
work. For example, Fig. 1 presents the proof that (I; X; Z)
also stands for the AKLT state. In this figure, Table 2 is
obtained by adding the Y’s in between, and hence repre-
sents the same state as Table 1 by property (1) of the tabular
form; Tables 2 and 3 describe two states that are equivalent
under local unitary operations by property (2).
We now show the reduction from the AKLT state to the

1D cluster state. It is convenient to start with the (I; X; Z)
form. Two different measurements, N 1 and N 2, will be
used alternatively, whereN 1 measures fj0i; j1ig versus j2i
and N 2 measures fj0i; j2ig versus j1i. The measurements
are called success (failure) if the outcome corresponds to
the two- (one-)dimensional subspaces. Wemeasure the two
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measurements sequentially along the AKLT chain and
switch the measurement we use only when the previous
one succeeds. This simple procedure is called the alternat-
ing measurement scheme.

Table 1 in Fig. 2 denotes a possible result after the
alternating measurements on the AKLT state. More spe-
cifically, one first measures N 1 and succeeds. Next, the
measurement N 2 is used. It results in the single dimen-
sional space j1i once, and succeeds subsequently, and so
on. After renaming the physical indexes and absorbing the
X and Z in the second and fourth columns to their previous
columns, we have Table 2 in Fig. 2 by properties (4) and
(2). This is actually already a 1D cluster state by the second
line of reasoning in Fig. 2. Although we have only analyzed
a single case of possible measurement outcomes, the gen-
eral analysis follows similarly.

Families of universal states of AKLT type.—The sim-
plicity of the above analysis enables us to generalize the
same approach to a larger family of AKLT type of states.
Notice that the key property that validates the first line of
Fig. 2 is simply X2 ¼ Z2 ¼ I, and the key to the second
line is that H2 ¼ I and XH ¼ HZ. We now choose two
unitary matrices A and B such that A2 ¼ B2 ¼ I, where
A; B correspond to � rotations along na and nb on the
Bloch sphere, respectively. Let C / Aþ B be the � rota-
tion along na þ nb. We will have C2 ¼ I and AC ¼ CB.
Therefore, we can prove the following reduction similarly:

ðI; A; BÞ � ðC;CBÞ: (5)

Employing the gauge freedom of the representation of
MPS, one can always choose B to be Z and C to be
sin�X þ cos�Z, making (C;CB) a quantum wire in the
normal form of Eq. (2). Note that the 1D AKLT state is a
special case where � ¼ �=4 and that the error group hC;Bi
is isomorphic to the dihedral group for infinitely many �’s.
With the techniques of Ref. [9], one can check that the new
AKLT-type resource is always a unique ground state of a
nearest-neighbor, frustration-free Hamiltonian.

In Ref. [10], Fannes et al. considered another one-
parameter deformation of the AKLT model whose ground
state is a MPS with

A½0�¼ sin�Z; A½1�¼ cos�j0ih1j; A½2�¼ cos�j1ih0j:
We will show the universality of these states also by
reduction. First, the defining matrices can be chosen as

ðsin�Z; cos�X= ffiffiffi
2

p
; cos�Y=

ffiffiffi
2

p Þ;
up to local unitary transformation. Let �̂ be the angle that

satisfies tan�̂ ¼ ffiffiffi
2

p
tan�. The defining matrices can be

simplified to ( sin�̂I; cos�̂X; cos�̂Z), in the same way as
in Fig. 1. Using a similar alternating measurement scheme

in Fig. 2, this is further reducible to ( sin�̂H; cos�̂HZ), a
universal state in the biased normal form of Eq. (3). One
caveat is that, in this case, we cannot simply absorb the
single X and Z columns in Table 1 of Fig. 2 to neighboring
sites because of the bias. But one can always measure the
computational basis in several neighboring sites and cancel
their effects by a random walk on the Pauli group.
Reduction of quantum wires to cluster states.—We now

discuss the reduction of universal quantum wires to the
cluster state. The special case of (W;WZ) is much easier to
deal with. To transform it into (H;HZ), one can simply
implement HWy in the correlation space using the sites
beforehand. In the general case of ðW;WSð�ÞÞ, however,
one cannot succeed using projective measurement only—
the local entropy determined by � [21] can never be
increased. Yet, if the more general quantum measurement
is employed, this is again possible. It will be easier to work
with the biased normal form in this case. Suppose we want
to transform ( sin�W0; cos�W0Z) to (H;HZ). Assume that
� 2 ð0; �=4� with out loss of generality and apply on the
site a general measurement with operators

M0 ¼ j0ih0j þ tan�j1ih1j; M1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� tan2�

q
j1ih1j;

known as the filtering operation. When the outcome hap-
pens to be 0, we have changed the matrices to (W 0; W 0Z)
and can proceed as in the easy case; otherwise, we need to
undo the action of W 0Z on the correlation space and start
all over again.
Higher spatial dimensional cases.—This section inves-

tigates the idea of quantum state reduction in the case of
higher-dimensional resource states, which are necessary
for the full power of universal quantum computing.
The tricluster state, an interesting variant of the cluster

state, is proposed in Ref. [13] as a universal resource state.
It is not difficult to see that there is a reduction to cluster
state on exactly the same lattice of the tricluster state, and
we leave the details to Appendix A in Ref. [23].
For most of the known 2D resource state, a general

coupling scheme has been used to make 2D resource states
out of 1D chains as in constructing the 2D AKLT resource,
analyzing 2D weighted graph state [7,8], and weaving
quantum wires into quantum webs [21]. In this scheme,

FIG. 1 (color online). AKLT as ðI; X; ZÞ.

FIG. 2 (color online). AKLT reduced to 1D cluster.
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one can always (a) isolate several usually horizontal, 1D,
universal chains from the 2D state and (b) couple the
correlation space of two neighboring 1D chains whenever
necessary. Resources of this type can be transformed to 2D
cluster state. To see this, one first isolates 1D chain states
from it, use the reductions we already have for the 1D case
to obtain 1D cluster states, and then employ an appropriate
coupling to link the 1D cluster states into a two-
dimensional cluster state. The first two steps are obvious,
while the third step is possible as shown in Fig. 3. In this
figure, A½x�’s are defining matrices of cluster state chosen
to be A½0� ¼ jþih0j, A½1� ¼ j�ih1j, andB,C are tensors in
the notion of Refs. [7,8]

B½0� ¼ jþirh0jl � jþid; B½1� ¼ j�irh1jl � j�id;
C½0� ¼ jþirh0jl � j0iu; C½1� ¼ j�irh1jl � j1iu:

The Hadamard gates and the CZ gate j0ih0j � Iþ
j1ih1j � Z are implemented on the correlation spaces.
The right-hand side of Fig. 3 represents two nodes of
degree 3 of a cluster state.

In the weighted graph state, for example, the isolated
wire has the form HZxSz, where z depends on the out-
comes of neighboring sites [7,8]. We can measure all sites
with odd z in the 0-1 basis and the resulting state is a 1D
cluster state up to random Clifford by-product operations.
The CZ gate can be applied in the same way as in Ref. [8].
Other coupling based schemes mentioned above can be
analyzed in a similar way.

Discussions.—The method of reduction for proving uni-
versality of the MBQC resource state is applicable to other
examples that have not been covered in the previous sec-
tions. These include, for example, the modified AKLT state
(H;X; Y) proposed in Ref. [7] and the second toric code
state example in Ref. [8].

It is worth comparing the idea of reduction and that of
the ‘‘universal state preparator’’ result of Ref. [24]. A
reduction to cluster state would imply the universal prepa-
rator property of the resource. On the other hand, although
any universal preparator could in principle be transformed
to a cluster state, the transformation does not respect the
underlying lattice and may be less efficient than quantum
state reduction.

The tabular form we propose is well hinged to the
structure and properties of MPS. It simplifies the analysis
by hiding the unwanted details and provides an intuitive
way of manipulating the matrices. We have mainly inves-
tigated reductions of MPS and projected entangled pair

state resources, but the idea seems to be able to generalize
to a potentially new MBQC scheme not known yet. It is
also reasonable to believe that investigations of the reduc-
tion method will improve our understanding of both the
MBQC itself and the structure of universal resource states.
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