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ABSTRACT 
 
 

Since the 1980s, the airline industry has seen two major changes: Deregulation, which led 

to an increase in competition, and the development of revenue management systems. 

Paradoxically the revenue management models used have not incorporated many 

competitive considerations. In this thesis we study the interactions between existing airline 

revenue management systems in competitive markets. We use the Passenger Origin 

Destination Simulator (PODS) for simulations. 

 

After a review of the past research on such interactions, we develop our own model and 

use simulations to identify and measure the extent to which revenue management systems of 

competing airlines affect each other. The model introduced highlights the importance of 

spill-of-demand between airlines. We show that with current revenue management practice, 

a legacy carrier should be less sensitive than a low-cost carrier to revenue management 

competitive interactions. As compared to an equivalent monopoly, an airline oligopoly tends 

to allocate more seats to high-fare passengers and fewer seats to low-fare passengers. With 

steady demand distributions, an airline’s expected revenues are a decreasing function of the 

seat capacity allocated by its competitors to high-fare passengers. Existing revenue 

management systems react to competitor moves automatically only if a change in the seat 

allocation rule by an airline occurs over a large enough number of successive departures to 

be detected by forecasters. 

 

We then suggest how to improve revenue management based on the interactions identified. 

With steady demands, if a competitor increases (respectively decreases) its seat allocation 

for high-fare passengers, the best response to optimize revenues on the short-term is to 

decrease (respectively increase) seat allocation for high-fare passengers. We also show that 

the use of EMSRb-optimization by competitors results in a near-optimum competitive 

equilibrium, and a near-optimum cooperative equilibrium if airlines do not share revenues. 

Rarely can competitive interactions justify an airline to override the EMSRb seat-allocation 

rule to optimize revenues. Last, we introduce LOCO-based Forecast Multiplication, a 

heuristic forecast adjustment made in response to the current seat availability of the 

competitors that can increase an airline’s revenues substantially.  
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CHAPTER 1.     

INTRODUCTION 

 

In this chapter, we first introduce the background field of this thesis: airline revenue 

management.  We then define the specific problem studied by this thesis within this field: 

the reciprocal interactions between the revenue management practices of competing airlines. 

These interactions have been mostly overlooked until now, but could have a non-negligible 

effect on the performance of revenue management systems. After delimiting this problem, 

we define the objectives of the thesis, and the thesis structure that has been chosen to best 

communicate on the results of our research. We close this chapter by introducing the 

experimental tool used throughout the thesis, the Passenger Origin Destination Simulator 

(PODS), a software simulator of airline revenue management. 

 

 

1.1 Background Introduction to Airline Revenue Management 

 

The work of this thesis is set in the general field of airline revenue management. Also 

known as airline yield management, it started developing in the 1980s, following US 

airline deregulation. Since then, instead of merely selling the right to travel on a seat of the 

aircraft, airlines have been able to offer different products to their passengers, by associating 

the simple right to be on an aircraft with purchase restrictions such as a refundability of the 

ticket, a Saturday night stay at destination, the number of days in advance the ticket has to be 

bought etc. A set of purchasing restrictions, associated with a price, define what is called a 

“fare product”.  Offering a variety of fare products, each with their own price and level of 

service, allows airlines to extract more revenues from passengers, through a process of 

demand differentiation. This process cannot be considered strictly as price discrimination as 

each fare product corresponds to a different service. The objective of airline revenue 

management is to sell the right fare product to the right passenger at the right time, in order 

to optimize total revenues.  

 

Airline revenue management generally assumes that the marginal cost of boarding one 

additional passenger can be neglected compared to the incremental revenue associated with 

the sale of a ticket. Therefore even if it merely focuses on the revenue side of the airline 

profit equation, the practice of revenue management is often viewed as increasing profit 

through increasing revenues with costs remaining constant.  

 

Fig 1.1.1 shows how airlines can extract more revenues from such fare product 

differentiation instead of selling only one product at a given price P with its demand Q. Total 

revenues for the airline are represented as the surface of the rectangles under the demand 

curve. Ideally, an airline would try to get the entire area below the curve by charging each 

individual passenger his willingness to pay. Using more than one fare product better covers 

demand and extracts more revenues.  
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Fig 1.1.1 Airline fare product differentiation 

 

 

 

 

In order to optimize revenues, airline distribution, inventory control and reservation 

systems manipulate “fare classes” or “booking classes”.  A fare class groups one or more 

similar fare products. In this thesis we designate the cheap restricted classes intended for the 

flexible leisure passengers as “low fare classes” and the expensive fare classes for the 

unflexible business passengers as “high fare classes”. For each airline origin-and-

destination market, marketing departments design fare products and fare classes which 

together define a “fare structure”.  

 

In the beginning, and for effective revenue management, airlines aimed at segmenting 

demand into independent distinct subsets each looking for a specific fare product. They 

implemented fare structures where no fare classes have the same restrictions, where each 

fare class is characterized by its unique set of restrictions. Such fare structures are called 

fully-restricted fare structures. Later low-cost carriers adopted in their business model fare 

structures where all the classes have the same set of loose restrictions and differ only by their 

fare. Called unrestricted fare structure, such simplified fare structures are more popular 

among customers and thus allow low-cost carriers to encroach significantly on the market 

shares of incumbent legacy carriers. Yet unrestricted fare structures decrease the efficiency 

of revenue management systems as they make segmentation much more difficult. In order to 

keep their market shares and at the expense of short term revenues, legacy carriers have 

sometimes matched the move made by low-cost carriers towards simplified fare structures. 

They have removed some restrictions, in particular the Saturday-night-stay, so that some 

classes ended up with the same set of restrictions. Such fare structures are called semi-

restricted fare structures.  
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Fig 1.1.2 shows an example of a fully-restricted airline fare structure. The Saturday night 

stay restriction is supposed to prevent business travellers with high willingness-to-pay from 

purchasing low-fare classes. Similarly, no possibility to change flights or obtain a refund and 

the necessity to purchase the ticket a long time in advance prevents non flexible travellers 

with a high willingness-to-pay from purchasing the cheapest fares.  Fig 1.1.3 shows an 

example of semi-restricted fare structure and Fig 1.1.4 an example of unrestricted fare 

structure. 

 

 

 

 

Fig 1.1.2 A simplified example of an airline fully-restricted fare structure 

 

 

 

 

 

Fig 1.1.3  A simplified example of an airline semi-restricted fare structure 

 

 

 

 

 

Fig 1.1.4  A simplified example of an airline unrestricted fare structure 

 
Fare 

Class   

 
Fare 

Advance 

purchase 

requirement 

Saturday 

night stay 

required at 

destination 

 
Change fee 

 
Refundable 

Y $600 0 days no no yes 
B $500 7 days no no no 
M $300 14 days yes no no 
Q $200 21 days yes yes no 

 
Fare 

Class   

 
Fare 

Advance 

purchase 

requirement 

Saturday 

night stay 

required at 

destination 

 
Change fee 

 
Refundable 

Y $600 0 days no no yes 
B $500 7 days no no no 
M $300 14 days no yes no 
Q $200 21 days no yes no 

 
Fare 

Class   

 
Fare 

Advance 

purchase 

requirement 

Saturday 

night stay 

required at 

destination 

 
Change fee 

 
Refundable 

Y $600 0 days no yes no 
B $500 0 days no yes no 
M $300 0 days no yes no 

Q $200 0 days no yes no 
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Airline revenue management has combined the practices of forecasting, overbooking, fare-

class mix control and origin-destination network control to determine how many seats to 

protect for each fare class from the fare structure at any given time over the booking period 

preceding a flight.  

 

The objective of forecasting is to estimate future quantities such as passenger demand for 

fare classes or passenger price sensitivity based solely on observations from the past, which 

are essentially bookings on previous flights. These forecasted quantities are then used for the 

optimization processes of overbooking, fare class mix control and origin-destination network 

control.  

 

The objective of overbooking is to determine the total number of bookings to accept for a 

flight, larger than the actual capacity, to make up for cancellations and no-shows from 

passengers. Overbooking algorithms balance the loss of revenue associated with an empty 

seat taking-off with the cost of denying boarding to a passenger. 
 

The objective of fare class mix control is to determine how many seats to protect for each 

fare class on an aircraft. Fare class mix control aims at saving seats for the most expensive 

fare classes designed for late-booking business passengers, and make them available at the 

end of the booking period shortly before departure. The number of seats an airline chooses to 

save for specific classes is referred to as a protection level. In practice this is achieved 

through limiting the availability of seats in low fare-classes for passengers with a low 

willingness-to-pay (typically leisure passengers) who tend to be able to book earlier before 

flight departure. An airline sets booking limits for these classes. One speaks of nesting 

protection levels when protection levels overlap for successive hierarchically imbricated sets 

of classes rather than for separate individual classes. A nested protection level  is the 

minimum seat capacity that an airline wants to protect for a given class and its higher classes, 

rather than just for the given class. A nested booking limit is the maximum number of seats 

that the airline is willing to sell to a given class and its lower classes, rather than just for a 

given class. Once the total number of bookings for a fare class and its lower fare classes has 

reached the nested booking limit, the fare class is not available anymore, and passengers can 

only purchase higher fare classes. The practice of nesting protection levels is more robust 

and is widespread in the industry. With nested protection levels/booking limits, a high class 

cannot close before a lower class does. Making fare classes available is also known as 

opening or closing the fare classes. Fig 1.1.5 shows an example of nested booking limits, 

current bookings, and fare class availabilities for a flight with a capacity of 100 with no 

overbooking. If there was overbooking, actual aircraft capacity of 100 would be replaced by 

a larger virtual capacity in the table below. 
 

 

 

 
 

 

Fig 1.1.5 Principle of nested fare class booking limits and availabilities 

Fare Class   Fare Nested booking limit  

(aircraft capacity 100)  

Current 

bookings 
Fare class 

available/open? 

Y $600 100 1 yes 

B $500 90 5 yes 

M $300 65 25 no 

Q $200 40 40 no 
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Origin-destination network control is a more recent significant development of airline 

revenue management. Fare class structures in a network are defined for each specific origin-

destination market. Airlines can make seats available to different fare classes based on 

individual passengers' revenue contribution at the level of the airline's entire network rather 

than at the level of a single flight leg. Origin-destination network control balances the 

availability (the booking limits) between local and connecting passengers on each flight leg. 

In simple terms, it chooses between 3 options: blocking two local seats on two different legs 

to protect for an eventual connecting booking, protecting the local seats from a connecting 

booking by blocking the latter, or making both the connecting and the local bookings 

possible. Such network level optimization has been implemented by the major network 

airlines most advanced in the field of revenue management. 
 

In this thesis we focus on the problem of competition for the fare class mix control. More 

detailed information about the historical development of airline revenue management, as 

well as a comprehensive description of revenue management economic justification, practice 

and algorithms can be found  in  Belobaba[4], McGill and van Ryzin [30]  or Talluri and van 

Ryzin [33].  
 

Figure 1.1.6 is extracted from Talluri and van Ryzin [33] and represents the structure of a 

typical airline revenue management process flow. On the sales side, the different ditribution 

channels (call-center, global distribution system, web server etc.) are linked to a reservation 

system which centralizes the information on the availabilities of fare classes. The booking 

limits and thus the availabilities of fare classes are decided by the revenue management 

system, composed of a forecasting module and an optimization module. This revenue 

management system needs to know what the current fare structures are (that is product 

specifications and prices) and uses information extracted from historical booking databases. 

The revenue management system is operated by revenue management analysts who can 

override the automatic optimization/forecasting and choose booking limits manually to 

handle unexpected situations or implement specific strategies.  
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Fig 1.1.6 Airline Revenue Management Process Flow. Source: Talluri and van Ryzin [33]   
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1. 2  Airline Revenue Management Lacks a Competitive Approach 

 

Within the field of airline revenue management, this thesis tackles a specific issue: the 

reciprocal interactions between the revenue management practices of competing airlines. 

Competition has been an understudied topic in the field of stochastic inventory theory, the 

field to which airline revenue management belongs. Current airline revenue management 

systems consider the airline revenue optimization problem as isolated from its competitive 

environment. Both research and practice have assumed that agents consider most parameters 

such as price or demand as exogenous parameters. But in the real oligopolistic world of 

airline competition, these parameters are endogenous. They are determined by the 

simultaneous action of all agents. The seat allocation decisions of an airline affect the 

passenger demands for seats on other airlines. 

 

 An airline seat inventory optimizer determines fare class booking limits setting marginal 

revenues equal to marginal costs, where marginal cost is the opportunity cost of reserving a 

seat for a high fare class rather than selling it in a lower fare class. The first limit of this 

approach is that it uses a biased forecast. As of today, an airline forecasts its demand using 

solely its own past and current booking data, and extrapolates it without considering that 

these past demands as well as its demand-to-come are strongly dependent on competitor 

moves. The second limit of this approach is that it can be considered as only “first order 

optimization”. The allocation of seat inventory among fare classes by one airline affects the 

demand and optimal seat allocation of the other airlines. It might be useful for an airline to 

understand and evaluate how its own booking limits affect its competitors, and how in turn 

the competitor’s behaviour will have an effect on the initial airline’s demand.  

 

Therefore, current decisions made by competing airlines might be suboptimal as airlines 

apply a monopolistic model to a competitive environment.  The following two schemes 

Fig.1.2.1 and Fig.1.2.2 illustrate our point that traditional airline revenue management lacks 

a competitive approach. Figure 1.2.1 represents the model used by traditional revenue 

management systems. Demand is assumed by the optimization and forecasting modules to be 

an externality independent of competitor moves. Forecasting of the future demand is made 

using only the knowledge of past booking limits and past bookings. Bookings for a fare class 

at each time frame correspond to the minimum of the booking limit and the demand for that 

fare class. Figure 1.2.2 shows what could be a more realistic approach. By “spill-of-

demand”, we mean demand that exceeds booking limits, and that is therefore diverted to the 

competitor. In such a competitive model, demand would not be an externality anymore. It 

would depend on competitor moves, which generate spill that affects our demand. Similarly, 

our own moves generate spill which affect the optimization process of the competitor.  

Optimization should take into account the reciprocity between the moves of the two revenue 

management systems, and/or the forecaster should take into account the competitive 

environment to evaluate future demand to come. 
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Fig 1.2.1  Traditional airline revenue management model 

Min() refers to a Minimum function of the two inputs providing the output 

 

 

 

 

 
 

Fig 1.2.2  More realistic model of two competing airlines 

Min() refers to a Minimum function of the two inputs (demand and the booking limit) 

providing the output (actual bookings) 
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1.3    Objectives of the Thesis 

 

The first objective of this thesis is to provide a review of the state of the research on the 

relationship between competition and revenue management.  
 

The second objective of this thesis is to identify how the revenue management systems of 

competing airlines currently interact between each other, and what the consequences of these 

interactions are in terms of revenues and bookings.  
 

The third and last objective is to develop approaches of revenue management that would 

take into account competition as identified in the first and second part in order to improve 

the efficiency of revenue management systems. 
 

Our constant concern is to provide an analysis that is directly applicable to the industry.  

We keep focused on current revenue management systems, how they are affected by 

competition and what changes could be made to include competitive effects. We will 

consider revenue management models where the price of fare classes is an exogenous 

variable, as these are the ones currently in use in the industry. We will not tackle joint 

pricing and inventory control as this topic is still at the state of research even in a 

monopolistic environment. 

 

 

1.4    Structure of the Thesis 

 

The structure of this thesis follows the pattern of the three objectives stated above. The 

first part consists of this introduction that defines the background, the problem, the 

objectives and the methodology of our research. The second part consists of a literature 

review of the past research on competitive analysis of airline revenue management, first at 

the macroscopic simulation level, and then at the more theoretical microscopic scale. The 

third part of the thesis consists of an analysis of the current interactions between competing 

revenue management systems to identify and evaluate them. In the last and fourth part we 

propose new approaches of revenue management that take into account the interactions 

identified in the fourth part.  

 

 

1. 5   Experimental Tool:  PODS Airline Revenue Management    

        Simulator  
 

 

Throughout this thesis, our research methodology includes testing airline revenue 

management scenarios with a software simulator, the Passenger Origin-Destination 

Simulator (PODS). We provide here a short description of this simulator. For the reader that 

would like a thorough description of PODS, we strongly recommend Hopperstad 

Consulting[17],  Belobaba, Hopperstad and Tam [3], or Lua [28]. We will only provide here 

a summary description of the PODS simulator which does not cover all of its modelling 

complexity. 
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PODS is a simulator whose main purpose is to test and analyze the performance of all 

kinds of revenue management methods. It is currently used at MIT and within a consortium 

of nine world-leading airlines, and we use it in this thesis for all the simulations performed. 

PODS aims at simulating the real world decisions of passengers and airline decision models 

to evaluate the latter and to assess any new paper-developed airline revenue management 

technique. 

 

It is composed of two major modules: a passenger choice module and a revenue 

management module. Fig 1.5.1 shows the structure of the PODS simulator as used for the 

simulations described in this thesis. 

 

The passenger choice model generates passengers with their choice specificities: an 

origin and a destination, a passenger type, a willingness to pay, an airline preference, a path 

preference, a time-of-day preference, and restriction preferences. The passenger choice 

module interacts with the revenue management module through a passenger choice model 

that aims at recreating the real world choice made by passengers when they book their 

tickets among fare classes made available by airline revenue management systems. Fig 1.5.2 

describes the process of passenger generation and choice as used in the simulations of this 

thesis. 

 

 

 

                     
 

 

                   Fig 1.5.1 PODS simulator structure as used in the framework of this thesis. 
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Fig 1.5.2 Passenger choice module of the PODS simulator as used in this thesis 

 

 

 

 

 

Throughout the PODS simulations in this thesis, there are two types of passengers: leisure 

and business passengers. The arrival of these passengers follows the arrival pattern given in 

Fig 1.5.3. The time-of-day preference of these passengers follows the Boeing Time Decision 

Window Model [5]. A typical time-of-day demand curve is provided in Fig 1.5.4. The 

disutility costs used are those computed by Lee [23]. Passengers’ willingness-to-pay and 

total market demands are then calibrated so as to reach load factors comparable to recent 

industry standards in North America, that is 80% to 85%. 

 

 

PASSENGER GENERATION 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

No 
  
Passenger does not book 

Is there a path with an 
available  fare < WTP? 

Yes 

PASSENGER CHOICE 
 

• For each path and fare class with fare < WTP, compute the total generalized cost for this 

passenger 
 

= actual fare + Σ disutility costs 
 

• Assign the passenger to the path and fare class with the lowest generalized cost. 

 
Process the booking & proceed to any next passenger 

•  Passenger type, market m    ----   Passenger type cumulative arrival curves by time frame 

          There are two distinct passenger types (business  & leisure)  

•  Favorite airline    ----   Discrete distribution by origin and destination market 

•  Time of day preference   ----   Boeing Decision Window distribution by passenger type and market 

•  Willingness to pay WTP   ----   Negative exponential distribution by passenger type and market 

•  Disutility cost of connecting flights    ----   Normal distribution by passenger type and market 

•  Disutility cost of unfavorite airline    ----   Normal distribution by passenger type and market 

•  Disutility cost of replanning    ----   Normal distribution by passenger type and market 

   ----   Normal distribution by passenger type and market 
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Fig 1.5.3  Passenger cumulative arrivals pattern 

 
 

 

 
 

Fig 1.5.4  Time-of-day percentage demand for a market where the difference in local times 

at destination upon arrival and the local time at origin upon departure is 3 hours. 

 

 
 

The revenue management system in the simulations aims at reproducing airline revenue 

management systems. It consists of a historical booking database, a forecaster, and a seat 

allocation optimizer. The seat allocation optimizer determines which fare classes to make 

available at each time frame, using the demand forecasts and the bookings in hand for a 

specific departure. Competing airlines within a network have a wide variety of choices for 

their own fare structures, for their forecasting techniques and seat allocation optimization 

methodologies. For the list of all these techniques and for their quantitative descriptions, the 

reader should refer to Hopperstad Consulting[17],  Belobaba, Hopperstad and Tam [3] or 

Lua [28].  The revenue management module interacts with the passenger choice module by 

communicating which fare classes are available for booking when a passenger is generated. 
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The revenue management system decomposes the booking period before a flight departure 

into time frames as shown in Fig 1.5.5. At the beginning of each time frame, forecasts are 

updated and booking limits are re-optimized. During the time-frame passengers arrive and 

interact with the revenue management system. The closer in time the departure, the more 

frequent the revenue management system update and re-optimization. 

 

 

 

 

Time Frame  Days until Departure  Time Frame Duration (days)  

1  63  7  

2  56  7  

3  49  7  

4  42  7  

5  35  4  

6  31  3  

7  28  4  

8  24  3  

9  21  4  

10  17  3  

11  14  4  

12  10  3  

13  7  2  

14  5  2  

15  3  2  

16  1  1  
 

 

Fig 1.5.5 Decomposition of the booking period before the flight departure. 

 

 

 

 

Throughout this thesis, a single simulation typically consists of 5 independent trials, each 

of which corresponding to an iterative result of 600 departure days on each leg. The first 

sample is initiated by user-defined inputs, which are gradually updated with new computed 

data for the next sample. In each trial, the first 200 samples are discarded to eliminate the 

effects of initial conditions since each sample has some degree of correlation to the next 

sample. To ensure statistical significance of simulation results, the overall result for each 

simulated airline is thus obtained by averaging the results of the last 400 samples for all of 

the 5 trials that add up to a total of 2000 daily simulations.  
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CHAPTER 2.   

 LITERATURE REVIEW 

 

 

In this chapter, we provide a review of the state of the research on the relationship 

between competition and airline revenue management.  

 

In the first part we introduce the results of previous PODS studies of airline revenue 

management scenarios in different competitive configurations. The thesis by Wilson [37] is 

the only PODS study to have exclusively focused on the competitive challenges of revenue 

management. The main purpose of the other presented studies was not to address the 

competitive interactions between revenue management systems, but we use their results to 

examine that particular aspect. We extract some general conclusions on the impact of 

competition for airlines implementing revenue management. 

 

In the second part we provide a review of the more theoretical approaches of competition 

that have been developed in the field of airline revenue management. We only reference 

models where price for fare classes is a fixed exogenous variable. We do not consider 

inquiries of joint pricing and inventory control, as even in a non-competitive setting such 

approaches are still at the stage of research and not implemented at the vast majority of 

airlines. 

 

2.1    Former PODS Studies of Competitive Environments 

 

In this first part, we provide a review of previous simulations of airline revenue 

management in competitive environments made using the PODS simulator introduced in 1.5. 

PODS has been of great help in simulating the performance of airline revenue management 

techniques in large competitive networks and with an extensive consumer choice model. 

Simulations have permitted the identification of second order drawbacks/benefits of the 

proposed methodologies. Competitive feedbacks are among the strong identified limitations 

of revenue management mechanisms that are difficult to anticipate in theory. 

 

2.1.1 Wilson’s Results on Competition and Airline Revenue Management 

 
The first known study of the impact of revenue management under competitive market 

conditions was made by Wilson [37] and was in fact using the PODS simulation. A short 

synthesis of his work was published as Belobaba and Wilson [2]. Wilson points out that the 

benefits of a revenue management system to an airline are a function of the revenue 

management capabilities of its competitors. In a single non-stop market, an airline that will 

innovate with its revenue management system will see its revenues increase, while its 

competitors’ revenues will decrease. By better protecting seats for high-fare passengers, an 

airline using accurate revenue management will spill more low-fare passengers and less 

high-fare passengers to its competitors. The latter will experience a shift of their demand 

towards low-fare classes, and will protect less for the high-fare classes, resulting in an 
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overall decrease of their revenues. Still, Wilson [37] shows that competitive revenue 

management is not a “zero-sum game”. As soon as one competitor innovates, total market 

revenues increase. The revenue gains of an innovating carrier are not entirely at the expense 

of its competitors. And if both airlines decide to apply systematic revenue management, both 

carriers see their revenues increase substantially. A carrier without revenue management can 

catch up with others.   

 

The results of Wilson can be displayed in the game-theoretical normal form provided in 

Fig 2.1.1, where payoffs correspond to a proportional increase in revenues as compared to 

when no airline implements revenue management. EMSRa and EMSRb refer to two versions 

of the leg-based EMSR fare class mix control method by Belobaba [1] described by Wilson. 

In this game there are two stable beneficial equilibriums (in grey) consisting in both airlines 

implementing revenue management. All airlines have an incentive to reach one of them. This 

explains why a majority of airlines throughout the world have implemented some form of 

revenue management.  

 

 

 Airline B: no RM Airline B: EMSRa Airline B: EMSRb   

Airline A 
revenues 

Airline B 
revenues 

Airline A 
revenues 

Airline B 
revenues 

Airline A 
revenues 

Airline B 
revenues 

Airline A: 
no RM  

+ 0 %         + 0 %                 

Airline A:    
EMSRa 

+  8.2 %     - 1.4 %             + 8.2%       + 8.4 %  

Airline A:    
EMSRb 

+ 10.4 %     - 1.4 %             + 7.5%       + 7.4 %               + 10.3%     + 11.0 %         

 

 

Fig 2.1.1 Normal form of typical results by Wilson [37].  

Payoffs are % revenue gains as compared to when no airline  

uses revenue management. 
 

 

 

2.1.2 Other PODS Simulations in Competitive Environments 

 

Although the main purpose of most of the PODS simulations mentioned below was not to 

study competition between revenue management systems, our objective is to regroup their 

results and reach conclusions on that particular point. 

 

Most of ulterior PODS simulations have confirmed the results by Wilson [37]. Dar [8], 

Lee [22] and Kayser [20] allow us to extend to airline networks the conclusions made by 

Wilson in a single market. Improvements of revenue management systems should lead to the 

same kind of non-zero-sum discrete game, with a stable optimal equilibrium, and where the 

more players that implement good revenue management, the better the overall industry 

revenues. Fig 2.1.2 displays proportional increases in revenues for both competitors as 

compared to when both competitors use merely a leg-based fare-class mix control EMSRb 
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system with standard pick-up forecasting. The improvements examined are Hybrid 

Forecasting (HF), or origin-destination network control techniques such as Displacement 

Adjusted Virtual Nesting (DAVN), Probabilistic Bid-Price (ProBP) or Heuristic Bid-Price 

(HBP). Technical specification of these methods can be found in Dar [8]. Five improvements 

out of seven benefit the airline making the move forward while its competitor is hurt. The 

two other possible improvements benefit both airlines, but their efficiency can be questioned 

as they increase more the passive airline’s revenues. Fig 2.1.3 is more complete and also 

displays proportional increases in revenues for competitors if both improve their current 

EMSRb system. The same pattern of results is found. If only one player makes a move, he 

will increase his revenues and decrease its competitor’s revenues to a lesser extent. If both 

players make a move, both will increase their revenues. A stable equilibrium exists, and it is 

revenue positive for both carriers. 

 

 

 
 

 Airline B :   EMSRb 

Airline A 
revenues 

Airline B 
revenues 

Airline A :    EMSRb       + 0 %          + 0 %                

Airline A :    EMSRb + HF       + 2.6 %       - 0.4 %             

Airline A :    DAVN       + 0.7 %      + 1.2 %             

Airline A :    DAVN + HF       + 4.1 %       - 1.1 %            

Airline A :    ProBP       + 0.4 %      + 1.0 %     

Airline A :    ProBP + HF       + 3.3 %       - 1.0 %            

Airline A :    HBP       + 1.9 %       - 0.6 %     

Airline A :    HBP + HF       + 3.7 %       - 0.7 %          
 

 
Fig 2.1.2    Normal form of results by Dar [8] in a network with an unrestricted fare 

structure: Payoffs are % revenue gains as compared to when both airlines use EMSRb . 

Dar [8] finds the same pattern of results with a restricted fare structure. 

 

 

 
 

 Airline B:  EMSRb  Airline B:  DAVN  Airline B:   HBP 

Airline A 
revenues 

Airline B 
revenues 

Airline A 
revenues 

Airline B 
revenues 

Airline A 
revenues 

Airline B 
revenues 

Airline A: 
EMSRb 

   + 0 %        +  0    %   

Airline A:  
DAVN 

  + 2.4 %      - 1.7 % + 0.8 %        +  0.7 %  

Airline A:   
HBP 

  + 2.5 %      - 1.6 %  + 0.9 %        + 1.2   % + 0.6 %        + 0.8 % 

 

 
Fig 2.1.3    Normal form of results by Lee [22] in a network with a restricted fare structure 

Payoffs are % revenue gains as compared to when both airlines use EMSRb . 
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Zickus [38] explores different innovating forecasting techniques and finds the same 

pattern of pay-offs for the game of their implementation by air carriers. 
 

Tam [34] and Vanhaverbeke [36] use PODS to evaluate the performance of different 

dynamic programming formulations in single markets and network environments. They 

show that the performance of these advanced algorithms depends strongly on the method 

used by the competitor. They cannot identify an unconditional winner among the 

formulations they study. Determining which formulation is best to implement depends on the 

revenue management system used by the competitor. To remedy to this problem, Tam  

suggests that information about the competitor be incorporated in the algorithms.  
 

Guo [16] concentrates his thesis on the estimation of sell-up for unrestricted environments. 

Sell-up is the process by which a passenger whose first choice for a fare class is not 

available decides to pay more for a higher available fare class, so long as the price remains 

below his maximum willingness to pay. Generating passenger sell-up increases airline 

revenues. One of Guo’s main conclusions is that the performance of sell-up estimators 

decreases with the sophistication of the competitors’ revenue management system. The more 

sophisticated an airline revenue management system, the better it will capture passengers 

with a high willingness-to-pay, so the better it will compete with methods generating sell-up. 
 

Gorin [15] examines average fares before and after entrance of low-cost carriers in new 

markets using PODS simulations. His objective is to show that competitive revenue 

management behaviours rather than predatory pricing can explain an overall decrease in 

average fares. Gorin shows how important the interactions with the revenue management 

system of the new competitor are. Yet the diversity of scenarios and results mentioned in his 

thesis do not allow for a more precise general conclusion.  
 

Lua [28] followed by d’Huart and Belobaba [10] conduct an analysis of the competitive 

practice of matching the availabilities of competitor fare classes. This tactic is intended to 

sustain market shares and load factors in the face of low-cost competition and has been 

widespread in the industry. Matching the competitor’s availabilities significantly overrides 

previously optimized booking limits, and can result in an increase in revenues for the 

competitor and a decrease in revenues for the proponent. Such evolution of revenues is due 

to the change of demand experienced by the competitor and initiated by the matching airline. 

For instance, if airline A matches a competitor’s availabilities as soon as this competitor is 

more open than airline A (therefore more competitive in search engines), airline A will be 

more competitive fare-wise and capture more low fare demand. This low fare demand 

captured from the competitor frees space for high fare passengers for the competitor, thus 

reducing the spill of high fare passengers from the competitor to airline A. As a result, the 

practice of matching by airline A moves its demand from high fare classes to low fare 

classes, and can decrease its revenues.  
 

Last but not least in two independent theses, Ferea [11] and Darot [9] tackle the issue of 

revenue management for airline alliances, and provide us with results on cooperation as 

compared to monopole and competition. Ferea and Darot both show that when two network 

airlines optimize their seat allocation by cooperating and openly sharing their bid-prices, 

revenues are increased as compared to a strictly competitive situation. More surprising are 

Ferea’s and Darot’s common result that two cooperating airlines make more total revenues 

than a single equivalent monopoly. Darot shows that this behaviour is due to passenger spills. 

To do so, he configures the PODS simulator so that passengers can not be spilled to other 

airlines/flights/fare classes. They only book their first choice. In that configuration, the 

monopoly revenues are higher than two cooperating airlines.  
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2.1.3. Conclusions 

 

 

All these results using the PODS simulator to test revenue management in competitive 

environments suggest the following conclusions:  

 

a - One airline improving its revenue management system leads to an increase of its 

revenues at the expense of its competitors. Yet one cannot speak of a zero-sum game as the 

increase in revenues for one airline is higher than the decrease in revenue of its competitors. 

It better matches class availabilities with demand, spills less high-fare class and more low-

fare class passengers to competitors. Not only does this improve the leading airline’s fare 

class mix and revenues, it also shifts the demand experienced by the competitor towards low 

fare classes. The latter ends with a worse fare class mix and worse revenues. Conversely, 

when a tested revenue management technique happens to decrease the innovating airline’s 

revenues, it usually increases the passive airline’s revenues by having improved its mix of 

demand through spill.  

 

b - When both airlines improve their revenue management system, both benefit. There is no 

long-term advantage of being the first or the last to move towards the improved revenue 

management system.  

 

c - Two airlines cooperating improve their revenues as compared to two airlines competing. 

More surprising is the fact that two airlines cooperating can generate more revenues than one 

single monopoly with the same total capacity.  
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2.2   Theoretical Approaches  

 

In this second part, we review the published theoretical models for airline revenue 

management that take into account the competitive environment. We only consider models 

where price for fare classes is a fixed exogenous variable. We do not consider papers on 

joint pricing and inventory control, as such approaches are still at the state of research even 

in non-competitive settings, and are not implemented at the vast majority of airlines. 
 

Economic theories on price discrimination, monopoly pricing, oligopoly pricing, perfect 

competition pricing, pricing under capacity restrictions or production with fixed prices can at 

first glance provide fundamental insight into revenue management. Yet the complexities that 

characterize the problem of airline revenue management, such as a multitude of different 

products, stochastic dependent demands arriving over different time periods or competition 

make it impossible to apply directly any existing economic theory. As Talluri and van Ryzin 

[33] point out, “in most real-world contexts there are many economic forces at work 

operating at different levels and different time scales”.  They provide a good review of the 

economic theories best related (but inapplicable directly) to the problem of airline revenue 

management. 
 

 

2.2.1 Models with Independent Demands for Classes 

 

There are only a few theoretical studies of competition that apply directly to airline 

revenue management. Parlar [32] followed by Karjalainen [19], Lippman and McCardle [26] 

as well as Mahajan and van Ryzin [29] develops a competitive version of the classic 

Newsboy Problem, in which a firm’s strategy is to chose an inventory level for a single 

perishable good before a one period stochastic demand comes. The Newsboy Problem 

happens to be linked to the traditional airline fare class mix control problem formulated by 

Littlewood [27]. An airline sells two fare classes (a high fare class and a low fare class) 

subject to stochastic demands, in one market only and at one moment before departure. The 

demand for the low fare class is assumed to be sufficient to always reach its booking limit. 

Littlewood’s problem is equivalent to the Newsboy Problem: The airline chooses an 

inventory level for the high fare class at the expense of the low fare class. If a seat protected 

for the high fare class is not sold, this will generate a loss equal to the price of the low fare 

class. On the contrary if such a protected seat is sold to a high fare class, this will generate a 

profit equal to the fare premium between the high fare class and the low fare class. The 

parallel between the Newsboy Problem and Littlewood’s problem is drawn in Fig 2.2.1. 
 

To model competitive interactions of inventory level decisions, Parlar [32] decomposes 

the allocation of demand between airlines and fare classes into two successive processes: an 

initial allocation and a reallocation that corresponds to an overflow. The initial allocation 

of demand between airlines and fare classes is an externality corresponding to mere 

passenger preference for a specific airline and a specific class, and does not depend on the 

booking limits that airlines choose. It is in the reallocation process that an airline’s booking 

limits impact its competitor. In the case of two airlines, reallocated/spilled demand from 

airline B to airline A for the low fare class corresponds to the excess of initial demand for 

the low fare class of airline B as compared to its booking limit. For the high fare class, 

reallocated demand from airline B to airline A corresponds to the excess of initial demand 

for the high fare class of airline B as compared to its remaining capacity. Fig. 2.2.2 shows a 

graphical representation of initial allocation and reallocation/overflow. 
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Parlar[32] assumes that the initial allocation consists of independent demands for each of 

the two firms, whereas Lippman. and McCardle [26] assume that these demands are 

correlated and Mahajan and van Ryzin [29] use a more complex dynamic consumer choice 

model. Parlar proves the existence and uniqueness of a Nash equilibrium to his game and 

gives lower and upper bounds for this equilibrium. He also shows that when one of the 

players acts irrationally to damage the other one, the maximin defensive solution for the 

latter reduces to the solution of the classic non-competitive problem. Parlar eventually 

argues that perfect cooperation increases the well-being of both players as compared to 

competition. Lippman and McCardle as well as Mahajan and van Ryzin find some similar 

results, but restrict themselves to the case where the unit salvage value of a non sold product 

and the unit opportunity cost of a shortage in inventory are equal to 0, which is not the case 

of the airline fare class mix control problem. Karjalainen[19] extends the case of Parlar to n-

firms. 
 

Netessine and Shumsky [31] draw inspiration from Parlar to develop a pertinent 

theoretical study of competitive airline revenue management that we review in more detail. 

They consider a duopoly fare class mix control problem with two independent classes by 

airline, represented in figure 2.2.2.  Two competing airlines, airline 1 and airline 2, each 

offer capacity Ci, offer a low fare class L at price pLi and a high fare class H at price pHi. 

There are initial random exogenous demands by fare class and by airline dHi and dLi, with 

nonnegative support and with differentiable cumulative distributions. These four initial 

demands are known by both airlines. Demands are independent across fare classes but not 

across airlines. Reallocation of demand happens among airlines but not among fare classes.  

Demand for low-fare classes occurs before demand for high fare classes. Booking limits are 

static; they are fixed once before demand comes. Customer cancellations are ignored.  
 

 

 

Fig 2.2.1 Parallel between the Newsboy Problem and Littlewood’s  

Revenue Management Problem. 

NEWSBOY PROBLEM BASIC AIRLINE 
 FARE CLASS MIX CONTROL 

Inventory level to produce Number of seats to protect for the high fare class from 

the low fare class. 
Unit incremental revenue 
 

Fare premium realized by selling a high fare class 

instead of a low fare class.   
(price of the high fare class – price of the low fare class) 

Unit cost of acquiring 

inventory 
0 
Seats take off whatever the protection level. 

Unit salvage value of a  
non sold product 

Unit opportunity cost of a non sold seat protected for a 

high fare class: 
A seat protected for a high fare class and not sold is not 

salvaged. Instead, there is a unit opportunity cost of not 

selling this seat at a low fare class, equal to the unit 

price of the low fare class. 
Unit cost of a shortage in 

inventory 
0 
There is no specific cost for the airline if it protects less 

for high fare class than there is demand for it. Using an 

opportunity cost of loss if high fare classes would be 

double counting with the unit incremental revenue. 
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Fig 2.2.2 The model of Netessine and Shumsky [31] 

 

 

In that model, total demands by airline and by fare class can be written: 

 

 

(2.1)      DH1 = dH1 + Max (0, dH2  + min(DL2  , B2 ) – C2 ) 

   DH2 = dH2 + Max (0, dH1  + min(DL1  , B1)  – C1) 

 DL1 = dL1 + Max (0, dL2 – B2 ) 

   DL2 = dL2 + Max (0, dL1 – B1 ) 

 

 

             where:     

                -    DLi corresponds to the total demand for airline i, fare class L 

     -    dLi  corresponds to the initial allocation of demand to airline i, class L 

-    Bi  corresponds to the booking limit fixed by airline i.  

-    min(DLi , Bi) is the remaining capacity for class H, airline i after allocation of  L 

      seats. 

    -    Ci is the capacity of airline i 

-    Max(…) corresponds to the spill of demand coming from the other airline for  

     the fare class. 

 

Each airline’s strategy consists of its booking limits for the low fare class.  

Under these assumptions, revenue for airline i can be written: 

 

 

 (2.2)    Пi = E ( pLi min(DLi , Bi) + pHi min(DHi , Ci – min(DLi , Bi)) ) 

 
 

          where:  

   -    E( ) is an expected value 

   -    pLi is the price of fare class L, airline i 

 The derivative of airline i ’s profit with respect to its booking limit is: 
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The first two terms correspond to the equation that leads to Littlewood’s rule [27] in a non 

competitive environment. This rule has been extended to more than two classes by 

Belobaba[1] with his EMSR model and applied by many airlines. Yet in Netessine and 

Shumsky’s model the demands DLi and DHi are a function of the competitor’s booking limits 

as expressed in (2.1). The third and more complex term corresponds to a competitive 

feedback of airline revenue management.  
 

Netessine and Shumsky [31] show that if (dL1, dH1, dL2, dH2) are multivariate totally positive 

of second order in their density function, that is that they are more prone to be all high 

together or low together rather than mixed high and low, then a pure strategy Nash 

equilibrium exists, and best-response functions dBi/dBj are decreasing. If one player 

increases his booking limit, then it is optimal for the other player to decrease his booking 

limit.  
 

For their further results, Netessine and Shumsky restrict themselves to the case where 

booking limits of both airlines are reached. This is a traditional assumption of airline revenue 

management methods. This assumption has been made since the beginning in Littlewood’s 

rule [27], and fare class structures are supposed to be designed to meet this condition. In that 

case, spills for the low-fare class become irrelevant; there is no need to consider them. As 

long as booking limits are supposed to be reached, the exact value of low fare class spill 

should not impact the strategies of the two airlines.  
 

Under this condition, the optimality condition where (2.3) is equal to 0 is simply reduced 

to the basic Littlewood equation but where DHi is a function of Bj: 

 
 

 (2.4)        
Hi

Li

iijjHjHiiiHi
p

p
BCCBddBCD  ),0max(PrPr   

 
 

Under this condition, Netessine and Shumsky [31] conclude that whatever the demand 

functions dLi and dHi , best-response functions dBi/dBj are decreasing. In equation (2.4), the 

higher Bj , the smaller Bi has to be. This last equation also defines a unique Nash equilibrium. 

Although in their paper Netessine and Shumsky assert that booking limits under this 

competitive game are lower than under the cooperative game, we have agreed with the 

authors that their proof is as of today  erroneous, and that the result might be incorrect. Still 

through extensive numerical simulations, they found that the same conclusions can be drawn 

in many cases even if the assumption of reached booking limits is not held.  

 

Talluri and van Ryzin [33] propose a graphical interpretation of this game, as provided in 

Fig 2.2.3.  If best response functions are decreasing, an airline’s best response arcs cannot 

cross, and an equilibrium exists. 
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Fig 2.2.3 Bipartite graph of the two airline, independent classes, competitive game. 

 Source: Talluri and van Ryzin [33] 

 

 

Li, Zhang A. and Zhang Y. [25] have an approach similar to Netessine and Shumsky [31]. 

Instead of a random exogenous demand model by airline and by fare class, they introduce a 

random exogenous demand by fare class only, and split it by airline. The rule for splitting is: 

an airline’s market share for a fare class is proportional to the capacity offered in that fare 

class by the airline. For the high fare class, the latter would correspond to the protection 

level, and for the low fare class it would correspond to the booking limit. They refer to this 

rule as a “proportional rationing rule” found in Tirole[35]. This direct correlation between 

market shares and capacity is commonly made in the airline industry. Li, Zhang A. and 

Zhang Y. use a model with identical fares for both airlines, but different costs associated for 

each fare class and for each airline. This model is equivalent to no costs but different fares 

for the two airlines. They show that if the ratio pL/pH is not 3 times higher from one airline to 

another, then there exists a unique and stable pure-strategy Nash Equilibrium. They also 

show that if the two airlines are symmetric in prices, then choosing whether to set collusion 

optimal booking limits or competition optimal booking limits leads to a Prisoners Dilemma. 

Strategically, both airlines benefit from implementing revenue management as shown in 

Belobaba and Wilson [2], but tactically both airlines benefit from cooperating in their seat 

allocation rather than competing. 

 

In a shorter but similar study, Li, Oum and Anderson [24] had shown that under another 

set of conditions on incremental expected revenue functions, a symmetrical equilibrium 

exists, and that this competitive equilibrium has lower booking limits than a cooperative 

situation. It is interesting to note that Mahajan and van Ryzin [29] also found that under 

competition, protection for higher classes would be higher than with cooperation, even 

though their restriction of the newsboy problem does not apply directly to airline revenue 

management. 
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2.2.2 Models with dependent demands for classes 

 
 

All of the above models consider that total demands for classes are independent. This can 

be considered in markets with fare structures with clear different restrictions for each fare 

class, also called fully-restricted fare structures. Isler and Imhof [18] introduce a game 

theoretic model for less restricted fare structure environments (also referred to as 

unrestricted fare structure environments), where restrictions are the same from one class to 

another, so that such independence of demands does not hold anymore. The revenue 

management method they consider consists in the dynamic programming formulation of 

Gallego and van Ryzin [13]. Isler and Imhof [18] first show that under this scenario, two 

competing revenue management systems neglecting the fact that they are in competition will 

generate overall revenues much smaller than if they were fully cooperating.  In a second part 

they show that if the two airlines set their prices simultaneously, if they know the demand 

behaviour and the inventory counts of each other, these two airlines can reach a pure strategy 

subgame perfect equilibrium. The total market revenue associated with this equilibrium is 

higher than the usual competition-blind optimization, but not as high as the perfect 

cooperation case. 
 

Fig 2.2. 4 sums up Isler and Imhof  results. It compares total market revenue generation in 

three scenarios: full cooperation, full “blind” spiralled-down competition and the game 

theoretic model for competition introduced in their article. 

 

 

 

 
 

Fig 2.2.4  Results of Isler and Imhof [18] simulation. 
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2.2.3  Conclusions  

 

Theoretical research on competition in the field of airline revenue management with fixed 

exogenous prices has often come to the same conclusions under different sets of scenarios 

and conditions: 

 

a - There exists a Nash equilibrium if both airlines compete rationally and take into 

consideration competitive effects.  
 

b - Airlines competing would benefit from taking into consideration competitive effects. 

They would benefit even more if they cooperated for their allocation of seat inventory to 

different fare classes. 
 

c - Best-response functions dBi/dBj are decreasing. If one player increases his booking limit, 

then it is optimal for the other player to decrease his booking limit, and conversely. 
 

d – Total market booking limits are smaller under competition than under collusion.  

 

Yet as Gallego, Krishnamoorthy and Phillips [14] pertinently notice, most of these models 

are single-stage games, and might not be most appropriate to describe a real-world situation. 

Airlines marketing departments interact on a daily basis and have built a history of tactical 

moves and responses on which they rely to make their present decisions, including some 

implicit collusion. A repeated game might be more suited theoretical framework for 

competitive revenue management.  

 

Furthermore these theoretical models assume that revenue management games are perfect 

information games. But in reality airlines do not have perfect information on the 

competitor’s availabilities/protection levels.  Neither do they even have a perfect knowledge 

of their own demand, they can only rely on imperfect forecasts.  
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CHAPTER 3.  
 

IMPACT OF COMPETITION ON CURRENT 

AIRLINE REVENUE MANAGEMENT SYSTEMS 

 
 

The fact that the revenue management models widely implemented by airlines do not 

explicitly take into account competitive effects does not mean that competitive effects do not 

exist. In this chapter we describe the passive competitive behaviour of current airline 

revenue management systems, and link our observations with the results of previous 

literature as summarized in 2.1.3 and 2.2.3. We first use the comparison of monopoly 

scenarios with competitive scenarios to reveal some behaviours at the total market level of 

revenue management systems in competition. We then focus on the impact at the level of a 

single airline of competition between currently used revenue management systems. 

 

3.1    Competition versus Monopoly 

 

The first step towards understanding how a competitive environment affects current airline 

revenue management is to compare competitive scenarios with their equivalent monopoly 

scenarios in terms of seat inventory control. Determining how the group of competitors set 

their booking limits/protection levels as compared to a monopoly helps understand how 

revenue management is impacted by competitive situations. We first provide a competitive 

model, a general intuitive idea, and some theoretical results. We then run PODS simulations 

to see if our ideas, based on restrictive hypotheses, could still be valid in more complex real-

world situations.  
 

 

3.1.1 Preliminary Theoretical Results  

 

Before engaging into simulations of competitive vs. monopolistic environments, we 

provide theoretical results extending one of the conclusions drawn in the literature review, 

which concluded that in competitive settings total market booking limits on lower priced fare 

classes are prone to be smaller than under equivalent monopolies. 

 

Our model is to some extent similar to the model of Parlar [32] as well as Netessine and 

Shumski [31]. Let us first define our terminology as well as the general intuitive idea behind 

our results. We place ourselves in the case of stochastic demands. The demand that airlines 

observe is constrained and consists only of accepted bookings. We first define non-

constrained demand for a fare class at an airline as the sum of the passengers who book the 

fare class at the airline plus the passengers who would have booked  this fare class if it were 

available at the airline, but who cannot because the fare class is not available. Let us first 

suppose that the non-constrained demands for classes are independent. At the same time, 

with a competitive market, we can view non-constrained demand for an airline as split in 

two other components (different from the categorization of accepted and rejected bookings), 

as illustrated in Fig 3.1.1, Fig 3.1.2 and Fig 3.1.3.  
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On the one hand, first-choice non-constrained demand is the initial share of total market 

non-constrained demand that would book the fare class on the airline as a first-choice 

preference. The sum of the first choice non-constrained demands for each airline is equal to 

the total market non-constrained demand. On the other hand, spill-in corresponds to 

passengers who would as a first-choice book on a competitor but who were rejected because 

the fare product they want to purchase is not available anymore at the competitor. We use 

the term spill-in for the passengers spilled by competitors towards a specific airline, and 

spill-out designates passengers who are rejected from a specific airline and are added to the 

non-constrained demands of some competitors. Both spill-in and spill-out are precise terms 

that refer to the same general phenomenon specific to competitive environments, spill. 

Among the observed effective bookings for the fare class of an airline, some consist of first-

choice bookings, some are bookings by passengers who would have preferred to buy the 

competitor’s fare class but who were spilled-in. Among the passengers that an airline rejects, 

some considered this airline as a first-choice and will spill-out to the competitors. The others 

are passengers who were already rejected by one competitor, so they will either spill-out to 

remaining competitors or not book on any airline. We call the latter no-go demand.  

 

 

 

 
 

 

Fig 3.1.1 Decomposition of non-constrained demand for a fare class at an airline 

 

 

 

 

 
 

Fig 3.1.2 Decomposition of non-constrained demand for a fare class at an airline. 

Non-constrained demand for a fare class at an airline is the sum of the four cells. 
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Fig 3.1.3 Competitive approach, duopoly situation for a set of classes (1..i). 

 

 

 

In competition and at the total market level, passengers which are at some point spilled to 

a competitor are double-counted as part of the non-constrained demand of more than one 

airline. They increment the non-constrained demand of the airline where they had their first 

choice preference, as well as the non-constrained demand of the competitor(s) to which they 

spill-in. Such double-counting of a passenger at the total market level does not occur if there 

is only a monopoly serving the market. Therefore the sum of the non-constrained demands 

for each airline of an oligopoly is larger than the non-constrained demand for a monopoly.  

 
Airline revenue management system forecasters integrate an unconstraining module 

which provides an estimation of non-constrained demand by “unconstraining” the observed 

constrained demand (accepted bookings), which is the only data available to an airline. This 

estimation of non-constrained demand is referred to as unconstrained demand, and is used 

to set protection levels. Assuming that the unconstraining modules of forecasters are 

reasonably accurate, the sum of the unconstrained demands forecasted by airlines in an 

oligopoly should be larger than the total market non-constrained demand, and larger than the 

unconstrained demand estimated by a monopoly. As a consequence, assuming that the 

protection levels set by the airlines are not exponentially increasing in the expected value of 

forecasted unconstrained demand, the total market protection level set by an oligopoly 

should be higher than the protection level set by an equivalent monopoly. 

 
Fig. 3.1.6, Fig.3.1.7 and Fig.3.1.8 provide an example, where μ designates the average 

value of a distribution. Fig 3.1.6 describes a monopoly situation for the determination of a 

nested protection level. Total market non-constrained demand has an expected value μ of 

100. The monopolist observes an average of 78 accepted bookings, with an average 

protection level of 80 set with an average forecast of unconstrained demand of expected 

value 99 (the forecaster is not perfect). On average, no-go demand is of 22 passengers. Note 

that the average of no-go demand is higher than the difference of the average of non-

constrained demand and the protection level because an occurrence of no-go cannot be 

negative. The sum of average no-go and of average accepted bookings is equal to average 

non-constrained demand. Fig. 3.1.7 displays its equivalent duopoly situation if passengers 

did not spill between airlines and only booked at their preferred one. Fig 3.1.7 does not 

represent a realistic situation, but is useful to better understand by comparison the case of 

Fig 3.1.8. At the total market level, there is not much difference between the case 

represented in Fig 3.1.6 and the case represented in Fig 3.1.7.  
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Fig 3.1.8 represents the more realistic case of an equivalent duopoly situation where 

passengers spill between two identical airlines. Each airline has a first-choice non-

constrained demand of expected value 50 corresponding to half of the total market non-

constrained demand. Each spills-out an average of 8 passengers to the other. Therefore the 

non-constrained demand for each airline has an expected value of 58, larger than the 

expected value of the first choice non-constrained demand for that airline. Each airline 

accepts on average 44 bookings, with an average booking limit of 45 set with an 

unconstrained forecast of average value 55. Of the average 8 passengers spilled-out to the 

other airline, on average 2 book on the competitor, and 6 do not book on any airline (no-go). 

Each airline is also able to capture more of its first choice non-constrained demand, with on 

average 3 more seats available for such demand than if there was no spill between 

competitors as described in Fig 3.1.7. For the duopoly, total market protection level is on 

average 90 seats (as compared to 80 for the monopoly), total market unconstrained forecasts 

are on average 110 (as compared to 99 for the monopoly), total market accepted bookings 

are on average 88 (as compared to 78 for the monopoly), and the total no-go demand is on 

average 12 (as compared to 22 for the monopoly). 

 

This general intuitive idea that protection levels are higher in competition than in a 

monopoly can be extended to the case where demands for classes are dependent 

variables if the total market capacity of the oligopoly is not higher than the seat 

capacity of the monopoly. When such demands are not independent, there exists sell-up 

between classes. Sell-up designates the decision by a passenger to book a fare class that is 

higher than his first-choice fare class desired when the latter is not available. If demands for 

classes were dependent, sell-up from lower classes than the ones of the set of classes 

considered would be added to the first choice non-constrained demand and to spill-in as 

shown in Fig. 3.1.4 and 3.1.5. 

 

 

 

 
 

 

Fig 3.1.4 Decomposition of non-constrained demand with sell-up 
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Fig 3.1.5 Competitive approach, duopoly with sell-up for a set of classes (1..i).  

 

 

If the oligopoly total market capacity is not higher than the capacity of the monopoly, 

even with sell-up total market protection levels should be higher in competition than in a 

monopoly, because of larger double-counting. First, spill does not exist in a monopoly 

situation and is strictly positive in the oligopoly situation. Second, we believe that at the total 

market level, sell-up should then be more important in the oligopoly than in the monopoly. 

In monopoly, the only reason for sell-up is that total market booking limit has been reached. 

In competition, sell-up can happen when the total market booking limit is reached, but also 

when the total market booking limit is not reached yet, but the passenger has a preference for 

an airline whose booking limit is reached. Even though higher sell-up reduces spill-in/spill-

out, at the total market level the difference with a monopoly is that competition introduces 

spill-in (that is non-existent in a monopoly) and introduces additional sell-up from lower 

classes as compared to the monopoly. Hence total market protection levels should be higher 

in competition than under monopoly, which will also have the feedback effect of increasing 

even more sell-up at the total market level for the oligopoly.  

 

Fig 3.1.6bis and Fig 3.1.8bis represent respectively an example of a monopoly situation 

with sell-up and its equivalent duopoly situation (the same capacity for the monopoly and 

the oligopoly is assumed). The figures represent the fare class mix optimization problem for 

a set of fare classes, so there are two types of sell-up: sell-up from strictly lower classes, and 

sell-up within the set of fare classes. At the total market level, both increase in the oligopoly 

as compared to the monopoly. Sell-up encroaches on spill, which is smaller in the model 

with sell-up. Yet spill does not exist in the monopoly case anyways. Double-counting of 

passengers in total market unconstrained demands is consequently higher in the competition 

case than in the monopoly case because of an increase in overall sell-up and because of the 

notion of spill. 

 

Last but not least, our general intuitive idea is reinforced if one assumes that competition 

boosts total market non-constrained demand, even with fixed total market seat capacity. Our 

model does not take into account no-show behaviour and corresponding overbooking 

techniques. For relevance we only focused on understanding the mechanisms of competition 

influencing fare class mix optimization. 
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Fig 3.1.6 Determination of a nested protection level 

Example of monopoly situation.  
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Fig 3.1.6bis Determination of a nested protection level  

Example of  monopoly situation with passenger sell-up  

 “+” refers to a sum operator 
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Fig 3.1.7 Determination of a nested protection level  

Example of a duopoly situation where passengers do not spill-in between airlines 

This case does never happen but is useful for a better comprehension.  
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Fig 3.1.8 Determination of a nested protection level  

Example of a duopoly situation with passenger spill-in between airlines 
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Fig 3.1.8bis Determination of a nested protection level  

 Example of a duopoly situation with passenger sell-up within each airline and passenger 

spill-in between airlines. 

 “+” refers to a sum operator 
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The existing literature has proved the result of this general intuitive idea in the case of two 

airlines each offering two classes with independent first-choice non-constrained demands. It 

has also made additional assumptions on theses demands. The following Proposition A 

extends this result to competition between N airlines each offering 2 classes, subject to total 

market independent non-constrained demands. The restrictions of proposition A are that all 

airlines have the same fare structure, that the initial share of the total market non-constrained 

demand by airline for the high fare class is known, and that booking limits are reached 

(Littlewood’s rule). 
 

 

Proposition A:  
 

Suppose: 

- A market where N airlines have an identical 2 class fare structure. 

- Total market non-constrained demand for each fare class is a stochastic independent 

variable. 

- The booking limits for the low fare class are reached. 

- There is an initial share between airlines of the total market non-constrained demand for 

the high fare class based on passenger first choice preference. 

- Unconstrained forecasts accurately estimate non-constrained demands (non-constrained 

demand is equal to unconstrained demands).  

 

Then: 

- The total market protection level for the high fare class is higher under competition than 

under monopoly, regardless of the capacities.  

- If the oligopoly does not offer a strictly higher total market capacity than the monopoly, 

total market booking limits are smaller in the oligopoly than in the monopoly.   

 
 

Proof: 
 

Let: 
 

▪ d1 be the stochastic total market non-constrained demand for the high fare class 1.  
 

▪ pi  be the fare of fare class i. 
 

▪ 
j   1;0  be the proportion of the total market non-constrained demand for the high 

fare class 1 that has a preference for airline j. By definition 



nj

j

..1

1 . 

 

▪  d . d 1

j

1 j
be the stochastic first-choice non-constrained demand for the high fare 

class 1 of airline j  

 

The monopoly non-constrained demand for the high fare class is d1. The monopoly 

optimizes its revenues using Littlewood’s two class rule (a detailed description of this rule 

can be found in Talluri and van Ryzin [33] p.35-36) and with unconstrained forecasts 

accurately estimating demand d1.  

 

Let: 
 

▪ 
j

1  ≥ 0 be the stochastic spill-in of demand towards airline j, fare class 1 

▪ 
jjj

111 d D    be the stochastic total non-constrained demand for airline j , fare class 1 
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Let : 
 

▪ X : d  X(d)  be the application associating a positive stochastic demand d for the high 

class with its Littlewood protection level.  X(d) is the solution of 

 

(3.1)      
1

2)(Pr
p

p
dXd 

 
 
 

▪ X  does not depend on the airline.  
 

▪ X   is a positive homogenous application:  
a ,  X (a.d) = a . X (d)                

This  results directly from the fact that 

1

2)..Pr()Pr(
p

p
XadaXd   

 

▪ X ( d + d*) ≥ X (d) for any set of  stochastic positive demands d and d* . 
 

This can be shown knowing that: 

1. by definition of X,  Pr ( d + d* ≥ X (d+d* ) ) =  Pr ( d ≥  X (d) ) = 
1

2

p

p
 

2. for d, d* positive stochastic demands, x a real constant, Pr (d + d* ≥ x) ≥ Pr (d ≥ x) 
 

3. for a given distribution of the demand d,  xdx  Pr  is decreasing in the real 

variable x 
 

4. thus to reach 1. from 2. one must decrease x on the left side of equation 2 

 

 

Therefore we obtain: 

 

       (3.2)       (i,j)    1dX  1d.X
j

j   

                                         

 

 







j

j

j

X

X

j

1

1

d.

d

       

                             X (d1)   ≤   
j

jX 1

j

1d   =  
j

X j

1D  

 

 

X(d1) is the protection level set by the monopoly and  
j

X j

1D  is the sum of the 

protection levels set by the competing airlines. This inequality shows the first point of  
 

Proposition A. The second point of Proposition A comes from the definition of a booking  
 

limit as the flight capacity minus a protection level. 

 

 

End of Proof 
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With the same general reasoning and provided additional assumptions, Proposition B 

extends the result of Proposition A to the case of n nested protection levels and EMSRb 

optimization.  

 

 

Proposition B 

 

Suppose: 

- A market where N airlines have an identical n-class fare structure. 

- Total market non-constrained demand for each fare class is a stochastic independent 

variable. 

- Nested booking limits on all lower classes are reached (Littlewood’s rule). 

- First-choice non-constrained demands is a fixed proportion of total market non-

constrained demand for all the classes of an airline. 

- Each airline optimizes its revenues with an EMSRb rule where the fare levels considered 

in the EMSRb equation are not adjusted (a detailed description can be found in Talluri 

and van Ryzin [33] p. 47-50).  

- Unconstrained forecasts accurately estimate non-constrained demands (non-constrained 

demand is equal to unconstrained demands).  

 

Then: 

- The total market nested protection level for classes is higher under competition than 

under monopoly, regardless of the capacities.  

- If the oligopoly and the monopoly offer the same total market capacity, total market 

nested booking limits are smaller in the oligopoly than in the monopoly.   

 

 

Proof: 
 

 

The overall reasoning is the same as for proposition A, with complications due to nesting. 

 

Let: 
 

▪ di be the stochastic total market non-constrained demand for fare class i.  
 

▪ d1..i = 
 ik

id
..1

be the total stochastic market non-constrained demand for the set of 

classes (1..i). 
 

▪ (di)i=1..n constitutes a set of independent stochastic variables.  
 

▪ (d1..i)i=1..n thus also constitutes a set of independent stochastic variables. 
 

▪ pi  be the fare of fare class i 
 

▪ 
j   1;0  be the proportion of the total market non-constrained demand that has a 

preference for airline  j.   By definition 



nj

j

..1

1  

▪  d . d i

jj

i be the stochastic first-choice non-constrained demand for class i,  airline j. 

▪  d . d 1..i

j

..1 j

i be the stochastic first-choice non-constrained demand for the set of 

classes (1..i) of airline j. 
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Let: 

▪ 
j

i  ≥ 0 be the stochastic spill-in of demand towards airline j, fare class i 

▪ 
j

i

j

i

j

i d D  be the stochastic total non-constrained demand for airline j, class i 

▪ 
j

i..1 = 
 ik

j

i

..1

  be the stochastic total spill-in of demand towards airline j for the set of  

fare classes (1..i) 

▪ j

i

j

i

j

i

j

i ..1..1

1..ik

..1 dD D  


 be the total non-constrained demand for airline j for  nested 

classes (1..i) 
 

 

 

Let : 

▪ iX ..1 :  ),...,( 1 i  X1.. i ( i ,...,1 )  be the application associating a set  i ,...,1  
of 

demands for the classes of a set (1..i) with the nested protection level given by the  
 

non-adjusted EMSRb equation:  

 

 (3.3)       Pr ( 



ik

k

..1

≥ (..1 iX
i ,...,1
) ) =   















ik

k

ik

kk

i

p

p

..1

..1

1

.

 
 

▪ iX ..1  does not depend on the airline because they have the same fare structure and the 

same  initial share of the total market non-constrained demand by fare class. 
 

▪ iX ..1  is a positive homogenous application:  

a ,  iX ..1   ).,...,.( 1 iaa  = a . iX ..1  
),...,( 1 i   This results from the fact that:           

Pr ( 



ik

k

..1

≥ iX ..1 ) = Pr ( 



ik

ka
..1

.  ≥ a. iX ..1 ) =   















ik

k

ik

kk

i

p

p

..1

..1

1

.
  

 

▪  iX ..1 ( ),..., 111 ee n   ≥ iX ..1 ( ),...,1 n  for any set of initial stochastic non-

demands (
n ,...,1

) and of stochastic spill-in ( nee ,...,1 ). This can be shown as: 

 

 
 

1.  for   i ,...,1
 given ,  )x  Pr(x

..1

 
 ik

k  is decreasing in the real variable x  

2.  if x is a real constant, Pr ( 



ik

kk

..1

 ≥ x)  ≥  Pr ( 



ik

k

..1

≥ x) 

 

3.  in the equation that defines X1..j , when adding spill-in all else equal, and in “non-

extreme situations” the proportional change in the weighted average revenue in the 

right term is smaller than the proportional increase in the left probability term.  
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Therefore we obtain: 

 

(3.4)       i        X1..i (d1,...,di )   ),...,(. 1..1 ni

j

j ddX   

                                                 

 

 







j

j

n

j

i

j

n

jj

i

ddX

ddX

,...,.

),...,(

1..1

1..1 

 

                            X1..i (d1,...,di )  ≤   
j

j

n

j

n

jj

i ddX  ,...,11..1
 = )D,...,(D j

n

j

1..1
j

iX  

   

 

X1..i (d1,...,di ) is the protection level set by the monopoly for (1..i) and )D,...,(D j

n

j

1..1
j

iX is 

the sum of the protection levels set by the competing airlines for (1..i). This inequality shows  
 

Proposition B. 

 

 

 

End of Proof 
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3.1.2 Experimental methodology 

 

 

We run different simulations whose representation of passenger and airline behaviour is 

closer to the real world of airline revenue management than the restrictive hypotheses of the 

presented theoretical results. We compare their results with the conclusions of the literature 

review and with our general intuitive idea and our own Propositions A and B above. We also 

try to use the results of the simulations to extract some more insight that theoretical results 

might have overlooked.  

 

The simulations are run using the PODS simulator with parameters as defined in Chapter 

1.5. We study a single market situation to better discriminate the differences in the 

behaviours of the revenue management systems in competitive versus monopoly 

environments. The monopoly scenario consists of one airline operating three flights a day, at 

three different times, in one direction and with three aircraft of a 240 seat capacity each. The 

equivalent competitive scenarios simulated are 2, 3 or 4 airlines competing. As in the 

monopoly situation, each airline operates three flights a day, at the same times, in the same 

direction, and the capacity of the aircraft in the competitive scenario is such as the total 

capacity offered in the market remains of 240 seats per departure time. In the competitive 

case, airlines all keep the same fare structure, forecasting and optimization methodologies as 

the monopoly. Fig.3.1.9 gives a representation of the competitive scenarios versus the 

monopoly scenario. No airline uses overbooking techniques. 
 

 

We run the following set of scenarios of competition versus monopoly: 
 

1. A single market with the fully-restricted fare structure provided in Fig 3.1.10. Both 

airlines use EMSRb optimization and pick-up forecasting with booking curve 

unconstraining. This case is very similar to the conditions of Proposition B.  

 

2.     A single market with the fully-restricted fare structure provided in Fig 3.1.10. Both 

airlines use Lautenbacher dynamic programming optimization and pick-up forecasting 

with booking curve unconstraining. 

 

3.    A single market with the unrestricted fare structure provided in Fig 3.1.11. Both 

airlines use EMSRb optimization and Q-forecasting and booking curve unconstraining.  

 

 

 

 

 

 
 

 

60 seats 60 seats 60 seats 
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     Fig 3.1.9 Monopoly scenario vs. competitive scenarios in a single market 
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                         Fig 3.1.10 Fully-restricted fare structure considered 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.1.11 Unrestricted fare structure considered 
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3.1.3 Simulation results 
 

 

Scenario 1: Fully-restricted fare structure, EMSRb optimization 

 

The first scenario tested is kept as close as possible to the hypotheses made by the theoretical 

results, and especially Proposition B. The assumption of independent classes made in the 

literature and our propositions A and B is best justified with fully-restricted fare structures, 

although in reality sell-up still exists. EMSRb optimization is used (cf. Talluri and van Ryzin 

[33] for a detailed description). We keep the forecaster simple, with pick-up forecasting and 

with booking curve unconstraining (cf. Hopperstad[17] for a detailed description).  

 

We first run simulations where total daily market non-constrained demands are equally 

distributed among the competing airlines. Fig 3.1.12 shows the sums of the average values of 

the forecasts of unconstrained demands made by airlines for the 8am flights, 24 days before 

departure. Fig 3.1.13 shows the associated average total market nested booking limits.        

Fig 3.1.14 shows the average total bookings by fare class for a day of departures. Fig 3.1.15 

shows average total market daily revenues, passengers and load factors. 

 

We find that in the competitive scenario the sum of the average values of the airline 

unconstrained forecasts is not always higher than the expected value of the forecast made by 

the equivalent monopoly. It is true for the low classes 4 and 5, but it is not for the high 

classes. In this competitive scenario, total market nested booking limits are smaller than 

under the monopoly scenario only for the low classes 6 and (5, 6). Still, under competition 

the sum of the airline unconstrained forecasts for all classes is higher than the unconstrained 

forecast for all classes made by the monopoly. The difference in forecasts by class between 

the monopoly case and the competition case is much larger for the low classes than for the 

high classes. Under competition total market bookings in the highest fare classes are slightly 

smaller, total market bookings in the middle classes are higher and total market bookings in 

the lowest classes are lower. Because of this difference in total market fare class mix, the 

oligopoly generates higher total market revenues than an equivalent monopoly through 

higher yields and lower load factors, as shown in Fig 3.1.15. The oligopoly gets fewer total 

average passengers, but has a higher average fare. 

 

 

 
 

Fig 3.1.12 Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.13 Average total market booking limits, 8am flight, 24 days prior departure 

  

 

 

 
 

Fig 3.1.14 Average total bookings by fare class for a day of departures 

 
 

 

 

 

 

  
 

Fig 3.1.15 Average total daily market revenues, passengers and load factors 
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The PODS simulator allows us to check that this noticed behavior of competitive 

environments as compared to monopolies is actually due to spill-in and sell-up of demand. 

The PODS simulator can be run in a “First Choice Only Choice” (FCOC) mode, in which if 

a passenger does not get his first choice for a fare class, he will not spill-out to another 

airline or sell-up to another fare class. This mode does not model realistic situations, but 

helps us estimate the impact of spill-in and sell-up. In such a mode, the non-constrained 

demand for a competing airline is only its first-choice non-constrained demand. Fig 3.1.16 

through Fig 3.1.19 show the results of the “First-Choice-Only-Choice” simulations. We no 

longer find the same results as above. 

 

In an oligopoly: 
     
- For all classes total market unconstrained forecasts are higher. 

- For all classes total market booking limits are higher.  

- For all classes overall total market bookings slightly decrease. 

- Both total market revenues and load factors decrease. 
 

First, this confirms that spill-in and sell-up of demand are responsible for the smaller 

booking limits for the low classes observed in the competitive case as compared to the 

monopoly case. In the competitive case, spill-in and sell-up can be accounted for 40% of the 

total market forecasts for the set of classes (1,2,3,4,5). 
 

 Second, this suggests that the behaviour for the high classes found with spill-in and sell-

up which are contrary to the theory exposed both in the literature and 3.1.1 could be caused 

by another factor than spill-in and sell-up. An in depth study of the simulation data reveals 

that total market unconstrained forecasts for the high classes are smaller under competition 

than under monopoly because of an imprecision of booking-curve unconstraining modules of 

forecasters that is larger than the value of spill-in and sell-up. Even if spill-in and sell-up 

should theoretically slightly lead to higher total market forecasts for high classes, 

imperfections of the unconstrainers lead to the opposite.  
 

Last, FCOC simulations also suggest that if there was neither spill-in nor sell-up, 

oligopolies would not generate as much total market revenues as a monopoly. An 

explanation is that the accuracy of the forecast of individual members of the oligopoly is not 

as good as the accuracy of the forecast by the monopoly. The monopoly benefits from more 

data, its aggregate forecast should be more precise. The more airlines in the oligopoly, the 

less accurate the individual airlines’ forecasts, further affecting total market revenues. 
 
 

 
 

Fig 3.1.16 FCOC - Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.17   FCOC - Average total market booking limits, 8am flight, 24 days prior 

departure 

 

 

 
 

Fig 3.1.18 FCOC - Average total bookings by fare class for a day of departures 

 

 

 

  
 

Fig 3.1.19 FCOC - Average total daily market revenues, passengers and load factors 
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We can check that the same results are found whatever the initial allocation of total market 

first-choice non-constrained demand among the competing airlines. The former results were 

found with an equal distribution of demand among the competing airlines. For instance in 

the duopoly case, on average one half of the passengers preferred one airline, and the other 

half preferred the other airline. 

 

We compare below the following cases:  

- A monopoly situation 

- A duopoly situation with initial distribution of non-constrained demand of  1/2  vs.  1/2. 

50% of the people prefer airline 1 all else equal. 

- A duopoly situation with initial distribution of non-constrained demand of  1/3  vs.  2/3. 

33% of the people prefer airline 1 all else equal.  

- A duopoly situation with initial distribution of non-constrained demand of  1/4  vs.  ¾ 

25% of the people prefer airline 1 all else equal. 

 

with capacities remaining the same as shown in Fig 3.1.9. 

 

Results suggest that the distribution among airlines of first-choice non-constrained demand 

has naturally an impact on the individual performance of airlines. Yet at the scale of the total 

market, the differences between a duopoly and a monopoly enumerated above hold whatever 

the initial distribution of non-constrained demand among airlines. Fig.3.1.20 through 

Fig.3.1.23 compare the total market statistics with respect to the initial distribution of non-

constrained demand among airlines in a duopoly. “1/2 vs. 1/2” refers to passengers equally 

preferring the two competitors. “1/3 vs. 2/3” refers to 1/3 of the passengers preferring one 

airline, and 2/3 preferring the other. “1/4 vs. 3/4” refers to 1/4 of the passengers preferring 

one airline, and 3/4 preferring the other. 

 

 

 

 

 

 
Fig 3.1.20 Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.21  Average total market booking limits, 8am flight, 24 days prior departure 

 

 

 

 
 

Fig 3.1.22   Average total bookings by fare class for a day of departures 

 

 

 

 

  
 

Fig 3.1.23  Average total daily market revenues, passengers and load factors 
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Scenario 2: Fully-restricted fare structure, Lautenbacher dynamic programming  

 

 

EMSRb is a heuristic widely used in airline revenue management systems. Although not 

widely used in practice, dynamic programming is another optimization technique widely 

studied for possible real-world application. We therefore run the same scenario as scenario 1 

but with Lautenbacher dynamic programming optimization (a detailed description can be 

found in  Lautenbacher and Stidham [21]) to see whether theoretical results still hold even 

with dynamic programming optimization. 

 

We first run simulations where total daily first-choice non-constrained demands are 

equally distributed among the competing airlines. Fig 3.1.24 shows the average sum of the 

average values of the unconstrained forecasts made by airlines for the 8am flights, 24 days 

before departure. Fig 3.1.25 shows the associated average total market nested booking limits. 

Fig 3.1.26 shows the average total bookings by fare class for a day of departures. Fig 3.1.27 

shows average total daily market revenues, passengers and load factors. 

 

 The results are very similar to when airlines use EMSRb. In the competitive scenario the 

sum of the average values of the airline unconstrained forecasts is lower than in the 

monopoly scenario for classes 1,2,3,4. In the competitive scenario, total market nested 

booking limits are smaller than under the monopoly scenario only for the low classes 6 and 

(5,6). Under competition total market bookings in the highest fare classes is slightly smaller, 

total market bookings in the middle classes is higher and total market bookings in the lowest 

classes is lower than under the monopoly. Yet with dynamic programming, the oligopoly 

does not always generate higher total market revenues than an equivalent monopoly, as 

shown in Fig 3.1.27.  

 

 

 

 
 

Fig 3.1.24 Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.25 Average total market booking limits, 8am flight, 24 days prior departure 

 

 

 
 

Fig 3.1.26 Average total bookings by fare class for a day of departures 

 

 

 

 

 
 

 

Fig 3.1.27 Average total daily market revenues,  passengers and load factors 
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Running the same scenarios in a “First Choice Only Choice” provides the same 

conclusions with dynamic programming than with EMSRb. Fig 3.1.28 through Fig 3.1.31 

show the results of the “First-Choice-Only-Choice” simulations. 

 

In the oligopoly  with FCOC mode: 

 

- For all classes total market unconstrained forecasts are higher. 

- For all classes total market booking limits are higher. 

- For all classes overall total market bookings slightly decrease. 

- Both total market revenues and load factors decrease. 
 

First, in the competitive case, spill-in and sell-up account for 35% of the total market 

forecasts for the set of classes (1,2,3,4,5). This confirms that the spill-in and the sell-up of 

demand are responsible for the smaller booking limits for the low classes observed in the 

competitive case as compared to the monopoly case.  

 

Second, we find again that even if spill-in and sell-up should theoretically lead to higher 

total market unconstrained forecasts for high classes, imperfections of forecasters lead to the 

opposite. 

 

Last,  FCOC simulations also suggest that if there was neither spill-in nor sell-up, 

oligopolies would not generate as much total market revenues as a monopoly because of less 

accurate forecasts. 

 

 

 
 

 

 
 

Fig 3.1.28 FCOC - Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.29   FCOC - Average total market booking limits, 8am flight, 24 days prior 

departure 

 
 

 

 
 

Fig 3.1.30  FCOC - Average total bookings by fare class for a day of departures 

 

 

 

  
 

Fig 3.1.31  FCOC - Average total daily market revenues, passengers and load factors 
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Eventually we check that the same results are found whatever the initial allocation of first-

choice non-constrained demand among the competing airlines.  

 

We compare again the following cases:  

- A monopoly situation 

- A duopoly situation with initial distribution of non-constrained demand of  1/2  vs.  1/2 

- A duopoly situation with initial distribution of non-constrained demand of  1/3  vs.  2/3  

- A duopoly situation with initial distribution of non-constrained demand of  1/4  vs.  3/4  

 

with capacities remaining the same as shown in Fig 3.1.9. 

 

Results suggest again that the distribution among airlines of first-choice non-constrained 

demand has naturally an impact on the individual performance of airlines. Yet once more no 

matter how the total market non-constrained demand is initially spread among the 

competitors, we find the same overall behaviour of the duopoly as compared to the 

monopoly.  

 

Fig.3.1.32 through Fig.3.1.35 compare the total market statistics with respect to the initial 

distribution of non-constrained demand among airlines in a duopoly.  

 

 

 

 

 

 

 

 

 

 
 

Fig 3.1.32 Average sum of airline forecasts, 8am flight, 24 days prior departure 
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Fig 3.1.33  Average total market booking limits, 8am flight, 24 days prior departure 

 

 

 
 

Fig 3.1.34   Average total bookings by fare class for a day of departures 

 

 

 

 

  
 

Fig 3.1.35  Average total daily market revenues, passengers and load factors 
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Scenario 3: Unrestricted fare structure, EMSRb optimization, Q forecasting  

 
 

The  assumption of independent classes made in the literature and propositions A and B is 

best justified in fully-restricted structure environment. We run here simulations of an 

unrestricted fare structure to check whether as mentioned in 3.1.1 results should hold with 

important sell-up. In this test, both airlines use EMSRb optimization (a detailed description 

can be found in Talluri and van Ryzin [33] p. 47-50) and Q-forecasting (a precise description 

can be found in Cleaz Savoyen[7]) and booking curve unconstraining (a detailed description 

can be found in Hopperstad[17]).  

 

Fig 3.1.36 through 3.1.39 display results of the simulations of the unrestricted fare 

structure scenario with first-choice non-constrained demands equally distributed over 

airlines. For all classes the sum of the expected values of airline unconstrained forecasts in 

competition is larger than the expected value of the unconstrained forecast made by the 

monopoly. This causes total market booking limits to be smaller under competition than  

under monopoly  whatever the fare class. The lower the fare class, the larger the proportional 

decrease in booking limits between the monopoly case and the oligopoly case. Because of 

such booking limits, the oligopoly has fewer bookings in the lowest fare class, but higher 

bookings in all the upper classes. That way the oligopoly is able to generate more revenues 

through lower load factors and a higher yield than the monopoly.  

 

The difference with theory for high classes due to the imperfection of the unconstraining 

module of forecasts is not found in this case. This is because with Q-forecasting, forecasts 

for the highest classes are computed as a given proportion of a total demand for all classes. 

This total demand for all classes being in many cases computed with historical bookings for 

low classes, for which the error of the forecaster is smaller than spill-in and sell-up. In that 

case, whatever the fare class, the error of the forecaster is hence smaller than spill-in and 

sell-up, so that forecasts are higher under competition than under monopoly.  

 

 

 

 
 

Fig 3.1.36 Average sum of airline forecasts, 8am flight, 24 days prior departure 

60 seats  60 seats 



72 

 

 
 

Fig 3.1.37 Average total market booking limits, 8am flight, 24 days prior departure 

 

 

 
 

Fig 3.1.38   Average total bookings by fare class for a day of departures 

 

 

 

 

  
 

Fig 3.1.39 Average total daily market revenues, passengers and load factors 
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Fig 3.1.40 to Fig 3.1.42 show the results of the equivalent FCOC simulation. We find the 

opposite results than without FCOC. In competition, total market unconstrained forecasts 

have a lower expected value than in a monopoly. Booking limits are higher for all classes in 

competition, and revenues lower. These FCOC simulations show us that the spill-in, 

completed by sell-up, is responsible for the differences in booking limits between oligopoly 

and monopoly: If there was neither spill-in nor sell-up, the oligopoly would generate lower 

total revenues due to less accurate individual airlines’ forecasts made with smaller samples 

than the monopoly. 
 

 

 

 
 

Fig 3.1.40 FCOC - Average sum of airline forecasts, 8am flight, 24 days prior departure 

 

 
 

 
 

Fig 3.1.41 FCOC - Average total market booking limits, 8am flight, 24 days prior departure 

 

 
 

  
 

Fig 3.1.42 FCOC  - Average total daily market revenues, passengers and load factors 
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Similar results are found when the initial allocation of first-choice non-constrained 

demand among the competing airlines is not even. No matter the tested allocation of non-

constrained demand between airlines, total market unconstrained forecasts are higher and 

total market booking limits are smaller under competition, moving the fare class mix 

towards upper classes, and generating more revenues through smaller load factors and higher 

yields. Fig.3.1.43 through Fig.3.1.46 compare the total market statistics with respect to the 

distribution of first-choice non-constrained demand among airlines in a duopoly.  

 

 

 

 
 

 
 

Fig 3.1.43 Average sum of airline forecasts, 8am flight, 24 days prior departure 

 

 

 

 

 
 

Fig 3.1.44  Average total market booking limits, 8am flight, 24 days prior departure 
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Fig 3.1.45  Average total bookings by fare class for a day of departures 

 

 

 

 

 

 
 

 
Fig 3.1.46 Average total daily market revenues, passengers and load factors 
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3.1.4 Conclusions 
 

 

 

We extended the theoretical results of the literature stating that all else equal, an oligopoly 

sets higher total market protection limits for classes than an equivalent monopoly would do. 

We first introduced our terminology and our model, and provided a general intuitive 

reasoning that is valid for N airlines with n classes and with dependent non-constrained 

demands among classes. We then proved the result with different more restrictive 

assumptions. We finally performed PODS simulations to validate the general intuitive idea 

and to examine whether the proved results can be extended to more complex real world 

situations. We found that in a single market, when airlines have the same fully-restricted or 

unrestricted fare structure, use the same forecasting and optimization method: 

 

1. Theoretical results apply to more realistic cases where airlines use optimization 

methods such as EMSRb or dynamic programming, where non-constrained demands 

for classes are not independent, and whatever the distribution of first-choice non-

constrained demand among competitors.  

 

2. If forecasters were perfect, total market unconstrained forecasts would be higher under 

competition than under a monopoly. Total market protection levels set by an oligopoly 

would therefore be higher than the ones set by a monopoly for the same total market 

seat capacity.   

 

3. Yet this theoretical result is not always verified in practice if the forecasters (and 

especially the unconstrainers) happen to have an imprecision larger than spill-in and 

additional sell-up. This is more prone to be the case for fare classes with small spill-in 

and additional sell-up, which are the highest classes. 

 

4. In the simulations run, when oligopolies set higher protection levels than monopolies, it 

is often associated with an increase in revenues through lower load factors and higher 

yields. This stems from the fact that the used revenue management methodologies used 

might be slightly under-aggressive as compared to the optimum. If there was neither 

spill-in nor additional sell-up, total market revenues generated by the oligopoly would 

be lower than the revenues generated by an equivalent monopoly, because individual 

airlines’ forecasters would not be as accurate as the monopoly’s due to smaller 

historical samples. 
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3.2   Competitive Interactions with Current Airline Revenue   

        Management  
 

 

 

In 3.1 we distinguished a competitive environment from a monopolistic environment as 

regards current airline revenue management systems, both with theoretical results and with 

more complex PODS simulations. We made conclusions on the impact of competition at a 

total market level. In this part we focus on the impact of competition at the level of a single 

airline. We describe the passive competitive interactions between current airline revenue 

management systems. We first examine the forecasting modules that provide unconstrained 

estimates of future non-constrained demands. We then concentrate on optimization modules 

which use these forecasts to set booking limits. We try to keep our theoretical reflection as 

close as possible to real world cases. We do not run specific simulations, but we link our 

findings to the results of the PODS simulations described in the Literature Review (Part 2.1). 

 
  

 

3.2.1 Forecasting 

 

In practice most airline automated forecasters rely on raw historical bookings data only 

and do not take into account the competitive environment. Revenue management systems 

use huge amounts of data so forecasting methods have usually been kept simple to insure 

short run times. The time and financial investment necessary to improve forecasts is often 

not as justified as improving other facets of airline revenue management. Therefore the 

majority of current automated forecasting methods simply extrapolate raw past bookings and 

try to best estimate their logical sequel. They do not try to differentiate spill-in from first-

choice demand. They do not balance past bookings with the competitive environment in 

which they where made. Neither do they balance future forecasts with the current 

competitive environment.  
 

Airline revenue management in practice mostly relies on human analysts to take into 

account the competitive environment. Analysts override the forecasts to adapt them to 

specific market conditions. It is in fact wiser for a human analyst to modify the forecasts 

rather than the booking limits: an experienced analyst knowing market conditions can make 

a better estimate of demand than a computer, but rarely can he optimize booking limits better 

than a computer. 
 

Automatically incorporating knowledge on competition presents two major obstacles. The 

first one is the nature of the data about the competitors that is available to airlines. Knowing 

the competitive environment consists of recording the class availabilities and the fare level 

of the competitor. Obtaining such data is not easy. Exact inventories, past and current 

bookings are private data. Remaining availabilities and associated fares are public data. 

Some of the private data could be guessed through reverse engineering of the public data. 

Yet it would be possible for an airline to confuse such reverse engineering from its 

competitors. As a consequence, as of today the airline revenue management competitive 

game cannot be considered as a complete information game. In this thesis we use the 

term “LOCO” to designate the lowest available class of the competition at a given time. 

This information on the competitor’s availability is imprecise but easily accessible by 

airlines. 
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The second and more difficult problem with incorporating competitive environments in the 

automated forecasts is that future competitor moves are unpredictable. The competitor 

analysts could override their own system to implement specific tactics modifying high fare 

protection. But competitors might not also act in order to directly optimize revenues. 

Overriding systems to open more low classes is a marketing strategy used by legacy carriers 

to maintain market share (cf. Lua [28]). Besides in the area of airline revenue management 

and pricing, it is possible but not proven that fares and availabilities could be used as a 

means of communication between airlines. It is conceivable that some fare/availability 

changes in an origin-destination market could be measures of retaliations or warnings 

relative to competitive moves in other origin-destination markets. A limited possibility for 

forecasting is to suppose that the competitor analysts will not override their system and that 

the competitor will rely exclusively on its automated system. In that case it would be 

possible to estimate the future behavior of the competitor knowing its past demand behavior. 
 

Forecasts can actually reflect competitive moves if these moves are sustained over the 

period of time covering the historical data sample used to generate a forecast. In that case 

only, the extrapolation of the historical data sample will reflect the competitor move. We call 

this characteristic period of time the inertia of a forecaster. If a competitive move is 

sustained over a period at least as long as the inertia of the forecaster, the forecast will have 

adapted with a delay equal to its inertia. If a competitive move is not sustained long enough, 

the extrapolation of historical data will not reflect this move. In this case, only an adjustment 

of the forecast by a human analyst could make it reflect the short-term competitive move. 
 

 

3.2.2  Optimization of the Booking Limits 

 

The airline revenue management optimization models published until now have not 

explicitly taken into consideration competitive feedback effects. Yet because of the inertia of 

forecasters, any revenue management system that does not purposely take into account 

competitive interactions for optimization can still have a passive response to a long-term 

change in the booking limits by its competitors. As shown in Fig 3.1.8 and 3.1.8bis, by 

changing their booking limits, competitors modify spill. If this modification of booking 

limits is done over a long enough period of time, the other airline will detect a change in its 

accepted bookings, which eventually will lead it to change its own booking limits. 
  

The problem of competitive revenue management interactions between two airlines can 

be expressed as the following game: 
 

-  Two competing airlines offering n equivalent fare classes. 

-  The strategy of airline j consists of a set of n nested protection levels (
j

iX ..1 )i=1..n 

-  The payoff of  the combination of strategy (
1

..1 iX )i=1..n and strategy (
2

..1 iX )i=1..n  is the 

associated expected revenues 1  and 2 . 
 

Because airline revenue management systems can have delayed automated competitive 

reactions, it is important to distinguish two different cases when studying this revenue 

management game: 

-   Games with strategy moves lasting less than the inertia of the forecasters. 

    (We will call these short-term moves/short-term games) 

-   Games with moves that last at least as long as the inertia of the forecasters.  

    (We will call these long-term moves/long-term games) 
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Before going into the details of long-term and short-term competitive reactions between 

airline revenue management systems, we want to point out that the more an airline is 

preferred, the smaller the ratio between its observed spill-in and its first-choice non-

constrained demand. The less an airline is preferred, the higher the ratio between its 

observed spill-in and its first-choice non-constrained demand. This means that an airline that 

is initially preferred is less sensitive/vulnerable to the revenue management decisions of its 

competitors. All else equal, it is reasonable to believe that a legacy carrier is preferred to a 

low-cost airline. Hence in terms of seat inventory control a low-cost airline is more 

vulnerable/sensitive to the seat inventory decisions of legacy carriers than the opposite.  

 

Furthermore, as seen in part 3.1, the imprecision of forecasters could in some cases 

dominate spill-in. In part 3.2, we showed that spill-in could account for as high as 40% of 

the demand for an airline and a class. All of the following reasoning assumes that the 

competitive effects on demand are larger than the imprecision of forecasters.  

 

 

Passive competitive reactions to long-term moves 

 
 

For long-term revenue management games, the notion of Nash Equilibrium is weak. If one 

airline makes a unilateral long-term move, this will cause an automatic reaction from its 

competitor. For airline 2’s strategy to remain unchanged with a unilateral long-term move by 

airline 1, airline 2 must actually intervene and override its revenue management system. 

Therefore even if a unilateral move is not revenue positive for its instigator, it could still 

want to make it, expecting the automated reaction from its competitor that could ultimately 

lead it to better revenues. Airlines could possibly have an incentive to move unilaterally 

from a Nash Equilibrium. Conversely if its competitor makes a long term move, an airline 

will have the choice between letting its automated revenue management system choose the 

new strategy to adopt, or overriding this system and choosing “manually” a new long-term 

move. Note that the response to a long-term move must be a long-term move, because the 

effect of a short term move is then negligible.  

 

Proposition D presents a result on long-term moves. Proposition C introduces a result on 

the spill-in generated by the EMSRb method useful for the proof of proposition D. 

 

 

Proposition C:  
 

Suppose: 

- An airline optimizes a set of  classes (1..i) using EMSRb. 

- Non-constrained demands for classes follow a normal distribution truncated at 0  

(demands are positive). 

- Proportional changes in the average revenue weighted by class non-constrained demands 

for the set (1..i)  are negligible. 

 

Let: 

- Spill : d  Spill(d) be the application that associates a stochastic non-constrained 

demand d for a set of classes of an airline with the stochastic spill-out it generates using 

EMSRb. 
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Then: 

- Spill(d) is also a stochastic variable following a normal distribution truncated at 0. 

- The distribution of  Spill(d) is a function of the standard deviation of d only. 

- The expected value and the standard deviation of Spill(d) are increasing in the standard 

deviation of d. 

 

Proof:  
 

In that case the protection level set by the airline can be written X =    ddE  .constant. 

The distribution of  Spill(d) is then the distribution of d – X = d –    ddE  .constant 

truncated in 0. d follows a normal distribution truncated in 0. Therefore Spill(d) has a 

distribution equal to  d  (SND + constant) truncated in 0 where SND is the standard 

normal distribution. Hence the results. 
 

End of Proof 
 

 

Proposition D 

 

Suppose: 

- 2 airlines, choosing their protection level 
j

iX ..1  for the set of classes (1..i) 

- Non-constrained demands for classes are independent, follow a steady normal distribution 

truncated in 0 
 

- Nested booking limits are reached  
 

- Forecasters are accurate (unconstrained demand is equal  to non-constrained demand) 

 

Then: 

- In most of the real-world cases, the long-term competitive response of an airline using 

EMSRb is negative:  

- When airline 2 makes a long term move where it increases a protection level, this 

decreases the expected value and the standard deviation of the associated spill-in 

observed by airline 1. With delay, airline 1 using EMSRb will decrease its equivalent 

protection level. According to proposition C the expected value and the standard 

deviation of the spill-in towards airline 2 are decreased. The opposite is true when 

airline 2 makes a long term move decreasing its protection level.  

- The feedback effect changing the spill-in towards airline 2 reinforces the first-order 

effect on airline 1. 
 
 

Proof:  
 

Keeping the notations from 3.1.1, to optimize its revenues with an EMSRb rule, airline 1 

would choose the booking limit for a set of classes (1..i) so that: 
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When airline 2 increases its protection level, it affects spills in the following way:  
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 This implies that in “non-extreme cases” the passive EMSRb response 
2

..1

1

..1

i

i

X

X




 is negative. 

 

 “Extreme cases” include cases where the ratios between the fares of the fare classes are 

very close to 1, cases where the proportional change in the average fares weighted by non-

constrained demands is not negligible, cases where the first-choice non-constrained demands 

have very small standard deviation etc. 

 

The feedback change in the spill-in towards airline 2 can be deduced from proposition C, 

and reinforces the effect of the initial move by airline 2. 

 
 

End of Proof 
 

 

 

Note that as opposed to 3.1.1, the result stating that the competitive response 
2

..1

1

..1

i

i

X

X




of an 

airline using EMSRb is negative does not require that the airlines have the same fares for 

competing classes nor that first-choice non-constrained demands for each airline be a 

constant fraction of a given total market non-constrained demand. Also note that this result 

remains valid with N>2 airlines if we replace the change in the protection level by airline 2 

by the overall change in the sum of the N-1 competitors’ booking limits.  

 

Suppose Airline A is using EMSRb and that stochastic first-choice non-constrained 

demands are steady. If as a long-term move, its competitor Airline B increases the protection 

level for the set of classes (1..i), proposition D suggests that in the long term Airline A will 

fix its protection level for (1..i) using EMSRb with a lower level of total non-constrained 

demand. In that case, the expected total revenues of Airline A should decrease, and its spill-

out to Airline B is reduced. Fig 3.2.1 illustrates this passive response from Airline A with 

four successive steps. Step 1 is the first move by Airline B. Step 2 is the consequence of this 

move on spill-in. Step 3 is the passive response from Airline A. Step 4 is the consequence on 

spill-in of this move by Airline A. Note that step 4 just reinforces step 2. 

 

Suppose Airline A is using EMSRb and that stochastic first-choice non-constrained 

demands are steady. If as a long-term move, its competitor Airline B decreases the 

protection level for the set of classes (1..i), proposition D suggests that in the long term 

Airline A will fix its protection level for (1..i) using EMSRb with a  higher level of total 

non-constrained demand. In that case, the expected revenues of Airline A should increase, as 

well as its spill-out to Airline B. Fig 3.2.2 illustrates this passive response from Airline A 

with four successive steps. Step 1 is the first move by Airline B. Step 2 is the consequence of 

this move on spill-in. Step 3 is the passive response from Airline A. Step 4 is the 

consequence on spill of this move by Airline A. Note that step 4 just reinforces step 2. 
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Fig 3.2.1 Passive competitive reaction  of Airline A’s EMSRb revenue management 

system when Airline B decreases its booking limit on the long term 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.2.2 Passive competitive reaction of Airline A’s EMSRb revenue management 

system when Airline B increases its booking limit on the long term 
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These theoretical results on passive reactions of revenue management systems to long-

term competitive moves explain the results found in part 2.1. Simulations from the literature 

suggested that if an airline is using EMSRb and its competitor improved its revenue 

management system, it would decrease the passive airline’s revenues. Improving one’s 

revenue management system often means higher protection levels and fewer spill-in of high 

classes to the competitor. Our result indicates that in that case, the passive airline using 

EMSRb gets smaller non-constrained demand for high classes. As a consequence it will 

decrease its protection levels to optimize revenues but will have lower total expected 

revenues than before the competitor made its move. All the past simulations of competitive 

environments as described in 2.1 indicate that this remains true whatever the revenue 

management method used by the passive airline. If its competitor improves its revenue 

management method by lowering its booking limits, the passive airline will get lower non-

constrained demands for high classes, and consequently will increase its booking limit to 

reoptimize its revenues, but will end up in a worse-off situation after all. Similarly, when an 

airline catches up with the better revenue management of its competitor, the competitor sees 

its revenues decrease as compared to when he had the advantage of the revenue management 

method. Nevertheless each airline’s revenues are then higher than when no airline had 

implemented this better revenue management method. Fig 3.2.3 illustrates our point by 

showing the changes in booking limits and revenues of airlines due to airlines implementing 

better revenue management.  

 

 

 

 

  AirlineB:   no move AirlineB: better RM 

Airline A 
revenues 

Airline B 
revenues 

Airline A 
revenues 

Airline B 
revenues 

AirlineA:  no move  0           0                -              ++            

AirlineA: better RM ++           -               +               +  
 

 

  
 

Fig 3.2.3  Revenue implications of the passive interactions of revenue management 

systems when an airline implements a better form of revenue management. 

Arrows represent the change in booking limits set by the airlines at the equilibrium. 

 

 

 

These results also confirm the results by d’Huart and Belobaba [10] that when a carrier 

open-matches its competitor, it leads to better revenues for the latter. By open-matching its 

competitor, an airline consistently decreases its protection levels for higher classes, leading 

to a long-term increase in its competitor’s non-constrained demand for higher classes, in its 

protection levels, and in its revenues.  
 

Moreover we can deduce from these results on passive competitive reactions of EMSRb 

systems that when two airlines use EMSRb to set their booking limit for a given set of 

classes (1..i), they should on the long term reach a stable equilibrium. We can use a 

graphical reasoning as a demonstration, and an example is provided in Fig 3.2.4. Former 

results indicate that for given initial demands, the EMSRb protection level for (1..i) and the 

EMSRb revenues by one airline are decreasing functions of the protection level for (1..i) set 

 (- +) 

 

 (+ -) 
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by the competitor. Besides the EMSRb protection level of an airline is strictly positive when 

the competitor is protecting its entire capacity because there is an initial demand specific for 

this first airline. This implies that if we draw the two EMSRb reaction curves in a same 

graph where axes are the protection levels set by the airlines, the two curves intersect. 

Because the two curves intersect, there is at least one stable equilibrium of protection levels 

for (1..i). In Fig 3.2.4 there is one stable equilibrium. If the EMSRb reaction curves with 

respect to the competitor’s protection level have no inflexion point, then there is necessarily 

a unique equilibrium. In this thesis we do not show whether reaction curves have an 

inflexion point. But our intuition is that in most real world cases, there is no inflexion point, 

and there is a unique stable equilibrium. 

 

 

 

 

 
 

 
 
 

 

 

Fig 3.2.4 Graphical representation of the case of two competing airlines using EMSRb 
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Passive competitive reactions to short-term moves 

 

 

For short-term revenue management games, the notion of Nash equilibrium holds. If an 

airline makes a unilateral short-term move, by definition the competitor’s automated revenue 

management system will not react to this short-term move. Fig 3.2.5 and Fig. 3.2.6 illustrate 

the competitive impact of a short-term competitive move. 
 

Suppose that first-choice non-constrained stochastic distributions of demands are steady. 

If as a short-term move, Airline B increases a protection level for the set of classes (1..i), the 

revenue management system of Airline A will not detect this move by Airline B. Airline B 

will decrease the expected value and the standard deviation of the spill-in and therefore of 

the non-constrained demand observed by Airline A for (1..i). In return Airline A will spill-

out less to Airline B than if Airline B had made no move. As Airline A is not changing its 

protection levels, if it is using EMSRb optimization, it is likely to be over-protecting. This 

should result in lower expected revenues for Airline A for the departure dates where Airline 

B is making the short term move.  
 

Suppose that first-choice non-constrained stochastic distributions of demands are steady. 

If as a short-term move,  Airline B decreases the protection level for the set of classes (1..i), 

the revenue management system of Airline A will not detect this move by Airline B. Airline 

B will increase the expected value and the standard deviation of the spill-in and therefore of 

the non-constrained demand observed by Airline A for (1..i). In return Airline A will spill-

out more to Airline B than if Airline B had made no move. As Airline A is not changing its 

protection level, if it is using EMSRb optimization, it is likely to be under-protecting. Still its 

mix of demand is improved. It should result in higher expected revenues for Airline A for 

the departure dates where Airline B is making the short term move. 
 

Note that whatever the scenario, the average daily revenues of the passive airline are 

lower after a short term move than after an equivalent long term move followed by a 

reaction by the EMSRb optimization system. Also note that all of the above results require 

the assumption that booking limits are reached whatever the move made by the competitor. 
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Fig 3.2.5  Competitive interaction, Airline B decreases a booking limit on the short term 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 3.2.6 Competitive interactions, Airline B increases a booking limit on the short term 
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Extension of the results to cases with dependent demands among classes 

 

 

We believe that a dependence of the non-constrained demands between classes can 

attenuate the amplitude but not the nature of the preceding results. Suppose there exists sell-

up between classes. Our justification is the following:  

 

- If  Airline B increases its protection level for classes (1..i), it is going to increase its 

sell-up from classes (i+1..n) to (1..i). But this increase in sell-up is necessarily smaller or 

equal to the change in the protection level. Hence the spill-in from Airline B to Airline A 

for classes (1..i) should still decrease in expected value and standard deviation because 

of the increase of the protection level of Airline B. If Airline B’s move is sustained on 

the long term, it will lead Airline A to decrease its protection level. This will decrease 

Airline A’s sell-up from classes (i+1..n) to (1..i), which will not lead Airline A to 

increase its protection level. 

 

- The same reasoning can be applied if Airline B decreases its protection level. 
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3.2.3 Conclusions 

 

We define the airline revenue management competitive game as: 
 

 - Two competing airlines offering n equivalent fare classes. 

-  The strategy of airline j consists of a set of n nested protection levels (
j

iX ..1 )i=1..n 

-  The payoffs of  the combination of strategy (
1

..1 iX )i=1..n and strategy (
2

..1 iX )i=1..n  are the 

associated expected revenues 1  and 2 . 

 

A revenue management competitive move is a change in a nested protection level for 

given steady distributions of demands.  
 

Automated forecasters in airline revenue management systems have usually been kept 

simple and extrapolate past data without balancing it with past competitive situations or 

current competitive situations. They adapt to competitive moves but with a certain delay that 

we call the inertia of a forecaster. The following conclusions require that the impact of 

competitor moves on demand be larger than a possible imprecision of forecasters.  
 

Competitor moves that last for a duration shorter than the forecaster inertia are not taken 

into account by the forecaster or by the optimizer. The passive airline does not modify its 

booking limits. On average, it experiences higher revenues and spills-out more for the 

associated high classes if the competitor decreases a protection level. It will experience 

lower expected revenues and will spill-out less for the associated high classes if the 

competitor increases a protection level. 
 

Competitor moves that last at least as long as the inertia of the forecaster are taken into 

account. Suppose a passive airline uses an automated revenue management system. If the 

competitor increases a booking limit, this should cause the passive airline to get more first- 

non-constrained demand for the associated high classes, to decrease its equivalent booking 

limits, and to get more revenues. If the competitor decreases a booking limit, this will cause 

the passive airline to get less non-constrained demand for the associated high classes, to 

increase its equivalent booking limit, and to get less revenues. Therefore the protection level 

for a set of classes (1..i) and the revenues set by the passive airline with its optimization 

method are decreasing functions of the competitor’s protection level for the set of classes 

(1..i). Furthermore, if both airlines have implemented an automated optimization method, 

they should reach a stable equilibrium situation.  
 

These results on the long-term passive competitive reactions of airline revenue 

management systems are demonstrated in reasonable scenarios under the assumptions of 

independent non-constrained demands by classes and reached booking limits for airlines 

using an EMSRb method. They should still hold but be attenuated even with dependent 

demands for classes, when there exists sell-up between classes. They match observations 

made on competitive interactions of airline revenue management systems in former complex 

PODS simulations described in the literature review. The rest of the former PODS 

simulations described in the literature review seem to allow the extension of the results to 

other automated optimization methods than EMSRb. 
 

Last but not least airlines preferred to their competitor all else equal are less sensitive to 

their competitive environments. This suggests that in the field of revenue management, low-

cost carriers are all else equal more sensitive to moves by legacy carriers than the opposite. 
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CHAPTER 4.     

PROPOSED COMPETITIVE APPROACHES 

 
 

In this chapter, we examine possible airline revenue management methodologies to take 

into account the competitive environment. In the first part we present an approach for 

heuristic adjustment of forecasts which incorporates information on the current seat 

inventory situation of competitors. In the second part we offer an overview of the impact of 

overrides of revenue management systems as competitive moves.  
 

 
 

4.1  LOCO-based Forecast Multiplication 

 

LOCO is an abbreviation designating the “lowest open class of the competitor”. LOCO-

based Forecast Multiplication is a heuristic adjustment of the unconstrained forecasts of 

demand by one airline based on the simultaneous fare class availability offered by its 

competitors. We first present the theoretical principles of this method. We then use PODS 

simulations to estimate how much it can improve airline revenue management performance. 
 

 

4.1.1 Concept 

 

As its name suggests, LOCO-based Forecast Multiplication involves multiplication of the 

forecasts of unconstrained demand distributions. It takes into account the competitive 

environment, and more specifically the simultaneous seat inventory availability of the 

competitor. It compares the current competitive situation with the past competitive situations 

so as to adjust the current unconstrained demand distributions forecasted by traditional 

airline forecasters.  
 

In part 3.2.1 we indicated two challenges facing the development of automated  

competitive approaches for revenue management: The unpredictability of competitor moves 

and the limited availability of competitive inventory data. LOCO-based Forecast 

Multiplication addresses these challenges by supposing that the competitor is letting its 

automated revenue management system run without overriding it, and by using the available 

competitive indicator that is LOCO (Lowest Open Class of the COmpetitor). LOCO is not an 

as precise indicator of availability as the actual competitors’ booking limits and bookings-in-

hand, but it is more easily available. For a given LOCO, there are many possible 

combinations of the competitor’s current booking limits and bookings-in-hand. 
 

The general idea behind LOCO-based Forecast Multiplication is the following: Suppose 

that the stochastic distribution of non-constrained demands and the ratios between the 

average fares of classes are steady. Suppose the competitor is nesting its protection levels. If 

without overriding its automated revenue management system, the competitor is more open 

(i.e. the LOCO is a lower fare class than usual) for a given time frame before departure, then 

this  competitor is likely to compete more than usual for passengers for the given flight. It 

will spill-out less than historically in the future time frames before the same departure. Our 

forecasts of unconstrained demand should be decreased. Conversely, if the competitor is 

more closed than usual (i.e. the LOCO is a higher class than usual) for a given time frame 
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before departure, the competitor is likely to compete less than usual for passengers for the 

given flight. It will spill-out more than historically in the future time frames before the 

departure. Our forecasts of unconstrained demand should be increased. 

 

Here is a more detailed reasoning. Suppose the stochastic distribution of non-constrained 

demands and the fare ratios between the average fares of classes are steady. If the competitor 

is not overriding its automated revenue management system, and if forecasters are relatively 

accurate, its protection levels should themselves remain mostly steady. If the competitor is 

more open for a fare class at the current time frame before departure than it has historically 

been for the same time frame, then there is higher likelihood that its bookings-in-hand for 

this class and the lower ones are currently smaller than on the comparable historical average. 

For any set of fare classes containing this class and the lower ones, the probability is small 

that the competitor will experience a non-constrained demand sufficiently high to make up 

for its currently low bookings-in-hand. Besides, the probability is small that the current low 

bookings-in-hand for this class and the lower ones are due to a low level of non-constrained 

demand for one class only. Therefore the probability is greater that the competitor’s 

bookings-in-hands for any bottom-up set of classes will remain lower than usual in the future 

time frames for that same departure. The competitor will have higher chances to be more 

available than usual for all bottom-up sets of classes in the future time frames for the given 

departure. This should decrease its spill-out, and decrease the non-constrained demands for 

all classes of the other airlines. Our forecasts of unconstrained demand should be decreased. 

The opposite is true if the competitor is more closed than usual for a set of fare classes for a 

given time frame before departure. 

 

For best performance of LOCO-based Forecast Multiplication, the definition of LOCO has 

to be restricted to the lowest open competitor class on the same path and for the directly 

competing flights in terms of schedule. LOCO has to be recorded for each time frame, and  

the current LOCO has to be compared to the average historical LOCO for the same time 

frames of preceding departure dates.  

 

Formulations of LOCO–based Forecast Multiplication should be specific to the forecaster 

used by the airline to avoid double-counting. We have seen that a competitor more open than 

usual will decrease our level of non-constrained demand. There are two imaginable reasons 

why a competitor could be more open than usual with no override of its revenue 

management system: Either its own current non-constrained demand is lower than usual, or 

the total market level of non-constrained demand is lower than usual. Some forecasters 

detect the latter case, some do not. If they do, then there would be some double counting by 

decreasing our forecasts if the competitor is more open than usual. In this thesis we present a 

LOCO-based forecaster multiplier suitable for additive pick-up forecasting. This 

forecasting method considers that the non-constrained demands to come for each future time 

frame for a given departure are independent. To forecast future demands-to-come for a given 

departure, it merely adds up the historical distributions of demand for each of the remaining 

time-frames before departure. According to Talluri and van Ryzin [33] (p.470-472) additive 

pick-up forecasting is a simple heuristic used by many airlines and reported to perform well. 

 

We have explained why the unconstrained forecasts for all classes and future time frames 

of a departing flight should change when a competitor is more open/closed than usual for the 

current time frame before departure. It is correct to say that all the classes are not equally 

affected by the competitive situation. Yet to keep the heuristic simple, we multiply 

unconstrained forecasts for all the classes by the same value.  
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Different formulations for LOCO-based Forecast Multiplication for pick-up forecasters 

have been developed as part of the PODS Consortium research at MIT: 

 

 The forecast multiplier could be a function of the fraction of the historical 

observations of LOCO that were a higher/lower class than the current LOCO for the 

current time frame before departure: 

 
(4.1)    FMLOCO  =  1 + α( flower – fhigher) 

 
Where:  -   FMLOCO   is the value of the LOCO-based forecast multiplier 
 

                           -   flower  is the fraction of historical observations where the LOCO was a 

strictly lower class than the current LOCO. 
 

                           -   fhigher  is the fraction of historical observations where the LOCO was 

strictly higher class than the current LOCO. 
 

 -  α is a scaling constant 

 

In that case the multiplier is equal to 1 when the current LOCO is equal to the 

median value of historically observed LOCOs. It is higher than 1 if the current 

LOCO is higher than the median, and lower than 1 if the current LOCO is lower 

than the median value of LOCOs. α is a scaling constant that controls the amplitude 

of the forecast multiplication. Note that the value of FMLOCO belongs in that case to 

the interval [1- α;1+ α]. An implementation has to make sure the values of FMLOCO 

do not become excessive, and for instance restrict them within the interval [0.1;10]. 

 

Example:  

 

Given the frequencies that each class has historically been the LOCO for the current 

time frame: 
 

LOCO Frequency in the past observations 

used for forecasting 

Class 1 0.1 

Class 2 0.2 

Class 3 0.3 

Class 4 0.4 

 

We can compute the different values of FM1 depending on the current LOCO 

observed (here we set α=1): 
 

Current 

LOCO 

flo fhi FMLOCO 

Class 1 0.9 0 1.9 

Class 2 0.7 0.1 1.6 

Class 3 0.4 0.3 1.1 

Class 4 0 0.6 0.4 
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 The forecast multiplier could be a comparison of the current value of LOCO with the 

average value of LOCO over past observations of the current time frame before 

departure: 

 
(4.2)     FMLOCO  =   LOCO -LOCO1   

             
Where:  -    FMLOCO   is the value of the LOCO-based forecast multiplier 

 -   LOCO is the average index of LOCO over past observations 
   

 -    LOCO is the current index of LOCO 
 

 -    α is a scaling constant 

 

Classes are given an index, so that the lower the class in the nesting hierarchy, the 

higher the index. In that case the multiplier is equal to 1 when the current LOCO is 

equal to the average value of the historically observed LOCOs. α is a scaling 

constant that controls the amplitude of the forecast multiplication. Note that for the 

same value of α, the amplitude of the multiplier given by (4.2) is larger than the 

amplitude of the multiplier given by (4.1). An implementation would have to make 

sure the values of the forecast multiplier cannot leave a set interval, such as [0.1; 10]. 

 

 

 

Example:  

 

 

LOCO index 

Class 1 1 

Class 2 2 

Class 3 3 

Class 4 4 

 

 

We can compute the different values of FM1 depending on the current LOCO 

observed (here we set α=0.5, and LOCO  = 2.9): 

 

 

Current 

LOCO 
LOCO  FMLOCO 

Class 1 2.9 1.95 

Class 2 2.9 1.45 

Class 3 2.9 0.95 

Class 4 2.9 0.45 
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 The forecast multiplier could be a function of the relative fares of the current LOCO 

and the historical LOCO over the past similar time frames before departure. 
 

(4.3)      FMLOCO  =   












 


LOCO

LOCOLOCO

fare

farefare
1   

             
Where:  -   FMLOCO   is the value of the LOCO-based forecast multiplier 
 

-   LOCOfare  is the average value of  the fare of the LOCO over past 

observations
 -  

-   fareLOCO is the current value of  the fare of the LOCO  
 

- α is a scaling constant 

 

 

This model is similar to the preceding model, but here the competitor’s classes are 

weighted by their average fares. Note that again, an implementation would have to 

make sure the values of the forecast multiplier cannot leave a set interval, such as 

[0.1; 10]. 

 

 

 

 

Example:  

 

 

LOCO fare 

Class 1 1000 

Class 2 800 

Class 3 400 

Class 4 300 

 

 

We can compute the different values of FM1 depending on the current LOCO 

observed (here we set α=1, and LOCOfare  = 500): 

 

 

Current 

LOCO 
LOCOfare  FMLOCO 

Class 1 500 2.0 

Class 2 500 1.6 

Class 3 500 0.8 

Class 4 500 0.6 
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For LOCO-based Forecast Multiplication to be unbiased, the average value of the LOCO-

based forecast multiplier over the set of the possible LOCOs must be equal to 1. 

Mathematically this can be written as: 
 

 

        (4.4) 1)(.
..1




iFMf LOCO

ni

i

  

Where:  -   There are n classes. 
 

- FMLOCO (i)  is the value of the LOCO-based forecast multiplier if class i 

is the current LOCO. 
 

                           -    fi  is the probability that class i be the current LOCO, also equal in a 

steady state to the past frequency at which class i has historically been 

the LOCO for the current time frame. 

 

 

If it did not verify this property, the method would be biased and would either be over-

multiplying or under-multiplying forecasts.  

 

The multipliers suggested in (4.1), (4.2), (4.3) verify this property. 

 

 

 

Proof for (4.1): 
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Proof for (4.2): 
 

Let xi be the index given to class i 
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Proof for (4.3): 
 

Identical to the proof for (4.2), where xi is replaced by the ratio between the fare of the 

current LOCO and the historical average fare of the LOCO. 

 

End of proofs 
 

 

 

 

There are different ways to control the magnitude of LOCO-based Forecast Multiplication. 

As additive pick-up forecasting differentiates the forecasts by time frame, one could decide 

to apply forecast multiplication only to the most adjacent time frames that are to come in the 

booking period. Theoretically the closer the time frame to the current time frame, the more 

justified the assumptions of Forecast Multiplication, and the more robust Forecast 

Multiplication should be. A second way to control the magnitude of Forecast Multiplication 

lies in the choice of the scaling constant α.  

 

The practice of LOCO-based Forecast Multiplication nevertheless entails two limits: 
 

- It supposes that the competitor is not overriding its automated revenue management 

system. Such overrides include the practice of LOCO-based Forecast Multiplication 

itself. The theory does not hold if both competing airlines use LOCO-based Forecast 

Multiplication. In this thesis we will simulate such cases of two airlines using LOCO-

based Forecast Multiplication to see what the implications could be for airlines. 

 

- The concept of Forecast Multiplication is to better adapt to a specific external 

competitive environment. It is best justified if it simply fits better protection levels 

with non-constrained demand without impacting the other airline. Yet in reality by 

automatically multiplying forecasts and modifying its protection levels, as explained in 

3.2, an airline will have an impact on its competitor, and experience a feedback effect 

from its own forecast multiplication. Suppose the competitor is more open than usual 

at a given time frame for a departing flight. LOCO-based Forecast Multiplication will 

decrease forecasts, protections will be lower, thus spilling-out less for low classes, 

increasing the chances that the competitor will be more open than usual in the future. 

The opposite is true if the competitor is more closed than usual. Forecast 

multiplication reinforces the cause that sets it off. This does not question the validity 

of the method. Yet it requires that simulations be done to check that this competitive 

feedback of LOCO-based Forecast Multiplication within the entire booking period 

preceding the departure of a flight does not lead to an overall decrease in expected 

revenues. 

 

 

However, across successive flight departures, the impact of LOCO-based Forecast 

Multiplication does not progressively trigger the method more strongly. If the distributions 

of non-constrained demands are steady, the more successive flights have been “more open 

than usual” over their booking period, the smaller the chances that the following flights will 

themselves be “more open than usual”. The more successive flights have been “more closed 

than usual” over their booking period, the smaller the chances that the following flights will 

themselves be “more closed than usual”.   
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4.1.2 Experimental Methodology 

 

We tested the three presented formulations of LOCO-based Forecast Multiplication in 

various simulation environments. In this thesis we only show the simulation results for the 

first formulation of equation (4.1), and we use the LOCO of the flight directly competing in 

terms of schedule, rather than the LOCO of the other competitor flights departing on the 

same day. It proved to be the most consistently performing formulation. We will call this 

formulation FM1, and we recall here its definition: 

 

(4.1)     FM1 =  1 + α( flower – fhigher) 

             

Where:  -   FM1   is the value of the LOCO-based forecast multiplier  
 

                           -   flower  is the fraction of historical observations where the LOCO was a 

strictly lower class than the current LOCO. 
 

                           -   fhigher  is the fraction of historical observations where the LOCO was a 

strictly higher class than the current LOCO. 
 

 -  α is a scaling constant   

  - values of FM1 are kept within [0.1; 10]. 
 

We use the PODS simulator to model complex real world airline revenue management 

interactions to evaluate the impact of LOCO-based Forecast Multiplication. For all 

simulations, we compare a case where forecast multiplication is used with a base case where 

no forecast multiplication is used by any competitor. The most pertinent data are the 

proportional  changes of airline statistics from the base case due to the use of forecast 

multiplication. We more particularly report the impact on both competitors, the performance 

of LOCO as a competitive indicator, the robustness of the method, the spiral situations 

evocated in 4.1.1, the amplitude of the value of the forecast multipliers, and the 

contradictory situation of both competitors using LOCO-based Forecast Multiplication.  
 

The simulations are run with parameters as defined in Chapter 1.5. We study a single 

market duopoly situation to keep the experiment simple and to better discriminate the impact 

of LOCO-based Forecast Multiplication. We use the same market parameters as presented in 

Chapter 3. Airline 1 and Airline 2 each offer three flights a day at the same times, in the 

same direction in the same origin-destination market, with aircrafts of a capacity 120 seats 

each. We run the following scenarios: 
 

1.   A single market representing the competition between a legacy carrier and a low-cost 

carrier. Airlines have the unrestricted fare structure provided in Fig 4.1.2 (which is the 

same as the unrestricted fare structure used in Chapter 3, Fig 3.1.3). Airline 1, the legacy 

carrier, uses EMSRb optimization, a combination of Q-forecasting and pick-up 

forecasting with booking curve unconstraining, and implements LOCO-based Forecast 

Multiplication against Airline 2, a low-cost competitor. 
 

2. A single market representing the competition between two legacy carriers. Airlines 

have the fully restricted fare structure provided in Fig 4.1.3 (which is the same as the 

fully restricted fare structure used in Chapter 3, Fig 3.1.2). Both airlines use EMSRb 

optimization, pick-up forecasting with booking curve unconstraining. Only Airline 1 is 

implementing LOCO-based Forecast Multiplication.  
 

3.    The same case as 2, but with both legacy carriers implementing LOCO-based 

Forecast Multiplication.  
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Fig 4.1.1  Single market duopoly scenario studied 

 

 

 

 

Fig 4.1.2  Unrestricted fare structure considered 

 

 

 

 

 

Fig 4.1.3  Fully-restricted fare structure considered 
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4.1.3 Simulation results 

 

 
Scenario 1: Unrestricted fare structure, legacy carrier using LOCO-based Forecast      

 multiplication against a low-cost competitor 

 

In this simulation we wish to represent a single market with competition between a legacy 

carrier and a low-cost carrier. Airline 1, the legacy carrier, uses EMSRb optimization, a 

combination of Q-forecasting  with Frat5c, and pick-up forecasting with booking curve 

unconstraining. Frat5c  is an estimate of the fare ratio curve at which 50% of the passengers 

are expected to sell-up for each time-frame. A precise description of Q-forecasting and 

Frat5c are provided in Cleaz Savoyen[7]. The legacy carrier Airline 1 implements LOCO-

based Forecast Multiplication against Airline 2, a low-cost competitor.  

 

To model the revenue management behaviour of a low-cost airline in PODS, an 

optimization method called “Accordion Threshold” is used. It corresponds to an adaptative 

dynamic method that optimizes booking limits in order to achieve a high target load factor 

(hence the image of an “accordion” method). The method sets thresholds which are the 

booked load factors at which each class is closed. “Accordion Threshold” multiplies fixed 

initial thresholds by an accordion parameter ap. ap is computed as a function of current 

bookings, past  load factors, and the past values of ap itself. “Accordion Threshold” has five 

inputs: 

 

- A load factor goal  lfgoal 

- Initial threshold levels 

- A minimum accordion parameter allowed apmin 

- A maximum accordion parameter allowed apmax 

- A convergence smoothing constant α 

 

ap is computed according to the following formula: 

(4.5)     ap = max[apmin, min[apmax, )1( 1( 
lf

lf
ap  )] ] 

Where:  

 

- ap  = average historical accordion parameter 

- lf = average historical load factor, leg l 

- lf is an adjusted target load factor taking into account current bookings: 

 

       (4.6)  lf = 

BC

BlfgoalC



.
 where C is the leg capacity and B the current bookings  

 

Note that this optimization method does not require any forecast of non-constrained 

demand.
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In this simulation airline 2 sets this load factor goal lfgoal to 90%, and initial thresholds are 

given in the following table. apmin is set to 0.5, apmax to 1.5 and the smoothing constant α 

is set to 0.75. 
 

 

 

 

 

 

 

 

 

 

Fig 4.1.4  Initial thresholds set by Airline 2 

 

 

 

We provide the results when Airline 1 uses FM1 with a scaling constant equal to 1 and 

FM1 is applied to all the future time frames. 

 

 

As shown in Fig 4.1.5 FM1 significantly increases the average revenues of Airline 1 

(+8.3%) while very slightly decreasing the average revenues of Airline 2 (-0.2%). This 

simulation result is comforting, because LOCO-based Forecast Multiplication is originally 

designed to improve forecasts, to better adapt the protection levels to external non-

constrained demand, but without any specific intent to impact the competitor. The fact that 

Airline 2 is very little impacted by the implementation of FM1 by Airline 1 could mean that 

the competitive feedback effect within one booking period for a single departure evoked in 

4.1.1 is very small. The increase in revenues for Airline 1 is achieved through both an 

increase in average load factor and in average yield. FM1 generates higher average bookings 

for the highest and the lowest fare classes to the detriment of bookings for the “middle 

classes” 4 and 5. The reason for this is explained in part 4.1.1: When the competitor is more 

closed than usual, with FM1 Airline 1 increases its forecasts and protects more for the 

highest classes. When the competitor is more open than usual, with FM1 Airline 1 decreases 

its forecasts and increases the booking limits for the lowest classes. This overall pushes the 

bookings to “extreme” classes. Average daily bookings per fare class are shown in Fig 4.1.6. 

 

 

 

 

 

 
 

 

Fare classes 

Initial nested load factor 

thresholds 

1,2,3,4,5,6 1.00 

2,3,4,5,6 0.90 

3,4,5,6 0.80 

4,5,6 0.65 

5,6 0.50 

6 0.35 
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Fig 4.1.5  Average proportional change in revenues, load factor, and yield  

for each airline when Airline 1 uses FM 

 

 

 
 

Fig 4.1.6  Comparison of Airline 1 average bookings by fare class  

when it is using FM1 and when it is not 

 

 

 

It is possible to check that across successive flight departures, the impact of LOCO-based 

Forecast Multiplication does not progressively trigger the method more strongly. Fig 4.1.7 

represents statistics for 200 successive days of departure with the use of FM1, and no 

specific spiral situation is noticeable. We provide in Fig 4.1.8 the distribution of the 

proportional increase in revenues that FM1 would generate for Airline 1 over the same 200 

successive departure dates. Even though the standard deviation of the distribution is larger 

than its mean value, FM1 increases revenues for 74% of the departure dates. This result is 

statistically significant, because if Forecast Multiplication was purely random and either 

increasing or decreasing revenues like a coin flip, the probability to have at least 74% of 

increases in revenues over 200 departure dates would be smaller than one out of a million.  

 

( This probability is
200

200

200..148 2

1n

n

C


 = 3.6 ×10
-12   

) 
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Fig 4.1.7 Statistics for Airline 1 using FM1 over 200 successive days of departures. 

 

 

 

 

 

 

 

 
 

 

Fig 4.1.8 Distribution of the percentage increase in revenues that FM1  

would generate for Airline 1 over 200 successive departure dates 
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We also provide a distribution of the impact on Airline 2 of the use of FM1 by Airline 1 in 

Fig 4.1.9 to check how variable the impact of FM1 is on the competitor. The impact is 

mostly grouped around the mean value of -1% over the 200 successive departures studied. 

Therefore the feedback competitive effect within a single departure date can be considered to 

be small. 

 

 

 

 

 
 

 

Fig 4.1.9 Distribution over 200 successive departure dates of the percentage change in 

revenues for Airline 2 when Airline 1 uses FM1 

 

 

 

 

As shown in Fig. 4.1.10  when FM1 decreases Airline 1 revenues, it corresponds to 

departure dates with a low level of total market demand (There is a direct correlation 

between base case revenues and total market demand). FM1 increases revenues in all 

scenarios of total market demand. It increases more than one half of the departure dates 

where total market demand was low to medium, and it increases the revenues of most of the 

high demand scenarios. When total market demand is high, Q-forecasting is not aggressive 

enough and does not set protection levels for the high classes high enough. FM1 improves 

Q-forecasting by detecting that the competitor is then more closed than usual and by 

protecting more for high classes. Therefore when comparing in Fig 4.1.11 the distribution of 

Airline 1 revenues when it uses FM1 and when it does not, the effect of using FM1 is to 

push a significant part of the medium to high revenues to larger values. For low values, the 

distribution of Airline 1 revenues is nearly unchanged by the use of FM1. 
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Fig 4.1.10 Distribution over 200 successive departure dates 

of Airline 1 base case (not using FM1) revenues 

when FM1 increases revenues and when it decreases revenues  

 

 

 

 

 
 

Fig 4.1.11 Distribution over 200 successive departure dates of Airline 1 revenues  

without and with the use of FM1 
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Fig 4.1.12 provides a representative sample of the evolution of the value of FM1 over a 

booking period for different flights.  The first feature to notice is that the values of FM1for a 

single departure tend to remain either superior or inferior to 1. This could indicate that the 

feedback competitive effect within one departure date evoked in 4.1.1 could take place. Yet 

it could just be that total market demand is very variable. Besides the fact that the impact of 

FM1 on Airline 2 is on average much smaller than the impact of FM1 on airline 1 leads us to 

think that the spiral situation within a single booking period for a departure date is small. 

The second feature to notice is that LOCO is an imperfect discontinuous indicator of the 

competitor’s availability, occasionally causing “jumps” of the value of FM1 from one time 

frame to another. As an indicator, LOCO does not allow to compare situations where the 

current LOCO is about to be closed with situations where the LOCO is still allocated plenty 

of available seats. If the competitor is lacking demand and just closed a class, LOCO-based 

Forecast Multiplication can consider that the competitor caught up with its lack of demand, 

when it is in fact falling short of demand. 

 
 

 
 

Fig 4.1.12 Examples of values of FM1 over sample flights at different departure dates. 
 

 
 

We provide in Fig 4.1.13 the evolution of the distribution over 2000 departure dates of 

the values of FM1 for successive time frames of a booking period. The time frames are 

defined in Fig 1.2.5 (Chapter 1). The distributions are widespread except in the first time 

frames (early days of bookings for a flight departure) and in the last time frames (last days 

before departure). These peaks of distribution of the value of FM1 in the first and last time 

frames are due to the fact that the set of possible past LOCOs is then reduced, making of 

LOCO an imprecise indicator of the availability of the competitor. In the first time frames, 

whatever the speed at which the competitor is observing bookings, there are very high 

chances that its LOCO will be its lowest class. Similarly, in the last time frames, there are 

strong chances that the low-cost competitor will be sold out, making of the LOCO a poor 

indicator of how much the demand of Airline 1 should be impacted if its competitor Airline 

2 has sold out its entire flight capacity.  

 

Last but not least, the nature of all the results presented above remains unchanged when 

the scaling constant α is kept reasonable (between 0 and 2), or when Forecast Multiplication 

is applied to a limited number of time frames to come. A different scaling constant or 

number of time frames to which LOCO-based Forecast Multiplication is applied only 

changes the amplitude of the mechanisms that we described here. 
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Time Frame 3 

 

 
 

 

 

 

 

Time Frame 5 

 
 

 

 

 

 

Time Frame 7 

 
 

 

 

 

 

Time Frame 9 
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Time Frame 11 

 
 

 

 

 

 

Time Frame 13 

 
 

 

 

 

 

Time Frame 15 

 
 

 

 

 

 

Time Frame 16 

 
 

Fig 4.1.13 Distribution of the values of FM1 by time frame of the booking period  

over 2000 departure dates 
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Scenario 2: Fully-restricted fare structure, two identical legacy carriers using EMSRb, one 

of them using LOCO-based Forecast Multiplication. 

 

 

 
We saw the positive impact of FM1 if used by a legacy carrier in a single market with an 

unrestricted environment where it is facing the competition of a low-cost competitor. We 

now want to test the impact of FM1 in a single market if it is applied by a legacy carrier 

facing the competition of an identical legacy carrier, with a fully-restricted fare structure 

environment. In this simulation, both competitors Airline 1 and Airline 2 are identical in 

schedule and capacity, in passenger preference, and they use EMSRb optimization, additive 

pick-up forecasting with booking curve unconstraining. Only Airline 1 applies FM1. We 

provide the results when Airline 1 uses FM1 with a scaling constant equal to 1 and FM1 is 

applied to all the future time frames. 

 

As shown in Fig 4.1.14  FM1 increases the average revenues of Airline 1 by +1.9% while 

also increasing the average revenues of Airline 2 by the smaller value of 0.6%. Although the 

increase in revenues for Airline 1 is smaller than in the unrestricted case, it is still important 

and is similarly achieved through both an increase in average load factor and in average 

yield. FM1 pushes bookings to extreme classes through the same mechanism: When the 

competitor is more closed than usual, FM1 makes Airline 1 close more, and when the 

competitor is more closed than usual, FM1 makes Airline 1 open more. Fig 4.1.15 displays 

the difference in average bookings per class and per departure date for Airline 1 when it does 

not use FM1 and when it does. 

 

 

 

 

 
 

 

Fig 4.1.14  Average proportional change in revenues, load factor, and yield  

for each airline when Airline 1 uses FM 
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Fig 4.1.15  Comparison of Airline 1 average bookings by fare class for its 

 3 daily flights when it is using FM1 and when it is not 

 

 
 

 

As shown in Fig 4.1.16, the simulation confirms that across successive flight departures, 

the impact of LOCO-based Forecast Multiplication does not progressively trigger the 

method more strongly.  

 

 

 

 

 
 

Fig 4.1.16 Statistics for Airline 1 using FM1 over 200 successive days of departures 
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We provide in Fig 4.1.17 the distribution of the proportional increase in revenues that FM1 

would generate for Airline 1 over the same 200 successive departure dates. The standard 

deviation of the distribution is the same as in scenario 1, but the mean increase in revenues is 

smaller. FM1 is not as effective in a fully-restricted environment against a competitor using 

EMSRb than in an unrestricted environment against a low-cost competitor. Revenues are 

increased in 56% of the cases. However this result remains statistically significant, because 

if forecast multiplication was purely random and either increasing or decreasing revenues 

like a coin flip, the probability to have at least 56% of increases in revenues over 200 

departure dates would be 5.2%.  We are thus 95% confident of the statistical significance of 

the result. 

( This probability is
200

200
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Fig 4.1.17 Distribution of the percentage increase in revenues that FM1  

would generate for Airline 1 over 200 successive departure dates 
 

 

We also check how variable the impact of FM1 is on the competitor. The distribution of 

the impact on Airline 2 revenues is provided in Fig 4.1.18. The impact is mostly grouped 

around the mean value of +0.1% over the 200 successive departures studied. The feedback 

competitive effect within a single departure date can be considered to be relatively small. 
 

 

 
 

Fig 4.1.18 Distribution over 200 successive departure dates of the percentage change in 

revenues for Airline 2 when Airline 1 uses FM1 
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Fig. 4.1.19  shows that FM1 would lead to an increase in Airline 1 revenues of slightly 

more than one half of the departures, when it would decrease Airline 1 revenues in slightly 

less than one half of the departures, whatever the total market demand for the departure. The 

departures for which FM1 is much more probable to increase Airline 1 revenues than to 

decrease them are scenarios of low demand and revenues. It is possible that when total 

market demand is low, both airlines are too aggressive, especially with pick-up forecasting. 

Fig 4.1.20 compares the distribution of Airline 1 revenues when it uses FM1 and when it 

does not. The use of FM1 by Airline 1 spreads this distribution. 

 
 
 

 

 
 

Fig 4.1.19 Distribution over 200 successive departure dates of Airline 1 base case  

 (not using FM1) revenues when FM1 increases revenues and when it decreases revenues  

 

 

 

 
 

Fig 4.1.20 Distribution over 200 successive departure dates of Airline 1 revenues  

without and with the use of FM1 
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We also find that one of the main reasons why in a restricted environment with a 

competitor using EMSRb LOCO-based Forecast Multiplication does not perform as well is 

that the discontinuous imperfections of LOCO as an indicator of the competitor’s availability 

are increased if the competitor is using a fully-restricted structure. We provide in Fig 4.1.21 

the evolution of the distribution over 2000 departure dates of the values of FM1 for 

successive time frames of a booking period. For the same reasons why the distributions 

present a peak in the first and last time frames, the set of possible past LOCOs is reduced in 

time frames 9, 11, 12, 13, 15 because then the advance purchase rules set by the competitor 

successively force its lower classes to close. Whatever the speed at which the competitor is 

observing booking, when an advance purchase rule just forced a class to close, there are very 

high chances that its curent LOCO be its lowest possible open class considering advance 

purchase requirements, so the distribution of the values of FM1 will present a peak at a value 

lower than 1. As a consequence, advance purchase rules reduce the precision of LOCO as an 

indicator of the competitor’s relative availability. In Fig 4.1.21, the distribution of the values 

of FM1 is widespread from time frame 5 to 8 only. From time frame 1 to 4, there is a peak of 

distribution at a value lower than 1 which corresponds to cases where the competitor has still 

not closed its lowest class. Starting time frame 9, advance purchase restrictions of the 

competitor’s classes repeatedly create peaks of distribution at a value lower than 1. This is 

when the lowest possible open class considering the competitor’s advance purchase 

requirement is open. In the last two time frames appears a peak of distribution at a value 

superior to 1 which corresponds to a competitor with its entire capacity booked. The peak at 

a value lower than one then corresponds to its class 1 open.  

 

 

Finally, the nature of all the results presented above remains unchanged when the scaling 

constant α is kept reasonable (between 0 and 2), or when forecast multiplication is applied to 

a limited number of time frames to come. A different scaling constant or the number of time 

frames to which LOCO-based Forecast Multiplication is applied only changes the amplitude 

of the mechanisms and results that we described here. 
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Time Frame 3 

 

 
 

 

 

 

 

Time Frame 5 

 
 

 

 

 

 

Time Frame 7 

 
 

 

 

 

Time Frame 9: 

Class 6 closed by advance 

purchase requirement 

 



113 

 

 

 

 

Time Frame 11 

Class 5 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 12 

Class 4 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 13 

Class 3 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 15 

Class 2 closed by advance 

purchase requirement 

 
 

 

 

 

Time Frame 16 

 
 

Fig 4.1.21 Distribution of the values of FM1 by time frame of the booking period  

over 2000 departure dates 
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Scenario 3: Fully-restricted fare structure, two identical legacy carriers using EMSRb,  both 

of them using LOCO-based Forecast Multiplication. 

 

 

LOCO-based Forecast Multiplication assumes that the competitor is not overriding its 

automated revenue management system. Overrides include the practice of LOCO-based 

Forecast Multiplication itself. Our objective with this scenario is to test the possible situation 

of both competitors simultaneously using such Forecast Multiplication. To do so we take 

Scenario 2 and have Airline 2 also use FM1 with a scaling constant equal to 1 and FM1 

applied to all the future time frames. 
 

We find as shown in Fig 4.1.22 that its use by both airlines still increases their individual 

average revenues and yields. Total market revenues and total market yield are on average 

increased by 1.2%. By using FM1, both competitors push average bookings to “extreme 

classes” as displayed in Fig 4.1.23 and Fig 4.1.24. Overall Airline 2 is slightly advantaged 

by the use of FM1, but this constitutes an effect of the stochasticity modeled in the PODS 

simulator.  

 

We provide in Fig 4.1.25 the distributions of the proportional increase in revenues that 

FM1 would generate for Airline 1 and Airline 2 over 200 successive departure dates. The 

mean increase in revenues for each airline is relatively small (+0.5% for Airline 2, +0.3% for 

Airline 1) especially compared with the standard deviations. Revenues are increased 

respectively in 52% and 53% of the cases for Airline 1 and Airline 2, so that it is difficult to 

assert that the increase in revenues due to FM1 over these 200 departure dates is statistically 

significant. When both airlines use FM1, its positive impact on an individual airline is more 

limited and questionable. However over the overall 2000 departure dates simulated, the 

increase in revenues for each airline is still larger and statistically significant. As regards the 

distribution of the proportional increase in total market revenues given in Fig 4.1.25, it 

increases revenues in 55% of the cases, so it is slightly more statistically significant than the 

increase in individual airlines’ revenues, but it is still not as statistically significant as the 

increase in revenues of Airline 1 when it is the only one to implement FM1. 

 

When looking at Fig. 4.1.27 and Fig 4.1.28, it appears that FM1 implemented at both 

airlines decreases the revenues of Airline 1 in nearly half of the cases whatever the total 

market demand, when it decreases Airline 2 revenues in more than one half of the cases of 

low total market demand and increases revenues in more than one half of the scenarios of 

medium total market demand. As regards total market revenues, they are increased by the 

simultaneous use of FM1 by both airlines in more than one half of the scenarios of medium 

total market demand, and decreased in more than one half of the scenarios of low or high 

total market demand, as shown in Fig 4.1.29. 

 

Surprisingly, if used by both airlines, FM1 does not impact much the overall distribution 

of the revenues of individual airlines and hence of the total market revenues. But when 

looking at the distributions of the values of FM1 given in Fig 4.1.33, when both airlines use 

FM1, one can observe a spiral competitive situation of FM1, with fare class 6 being open 

longer at the beginning of a booking period than they are when only one airline uses FM1. 

Indeed if both airlines use LOCO-based Forecast Multiplication, the historical distribution of 

LOCO should be pushed to extreme classes. When an airline is more open (respectively 

closed) than usual, it makes its competitor open more (resp. closed), increasing the chances 

that the initial airline also opens (resp. closes) more by using LOCO-based Forecast 

Multiplication.  
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Fig 4.1.22  Average proportional change in revenues, load factor, and yield  

when both airlines use FM 
 

 

 

 
 

Fig 4.1.23  Comparison of Airline 1 average bookings by fare class  

when both airlines are using FM1 and when they are not 

 

 

 
 

Fig 4.1.24  Comparison of Airline 2 average bookings by fare class  

when both airlines are using FM1 and when they are not 
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Fig 4.1.25 Distribution of the percentage increase in revenues that FM1  

would generate for Airline 1 and Airline 2 over 200 successive departure dates 

 

 

 

 

 

Fig 4.1.26 Distribution of the percentage increase in total market revenues that FM1  

would generate over 200 successive departure dates 
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Fig 4.1.27 Distribution over 200 successive departure dates of Airline 1 base case  

 (not using FM1) revenues when FM1 increases or decreases Airline 1 revenues 

 

 

 

 
 

Fig 4.1.28 Distribution over 200 successive departure dates of Airline 2 base case  

 (not using FM1) revenues when FM1 increases or decreases Airline 2 revenues 
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Fig 4.1.29 Distribution over 200 successive departure dates of base case (not using FM1) 

total market revenues when FM1 increases or decreases total market revenues 

 

 

 

 
 

Fig 4.1.30 Distribution over 200 successive departure dates of Airline 1 revenues  

without and with the use of FM1by both airlines 

 

 



119 

 

 
 

Fig 4.1.31 Distribution over 200 successive departure dates of Airline 2 revenues  

without and with the use of FM1 by both airlines 

 

 

 
 

Fig 4.1.32 Distribution over 200 successive departure dates of total market revenues  

without and with the use of FM1 by both airlines 
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Time Frame 3 

 

 
 

 

 

 

 

Time Frame 5 

 
 

 

 

 

 

Time Frame 7 

 
 

 

 

 

Time Frame 9: 

Class 6 closed by advance 

purchase requirement 
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Time Frame 11 

Class 5 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 12 

Class 4 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 13 

Class 3 closed by advance 

purchase requirement 

 
 

 

 

Time Frame 15 

Class 2 closed by advance 

purchase requirement 

 
 

 

 

 

Time Frame 16 

 
 

Fig 4.1.33 Distribution of the values of FM1 by time frame of the booking period  

over 2000 departure dates 
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4.1.4 Conclusions 

 

We introduced LOCO-based Forecast Multiplication, a heuristic multiplication of additive 

pick-up forecasts developed by the members of the PODS Consortium. It is based on the 

comparison of the competitor’s current fare class availability with its corresponding 

historical availability. Its main idea is that a competitor more available (respectively less 

available) than usual for a flight at a given point of the booking period is prone to remain so 

until the departure, resulting in more (respectively less) competition, so that forecasts of 

unconstrained demands should be decreased (respectively increased). The indicator of 

availability used is LOCO, the lowest open competitor class. The assumptions made are that 

the non-constrained demand distributions are steady over time, that the competitor does not 

override its forecast or its optimization method. Overrides include LOCO-based Forecast 

Multiplication itself. We presented PODS simulations results of the impact of FM1, one of 

the suggested formulations for LOCO-based Forecast Multiplication, which is a function of 

the fraction of the historical observations of LOCO that were higher/lower fare classes than 

the current LOCO. 

 

When applied by one airline, we found that FM1 can increase revenues significantly for 

this airline, with a smaller impact on its competitor. LOCO-based Forecast Multiplication 

pushes bookings to “extreme classes”, by making the airline open more when its competitor 

is more open than usual, and close more when its competitor is more closed than usual. 

LOCO-based Forecast Multiplication also improves airline revenue management systems for 

cases of unusually high or unusually low total market demand for a specific isolated 

departure. This includes inadequate high protection levels in fully-restricted environments 

when total market demand is unusually low for a departure and the airline uses EMSRb with 

pick-up forecasting. Another example is when in an unrestricted environment total market 

demand is unusually high and the airline uses EMSRb, Q-forecasting with Frat5c, which is 

then not aggressive enough. Therefore FM1 tends to spread out the distribution of an 

airline’s revenue over departure dates.  

 

LOCO was found to be an easily accessible but not a perfect indicator of the competitor’s 

availability. It is imprecise because it is discontinuous, and advance purchase restrictions of 

the competitor reduce the performance of LOCO by decreasing the number of possible 

LOCO of the competitor at a given time before departure. LOCO-based Forecast 

Multiplication thus performs better in unrestricted environments than in environments where 

the competitor uses advance purchase requirements. 

 

When applied by both competitors using EMSRb in a fully-restricted environment, we 

found that FM1 can still increase both competitors’ revenues. Even though the method is not 

theoretically justified anymore, it is important to study what could become a real world 

situation. In such a case, the positive impact of FM1 on the airlines is not robust, with 

revenues decreased for nearly half of the departure dates. Both airlines push their bookings 

to extreme classes even more than when only one airline implements FM1. However we 

found that on average, individual airlines’ and total market revenues are not decreased. 
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4.2  Deliberate Competitive Overrides  

 

In part 3.2 we described how a passive airline is impacted and adapts because of changes 

in its competitive revenue management environment. In this part, we take the point of view 

of an airline that would deliberately make a seat inventory competitive move. We present its 

available options and we describe their respective impacts. We use the results of part 3.2 and 

we keep the same assumption that the competitive effects on demand are larger than the 

imprecision of forecasters. We only consider for simplification the 2 airline duopoly revenue 

management game. Yet any reasoning made on the competitor’s behaviour in the duopoly 

case can be extended to the equivalent resulting move of the sum of the competitors in a n>2 

airlines competitive scenario. We first examine possible active overrides of the automated 

revenue management system to respond to a move by the competitor. We then focus on 

deliberate competing moves that an airline could initiate from the EMSRb protection levels. 

We do not run specific simulations, but we link our findings to the results of the PODS 

simulations described in the Literature Review (Part 2.1).  

 

 
4.2.1 Deliberate active reactions to competitor moves 

 
 

In this part we present the responses an airline can take when it is subjected to a specific 

change in its competitive environment, that is unusual competitor availabilities or protection 

levels. The main challenge of deciding what action to take to respond to an unusual 

competitive environment lies in determining the reason behind it. Whether the current 

situation is due to an override by the competitor of its revenue management system or 

whether it is simply due to an unusual occurrence of market demand without override of its 

automated revenue management system leads to opposite recommendations. An analyst 

judgement seems necessary to identify whether the competitor could be overriding its system 

or whether it is simply experiencing an unusual occurrence of market demand but still using 

automated availability calculations. We directly use the conclusions of part 3.2.2, so our 

results hold with dependent demands between classes. In parallel to reading the following 

two paragraphs, the reader can also refer for better understanding to Fig 3.2.1, 3.2.2, 3.2.5 

and 3.2.6. 

 

Assume an airline duopoly nesting protection levels for higher fare classes, and assume 

that Littlewood’s assumption of reached booking limits is met. Assume demands between 

fare classes are dependent, with sell-up but no buy-down of demand. If Airline 2 is unusually 

open for its low classes, it could be a “special offer” override decreasing protection levels for 

higher classes with steady demands to improve its load factors at the expense of its yields 

and expected revenues. As we showed in part 3.2.2, such a move should result in an increase 

in Airline 2 average spill-out for high-classes and Airline 1 average spill-in for high-classes. 

This “special offer override” by Airline 2 should improve the fare class mix of the non-

constrained demand for Airline 1, which will necessarily increase the expected revenues of 

Airline 1. When the move of Airline 2 is sustained long enough, it is automatically taken 

into account by Airline 1’s revenue management system that will protect more for high 

classes and optimize revenues. If the competitive move has not been sustained long enough, 

the best for Airline 1 is to override its system and protect more for high classes. 
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 However if the unusual availability of Airline 2 is rather merely due to an unusually low 

occurrence of market demand, the reasoning of part 3.2.2 does not apply anymore. As 

explained in part 4.1 it is then better for Airline 1 to decrease protection levels because its 

non-constrained demand-to-come for high classes is prone to be smaller than usual. 

 

 Fig 4.2.1 displays a decision diagram for the response to a competitor unusually available. 

If the competitor is unusually open, it is necessary to know whether the competitor is 

overriding its system with steady demands, or whether it is just experiencing lower bookings 

than usual. In the first case, our protection levels for higher classes should be increased to 

better adapt to the predictable higher average spill-in for higher classes than usual. If the 

competitor move is sustained over many departure dates, the revenue management system 

automatically adapts in that manner. In the case where the competitor is simply experiencing 

lower bookings than usual, spill-in for higher classes should on the contrary be smaller than 

usual. Protection levels for higher classes should be decreased, such as with LOCO-based 

Forecast Multiplication. 

 

 

 

 

 
 

 

 

Fig 4.2.1 Decision diagram. RM response to a competitor unusually open. 
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Let us now make a similar reasoning if Airline 2 is unusually closed. We still assume an 

airline duopoly, setting nested protection levels for higher classes, where booking limits are 

reached (Littlewood’s rule), with dependent demands between fare classes with sell-up but 

no buy-down of demand. If Airline 2 is unusually closed due to a deliberate aggressive 

override with steady demands where it increases protection levels for high classes, we 

showed in part 3.2.2 that it will lead to a decrease in the average spill-in experienced by 

Airline 1 for higher classes. By deteriorating the fare-class mix of the non-constrained 

demand for Airline 1, its expected revenues necessarily decrease. Airline 1 could adapt and 

decrease protection levels as its automated revenue management system would do anyway if 

the move by Airline 2 was sustained over many successive departures. This decrease in 

protection levels by Airline 1 is a lesser evil optimizing short term revenues knowing a given 

worse competitive environment. The other option for Airline 1 is to increase protection 

levels for higher classes, not to optimize its expected revenues in the short term, but to 

counter the move by Airline 2 by in turn hurting Airline 2’s spill-in and hence Airline 2’s 

expected revenues. Such a reaction by Airline 1 could avoid a downward spiral situation for 

Airline 1 where it experiences a worse fare-class mix of demand, decreases protection levels 

for higher classes, and experiences smaller average revenues at the expense of the Airline 2.  

 

However if Airline 2 is unusually closed due to an unusually high occurrence of market 

demand, the reasoning of part 3.2.2 does not apply anymore. As explained in part 4.1 the 

best response for Airline 1 is then to increase protection levels for higher classes because its 

non-constrained demand-to-come for high classes is prone to be larger than usual.  

 

Fig 4.2.2 displays a decision diagram for the response to a competitor more closed than 

usual. Again, it is necessary to know whether the competitor is overriding its system by 

setting unusually high protection levels for higher classes with steady demands, or whether 

the competitor is just experiencing a larger number of bookings than usual. In the second 

case our spill-in for higher classes should be larger than usual. Protection levels for higher 

classes should be increased, such as with LOCO-based Forecast Multiplication. In the first 

case, if it is that the competitor is aggressively overriding its revenue management system 

and setting unusually high protection levels, it is possible to optimize our short-term 

revenues by decreasing our own protection levels, because spill-in will probably be smaller 

than usual. Yet expected revenues would still remain lower than before the move by the 

competitor, so that we could be inclined to hurt back the competitor by in turn spilling-out 

less to him, and try to force the competitor to stop setting larger protection levels for high 

fare classes.  
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Fig 4.2.2 Decision diagram. RM response to a competitor unusually closed. 
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4.2.2 Deliberate initial competitive moves 

 

 

In this part we consider the possible revenue management overrides with steady market 

demands that an airline can initiate from an EMSRb near-optimum. We use the results of 

part 3.2.2 and 4.2.1. We assume that demands between classes are independent (sell-up 

does not exist). When making such an initial override, an airline should think of second 

order effects: the impact on the competitor, its reaction, and the associated feedback effect 

on itself.  

 

In 3.2.2 we saw that whatever the reaction of its competitor, if an airline overrides its 

revenue management system by protecting more (respectively protecting less) for high 

classes it will necessarily decrease (respectively increase) its competitor’s expected revenues.  
 

The feedback effect of a move by an airline on its own spill-in of demand depends on the 

reaction of its competitor, and for long-term moves on the competitor’s optimization 

algorithm. Assume an airline is using EMSRb and has for only objective the optimization of 

its own revenues. Assume that EMSRb is a near optimum given external demands. Then the 

only way for an override of its EMSRb optimization to lead to an increase in its expected 

revenues using competitive considerations would be for this airline to increase its protection 

level for higher classes and have a feedback effect increasing its spill-in for these high 

classes. Fig 4.2.3 displays the consequences of overriding from the EMSRb protection level. 

 

If the feedback effect of a move by an airline is to decrease its own spill-in of non-

constrained demand for higher classes, then the fare-class mix of this airline’s non-

constrained demand is worsened, and expected revenues necessarily decrease from the initial 

EMSRb near-optimum. If the feedback effect of a move by an airline is to increase its own 

spill-in of non-constrained demand for higher classes, it can only increase expected revenues 

if the initial move was to increase protection levels for higher classes. If the initial move was 

to decrease protection levels for higher classes, then the feedback increase in spill-in of 

demand is due to closures of the associated higher classes. In that case the airline making the 

initial move cannot benefit from this higher spill-in of non-constrained demand, because it 

consists in additional non-constrained demand for classes that the airline has already closed. 

This explains why LOCO-open-matching (cf. Lua[28] or d’Huart and Belobaba[10]), by 

decreasing protection levels from the EMSRb near-optimum, always decreases expected 

revenues at the benefit of the competitor.  

 

Hence for an override of an airline revenue management system to increase expected 

revenues, it is necessary that it increases a protection level for higher classes, and that the 

feedback effect on the airline overriding its system is an increase of the spill-in of non-

constrained demand for the associated high classes. 
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 First note that if protection levels are increased as a short-term move and the competitor 

does not react, the feedback effect will be a decrease in spill-in towards us. If protection 

levels are increased as a long-term move and the competitor just lets its automated system 

react, the feedback on spill-in depends on the optimization method he uses. However we 

showed in part 3.2.2 Proposition C that if the competitor also uses EMSRb, then spill-in 

towards us is decreased in most real world situations. This explains why LOCO-closure-

matching (cf. Lua[28] or d’Huart and Belobaba[10]) should decrease revenues if both 

competitors are using EMSRb as a basis. Moreover if the competitor is aware of the move 

increasing protection levels by the first airline, it knows it will inevitably lead to a decrease 

in its expected revenues. Among its possible reactions, the competitor has little incentive to 

choose among its possibilities the one that will increase spill-in to the first airline (which is 

to under-protect for its high classes). It will rather choose a position that would in turn hurt 

the first airline rather than engage in a spiral situation where the first airline’s revenues are 

increased at the expense of its own revenues. 

 

 We therefore believe that no override from EMSRb based on competitive feedback 

considerations can realistically have strong chances to increase expected revenues.  

 

 

Using results from 3.2.2 and 4.1 we can illustrate this result and assert that if both airlines 

were using EMSRb, it corresponds to a stable equilibrium because if one airline increases a 

protection level, there is no incentive for its competitor to make a decision increasing its 

spill-in towards the first airline. Therefore considering that EMSRb is a near optimum for 

given demands, both airlines using EMSRb is both a competitive near-optimum and a 

symmetric cooperation near-optimum for airlines that do not share revenues. 
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Fig 4.2.3  Impacts of an override from the EMSRb rule on an airline’s revenues 
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       Fig 4.2.4 Decision diagram.Override from an EMSRb near-optimum protection level. 
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4.2.3 Conclusions 

 

 

 

We based our study on competitive considerations, evaluating the possible successive 

stage strategies for airlines, and for our recommendations we assumed an airline’s main 

objective when overriding its revenue management system as an initial move is merely to 

optimize its own revenues and not to hurt its competitors’.  

 

We explained why in these conditions and assuming independent demands between 

classes, no initial override (short-term or long-term) by an airline from an EMSRb near-

optimum can be considered to have high chances of increasing expected revenues. An initial 

override from EMSRb decreasing protection levels, such as LOCO-open-matching (cf. 

Lua[28] or d’Huart and Belobaba[10] ), cannot increase expected revenues, but it can help 

maintain market shares. The only way an override by an airline could increase its own 

revenues would be that it set larger protection levels for higher fare classes than dictated by 

the EMSRb rule, and that in turn the competitor’s reaction generated an increase in the 

overriding airline’s incoming spill-in of demand for these higher fare classes. This can 

happen in rare cases, and should account for the few cases in which LOCO-closure matching 

(cf. Lua[28] or d’Huart and Belobaba[10] ) can be revenue positive with a competitor using 

an accordion threshold method such as described in 4.1, but not if it uses EMSRb too. 

However as soon as the competitor is aware of competitive revenue management 

interactions, it does not have much incentive to react so as to decrease protection levels and 

increase its spill-out. 

 

We can deduce that both airlines setting EMSRb protection levels can be considered as a 

stable equilibrium, as well as a near-optimum for both the seat inventory competitive game 

and the seat inventory cooperative game with no sharing of revenues between the airlines.  

 

We also showed that in deciding how to react to an unusual competitive environment, it is 

necessary to determine whether the reason behind it is an override by the competitor or 

whether it is the result of the use of an automated system with an unusual occurrence of 

passenger demand. In the first case, the airline has the choice between using EMSRb 

protection levels to optimize its revenues knowing the given competitive environment, or 

taking action to hurt back the competitor if the initial move by the competitor was inevitably 

deteriorating the first airline’s revenues at the expense of the competitor. If the unusual 

competitive environment is merely due to an unusual occurrence of demand, then a method 

such as LOCO-based Forecast Multiplication (Part 4.1) is most effective. 
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CHAPTER 5.    

CONCLUSION 

 

 

 

 

Since the 1980s, the airline industry has known two major changes: Deregulation, which 

led to an increase in competition, and the development of revenue management systems. 

Paradoxically the revenue management models used have not taken into account much 

competitive considerations. This thesis tackles the specific issue of reciprocal interactions 

between the revenue management practices of competing airlines. They have been mostly 

overlooked until now, because theoretical models of forecasters and optimizers for airline 

revenue management have considered most parameters such as price or demand as 

exogenous, isolated from the competitive environment. It is more realistic to consider that 

these parameters are partly endogenous, and determined by the simultaneous seat inventory 

decisions of each competing airline.  

 
The objectives of this thesis are to evaluate the impact of competitive interactions 

given the current practice of airline revenue management, and more specifically fare 

class mix control, as well as to suggest possible adjustments to the current practice that 

would reasonably take into account the competitive environment. In the field of revenue 

management, the competitive environment is defined on the one hand by the long-term 

strategies of competitors, that are their rules to set protection levels set for higher classes. On 

the other hand, the revenue management competitive environment is defined in the short-

term by the observed availabilities of competitors for each flight. The experimental tool used 

throughout the thesis is the Passenger Origin Destination Simulator (PODS), a software 

simulator of airline revenue management. 

 

 

5.2     Research Findings and Contribution 

 
We first provided a review of the state of the research on the relationship between 

competition and revenue management. On the one hand, there are very few theoretical 

studies that apply directly to airline revenue management. Netessine and Shumsky [31],  Li 

et alt. [24] as well as Li et alt.[25] have come to similar conclusions under different sets of 

scenarios and restrictive conditions. There should exist a Nash equilibrium of protection 

levels if both airlines compete rationally, with perfect information, and take into 

consideration competitive interactions. Airlines competing would benefit from taking into 

consideration competitive effects in the field of revenue management. They would benefit 

even more if they cooperated for their allocation of seat inventory to different fare classes. 

For a given stochastic demand, the protection level of an airline optimizing it revenues with 

knowledge of competitive effects should be a decreasing function of the equivalent 

protection level set by its competitor. Last, total market protection levels for higher classes 

should be larger under competition than under collusion.  
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 We also provided a review of past simulations made using the PODS simulator. The main 

purpose of these simulations was not to focus on the competition between revenue 

management systems, but to test whether some suggested improvements would work in 

competitive environments. We grouped their results and reached conclusions on competitive 

interactions. An airline improving its revenue management system most of the time leads to 

an increase of its revenues at the expense of its competitors. Yet one cannot speak of a zero-

sum game as the increase in the airline’s revenues is higher than the decrease in revenue of 

its competitors. It spills less high-fare class and more low-fare class passengers to 

competitors. Not only does this improve the leading airline’s fare class mix and revenues, it 

also shifts the demand experienced by the competitor towards low fare classes. No matter its 

optimization method, the latter ends with a worse fare class mix and lesser revenues. 

Conversely, when a tested revenue management technique happens to decrease the 

innovating airline’s revenues, it usually increases the passive airline’s revenues by having 

improved its mix of demand through spill. When both airlines improve their revenue 

management system, both benefit. There is no long-term advantage of being the first or the 

last to move towards the improved revenue management system.  

 
After this review of existing results, and as a first step towards understanding the 

mechanisms of competitive interaction in the field of airline revenue management, we 

compared an oligopoly situation with its equivalent monopoly situation. We presented a 

model and a general intuitive idea justifying that because of the notion of passenger spill 

between airlines, with the current state of revenue management, an oligopoly sets higher 

total market protection levels than a monopoly for an identical total market non-constrained 

demand for the same total market seat capacity. Spill corresponds to passengers who would 

as a first-choice book on a specific airline but who are rejected because the fare product they 

want to purchase is no longer available at the airline. In an oligopoly, spilled passengers are 

at least double-counted at the total market level, because they increment the forecasts of 

unconstrained demands at more than one airline. Spill of passengers, and thus such double-

counting do not occur in a monopoly. This leads the oligopoly to set higher total market 

protection levels than the monopoly.  

 
The idea presented is valid for N airlines with n classes, nested protection levels, and 

independent demands. It holds if demands between classes are dependent as long as the 

oligopoly does not have a total market capacity strictly higher than the monopoly. We 

proved the result for most real world cases when N airlines with the same n-classes fare 

structure use the EMSRb-rule to optimize their seat inventory, with independent demands for 

classes, and provided the initial share of total market non-constrained demand between 

airlines based on passenger preference is the same for all classes. The PODS simulations that 

we ran reveal that in practice the result holds with different revenue management 

optimization methods (EMSRb, Dynamic Programming for fully-restricted fare structure 

environment, EMSRb Q-forecasting for unrestricted environments) as long as the forecasters, 

and in particular the unconstrainers, are accurate enough to reflect changes in demand due to 

competitive moves. In some of our simulations, the protection level for the highest classes 

set by an oligopoly is not higher than the protection level set by the monopoly, because the 

amplitude of passenger spill is not large enough to be accurately reflected in the forecasts. 
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After we examined how competitive interactions affect the current practice of revenue 

management at the level of a total market, we focused on the impact of seat inventory 

competition at the level of a single airline. We define the revenue management game as 

airlines setting nested protection levels for higher classes, with steady demand distributions, 

with pay-off functions equal to their expected revenues. We define a competitive move as a 

change in a nested protection level with demand distributions remaining steady.  

 
We first highlight that airlines preferred to their competitor all else equal are less sensitive 

to their competitive environments. This suggests that in the field of seat inventory control, 

low-cost carriers are all else equal more sensitive to moves by legacy carriers than the 

opposite. We then point out that automated forecasters in airline revenue management 

systems have usually been kept simple and extrapolate past data without accounting for past 

competitive situations or current competitive situations. However, if sufficiently accurate, 

they adapt to competitive moves with a certain delay that we call the inertia of a forecaster. 

This remains true for airline revenue management systems that do not incorporate 

forecasters, but still involve comparing the current situation with past situations, such as 

what is implemented at some low-cost carriers. Because an airline’s revenue management 

system automatically adapts to a competitor move which lasts for a certain amount of 

departure dates, the notion of Nash equilibrium is then not relevant.  

 
Competitor moves that last at least as long as the inertia of the forecaster are automatically 

taken into account. We showed that in that case, the protection levels and the revenues of a 

“passive” airline letting its revenue management system run without overriding it are 

decreasing functions of the competitor’s equivalent protection levels. This allows us to 

conclude that two airlines which have implemented an automated optimization method and 

do not override them should reach a stable equilibrium situation. Competitor moves that last 

for a duration shorter than the forecaster inertia are not taken into account by the forecaster 

or by the optimizer. The passive airline does not adapt. On average, it experiences higher 

spill-in for higher classes and higher revenues if the competitor increases lower classes 

booking limits and it experiences lower spill-in for higher classes and lower revenues if the 

competitor decreases its booking limits.  

 
Some results were only demonstrated in reasonable scenarios, under the assumptions of 

independent demands for classes, of reached booking limits, and for airlines using an 

EMSRb method. They should still hold but be attenuated with dependent demands for 

classes. They match observations made on competitive interactions of airline revenue 

management systems in former complex PODS simulations described in the literature review. 

The latter seem to allow the extension of the results to other automated optimization 

methods than EMSRb. 

 
Using these results, and evaluating the possible successive-stage strategies for airlines, we 

made recommendations assuming an airline’s main objective is to optimize its own revenues 

and that demands for fare classes are independent. We believe that in such conditions, and 

assuming EMSRb is a near-optimum, no initial override (short-term or long-term) by an 

airline from EMSRb can have high chances of increasing expected revenues. An initial 

override from EMSRb decreasing protection levels should not increase expected revenues, 

but it can help maintain high load factors. To increase revenues, an override from EMSRb 

must increase protection levels and have the competitor’s reaction generate an increase in 

incoming spill-in. This can happen in rare cases, but not if the competitor uses EMSRb too. 

These conclusions account for the poor revenue impacts of the practice of LOCO matching 
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(cf. Lua[28] or d’Huart and Belobaba[10]). As soon as the competitor is aware of 

competitive revenue management interactions, it does not have much incentive to react in a 

manner that will increase its spill-out. We deduced that for the two airline revenue 

management game, using EMSRb protection levels can be considered as a stable equilibrium, 

as well as a near-optimum for both the competitive game and the cooperative game with no 

share of revenues between the airlines.  

 
We also showed that to decide how to react to an unusual competitive environment, it is 

necessary to determine whether it is due to an override by the competitor or whether it is the 

result of the use of an automated system with an unusual occurrence of passenger demand. 

In the first case, the airline has the choice between using EMSRb protection levels to 

optimize its revenues knowing the given competitive environment, or taking action non-

optimal on the short-term but to counter a spiral-down situation with own expected revenues 

decreasing at the benefit of the competitor.  

 
For cases when the unusual competitive environment is merely due to an unusual 

occurrence of demand, we introduced a method developed by the PODS Consortium called 

LOCO-based Forecast Multiplication. The general idea is that an airline more open in lower 

fare classes than usual for a given time frame before departure is likely to spill-out less than 

historically in the future time frames before the same departure. Its competitors should 

decrease their forecasts of unconstrained demand. Conversely, if the competitor is more 

closed than usual for a given time frame before departure, this competitor is likely to spill-

out more than historically in the future time frames before the same departure. Forecasts of 

unconstrained demand should be increased.  

 
LOCO-based Forecast Multiplication is a heuristic multiplication of additive pick-up 

forecasts. It is based on the comparison of the competitor’s current fare class availability 

with its historical corresponding availability. The indicator of availability used is LOCO, the 

“lowest open competitor class”. Different heuristic formulations are suggested. The 

assumptions made are that the non-constrained demand distributions are steady over time, 

that the competitor does not override its forecast or its optimization method. Overrides 

include LOCO-based Forecast Multiplication itself. We validated the method through 

various PODS simulations of both restricted and non-restricted fare structure environments. 

 
When applied by one airline, we found that LOCO-based Forecast Multiplication can 

increase revenues significantly for this airline, with a smaller impact on its competitor. Over 

many departures, it pushes bookings to “extreme classes”, by making the airline open more 

when its competitor is more open than usual, and close more when its competitor is more 

closed than usual. LOCO-based Forecast Multiplication also improves airline revenue 

management systems when they have limitations in cases of unusually high or unusually low 

total market demand. This includes the over-protection of seats for higher fare classes of 

EMSRb, classic pick-up forecasting for fully-restricted environments when total market 

demand is unusually low, and the under-protection of seats for higher fare classes of EMSRb, 

Q-forecasting for unrestricted environments when total market demand is unusually high. 

Therefore LOCO-based Forecast Multiplication tends to spread out the distribution of an 

airline’s revenues over departure dates.  
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LOCO was found to be an easily accessible but not a perfect indicator of the competitor’s 

availability. It is imprecise because it is discontinuous, and advance purchase restrictions of 

the competitor reduce the performance of LOCO by decreasing the number of possible 

LOCOs of the competitor at a given time before departure. LOCO-based Forecast 

Multiplication thus performs better in unrestricted environments than in environments where 

the competitor uses advance purchase requirements. When applied by both competitors 

using EMSRb in a fully-restricted environment, we found that LOCO-based Forecast 

Multiplication can still increase both competitors’ revenues. Even though the method is then 

not theoretically justified in such a scenario, it is important to study what could become a 

real world situation. In such a case, the positive impact of LOCO-based Forecast 

Multiplication on the airlines is not robust, with revenues decreased for nearly half of the 

departure dates. Both airlines push their bookings to extreme classes even more than when 

only one airline implements LOCO-based Forecast Multiplication. However we found that 

on average, individual airlines’ and total market revenues are not decreased. 

 
All of our results are limited by the practical limitations of airline revenue management 

including: 

 

-  The accuracy of airline forecasters, and more particularly of demand unconstraining 

modules. When airline forecasters are not accurate enough to report changes in non-

constrained demands such as caused by changes in spill-in, an oligopoly does not 

necessarily protect more for high classes, and our results on reactions to long-term changes 

by the competitor of its rule setting protection levels could not be verified. If an airline 

protects more (respectively less) for high classes, the reaction of the competitor could be 

after some time to increase (respectively decrease) protection levels for high classes too 

because of an inaccuracy of the unconstrained forecast of demand. Through simulations 

we noticed that such inaccuracy of forecasters, if any, concerns more high-fare classes, 

because the magnitude of spill (and sell-up) is smaller for such classes than for low-fare 

classes. Potential inaccuracy of forecasters only concerns our results on the behavior of 

current revenue management systems. It does not affect our recommendations for reactions 

to competitive moves and the theory behind LOCO-based forecast multiplication. 

 
 

-  The fact that in the real world, revenue management moves might not always be strictly      

justified by revenue management theory.  If a competitor’s seat inventory protection levels 

are not strictly justified by revenue management optimization theory, our results on how to 

react and set own protection levels hold. Yet again this fact affects our results on the 

behavior of current revenue management systems. It does not affect our recommendations 

for reactions to competitive moves. 
 

 

- The fact that it is necessary to know whether competitor moves are due to unusual 

occurrences of demand or due to an aggressive override by the competitor. This is even 

more complicated that in the real world, revenue management moves might not always be 

strictly justified by revenue management theory ( cf. preceding point). 
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5.3   Future Research Directions 

 

We suggest here further investigations to extend our work. 

 

We explained why as of today the revenue management competitive game cannot be 

considered as a perfect information game. It would be interesting to evaluate the 

benefits/impacts on the industry if the information about inventory levels was openly shared 

with competitors, and used to improve forecasts. How could such perfect information be 

used? Would such knowledge of the booking limits and bookings-in-hand of competitors 

benefit the industry as a whole? Would it benefit passengers? 

 

As we showed that EMSRb constitutes a near optimum equilibrium for the competitive 

seat inventory control game as well as the cooperative game with no share of revenues, we 

believe that improvement to take competition into account in the field of revenue 

management will rely on improving forecasting methods. We suggested a heuristic 

adjustment of current additive pick-up forecasters. Yet the theory justifying the proposed 

heuristic does not hold if more than one competitor uses it. One could consider developing a 

forecasting methodology that would still hold if all competitors were to use it. One could 

think of evaluating total market non-constrained demand, first-choice non-constrained 

demand, and evaluate spills and total airline non-constrained demand. Furthermore, another 

indicator of competitor availability than LOCO could be considered. Accurate forecasting in 

competitive environments would be facilitated if information was openly shared (not in a 

collusion manner) with competitors. 

 

All our work needs to be extended to airline networks. Our study focused on single market 

scenarios, but there could be some complications at the network level. 

 

Last, research could be performed to link our results with the study of revenue 

management for airline alliances. Our work could be used as a starting point to study 

situations of origin-destination markets where alliance members operate separate flights but 

do not share capacity or revenues. Besides, as spill-of-demand also occurs when airlines 

share capacity on jointly operated flights, our model could be used to further the study of 

capacity/ revenue-sharing mechanisms for airline alliances. 
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