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ABSTRACT

The formulation for numerical analysis (by surface integral
equation techniques) of crack problems related to hydraulic fractur-
ing is presented along with solutions of several representative
plane static and quasi-static problems. A general formulation for
static problems involving plane cracks of arbitrary number and
orientation in non-homogeneous media is given. Separate formulations
for quasi-static problems are included, although, due to their
developmental nature, they are restircted in scope to a single stationary
plane crack. Results are presented for a static crack approaching and
crossing an interface; for the effects of microcracks in adjacent strata
and for simple models of crack branching and blunting. Results are
also shown for the quasi-static stationary crack problems of pressure
evolution in fluid filled cracks and fluid front advancement in
partially filled cracks. In addition, the development and current
status of a general purpose computer program for the simulation of
hydraulic fracturing is discussed.
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INTRODUCTION

The work éresented in this thesis was done as part of an oﬁ-
going project whose objective is to develop a general purpose computer
program capable of full three-dimensional simulation of physically
realistic hydraulic fracturing operations in brittle (including
pofous) media. Attainment of this goal will require the simultaneous
capabilities of computing the various structural responses to
arbitrarily loaded and oriented sets of cracks (even in highly ir-
rggular material regions) and of computing the time dependent loading
of those cracks-coupled to the material response-caused by the flow
of a viscous (possibly non-Newtonian) fluid within them, and possibly
affected by flow of fluid in the pores of surrounding strata. The'
problems treated herein are mainly simplified versions of the most
general problems, and were chosen for their ability to provide
varijous preliminary insights into hydraulic fracturing problems and
confidence in our approaches to these problems. Another important

aspect of the project, namely program development, is also discussed.

Hydraulic fracturing (see review in [1]), while useful
in other applications, is usually thought of as a technique for
stimulating 0il or gas wells to enhance production. Essentially, it
is a means of producing a large crack which serves as a highly per-

meable passage-way with a large surface area into which gas or oil
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can escape from a relatively impermeable rock formation; it can

“then flow back to the well-bore, even from very large distances. The
crack is produced (see Figure (1)) by sealing off a part of the bore-
hole with packers, then pumping in a highly viscous fluid until the
pressure between packers is great enough to fracture the rock;

pumping 1s'then continued for some time until it'is judged (by what-
ever means of prediction or measurement is available) that the crack
has grown to the desired size, The high v%scosity of the fluid

serves three purposes:. it reduces the loss rate through the pores

in the rock, it allows much wider cracks (than those corresponding

to natural rock toughness), and it enables the fluid to carry along in
suspension some form of large particles (e.g., coarse sand or bauxite)
which serve to prop the crack open after the fluid pressure is

reduced and the well is put into production.

Hydraulic fracturing has been in use for some thirty years, but
a disturbing percentage of the jobs attempted still are less than suc-
cessful. An hydraulic fracturing job would theoretically be deemed a
success if the resulting crack has the proper shape: usually this
means that the crack extends a great distance away from the borehole
without spreading upwards to a comparable extent. Above all else,
the fracture should, if possible, be confined to the '"pay zone" or

region containing the resource being extracted. This last consider-
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ation is especially important'jf the pay zone consists of a narrow
stratum and surrounding strata are non-productive or can produce
de]eteriou;_effects (e.g., unwanted fluids, blow outs or leak-off).
Hydraulic fracturing operations can fail for any of a number of
reasons, but in the present context we are especially interested in
the question of containment. For instance, sometimes fractures may
actually propagate primarily upward along the borehole, witﬁout ever
extending very far away from it. That such occurrences go unpredicted
(and often unnoticed) is primarily due to inadequate mechanical

analysis of the hydraulic fracturing process.

Most hydraulic fracturing analyses focus upon estimating the
surface area (and hence deducing effective length based on an
assumed height), rather than trying to trace the detailed geometry of
a prosbective hydraulic fracture. A1l of these aﬁa]yses involve
somewhat unreal assuﬁptions about the crack geometry and fluid pres-
sure distribution. Upon reducing the geometry to a function of a
single variable, a crack shape is calculated to satisfy mass con-
servation: the crack volume must make up the difference between the
total amount of fluid pumped in and that supposed to have leaked
out into the formation (e.g., [1-4]). Some of the more recent work
(e.g., [5,6]) has taken into account some of the relevant solid

mechanics considerations, but the resulting analyses seem to have
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numerous shortcomings and the formulations have little potential for
coping with more complex geometries: specifically, no proper solution
has yet been obtained (even for the simplest geometries) for the

coupled crack-opening and frac-fluid flow process.

Since the problem does not lend itself to closed-form solu-
tions, except for various very approximate formulae, we must employ
an appropriate numerical method such as a Surface Integral €quation
(SIE) technique or Finite Element (FE) analysis. We have chosen to
work with a particularly attractive SIE scheme [8], which will be
discussed in detail in the chapters that follow. This SIE scheme
has the advantage over others (e,g. [7]) of_giving displacement
type solutions based on known tractions and requiring only funda-
mental solutions which are well known [8]. In general, SIE
schemes are more facile than FE analysis for these types of problems:
they are based on surface (rather than volume!) discretization, and
so are not only more economical in modeling crack surfaces, but
better sujted for problems involving infinite or semi-infinite
regions, However, there may be a need in some cases to use either
FE analysis or a suitable "hybrid" SIE/FE scheme [9] for problems in
highfy irregular or nonlinear regions, owing to the SIE schemes re-
- quirement of a fundamental solution for each particular region. We

emphasize, though, that enough such fundamental solutions do exist [8]



- 15 -

to give the SIE scheme enromous potential, and we can, indeed,
compute the required numerical values for- some influence functions
that have not been worked out analytically. Thus? we regard this
approach -- although limited to plane problems in this thesis -- as
having the ability for realistic fully 3-D mode]lfng of hydraulic

fracturing processes in the future.
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FIG. 1. Diagram of a typical hydraulic fracturing operation. Here the pay
zone consists of a fairly narrow stratum in<which the crack must be contained.
our plane crack models represent cross sections, such as A-A or B-B, of

such an hydraulic fracture.
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CHAPTER 1: FORMULATION OF PLANE STATIC CRACK PROBLEMS FOR NUMERICAL
ANALYSIS

We perform our analyses of crack problems with a special
- form of Surface Integral Equation, solution of which yields the
denéity of dislocations or dipoles (distributed over the boundary of
the region of interest) required to produce a known traction distri-
bution on the same boundary. The method employs the fundamental
solution of the governing equation pertaining to- the region. It re-
quires that the boundary be broken up into a number of discrete ele-
ments. The tractioﬁ at any point on the boundary is then expressed
as the sum of the integrals over each element of the product of the
dislocation or dipole density and the fundamental solution. The
result is an integral equation in terms of the unknown dislocation or
dipole density. This particular version of classical SIE schemes
Ce.g., Ref. 9] has been applied to a variety of solid mechanics
problems; in particular, Cleary [Ref. 10] has used it in investi-
gations of a number of phenomena germane to the present topic. In our
work, we model a crack as a distribution of dislocations (or dis-
location dipoles) and determine the dislocation density required to
produce the known traction on the crack’surface, The region of
interest, then, .is the body of material containing the cracks under
study. Thus for static problems in the plane (quasi-static problems

will be treated separately in Chapter 3) we obtained [15]
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(«L («Bﬂﬁ') ' .’ 1
;ff?@,@ A(tu(sj (1.1)
where c(a’ )(x). is the o traction component at point x on

-

e]ement‘j. , u(BJ) (t) is the g component of the dislocation
density at point t on element j. -r(“sij)(x,t) is the funda-

mental solution (or influence function) which gives the stress

(ai)

o} at x due to a dislocation at t. The particular influence

function used in this work is that for a dislocation near an inter-
face, and its most important feature is its inverse distance

singularity (r 1is given in complete form in Ref. [8].)

For plane problems, we represent - Sj

t(g) and S; by x(n), where g£,n e[-1,1] with respect to the global

~

origin. Equation (1.1) then becomes

by the function

(% 4) (*BLY) . (1.2
S (Z(M= Zf’ /7&(%>Jg<§))#<s(5),)54}45 "
he
where
,d_t J.t]/:‘ » (1.2b)
‘- 46 Ag |

[t is most convenient to write Eq. (1.2) in terms of traction_com-

ponents that are normal and tangent to each element Si’ and dis-
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']ocation density components that correspond to the global 31 and
iy (x1 and xz) directions. Thus, the directions o« and 8
refer to different coordinate systems,nang in order to compute T,
the stress in the global system (01], G199 022) must be transformed
to coordinates normal and tangent to Si:

(1) -
S = ~5(61~6,2) s (APiHTT) 46,3 cos(ad, +T)

(34)_
) = 3’:(5:: “'Gaa) ‘i'-f-a(G,,"é a;)c.‘os(ap}; +T7)

+6,2 5N (3P+T) (1.3)
where ¢. 1is the angle of inclination of S, with respect to the
i i

global Xy axis.

In order to §olve Eq. (1.2) numerically, we must re-express
_it as a system of linear algebraic equations. This task may be
accomplished by either of two means, namely local or global inter-
polation of the dislocation densities. The local interpolation approach
consists of dividing each crack surface fnto a number of elements,
then representing the dislocation density in terms of interpolation
or "shape" functions defined locally on each element (Cleary [16]
has performed extensive numerical computations using a "triangular"

interpolating function):
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B4 i (8%) (1.4)
_ a . .

P L Ay @) ) K€ 55

where the Nj interpolation functions on each element j are decided

upon a priori in accordance with the problem being solved.

Equation (1.2a) thus becomes

*aif) (A1) (1.5)
s (x(’n) nge,}[ffﬂ(xm) £(€))m k(t(S))EéM]

If each element is sub-divided into discrete nodes by choosing generic

and 51., i=1, ..., M,

sets of points (or nodes) N ., r=1,..., N ;5

i
at which to evaluate 6 and the M s the desired system of linear
algebraic equations is obtained. The usefulness of the local inter-
polation method in fracture problems has been investigated by

Wong [11], who has used it with some success in dislocation dipole

formulations.

In the global interpolation method, each crack is treated as
a single boundary element on which we may conveniently express the
dislocation densities in terms of interpolation functions, now de-

fined over an entire crack surface (hence the name "global"):

(B¥) (&%) 1.
M(£)) —-j_(__tr_g_)),_,__ 1-6)

(1+60-8)°
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The parameters o and 8 are chosen to reflect the anticipated
singularity in density of dislocation u (which is actually just
the derivative ds/dx of the crack width &). The choice a = g =
0.5 is exact for cracks in homogeneous media and, for reasons that
will be discussed below, is an advantageous approximation even for

modelling of cracks in non-homogeneous media.

Erdogan and Gupta (12] have developed a method of solving

singular integral equations of the form

l
ot F(#) dx (1.7)
()= FAde |
%) ™5 (£-1)| 1-#*

based on the Gauss-Chebyshev integration formula

F(ﬂ £ =

=g N" F(tp = COS(W-—(——G‘*")) fo =

{

?fr\/\z

Their formula is

i N
=L | Fade = 1N F(%s) (1.9a)
X n=5e -1 (-2 -2+ N Zu{mﬁ)
2|

(1.9p)

Fp=COS(TR) Rzlyee) N-f (1.9¢)
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where the tk are the zeroes of the Chebyshev polynomials of the
first kind, TN(t), and x. are the zeroes of UN_](x), the
Chebyshev polynomials of the second kind. Since the singular part of
r is (x-t)'], in general, this formula is very well suited to use
in our work, and provides a very simple and economical means of
solving Eq. (1.2). This formula is based upon the observation that
(1-1:2)"]/2 is the weighting factor for the Chebyshev polynomials.
A similar formula [13] has been developed for other, arbitrary
choices of o« and g, based on the Gauss-Jacobi integratjon formula;
because the required computation of the zeroes of the Jacobi polynomials
is relatively difficult and time consuming, we have used the Gauss-
Chebyshev method in all of our work, without any apparent loss in

accuracy for the answers that we have been interested in extracting.

If we now define discrete points M and gk:

=(0$ ™ .- =/...,N;-
My = 08 (") oo N (1.10a)
S =COS(TCR-YaN,) k-1, s  (1.100)

and substitute Eq. (1.6) with a = g = 0.5 into Eq. (1.2), then apply
Eq. (1.8) we get

Nj , -
(41) T (pi}) (BY)
S (2(7,) = ZN,& Z [iﬁé(’h),f_(ﬁ)E%]F (/A:'(gk)) (1.11)
he ks ' '
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which is the final form of our system of algebraic equations. Note
ﬁhat since on each element there is one less N than § > the
system (1.11) will require several additional equations for
completion, the number depending upon the number of crack surfaces
and the range of o and 8. Such additional conditions may be either
contraints oh the net entrapped dislocation (called closure con-
ditions) or matching of dislocation densities (matching conditions)
if two or more of the cracks intersect, depending upon the problem
under investigation. The closure conditions may be stated for any
plane érack problem as integrals of the appropriate dislocation

densities:

(83) :
2;_[’/4 (#(6)E; dg =0 Z ZF{’Z%&) (1.12)

for one or more crack surfaces Sj, where the sum is taken over
intersecting cracks. Since there is a variety of matching conditions,
each generally applicable only to a particular problem, they are

discussed separately in appropriate sections of Chapter 2.

An illustrative example of the type of plane crack problems

that we are equipped to solve is depicted in Figure (1.1); note,

however, that we can include more than two surfaces, some or all
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of which may intersect, and we can also solve problems in which
these cracks are near an interface. In this case, we have two

straight crack surfaces, so that for surface S]

:i?’)% L[ (1-£¢3) + £ £4'5)

*;‘:[t;o—{;g)ﬂi(nggg)]h (1.132)
E =2 [(i.”-z‘“)a+(ti‘ff)*}ya (1.13b)
and, for S,
:Z—';) "a[t?(:—{?}) U fe N\
' (1.13¢)
+%\[¢i("{?§)+fi(”{?§)]/ﬁ;
E:’;L.[(*?"ﬁf)t(iz‘fx)l}VA | (1.13d)

Solution of Egns. (1.11) now produces the strength F(Bj)
of dislocation density in the B-direction on each surface Jj. The
stress intensity factors may be computed from the relations (similar
to those given by Cleary [14]) after transforming F(Bj) into local
coordinates, namely

£7é F“’)cosw,)ﬂ‘ 2’(sm(sﬂ?,)
v, D Sn(?’d,){-/: 505(54,3) (1.14)

K(ﬁ?2 26 7rj F"'sg)
R
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Fig. 1.1. Diagram showing coordinates and angles needed to formulate the general two-dimensional crack problem
for numerical solution by the Gauss-Chebyshev scheme.
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CHAPTER 2: ANALYSIS OF STATIC-CRACK  PROBLEMS

2.1 Introduction

In this Chapter the results of our investigations of
several static plane crack problems are presented. These problems
(the numerical formulations of which were presented in Chapter 1)
were chosen for the dual -purposes of gaiﬁing preliminary insight
into . some- relevant hydraulic fracturing situations and of per-
fecting the hode]s to be used.for studying similar crack geometries
in quasi-static simulations (which account for the non-dynamic time-
dependent loading due to frac. fluid flow, as discussed in
Chapter 3). Thus we have progressed toward the capability of simu-
lating the‘changing of course (branching), blunting, containment
in or breaking out of a stratum, and the effect of zones of damage

or microscopic flaws on propagating hydraulic fractures.

2.2 Straight Crack Near an Interface

Perhaps the most important goal in the design of an
hydraulic fracture is containment of the fracture in the "pay zone",
or resource-bearing stratum. Thus, the first problem that we under-
took to study was to determine the behavior of the opening mode
stress intensity factors at the tips of a crack approaching and
eventually penetrating an interface with a material having different A

elastic moduli (Figure 2.1).
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This problem has been discussed by Cleary (171, and
very similar problems have been solved numerically by Erdogan and
his co-workers (13,211. The model for a crack approaching an
interface simply involves a single crack surface, consisting of a
distribution of dislocations, employing the influence function for
a dislocation near an interface. .To model a crack which extends
through the interface, however, we found it most effective to employ
two crack surfaces which intersect each other tip-to-tip at the
interface. The advantage of the two-crack model is that a large
number of nodal points are concentrated around the interface, owing
to the spacing required by the Gauss-Chebyshev scheme. With the
two-crack model, we require two additional conditions to complete
our system of equations. One of these is the requirement that
there be no net entrapped dislocation (i.e. the crack must close
at both ends), given by Equation (1.12). The other is a "matching
condition" relating the value of Fig3 to that of FQ%} . For

this we adapt the condition used by Erdogan and Biricikoglu [13].

Their matching condition is a requirement that must
be met to insure consistency between their solution and the
calculated power of the stress singularity at the crack tips inter-
secting the interface: in its full form, it is quite a complicated
relation, but for our purposes a simpler version which embodies
the essential features of theirs seems to suffice. Thus, we use

the following relation:
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) () ,
Floy= F oV 5%, (2.1)

This condition is imposed at the two nodal points closest to either
side of the interface. Our results indicate that the choice of

o does not have an important effect. It may, however, be best to
choose o = 0 (see Sec. 2.4). In fact, although Erdogan and
Biricikoglu use a Gauss-Jacobi scheme which gives better account
of the fact that the stress singularity for a crack tip at an
interface is not inverse square-root of distance, we are able to
essentially repreduce their results, especially for behavior of
stress intensity factors, with our Gauss-Chebyshev method. It
seems likely that this agreement is due to the difference from 0.5
of the power of the singularity at the interface having only a very
local effect on the solution. By choosing enough nodal points we
can smooth out any imposed perturbation in the solution at the

two points nearest the interface so that the solution at the

crack tips remains relatively unchanged.

The results, which illustrate the behavior of Ky for
varying tip-to-interface distances and relative shear moduli, are
shown in Figure 2.2 (a) (for a crack approaching the interface) and
Figure 2.2(b) (for a crack having penetrated the interface). The
dependence of KI on d/A and g 1is as anticipated by Cleary (17]

who made his deduction on the basis of simple material deformation
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matching arguments. As the crack approahces an interfacé with a
stiffer medium (g < 1), KI at tip A drops sharply to zerd.
whereas it rises sharply toward infinity if the interface is with a
softer material (g > 1). For a crack which has penetrated an
interface, going from a stiff material to a softer one, KI at
tip A has been found to drop sharply (as shown) from infinity, reach
a broad local minimum, and gradually become asymptotic to its value
remote from the interface. For a crack which has broken out of a
soft material into a stiffer one (having somehow overcome the
apparent "elasticity barrier" noted above) KI rises sharply from
zero, levels off, and remain nearly constant until d/A = -2 (the point
at which tip B crosses over the interface), whereupon it drops sharply

toward its remote value. The behavior of KIB (KI at tip B) can be ob-

tained from Figure 2.2 by complementing d/A and inverting g.

While the strong decrease in KI at the tip of a crack approach-
ing a stiff adjacent medium leads us to conclude that the crack might
be contained in the softer stratum, some care is required when apply-
ing this conclusion. The crack may break through the interface if,
for example, the range in which de-cohesion takes place is greater
than the distance at which KI becomes strongly influenced by the
interface. Also, as will be discussed in the next section, micro-
cracks in the stiffer medium can be induced to propagate across the

interface and Tink up with an hydraulic fracture.
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FIG. a.I. (a) Single crack model for a crack ap-
proaching the interface; (b) two-crack model for a
crack crossing the interface.
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FIG.2.5., (a) Plot of stress-intensity factor vs distance from interface for a crack approaching the interface; (b)
plot of stress-intensity factor vs distance between crack tip and interface for a crack crossing the interface.
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2.3 Effects of a Micro-Crack on Containment

It was noted in the last section that an hydraulic
fracture, propagating toward an interface with a stiffer material,
will at some point encounter an "elasticity barrier" which will,
in the absence of moderating mi;rostructural conditions, drive KI
at the near-interface tip to zero. Among the strongest of these
~ counteracting conditions is the presence of a micro-crack a short
distance across the interface from the main fracture (Figure (2.3)).
Under these circumstances, the near tip tensile stress field of the
~main fracture could potentially induce a large enough KI on the
tip of the micro-crack to cause it to propagate back across the

interface and link up with the main fracture.

Our approach to this problem was to determine the frac-
fluid pressure (po) on the main crack required to produce a positive
KI at the near-interface tip of the micro crack if both cracks
are in a region of compressive tectonic stress of magnitude 6m
This solution was obtained by first solving the micro-crack problem
with a unit positive normal load on the hydraulic fracture and no
load on the mic¢ro-crack so as to obtain the stress intensity
factor at the tip of the unloaded micro-crack, KIu' The probiem
was then solved for the converse crack loading to obtain the stress
intensity factor at the tip of the loaded microcrack, KI . By
superposition we can writg the expression for KI at the micro-crack

tip for the case where the hydraulic fracture is subjected to frac.
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fluid pressure P0 and confining stress-erM and the micro-crack to

Sy alone

Ke = (R-64)Kru -6k, (2.2)

from which we deduce that for KI to be positive, the ratio of frac.

fluid pressure to confining stress must exceed

£ =K
(a)c fiH S (2.3)

The'effects of geometric and material parameters on
(P0A5M)c are shown in Figures 2.4 and 2.5. Of special interest is
the fact that the capability to actually open the micro-crack is
not strongly affected by the micro-crack's size. It is also
apparent that the proximity of the hydraulic fracture to the inter-
face is more importaht than that of the micro-crack. The ratio of

shear moduli for the strata is also an important factor.

Figure 2.4 shows that it is possible to produce a
positive KI at the tip of a micro-crack without having a frac.
fluid pressure excessively above the confining stress. For example,
a frac-fluid pressure of 1.464 1n a 30 foot hydraulic fracture
1.5 feet from an interface (with a shear modulus ratio of 2) can
produce a positive KI at the tip of a 3.5 inch micro-crack 3.5
inches from the interface. Figure 4 ;hows that if the same hydraulic

fracture were instead 4 inches from the interface (still not strongiy
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under the influence of the elasticity barrier), the same frac.
fluid pressure would produce a positive stress intensity factor at
the top of a 3.5 inch microcrack as far as 3 feet beyond the
interface. Statistically,* this provides a higher probability of‘
finding enough micro-cracks and damage to back-propagate ahead of

the major fracture.

We conclude that micro-cracks are significant factors
influencing the containmenf of hydfaulic fractures in shallow,
soft strataL‘ It is in these situations -- where the lateral
confining stresses are small compared to the frac. f1uid pressures
required for hydraulic fracture propagation -- that micro-cracks
in a stiff adjacent stratum can be easily induced to break through
the interface and link up with the hydraulic fracture, thus
allowing it to overcome the elasticity barrier presented by the
stiff stratum and thereby break out of the pay zone. At greater
depths, we expect the hydraulic fracture to be more readily con-
tained in the pay zone by the elasticity barrier because the frac.
fluid pressure required for propagation is then such that

(PO-Cﬁ)AQM can be too small for the mechanism above to operate.

*
Note that our conclusions here need very little modification in
discussing the fully 3-D character of the real field operation.



-Fracture fluid pressure Po

Confining stress o

Fig. 2.3  Diagram of the microcracks problem. We must determine the fracture fluid pressure required to cause a
pusitive stress-intensity factor at the near-interface tip of the microcracks for given microcracks and hydraulic
fracture lengths, distances from the interface and relat_ive shear moduli
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Fig.a4 Plotof (R /g 7., ) 3  function of the distance from the tip of the hydraulic fracture to the interface for the
microcrack probiem.
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Fig,a.s Plotof(p /o,). 2sa function of distance from the tip of the microcrack to the interface for the microcrack
probiem. ’
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2.4 Behavior of Stress Intensity Factors at the Tips of Singly
Branched Craqks

Under certain conditions we might exﬁect a propagating
hydraulic fracture to branch (i.e., to change course) as it
encounters unsymmetric stress fields, changes in material
composition or structural defects. Branching would be expected, for
instance, in an hydraulic fracture obliquely aporoaching an inclusion
or interface. The type of event that occurs may range from
Aformation of a single branch (the subject of this section) to
generation of multiple branches (of which more than two usually are
observed only under dynamic propagation conditions). The results
of an investigation concerning the appropriate model for crack
blunting -- an interesting and very important example of multiple
branching -- will be presented in the next section, along with the

results of a study of SOMe  simple blunting problems.

We model the singly branched crack as two separate,
intersecting crack surfaces. In this respect the problem is similar
to that of a crack crossing an'interface. Now, however, the two
cracks are not collinear, and additional complications are thus
introduced: specificaily, since we must now so]vé for dislocation
densities in two directions on two surfaces, we require not two
but four extra equations to complete the resulting system. Two of
these, naturally, are simply the closure conditions (Eg. (1.12)),
namely, that there be no net opening or sliding dislocation over the

entire branched crack. The question of what matching conditions
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are appropriate for the branched crack problem is not so easily
answered. While equations dd exist in the literature (18], neither
their physical motivation nor the extent of their applicability is
clear, and our attempts at resolving these issqes have not yet
produced conclusive answers. However, we developed the notion that,
in the immediate vicinity of the interseétion, the opening and
sliding dislocation densities may be adequately represented by an
assumption of antisymmetry, which is certainly valid in one particular
case of two cracks with identical loading and length; The adequacy
of this assumption was verified by comparisoh with the results of
Gupta [ 18] and Lo {191 (see Table 1), and is further vindicated
by our observation that any reasonable relationship between the
dislocation densities at the intersection produces equally satis-
factory results, at least whenever crack lengths are of comparable
order. Recently, however, Barr (22] has found that the agreement
with Lo's results deteriorates somewhat for very short branches
when using this specification of antisymmetry as a matching con-
dition. He has obtained good agreement with Lo for a very wide
range of branch lengths ( 2 < a/d < 200) by requiring the much
stronger condition that all dislocation densities to vanish at tﬁe
intersection, thereby excluding stress singularities at that point.
He has implemented this requirement in two ways, with equally good

82 to vanish (which

results: by explicitly requiring -ﬁ ! and u
necessitates removing the integral equations at one of the points

X, near the intersection), or by requiring the dislocation
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densities on only one of the cracks to vanish. While the latter
method may appear to be insufficient, it seems to result in
essentially vanishing u on both surfaces and offers the advantage.
of allowing the governing integral equation to be written at all of

the X S.

It seems 1ikely thatsimilar requirements will prove to
be more acceptable than the ones currently used for other inter-
secting crack problems such as a crack penetrating an interface
(Section 2.2) and the blunted crack problem (Section 2.5). We are

currently evaluating its performance in such problems.

Along with the results of Gupta and Lo cited above, we
interpret as further validation of our branched crack model the
results shown in Figure 2.6, where KI and KII are plotted as
functions of branching angle 6 for a symmetric branched crack
(viz. a crack whose legs are of equal length). We attribute the
decrease of KI with increasing é to the decreasing portion of
the total crack length subject to loading in one of the two normal
directions. Likewise, the increase in KII is related to the in-
creasing shear component on Si of the frac. fluid pressure acting
on Sj. [f effective length were the only factor affecting KI’ we

would expect the decrease to be very roughly described by

Kz = 6°,lrra(/+cos(e)) : (2.4)
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Equation (2.4) is plotted as a dashed line in Figure 2.6. For small
values of 8 , the agreehent between the computed KI and that pre-
dicted by Equation (2.4) is quite good, but at greater angles we see
that KI does not drop as far as we would expect. It is likely that
with increasing 6 , the decrease of KI is mdderated by the
tendency of one surface to partly influence the other, as if it

were a free surface.

The behavior of the stress intensity factors with in-
creasing extent of branching is shown in Figures 2.7-2.10.
Figures 2.7 and 2.9 show the expected increase of KI with branch
length, and KI curves for various branch angles are compared with
the well-known elevation of KI at the tips of a propagating

straight crack (dashed line).

The behavior of KI with increasing branch angle is as
expected based on a crude "effective length" argument mentioned
above. The behavior of K;; at the tip of the branch (Figure 2.10)
is reasonable, since we would expect the contribution to the
effective shear loading of the branch from the opening of the main
crack to be greatest when the branch is very small; we would,
therefore, expect an initial increase in KII’ followed by a fall-
off when the branch length (and thus the normal load due to frac
fluid pressure) becomes significant. KII at the tip of the main
crack predictably increases from zero as the length of the branch

surpasses that of the main crack and their roles reverse.



Comparison of results obtained by anti-
symmetric matching to results of K. K. Lo.

Results from antisymmetric matching a
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0, deg Kmlo\/';;fz K||BIO°\/ud2
15 1.15 0.32
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TABLE I

Comparison of results obtained with anti-
symmetric matching to those reported by Gupta.
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Comparison of antisymmetric matching with Gupta’s results for
8=160°, 0 =40°
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Gupta’s results matching,
o .
dzld i l(l AIo ‘/"dz KlAIa"\/udz
0.1 0.9942 0.9948
0.05 0.9950 0.9889
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Fig. .6 Plot of stress-intensity factors as function of branching angle for the branched crack problem. The dashed
- line is a plot of Eq.2.4 --a rough prcliminary estimate of the expected behavior of K (b).
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ricaily branched crack.
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F1G.3a40 Plot of Ki; at tip B vs d/a for an asymmet-
rically branched crack. The dashed segment of the
30-deg curve is a region of unsatisfactory numerical

behavior.
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The relatively wide separation of KI at the tip of a
short branch for different branch angles is of great interest to
us because of its implications for estimating the directional
tendency of a hydraulic fracture. Apparently, based on any of the
numerous branching criteria (e.g. [17]), we would not expect a
straight hydraulic fracture in a homogeneous medium to deviate from
its course if the tectonic stress field is congistent and it is
driven by internal pressure: however, we have previously recognized
(14 ] the various barriers and stress eccentricities that can

easily make this branching more favorable.

2.5 The Behavior of Stress Intensity Factors at the Tips of.
Doubly Branched or Blunted Cracks

There are situations in which we might expect a propagat-
ing hydraulic fracture to form not one, but two branches. Perhaps
the most likely (and the most important from the standpoint of
containment) of these occurrencesis crack blunting. This is a
process by which the energy4norma11y available to drive a crack
across an interface would instead cause separation and frictional
slippage on such an imperfectly bonded interfacé. Because of its
importance in hydraulic fracturing, our investigations of doubly
branched cracks focussed on crack geometries associated with such a
blunting process. A complete study of blunting must include the
frictional characteristics of the interface, as well as the

tectonic stresses acting at the interface, since it is these
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properties which may control the degree of blunting rather than the
elastic moduli of the material on either side of the interface

(Section 2.2); such a study has been undertaken by Papodopoulos

C201.

Two different blunted crack models were evaluated. The
simpler of the two is a two crack model in which the main crack
and the blunted portion are two separate intersecting surfaces
(Figure 2.11a). The second model, which yielded better numerical
results, is the three crack model shown in Figure (2.11b), in which
the blunt is imagined to be composed of two surfaces intersecting
tip-to-tip at the point where the blunt joins the main crack, which

is the third element.

Once again, additional equations are needed to complete
‘the system formed by the governing integral equations. In the case
of the two-crack model, we need four such conditions. The most
important consideration is that there should not be any (even
logarithmic) stress singularity in the material near the intersection,
which is equivalent to requiring that there be no net jumps in dis-
location density at the intersection. For our -initial work with
the two crack model for.symmetric blunted cracks, we imposed this

constraint through the following equations:

- M0) + 1 P 0w -0y =0 (3.5 )

(1 9-) (12)

A0Y U 0 - o= 0 (3.5b)
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The remaining two equations came from requiring closure (Eq. (1.12b)),
as before. Equations (2.5) are unsatisfactory for use with un-
symmetric problems since, although they ensure boundedness of

§ 4y and 6712, and 6 ,, s not bounded unless the blunt is
perpendicular to the main crack. We thus decided that a different
way of requiring bounded stresses near the intersection was in order.
Because our Chebyshev férmulation is not well suited to providing
discontinuous dislocation densities on a single crack, we concluded
that better numerical stability and perhaps physical realism could
be achieved by specifying that the opening and sliding dislocation
densities on the main crack Vanish at the intersection, while
densities are the same on either side of the intersection on the

blunted portion of crack surface; namely

/“(Nl)(o‘> s/ufm(m)’ M(n)(o‘) ‘#mzoﬂ ;/Jx(’3)=o,/x(’23>=0 (2.6)
In view of the recent findings regarding matching conditions for
branched crack problems (Section 2.4), it is probably best to
require qu = 0 at the intersection on at least two of the crack
surfaces. However, in the work presented here, Equations (2.6)
proved to be satisfactory and, along with two closure conditions,
were used in the three crack model, where six additional equations

were needed to complete the system.

The results of our investigation of the behavior of
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symmetric blunted cracks are shown in Figure 2.12. The essential
features are the behavior of the opening mode stress intensity
factors at the tips of both the primary and secondary cracks; namely
KI(a) and KI(b), respectively. We note that the elevation of
KI(a) with increased blunting reverses as expected when the length
of the secondary crack exceeds that of the primary crack, but that,
with increasing secondary crack Iengfh, KI(b) rises much more

strongly than we had anticipated.

The initial rise of KI(a) is probably due to the
development of a free surface effect 1ike that encountered in the
branched crack problem: the secondary crack offers much less
resistance to the opening of the primary crack than would the
unbroken material. When the secondary crack exceeds the primary in
length, the effect of the fluid pressure in the secondary crack
overwhelms the free surface effect by producing a compreésive stress
on the prospective Tocus.of the primary crack thus decreasing

KI(a), and thus dominates its further behavior.

In the absence of the primary crack KI(b) would
increase as v/d/%. We find this to be the case for large d/%. The
relative behavior of KI(a) and KI(b) is substantial evidence
that once the secondary crack becomes long enough, propagation of the
primary crack away from the secondary crack will be virtually
stopped. Thus, we may make the preliminary conclusion that while

blunting may result in containment of an hydraulic fracture, it
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may also inhibit propagation away from the interface.

Results for representative asymmetric blunted crack
problems are shown in Figures 2.13 - 2.16. Here we examine the
effects of blunting inclined at an angle 6 to the axis of the
main crack when one tip (tip B) is held stationary and the other
(tip C) is advanced. These results were obtained from both the two
and the three crack models, as noted on the plots. While the two-
crack model offers the advantage o% simplicity, we note that there
are cases of numerical instability for certain combinations of
blunt length and inclination. This situation was remedied by
adopting the three crack model, with its greater facility for
capturing the behavior of the dislocation densities at the inter-
section. We feel that the three-crack model is much more accurate
and reliable than the two-crack model, and we plan to use it in our
future work. The stress intensity factors at the three-crack tips

display some mildly noteworthy behavior.

As usual the behavior that interests us most is that of
K at the various crack tips. Regardless of the angle of inclination
‘of the blunt there is an increase in KIA’ KIB’ and KIC with in-
creasing amounts of blunting. Both the rapidity of this increase
and the initial magnitude of these stress intensity factors depend
upon the angle 6, but the nature of the dependence is different for

K than for KIA and KIC: for any choice of ¢, KIB increases

IB
with increasing 6, but KIA and KIC decrease (albeit siightly).
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It is most probable that KIB is dominated by compressive stresses
in the vicinity of the body of the main crack: as © decreases, tip
B moves into areas of larger compressive stresses which force KIB
to decrease with 6 for a given frac fluid pressure. The behavior
of KI and KII at tips A and C is quite similar to what we
have seen in the branched crack results in the previous section

(as might be expected from the shortness of the leg of the blunt
between the intersection and tip B). The magnitudes of KIIA’ KIIB’
and KIIC tend to level off and decline as the blunt becomes very
large compared to the main cracks, thereby confirming some obvious
intuitive predictions. A phenomenon which is best illustrated

by Figure 2.16a is the reversal in sign of KIIA which occurs when
the relative shearing actions of the legs of the blunt reverse; in
case of the 90° blunt this occurs when one leg surpasses the other
in length. We quote all these observations inlgrder to provide
some confidence in the general correctness of the scheme, although
there are many other more complicated phenomena of interest still

to be pursued.
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F1G.3a.}l (a) Two-crack model for the blunted crack
problem; (b) three-crack model, preferred because
of its ability to capture the behavior of uf2 near
the intersection.
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Fig. .2 Plot of stress intensity factors vs size of secondary crack for the blunted crack problem.
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numerical behavior.



- 55 -

3011 T T3
(a)

0 T l% ;* L i

- [ h
Ky

-0.1- -

I 1 ] l 1 J 1 } | !
0 3 6 0 3 6

. /a A
1.6 T T T T 1 Key: @ Two-crack model
(e} ‘ . © Three~crack model

F1G.3.|4-Stress intensity factors at the tips of a 45-deg asymmetricailly biunted crack. (a) Ki, Kur at tip A;
(b) Kt, Kus at tip B; (c) K, K1 at tip C. For the two-crack model, cracks 1 and 2 had 20 nodes. For the three-
crack model crack 1 had 20 nodes, and cracks 2 and 3 had 10 nodes each. The dashed segments indicate regions
of unsatisfactory numerical behavior.



L £ ]

Py

- 56 -

° Ky
-0.1 - 22 —
. »
] ] ] | |
0 3 6
i/a
Key: e Two-crack model c

o Three-crack model

FI1G..IS Stress intensity factors at the tips of a 60-deg asymmetrically blunted crack. (a) Ki, Ki1 at tip A;
() Ki, Ku at tip B; (c) Ki, Ku1 at tip C. For the two-crack model, cracks 1 and 2 each had 20 nodes. For the
three-crack model, crack 1 had 20 nodes, while cracks 2 and 3 had 10 nodes each.



3.0

2.0

S

L 3

13 1.0
[=]

a

«
X

0
-0.5
] ] | ] ] 0.1 - -
0 3 _G
I/a L . o -
0 ¢ { t } ;
. K
i 01 _M-
‘ N I I |
0 3 6
I/a

Key: ® Two-crack model
o Three—crack model

TT

2a
A(" . -r'
0.5a
, B..L_L

FIG 2.6 Stress intensity factors at the tips of a 90-deg asymmetricaily blunted crack. (a) Ki, Ku1 attip A; (b) Kt,
K11 at tip B; (¢) K1, Ki1 at tip C. For the two-crack modei, both cracks had 20 nodes each. For the three-crack
model, crack 1 had 20 nodes, and cracks 2 and 3 had 10 nodes each.
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CHAPTER 3 QUASI-STATIC CRACK PROBLEMS

3.1 Introduction

Our studies of the static crack problems described in
Chapters 1 and 2 have served two important purposes: they have pro-
vided some insight into the behavior of corresponding cracks in actual
hydraulic fracturing operations, and they have served as sfepping
stones, providing us with modelling experience necéssary to achieve
our ultimate goal of full 3-D simulation of propagating hydraulic
fractures. In order to reach that goal, we must have, in addition to
the capability of modelling complex crack geometries, the capability
of computing the characteristics of the flow of a viscous fracturing
fluid in a propagating crack, as well as the effect of the fluid
flow on the rate of propagation. Our approach to such quasi-static
hydraulic fracturing problems has been to consider in sequence cer-
tain idealized models with increasing complexity. Thus, we first
investigated the problem of fluid pressure evolution in a stationary
plane crack filled with a quasi-statically flowing fluid; then we
studied pressure evolution and fluid front advancement in such a
crack. Work is now in progress on the problem of quasi-static
propagation and fluid front motion in a plane crack, a problem which
comes quite close to some actual field operations. We found, in
the course of working on the pressure evolution problem, that the
"explicit" scheme described in the next section seems totally in-
appropriate and that only the "implicit" formulation described in

Section 3.3 is sufficiently stable.
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3.2 Frac. Fluid Pressure Evolution: Explicit Formulation

The pressure evolution problem is illustrated schematically
in Figure (3.1): the extremely viscous frac. fluid is pumpéd into a
crack (already filled with the frac. fluid) whose length is held
fixed. As the Width of the crack increases, the fluid pressure dis-
tribution changes accordingly. Since we choose to pump the fluid at
whatever rate is necessary to maintain a constant presssure at the
borehole, the process will stop when the fluid pressure becomes uni-

form along the entire crack length.

In the early stages of our work on this problem, we felt that
an "explicit" formulation following the general outline presented
by Cleary [17], would be the simplest and mdst economical method
of solution; since we anticipated having to carry out the solution
over many discrete time steps, the latter are very important
criteria. By explicit scheme we mean a method which allows the
fluid pressure distribution at a time in the future to be calculated
explicitly from the present crack opening and fluid pressure dis-
tributions. Such a method is considerably more economical than an
"implicit scheme", in which the future pressure distribution depends
implicitly upon the current state, thus requiring solution of a
system of equations. Although some stability problems were anti-

cipated, (as discussed below and in ref. [17]), we felt that they
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could be adequately taken care of.

In the development that follows (and in later sections) some
simplifications of the notation used in Chapter 1 will be possible,
since from here on we will be dealing with one crack only and
| normal tractions. Specifically, the superscripts used in reference to
the traction&, the influence function " , and the dislocation density
M will be dropped; further, the traction will be designated by p
as a reminder that it is due only to an internal fluid pressure. In
other words; pze& (”) , = F(”“) and ;LI.E/U.(“) . Also, since
the crack will always be assumed to lie on the interval.[-l,l],

-

E]a1.

Our formulation starts with the equivalent of the integral

equation (1.2):
L e %) pix) dx (3.1)
The appropriately specialized versions (presented in [17] along with

the more general equations) of the equations of conservation of mass

and momentum take the form : -

(va> =-98
3% 3t
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and

.a.f=-‘rf\_/_ (3.3)
% §2

Equations (3.2) and (3.3) are readily manipulated to get
2 [gor]- 138 (3.4)
o oF |- 7122 3.4
L9%]- 1%

Differentiating (1) with respect to time and (4) with respect to x

and substituting, we arrive at
’)’?34" 1/’7 a:' 3 P
- = ° — é._-
Sk L (%,%)M}fé MM: (3.5)

The solution procedure involves:

(1) Selecting an appropriate initial frac. fluid pressure distri-
bution

(2) Solving equations (3.1) for /u('x,)=6'()$) , hence §

(3) Evaluating the integral in Equation (3.5) and adding the incre-
ment in pressure to fhe previous pressure.

(4) Updating the time, specifying the pressure at the borehole,

and returning to step (2).

We have chosen to enforce a constant pressure at the borehole, a

~condition which is quite realistic; we can easily adapt to the more
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usual field condition of constant pumping rate but thatis not of
fundamental importance yet. In general, however, the newly computed
pressure;curve at each time step must be corrected in some manner
(Fig. 3.2). Perhaps the most appealing method is to simply set the
pressure at the node Xg in the borehole to the desired level. It may
be more accurate, however, to apply some form of global renormaliza-
tion, as shown in Fig. 3.2(a). It is important to scale borehole pres-
sure p, and the frac. fluid viscosity 7\ to the shear modulus G of
the material (e.g., they might typically have relative magnitudes of

ﬂ,/é =/o™% "and N/g= 10" sec.) . It is essential
to relate the time steps assumed in iteration to a: time T. which is
based on the characteristics of fluid flow, relevant considerations
of elastic crack opening, and the assumption of constant borehole
pressure. The appropriate T, has been provided by Cleary (23} and,
for the case of linear fluid equations used above, it takes the form

3
t~(5) (%)

A corresponding expression for more general nonlinear fluid behavior
has also been extracted by Cleary [24]. Considerable attention has
thus been given to finding the appropriate fraction of Te for use
in our marching schemes. The crucial aspect, from a numerical stand-
point is the evaluation of the second derivative appearing in the
integral equation (3.5). We start by non-dimensionalizing the

; . caG - e [ =
variables: § -f‘-z,’)o 10/4%,10 %" and X:[:_ég'_
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At first, we thought it best to explicitly expand this derivative:

(6P )= 686 P+ 80"+ 66(5)°P '+ 36%6" p' (3.6)

and then evaluate the component derivatives separately. We seemed to
encounter'no great difficulties in evaluating § and its derivatives.
The first derivative, Mo is obtained directly from the solution of
equation (3.1). . In order to calculate § and §", we approximated AL
by the polynomial

t

m- .
/‘i(x) = '4“__x; + a. +a-9.% +'d.3}’}+'-~ +CLM/L (3.7)
=%

which can then be integrated to get § and differentiated to get §"

Accurate differentiation of p proved to be a much greater
problem. We have observed that for any realistic pressure distri-
bution, the resulting dislocation density will be of a form
characteristic of that obtained for a uniform distribution. Thus,
while we may always be confident that/u can be approximated well by
a polynomial of the form (6), we need a& more fool-proof method for
evaluating the first three derivatives of p. We first tried
several different simple scheﬁe for interpolating and differentiating
p, all based upon finding an interpolating polynomial of some sort
and differentiating it. Specifically, we tried (i) ordinary poly-

nomials (of various orders), (ii) local third order polynomials,



- 64 -

and (iii) Chebyshev polynomials, as described later.

Ordinary Polynomials

Because of the simplicity of implementation our first attempts
at finding the derivatives of p 1involved interpolation with '
ordinary polynomials. Two‘approaches were used for obtaining the
values of p (initially known at the zeroes of second-order Chebyshev
polynomials, (?%L,}L=l,-«-, N-] ), plus p', p'', p''', at
the first order Chebyshev zeroes, tys k=1,...,N. The first and

simpler of the two was to collocate at the paints X, to obtain

’P(W}L) = A, +A, Xp + ag_%i. +,,_+afo (3.8)

and then evaluate this polynomial and its derivatives at the tk. The
second approach was to evaluate p at the points tk first by Tow
order Lagrangian interpolation and then collocate at the ty to get a
polynomial of the form (8). For an initial Gaussian pressure
distribution (p(x) = §5x2), the interpolation was done over the
entire interval -1 x<1, but for a "square root" curve
(p(x)=/T+ [x/), the interpolation was carried out separately

on the intervals -14x< 0 and 0<x< 1.

The results obtained by use of these interpolation schemes

varied somewhat, but were bad in general. In particular, the approxi-
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mation of the derivatives was much too inaccurate for purposes of
stability and convergence toward the expected long-time response never

was achieved.

Local Third Order Polynomials

Our final attempt to employ a simple, collocation-based
polynomial scheme involved the use of ordinary third order polynomials,
chosen so as to interpolate p at four consecutive points tk. It
was expected that by using low order polynomials, valid over a
relatively short interval, interpolating functions could be found
that not only gave reliable values of p(tk) but in addition were
sufficienf?y smooth to provide good approximations of the derivatives
of p. This method was also a relatively simple one: values of
p(tk) were first obtained by low-order interpolations from the values .
of p(xr). Local cubic polynomials were then found by collocation at
four consecutive tk, then marching ahead one point and so forth. In
other words, p(tl) was approximated by collocation at ty,....,t,;
p(ty) by collocation at t,,...,t;, and so on to t ,. Values of

p(tn_4) p(tn) were all obtained from the n-4th polynomial.

This method gave very good approximations to p(tk) for both the
Gaussian and square root pressure distributions, but it still gave

highly unsatisfactory values of the derivatives.



- 66 -

While none of these relatively simple schemes provided
close enough approximations to the derivativeS of p, there were stiil
several very promising alternatives. Since the problem seemed to lie
in the lack of smoothness of the various interpolating functions tried
so far, we expected that the use of functions of greater intrinsic

smoothness could prove to be more fruitful.

The normal difficulties associated with numerical
differentiation (especially in evaluating derivatives greater than
first order) are made even more severe in the evaluation of [53p'j“3
because of the cumulative nature of § and p. The future value of p
is obtained by integration of Es3pj"W1th ¥ , an operation which does
not smooth out ripples in the usual fashion of regular integration:
this, at best, can only cause "noise" to be passed along unfiltered to
the new p. The future § 1is also deterhined by adding [53p‘]'dt;
any inaccuracies in the computation Es3p']‘ or its derivative will
return in the next time step as noise in both § and- p. Thus,
while it may be possible to project § and p by one time step,
subsequent computations can be extremely unstable. Clearly, a
differentiation scheme which filters out all pre-existing noise in
§ and p is required; it is imperative that at each time step, the

integrand in Equation (3.5) be perfectly smooth.

The simplest such scheme involves differentiating p,

then <53p‘ (without prior expansion, as in Eq. (3.6)) by finite
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differences and locally smoothing .rough areas in each derivatives
by fitting with a relatively low order "least squares" polynomial
(Figure 3.3). These operations were carried out separately on
either side of the borehole location in order to preserve (at the
borehole) slope discontinuities in pressure. This scheme was tried

using a very simple "triangular"-initial pressure distribution.

In addition, during this trial we allowed the borehole
pressure to assume whatever value was dictated by the governing
equations, rather than correct it at each time step to maintain a
specified p(0,t). These simplifications were made because we éan
analytically predict with some confidence the results for the first
time step under such circumstances. These tests were run using the
algorithm described above in which we'solve Squation (3.1) at each

time step.

The first such trial involved computation of a new pressure
curve after a very large time step (one quarter of the characteristic
time ‘[c), to permit easy visualization. The results were generally good,
except for slight asymmetry (Fig. 3.4). A significant finding was that,
while our differentiation routine was designed to identify rough |
regions of a derivative and smooth them locally, the derivatives
exhibited sufficient roughness (e.qg., [53p']' in Figure 3.4 (e)) that
the smoothing was actually done globally on each side of the bore-
hole. A similar test was run with a more reasonable time increment,

but gross instability was observed in the computatien by the third
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time step. The problem seems to have been that the roughness in
[é3p']' after the first time step was of great enough magnitude that

a low order least squares polynomial no longer provides a sufficiently
accurate representation of the true curve. The required second

differentiation only aggravates this inaccuracy.

Our experience with the tests described above and others
1ike them indicate, perhaps predictably from the viewpoint of skilled
numerical analysts, that it is undesirable to smooth derivates by
approximation with other functions; the noise present after dif-
ferentiation is of sufficient magnitude to confound efforts to capture
the frue form of the derivative. In particular, we éxpect that a
"least squares" fit (because it minimizes the squares of the errors)
would be rendered increasingly ineffective by pervasive noise of
1érge—and randoh-amplitude. We conclude that all measures taken to
ensure smoothness of derivatives should at 1easf begin with the

function that is to be differentiated.

Among the methods that did show some promise was that of
“transferring" g3p' -- known at 20-40 zeroes (tk) of the Chebyshev
polynomials of the first kind -- to several hundred uniformly spaced
points on the same interval, via Lagrangian interpolating poly-
nomials of fourth or fifth order. Since both p and § are
initially quite smooth, the transfer should not introduce any bad

behavior. Differentiation can be accomplished with finite differences,
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as before, but instead of smoothing the derivative with some sort of
global function, we simply compute the average value of the
derivative over a number of the uniformly spaced points in the
vicinity of a particular tﬁ. This method is simple and does not
require much computation time, but the quality of the results can be
heavily dependent upon the size of the interval over which the
averaging takes place. We found, therefore, that its uséfu]ness for
smoothing strongly singular functions such as [sBp‘]" was variable
(although we have equipped our routine with the capability of
smoothing over intervals of varying size on the crack surface, thus
enabling it to capture anticipated sharp rises and falls in the
derivative). Because of the mixed success, and the advent - before
testing of this "filter" could be completed - of the scheme described
below, this method has been relegated to the role of evaluating p'

only.

While we have previously noted the difficulties attendant
upon differentiating an interpolating function, this approach seems to
be the only one capable of capturing the singular behavior of
(6”p'J". Some observations regarding the nature of 53b' and the
Chebyshev polynomials (and their derivatives) led us to examine
their use: in particular, we noted that the derivative did not have
the character desired to represent /int and were thus led to

*Thus we have something akin to a zero order "hold-circuit” low
pass filter.
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explore expansions in these polynomials.

We consider again the case of a simple triangular pressure'

distribdtion which, with the resulting crack opening displacement,

, 1is sketched in Figure 3.5. Owing to the antisymmetry of
53p' (Figure 3.5{b)), we may shift both sides (withqut affecting
derivatives) to obtain the continuous curve passing through the
origin, shown in Figure 3.5kb).' This shifted curve has two properties
which immediately and strongTy suggest approximation by Chebyshev
polynomials:"ft attains extreme values at 1 and it passes through
the origin, as do the odd-ordéred Tk (first kind). We note,
further, that termwise differentiation of a Chebyshev series introduces
a division by 1-x2, (see Ref. [27]), whiéh has the right
character to represent ‘/u,t . Furthermore, orthogonal functions
offer the advantage 6f being independent: coefficients are chosen
on the basis of the integrated degree of presence of the corresponding
member of the orthogonal set in the curve being approximated, rather
than in an attempt to find a combination of potentially similar
functions that may pass through the collocation points. Thus, since
our modified anticipated E53p‘] curve has the same general shape as
would a combination of two or more Chebyshev polynomials (viz, T],

T3, etc.), we might expect a very good approximation to §7p' and

possibly a good approximation of [53p J'; that is, we epxect both

1t

high accuracy and the required degree of smoothness in [53p ah.
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Thus, in implementing this scheme, we represent 53p' by

the series [25]

[6P]x) = & Nz (3.92)
Pl = & T f‘kﬁ(ﬂ
. K
= L (8P (R T ) (3.90)
Koy, = COS(MTT/N>] M=0,..., N (3.9¢)

The series (3.9) may be differentiated termwise using either the

recursion relations
T =3xTa® =1 ; =l ;T =% (3.10)

or the more direct formula given in Ref. [27]. In our general
hydrofac formulation, the values of [sjp'] are not known at the points

Xm? but can be easily evaluated there by interpolation.

This scheme was tested using § curves as computed by our
fracture simulation program for various numbers of nodal points tk
and differing orders of the series (3.8). Typical results are shown
in Figures 3.6 - 3.9. Two separate characteristics of the
approximation of‘[53p‘]" may be observed upon examination of these
plots. Firstly, while the general shaBe of [53p']” is right in all

cases, it is plagued by noise, of whichi"frequency“ is dependent
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upon the order of the series (increasing with the number of terms,

as might be expected); the amplitude seems to decrease with increasing
number of tk boints employed to represent 53b' before the expansion
in equation (3.9a). Thus, we would expect the best perfermance from a
series with a very large number of terms starting from an equally

large number of tk's.

Furthermore, it is Tikely that we could obtain a particularly
smooth fit of § at a large number of points by startiné with a
relatively small number of tk's in the actual evaluation of
equations ('3.6)-(3.8), finding the coefficients from the Chebyshev
series approximation of the integral of W (see Appendix A), then
evaluating the series at a larger number of points (preferably the
xm‘s used to evaluate the ak). The resu]t should be a curve whose
initial high degree of smoothness has been enhanced by the process

of integration.

This hypothesis was subjected to a preliminary test by
assuming § = 1-t§ (not much different from the actual shape) and
that p' = % 1; this saved the cost of solving a 200 x 200 system.
We then computed 5’#’ at 200 tk points and fitted with a 200 term '
Chebyshev series to get the results shown in Fig, 3.10. Note that
while [5?1}' sti1l has some high frequency noise (and some bad

behavior* at 1), B;p'] is markedly smoother than in any of the

*This is to be expected from the high order of singularity intro-
duced by double differentiation of Chebyshev polynomials (ref. 27).
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previous trials. It seems, then, that better results for{53p'] "
might be obtained by differentiating the[53p|]' computed with the
200 term series by finite differences, at the 40 tk‘s, using the
averaging procedure illustrated in Figure 3.11(a). The result is
shown in Figure 3.11(b), énd seems to be exactly what we want.

Hence, this scheme is currently installed in our hydrofrac program.

Summary of explicit time marching scheme..

3p|]ll)

which we hve described above have produced quite satisfactory re-

The differentiation schemes (for operations like [$§

sults in our explicit time integration procedures, insofar as

accurate numerical representation is concerned.

Essentially, our results show that, even for a fairly
small time‘step size, the solution becomes totally unacceptable
after just one step forward. Exémination of the trend at the bore-
hole suggests an increasingly singular character in all variables
(especially pressure). This instability is caused very simply by
the failure of the algorithm to produce a rate of crack opening, S,
that simultaneously satisfies the equations of elasticity (in
relation to pj. For instance, a sharp cusp develops in § (Fig. 8.5))
-- a condition that would require a logarithmically infinite pres-

sure at the bqreho]e.

However, our work with explicit time integration has given
us good insight into the pressure evolution problem. For instance,

we have quickly recognized the need for a time integration scheme



FIG. 3.1 Diagram of the pressure evolution problem. Frac. fluid is pumped
in at constant pressure p,while the crack is held at fixed length 21.
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t, points (20) is ine same as in the sequence of curves
in Fig.3.6 the noise is of much higher frequency
confirming the frequency of noise depends mostly on
the number of terms in the series. (c) Approximation
of [63p’]"”’ obtained by termwise differentiation of the
series described in Fig.3.8(a). The true shape of this

curve is completely marked by large amplitude, high

frequency.
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points (shown by open circles) by the approximate
formula s (1 - x2)3/2) with a 200-term Chebyshev

. series solid line. (b) Plot of [5°p)’ computed by
" termwise differentiation of the 200-term Chebyshev

series described in Fig. 3.9(aL Note the great improve-
ment in smoothness, as well as accuracy near the
borehole, caused by using twice the number of ¢,
points (40 vs 20), used to compute 63p’ in Fig.3.9
(c) Plot of [6p]"” obtained by termwise differentia-
tion of the Chebyshev series described in Fig.3.9 (3)
although the noise has been substantially reduced
from that in Fig. 3.8(c)
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proximately at 200 t, points using the approximation
of 5 = Y 1-1tg)by a 200-term Chebyshev series. (b)
Approximation of [63p’]’ obtained by termwise dif-
ferentiation of the series described in Fig. 3.)p(3)
Smoothness and accuracy to be used in dislocation
dipole model. (c) Approximation of [6%p}” by
termwise differentiation of the series described in Fig.
3.10(2) The noise in this curve is of about the same fre-
quency as that in Figs.3 §(c)and3.g¢). Overall, the am-
plitude is much smaller (probably because the same

number of terms is used in the series). This curve is.

not smooth or accurate enough for use in pressure
evolution computations.
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FIG.3.\{ (a) Ilustration of the differentia-
tion method used- to obtain the curve in
Fig3.il (b) from [6 p‘'l’ in Fig. 3.10(b), (b)

[53-p']"(tk) = (1) ~ fir1-fig + fisafi | puis approximation of [6%p'}* was ob-
My Xmj_q Xmjsp Xm; - | tained by differentiating the curve shown
5 in Fig.3,0(b), computed by termwise dif-

ferentiation of a Chebyshey series, with
the averaged finite-difference scheme il-
lustrated in Fig. 3.// (a).
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which allows simultaneous satisfaction of both mass conservation and
elasticity equations. The implicit marching scheme (which uses many
of the numerical techniques developed for the explicit scheme), dis-

cussed in the next section, has proved to be the best such method.

3.3 Implicit Scheme for Tracing of Frac-Fluid Pfessure Evolution

Although we have been able to develop numerical procedures
stable enough to allow explicit computation of evolving fluid pres-
sure and crackAgeometry (Section 3.2), the results obtained were,
inevitably, too little inf1uehced by the elastic properties of the
rock, and were effectively dominated by the requirement of frac-
fluid mass conservation, which dictated the change in width from one .
~ step to the next. For this reason we felt it essential to employ a
method by.which frac-fluid pressure would be implicitly computed at
each time step so as to satisfy §1mu1taneous1y the requirements of
elasticity and mass conservation. Further, because of the success
achieved with the dislocation dipole scheme (as noted in Ref. 11),
it was decided to base our implicit method on the latter, rather than
the dislocation density scheme, in order to avoid anticipated

trouble with the high-order differentiation.

Thus, we start with the integral equation relating frac-
fluid pressure and dipole density or crack opening displacement (117,

which is obtained by integrating Equation (1.1) by parts:
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g |
Pk =L XD(?C,,%)(&X)-S(XJ]AJC— 8(760\[‘6(%”1)"5(%”— »}], (3.11a)

where, for a homogeneous isotropic infinite medium,

Yp= — -2 " =-dY (3.11b)
X

Here, X'D is the influence function which gives the stress at point
Xq due to the difference in dipole strengths § at points x .and Xg>
and 1§ is the analogous influence function associated with dis-
Tocations [8]. Differentfating Equation (3.11a) with respect to

time gives (for time-dependent and stationary crack-tips)

|
P (1) =flo(xo,%)[é]:Ax — S [X(m,ﬂl)—z{m,-ﬁ] (3.12 )
. - o
We have seen before (Section 3.2) that the simp]est fluid flow model --
Poiseuille flow -- gives the result that7fé = E53p']’ (here the
apostrophe denotes* spatial differentiation, while the "dot"
indicates differentiation with respect to time). If we now make

the following approximations (which can, of course, be refined),

-

. A4 o . 2ot
*6 =" Atg +(;_c<)t6 , P= /P“*}O (3.13)
AV

*Here 7| denotes an effective viscosity and we have used G, V for
shear modulus and Poisson ratio of the surrounding rock.
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and substitute into Equation (3.12), we get an equation which may be
re-arranged so that only terms evaluated at time f+A't are on the
left and only those at time t are on the right. When we
completely non-dimensionalize all terms, we get (assuming fluid

penetration all the way to the tip, viz. a stationary crack)

| #+AK

. / |
P(“O) '—% XD (x’»ay’){t At[ 5370'} (%)"t At[5lplj/(70o)§ dx
- ,
+ “% J~t+lbt£53f9'.7 ,(%.)[X(%,,t)— §(ta, ]

! !
= tfo(%,) + (’_:it’éf ¥y (o, 2) { t[SSP']'(x) - tfszjo'] (:1’/,)3 dx

=

"("'i;)d}‘- /t[63 ’pljl(f-a) [X(”Xa,,l)"xmo,’l)] |‘ (3.14)

where, again, it is understood that p and & are now dimensionless:

that is,

[

5= G5 | /Pd—% ; and IC:%(_G-Y

is the characteristic time predicted by Cleary [23]. The parameter
is chosen to provide the most stable solution; in fact, it will

be seen later that the best choice is x = 1. If we make the

t+at

assumption that 5= té (or any other relation between

-t+At"5 and ts) we can re-write Equation (3.14) as a set of linear
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algebraic equations by using the appropriate discrete formulas
for integration and differentation. First, we approximate the

integrals in Equation (3.14) by the Gauss-Chebyshev formula:

1 N
11/ % ! It
fx,(x,u,xp[ssm L dx =I5 g (FP ]| 2E (3.150)
-1 Qs N L:[ /)Lﬂ-
A= =T8N ) p=i .. N-I (3.15b)
£y = Cos(TCEDA ) Loty N - (3.15¢)

-

Since we wish to formulate the equations'in terms of p, we need to
represent [53p'] in terms of § and p. Our previous success
in termwise differentiation of a Chebyshev series leads us to use

that method here:

M /
(#2Jw =Ty Oo)g ] [Tg(mmp T )P m% (346)
77! J1-xt '

Since we will need to impose two constraints on the solution for

t+Atp (viz. we will in particular maintain the borehole pressure

+
at some desired value, and “2%p will be such that ttAtS(ﬂ = 0)
we will have one more equation than unknowns (i.e., N+1 equations, N
unknowns) unless we obtain p(x,) from a set of N+I points by

interpolation. Again we make use .of the Chebyshev series:
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/
Pl%,) = Z Te(2,) %fﬁ_&f}}/_ﬂﬁ.h (115, (3.17)
l..

If we apply the Gauss-Chebyshev 1ntegration formula in Equations
(3.16, 17) substitute into Equation (3.15) and thence to Equation

(3.14) we obtain our system of equations:
L x+A% *
P %+ :
Z(“a&n Zz ey~ pts)]
1 =

=40t (1 ( )ZXD(M ,)Z fTﬂ (&) =T (@}FZT(QQS (%4)

t 4=l

M
L ! & t‘f‘Aﬁ b 4
x 3 ek L Telka (Xl (-0 TP )]
= A=| |

' M M “
412 [ 1, 0~ $sd] gZTé @0 2 Tty & (£
MT, = BT

L ] L t+AL ‘ *® '
X 27}(@ Zﬂ(tp ]} Plta) +C1-4~) p(x,g] - (3.18a)
{=| A=)

Here we find it natural to make the following identifications

(>, 0)=1) _ (3.18 b)
*Xe,,&’;—“s{‘_—‘g—i’} kozl.., L, LEM -
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Equations (3.18) may be simplified, and the time required to set

up and solve them reduced, through the use of the following matrices:

= : ’ (3.19a) -
Ang = (146;) T (Xn)  =ljeesy NI A=l L

' o | (3.19b)
A,ME QT-Q(#A') 4=l L)’K ey b

i = % Z__XD (X, £2) [Té(tz)‘Té (M)] \J—I:E ,m=l,...,N-1,/';=l,--.,L(3']9C)

Cry = T (xn) | (3.19d)
C'ké = Té(tk) , k=m0 (3.19) |
Digp = & T3k, , S (3a9)
Ay = 5 (1) B3k (3.199)
Eyp = Te (), (3.1%h)
Fu 2=Tolte),  A=l,..L, (3.191)

61 = 8 L Ga D ln, )] (3.193)
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where

¢ = y L:?
SL@ {o,/.*é

Qur experience with fitting funbtiqns by a Chebyshev series indicates
that when the series is to be differentiated it is best to transform
the function so as to make it pass through the origin and be

antisymmetric, then re-transform the seriés if necessary (cfi. Section

3.2). To effect the necessary transformations, we define thesev

matrices:
HM;-’- " BgSign(ta) + 6%) 51 (k) (3.19k)
Si3 = b + 6(%%5‘%(&) (3.191)
Tip = =65, 5in(ty) (3.19m)
where
Siqn(x) = {+:::; (3.19n)

and the borehole is located at tM/Z'

Here H and T are used for transforming p before and

after fitting and differentiation, and S is used for transforming

3.

§°p' before fitting and differentiation.
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We may now define the "secondary" matrices

MLZAN, MR = BDS, M3 =TEEH, M4z GCDS M52 2¢'ps (3-20)

— o <o

so that Equation (3.18) can be written more compactly:

~ %4 i
(M1=%% M2 g v Mg a3

- _ (3.21a)
fM.i*‘L'%’—f—’—%.%AMé Q;%)p.t %_MS%W)
or
x+pL
M PR (3.21b)

As mentioned before, we need to impose two constraints on the

solution t+Atp. The first of these is the requirement that

o, —
t+At‘8\4 = 0 (by analogy with closure in our dislocation density

schemes), which can be realized by adding a row to B and R

B(Nﬂ)a,"'T(*' T(' Ryn =0 _ (3'22)

The secondary constraint is on the borehole pressure, the value of

which we wish to specify. We impose this constraint by adding rows

to M and R:

M(~+1M, 6 %’_‘- RM;: ’P., (3.23)
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Our procedure for computing fluid pressure and crack opening
starts by evaluating the matrices in Equation (3.21a), which need
only be done once. Then, starting with an initial pressure distri-
bution and crack geometry, we can compute the new pressure (viz.

t+Atp). The new crack opening is obtained from the relation

§ = [(1-4)"8 + "% 14 +% (3.242)
where

(3.24b)

We may then continue to compute the next pressure, and so on. Note

is necessarily consistent with p; iteration on 53
in 53p', although rigorously needed, produces only small effects
for reasonable time steps. The imp]icft scheme may also be formu-
lated on the basis of local interpolation methods [11]; although the
local matrices would be simpler to generate, global interpolation
offers the advantage of greater accuracy for the same number of

nodal points, and it may provide more stability.

Results

Typical results from the global formulation of our implicit
integration scheme are presented in Figures 3.12 - 3.18. These

results yield great insight on the effects of the value of <,
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initial pressure distribution, and time-step size.

Figure 3.12 shows the result of a preliminary validation
of the FORTRAN coding of our algorithm (see Chapter 4), especially
the formulation and computation of the matrices in Eqn. (3.19).

By using p(ts)=ts, 53(ts)=%-51n'](ts) + %-tSJ—;:;gﬂ, and replacing
H, S, and T with identity matrices, we have [ 53p']'-= J;i;Egﬂ
which,-when integrated with Y p> Should produce a constant 6.

This curve, while constant over most of the interval (-1,1), has
"spikes" at either'end which are apparently the result of slight in-
accuracies in thelexplicit computation of the various derivatives;.
we plan to remedy this, but it has not caused any serious per-

turbations in the rest of our computations.

Figure 3.13 shows a set of pressure evolution curves, ob-
tained with « =1 and t=.25‘[é, in which the borehole pressure
is maintained at a constant level at each time step; as is the case
for all other figures except Fig. 3.18, it starts from the triangular
pressure distribution shown in Figure (3.13a). We note that, near
the borehole, p has the positive curvature necessary to produce an
ever increasing crack opening at the borehole (since § = (83)'p‘ +53p“),
which is consistent with the continuous addition of frac-fluid. At
t=1.5Tc the fluid pressure becomes essentially constant over the
crack length, verifying that T, is an excellent estimate of the time

required for pressure penetration to the crack tips. Also at
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t=1.5 c we noté that the crack opening is very close to the
analytical result, & = l-xz, that we would expect from a uni-

form pressure.

Figure 3.14 shows results of computations similar to those
in Figure 3.14 except that we have chosen « = 5, bringing
t+Atp under the influence of the requirement of mass conservation
at time t. The effect is that the algorithm tends to become un-
stable for t near Ter Similar calculations with &&= .9 produced
the results shown in Figure 3.16: the solutions exhibit nearly as
much stability as for & = 1. We thus conclude that, in general,

the best results are to be obtained when o = 1 and that there is

actually a slight computational disadvantage to usinga< 1.

The effect of changing the time step size is shown in
Figures 3.16, 17 along with the previous results (Figure 3.13). Com-
parison reveals that there is enough difference between the curves
obtained by various step sizes to warrant the use of t = .1OZTC,

or smaller, for all but rough calculations.

Figure 3.18 shows the effect of using a different initial
pressure distribution, in this case p(x,t=0) = \{1+jx\ rather than

the triangular distribution used in the other cases. Two phenomena
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are noteworthy: first, the pkessure reaches an essentially uniform
value more rapidly (1.25[?& VS. 1.5(&), and as well, the negative
(adverse) curvature of the initial pressure curve has reversed by

time .ZST;. The latter observation provides evidence that we can
start with a variety of initial distributions and be assured of
stabf1ity of the solution, and that the various pressure distributions

will quickly tend towards the same shape with ongoing time.

3.4 F1uid.Front Advancement in Stationary Cracks

A typical fluid front advancement problem is illustrated
in Figure 3.19. 1In general, we again have the overall elasticity

equation*, suitably non-dimensionalized

, !
/p(m=/xn(x,)x)[s(¢)—6(xoﬂ 4% =500 [Y(x,) - ¥ oz
4 S

NE-4y (3.26a)

With reference to this equation, we may now phrase the distinct con-
ditions, one pertaining to the non-penetratedvzone (sizew ) near
each tip while the other prevails in the fluid-filled region (where
laminar flow of Newtonian fluid is assumed for simplicity in early

testing of our routines)

P Uz 2 f-w) =0 § (J-w 2|21 20) 7;?[510] (3.26b)

*
Note that this equation also applies, remarkably, to the moving crack
problem.
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Thus we must solve for fluid pressure in the fluid filled region of the
crack and crack opening rate in the empty region. Our experience

with the pressure evolution problem (Ref. 26-28) demands that an
implicit method be used for the fluid front advancement problem.
Further, since we must solve for the opening rate over part of the
crack, it will be convenient to construct our system-of equations so

as to solve for opening rate over the entire crack.

By simple approximation of time derivatives we obtain from

Eq. (3.26) an implicit equation for p which may be

written in the following numerical form [28]:

. N
P AT 2;.%(7@;,76;)[ 0" b e A

t £

étm[?{(xm,r) ¥ (%n,1)]

y . .
= *Plen) - <:—¢)At%‘§. by (n, £0L% 6 (k0 = I TEF
=|
+(:-&)A¢*'5(%n) Hm,n-zcxﬂ;:)] (3.28)

Over the fluid-filled region U-Q)ZJ%hﬁﬁi\Z.D ), this leads to the
following matrix equations for the pressures at the “Chebyshev

points ts’

L

Legs,) T(mZ Tt [ pn-"pees)]

{=
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M
— 3
._,4_'___6 % g Xp@n., ) Z {T (7&0 TQ»(?C;Q% kz;l_ry(fk)s (‘tﬁ

L L
XZE \Z_ Toen [* f%mc: -~ 0]

M
LMt (30,0 Heto )] Z_ Tg (%) kz-_! Ti (e 5 (%0

U k4L <
X Z Teten Zﬂ (%) }}‘ Plta+ -2 Pl o[ 2L
Jznsl, oLj Lzm= NH t;=-Cos [ﬂ'm“] =ty ’”3% -0 (™), )Lsc,.,Nl (3.3_.‘1a.)

where T,z 716G /10° is the characteristic time [23].0n the other

hand 1-y< 1214 | » We must use

Z(’ “5840) 13 %) ZT}&»)eS(tA)  (3.29)

in Eq. (3.28 ) 1in order to guarantee that § 1is smoothly continued

(
from (s3p')‘ in the penetrated region. In the non-penetrated region
we must impose p = 0 to aHow solution for the unknown tMt'S(ts).

Thus, we solve Eqns. (3.29a) in the penetrated region and Eq. (3.28 )

in the non-penetrated zone, subject to the constraints

A=... ., LF
;t“"A'tP(tA) =0 g

A= RF‘f';. )L ) (3.303)
1‘+A;té() _1.+A1:6(_l> tﬂtp(ig:*ﬂ (3.300)
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Note that Eqns. (3.30b) are the constraints of crack closure and

constant borehole pressure. Simplicity and economy may be achieved

by defining the appropriate matrices*:
Ang® (18, Y Teo (Xn)j R =LFe ) RE | Lo, L (3.312)

A 2T e A=t L 5 421,000  (3.310)

Barz L]\I):‘{“XD ('X/ﬂ.,tiwhtf L= LF ., RF ; L= LF,y..., RFt
[4

- :”—— X«D(xn—)ﬁi-‘.) I‘iz;L )7,=LF),..JRF5 ,f_=L+l,_,.) L+LF“
. N A= LFRFFXyenn, L+N

2T 6 M ) Vit L=l Lo LF-1 A7 LIRFl,y o LN
Nrc L= LF)..,)'KF-;h}

Y . (3.31¢)
I.r_ ‘KD ('L,L..L 3 *i‘L) "'ﬁ;.L = L+!,...) L+LF -} ]')L=RF+L+I yee oy Lt N=|
N

An

A= L*}"’no-) L+LF‘{ 3 L: L+EF+3-,"') LtN

—
A1l of the matrices are aMxaMm: any undefined elements are zero.
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N
! — - ’
Bni = SALN?E?Z’! 0o (Hny e WIS A =LERE L= 1yeee)N
4
= S(nyg JUZLHLE, ooey LRF 1=1,0eu, N

N
6M1T_ Z_ XD(QC;L) 2' K} }'l',-‘= L+l 3oy LrLF-l 1= L+RF ..o L¥N=]
N ol . L=L+l)..,11_+p

(3.31d)

n

"6)“'_ }‘Lst-LF)...JL-;-RF ,( = L+|)...) L+N

CoiZTih) k=M 4= 1. m

(1“';:543(‘“4’0\ G-M—,(*@..M) k-‘-MH)...) *M 3'=M4-l}...}a.m (3.31e)

C}La_-’ Ta(xﬂ') ,rL':l)..,)N-I éz"'.)M

=(1-%6 T (%) R=Mtl, ooy MENA f =M, M (3.31f)

Q(Mﬂ)) j-m-1
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Djp = %Té(ﬂ:&) by k= lyens L
- . _ - (3.319)
= 2T b)) o ho=Lrl)

From here on, all undefined elements are part of a unit matrix (e.g.,

€y = ) k])” the rest being given by

Erg =73 1 R L=1.. L  (3.31h)
e 2Tk La=iyenL (3.317)
Gn.}:’-' SLLEX(%J') =¥ (%p, ] RAEy . RF A=l
tc : ’ ' .
= 6,1_2, [X<%/L—L)f)‘X<7C’JL—Lf!)] M= LHlyeeey L LF-I _
- 3".—. LH,empal (3.3 i)
HA’%’E-SA? Sign (£,) -l‘s(_Li)‘_Sc'gn(tA) A=yl (3.31k)
S:; = , .
Ly 5;4','1-6(%)45:37\(#‘-_) 1,/}"";~-,L (3.31 1)
Tﬂe = 85,5140 (1) ¥ k=t L (3.31m)
(3.31n)

- 3 ,
Bik= 835D Jige=1 L
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Use of the following secondary matrices lends further simplification:

|§
}.\
m
o)
N
5
T}
|
i
n
ke
&
1]
o
(]
fon
-

Mezap | MS=scpe, mesICEM

Now M1, M2, M3, and M6 need be computed only once; only M4 and M5

are time depéndent. The resulting system of equations is:

{Mi._cwt M5 Ml._A_ Ma + dAt.G‘M_B.AMQ_-Et*Aty.

zéMi-(:-*)AtME_M_;AMg + (1-R)Ak ﬁ'M}D.M%}t.U_ (3.33a)

or

M Y =R (3.33 1)

— ——

where the vector of unknown variables is:

UpZ Plks)  #=1,...M
6(#;,-,14) A=Mrly ey 3M (3.33c)

The constraints (Eg. (3.30)) are imposed as follows: Eg. (3.30a)
] = = = -1, 5 =RF+ 3,...,
by setting Msj 55j’ Rs 0 for s =1,..., LF-I
L and‘j =1,...,2L; Eq. (3.30b) by setting 8(N,1) = 1 and B(N,L) = - 1
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before computing M5 and Eq. (3.30c) by setting M .= 5'Lj,j=1,...,
2L. The time step size (4t) is computed, based on tg; velgcity of
the fluid front, so as to bring the front to the next node X at

t=t+At. Thus, we employ

éft = [53’)6'} (% re)

[

(3.34)
X rew ~Xre

/

Typical results for the fluid front advancement probfem are
shown in Figure (3.20). The fluid was allowed to advance to the
crack tips, filling the crack entirely, and the pressure was then
allowed to build up for some time afterward. The pressure dis-
tribution behaves as one might expect: the curves become steeper near
the tips as time progresses and the crack fills out very quickly.
One notable feature is the rather sudden increase in the fluid

pressure at the tip just after the fluid reaches it (Figures 3.20e, f).

The curves showing the crack opening rate (Figures 3.20 (n-t))
undergo a change of character between the initial step (Figure (3.20n))
and the final step (Figure (3.20t)). Before the fluid front reaches
the tip (Figure (3.20q)), é shows high narrow peaks near, but some-
what béhind the points corresponding to the location of the fluid
fronts. This phenomenon seems to be consistent with the large
pressure gradient that develops at the fluid fronts. After the fluid
fills the crack, the peaks broaden out and the overall magnitude
begins to &ec]ine (Figures (3.20 (r-t)). The shape of the initial

curve (Figure 3.20(n)) is not unlike that of the final curve,
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although the initial curve has a much smaller magnitude.

The velocity of the fluid front is compared to the cor-
responding velocity (also calculated via Eq; 3.34) of the same fluid
flowing between two parallel p]ates; with a space of § (t;x=0)
between them and being driven by a uniform pressure gradient of
p' /p°=1.0 in Figure (3.21); Iniiia]ly there is a large discrepancy -
between this latter velocity (dashed curve) and the calculated fluid
front velocity; this result is consistent with the difference
between the cfack opening at the fluid front ( .4) and the maximum
opening ( 1.0). As time progresses, this d{fference in velocities
decreases somewhat, and seems to stabilize. We conclude that pre-
dictions of fluid penetration times based on estimates of the crack
opening and fluid pressure at the borehole may be quite conservative,
but are of the right order to provide useful information; thus,
estimates based on T . (e.g., as given by Cleary [23] are useful guides
to the process. We note, however, that such characteristic time
estimates are easily made only in the case of a crack in a homo-
geneous medium, with constant borehole pressure. It would be
difficult, for instance to include the effecté of adjacent strata,
inclusions, and the like. When our computer program is exténded so
that crack propagation in non-homogeneous regions can be simulated, we
will probably be able to develop correlations for Te based on our

numerical calculations.
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X/

Elastic medium G 3V

N—X

7 | |
’// o ) +

Fluid filled region

Fluid pumped in here

FIG. 3..19 Diagram of the fluid front advancement problem. Fluid is pumped
into the crack at the borehole at constant pressure p,. The fluid front advances
from one node xy (r= LF, RF ) to the next, while the crack tips are held

stationary.
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FIG. 3.2]. Plot of fluid front velocity as a function of time (solid curve). The
velocity of the same fluid flowing between two parallel plates with spacing g(a..-o,l’-'.)
and uniform pressure gradient (Pf/g,:/,a) is plotted as the dashed curve. b



- 184 -

CHAPTER 4: DESCRIPTION AND STATUS OF FRACSIM: A GENERAL PURPQOSE
COMPUTER PROGRAM FOR HYDRAULIC FRACTURE SIMULATION

4.1 Introduction

Our ultimate goal is to‘have written a computer program
capable of full three dimensional simulation of arbitrary hydraulic
fracturing operations: these would include (but not necessarily be
limited to) problems involving interaction of several arbitrarily
shaped cracks, one or more of which is béing propagated through a
porous region containing interféces, inclusions and/or other ir-
regularities by intermal hydraulic pressure. Thus, whi1e~deVe10ping'the
numerical techniqdes necessary for such problems (as described in the
last two chapters), we have also been developing the computer program
itself. In the course of our work this program has»undergone several
major revisions in order to incorporate increasingly versatile
architecture. Currently the program, which has been dubbed FRACSIM
(FRacture SIMulation), is capable of solving all of the problems
discussed so far and can, in addition, solve any other plane static
problems involving arbitrary numbers of arbitrarily oriented cracks
(some or all of which may intersect) near an interface; however,
some of the less important auxiliary subroutines for input/output,
post-solution.ca]cu]ations, etc. are not up-to-date because of the
number of different techniques tried in our work on pressure
evolution). The basic structure of FRACSIM seems quite satisfactory

and easily extendable for future work: it includes some important
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simplifying features (such as the use of generic elements and

connectivity" arrays [29]), which are apparently fairly widely used
7 4

in SIE programs [ 7.9 7 and seem to be inspired by techniques used in

many programs for finite element analysis.

4.2 Functional Organization of FRACSIM

FRACSIM consists of a main program (written in FORTRAN),
which controls the various input/output and computational tasks that

are performed by a group of subroutines*. As shown in Figure (4.1),

these tasks are quite distinct and, with the éXception of the
various time dependent computations (viz., those required for the
problems discussed in Chapter 3), are each associated with a particu-
lar subroutine. The subroutines fall naturally into five categories::
control (FRACSIM), automatic data generation (AUTO, STRESS); assembly
of matrices (MATRIX, STRCMP, DECOMP, CLOSRE); input/output (DUMP,
RESTRT, OUTPUT, PLOT), and computation (all of the remaining sub-
routines). The roles of the subroutines are further clarified by
arranging them in the calling hierarchy shown in Figure (4.2.).

Subroutines NEWSTR, STATFL and MOVFL perform the computations

*
Technically, the name FRACSIM refers only to the main program.
The subroutines are stored separately in a subroutine library
named FRACLIBE. This type of organization permits editing and
re-compiling a particular subroutine independently of the rest.
Great savings in time and cost are thus realized.
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necessary for the fluid pressure evolution (explicit and implicit
methods) and moving fluid front problems, respectively (which com-
putes pressure evolution by explicit integration). NEWSTR is current-
ly not used at all, and STATFL (phéssure evolution by the implicit _
method) has been superceded by MOVFL; (moving fluid front computation).
They are retained for possible future reference and comparison. A
éomp1ete listing of FRACSIM and all of the subroutines is included as

Appendix B .

4.3 Program Structure

The versatility of a program such as ours is largely dependent
upon the quality of what might best be called the‘"bookkeeping":
the internal representation df the various elements, nodes and crack
surfaces and the manner in which each such piece of information is used
in performing the necessary computations. Also, the program shou]d.
be structured in such a way that all problems can be couched in terms
of its normal input requirements. For example, in terms of the input
data there is no fundamental difference between the branched crack
and micro-crack problems; only the location of the cracks, the type
of closure or matching conditions specified, and the relative elastic
moduli need to be changed to solve ane problem or the other. OQut-
side of the steps required for automatic calculation of matching
condition coefficients (which we regard as purely a convenience
feature) each type of problem is handled by identically the same
FORTRAN sfatements. There is no branching to one part of FRACSIM |
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for branched crack prob]ems or to another for three-crack-model

blunted crack problems (except for the quasi static problems).

Toward these ends we have developed a bookkeeping system
and have structured the major operations (such as evaluating matrix
elements) so that they are applicable to all problems involving
straight, plane cracks, and easily extendable to be completely uni-

versal when such capabilities are required.

In Chapter 1 it was noted that our special SIE method re-
quires the division of crack loci into one or more elements, each of
which is sub-divided into a number of discrete nodal points. The
object of the method is to evaluate the dislocation density at some
of these nodes based upon the known tractions at other nodes; (it is
conceivable that, in some local. interpolation schmes, these two sets
of nodes would be identical). The purpose of phrasing the description
of our SIE method as it was done in the first chapter (not the only
possible -- nor even the simplest -- statement of it) is, in fact,
that such a verbal description suggests a very powerful program
structure. Thus, the entities which our program deals with are

nodal points and boundary elements.

The information required by FRACSIM consists of two tables
of nodal point coordinates (one set associated with the known
tractions, the other with the unknown disloaction densities), two
other tables which contain lists of the nodes that constitute each
element, and the tractions (in local coordinates) at each of the

"traction nodes". These tables correspond to the internal arrays
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XNODE, TNODE, ELMNTT, ELMNTX, and STRSL, whose organization is
shown in Figure 4.3. While these arrays could be typed manually,
line by line, by the analyst and read directly by FRACSIM, we have
obviated this tedious work by writing an automatic data generating
subroutine (AUTQ) which will fi1i in the bookkeeping arrays, based
on a few input parameters, for 2-D crack problems in which we elect
to use the Gauss-Chebyshev global interpolation scheme. A second
task which has been automated for the convenience of the use is that
of translating the appropriate closure and matching conditions into
actual matrix elements. Subroutine CLOSRE 1is equipped to supply any
combination of the closure and matching conditions discussed in
Chapters 1 and 2, based upon choices that are made by the user and

ready by AUTO.

Perhaps the most important point to note here is that in
problems involving more than one crack there is no direct internal
distinction between the various cracks; stated differently, none of
the basic operations performed by FRACSIM require knowledge of the
number of cracks or the particular crack upon which is located the
node or element being operated on. Note also that, with the lack
of internal distinction between elements and crack surfaces, there
is really no internal "conceptual" difference between local and
global interpolation methods. The implications of this last
point are important: for instance, we should be able to use
the same fundamental procedure (in subroutine MATRIX) for setting up

a matrix for a 3-D problem, where we may have to use local inter-
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polation, as for a 2-D problem where we can use the more convenient

global method.

Another important feature of our program structure, although
not explicitly apparent at this time because of our exclusive use of
global interpolation, is that we use a single (set of) generic inter-
po]étion function(s) (i.e., functions defined on [-1,1] for the inte-
gration in Equation (1.5)). Use of this standard technique oviatés

a separate set of interpolation functions for each element.

Since the subroutines used for quasi-static (fluid injection)
problems are still being developed, we have not yet endowed them with
the same multi-crack and near-interface capabilities as we have those
sections of FRACSIM which are devoted to static problems. Con-
sequenf]y, they lack the generalized structure as well: they are
currently restricted to solving problems involving a singleAcrack on

the interval (-1,1] by global Gauss-Chebyshev interpolation.
#

4.4 Format of Required Input Data

The automatic data generation subroutine (AUTO) requires
that values for its input parameters be arranged in the following
order and format (all lines or cards must be included, except as

indicated):
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line or card number:

- 1. ISTART (I2) Choice of whether to read input data for a new
problem (ISTART=1) or to re-start a previous
problem from the state at which computation had
stopped (ISTART=2: currently not supported).

2. NREG (I2) Number of material regions. For each region, one
set of the following cards (RTYPE; RPOS: E,NY,G)
is required.

3. RTYPE (I2) Specific geometric type of region. Current
options:

RTYPE = 1 infinite plane
RTYPE = 2 half plane

4. RPOS (array: Specific location of material region. For a

3F10.4)
half plane:
RPOS(1) x-coordinate of interface
RPOS(2) = -1. region is to the left of the
interface
RPOS(2) = +1. region is to the right of the
interface
RPOS(3) is irrelevant in this case
5. E,NU,G Elastic constants of regién
(3F10.4) :
6. IDOF (I2) The range of and in Eq. (1.2). IDOF=2

unless all cracks are collinear and have purely

normal loading, in which case the solution is more

economical if IDOF=1.



0]

w

10.

11.

o

12.

13.

NCC (12)

ITYPE (I2)

ELMNT (array,
612)

DIR (array:

612)

NSURF (I2)

SURFNO (I2)

NBPTS (I2)
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The number of closure/matching conditions
requfred. For each condition, one set of the
following three cards (ITYPE, ELMNT, DIR) is
required.

The specific type of closure or matching condition:

ITYPE = 1 closﬁre condition

ITYPE = 2 branched crack matching condition

ITYPE = 3 blunted crack matching condition
(two crack mode1)

ITYPE = 4 blunted crack matching condition

(three crack model).’
The surface number of each surface associated with
the particular matching condition (See SURFNO).
The component of dislocation density to be used
in the particular matching condition in
reference to the crack surface specified by the
corresponding element of ELMNT:

DIR

1 normal component

DIR = 2 tangential component

The number of cracks in the problem. For each
crack, one set of the following cards (SURFNO,
NBPTS, LTYPE, AA-BB, LOAD) must be supplied.

The number assigned to each crack (surface). The

numbering scheme used is arbitrary.

The number of the points on the surface.



14.

15.

16.

17.

18.

19.

LTYPE (12)

LFRONT, RFRONT
(213)

LOAD (array:
2E15.4)

AA,BB
(arrays:
2F10.4 ea)

TFIN, DT
(F10.4 ea)

vIsco
(E15.4)
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The type of load distribution desired on the sur-
face (see also LOAD). The most frequently needed

choices are:

LTYPE = 2 ‘“square root" load distribution
(see Chapter 3)
LTYPE = 3 unjform loading with de;ired magnitudes
of both normal and severe components.
LTYPE = 4 triangular loading (see Chapter 3)
LTYPE = 7 triangular loading from X1 front to

Xrfront
XNODE numbers at which the left and right fluid

fronts are located (meaningful only if LTYPE = 4).
Magnitudes of normal and shearing tractions,
respectively. For nonuniform loading, LOAD (1)

is the magnitude of the fluid pressure at the
borehole and the value of LOAD (2) is irrelevant.
Global x and y coordinates, respectively,

of the left (AA) and right (B) crack tips

Stop time and time increments for quasi-static
problems (irrelevant for statié problems)

Frac. fluid viscosity.
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Decompose solution :
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G

FIG. 4.1. Functional flow diagram of FRACSIM.
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FIG. 4.2. Diagram showing both the hierarchy among the subroutines and the calling sequence followed in the
course of a run. The sequence of events starts from the upper left end of the box representing the main program
(FRACSIM) and ends at the lower right (next page). Note the correspondence to the flow diagram in fig. 4.1,
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XNODE, TNODE

node # X, coord. x4 coord. X, coord.

1
2
3

ELMNTT, ELMNTX .

#of TNODES or " nodes
element # XNODES . 2. 3. ......
1
2
3
STRSL
node # Sm 6‘M

1

2

3

FIG. 4.3. Organization of bookkeeping arrays in FRACSIM.
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CHAPTER 5: CONCLUSIONS

The problems discussed in the previous Chapters have served as
a proging ground for the numerical techniques required to simulate more
complicated fracture events, and at the same time have provided some
valuable preliminary insights into some of the more. important situatigns
in actual hydraulic fracturing. From the modelling standpoint, we have
established that it is best to employ a two crack model for a crack
penetrating an interface (and for branched cracks, of course) whereas a
three-crack model is needed for blunted crack simulation. Also, we have
noted that there now appears to be a completely satisfactory "matching
condition" (viz, setting. The dislocation density singularity to zero at
the intersection) for branched crack problems, which will probably also
prove to be the best extra condition for blunted cracks and cracks through
interfaces. Our work with quasi-étatic problems (involving coupled fluid
flow and crack opening) has led to the rejection of explicit time inte-
gration methods, because of insufficient coupling of the requirements of
fluid mass conservation and elasticity. We must use instead the very
stable implicit scheme, in which mass conservation and elasticity re-

quirements are satisfied simultaneously.

From our studies of some relevant static models, we have seen,
for instance, how adjacent strata may make it easy for a propagating
hydraulic fracture to break out of the pay zone (if the adjacent
stratum is relatively soft) or provide an "elasticity barrier" to en-

hance cohtainment (if the adjacent stratum is relatively stiff). It
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is apparent that micro-cracks in the adjacent stratum can be induced
to break through the interface and Tink up with an hydraulic fracture,
thereby circumventing this elasticity barrier. We note that there is
a possibility that the blunting process may ensure contain&ent, but it
may also helpfully inhibit propagation away of the other tip from the
interface. Branching, if it occurs, could also play a major part in
the containment process. Our work on quasi-static problems has given
us some insight on the nature of fluid flowwithincracks; and in

particular has shown that some early expectations (such as the

characteristic time for fluid penetration [23]) are essentially correct.

We have incorporated what we feel to be a very powerful basic
structure into a general purpose computer program whose capabilities

will be extended as our work continues. '
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APPENDIX A: NUMERICAL INTEGRATION FORMULA FOR OBTAINING CRACK
OPENING FROM DISLOCATION DENSITY

A very convenient and accurate method of integrating the disloca-
tion density /u. to obtain the crack opening § by fitting F (see

Chapter 1) with a Chebyshev series can be derived as follows:

= s Zakﬁem/ﬁ (A.12)
N N .
Q=g ;;OFW)& (1) 22005 (Th) =0y ¥ (A-10)

We now proceed to integrate both sides of Eq. (A.la):

//u(s dg = 800 = Z_AITWME (h.2)

k=) o \i- 5‘

If we make the substitution

E=C05(0), dg=-sine)de

we obtain
% cos™(x)
TeE)dg _ -f cos (ko) sinte) de
Ll Vs ()

or
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%
Te@€)ds  — -1 sin (ks )

. fe= .k - (A.4)

so that

Sx)=- {.% sin (keos™ 1) (A.5)
%=1

This formula is quite convenient because it makes use of the non-
singular function F and employs already existing subroutines

(eq. CHEBY).



100
200
300
400
500
600
700
80Q
900
1000

1100

1200
1300
1420
1500
1600
1704
1800
1930
2000
2100
2200
2300
2430
2530
2600
2700
2800
2930
3600
3100
32006
3300
3420

sNeoNoRs No Ko N®)

R GENERAL PURPOSE PROGR2Y (UNDER DEVELOPMENT)

IMPLICIT REAL*B(A-H,0-7) _

INTEGER TYPE(S),ELMNT(6),DIR(6),SURFNO
INTEGER CLROW(6) ,ALPHA ,BETR

INTEGER CELMNT(6,6),CDIR(6,6),COL(6,6)
INTEGER TSTEP,RTYPE,ORDER,R,RMAX

RERL*8

DIMENSION RLOC(5,3),RP0OS(3),R0(2),R(2),NPTS(H)
DIMENSION A1(4,2),A2(4,2) ,ALFA(H)

DIMENSION A(80,80)

DIMENSION COFFF(80),STGYA(80)

DIMENSION ELCON(2,3)

DIMENSTON XA1(4),¥B1(4),X22(4),XB2(H4)
DIMENSION ZETA(4,8C),ETA(u,R0)

DIMENSION ICOL(6)

FRACSTIM

FOR HYDRAULIC FRACTURE SIMULATION.

+8 XION3ddv

LOAD(2),MU(B0,3),KAPPAT,NU

WISOVEH 40 ONILSIT

T voe T

DIMENSION C(6,6)

COMMON
COMMON
COMMON
COMMON

/ENDPTS/ XR1,XR1,X22 ,XR2,THETA

/REG/ ELOC,TYPE,NKRYG

/BKPING/ XNODE(80,3),TNODE(BO,3),FINNTT(U,FO) , ETINNTY(4,87)
/CLOSE/ R1,A2,ALFA,CLROW,NCL,CEIMNT,CDIR,COT.,C

1,ITYPE(10)

COMMON
COMMON
COMMON
COMMON
COMMON

/SIZE/ ORDEFK,NEL¥NT,NXNODF ,NTNODE

/START/ IOLD,JOLD

/ARRAYS/ A ,STIGMA,COFFF

/0UT/ STRSL(KC,3),STRSC(R0,3),RLOC(FC,3) ,ACPET(OG,3)
/ELAST/ S1,KAPPA1,NU,2LCON



3500
3600
3700
36820
3940
4000
41390
4200
43C0
LYo
4500
46390
W70
4800
4930
5000
5100
5200
5350
5499
5590
5630
5700
5820
5930
6020
6100
6240
6300
6430
6500
6630
6700
6800
6920

0

OO oooaanan

500

1C

COMMON /GP/ ZETA ,NPTS

COMMON /TIME/ TSTART,TFIN,DT,TSTEZP,T

COMMON /DOF/ IDOF

COMMON /INTMETH/ ICHCE

CONTINUE
READ(5,500) ISTART
FORMAT(I2)

IF(ISTART.EQ.1) GC TO 7

CALL RESTRT

CONTINUE
TSTEP=0

CALL AUTO
T=TSTART-DT

CALL HATRIX
CALL CLOSRE

CONTINUE
IF(T.GT.TFIN) GO TO
TSTEP=TSTEP+1

1006
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7000
7130
72006
1300
7400
7500
7630
7750
7800
79390
B80G0O
8100
8200
8330
8400

8500

8600
8700
880G

20 CONTINUE

190

CALL
CALL
CALL
CALL
CALL
CALL
CKLL

T=T+DT

STRCMP
SOLVE(A ,SIGMR ,COEFF, CRDER)
DECOMP

TRNSFM

PSCALC

OUTPUT

INTERP (ALOC,TNODE,NTNODE , ¥lI)

IF(ICHCE.EQ.1) CALL NEUSTR(MU,}R)

IF(ICHCE.EQ.2) CALL STATFL(™U,A) -

IF(ICHCE.EQ.3) CALL MOVFL(MU,R)
CONRTINUE

CALL
CALL

PLOT
DUMP

GO TO 5

END
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100
200
300
400
500
600
790
800
904
1000
1160
1200
1300
1406
1500
1600

10
206

16060

SUBROUTINE ADD(ASIROWs TCOL+BeJROWsJCOLCoTIER)
IMPLICIT REAL*8(A-Hy0=2)
DIMENSION A(BUs80)+s3(80+80)4CUBLyED)

IFCCTIROWNE«JRON) 4 OR o ¢ ICOLoNEL JCOLY) TER=1
IF(IER.EQel1) GO TO 1000

DO 20 I=14IR0V

DO 10 J=1,.1CO0L
C(Igd)=A(TJ)+B(1sJ)
CONTINUE

CONTINUE

CONTINUE
RETURN
END
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SUBROUTINE AUTO

THIS SUBROUTINE AUTOMATICALLY
GENERATES THE NODAL POINT AND ELEMENT
DATA NECESSARY FOR PLANE STATIC AND
QUASI-STATIC CRACK:PROBLENMS WHICH ARE
TO BE SOLVED WITH GLOBAL GAUSS-CHEBYSHEY
INTERPOLAT ION,

SURROUTINE AUTO

IMPLICIT REAL*8(A-H,0-2)

REAL+*8 NONGAM4NONDEL ¢NONPoNONMUSLENGTH

INTEGER TYPE(S) oELMNT (L) ¢DIR (G ) ¢ SURFNO

INTEGER RTYPEJRFRONTZORDERSR9RMAXyREGNO

INTEGER CLROW(A) 9ELMNTT(49B0)9ELMNTX(4480)3ALPHALBFTA
INTECER CELMNTU(E46)9CDIR(G96)9COLCEA) o TSTEP

REAL*8 LOAD(2) s MUSKAPPALlsNU

DIMENSTON RLOC(S43)RPOS(3V4AA(2)9B(2) ¢NFTS(4)

DIMEKRSTION Al1(492)9A2C0442)3ALFACYH)

DIMENSTON XNODE(8093) 9 TNOUE(BC92) 9 STRSL(EC92) ¢gSTRSCA(BC3)
DIMENSION A(BC8L)sCC6s6) 9 ICOL(E)

UIMENSTUN COEFF (80)4STGMA(B0) 9 ACART(8043)

DIMENSTION ALOC(HG93)9ELCON(243)

GIMENSTON XAY1C€4)4XD1C4) 9 XA2(4) 4 X2 (4)

OIMeNSTON ZETAC4480)9ETAC4,480)

DIMLNSTON NDX(2)4INTSZ(400) s INTMID(400)

COMMON /DIFPAR/Z NDXysINTSZyINTMIOD

COMHON ZENDPTS/ XAT14XE1eXA24XU2

COMHMUN /REG/ RLOCSTYPL4NREG

COMMUN /BKPING/ XNODE ¢ THODE CLMNTT oELMNTX

- 807 -



COMMON JCLOSEZ A19A24ALFASCLROWGNCCCELFNTSCOIRSCOLSC

Lo ITYPEC

OMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

19)

/SI2E/ OKRDERSNELMNT¢NANODE e NTNODE
ZSTARTZ TOLDLJOLD

/ARRAYSZ AsSIGMALCOLFF

/0UT/ STKSLeSTRECaALOCsACART
JELAST/ bngAPPAI'MUaFLLO“

/6P/7 ZETASNPTS

/TIME/Z TFINsDTaTSTEPST

/FLULID/ VISCO#LOAD

/LPAR/ LTYPE

/D0F/7 100F

/NONDIM/ NONGAMqNONDEL.NONP;NONHUQTAUL
/INTMETH/ ICHCE

/JFILL/ LFRONTWKFRONT

SINCQ)=USIN(G)

cosdq)
ATANCE)
SAQRT(Q)

ORLER=C
10LC=0
JoLo=90
JJdK=0
L=3

M=
NREG=1
RTYPE=1
CLC=0
N0 1 1
ELMNT (I

=pCosS(Q)

=DATANCQ)
ZDSQRT (@)

=1ls4

)=0

DIKCT)=G

ALFACT)

ICOL I =

=0
0
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OO0

1

CONTINUEL
AACE) =0,
AAC2)=0.
B(1)=0.
B(2)=0.
LOADC(1)=1.,
LOADC(2)=0.
£E=0.

NU=.3

6=1.
RPOS(1)=0.
RPOS12)=0.
RPOS(3)=0.

READ DATA FOR MATERIAL
REGIONS

READ(S54502) NREG

DO 27 TIREG=14NRLG
READ(D9502) REGNO
REAL(H9502) RTYFE
READ(S4504) C(RPOS(II)s11=143)
REAL(S+504) EsNULG
ELCONC(REGNOe1)=L
ELCONCREGNDL2)=NU
ELCON(REGNO ¢3) =6
RLOCC(REGNOs1)=RPOS(1)
RLOCC(REGNO92)=RPOS(2)
RLOC(REGNOS 3)=RPOS€3)
TYPL(REGNO)=RTYPL

CONTINUE

READCS4502) 1DOF

-
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OO0

oo

o

<+

REALD CLOSURLE/ MATCHING

PARAMETERS

READ(54502)

DO 3 I=1.NCC

READ(S4902)
REALG(S45H00)
REAG(54500)
READ(D5+4500)
READ(S54501)
DO 4 J=146

CELMNT([yd)=

NCC

ITYPECT)
(ELMNTCICNT) o ICNT=14€)
(DIRCICNT)&ICNT=146)
(ICOLCICNT)¢ICHNT=146)
(ALFACICNT) + ICNT=146)

ELMNT (J)

CDIR(IsJI=DIRC(Y)
CiIsJI=ALFACY)
COLCLyJY=ICOLCY)

CONTINUL
CONTINUL

READ SURFACE DATA

RECAD(5,4,502)
ORDER=G

L.=0

M=G

NELMNT=NSURF

J= G

NSURF

DO 35 1=19NSURF

READ(S4562)
READ(D4502)
READ(D502)
REAU(S.S1T)
READ(S4503)
REALIL{Dy501)

SURFNO

NBPTS

LTYPE

LFRONT4RFRONT
LOADCL)4LOADC2)
AACTI)sAA(2)4B(1)48(2)

FORMATC(4F1064)
FORMAT(2E1544)

CONDBITION
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502 FORMATC(12)

504 FORMAT(3F10.4)

517 FORMAT(213)
XAL(SURFNOY=AA(L)
XA2(SURFNO)=AA(2)
XB1L(SURFNO)=B(1)
XB2(SURFNO)=B(2)
NPTSCSURFNOYI=NBPTS
JMAX=NBPTS
NONP=1./L0AD(1)

500 FORMAT(412)

JMAX=NETS(T)

DO 20 J=1lesJdMAX
ARG=(2a*J=1e)*3.14159265358987(2.+NPTS(1))
LET/ (14 J)=-COSLARG)

CONTINUE

KMAX=JdMAX=-1

10 22 J=1+KMAX

ARLE=34141592656898%J/NFTSC])

ETACI 4J)==COS(ARG)

22 CONTINUE

ro
<

DO 25 JU=1+JdMAX
L=bL+1
ELMNTTCI#1)=NPTS(L)
LLMNTT (T Jdr1) =t
TNOLECL 9 1) =52 XALCII 2 (1a=2ETACTI9U) D +eS+XBLCII*(1.+2ETACTyJ))
TNODE (L 92) e S*XAZUI) % (1 o=ZETACT g ) )+oSXB2C1)*(14+2ETA(],4J))
TNODE(Ls3)=0a
GO 25 DETA=14IDOF
ORDER=0RDLR+1
29 CONTINUF
DO 30 J=1+KMAX

- cle -



3u

196
35

562
510

M=p+1

CLMNTXCI9L)=NPTS(I) =1

ELMNTX(L1yd+1)=H

XNOUL (M 1) =a S5 XATCII ¥ (1 a~ETACI 9 U)) +oS5xXBI(I)*(1e+ETA(TSU))
XNOUC(Ms2) =S5 aXA2 () % (1 e~ETA(T o)) +a5*XB2(1) 2 (1.+ETACIZU))
XNODE (Me3)=0, ’
CONT INUE

DO 190 Ju=24JMAX

JUK=JUK+1

CALL STRESS(STRSLsLOADs1sJJK)

CONTINUL

CONTINUE

READ(S9510) TFINGDT

FORMAT(F1044)
FORMAT(2F10.4)
NXNODE=M
NTNODE=L

NCC=0

KMAX=L

11=G

- Ele -

READ(S5,288) VISCO
FORMAT(ELS.4)
CONTINUE

00 t5 TSURF=1+NSURF

‘DO 9 ALPHA=1.IDOF

II=1T1+NPTSCISURF)
NCLC=NCLC+1
CLROWINCLC)=T11
CONTIMUE
CONTINUL
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o000

924

943

925

. !
READ CHOICE OF TIME INTEGRATION
METHOD?S
ICHCE 1 EXPLICIT INTEGRAYION (NEWSTR)
2 IMPLICIT INTEGRATION (STATFL)
3 IMPLICIT INTEGRATIONMN (MOVFL)

"o ou

READ(S4924) 1ICHCE

RCAD PARAMETERS FOR SUBROUTINE DIFF
IF SUBROUTINE NEWSTR IS TO BE USED
FOR PRESSURE CVOLUTION CONFUTATIONS

READ(54924) NODR

FORMAT(IZ)

GO 343 11=1+NDR

READ(%4925) INTSZATI)4INTHMIDCTIT)
CONTINUL

FORMAT(Z212)

NODX €1)=NDK

NOX(2)=HDR .\

- vle -

LENGTH=1.

NONGAM=LENGTH/G )
NONOEL=G/ZCLOADCII*LENGTH)

NONP=14/L0ADC(1)

NONMU=G/LOAD(Y)
TAUC=(12,4VISCO/CY*(C/LOADLL)) =43

RETURH
END



100
2040
300
4060
500
6090
T30
800
QUG
1000
1160
1200
13006
1402
1560
160¢
1700
18064
1560
20060
2100
22010
2300
2400
2500
26010
2750
2800
2934
3644
310660
3200
3349
340¢

c
C
c
C
c
C
c
C
CI
C
C

SUBROUTINE CHEBY

THIS SURROUTINE FITS THE FUNCTION WHOSE
VALUES AT THL POINTS ARGl ARE TRANSMITIED IMNM
TABG WITH A CHEBYSHEV SERIES. CHEBY COMPUTES

THE VALUE OF THE SERIESy I1TS TERMWISE CERIVATIVES

AND THE INTFCGRAL OF THE FUNCTIONaSGRTC(1-Xax2)
AT THE POINTS ARG2 AND RETURNS
THEM IN F.

SUBROUTINE CHEBY(ARG14ARG24NDTMN1¢NDIM2 s TABOsWDEC 4 NXCoNGERTIVF o

1 TROWsJROWs TEVAL)

IMPLICIT REAL*8(A-Hy0-2)

INTEGER R .
DIMENSTON ARGLCOIROW+1)9ARG2(UROW1) ¢ TARC40042)3F (JROWS)
DIMENSTION T(40044)2TABDCIROWs1)

ODIMENSION Y(400)4,AC400)

cos(ay=pcosq)
ACOSLQ)=DACOS(Q)

TFCCTEVALNE«G)«ANDS(TEVALWNEL1)) GO TO 5000

DO S I=14NXC
XC==C0S(3.14159265359858x(1=1)/(NXC-1))
CALL LGRNG(ARG1+TABOWXCaPTaNDIMI,45¢IROW)
TARCIs1)=PT

5 CONTINUE

DO 20 R=14NDEG
SUM=0.
DO 10 J=1.NXC

-§le -



350¢C
36l
3700
3800
396U
4000
41060
4234
4304
4400
4504
4600
4700
4800
4900
953900
5140
5200
H3006
5400
5504
5600
5704
58060
5900
60460
6100
6200
63C10
6400
6500
6630
€734
86
6500

CcXx
cx

s

FUDGE=1. ,
IF((JeEQe1)eOR (JeEQLNDEG)) FUDGF=W%
XXA==COS((R=-1)*5.141592(535898%(J=1)/(NXC-11)
SUM=SUM+TAB(Us 1) *XXA*FUDGE

CONTINUL

A(R) =24 *SUM/Z(NXC-1)

CONT INUL

AC1)=.5%A(1)

CONTINUE

T(lel)d=1s

T(1e42)=0.

T(1e3)=0,
Tt1le4)=0.

T(242)=1.
T(ZQS):U.
T(204)=0.

DO 40 I=14NDIM2
DO 35 J=145
F(IsJ)=0.

CONT INUE

T(291)=ARG2(1I41)

DO 32 N=34NDEG
IFCTEVAL.EOQ.1) GO TOG 335

T(Ns1)=242ARG2(T 1) *T(N=141)-T(N=241)

TON$2)=(2e*T(N~191)+24*ARGP (T 91 )3T (h=142)=-T(N=-242))
TUNe3)SChe*TIN=142)42e%ARCG2¢I 41D *TUN=-143)=-T(N=-243))
TANg4)=(boe*xTAMN=1¢3)42 4ARG2(T41)*TIN=-144)~T(N=244))

- 9L -



706y FCIol)=F(To1)+A(NI*T(Ng1)

71100 FCIe2)=F (Ia2)+ACNI*T(Me2)

7266 CX FUIe3)=FC1e3)4AINI*T(Ny3)

7306 CX FCLo4)=FCTe4)+A(NIAT(Ny4)

7400 € .

1500 IFCIEVAL.EQ.0) GO Th 3z

7600 33 CONTINUE

1760 KKL=N-1

7860 CX FeL95)=F (1951 =ACN)*DSART(1e=TCH(KKL s ARG2(141))*42)/DFLOAT(H=1)

1966 ARG=DFLOAT(KKL)*DACOS(ARGZ(151))

8000 TCH=DSTNCARG) /DOFLOAT CKKL)

8100 FUI4S)=F (I145)=A(N)«TCH

8206 C

3300 32 CONTINUE

8400 FOIs1)=F(Tol)+ACI)*TC131)+A(2)4T(241)

6500 Fll92)=F(1+2)+AC1)*T(142)+A(2)*T(242)

86Cc C

B70¢C ARG=DACOS(ARG2(I41))

BEOD TCH=DSIN(ARG)

8900 F(leS5)=F (145)-0a5%AC1)*ARG2(141)- .
9004 1A(2) *TCH .
9100 C =
9266 40 CONTINUE .-
930G WRITE(6+536) (ACTI)o11=14MDEG)

5400 535 FORMAT(Y ¢48E1544)

9590 C

960 RETURN

9700 END



1u¢ C SUBROUTINE CONST

260 c

30y C

400 c THIS SUGROUTINE COMPUTES THE

506G C COMBINATIOGHS OF CLASTICITY CONSTANTS
63¢C C REQUIRED FOR tVALUATION CF THE CHOSEM
7640 C ITNFLUENCE FUNCTIONS CONST IS CALLED
LSC C ONLY WHEN A NEYW SUT OF PARAMETERS IS
90¢C C REQUIREDy AS DLTERMINED RY SUBROUTINE
100¢C C LOCATE .

1100 c

1202 c

1300 SUBROUTINMNE CONSTCIREGsJREGeEMONsAH)

1400 IMPLICIT REAL*B8(A-H,40~-7)

1500 REAL*8 KAPPA1sKAPPA2 MU

1604 DIMENSIONM ELCON(243)

1700 COMMON /ZELAST/ GsKAPPAYHUGELCON

18036 c :

190u c PARAMETERS FOR THE INFLUENCE FUNCTION FOR
2060 c A DISLOCATION NEAR AN INTERFACE. FOR
2100 C CONVENIENCEy WE CURREANTLY ASSUML THAT THE
2200 C REGIONS WILL Bq MUMBERED 1 AND 2,
2500 C '
246735 G=ELCONCJUREGy 3)
25030 KAPPAL=34-4+*ELLCON(JREGD)
2600 PI=3.1415926£535E698
2700 EMOD=G/(PI*(KAPPALl+]14))
2800 TFCUREG.ENG2) CAMMASELCON(143)/ELCONCZ43)
2909 IF(IJREG.LUL1) GAMMAZELCCONM(243)/ELCON(143)
3000 IFCIJREGEQal) KAPPAZ=34-44,2ELCOM(242)

31646 IFCJREGFQe2) KAPPAP=3.~-4.*LCON(142)

32606 ‘ AZ(1e=GAMMEY/Z (1 +GAMMARKAPEAL)

3300 B=(KAPPAZ-GAMMA+KAPPAL) 7 (KAPPA2+GAMMA)

3404 C ‘
3500 RETURN

360 ENC

- 8le -



100
200
300
400
500
600
700
800
900
1000
1100
1200
1300
1400
1500
1600
1709
18040
1900
2000
2100
2200
2300
2400
2500
26010
2700
2800
290¢C
3000
3100
3200
3300
3400

SUBROUTINE CLOSRE

" THE

THIS SUBROUTINE COMPUTES AND INSERTS
MATRIX ELEMENTS CORRESPONDING TO VARIOUS

CLOSURE AND MATCHING CONDITIONS.

SUBROUTINE CLOSRE

TMPLICIT REAL*8(A~Hs0-7)

REAL*8 KAPPAlg4MU

INTEGER ORDER

INTEGER ELMNTT(2¢80)+ELMNTX(2¢80)4BETAyCLROW(E) sCELMNT(E96)
INTEGER CDIR(64+€) ‘

INTEGER ELMNT (&)

INTEGER COL(646)

DIMENSTON
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

XATC4) o XA204) o XBLA) s XB2C4 )ALl U404)3A20494)4ALPHALL)
XNODE(BDs3) s TNODE(BOs 3) ¢ STRSLEBO93)9STRSC(8043)
A(804+80)

COLFF (B0)+SIGCMACBO) 9ACART(8043)
ALOC(BOs3)+ELCON(243)

Cl646)

ZETA(2480)4NPTS(4)

COMMON /S1ZE/ ORDERNELMNT+NXNODE ¢NTNODE ‘
COMMON /CLOSE/ AlsA2sALPHASCLROWINCCyCELMNTsCDIR4COLSC

1o ITYPEC1D)

COMMON /ENDPTS/ XA1eXB1y9XA2¢XB24THETA
COMMON /GKPING/ XNODF ¢ TNODE sELMNTTSELMNTX
COMMON /ARRAYS/ A¢SIGMALCOEFF

COMMON /0OUT/ STRSL+STRSCoALQC¢ACART
COMMON /ELAST/ Gl+KAPPA1+MUELCON

COMMON /GP/ ZETA4NPTS

COMMON /DOF/ IDOF

-613-



3500 SINC(Q)=DSIN(Q)

3600 €0S¢QY=DCOSCQ)

3700 ATANCQ)=DATAN(Q)

3800 SQRT(Q)=DSQRT Q)

3900 C

4000 PI=3.1415926535898 ,
4100 DO 106060 1CC=14NCC

4200 ICLC=ITYPECICC)

4300 GO TO (100+5004700,830)4ICLC

4400 C :

4500 C

4690 c

4700 100 CONTINUE

4800 C

4900 c NET ENTRAPPED DISLOCATION=0:

%300 C C

5100 DO 106 J=14,0RDER

5200 ACCLROWCICC)yJ)=0.

5300 10 CONTINUF

54030 SIGMACCLROWCICC)Y)=0.

5500 DO 20 L=144

5600 JEL=CELMNT(ICCsL)

5700 IF(JEL.EQ.D) GO TO 25

5409 JJ=0

5900 DO 19 J=14NELMNT

6000 DO 18 BETA=1,4IDOF

6100 KMAXSELMNTT (Jsl)+1

6200 DO 16 K=24KMAX

6300 Jd=Jdd+1

6400 TF(CJUeEQeJEL) e ANDe (ETALEQ.CDIRCICCyL))) ACCLROWCTICC) gJJI=SART((XB
6500 T1CJEL) = XALCJELD ) ## 2+ (XB2(UEL)=XA2(JEL) ) #42) 2P 1/ (2 *ELMNTT(JEL 1))
6600 C .
6700 16 CONTINUE

6800 18 CONTINUE

6900 19 CONTINUC
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70600
7100
7260
7300
7400
7500
7600
7760
7800
7900
8000
8100
8200
8300
8400
8590
B60C
8730
8800
8900
9000
9100
9200
9300
9400
3500
9600
9100
9800
9900
10000
10100
16200
10300
10406

eNeReNe!

CONTINUE
CONTINUE
60 TO 1000

CONTINUE
TEST=5000.
TEST1=5000.

Do 5106 J=1+0RDER
ACCLROM(ICC) o) =0,
CONTINUE
SIGMACCLROUWC(ICC))=0.

MATCHING CONDITIONS FOR BRANCHED CRACKS:

JJI=NPTS (1)

JJu2=1

PHI=PI/2.

THETA=P1/2.
ARG=(XB2(2)-XA2(2))/(XxB1(2)~-XA1(2))
ARGLI=(XB2(1)-XA2(1))/7¢(XB1C1I~-XA1(1))
IF(XA1(2)eNESXDBL1(2)) PHI=ATANCARG)
THETA=ATAN(ARG1)

JJu=(

DO 526 L=1,y2

DO 525 BETA=1,1DOF

ITMAX=NPTS (L)

D0 524 1=141MAX

Ju=dJ+1l
IFC(BETACEQe1) e ANDG(LeEQel1)AND(T1eFQedJl))
IF((BETAGEQe2) e ANDe(LeEQal1)eAND(TeEQeJUL))
IFC((BETAGEQe1) e ANDe(LoFCQa2) e ANDWtIEQadU2))
IF((BETALEQ42) e ANDe(LoeEUa2)eAND(ILFQeUJ2))

Ji=Jdd
J2=JJ
J3=JdJ
Ja=Jdd

- lee -



16500
13600
13700
10800
149040
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000
12100
12200
12300
12400
12500
12600
12700
12800
12900
15006
1310¢
13200
13300
13400
13500
13600
13700
13800
13900

524
525
526

CONTINUE
CONTINUE
CONTINUE
COL(341)=41
COL(342)=42

COL(343)=J3

850

620

630

COL(344)=0U4

COLC4y1) =41

COL(442)=J2

COL(443)=JU3

COLC494)=U4

C(3+1)=SIN(THETA)

C(3¢42)=COS(THETA)

Ce343)=SIN(PHI)

C(3434)=COS(PHI)

C(491)=COSU(THETA)

Cl442)=-SIN(THETA)

C(443)=COS(PHI)

Cl4494)==SIN(PHI)

CONT INUE
ALNTHI=SQRTO(XB2(1)-XA2(1) ) %22+ (XB1(1)=XA1 (1)) *x2)
ALNTH2=SQRTU(XR2(2)-XA2(2) ) *x+ 2+ (XB1(2)~-XA1(2))*%2)

SIGMA(CLROW(ICC))=D.

DO 620 IK=1+0RDER
A(CLROWCICC) s 1K)=0.

CONTINUEF

DO 630 J=144
ACCLROWCICC)$COLCICCU)I=CCICCoJ)
CONT INUE

GO TO 1c(00

-2 -



14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16760
16800
16900
17000
17100
17200
17300
17406

c
C
C

MATCHING CONDITIONS FOR BLUNTED CRACKS
( TUO CRACK MODEL):

700 CONTINUE

: NMAX=NPTS(2)
DO 720 N=2+NMAX
JZELMNTT(24N)
K=ELMNTT(2yN*+1)

IFCCTNODE(U92) eGTe0e)eORe (TNODE(K32) oL Te04)) GO TO 719

JJ1=N-1
JJ2=N
719 CONTINUE
720 CONTINUE
FACTOR=SORT(14-2ETA(24JJ1)ra?2)
C(343)=1./FACTOR
C(443)=1./FACTOR
FACTOR=SQRT(1a~ZETA(24 UJJ2)2x2)
C(344)=1,/FACTOR
Cl444)=1./FACTOR
FACTOR=SQRT(1=ZETACI14NPTS(1))%22)
Ct341)=1./FACTOR
C(3¢2)=0
C(442)=1./FACTOR
Claeld=tC.
JJu=0 -
DO 726 L=1,2
DO 727 BETA=141DOF
IMAX=NPTIS (L)
DO 724 1=1+IMAX
Jd=dd+]
IFC(BETAEQe1) e ANDa(LoFG.2)AND(TeFQedJ1))
IF((BETAEQe1) s ANDa(LoeEQe2)aAND(TIEQedJ2))
IFC(BETAEGe2) e ANDo(LeEQGe2) e ANDo(IoEQeUJ1))
JFC(BETAEGe2) e AND o (LoFQRe2)e AND(T1EQReJUJ2))
724 CONTINUE

Jdi=JdJ
J2=Jdd
J3=Jdd
Jdg=aJ

- g2¢ -



17500
17600
17700
17800
17900
16000
18100
18200
18300
18400
18500
1860¢C
18700
18800
18900
19000
19100
19200
19300
19400
19500
19606
1970¢
19800
19900
20000
20100
20200
20300
20400
20500
29600
20700
2080¢
20900

o]

OO0

121
126

730

900

936
830

CONTINUE

CONTINUE

COL(3+3)=41

COL(344)=42

COL(443)=43

COLC444)=U4
ALNTHISSOGRT((XB2¢1)=XA2(1))#*2+(XB1(1)-XA1(1))*x*x2)
ALNTH2=SQRT((XB2(2)~XA2€2) )+ %2+ (XB1(2)~-XA1(2))*4+2)

DO 730 J=144
ACCLROWCICC)4COL(ICCsUII=CLICCoJ)
CONTINUE

Go TO 1000
CONTINUE
SIGMACCLROW(ICC))=D,

DO 920 IK=1,0RDER
ACCLROVWCICC)IK)=0.

CONTINUE

00 930 J=1+4
ACCLROWCICC)¢COLCICCyIIDI=CCICC,y J)
CONTINUL

CONTINUE

MATCHING CONDITIONS FOR BLUNTED CRACKS
( THREE CRACK MODEL):

THETA=3.1415926535898

IFCXALCZ2)eNFoXB1(2)) TUHETA=DATANCIXA2€2)-XB2€(2))/
1(XA1(2)-XB1(2)))

PHI=THETA

NMAX=NPTS(2)

- ¥ec -



21000
21106
21200
21300
21400
21500
21600
21700
21800
219073
2200¢0
22100
2220¢
2230¢C
22400
22500
22600
227080
22800
2290¢
23000
231060
23200
25300
23400
23500
23600
23700
238090
23900
24C00
24100
24200
24300
24400

c

911

519
5210

687

- J3=J2+NPTS(2)

683

00 977 1=144 :
DO 977 J=146

C(lged)=0D.

CONTINUE

DO 520 N=24NMAX

J=ELMNTT(24N)

K=ELMNTT(2yN+1) . '
IFC(CTNODE(J92) eGTe0e)eORc(TNODE (K92)eLT.0.)) GO TO 519
JJ1=N-1

JJ2=N

CONTINUEL

CONTINUE

DO 687 1=1,46
DO 687 J=1.¢
C(Iedd=0.
CONTINUE

JI=NPTS (1)
J2=J1+4NPTS(1)

J4=J3+NPTS(2)
JS=J4+1
J6=JS5+NPTS(3)

- §¢¢ -

DO 683 11=3+6
COL(TIy1)=41

COL(ITy2)=02

COLCIT93)=43

COLCIIo4)=u4

COL(IT45)=d5

COL(ITIs6)=J6

CONTINUE

FACTOR=SURT(1e-2FTA(L14NPTS (1)) *42)



24500
24600
24700
24800
24900
25000
25100
25200
25300
25400
25500
256090
25700
25800
25900
26000
26100
26200
26300
26400
26500
26600
26700
26800
26900
2700¢0
27100
27200

610

623

1u00

CCe3¢1)=1,/FACTOR
C(442)=1,

FACTOR=SORT(14-ZETAC2aNPTS(2))»22)
C(S¢3)=SINC(THETA)
C(Se4)=COS(THETA)
Cl693)=COS(THETA)
Cl694)==-SIN(THETA)

FACTOR=SART(1e~7ZETA(341)%42)
Ce5¢5)==SIN(THETA)
C(546)=-COS(THETA)
C(645)=-COS(THETA)
C(646)=SINC(THETA)

D0 610 U=140RDER
ACCLROWCICC)9U)=0,
CONTINUE ‘
SIGMA(CLROW(ICC))=0.

D0 623 J=146
A(CLROWIICC) +COLCICC oI )I=CCICCy )
CONTINUE

CONTINUE
RETURN
END

- 922 -
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SUBROUTINE DECOMP

395

490

THIS SUBROUTINE LFCOMPOSES THE SOLUTION
VECTORs COEFFs INTO A TARLE OF VALUES (ACART) GF
“Fe IN THE GLOBAL Y (COLUMM 1) AND X (COLUMN 2)
DIRECTIONS .

SUBROUTINE DECOMP

IMPLICIT REAL*B8(A-Hs40-2) .

INTEGER CLROWCE) yELMNTT (498U +ELMNTX(49H0)sALPHASBETA
INTEGER ORDER

DIMENSTION XNODE(BO+3) s TNODE(BG43) 9 STRSL(B043)4STRSC(HBN43)
DIMCNSION ACB80,80)

DIMECNSION COEFF (B80)¢SIGMA(BD) s ACART (804 3)

DIMENSION ALOCUE8O0y3)sELCONC243)

COMMON
COMMON
COMMON
COMMON
COMMON
IMAX=1
IMIN=]
=i

GO 400

/BKPING/ XMODE + TMODE s ELMNTT+ELMNTX
/SIZE/ ORDERGNELMNTsNXMODEsNTNODE
/ARRAYS/ AySIGMA4COEFF

JOUT/? STRSLsSTKSCyALNCyACART

JUOF/ IDOF

K=14NELMNT

IMAXS IMAX+ELMNTT (K1)

DO 9%
DO 390

BETA=14 ID0OF
I=TMINyIMAX

ACART (I +sBETAI=COEFF(TII)

I1=11+1

CONT INUE
CONTINUE .
IMIN=IMAX+]
CONTINUE

RETURN
END
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106 C SUBROUTINE DIF?

206 C ,

306 € THIS SURROUTIME COMPUTES THF DCRIVATIVE

400 C OF A FUNCTION 3Y AVERAGING OF FINITE DIFFCRENCES.

500 C THF DIFFERENTIATION IS DONE SEFPARATELY ON € ITHER

€05 C SIDE OF THE ORIGIN IN ORDER TO PRESFRVE SLOPE

700 C DISCONTINUITIES .

866  C ~

900 SUBROUTINC DIF2 (XC ¢F +NXC s TNODE y NTNODE)

1000 ¢

1100 IMPLICIT REAL*8(A-Hy0-2)

1206 REAL*4 XY(244G0) o XSCLUA)

1300 DIMENSION XC(40093)sF(4GC095) ¢ TMODE(BO3)

1400 C

1500 C

1600 ITK=1 ' \

1700 DO 10 IXC=14NXC

1806 C

1500 IFCC(XCCIXCe1) eGT«TNODE CITK91)) «OR
2000 LCTNODEC I TKy1) e EToeXCCTIXC+191))) e ORo( ITKoaGTaNTNODED ) .-
2100 260 T0 10 ' .
2200 C . P
2300 WRITE(264400) ITK '
2466 400 FORMATC® 4 0ITK=%414)

25006 C .

2600 C FCITKe3)=((XCCIXC4+241)=XCCIXCe13)*(FCIXC+132)=F(IXC=1¢2))

2700 14 (XCOIXC+191)=XCOIXC=141)) % (FCIXC+242)=F (IXCy2)))/

2800 2 (2e0%(XCCIXCH+191)=XCCIXC-141d)*C(XCCTXC4+241)-XCCIXCs1)))

2900 C

3000 IF(ITK«GENTNODE) GO TO 20

3100 ITK=ITK+1

3200

3306 10 CONTINUF

3400 20 CONTINUE



3500
360G
276G
3800
3900
4300
4100
4200
4300

440G

450G
4600
4700
48060
494Gl
5600

© 51050

5230
5300
5460

DO 30 I=1¢NTNODE
XYC1o1)=TNODECT41)
XY(24I)=FU(1,3)

30 CONTINUE

IsCL=-2

XSCL(1)=-1.0
XSCL(2)=1.0
XSCL(3)=-20.
XSCL(4)=20,

CALL QPICTR(XY42¢NTNODE+QX (1))

WRITEC139356) ((XCCOIToad)gJU=1w3)eCFUITeJUK) 4UK=145),

111=14200)
356 FORMAT(?®

RETURN
END

*98E15.4)

- 62¢ -



100
200
300
4940
S00
€U0
70u
800
900
100¢
1100
1200
1300
1400
1500
16
1700
184090
1900
2000
2100
2200
2300
2400
2500
264G
2700
2800
2900
300
3100
3200
330
3400

~

oCOOO0O00n

SUBROUTINE OIFF

500

THIS SUBROUTINE DIFFERENTIATES A FUNCTION
BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS,
THEN AVERAGING THE DIFFEREMCES OVER INTERVALS OF
SELECTED SIZ2CSe THE DIFFERENTIATION IS CARRIED
OUT SEPARATELY ON ETITHER SIOF OF THE ORIGIN IN
ORDER TO PRESERVE SLOPE DISCONTINUITIES.

SUBROUTINE DIFF(Xs Yy NXeNDERIV)
IMPLICIT REAL#8(A-Hs0-2)

DIMENSION X¢400+3)9YC40045)9YTEMPC400)4NDBX(2)
DIMENSION TMINC242) 9 IMAX(242) o XNEWC40043)s YNEWL40G4S)
DIMENSION INTSZ2(400)4INTMID(400)

DIMENSION NDR(2)

COMMON /DIFPAR/ NDRs INTSZs INTMID

WRITE(104500)
FORMAT(//7)
NDX(1)=NDR(€1) /2
NDX(2)=NDR(2) /2
IMIN(141)=1
IMAX(1s1)=160
IMIN(241)=161
IMAX(241)=320
IMIN(142)=1
IMAX(142)=1€0
IMIN(2,2)=161
IMAX(242)=320

- 0g¢ -

DO 100 JUDERIV=14NDERIV .



3%
3600
3700
3800
3906
4009
4100
42006
4300
4400
4500
4600
47G¢
4800
4900
5000
510G
5200
53006
5400
5500
5600
5700
5800
590
460U
61606
6200
6300
6400
6500
6600
676¢C
6800
6900

o

s el ol

3

36

40

10

IDERIV=JGERLIV+1]
INTO=1
ISTART=1

DO 95 ISIDE=142
INTI=INTO+NDX(JDERTIVY=1 -

COMPUTE DERIVATIVE

IF(ISIDE.NEL1) GO TO 30
H=X(241)=X(1s1)

ILo=1

IHI=IMAX(1y JDERIV)=-1

DO 20 I=1LO4IH]
YTEMPCIDI=(Y(I+14JDERTIVI-Y(IJDERIV))/H
CONT INUE

GO0 TO 50

CONTINUE

IFULISIDE.NEL2) GO TO 40
ILO=IMIN(24JDERIV)+1]
IHI=IMAX(24JDERIV)

DO 40 I=ILO-IMI
YTEMP(ID)=A(Y (T JOERIVI=-Y(I-14JDERIV)I)/H
CONTINUE

- l€2 -

CONTINUE
WRITE(104510) JDERIVHISIDESTLOs IHI
FORMATUCY 94 2JUERIV= ¢ T2 *TSTDE=*9 124 1L 0="9T34YIHI=*4123)

COMPUTE AVERAGES
DO 70 INT=INTO.INT1

SUM=0.
ISTOP=ISTART+INTSZ(IHT) -1



70600 IMID=ISTARTAINTHIDCINT) -1

7160 IFCCINTeNE«INT1) eORe (ISTIDE«NEGS'IY) GO TO &%
72G¢ ISTOP=ISTART+INTSZ2(INT)=-2
7300 IMID=ISTART+INTMID(INT) -2
7400 55 CONTINUE
15C0 IFCCINTeNEINTO) eORCISIDE oNES2)) GO TO &0
7600 ISTART=IMINC24JDERIV)I+1 ‘
7706 ISTOP=ISTART+INTSZ(INT) =2
7800 IMID=ISTART+INTMIDCINT)~-2
7900 c
800U 60 CONTINUE
8100 ’ DO 65 I=ISTARTISTOP
8200 SUM=SUM+YTEMP (1)
8300 65 CONTINUE
840G YCINToIDERIVI=SUM/DFLOATCISTOP-ISTART+1)
§560 XCINTQIDERIVI=X(IMIDy1)
8600 C
8700 WRITE(1G4520) JUDERIV.ISIDE+INTOSINT14ISTARTHISTOP
800 520 FORMATU(Y 94 *UDERIV=® T2, ISIDE=9g T2 INTO=?3 I3, INT1=9,13,
8960 1YISTART=0,I3,40]1STOP=%,]3) 4]
90060 ISTART=ISTOP+1 i N
9106 70 CONTINUE N
9200 C '
9300 INTO=SNDX (JUDERIV)+1
94C0 95 CONTINUE
9500 c
960 G DO 97 11=1+320C
9700 XNEWCIT41)=X(1I41)
IBGG 97 CONTINUE
990 C
10000 . CALL IRANqacx,v.NnR(Jncrlvx.xnrw,vntu.szu.aaa.4uu,lnERIV)
10105 DO 98 T1=14320 .
10200 YCITSIDERIVI=YNEWC(IT 1)
10300 98 CONTINUE

13400 C



16500
10600
16700
13800

c

100 CONTINUE

RETURN
END

- g€ -



1646
200
300
43¢
504
6900

700

8ao0

9690
1000
1100
1204
130¢
1400
1500
1600
1700
180¢C
1904
2000
2101
2290
220¢C
24210
2500
2600
21706
2600
2944
3004
3100
5202
3330
3400

C

SUGROUTINE DUMP

THIS SUBROUTINE WRITES OUT ALL OF THE
INFORMATION NEEDED TO RESTART THE RUN
FROM THE CURRENT STATE

SUGROUTIHNE DUMP

IMPLICIT PEAL*8(A-Hy0-27)

INTEGER GRDERGTSTEP

INTEGER ELMNTT(4¢480) sELMNTX(4480)

DIMENSTON
DIMENSION
DIMENSION
OIMENSTON

STRSL(BOs3) s STRSC(BN42)4ALOCIBLy3)
ACART(H04+3)
XNODE(BO0435) s THODE (804 3)

XALC4) o XE1(4) g XA2(4) 4 XB2(4)

COMMON /ZTIME/ TSTART «TFINGOToTSTEPST
COMMON /70UT/ STRSLsSTRSCsALDCsACART
COMMON /S1ZE/ ORDER+MELMNT ¢ NXNODE4NTNODE
COMMON /BKPINGZ XNOUE ¢ THODE ¢ELMNTToFLMNTX
COMMON ZENDPTS/ XAleXBlyeXA24XB24,THETA

WRITE(B+100) T+TSTEPSNXNOGDESNTNGDE

WRITE(B84200) ((STRSL(TTyJJ)eJdJ=143)s11=14NXNODD)
WRITECB4300) C(XMODE(TT9Jdd)eJd=1943)¢11=14NXNODE)
WRITE(84300) ((TMODEC(TII4JJ)9JdJ=143)s1TI=19NTHODL)
WRITE(B8935C) ((ELMNTACITsJJ)s11=194)0aJJ=1,80)

WRITE(B435

0) (CELMNTTCITodU) 9 I1T1=144)edd=1483)

WRITE(B843400) (XA1(I1)elI1=144)
WRITE(B844C0) (XA2(T1)eIT=144)
WRITE(84400) (XH1CIT)aII=144)
WRITE(B84400) (XE2¢TI)s11=144)

100 FORMAT(Y *3E15.4+312)

= v€C -



3564
3600
310t
AE00
3900
4604
41CC

20106
200
354
400

FORMAT (?
FOEMAT (Y
FORMAT(?
FORMAT (¢

RETURN

"END

"3[]504)
'433€1%4)
29412)

¢,4F15.4)

- G€¢ -



10¢

200

300

400

500

600

700

800

Qa0
1000
1100
1206
1300
1400
1500
1600
1700
1800
19900
2400
2100
2208
2300
2400
2500
2600
2706
2800
2934
30006
3160
3200
3300
3400

aOoOoooOo0

FUNCTION F -

THIS SUBPROGRAM COMPUTKES THE APPROPRIATE
VALUE OF THE INFLUENCE FUMNCTION FOR A
DISLOCATION NEAR AN INTERFACE.

REAL FUNCTION F*8(JsKsISURF+RReALPHASBETA)
IMPLICIT REAL*8(A-Hy0-2)

INTEGER RR

REAL*8 MU

INTEGER ALPHABETASELMNTT(4480) «ELMNTXU4,480)
DIMENSION X(2)sT(2) 4 XNOGFE(BUy3I)sTNODE(BG43)
DIMENSION XA1€4) e Xit1d4) s XA204) 4 XH2(4)

COMMON /BKPING/ XNODE»TNGDE¢FLMNTTSELMNTX
COMMON /START/ 10LDsJOLD
COMMON ZENDFTS/ XAL W XE1aXA24X[324THETA

SINC(Q)=DSIN(Q)

C0S(Q)=DCOS(Q)

ATANCQ)=DATANCOQ)

SQRT(Q) =DSQRT(G) .
ABS(Q)=DABS(Q)

- 9¢t¢ -

XC1Y=XNODECELMNTXCISURF4RR) 4 1)
XC2)=XNCDEC(ELMNTX(TISURF 4RR) 4 2)
TCL)=TNODECELMANTT(JeK) o 1)
TC2)=TNODECELMNTT(JsK)9s2)

CALL LOCATE(T+JREDG)

CALL LOCATE(XsIREG) .

IF(CIREGeNLE s IOLD) e ANDs (UREG«NE o JOLDN) ) CALL COMNSTCIRFGsJREGEMOD,
144B)



3500
3600
3700
ILLG
3900
4000
41060
4200
4390
4460
4500
4600
4760
4800
4900
SGGO
5100
5200
5300
549G
5500
5630
5760
S80U
€960
600U
6106
620 L
63060
6400
6500
A6 U
6760
£800
690U

[ o]

o]

oSO

10

15

X1=X(1)=-T(1) :
Y1=X(2)-T¢2)
Y2=Y1

S €=T(1)

X2=X1=24*C
RIZSQART (X1 **2+4Y1%a2)
R2=SQRT(X2*22+Y22a%2)
C=ABS(C)

IF(BETA.NE.1) GO TO 1C
NORMAL DISLOCATION:
BX=0.

BY=1,.

60 710 15

CONTINUE

TANGENTI1AL DISLOCATION:

AR

BX=1.
BY=0."

CONTINUE
RMOD=EMOGD
AA=X1/R1#%%2
EB=X2/R2*%2
DO=Y2/RZ w22
CC=Y1/R1x%2

SYy

SAZBX*EPOD* (22 CCH (22 X12AA=1 4 ) 43k A=B=b % AxX2ANHI 4 DD= (4, % A C/I' 2% %
12)% 024 #X2u Y25 (4o *X2*%BB=3¢)/R2%22=24xCAY2x(4 ,»X2aHBB=14)/R2%x42))



S T00ud
71060
7200
7300
74010
7500
7600
7700
76010
7900
BOOO
8100
82040
a30¢
8400
8504
66C0
8700
88040
89040
50039
91009
9200
9300
9400
952U
9600
916U
9800
g9y ¢

10000

10100

14200

10360

1u4GCC

o

o NeNe)

eEeEs

(]

s NeNe

o

SH=BY*EMODA (24 (34 =2 ¢ *X1¥AA) *AA=(Se*xA4B =4 x AxX24BI) xBB=(qoxhaC/R I
152) 2 (1 o=Be#X24PE+B e # X24XZxBBARR 42 ¢ #CoBBA (344 #X2*xH[)))

SYY=SA+SB
SXX

SASBX*EMOD* (=2 e #CCA (2 * X1 #AA+1 I+ (A+B+4 s A2 X2*BR) 4RE= (4% A C/R22 %2
1)%€2 6% (2o *xX2*BB=10)=(30a~4 o2 X24[3LR) 24, *BE* X2+ (2 *CADR)I %k (He=BoxX24HE)
2)) '

SXX=SA+S8

SXY

SASBX*EMOD* (2 #AAR (2o a X145 AA=10)4(30aa A-R-b4x A* XP*BB)ARB-(4oxA*C/RD »»
12)% (1 e~B8ed X2#BP+B #2242 42 ¢ xCHx 3R+ (30 =4 2 X2*AR)))

SBEBY*EMOD* (2. %CCH (2 o*X1%AA=1 o) +(P4A-4 o2 AsX24BBI DD+ (2, %xA%C/R2 %2 2)
15 (402 X24DD~Boe*X22ND* (1 ¢ =2 *XZAFEB) 424 *C4ND2 (1 o=4*BB)))

SXY=SA+50

STRESS TRANSFORMATION:

THETA=3.1415926535898/2, .
IF(XB1CISURF)eNEXAL(ISURF)) THETA=ATAHC(XB?(ISURF)=XA2(ISURF)

1)/ (XBLETSURF)I=-XAL(ISURF)))

THETA=THETA+3.14159265356986/2,

IF(ALPHA.NE.1) GO TO 20
SIGMA NN:

Ze SR (SAX+EYYI+ 4 EX(EXX=SYYI*COS (2 *THETA)+SXY#EIN(2.#THETA)

- 8€¢ -



16500
16600
16700
10600
10900
11000
11100

60 TO 3¢
20 CONTINUE

Fe=e 5% (SXX=SYY)*SINC? e * THETAY+SXY*COSE2 . *THITA)
30 CONTINUL

RETURN

END

- 6¢¢ -



100

200

300

400

500

600

700

800

900
1000
1100
120¢
1300
1400
15¢0¢C
16060
1700
18640
<1969
200t
2100
2200
2300
2404
2500
2600
2700
280¢
2900
3000
3100
3200
3300
3400

C
c
C
C
C
C
C

c

C

C
10

C
20
crLov
CrLoT
- 30

C

1

SUBROUTINE INTEG

THIS SUBROUTINE COMPUTES THE INTEGRAL OF A
FUNCTION EITHFER BY THE TRAPEZOIDAL RULE OR FY THL
METHOD SHOWM IN Ds Re PETERSEN'S SeMe THESISe INVOLVING
FITTING WITH A CHEBYSHEV SERIES.

SUBROUTINE INTEG(DMUCHKsDDCHKy TNODE ¢ NTNODE 9 XCy NXC o JICHCE + IROW)
IMPLICIT REAL*B(A-Hy0-2) ‘

REAL*4 A(24400)4+B€24400)

REAL*8 TNODE(B0+3) ¢DMUCHK(B8U91) 9 XCU4CD43)

REAL*8 DOCHK(IROWs1)4TAB(BO93)sF(A00,45)

COMPUTE INTEGRAL OF D(MU)/DT=D(DELTA)/DT:

IFCICHCL NE.1) GO TO 26

SUM=0,

DO 10 I=24NTNODE

DX=TNODE(1+1)=-TNODE(TI-141)
SUM=SUM+DMUCHK( 1913 *DX~o 52 (DMUCHK( T3 1)-DMUCHK(I-141))+DX
DDCHK (I 41)=SUM

CONTINUE ‘

GO TO 13500

= ove -

CONT INUE
DO 30 I=1+NTNODE

AC14I)=TNONEC(Iy1)

AC241)=DMUCHK(TI,41)
TABCI41)=DMUCHK (I 91)*DSARTC1a~=TNODE(I41)r42)
CONT INUE "

CALL CHEBY(TNODE ¢ XCoNTNODE ¢ NXCos TABoNTNOESNTNODE o
2¢eFs80440041)



3500
3800
d76¢C
38400
3900
4000
4100
4200
4300
4400
45G0

40
CPLOT

1000

DO 40 1=14NXC
BCleI)=XC(Is1)
Be241)=F(14+5)
DDCHKC¢I91)=F(1,45)
CONTINUE
CALL QPICTR(AS2sNTNODE+QRX (1))
CALL QPICTR(B42¢NXCy:X11))

CONTINUE
STOP
END

- lve -
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SUBROUTINL INTERP

THIS SUBROUTINE COMPUTES THE GPENING

DISLOCATION DENSITY ON CRACK NO. 1 FOR USE

IN FUTURE QUASTI-STATIC COMPUTATIONS.
SUBKOUTINE INTERP(ALOCsTNODE ¢NTNODE yMU)

IMPLICIT REAL*8(A-Hy0-2)
REAL=8 MU(B80+3)

DIMENSTION ALOCC8CGy3)s TNODEC(E043) _
DIMENSION XA1€49)4XB1(4)oeXA2(€4)4XB2(4)
DIMENSION ZETAC(4480)yNPTS(4)

COMMON /ZENDPTS/ XAleXEls A2s E2s HE A
SQRT (G)=DSART Q) '

DO 1% I=14NTNODE
MUCL91)=ALOC(I 41)/SURT (1 e-2ETACL4I)*2ZETACLS1))
CONTINUE

RCTURN
END

-2t -



100

20C

30¢C

400

500

600

140

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1806
1900
2000
210¢
2200
2300
2400
258¢¢
269090
2700
2800
2900
3000
3100
3200
330¢C
3400

SUBROUTINE LGRNG

10

20

30

49
56

THIS SUBROUTINE LOCALLY INTERPOLATES A
FUNCTIOR WITH LAGRANGIAN INTERPOLATING POLYNOMIALS.,

SUBROUTINE LGRNG(XsYoXBARSYBARSIDIMGIDEC ¢ TROW)
IMPLICIT REAL*B(A-Hs0~-2) '

REAL+8 L(400)

UIMENSION XC(IROWs3} s YCTROW 3D

ICNT=1

LIM=IDIM=-1

DO 10 I=14LIM
IF(Y(191)elE«XBARGANDoXBARCLESXCI+1s1)) GO TO 20
CONTINUE

IBAR=I

IF¢XBARLE.X(191)) IBAPZ] ‘
IF(XBARGE<X(IDTMo1)) IBAR=IDIM~]

TEMP=0.
IMIN=IBAR
IMAX=1BAR+1
ISWTCH=D

00 50 I=TMINsIMAX

L(I)=1,.C

DO 40 J=IMINsIMAX

IF(J.EQ.I) GO TO 40
LAD)ZLATI*(XBAR=X(J9 1))/ (X(1g1)=X(Jel))
CONTINUE

CONTINUE

YBAR=0.

DO 60 T=IMINyIMAX

YBAR=YBAR+L(I)*Y(TI41)

.

- €92 -



3500
3600
3700
JE0D
3900
4000
41060
4290
4300
4400
4500
46040
4700
48040
4904
5000
5100
5200
5300
5438
5500
5600

60

69

7C

80

90

CONTINUE

IFCABSCYBAR-TEMP)sLE.«001) GO TO SO
IFCICNT.EQ.IDEG) GO TO 9¢C
ICNT=ICNT+1}

TEMP=YBAR

ISWTCH=TISKTCH*1

IFCISUTCH.EQ.2) GO TO 7%
IF(IMIN.EG.1) GO TO 70

IMIN=IMIN~-1

GO TO 30

IF(IMAX EQ.IDIM) GO TO B8O
IMAX=IMAX+1
60 T0 25

IF(IMINC.EQGL.Y) GO TO 9C .
GO TO0 €9

CONTINUE
RETURN
END

= e -



100

200G

300

4930

500

600G

10¢C

gan

apg
1000
1100
120¢
1500
1400
1500
160¢C
1700
1800
1909
2600
2100
2200
2300
2400
2500
2600
2700
28060
2500
3000
310¢
3200
3300
34090

s NeNel

SUBROUTINE LOCATE

THIS SUBROUTINE DETERMINES WHICH MATERIAL
REGION A POINT WITH GIVEN COORDINATES IS LOCATED
IMN.

SUBROUTINE LOCATECTT4IREG)

IMPLICIT REAL*8(A-Hy0~2)
INTEGER TYPE(S)
UDIMENSION RLOC(54+43)
DIMENSION TT(2)

COMMON /REG/ RLOCosTYPE +NREG

T=TT(1)

DO 100 I1=14NREG

LINE=TYPEC(I) ‘ )
GO TO (1042043044045 U0)¢LINF

- &ve -

INFINITE SPACC:

10 CONTINUE
IREG=1
GO T0 100

HALF PLANE:

20 CONTINUF
IFC(RLOC (I 32)eGTelU) e ANDe(TGE«RLOC(Is1))) IREG=T
IFC(RLOC(T 42) eLTo0) e ANDG(TSLESRLOC(Io1))) IREG=I
€CO 70 1¢CO

30 CONTINUE



3500
3600
3700
3800
39¢C0
400340

49
90

160

CONTINUE
CONTINUE

CONTINUE
RETURN
END

- 9 -



10¢C

200G

30¢€C

400

Sa0

600

760

BUG

20
1000
11060
1200
1300
1400
1506
1600
170¢
18G0
19040
2600
210G
2200
2300
2400
2500
26340
2704
2800
2900
3000
3100
32060
5300
3460

n"TOOO00

[w ]

SUBROUTINE MATRIX

THIS SUBROUTINE COMPUTES THE MATRIX
FOR PLANE STATIC CRACK PROBLEMS,.

SUBROUTINE MATRIX
IMPLICIT REAL*8C(A-Hs0-2)

REAL*8

NONGAVM o NONDEL « NONP 4 NONMU

INTEGER CLROW(A) ¢ELMNTT(460) ¢ ELMNTX(44B0) ¢ ALPHASZBETA
INTEGER ORDERe¢RIsRMAX

DIMENSION XMODE(B0¢3)s TNONDECBO23) ¢ STRSL(BNs32)9STREC(BUy3)
DIMENSION A(B8G480)

DIMENSION COEFF(B80) ¢ STGMACHBOU) s ACART(B033)¢ALOCIRN42)
DIMENSTON XALC4)oXB1(4)¢XA2(4) 4 XR2(4) :

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

JENDPTS/ XAloXUB1gXA24XB2oTHETA
JBKPING/ XNODE ¢ TNODESELMNTTSELMNTX
/S1Z0/7 ORDERGNELMNT ¢ NXNODE ¢ NTNODE
/ARRAYS/ AysSIGHMA.CUEFF

/O0UT/ STRSLeSTRSCyALOCsACART

/DOF/ 1DOF

/NOGNDIM/ NONGAMyNONDFL s NONPoNONMULTAUC

VA T

SART(G)=DSQRT(Q)

I1=0
D0 105

TEL=19NELMNT

RMAX=ELMNTX(TELs1)+1

b0 100

ALPHA=141COF

DO 95 R=24RMAX

IT=11+1

JJd=0



3500
3600
3700
3800
39060
4000
4100
4200
43G0
4400
4500
46G6u
4739
4800
4900
Y6060
5100
2Ga
300

(S &y

80
85
90
25

100
109

DO 90 J=1sNELMNT
DO 85 BETA=1,1D0F
KMAXZELMNTT(Js1)¢1
DO 80 K=2¢KMAX
JJd=JdJd+l

SCALE=(XB1(U)=XAL(UII*#2+(XD2C0U)=XA2(J) ) x*2
ACITedU)=3.141592065358982F (Ja Ko TEL4R9ALPHASBETA)Y*SCRT(SCALE)
A(II,JJ)=NONGAM*A(lIng)/(ﬁ.*EtMNTT(Jsl))

CONTINUE
CONTINUE
CONTINUE
CONT INUE
11=11+1
CONTINUFE
CONT INUE
RETURN
END

- 8¢ -



190
200
300
400

500 -

600
730
800G
900
1000
1100
1200
1300
1400
1500
1600

1700

1830
1900
2000
2100
2200
2300
2400
2500
2600
2700
2650
2900
3G20
3100
32G0
3300
3400

sXoNoEsEeEsEeNe!

0

SUBROUTINE MOVFL

THIS SURROUTINE PERFORMS THE COMPUTATIONS

FOR THE QUASI-STATIC FLUID FRONT ADVARCFMENT
PROBLEM (STATIONRRY CRACK). NOTE THAT THE CONLY
OPTION CURRENTLY SUPFORTED IS ALPHR=1.,0 .

SUBROUTINE MOVFL(MU,BR)

IMPLICIT REAL*8(A-1,0-7)

REAL*8 M(B0,80),41(%80,80),42(80,80),M3(80,80) ,Mu(R(,80)
REAL*8 M5(80,80),,MU(80,3),M6(8D,80),KAPPR1

REAL*H4. XY(2,80) ,XSCL(4),DUNMY

INTEGER R,

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

S,ORDER,ELMNTT ,ELMNTX,Q,TSTEP,RINDEX ,PFFONT, RFCOL
)

A(80,80),APRIME(RD,8C),B(80,80) ,TEMP2(A0,£0) ,DDELDT(AD)
c(80,80),CPRIME(80,80),D(80,80),7(8G,80) .
F(80,80),G(80,80) ,H(€0,80),SA(80,80),T(80,80),DELTAO(:N)
DELTA1(80),F0(80),P1(80),TENP(80,80),TENF1(80,80)

BB (80,8C),YNODE(BO,3),RR(80),YT(80),PPELOCEO),NDFLI(ARD)
DEL1(80,f0),DELG(80,8C) ,BPRINFE(30,80),FPRINE(CD)
B1(20,80),BPRIM1(80G,8))

COMMON /0UT/ STRSL(80,3),STRSC(80,3),ALOC(80,3),RCERT(R0,3) :
COMMON /BKPING/ XNODE(BO,3),TNODE(ER,3),EL¢NTT(4,80) ,FLENTX (L4 ,RT)
COMMON /SIZE/ ORDER,NELMNT,NXNODE,NTNODE

COMMON /TIME/ TSTART,FTIME,DT,TSTEP,TIKE

COMMON /FILL/ LFRONT,RFRONT

. TCH(N,X)=DCOS(DPFLOAT(N)*DACOS(Y))
TCHPR(N,X)=N*DSIN(DFLOAT(N)*DACOS(X))/DSORT( 1.~V **2)
STGR(X)=X/DABS(X) ' ,

- 6¥¢ -



3550

3600
3700
3800
3900
46390
4159
4200
4330
LUH0
4500
4630
4700
4830
4950
5000
5100
5200
5300

5400 |

5500
560C
5700
5800
5920
6030
6100
6200
63060
6ud0
6500
6600
6700
6800
6900

¢

n

PI=3.1415926535898
PBIHL=1.0

READ(5,1) ALPHA,BETA ,ILTIN
1 FORMAT(2F10,4,13)
KLPHA=1,

ILIN=9

**% TEMPORARY CARD *w«
TAUC=1.

L2222 R R R RS AR RS RETERE
NLNODE=NTNODE +1
NMNODE=NLNODE
NSTZE=2*NLNODE
ICOUNT=0
RFCOL=RFRONT+1

NT2=NTNODE/2
NL2=NLNODE/2
ITEST=2.*NL2
IF(ITEST.LT.NLNODE) NL2=NL2+1

NM2=NMNODE/2
ITEST=2*NM2 .
IF(ITEST.LT.NHNODE) NM2=NM2+1

CALL CONST(IREG,JRFG,EMOD,AR,RB)
EMOD=2,*EMOD

DO S TI=1,NLNODE
ARG=PI*(2.*I-1.)/(2.*NLNODRF)
YNODE(I,1)=-DCOS(AEFG)
CONTINUE

DO 19 I=1,NSIZE
APRIME(I,I)=1.
DELO(I,I)=1.

- 0S¢ -



70230
7100
7200
1300
Mou
7500
760G
7730

7860 -

7990
8GGG
8133
8200
8300
8400
8500
8610
8700
880
89060

3600

9100
9200
9300
4ue
3560
9600
97540
9800
99306
16000
10130
- 10200
10300
10490

PEeERNe!

eXe e REEs!

19

15

DEL1(1,I)=1.
E(I,I)=1,
F(I,I)=1.
H(I,I)=1.
SA(I,I)=1.
T(I,I)=1.
CONTINUE

CALL TRANS3(XNODE,STRSL,NXNODE,YNODE,PO,NLNODR,80,80,1)

CONTINUE »
CALL INTEG(MU,DELTAO,TNODE,NTNODE,YNODE,NLNODE,O0,&0)
SUM=0.

DO 15 L=1,NLNODE
DO 15 S=1,NLNODE
APRIME(L,S)=TCH(L-1,YNODE(S,1))*2./(NLNODF)
CONTINUE
WRITE(6,500) ((APRIME(IT,JJ),3)=1,0S1I7F),IT=1,NCT7F)
WRITE(6,501)

= 18¢ -

500 FORMAT(W(SE1S.4,/3,//7)
5C1 FORMAT('1°*)

4o

PO 40 R=1,NXNODE

DO 40 J=1,NMNODE
CPRIME(R,J)=TCHPR(J,XNODPE(R,1))
CONTINUE

RSTART=NMNODE+1
RSTOP=NMNODE+NXNODFE

. ISTART=NNNODE+1



10500 ISTOP=2*NMNODE

16609 RINDEX=0

10700 DO 25 R=RSTART,RSTOP

10800 RINDEX=RINDEX+1

16900 JINDEX=0

11000 DO 20 J=ISTART,ISTOP

11106 JINDEX=JINDEX+1

11200 CPRIME(R,J)=TCH(JINDEX-1,¥YNODE(RINDEX, 1))

11300 IF(JINDEX.EQ.1) CPRIMF(R,J)=.5*CPRIFE(R,J)

11400 20 CONTINUE

11500 25 CONTINUE

11600 C

11700 C WRITE(6,500) ((CPRIMF(II,JJ),JJ=1,NSIZF),IT=1,NST7F)

11800 C WRITE(6,501)

11990 C .
12000 C !
12120 DO 45 K=1,NTNODE o
12200 DO 45 J=1,NMNODE , the
123920 C(K,J)=TCHPR(J,TNODE(K,1)) !
12400 45 CONTINUE |

12500 C .

12620 RSTOP=NMNODE+NTNODE

12700 KINDEX=0

12800 DO 35 K=RSTART,RSTOP

12965 KINDEX=KINDEX+1

13000 JINDEX=0

131356 DO 30 J=ISTART,ISTOP

13200 JINDEX=JINDEYX +1

13350 C(X,J)=TCH(JINDEX~-1,TNODE(KINDFYX,1))

13400 IF(JINDEX.EQ.1) C(K,J)=.5*C(K,J)

13500 30 CCNTINUE

13600 35 CONTINUE

13706 C _

13600 C WRITE(6,500) ((C(IY,JJ),JI=1,NSIZF),II=1,NSIZ2T)

13990 € WRITE(6,501)



14000 C

14100 DO 65 J=1,NMNODE

14200 DO 60 K=1,NMNODE

14300 D(J,K)=2.*TCH(J,YNODE(K,1))/NLKODF

14400 60 CONTINUE

14500 65 CONTINUE

14620 C

14706 RSTOP=2*NUNODE

14800 ISTOP=2*NMNODE

14930 JINDEX=0

15600 DO 85 J=RSTART,RSTOP

15136 JINDEX=JINDEX +1

15200 KINDEX=0

15300 DO 80 K=ISTART,ISTOP

15400 KINDEX=KINDEX+1

15500 D(J,K)=2,*TCH(JINDEX~-1,YNODE(KINDEYX,1))/NLNODF
15600 80 CONTINUE :
157300 85 CONTINUE

15800 c

15900 c WRITE(6,500) ((D(IX,JJ3),JJ=1,KSTZE),II=1,0S1IZF)
16000 C WRITE(6,501)

16100 C ‘

16200 C

16300 DO 50 K=1,NMNODE

16430 DG 50 L=1,NLNODE

16500 - E(K,L)=TCHPR(L,YNODE(X,1))

16630 5C CONTINUE '

16700 C WRITE(6,500) ((E(IT,JJ),J3=1,NSIZE),TI=1,NST7F)
16800 c WRITE(6,501)

16930 C :

17600 C

11060 DO 55 L=1,NLNODE

17230 DO 55 S=1,NLNODE

17300 F(L,S)=TCH(L ,YNODF(S,1))*2./NLNODE

17400 £S5 CONTINDE

- €82 -



175040
17630
17700
17600
17930
18000
18100
18220
183030
18400
186500
18600
18720
18630
16930
190929
19100
19200
19300
19400
195350
19600
19700
19600
19900
20000
20100
202390
2030u
20400
20500
20600
26700
20800
22900

sNeEeNeEvEeNe XS (@]

o Rp!

oo

76

15

WRITE(6,500) - ((F(I11,J3),JJ=1,NSIZE),TI=1,RSI2F)
RRITE(6,501)

DO 75 S=1,NLNODE
DO 70 0=1,NLNODE
H(S,Q)=0.
SaA(S,Q)=0.
T(5,Q0)=0,
CONTINUE

H(S,S)=-SIGN(YRODE(S,1))
H(S,NL2)=H(S,NL2)+SIGN(YNODE(S,1))

Sa(s,S)=1.
SA(S,NM2)=SA(S,NM2)-STIGN(YNODE(S,1))

T(S,S)=-SIGN(YNODE(S,1))

CONTINUE
WRITE(6,500) ((H(II,J3),J3=1,NSIZF),11=1,NS1IZF)
WRITE(6,501)
WRITE(6,500) ((SA(II1,33),33=1,NSTZ2E),IT1=1,NSTZF)
WKITE(6,501)
WRITE(6,500) ((T(T11,JJ),J3=1,NSI2F),II=1,NSTI2E)
WRITE(6,501)

CALL MULT(D,NSIZE,NSIZE,SA,NST7F,NSTZF,N1,TFR)

CALL MULT(T,NSIZE,NSTIZE,E,NSIZ?F,NSIZF,TEMNP,TER)
CALL MULT(TEMP,NSIZE,NSIZ¥,F,NSTIZF,NSIZE, TENP1,IFER)
CALL MULT(TEMP1,NSIZE NSIZF,H,NSIZF,NSIZE,¥2,TER)

- $S¢ -



21006
21100
21200
21300
214920
21509
21600
21733
21800
"21903
22000
22190
22200
22300
22400
225350
22600
22700
22800
22900
230035
23100
23200
23300
23400
23500
23600
23700
23809
23900
24500
241006
242350
2430vu
24400

oo a0n

N0

TEST

TEST

CALL
CALL

CLLL
CALL
CALL

TEST

MULT(CPRIME ,NSIZE ,NSTZE,D ,NSTZE,NSIZE,TENT ,IER)
MULT(TEMP,NSIZE,NSIZE,SA,NSIZE,NST?E,M3,TER)

MULT(T,NSIZE,KSIZE,CPRTIME NSIZE,NSIZ¥,TFME,TIF ")
MULT(TEMP,NSI2E,NSTIZF,F ,NSIZE,NSIZV,TEMPY,TER)
MULT(TEMWP1,NSIZE ,NSTIZF,H ,NSIZE ,NSIZE ,M6,IER)

TEST TEST TEST TFST

WRITE(16,500) ((C(IT1,3J3),3J=1,NMNCDE),TI=1,8YN0ODT)
WRITE(17,500) ((CPRIME(IT,JJ),JJ=1,NHNODE),TI=1,N¥NODT)
WRITE(18,560) ((D(II1,3J3),1J3=1,NMNODE),TI=1,NUNODF)
WRITE(19,500) ((M3(T11,33),13J=1,NNNODF),T1I=1,NMNODE)
WRITE(20,500) ((H5(II,JJ),JJ=1,NHNODR),TT=1,NMNODE)'
WRITE(21,500) ((¥2(IY,JJ),)J=1,N¥¥ODE),I1=1,¥YNODF)
WRITE(22,500) ((M4(I1,33),33=1,NM¥NODE),TI=1,NHHONE)

TEST

TEST TEST TEST TEST
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100

oo

101

CONTINUE

bo 101 I=1,NLNODE

XY@,
XYcz2,

I)=YNODE(T,1)
I)=P0O(T)

WRITE(6,467) YNODE(I,1),P2(T)
CONTINUE

- §5¢ -



24500
24600
24700
240603
20800
25009
25100
25200
25330
25440
25500
25600
25700
25800
25%9G0
26G00
26100
26200
2630C
26400
26500
266309
26700
26800
26900
27G0J
27100
27200
27300
27403
27500
27600
27703
27800
27939

Ccx

467

b6t

102

103

845

CALL QPICTR(XY,2,NLNODE,Q¥(1))

ISCL=-2

XSCL(1)=-1.0

XSCL(2)=1.0

XSCL(3)=_0 10

XSCL(4)=1.2 _

CALL QPICTR(XY,2,NLNODE,Q¥(1),QISCL(ISCL),0¥YSCL(XSCL))
WRITE(6,468)

FORMAT(2E15.4)

FORMAT(///7)

XSCL(4)=1.5
DO 102 I=1,NLNODE
XY(1,I)=YNODE(T,1)
YY(2,I)=DELTA1(T)
CONTINUE
CALL QPICTR(XY,2,NLNODE,QTNIT(DOMMY),0X (1))
CALL QPICTR(XY,2,NLNODE,Q¥(1),0ISCL(ISCL),C¥SCL(XSCL))

DO 103 I=1,NLNODE

XY(1,I)=YNODE(I,1)

XY(2,I)=DDELDT(I)

CONTINUE

CALL QPICTR(XY,2,NLNODF,QINTT(NUMMY),0X(1))

IF(ICOUNT.GE.TILIM)
1GO0 TO 1000

DO 850 I=1,NSIZE
DO eus5 J=1,NSIZE
A(I,J)=0.
B(T,J)=0.
BPRIME(I,J)=0.
G(I,J)=0.
CONTINUE

- 9%¢ -



28000
28100
2820¢
26300
28400
28500
28600
28700
28800
26900
2906¢
29100
292063
29300
29430
29500
29600
29730
29800
29960
30062
30190
30200
32330
30400
30500
30660
30700
3C820
35990
31000
31100
31200
31320
31460

oo

@

onoaanon

850

105

110

112

115

CONTINUE

DO 116 J=1,NMNODE ;
DO 105 K=1,NMNODE
DELG(J,K)=0,
DEL1(J,X)=0.

CONTINUE
DELO(J,J)=DELTAO(J)**3
DEL1(J,J)=DELTA1(J)**3
CONTINUFE

xxax COMPUTE A **%+

DO 112 R=LFRONT,RFRONT

DO 112 L=1,NLNODE
A(R,L)=TCH(L-1,XNODE(R,1))
IF(L.EQ.1) A(E,L)=.5*A(R,L)
CONTINUE

DO 115 I=1,NMNODE

A(NTNODE,I)=0.

A(KMNODE,I)=0.

CONTINUE :
WRITE(6,500) ((A(II,31),33=1,NSIZE),II=1,NS17F)
WRITE(6,501)

wedxs COMPUTF B *aww

FIRST QUADRANT:
DO 125 R=1,NXNODE
TF((R.LT.LFRONT).OR.(R.GT.RFRONT)) GO TO 125

DO 120 I=1,NTNODE
IF((I.LT.LFROEKT).OR.(TI.GT.RFCOL)) GO TO 120

A



31530
31600
31700
31800
31900
32009
321360
32230
32390
32400
32530
32640
32730
326400
32900
33000
33100
33200
33330
33499
33500
33600
33700
33609
33990
34000
34100
34200
34300
34409
34500
34630
348790
34600
349040

C
C

12¢
125

130
135

137

B(R,I)=DSQRT(1.-TKODE(I, 1)**2)

1 /((XNODE(K, 1) -TNODE(I ,1))**2)
B(R,I)=PI*EMOD*B(R,I)/(NTNODE*TAUC)
CONTINUE : '
COKTINUE

SECOND QUADRRANT:
ISTART=NMNODE+1
ISTOP=2,*NMNODE
DO 135 R=1,NXNODE
IF((R.LT.LFRONT).OR.(Kk.3T.RFRONT)) GO TO 135
IINDEX=0

DO 130 IY=ISTART,ISTOP

TINDEX=IINDEX +1

IF((LFRONT.LE.IINDEX) .AND.(IINDEX .LE.RFCOL).OR.
1(IIRDEX.GT.NTNODE)) GO TO 130

B(R,I)=DSQRT(1.-TNODE(IINDEX,1)**2)
1/((XNODE(R,1)-TNODF(IINDEY,1))**2)
B(R,I)=PI*EMOD*B(R,I)/NTNGDF

CONTINUE
CONTINUE

po 137 I=1,ISTOP
R(NTNODE,I)=0.
CONTINUE

B(NTNODE ,NT2-2)=1.
B(NTNODE ,NT2+3)=-1.

THIRD QUMDRANT:
RSTART=NMNODE+1
RSTOP=2*NMNODE
RINDEYX=0

- 852 -



35000
35100
35200
35390
35400
35539
35600
35700
358390
359900
36000
36150
36200
36300
364C0
36530
36630
36700
36830
369350
370060
37109
37200
37360
37400
37530
37650
37700
37870
37960
38000
38100
36200
363230
38400

A

C

CX

C

DO 145 R=RSTART,RSTOP

RINDEX=RINDEX +1

IF((LFRONT.LE.RINDEX) .AND. (RTNDFX LE.RFRONT) ,OR.
1(RINDEX.GT.NXNODE)) GO TO 145

B(R,RINDEX)=0.

DO 146G I=1,NTNODE

IF((I.LT.LFRONT) .0OR.(T1.GT.RFCOL)) GO TO 140 -
B(R,I)=DSQRT(1.-TNODE(TI, 1)**2)

1 /((XNODE(RINDEX,1)-TNODF(I ,1))**2)
B(R,I)=PI*EMOD*B(R,I)/(NTNODE*TAUC)

140 CONTINUE

s

CONTINUE

FOURTH QUADRANT:
RINDEX=0
DO 155 R=RSTART,RSTOP
RINDEX=RINDEX+1
B(R,R)=-1.,

IF((LFRONT.LE.RINDFY) (AND.(RINPEX.LE.RFRONT).OF,
1(RINDEX.GT.NXNODE)) GO TO 155

B(R,R)=0.
IINDEX=0

DO 150 I=ISTART,ISTOP

ITNDEX=TINDEY+1
IF((LFRONT.LE.IINDEX) .AMD(IINDEX ,LE.RFCOL).0OR.
1(IINDEX.GT.NTNODE)) GO TO 150

B(R,I)=DSQRT(1.-TNODE(IINDEY,1)**2)

1 /((XNODE(RIKDEX, 1) TPODF(IINDEY,1))**?)

B(R,I)=PI*EHOD*B(R,I)/NTNODE

150 CONTINUE

- 65¢ -



38500 155 CONTINUE

38600 C WRITE(6,500) ((B(IT1,JJ),JJ=1,NSI2F),I1=1,USTZF)

38700 C WRITE(6,501)

386800 C

38900 c k¥k* COMPUTE RPRTME #*%»*

39000 C

39100 € FIRST QUARDRANT:

39200 DO 170 R=1,NXNODF

39300 IF((R.,LT,LFRONT).OR.(R.GT.RFRONT)) CO TO 170

39490 C

39500 SUM=0.

39600 DO 165 I=1,NTNODE

39700 SUN=SUN+DSQRT(1.~TNODE(T,1)**2)

39600 1 /(CXNODE(R,1)-TNODE(I,1))**2)

399090 165 CONTINUE

40000 BPRIME(R,R)=PI*EMOD*SU4/ (NTNODE*TAUC) !

40100 170 CONTINUE a

46206 C ) ©

45300 (o : THIRD QUADRANT: !
C4GH00 RINDEX=0

40500 DO 172 R=RSTART,RSTOP

40630 RINDEX=RINDEX+1

40730 BPRIME(R,RINDEX)=1,

4I830¢ IF((LFRONT.LE.RINDEY) .AND.(RINDEX .LE.RFRONT)) €O TO 172

43900 BPRIME(R,RINDEX)=0.

41000 172 CONTINUE

41100 C

41230 C FOURTH QUADRANT:

41300 RINDEX=0

4400 DO 180 R=RSTART,RSTOP

41500 RINDEX=RINDEX +1

41630 BPRIME(R,R)=-1.

41720 IF((LFRONT.LE.RINDEX) .AND,(RINDEX ,LE.RFEONT)) GO TN 180

41800 BPRIME(R,R)=0.

41936 Cc



42000
42100
42200
42300
42400
42500
42600
42700
42800
42900
43000
43100
43200
43300
43450
43530
43620
43790
43800
43950
44000
44199
44260
44300
4440
44536
H46I0
44730

44600 -

44933
45000
51390
45200
45300
u54350

C

aoOanoaaoan

175

180

183

185

19¢C

SuUM=0.

DO 175 I=1,NTNODE _
SUM=SUM+DSQRT(1.-TNODE(I,1)**2)

1 /((XNODE(RINDEX, 1)-TNODE(I,1))**2)
CONTINUE

BPRIME(R ,R)=PI*FMOD*SUM/NTNODE

CONTINUE

DO 183 I=1,ISTOP

BPRIME(NTNODE ,1)=0.,

CONTINUE
WRITE(6,500) ((BPRIME(IT,JJ),JJ=1,NSI?F),IT=1,NS17F)
WRITE(6,501)

*x%x COMFUTE G *%*#

FIRST QUADRANT:
DO 190 R=1,NYNODE
DO 185 J=1,NXNODE
G(R,J)=0. '
CONTINUE
IF((R.LT.LFRONT).OF.(R.5T .RFRONT)) GO TO 19¢
G(R,R)=EMOD*((1./(XNODE(R,1)~-1.))
1 =(1./7(XNODPE(R,1)+1.)))
G(NTNODE,R)=0.
G(NTNODE+1,R)=0.
CONTINUE

- 192 -

FOURTH QUADRANT:
RINDEX=0
DO 195 R=RSTART,RSTNP
RINDEX=RINDEX+1
G(k,R)=0.
IF((LFRONT.LE .RINDEX).AND.(RINDEX ,LE.RFROKT)) 0O T0 19F



45500
45620
45760
45800
45930
46000
46100
46200
46300
46430
46550
46600
46730
LEBGO
46330
47000
47130
47200
47300
47450
LT75G0
47600
47700
47820
47990
480920
48100
46200
48330

484535

48500
486350
48790
48800
48930

annoooaaon

(oReoRe! oan

P HOKS!

1

G(R,R)=EMOD*((1./(XNODE(RINDEX,1)-1.))
-(1./(XNODE(RINDEX ,1)+1.)))

195 CONTINUE -

196

820

PO 196 I=1,ISTOP
G(NTNODE,I)=0.
CGNTINUE
WRTTE(6,500) ((G(I1,33),3J=1,NSIZF),11=1,NSTZF)
WRITE(6,501)
*#**% COMPUTE Mu *xwx
CALL MULT(A,NSIZE,NSIZE,APRIME,NSIZE,NST?F, N4, TEFR)

*#x%% COMPUTE M5 *#*w

- 2% -

CALL MULT(B,NSIZE,NSI2F,C NSIZFV ,NSIZE,TEMP,IFR)
FACTOR=-1,

CALL MULT(FACTOR,1,1,BFRIME,NSIZF NSIZF,TFMP1,ITFE)

CALL MULT(TEMP1,NSIZE, NSTZ2E,CPRIML,HUSTI7?E,NSTZ7E,TENER,TIVER)
CALL ADD(TEMP ,NSIZ¥, NSIZE,TEMP2,NSIZE,NSTZE,N5,TFP)

*kkx COMPUTE DT wwk»

IF(LFRONT.EQ.1) GO TO 820 \

CALL MULT(M6,NSIZE,NSI?F,PO,NST?E,1,PPRINF,TEPR)
DX=XNODE (RFRONT+1, 1) -XNCDE(RFFCNT,1)
V=PPRIME(RFRONT)*(DELTAO(KFROXT)**2)

DT=-DX/V

CONTINUE

xdk* COMPUTF M »#*w»



49000
49190
43236
49300
49420
49590
49620

49700

49890
499136
50000
50100
50230
503300
50400
53550
50600
50700
50800
509G0
51000
£1130
51200
51300
51400
51500
£1690
51700
51830
51930
£2000
52100
£2200
52300
52420

(D]

oG

o]

aon

800

FACTOR=ALPHA*DT

CALL
CALL
CRLL
CRLL

CALL

MULT(FACTOR,1,1,M5,NSIZE ,NSIZF,TE¥P,IFR)
MULT(TEMP,NSIZE,NSIZ¥,M1,NSTZE ,NST2F,TF¥T1,IEP)
MULT(TEMP1,NSIZE ,NSTZE,DEL1,NSIZE ,NSIZ2F,TFMP2,TFE)
MULT(TEMP2,NSIZE ,¥S12ZF,¥2 ,NSIZF,NSTZE,TEFP,IFF)

ADD(MU4 ,NSTZE ,NSIZF,TEMP ,NSTZE ,NSIZF,TEMP1,TIFR)

FACTOR=FACTOR

CALL
CALL
CALL
CRLL

CALL

AULT(FACTOR,1,1,G,NSTZF ,NSTIZF,TENP,TIFR)

MULT(TEMP NSIZE,NSTZE,M3,NST?F ,NST2ZF ,TEMP2,1IFF)
MULT(TEMP2,NSIZE NSIZF,DFL1,NSIZF ,NSIZE,TEMF,IET)
HULT(TEMP NSTIZE,NSIZE,42,NSIZE,NSTZF,TEMP2,IFP)

ADD(TEMP1,NSIZE,NSIZFE,TEMP2,NSTZF ,NSTZE ,H,IFR)

x4%% COMPUTE RR ***»

FACTOR=(1.-ALFPHA)*DT
IF(ALPHA.NE.1) GO TO 8CO0

CALL

MULT (M4 ,NSIZE NSIZE ,PO,NST?F,1,PFE,IEPR) -

GO TO 810
CONTINUE

CALL
CALL
CALL
CALL

CALL

MULT(FACTOR,1,1,¥45,NSTZE ,NSI?2E,TEMP,IFR)
MULT(TEMP,NSIZE ,NSIZE,N1,NSIZF , NSI?E,TFMP1,IEE)
MULT(TEMP1,NSIZE ,NST2E,DFLO, NSIZE,NSTZ7E,TENP2,TIFR)
MULT(TEMP2,NSIZE NSIZFE,M2,NSTIZE ,NSIZF,TE¥DP,TLR)

ADD (M4 ,NSIZE ,NSIZF,TVMP ,NSTZE ,NSIZE, TEMP1,IFR)
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52500
52600
52700
52800
52900
53000
53100
53200
53300
£E3490
53500
53600
53700
53820
53900
54000
54130
S4200
54300
54400
£4500
546J0
54700
54800
54900
£5000
55100
35200
55300
55450
55500
55600
55750
55800
55900

~
P

[

Qo

810

295

3¢

671

FACTOR=FACTOR

CALL MULT(FACTOR,1,1,G,NSTIZE,NSTZF,TEMP,TEF)

CALL MULT(TEME,NSIZE,NSI?F,M3,KSIZF,NSIZE,TRMP2,TTF) -
CALL MULT(TEMP2,NSIZE,NSIZF,DELO,NSIZF,NST2ZE,TFEP,TFE)
CALL MULT(TEMP NSIZF,NSTZE,N2,NSIZE,NSI%ZF,TFUP?,IEF)

CALL ADD(TEMP1,NSIZE,NSIZE,TENP2,NSIZE,NST?E,TE”P,TF?)
CALL MULT(TEMP,NSIZE,NSIZ¥,PO,NSTZF,1,RR,TER)
CONTINUE

***x% RAPPLY FOUNDARY CONDITTONS **¥x*

DO 300 R=1,NXNODE
IF((LFRONT,LE.R).AND, (R.LE.RFRONT)) GO TO 200
bo 295 I=1,NSIZE

M(R,I)=0,.

CONTINUE

IF(R.LT.LFRONT) M(R,R)=1.
IF(R.GT.RFRONT) M(F,R+2)=1.
RR(R)=0.

CONTINUE

bo 671 JJ=1,NSIZE
M(RSIZE-1,3J)=0.
M(NSIZE,JJ)=0.
M(NHNODE,JJ)=0.

CONTINUE
M(NSIZE-1,NLNODE+1)=1,
M(NSIZE,NSIZE)=1.
RR(NSIZE-1)=0.

RR(NSIZE)=0.

M(NMNODE,NM2) =1,
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56000
56100
£6200
56300
56400
56500
566900
56700
56800
56930
£760C
571G
572G0
£7330
E7430
57500
ET600
97700
57800
57930
28000
56150
58250
58300
584050
58500
58600
58700
£4830
58900
L9000
591250
59200
£93,0

59400

oo an

aoaa

Oaognan

830

572

RR(NMKODE)=PBHL

WRITE(6,500) ((M(¢IT,J)),J3=1,NSI7F),1IT=1

WRITE(6,501)

*kxx SOLVE SYSTEN *#x*»

CRLL SOLVE(M,RR,P1,NSIZE)

HNETI7TE)

**%k DECOMPOSE RESULTS *w»»

THDEX=NMNODE+1
DO 200 I=1,NMNODE
PO(I)=P1(I)
DDELDT(I)=P1(INDEX)
DELTA1(I)=DELTA1(I)+DDELDT(I)*DT
DELTAO(I)=DELTA1(TI)
PO(INDEX )=P1(INDEX)
INDEX=INDEX+1
CONTINUE

WRITE(6,501)

WRITE(6,500) (PO(II),TT=1,NSI?E)

TINE=TIME+4DT
ICOUNT=TCOUNT +1
IF(LFRONT.EQ.1) GO TO 830
RFRONT=RFRONT +1
LFRONT=LFRONT-1
RFCOL=RFCOL+1

CONTINUE

WRITE(6,572) DPT,TIVE,RFRONT

FORMAT(*DT=",E15.4,*TI¥E=",F15.4, *RFROKT=

*,13)
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59590
59600
59730

100
200
300

1000 CONTINUE
RETURY
END
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160
200
300
400
50
60U
70U
800
900

1000

1103

1206

1300

1400

1500

1660

1700

1800

1900

200

2100

2200

2306

2400

2500

2600

2700

2800

2900

30600

3160

3200

3300

3400

]

oOCo

SUBROUTINE MULT

10

THIS SUBROUTINE MULTIPLIES TWO MATRICES,s OR

ONE MATRIX BY A SCALAR.

SUBROUTINE MULTC(A9IROWICOLs BeJROKJCOL S PRODS

IMPLICIT REAL*8(A=Hy0-2)
DIMENSION A(G60980)45(80+80)sPROND(BG,80)

IFCICOL.EQ.JROW) GO TO 10
IFCCIROWeEQe1) e ANDe(ICOL.EQe1)) GO TO 100
1IER=1-

GO TO 1600

CONTINUF

DO 40 I=1,IKOW

20

30
4U

DO 30 Jd=1,JCOL
PROD(IsJ)=0.

DO 20 K=1.ICOL
PROD(I¢J)=PROD(T4J)+A(T4K)*B(KyJ)
CONTINUE

CONTINUE
CONTINUE
GO TO0 15460
CONTINUE
MULTIPLICATICN OF ©8 BY A SCALAR
DO 120 I=1sJROW

00 120 J=14JCOL
PROD (I +sJI=A(1+1)4B(T14J).

T1ER)
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350¢C
3600
3700
38690
3900
4600

o

120

1000

CONTINUE

CONTINUE

RETURN
END
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SUBROUTINE NEWSTR

THIS SUBROUTINE PEPFOKMS GUAST-STATIC FRESSURE
EVOLUTION COMPUTATIONS FOR STATIONARY CRACKS LY

USEDy BUT IS RETAINED FOR FUTURFE RFFERENCE AND

C
c
c
C
c EXPLICIT TIME INTEGKATIONes NEUWSTR 1S NOT CURRENTLY
C
C
C

C .

COMPARISONS,

SUBROUTINE NEWSTR(MUsA)

IMPLICIT REAL*8(A-1i40-2)
REAL*8 MU(B093)+LOAD(2) ¢ NONGAMyNONDEL s NOMPoNOKMU
REAL*4 DIPC10+4U0)4D3P1CL1094G5) yDIP2C1064400)

., REAL*4 DPLOT9XY(24400)4XSCL(4)

INTEGER ORDERQELHNTI(QsSC)gFLMNTX(4'80)
INTEGER TSTEP

ODIMENSION
DIMENSIGN
DIMENSION
OIMENSTON
DIMENSION
OCIMENSION
DIMENSION
DIMEINSION
DIMENSTION
DIMENSION
ODIMENSIUN

DELTAC40045) 9P (40045)sDERIVIBT) yOPCHO) yPLINCCRO)
STRSL(B0+3)+TEMP(B043)

TNODE (80493) « XNODE (868G 4 3)
A(BO0+80)+DMUDT(400+5)
DPLOT(104400) 9 DTEMPC4LCyH)
ZETAC4480)+sNPTS(4)

XAL(4) o XB1C4) 4 XA2(4) ¢ XB2€4) ¢ XCCAD043)
XTEMP(40043)2sPTEMP(40945)
PROUGH(80) 4 PSMTHLED)

XT(40093) 9CHUCHK(8041) +NPCHK(ED) ¢ DDCHK (KU 4 1)
STRSC(ED43) ¢ ALOCURUOs3) yACART (B043)

COMMON /TEST/ ITEST :

COMMON /BKPING/ XNOUE,TNODE ¢ FLMNTT4ILMNTX

CUMMON /SIZE/ ORDERNELMNT+MXNODE ¢ NTHODF

COMMON /DEBUG/ CELTASDFLOTsOMUCHKsPTEMP 3DUCHKsDPCHK
COMMON /GP/ ZETA4NPTS

- 69¢ -



OOOCO0O0

COMMON ZENDPTS/ XAlaXB1gXA24XE2

COMMON /MITBR/ JOEG

CCMMON /FLUID/ VISCOsLOAD

COMMON /CRMY114/7 ALPHASBETALIFRED

COMMON /DEL3PR/ DHUDToXTEMPoNXTENP D3P« DIF14L3F2
COMMON Z0UT/ STRSLeSTRSCyALNCACART .
COMMON /TIME/ TSTARTeTFINGDT&TSTEP ST

COMMON /TCHPTS/ XCyNOEG

COMMON /NONDIM/ NONGAM.NONDELQNON’,NONMU,TAUC

SGNCAA+QI=DSIGN(AA+Q)
ATAN(WQ)=DATANLtQ)

COMPUTE CRACK OPENING DISPLACEMENT AND DERTIVATIVES,
INTERPOLATE PRESSURE ANLU COMPUTE DERIVATIVESS

IbHL=NTNODE/2
PBH=STRSLCIBHL. 1)
NXTEMP=320
NOEG=200
NSIUE=1060

X0=-1.060
DO b I=1+NXTEMP
XTEMP(I41)=X042.*xDFLOATCI)/DFLOATUMXTENP)

" CONTINUE
DO 6 I=14.NDEG
XCCI+1)=-DCOS(3.1415926535898*(1-1)/DFLOAT(NDEG-1))
XCCI¢2)=XC(T1s1)

 CONTINUL

* 0L¢ =



o

COMNTINUE

~

C
c PLOT PRLSSURE
C ‘

DO 26 I=14NXNODL

XY(1ls1)=XNODE(TI+1)

XY(241)=STRSL(I41)

26 CONTINUL

ISCL==-2

XSCL(1)=-1.0

XSCL(2)=1.U

XSCL(3)=0.0

XSCLCA4)=15*SNGL(LOADC(1))

CALL "QPICTREXY 929 NXNODE ¢QXC1) 4O ISCLCISCL) $BXSCLIXSCL))
C
C
C EVALPATE pMuDT:
C
C TRANSFORM STRSL FROM XNODE TO XTEMF:
C

CALL TRANss(XNOQLsSTRSLvNXNOGEvXTEMPgP,520g80.400;1)
CX URTITE(69536) ((XTEMP(ITeJJ)eJU=1e3) g (PTEMPUTTI s UK) sJK=14%) 4
CX 111=1,4325) :
530 FORMAT(BEL1S.4)

C EVALUATE P

CALL DIFF(XTEMP+Py320,41)
WRITL(I+536) (CXTEMPCOTIIoJU) s JUZ 43D s (PLITIsJKYsUK=145R),
111=1452%9)
DO 22 I=1NXTEMP
XTCLe2)=XTEMP(I41)
FTEMP(T42)=P(Te2)
22 CONTINUE
CALL TRANSIU(XToPsNXTEMPsXCoPTEMPyNDEGs400+40042)
DO S44 JTI=14NDLEG
XYCLo IID=XC(I141)
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XY(24 LI)=PTEMP(II41)
544 CONTINUEL
CALL QPICTRUXY424NDEGsQINIT(DUMMY) 4GX (1))

* COMPUTE LCELTAZ

OO n

CALL INTEG(MUGDELTA+TNODESNTNODE 4 XCoeNDL Ge24400)
DO £94 I=14NDEG
XYU1yI)=XC(1el)
XY(2431)=DELTA(Ll41)
694 CONTINUL
CALL QPICTRU(XY424NDEG»GX (1))

C
C
WRITEC1349536) ((XCOTITadudaJJ=143) s (DELTA(TTsJK) 4 dK=145)
11I=1+400)
c
c COMPUTL (DELTAx*3)xpe 3
c

DO 20 I=14NDEG
DMUSTCT 9 L)=PTEMP €191 )*DELTACT 91 ) 423
WRITE(154532) XC(I91)4DMUDT(141)
532 FORMAT(Y *42E15.4)
20 CONTINUE

C
CX CONST=DMUDTU(NSINE 1)
CONST=DMUDT(NSTIDEs1)
1 ~{(DMUDTI(NSIDE s 1) -DMUDTU(NSTLE=~141))
2 JECXCUINSIDE+1)-XCI(NSIDE=-1410 1))
3 *XC(NS1DE 1)
C

D0 81 1=14NSIDE
DMUOT (T 1)=DMUDT(CL41)~CONST
61 CONTINUF

= ele ™



IMIN=NSIDE*]

CX CONST=DMUDT(IMINs1)
CONST=DMUDTC(IMIN,1)
1 +((DMUDTCIMIN+141)-DMUDTCTMNING1))
2 ZJ(XCCIMIN+141)-XCCIMIN,y1)))
3 *(=XCCIMINg1))
c

DO 82 T=TIMINyNDEG
DMUDT(I4+1)=DMUDT(Is+1)-CONST
82 CONTINUE

DO 83 1=14NDEG
XYU19I)=XC(1s1)
XY(2+41)=DMUDT(I41)
65 CONTINUE
CALL QPICTR(XY424NDEGsQINIT(DUMMY) 4GX (1))

DIFFERENTIATE S

o000

CALL CHEBY(XCoeXCoNDEGyNDEGyDMUDT¢NDEGCoNDEG 2 4DTEMP o
1460440040)

oo

GO 84 TI=1.NDEG
XY(191)=XCtIsl)
XY (24 1)=DTEMP(1,42)
84 CONTINUL
CALL QPICTR(XYs24NDEGsQX (1))

«

CALL RECNST(XCoDTEMP940U929NNEGS0)
DO 85 I=14NDEG
XY(1sI)=XC(1,41)
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CX

[

85

6?3

oOOoOOOo0

29

30

Tt

XY(24ID)=DTEMP(142)
CONTINUE
CALL QPICTR(XYs24NDEGsGX (1))

CALL DIF2(XCoDTEMPo+NDEGsTNODF« NTNODE)
CALL REBILDC(TNODE ¢DTEMP4NTNODE)

(00 30 I=1+NTNODE

XYCle ID=TNODE(I+1) '
XY(2:1)=DTEMP(I43)

WRITECE9E673) TNODE(T41)4DMUDT(I,43)
FORMATCY ¢4 *TNODE=*4E15449'DMUDT=*4E15,.4)
DO 29 J=145

DMUDT (I 4 J)=DTEMP (] 4)

CONTINUL

COCHK(I41)=0MUDT(142)
DMUCHK(191)=DMUDT(I43)

CONTINUE

CALL GPICTR(XY¢24NTNODESQX(1))

CCMPUTE TIME DERIVATIVE OF PRESSURE:

I=0

DO 90 JTEL=14NELMNT
TTMAYZELMNTXCIEL 1)

D0 80 TI=14IIMAX

I=1+1

DP(I)=0.

DO 70 J=14NTNODE
BFAIY=OPCID+ACT s D ADTEMP (U 2)
1ADSCRY(14=TNODE (U1 ) #x2)
CONTINUL

DPCHKCTI)=DP(])
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80 CONTINUE
I=1+1
Y4 CONTINUE

D0 95 I=1¢NXNODE
XYl ID=XNODE(TIs1)
XY(241)=0P(])
6% CONTINUE
IsCL=-2
XSCL(1)=-1.0
XSCL(2)=1.0
XSCL(3)=0.
XSCLC(4)=1.5*PBH
CALL QPICTR(XYs2+NXNOBE +QX(1))

ADD PRESSURE INCREMENT TO PREVIOUS PRESSUHES

e NeNel

U0 100 I=1+NXNODE
STRSLUT«1)=STRSL(I41)+DPLTD DT
160 CONTINUE :

C

C FIX UP NEW PRESSURLE CURVE:

C

CrahkandhhndhhdA ARk ha b adax ¥ TEMPORARY CARPDR* AR wh khk kA Ak d kwk Ak w A kA %
STRSL(CIBHL+1)=PbBH

Ci*it*******"******tti***'h*t*t*ﬁtiﬁ*tt********i***tik'k***ki‘t*‘t*ﬁ

s NeNaReNoNeNelNel

CNEW CALL FIXUP(STRSLsNP4LOAD(1) ¢ IBHLs NXNODE)
SMOOTH FINAL PRESSURE CURVE:
)
DO 956 IT=14NXNODE
PROUGH(IT)=STRSL(1141)
959 CONTINUE
CHECK=10.D 07
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>

OO0 OO0 0n

962
963

915

DO %62 ICNT=2415

SOCV=RGRESS(XNODE s PROUGHsPSMTH 159 NXNGDE)

CHECK=1.5*CHECK
IF(SDEV.GE.CHECK) GO TO 963
WRITE(L956T) SOEV
CHLECK=SDEYV

CONTINUE

CONTINUE

WRITE (6+567) SDEV

567 FORMAT(Y v49SDEV=*,(15.4)

D0 975 TI=14NXNODE
STRKSL(TI41)=PSMTH(I1I)
CONTINUE

Chakraransranhnhrananhddx TEMPORARY CARD *dadakkhhohhhAhdhhh b hhkAdnkdh

CX

1F(NXNODE.GE.1) 60 TO 58

C****i*t*a*t*ii*t*****t*t*******tt******t***t*i**i**ﬁ*‘kl**********t

c
C
C

[«

COMPUTE HNEW DELTAS

DO &3 I=14NTNODL
MUCT91)=MUCT41)+DMUDT(143)+DT
CONTINUE

GO THROUGH NEXT TIME STEF:

CALL PSCALC

CALL OUTPUT
TSTEP=TSTEP+1
IFC(T.GC.TFIN) GO TO 1600
T=T+UT

GO0 TO 25

Ct***t‘*a**a*****tt*}*******a TEMPOQRARY CARD

I 2R RS R SRS REEES SR FERESENESEN]
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cX 58 CONTINUE
Crmda kA ok n A A A R AR AR R RN AR AN R KRk R A R A AR AR A KA R A RN NARANR R AR AN AR NN AN R AR AR RSN A&
. C
C
1000 CONTINUE
RETURN
CND
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14
20y
300
400G
5940
€00
71060
8G0
960G
10830
1100
1200
135G
14090
1500
1603
170¢C
1800
19090
2000
2100
2200
2360
2400
2500
2600
2700
2800
29940
2000
316606
2200
3390
3400

SUBROUTINE OUTPULT

THIS SUBRGUTINE CURRENTLY PRODUCES
THE PRINTED OUTPUT ASSUCIATFD WITH - -STATIC
PROELE MS,

SUBROUTINE OUTPUT

IMPLICIT REAL*8(A-Hy0-2)

INTEGER ELMNTT(4480)9ELFNTX(4,480)

INTEGER ORDER

INTEGER TYPE(E) yCLROWIE) sCEFLMNT (64 sCDIR(EsF)
INTEGER COL(6486)

INTEGER TSTEP

REAL*8 MU+KAPPAL

REAL*4 PPLOT+FPLOT4DMUPLT(10480)

REAL*4 DPLOT

DIMENSION XA1C(4)4XB1€4) ¢ XA2(4)+4XB2(C4)
DIMENSION XNODE(80+3)9s THODE(BG s 3)
GIMENSION RLOCUS33)FLCONED43)

DIMENSTION A(BG+80)¢DDCHK(BO91) 9 DPCHK(RN)
DIMENSION SIGMA(B80)yCOEFF(AD)

DIMENSTON Al(44+2)sA2(442)9ALFACAH)
DIMENSTON STRSL(B0Os3)ySTRSCU80e3)4ALOCIBO, 5).AFAPT(d0,3)
DIMENSTGN ICOL (&)

DIMENSION C(646)

DIMENSTION PPLOT(1Cs80)+FPLOTL104+80)
DIMENSION DPLOT(109400)

DIMENSIGN DELTACA0045) +THUCHK(BG) 9P C4004+%)

COMMON ZENDPTS/ XA14XB1sXA2sXBZ¢THETA
COMMON /FEG/ RLOCsTYPE o NREC
COMMON /BKPING/ XMCDFsTHODE ELMNTT4FLNNTX
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3500
3600
S 3763
3806
3900
4000
4100
426U
4300
4400
4500
46060
4700
4800
490606
SG00
5100
5200
53066
5400
5500
9609
5700
5800
5900
600G
6106
62090
6300
€400
6560
£6G0
6700
6800
€900

COMMON /CLOSE/ Al19A2¢ALFA+CLROWSNCLyCELMMT4CDIRSCOL &€
1+ ITYPE ' ‘
COMMON /SIZE/ ORDERsNELMNT s NXNODGE ¢ NTNORE

COMMON /ZARRAYS/Z AsSICMA4COEFF

COMMON /0QUT/ STRSLsSTRSCoALOCsACART

COMMON /ELAST/ GleKAPPAlyMUJELCON

COMMON /TIME/ TSTARTSTFINsDTsTSTEPST

COMMON /PLOTSZ FPLOTsPPLOTDNMUPLTY

COMMON /DEBUG/ DELTAWDPLOTDMUCHK yP¢DUCHK 3 DPCHK

IFCTSTEP «NES1) GO TG 782
WRITEC(6+100)
1C0 FORMAT(Y1®8,T504*M A T F R I A L S%4¢/11,
1T304 'REGION®y TAG s *E* o T6HO *HUY 9y THO 9 *C Yo T1PO ¢ YINTERFACE Y/
2el30e6("=9)oqT4 g~ T6 0t =="9gTROg®* =03 T100e0("=-")47/)
00 10 TI=14NREG
WRITE(69150) TIZELCONCIT 1) sELCONCIL92) yELCON(T]43)
12RLOC(II2)
10 CONTINUE
150 FORMATU Y * 4 T304 1247235015t eTSSgF1T e84y TT84M1 .
7845 CONTINUF N
WRITE(E4200) T
SO0 FORMATO P10 4T00050(049) 4/ 4T50Ca kTR Egtat,/,
1T50¢ %29 g TESL*TIME = *4F1%, QgTB”Q'*'q/QT”ﬂc‘*'gT‘JQ'*‘«
2/7:T5Ce30¢x0)/77/)
WRITE(E4+250)
00 20 1I=1«NXNODE

WRITE(E+300) ITo(XNCDECILIoJJU)gJJU=143)s(STRSLCIT4JJ)sdUz1,43)

2G CONTINUL
390 FORMAT(Y 0¢/7//7/ TSt TNODE "o T1S et X0 gT30h %Y TH5,0778,
1T75¢*F OPEN*yTS9Sy*F SLIDEY4/sTH45(%=0),T15,
RV=t T30 40ty TOOh g ¥ =t s TTS46(¥=2) 4T T7(¥~¢)y /)
GG0 FORMATI(Y 9 4T54I123T10001 0649 T309F10e84T%0¢F1044,TT7C0ef10Ceh
14T790sE1%.4) .
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7009 WRITE(64350) ,

7103 DO 30 TI=14NTNODL

7200 WRITE(6+400) 1T C(TNODECTIgJdJ)gJd=143 ’!‘ALOL(]]QL’J)QJJ 142)
1300 36 CONTINUE

7400 290 FORMATC(Y 9 4T5 4 XNODE ¢ 9T 164 tX8 T35, Y TGy,

7508 1T7S5 ¢ *SNN g TOG g *SNT Py TICh s CTHETA®S/ 9o TO4S(0=¢)4T15,

1600 20t g TG g0t g TG g V=t g T TN g0 mee® g TR Ve € S TILE ¢O (V=) 4 /)
1700 300 FORMAT(® * o751 23T10UeF1UeleT300E10e4sTS02E1GetaT704E10,
800 19T904E19549T1004F15a4)

79040 C

860G RETURN

810G END
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139G
200
300
404
500
&au
70u
800
946U
100¢
1160
1200
1304
1400
15040
1600
170¢C
1806
1900
2600
2100
2200
23060
2400
C 25060
2600
2760
2800
29060
3000
J10¢C
3200
330u
340¢C

C

SUBROUT INE

SUBROUT
IMPLICI

PLOT

THIS SUBROUTINE PROOUCES PLOTS OF
BOTH STATIC AND QUASI-STATIC CALCULATIONS,
FLOT IN TURN CALLS PLOTTING ROUTINES THAT
ARE USED AT THE MeT.Te JOINT COMPUTER
FACILITY. PLOT 1S CURREMTLY CGUT COF DATE
BECAUSE OF RECENT CHANGES THAT HAVE BLCEN

MADE IN THF GUASI-STATIC FOUTINES,.

INE PLOGT
T REAL*E(A-He 0-2)

CHAKACTERX4GC XLAB1o XLADZ W XLABI o XLARG o XLALS o XLAHE ¢ XLABTS XLABSB,y

NN e

INTEGER-

INTEGER
INTEGER
INTEGER
INTEGER
REAL*8
REAL*4
REAL x4
REAL*4
REAL*4

DIMENS]
DIMENSI
DIMENSI
DIMENS1
DIMENS]
DIMENST

XLABG ¢ XLARIOs XLABYI 19 XLABIZ2 ¢ XLAB13 XL AB14,
YLABLs YLAB2 o YLAB3 s YLABA S YLARS s YLALRE o YLABToYLARE ¢
YLAB9 s YLACIGy YLABL19YLABL23 YLADBLIZ3YLARLG,
XLABIS « XLAG16 o XLABYITYLADBIS YLADRYAWYLAELT

ELMNTT(4480) o FLMNTXC4480)

ORODER

TYPECS) yCLROULE) o CELMNTCE4R) yCDTIR(E 4 6)

COL(64€)

TSTEP

MUsKAPPAL

PPLOT«FPRLOT L3P 4D2P14B3IT2

DPLOT ¢OMUPLT 4 DDPLT4DPPLT

PIPLTC17480)+P2PLTC(104400)4PIPLT(10480)4P4PLTI1IC+80)

DIPLTC10+80)sD2FPLTC1048C0)sB3PLTC(10480)yD4PLT(104EQ)

- I8¢ -

ON XALC4) 4 XB1C4) 4 XA204) 4 XE2(4)

GN XC(40043)DOPCHK(E80) 4UDCHK(EUS1)
ON XNOGEC(BO43)9 TNODE(BO 4 2)

ON RLOC(543)4ELCON(243)

ON A(80480)

ON SIGMA(BO%,COEFF(RC)



350690
3600
37070
380490
2900
4030
4100
4200
4300
4400
4501
4600
4709
448G
4900
Y0066
5133
5200
5300
Y460
590¢C
C6CGO
5700
5800
9040
€000
6100
620C
6300
640C
6504
6600
67006
66035
690G

e NeNe

UIMENSI
DIMENSI
DIMENSI
DIMENSI
DIMENSTI
DIMENSI
DIMENSIT
DIMENSI

COMMON
COMMON
COMMON
COMMON
COMMON
1+ITYPE
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

AS

XLAB1= ¢
YLAB1=?

XLAB2=?*
YLAB2=?

XLAB3=¢

ON Al(4+42)3A2(442)9ALFAC4)

ON STRSL(BO92) 9 STRSC(BOyIIoALOCUEUL2IJACARTCRO3)
ON ICOLC4) s XTEMP(400+3)4DMUDT(40G4S) yD3P(10400)
ON Cl4+4)sD3P1C10+440G0)4D3IPZ2C104400)

ON PPLOT(10G+HC) +FPLOT(10480)

ON DPLOTC(10+4400) yOMUPLTCI048CYaFC40045)

ON DELTAC(40095)¢DHMUCHK(EDs1) «DDPLTC10480)

ON DPPLT(10+80)

ZENDPTS/Z XAl X149 XA2¢XB24THETA

/TCHPTS/ XCoNDEG

/REG/ RLOC+TYPF +NREG

/GKPING/ XNODE o+ TNODE s ELMNTTSELMNTX

ZCLOSE/Z AYloA24yALFA9CLROV ¢NCLsCELMNT3CDIFRsCOLAC

/SIZE/ ORDER+NELMNTyHXNODE ¢ NTNODE

/ARRAYS/ AsSIGMAWCOEFF

F0UT/ STRSLySTRSCyALOCyACARTY

TELAST/ Gl14KAPPA14MUSLELCON

/TIML/ TSTARTTFINGDT2TSTEP.T

/PLOTS/ FPLOTsPPLOT+DMUPLT

/PLOTSY/ DOPLT40DPPLT

/DEBUGZ DELTASOPLOTsDNMUCHK 4Py DDCHK o DIPCHEK

/PLTEMPZ P1PLT 4P 2PLToP3PLT sP4PLT o OIPLTWD2PLT +D2PLT+D4PLT
/DELSPR/ DMUBT o XTEMP«NXTEMP D3P ¢ D3P14D2P2

- ¢8¢ -

SIGN AXIS LABFLS:

PLOTH] XNOT:L ®
FRAC FLUTD PRESSURF P(XNORF4T)

PLOT#2 TNODE o
SCLUTION FCTNODF4T)*

PLOTH3 TNOLE ¢



7000
T10u
7200
7300
7400
7560
1600
7700
78C0
79060
800U
- B10GGO
8200
84306
6420
8500
8630
BT04
- 6800
89C0
S00uU
9100
9200
304
9400
950 (
9690
97u0
980G 0
5900
1600¢
10100
1220640
106300
164060

CX
cx
cXx
CXx
CX

CX
CXx
CA
(0 §

CX

YLAB3=? PLOT OF D(MUY/DT®

XLAB4=PLOTHY TNODE
YLAB4=* PLOT OF D(DELTA)Y/DT?

XLABS=*PLOT S XNODF *
YLABS=? FRAC. FLUID PRESSe. INCs LP?

XLAB6=*PLOT#6 XNODE "
YLABA='FP (DIAGNOSTIC)?

XLAB7=*PLOTH7 XNODE ¢
YLABT7=*F/ (DTAGNOSTIC)

XLABB=*PLOTHS8 XNODE ¢
YLABB='P// (DIAGROSTIC):®

XLAB9=FPLOTHI iNODE'
YLABS=p/// (DITAGNOSTIC)

XLAB1C=*PLOTH1O TNODRE *
YLABIO=¢DELTA/ (DIAGNOSTIC)?®

XLAB11=*FLOT#11 TNODE®
YLABI1='DELTA// (DIAGNOSTIC)?

XLABl2=*PLOT#H12 TNOLL Y
YLAB1Z=*DELTA/// (DIAGNOSTIC)?

XLAB13=PLOTHI1Z2 TNODE ¢
YLAB13=*DELTA (DIAGNOSTIC) *

XLAB14=vPLOTH#H13 THOOE *

YLAB14=*CRACK OPENING DISPs (IELTACTNODE,T))

- €82 -



18500
10600
107060
108060
10900
11000
11100
11200
113060
11406
11506
11600
21700
11800
11900
12000
12100
12200
12300
12409
12500
12600
12706
12800
129006
13000
1310vu
132006
13580
13406¢C
13504
13600
127060
138020
13900

[N} oOo0

@)

cX
cx
CX
Cx

cx

106

XLAB1S5='PLOTH14 XTEMP*
YLAB1S=? (Drax3)xi/ 0

XLAB16=*PLOTH1S XTENP
YLAB16=" ((D*x*x3)xp/)/ ¥

XLAB17=9%PLOT#1a XTEMPY
YLAB17="* (CDxx3)sp/f) /)

PLOT RESULTS:
NP=NTNODE
NP1=NXNODE
NP2=NXTEMP
NP3=NDEG
NP4=NDEG

DO 10 I=14NXNODE
PPLOT(1 4 I)=XNOPE(TIs1)
OPPLT(14I)=XNGDECTI 1)
CONTINUL

DO 11 T1=1+NTNODL

FPLOT(1 4+ I)=TNODECT41)-
DMUPLT(14I)=TNODE(T+1)
DDPLTC14I)=TNCDEC(I41)

PIPLTU1+I)=TNODE(TIs1)
P2PLT(1¢1)=TNODEC(I41)
P3PLTC1sI)=TNODE(I41)
PA4PLT (19 I)=TNODE(141)

OIPLT(14yI)=TNODE(T V1)
D2PLT (14 I)=TNODE(TI,41)

= ¥8¢ -



14004
141090
14200
14300
14400
14500
146090
147030
148060
14900

15000

15100
1520¢C
183060
154340
15500
15600
15760
15800
159090
16000
16100
16200
163090
16400
1650¢C
16606¢C
16700
16800
159010
17003
17106
17264
17300
1740¢C

C X D3PLT(141)=TNODE(141)
CX D4PLT(14I)=TNODE(1,41)
C
11 CONTINUE
C
DO 20 I=1sNDEG
D3P(1s13=XC(I41)
DPLOT(141)=XC(T41)
D3P1(14I)=XC(1I41)
20 CONTINUE
C A
DO 30 I=14NXTEMF
P2PLTCLgI)=XTEMP(141)
36 CONTINUE
C _
DO 40 I=14NDEG
D3P2(1sI)=XC(Iy1) .
4u CONTINUE
¢ %
CALL QP ICTR(PPLOT10oNP1sNATINITC(RUMMY)oOX (1) 9CLABRFL(11004), »n
TOXLABU(XLABL1)»QYLABC(YLAB1)) " s
C
CALL QPICTR(FPLOT410sNPsQINITC(HUMMY) ¢OX (1) 4y GLARELC11004),y
1GXLABOXLAB2) sQYLAB(YLARG2)Y) ‘
C ‘
CALL GQGPICTR(DMUFPLT910sMPyQINITCDUMMY) 4GX(1)4QLARELCI1C04),
1GXLAB(XLAB3YGYLABCYLARS3))
C .
CALL GPICTR(DDPLT4104NPoQINITC(LHUMMY) 4QAX(1)«QLABIL(11004),
1GXLABEXLAB4) yQYLAGCYLARBAS))
C

CALL GPICTR(DFPFLT9104NPL4NINITC(DUMMY) 9CX (1) 4GLARELC12004G),
1GXLABCXLABE) yGYLABCYLABE))

CX CALL OGPICTRC(PIPLT+1GoeNP2sQXC1)9QLABELC11004) sQXLAGCXLABS)



17506
17600
177640
17800
17900
18060
18100
182040
18300
184090
18500
18600
18700
18800
18906
19680
15100
19200
19300
19400
198070
1960660C
15700
1980¢C
1990¢
20000
206100
26200
2u300
2U400
24500
20600
20700
20800
209010

CX
CX

CX
CX

CX
CX

cx
CX

1QYLABOYLARG))

CALL QPICTRU(P2PLT9104NP2sGINIT(DUMMY)4QX (1) QLABLLC11004),
1GXLABUXLABT) 2QYLAB(YLABT))

CALL 0PICTR(P39LT9109NP2’@X(1ioGLABLL(IIOOQ)QGXLAH(XLABH)9
10YLABC(YLABS))

CALL QPICTRUP4PLT+10oNP24QXC(1)o9QLABEL(11004) sOXLABC(XLART)
1QYLAB(YLAB9))
CALL QPICTR(DIPLY104NPQINITC(DUMMY) 3QX(¢1) 9 GLABEL€11004)
1GXLAB(XLABIO)+sQGYLAB(YLARB10))

CALL GQPICTR(D2PLT+1CGaNP2+QGX¢1)sQLABELC(11G04)+sQXLABCXLABLIL)
1GYLABC(YLAEL1)) '

CALL QGPICTRU(DZIPLT210sNP24GXC1)9QLARFLC11004)sQXLABCXLABI2)
1QYLABC(YLALL2))

- 98¢ -

CALL GPICTR(D4PLT3104MP29GX(1)4GLABEL(11004) +OXLABIXLABL3),
1QYLAB(YLAB1Z)) | | |

CALL GPICTR(DPLOTs10oNP2+OX (1) yQLABELCILI004) 4OXLARIXLABLA),
1GYLAB(YLAH14))

CALL QPICTRI(D3IPs10sNPISQINIT(DUMMY) 4CX (1) 9 QLABCL(I1C04)
1AXLAB(XLABIS) ¢ QYLARCYLAL15)) ‘

CALL QPICTR(D3P1410sNP34QINIT(OUMMNY)Y QX (1) QLALGTL(11004),
1UXLABOXLAB16) 9 QYLABCYLAE1R))

CALL QPICTR(D3P24104NPyQINIT(DUMMY) 4QX (1) QLABEL (11004



21000
21100
21200
21304

1QXLAB(XLAB17)+QYLAB(YLARLT7))

RETURN
END
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100

200

300

400

5040

600

7006

800

S00
1000
1100
1260
1360
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
24060
2500
2600
2700
2800
29060
3000
31080
3200
3300
3400

e NeNoNeNeNeNelolnllellel

]

SUBROUTINE PSCALC

THIS SUBROUTINE IS INTENDED TO
PERFORM POST-SOLUTION COMPUTATIONS
(SUCH AS CALCULATING STRESS INTENSITY
FACTORS) AND TO STORE CERTAIN RESULTS
FROM EACH TIME STEP FOR COMPOSITE
PLOTTING. LIKE SUBROUTINE PLOT+1T IS
SOMEWHAT OUT OF DATEes AND IS BEING
RE-WRITTEN.

SUBROUTINE PSCALC

IMPLICIT REAL*B8(A-H+0=-2)

REAL*B MUJKAPPAL K1AL14K2A1 4gKIA24K2A2

INTEGER ELMNTT(4480)+FLMNTX(4480)

INTEGER TSTEP.ORDER

REAL*4 DPLOT(10+400) ¢FPLOToDMUPLTPPLOT

REAL*4 DDPLT,DPPLTY

REAL*4 DIPLT(10480)4N2PLT(1G980)9D3PLT(10+80)+D4PLT(104+80)
REAL*4 PIPLT(10+480)9P2PLTC(1044CL)oPIPLT(10+8C)oF4PLT(10+80)
REAL*4 D3P(104+400)4D3ZP1(104400)4D3P2(104400)

DIMENSTON XNODE(B8O0433)2TNODF (B8093)eXA1(4) 4 XE104)sX22(4)4XB2¢4)
DIMENSION STRSL(8B80U93)sSTRSC(BO4Z)4ALOCIBOs3Y4ACART(BG43)
DIMENSIGON ELCON(243)sDMUDTC400+45) ¢ XTLMP(40043)

DIMENSTION PPLOT(10480)4FPLOT(10+80)sDHMUPLT(10460)

DIMENSION DELTAC40045) s OMUCHK(EDa1) oalP(40095) ¢ XC(40043)
ODIMENSTON DDCHK (B091)eDPCHK(80) ¢DDPLT(10480)4DPPLT(10480)

COMMON /EBEKPING/ XNOGE 4 TNODESELMNTTSELMNTX
COMMON /ELAST/ GleKAPPA14WMUGELCOCN

COMMON /ENDPTS/ XA19XBleXA24XB24THETA
COMMON /0UT/ STRSLsSTRSCsALOCsACART

- 882 =



3500
3600
3700
3800
3560

- 4000

4100
4200
43G3
4450
4500
4600
4700
4800
49040
5000
5100
5200
5300
5400
$50¢
5630
5700
5800
%900
6000
6100
6200
6300
6400
6500
66006
6700
680¢C
6900

9]

CX
Cx
Cx

CX
CX

106

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

SINCQ)

/PLOTS/ FPLOTsPPLOTsDMUPLT

/PLOTS1/7 DDPLTSDPPLY

JTIME/Z TSTARTTFINGDToTSTEP,T

/SIZE/ ORDERMELMNToNXNODE ¢ NTNODE

/DEBUG/ DELTA+DPLOTsDMUCHK9PsDOCHKsDPCHK

JPLTEMF/ PIPLTsP2PLT4PIPLTsP4PLT4DIPLT+D2PLToD3PLTsD4PLT
/DEL3PR/ DMUDT ¢ XTEMPyNXTEMP4D3P, 03P1'01P2

/TCHPTS/ XCsNDEG

=DSIN(Q)
costar=

DCos Q)

ATAN(G)=DATAN(Q)
SQRT(R)=DSART(Q)

IST=TSTEP+1
00 10 I=14NTNODE

FPLOT(ISTSI)=ALOC(Is1)
OMUPLT(ISTsI)=DMUCHK(Iy1)
DOPLT(IST+I)=DDCHK(I41)

- 68¢ -

OIPLTCISTo1)=DELTA(I, 1)
D2PLTCIST+ID=DELTA(TI2)
D3PLTUISTSI)=DELTA(I +3)
D4PLYTCISToID)=DELTA(T 44)

PIPLTULISTSI)=P(I41)
PIPLTCISTI)=P(143)
P4PLTUISTHI)=P(144)

D3P2(IST+I)=DMUDT(I,41)

CONTINUE

00 20 I=14NXNODE
PPLOTU(ISTID»=STRSL(1,41)
DPPLTUISTI)=DPCHK(T)



7000
110G
7200
7300
1400
7500
7600
1730
7800
7900
3000
8100
8200
38300
8400
850¢
8600
R700

[ay)

€X

20

49

CONTINUE

D0 30 I=14NDEG
D3PCIST41)=DMUDT(141)

DPLOTCISTI)=DELTA(I 1)
CONT INUE

DO 40 I=14NDEG
D3P1(1ST+1)=DMUDT(I42)
D3P2CIST+1)=DMUDT(T4+3)
CONTINUE

DO 50 TI=1+NXTEMP
P2PLT(ISTs1)=P(1+2)
CONTINUE

RETURN
END
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160 € SUBROUTINE RECNST
200 C
3p0 c THIS SUBROUTINE FIXFS UP THE MEAK-TIP
400 C REGIONS OF THE [(DELTA*«3)xpPv]e CURVE BY
500G C SPLICING ELLIPTICAL ARCS OF APPROPRIATE LENGTH.
600 C
76G0 SUBROUTINE KECNST(XsYsNROWs ICOLsNY4IODD)
800 IMPLICIT REAL*8(A-H40-2)
900 DIMENSION X(NROWs3) o YCNROWsS) s YTEMPC4004S) ¢ XTEMF (40045)
1000 C
11090 A=Y (224 JCOL)/DSORT (1 4=X(2241)%%2)
12560 B=Y(NY=214ICOL)/DSORT(1oe=~X(NY=2191)%22)
1300 c
1460 DO 10 I=1,21
1500 Y(IeICOL)=A*DSURT(Lle=X(T91)222)
160¢C YOONY=2141) o ICOL)=H*DSARTC1 o= X((NY-2141)4ICOL)Y*x2) .
1709 10 CONTINUF ro
1800 c o
180¢C RETURN .

2000 END



100

2066

360

40¢C

50¢

600

T00

800

9304y
1000
110¢
120¢
1306
1400
15090
1600
1700
1800
1900
2600
2106
2200
23u¢C
24060
2900
2600
27060
2800
2900
3000
3100
3200
330u
3400

SUBROUTINE RESTRT

THIS SUBROUTINE READS DATA THAT HAS

BEEN WRITTEN QUT BY SUBROUTINMNE DUMP.

SUBROUTINE RESTRT

IMPLICIT REAL*8(A-Hy0-2)

INTEGER ORDERSTSTEP

INTEGER ELMNTT(4480)s CLMNTX(4480)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSICN

STRSL(B0¢3) s STRSC(BO43)eALOC(B0+3)
ACART (BO43)
XNOUDE(8043) s TNODE(BO ¢ 3)

XALC4) ¢ XBLUA) W XAZ(4) 4« XB2(Y)
ZETAL44B0) 4 NPTS(4)

COMMON /TIML/ TSTART+TFINeDToTSTEPST
COMMON /0UT/ STRSLsSTRSCeALOGCoeACART
COMMON /S1ZE/ ORDER¢HRELMNTMXNODE yNTNODE
COMMON /BKPING/ XNODE s TNODESELMNTT9ELMNTX
COMMON /ENDPTS/ XAlaXs1gXA24XB24THETA
COMMON /GP/ ZETAWNPTS

COMMON /TEM/ NSURF

READ(B4100) ToTSTEPsNXNODE ¢y NTNODE

READ(84200) ((STRSL(TI9JJ)eJJ=143)e11=14NXHODE)
READ(B84300) ((XNODE(IlosJU)sJdJU=1e3)sT1=14NXNODE)
READ(B84300) ((TNOOE(IT&JdU)eJJU=193)e11=1.NTNODE)
READ(B4250) (CELMNTXCT19JJ)ylI=ls4)edJ=1480)
READ(8935C) C(C(ELMNTT(114JJ)e1I=144)9dd=1,8D)
READ(B9400) (XAL1(II)sI1=144)

READ(89400) (XA2(TJ)se11I=194)

READ(Be40C) (XUBI(TI1)eI11=144)

READ(Bs400) (XB2(I1)4IT=144)

- ¢6¢ ~



3500
360¢
3766
380C
3sgu
4000
4100
426G
430C

100
200
300
35190
500

FORMAT(X3E1S.44312)
FORMAT(X43E15.4)
FORMAT(Xs3E15.4)
FORMAT(X9412)
FORMAT(X4E15.4)

RETURN
END
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14¢

20¢

300

4G 0

900

600

100

Ba6¢

933
1690
1106
1200
1304
1400
1500
160¢C
1730
1800
1900
2400
2100
2200
230¢C
43¢
2500
2600
27400
28060
2900
3300
3100
3244
3302
343¢6

oocoOooOocoOOmn

o

SUBROUTINE SOLVE

10

THIS SUBRQUTINE TRAMSFERS MATRICES AND
VECTORS T0O TEMPORARY ARRAYSy MHICH ARE THEHN
USED AS CALLING ARGUMENTS TO0 A LIBRARY ROUTINF
FOR SOLVING LINLCAR SYSTEMS OF EQUATTIONS. LEQTIF
IS IN THE INSL LIBRARY AT MIT*S INFORMATIOMN
PROCESSING CFENTERs SIMG IS A MODIFIED VERSION OF
A SUBROUTINE IN THE SSP LIBRARYs AND 15 ONE OF
THE ROUTINES IN FRACLIB.

SUBROUT INE SOLVECAsSIGMACOFFF4NSIZE)
IMPLICIT REAL*8(A-Hy0=-2) |

INTEGER ORDER

DIMENSTION B(80)9Y1(A0) 4 WKAREA(BD)
DIMENSION A(80480)4SIGHACBO) 4COEFF(80)
DIMENSION ATEMP(804,80)

DO 10 I=14NSIZE

pLIY=0.

YICI)=SIGMA(D)

DO 16 J=14NSIZE

ATEMP (I3 J)=ACT4d)

CONT INUE

M=1

1A=80

IDGT=4

CALL LEGTIF(AsMyNSTZE 4 TAyY1oIDGToUKARE Ay IER)
CALL SIMUCATEMP oY1 4NSTZ2E4KSeTA)

DO 20 1=14MSIZE
COEFF(1)=Y1(])
CONTINUL
WRITE(&4100) IER

- p6C -



3506
360G
537046
380u

WRITE(64+100) KS

10C FORMAT(
RETURN
END

"y T10e*IER=Y41H)

« §6¢ -
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SUBROUTINE STATFL

THIS SUBKOUTINME PERFOPMS QUASI-STATIC

PRESSURE EVOLUTION COMPUTATICONS FOR STATIONARY
CRACKS USING IMPLICIT TIME INTEGRATION.

SUHKJDUTINE STATFL(MUWBR)

IMPLICIT REAL*8CA-Hs0-2)

REAL*8 M(80+80)4MI(BUsROIsM2(BGyBO)MI(B0+80)sM4(80480)
REAL*B8 MS(B80+80)4MULBGy3) e KAPPAL

REAL*4 XY(2480)¢XSCLU4) sDUMMY

INTLGER Ry

DIMENSION
DIMENSION
DIMENSTON
GIMENSTION
DIMENSION
DIMENSION

SsORDFReELMNTYToELHNT X e TSTEFP

ACB0sBOYAPRIME(BD+80)4B(R0980)TEMP2(80480)DDELDT(80)
C(B0+60)sCPRIME(BC80)+D(BU48C)4E(HEO48C)
FCBO2BO)2sC(ED+BOI»H(BOWBE) ¢+ SA(BO4BO) W T(BGCEN)+DELTAG(RD)
DELTAT(B0)sPUCBO)«P1LBO) s TEMP(B0480)TFMP1(BU480)
BBEBO+80) 9y YNODE(BGs3) sRR(BD) 9 YTULED) +DDELOCRD) 4DDELI(BO)
DEL1(80+s80)+DELOCRD$80)

COM"ON /Z0UT/ STRSL(B033)4STREC(EOU+3)9ALOCIBOs2)¢ACARTIRNy2)
COMMON /BKPING/ XNOLE(BGe3) 9 TNODE(EO3) ¢ELMNTT(L4BQ) FELMNTX(4480)
COMMON /SIZ2E/ ORDERWNELMNTsNXNODE«NTNODE.

COMMON /TIME/Z TSTARToFTINE DT TSTEPSTIME

TCHi ¢ X)=DCOSUDFLOATINIADACOS(X))
TCHPR (N X)=N*DSIN(CFLOATUMI *DACOSIXII/DSORT (L a=X%%2)
STIGHEX)=X/DABS(X)

PI=3.1415926535898

PEHL=1.1

IFCISTEP.LTL.0) GO TO S

“ 9%¢ -



NeNe)

CSHIFT

1

2

~

I
]

READtH 1) ALPHASEETA
READ(S543) KILLsICUT,LOOP
FORMAT(2F10.4)
FORMAT(3I13)
NLNODE=NTNODE+1
NMNODE=NLNODE

NL2=MNLNODE/2
ITEST=2.%NL2
IFCITESTLTLNLNODE) HL2=NL2+1

NM2=NMNODE/2
ITEST=2%0NM2
IF(ITESTSLTJNMNODE) NM2=NM2+1

CALL CONSTC(IREGsJREGLMODsAALHRB)
EMO0=2.*EM0D

DO 5 T=14NLNODE
ARG=PI*(2e*I=14)/(2.*xNLNODE)
YNOCE(141)==DCOSCARG)
CONTINUCE

3 CONTINUE

240

IF(KILL.NES1) GU TO 248

DO 246 T=1¢4NXNODE
PLEI)=STRSLUICUT+T41)
YT(1)=XNODECICUT+141)
COMTINUE

CTRANSFER

NT=MXNODE=-2+ICUT
CALL TRANS3(YTeP1aNToYNODEAPOSNLNODE 48048041
GO TO 249
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o,

248

i3

4171

16

CONTINUE
CALL TRANS3(XNOGE ¢STRSL¢NXNQDE s YNODE 4P 0 4NLNODF 680460 ¢1)

CONTINUE
IF(KILLeNE.1) GO TO 6
DO 8 I=1,ICUY
POCT)=C.
POCNLNODE-ICUT+1)=0.
CONTINUE

CONTINUE

CALL INTEG(MUJDELTAUs TNODE«NTNODE ¢ YNODE ¢ NLNODESC80)
SUM=0a

DO 7 I=14NLNODE

DOELDTCI)=DELTAG(I)~DELTALCD)
DELTALCI)=(le+BETA)*DELTAQC])
SUM=SUM+DELTAOCI)*DSART(1e~YNODE (I 41)%%2)

CONTINUE

SUM=P I*SUM/NLNOUE

URITE(6+4T71) SUM :
FORMAT(¥**xakunusr FLUID VOLUME =% 4F 154 9% hkhnndrnnnt)
IFCTSTEP.LT«G) GO TO 100 .
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DO 10 K=14NXNODE ' '

DO 10 L=14NLNODE '
A(RsL)=TCHC(L=19 XNODE(Rs1))

TF(LaENe1) A(RGLIZS+A(RyL)

CONTINUE

00 15 L=1+NLNODF



(@]

o0

1%

! .

LO 1% S=1+NLNODE
APRIMECL9S)=TCH(L=-14YNODE(Ss1))*2./(NLNODE)
CONTINUE

NM2F L=kM2+1
NM2MI=NM2~1

DO 25 K=19NXNODE
GO 25 J=19NMNODE
Sun=3.

SuMl=de

DO 20 I=1+NTNODL

SUH=SUM+TCHPR(J TNODEC( T 91)) *DSORT(1e~TNODE(T91)522)
/ CCXNODE (RS 1)~TNODE(I141))*%2)

SUMI=SUM1+TCHPR(Jy XNODECR9 1)) % SQRE(1,~TNODE(Ts1)443)
/CUXNODE(R91)~TNODE(T 91)) %»2)

CONTINUL

BOR s J)==PI*EMOD* (SUM=-SUML1)/NTNOHE

CONTINUE

DO 26 J=1+NMNODE

BOCNTNODE ¢ J)=TCHPR(Jos YNODE(NM2PLy1) )~ TCHPR(J.YNOUF(NM'MI,I))
BCNTNODE+14d)=0,

CONTINUE

DO 40 R=1+4NXNODT

DO 40 J=1NMNODE
CIRsJI=TCHPRUJs¥NODE(R1))
CONTINUE

DO 45 K=14NMNODE
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!
DO 4% J=1«NMNCDE
CPRIME(KsUI=TCHFR(Jy YNODE(Ke 1))
DCJsKI=TCH(J9 YNODE(K91) ) %24, /NLMNODE

CONTINUE

DO 50 K=1+NMNODE

DO 50 L=1¢NLNOGLE
ECKsL)I=TCHPR(Ls YNODE(K+1))
CONTINUEL

DO 58 L=1sNLNODE

DO 55 S5=14NLNODE : :
FCLeS)I=TCH(LsYNODE(Se1))*2./NLNORE
CONTINUL

00 &5 R=1sNXNODE

DO 6C J=14NXNODE

G(RyJI=U.

CONTINUE

C(RyRIZEMOD* ({147 (XNOUE (Ry1)=141)
~(1e/(XNODE(Ry1)41.)))

G(NTNODE 4R) =04

GCNTNODE+14R) =04

CONTINUE

DO 75 S=1+NLNODL
DO 70 G=1+NLNODE
H(S+M)=0a
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509

SAC3eul=le
T(S,Q)=0.,
CONTINUE

HES9SY=-SIGNCYNODE(Se1))
H{SaNL2Y=H(SeNL2)+SIGN(YNODE(£41))

SA(SsS)I=1.
SACSyNM2)=SA(SyNM2)-SIGNCYNODE(S41))

TCS4S)=~SIGNC(YNODE(Ss1))

CONTINUE ’ :
HRITE(14500) C(C(HCTIT4JJ)eJU=19NLNODF) e II=14NLRODE)
WRITE(Z24500) ((SACIIsJJ)eJU=1+NLNCDE) ¢ IT=14NLNODF)
KRITE(3+4500) ((T(11sJU)sJU=1sNLNOCED) s IT=14NLNODE)

FORMAT(BEL154)

CALL MULTCAJNXNODE «NLNODE+APRIME yNLNODE sNLNODE 9 M141ER)

DO 76 J=1sNLNODE
F1(NTNODE 9J) =0,
M1(NTNODE+14J)=0.
CONT INUE

CALL MULT(BoeNMNCGDE yNMNODE sDs NMNODE ¢ NMNGDE 9 TEMP 3 TER)
CALL MULT(TEMP 3 NMNODE s NMNODL 9SA¢NMNODE « KMNOBE 2 M2y TER)

CALL MULTUToNMNODE sNMNODESE s AMMODE ¢ MLNODE ¢ TENPy TER)

CALL MULTC(TEMP s NMNODE s NLNODE oF o NLNODE o NENODE « TE#P1 4 TER)

CALL MULTC(TEMP1 4NMNODE ¢ NLNOD'F « He NLNODE s NLNODE W M3 4 TER)
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TEST

CALL
CALL
CALL

CALL
CaLL

TEST

MULTCGoNMNODEsNXNCGE s CoNXMOGE ¢ NMNODE 9 TEHMF 4 TER)
MULTCTEMP s NMNOCE s NENODE oD o NMNODE ¢ MMNODE s TEKP1 4 IER)
MULTCTEMP1 s KMNODE s NMNOE L s SA9NMNODE « NMNODE ¢ M4 )

NULTC(CPRIML sNMNODE ¢ NMNODE s Gy NMMODE o NMNODE 3 TEMP 4 IFR)
MULTCTEMP s KMNODE « NMNODF 9 SA ¢« NMNODE ¢ NMNODL s M5y IER)

TEST TEST TEST TEST

URITLC(LA4500) ((CCTIT4JJ)yJU=19 NMNODE) s I1=14NXNODE)
WRITEC(1745090) ((CPRIME(II2JJU) 4JI=14NMNODE) ¢ TT=14NMNOLF)
WRITE(184500) ((D(ITedd)eJJ=1+HNMNODE) 4 II=19NMNMNODE)
WRITE(194500) ((M3C(TI9JJ)sJJ=1+NMNODE) sI11=143NMNODPE)
WEITEL20G94500) ((MS5(ITeJU) s JJ=14NMNODE) 4T11=14NMNODLE )
WRITE(214500) €(M2(T114JJ)sJU=14NMNODE) 4TI=14NXNODF)
WRITE(22+4500) ((MACTIT9JJ)eJU=T14NMNODED) sI1=14NMNODE)

TEST

TEST TEST TEST TFST
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101

CONT INUL

DO 161 1=14NLNODE
XYCls1)=YNGDFE(Is1)
XY(Z91)=POCI)
CONTINUE

CAaLL

QPTCTREXYs 29 NLNOLE QX (C1))

15€L=-2 '
XSCL(1)=-1.0
XSCL(2)=1.0
XSCLCA3)=-,10
XSCL(4)=1.2

= 20¢. =
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102

103

114

CALL GPICTREXY9Z24sMLNODESOXC1) 9 QISCLETISTLY 9GXSCLIXSCL))

XSCL(4)=1.5
D0 102 1=1¢NLNODE
XY(1yID=YNODE(I+1)
XY(241)=DELTAL(})
CONTINUE
CALL GQPICTR(XYs29NLNODESGINIT(DUMMY) 4 GX(1))
CALL QPICTR(XY¢2eNLNODE4OX€1) o QISCLOISCLY ¢NXSCLEXSCL))

DO 103 I=14NLNODE

XYC(1le I)=YNODE(Is1)

XY €29 1)=DDELDT ()

CONTINUE

CALL GUPICTRUXY32¢NLNODE+GINIT(DUMMY) QX (1))

IF(TIME.GT.FTIME) GO TO 1000

N0 114 J=1+NMNODE

DG 135 K=14NMNODE
DELOCJsK)=0a
DELICJsKDI=0aW

CONTINUE

CELOCUy JI=DELTADLU) **3
GELICJ9JIZDELTALI(J) * %3
CONTINUL

CONMPUTE M2

FACTOR=-ALPHA*DT
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CALL
CALL
CALL

CALL

MULT(FACTOR 191 4M29NMNGDE ¢ NMNODE ¢ TEMPY1 o IER)
MULT(TEMPL ¢ NMNODE s NMNCOE 9 DELT ¢ NMNODE o NMMNODE o TEMPy TER)
MULTUTEMP s KENODE s NMNOLE o M3 9o NMNODE « NLNODE o TEMP1 4 TER)

ADD (M1 o NMNODE s NLNODE s TEMP 1  NMNODE s MLNODE « TEMP2 4 IER)

FACTOR=-FACTOR

CALL
CALL
CALL

CALL

MULT(FACTORs1919M44NMNODE s MMNODE9 TEMP2TER)
MULT(TEMP s NMNODE s NMNOGE ¢ DEL 19 NMNODIE y NMNODE o« TEMP14 TER)
MULT(TEMP1 ¢ NMNODE ¢ NMNODE ¢ M3 oaNMNODE 4NMMODE s TEMP s ILR)

ALDCTEMP2 9 NMNODE ¢ NMNODE ¢ TEMP o NMNODE ¢ NMNODE 4 Mg T ER)
]

MINLNDUEsNL2)=1.

COMPUTE RK:

FACTOR=(1+4=ALPHA)*DT

CALL
CALL
CALL

CALL

MULT(FACTOR 9191 4M2oNMNODE ¢ NMNODE s TEMPS IER) _
MULTCTEMP o NMNODE ¢ NMNODE 4 DELGCoNMNODE s NMNODE 9y TEMP 14 TER)
MULTC(TEMP]1 ¢ NMNODE s NMNODE 9 M3 o NMNODE « NMNODE s TEMP 2,4 TER)

ADD (M1 s NMNODE s NMNODE 9 TEMP 2 3 IMNODE s NMNODE s TEMP 4 TER)

FACTOR=~FACTOR

CALL

CALL MULT(TEMP1+NMNODE s NMNODE +DELO « NMNOUE ¢ NMNODT o TEMP2 9 IER)

CaLL

MULTCFACTORs191 ¢sM4 o NMNODE ¢ NMNODE s TEMP1 4 1ER)

MULTC(TEMP2 ¢ NMNODE g NMNODE ¢ M3 4NMNODE s NMNODE s TEMPP 1, IER)
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CALL AUD(C(TEMPyNMNODLC oNMNODE S TENPLyNHNODEJNMNODE 4 TEMP24TER)
CALL MULT(TEMP2 yNMNODE y NMNODE ¢POoNMNODE s19RRe IER)
RRCWTNODE)Y=0,
RR(NTNODE+1) =PBHL
c g
C
C
CALL SOLVE(MsRRsP14NLNODIE)
C
C
IFCLOOPNEL1) GO TO 238
TSTEP=-100
IFCKILL.NE.1) GO TO 232
CSHIFT

DO 239 TI=14NLNOCE
POCI)=P1CICUT+])
YTCI)=YNODECICUT+141)
239 CONTINUE
CTRANCFER
NT=NLNODE-2+1CUT
CALL TRANS3(YTsPUsMNTsXNODEsSTRSLoNXNODE «80¢8041)
CCuTd ‘
© DO 241 I=1eICUT
STRSL(143)=0.
STRELUINXNODE-ICUT+141)=0.
241 CONTINUE

232 CONTINUE
GO 710 1CO00
c
23% CONTINUE
CALL MULT(MSNMNODE ¢ NMNODE ¢ DEL T o NHNODE o NMMODE o TEMP 9 JTER)
CALL MULT(TEMP4NMNODE  NMNODE ¢ M3 9 NMNODE o NMNODE « TEMP1 4 1ER)
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148

CALL MULTC(TEMP14NMNODE yNMNODE yP14NMNODE ¢1+DDELY s TER)

CALL MULTC(MS s NMNODE ¢ NMNODE ¢y DELGy NMNODE ¢ NMNODE ¢y TEMP 4 TER)
CALL MULT(TEMP ¢ NMNODE ¢NMNODE M3 g NMNODE « NMNODE s TEMF 14 15R)
CALL MULT(TEMP1 4NMNODE s NMNODE ¢ PO 3 NMNODE 41 4DDEL Oy IER)

IF(KILL.NE«1) GO TO 148
DO 14e T=1e1CUTY
P1LTI)=0. ‘
PLINLNODE-ICUT+I)=0.
CONTINUE

COMNTINUE

SUNM=0.

00 150 I=14NLNODE
DOELOTC(II=ALPHA+DDEL1(I)+(1.~-ALPHA)Y*DDELO(T)
DELTAOCI)=BELTACCL)+DDELDTCI) DT

© SUM=SUM+DELTAGCTI)I*DSORT(1e~YNODECTg1)4%2)

4660
150

4461

1000

POCI)=P1CI)
DELTALCI)=S(1+BETAYDELTADCI)
WRITEC(OHs466) P1C1)
FORMAT(EL1S.4)

CONTINUE

SUM=PI«SUM/NLNOLE
WRITEC62471) SUM

URITECES4ET)

FORMATC(//7)

TIME=TIME+DTY
60 T0 1uU

CONT INUE
RE TURN
END
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16U
200
300
400
200
66Ul
7104
83u
900
1000
1100
1208
1300
1400
1500
16048
1700
1360
1500
2000
2100
22060
23060
2460
2566
2630
2100
2800
2900
20060
31G0
3200
I300
3430

]

SUBROUTINE STRCHMP

174

THIS SUBROUTINE ASSEMBLES THE TRACTION
COMPONENTS CONTAINED IM THE ARRAY STRGL
INTO THE “RIGHT- HAND SIDF" VECTOR OF THE
SYSTEM OF EQUATIONS.,

SUBROUTINE STRCNMP

IMPLICIT REAL*8(A-Hy0=2)

INTEGER ORDER ;

DIMENSTICON RLOC(S93)+RFOSEIIsAAC2)4B(2) 4NPTS(4)

DIMENSTION XMODE (8033)s THODE CB0B43) ¢ STRSL(BO33)ySTREC (804 3)
DIMENSICH A(80.80)

DIMENSION COEFF(B80) sSIGMACBO) s ACART(B042)

DIMENSICGN ALOC(BO¢3)sELCONC243)

DIMENSION ZETA(2480)4CTA(2,4580)

COMMON /SIZE/ ORDERsNFLMNToNXNODENTNODE
COMMON /ARRAYS/ A+SIGMA+COEFF

COMMON /0UT/ STRSLsSTRSC+ALOCsACART
COMMON /GP/ ZETA4NFTS

COMMON /COF/ IDOF

I1=0

IMIN=]1

IMAX=0

DO 185 J=1+NELMNT
IMAX=IMAX+NPTS(U) -1

DO 180 LETA=1,1DOF

DO 170 I=IMIN,IMAX
1I=1]1+1
SIGMACI[)=STRSL(IsBETA)
CONTINUL

= [0E -



5520
3600
3700
38006
3964
40006

180

185

II=1T1I+1
CONTINUF

IMIN=IMAX+]

CONT INUE
RETURN
£EnD
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100

260

300

400

59040

60U

Tc0

8a¢

900G
1004
11G0
1200
1300
1400
1509
1600
1700
1800
190¢
2CCH
21040
2200
230¢
240¢C
2560
2600
2704
2800
2900
3007
3140
3260
33C0
3469

C
C
c
c
C
C

C

SUBROUTINE STRESS

THIS SUBROUTINE AUTOMATICALLY
GENERATES INITIAL TRACTIONS WITH
THE DESIRED FUNCTIONAL FORM.,

SUBROUTINE STRESS(STRSL+LOADs I )

IMPLICIT REAL*8(A-H40-2) )
INTEGER ELMNTT¢4+80) +ELMNTXC448B0) ¢ RFRONT
REAL*8 LOADC2) ¢ NONGAMyNONDEL ¢ NONP ¢ NONMU

DIMENSIGN XNODE(B8Gs3) 9 TNODE(BO+2) s STRSL(BAs3)ySTRSX(8043)

COMMON /BKPING/ XNOOE o TNODFSJELMNTTELMNTX
COMMON /LPAR/ LTYPLE

COMMON /NONDIM/ NOMGAMsNMONDEL ¢ NONPsNONMUsTAUC
COMMON /FILL/ LFRONT+RFRONT

EXPCQ)=DEXP(Q)
SQRT(Q)=DSART(Q)
ABSCQI=DARS(Q)

- 60€ -

A=ABS(TMNODE(141))

IFCCLTYFEWEGel1) e OR(LTYPL.FQe5)) B=LOADC2)
CONST=LOADC(L)*EXP(~840,25)

TFCLTYPLLEQe1) STRSLGUeIIZLOADCII*EXP(=HEaXNODE (Jg 1) +%2)

IFCLTYPE «EQe6) STRSLCU91I=LOADC1)* (1 o=(XNODECJIg1) /AY*u2)
IFCLTYPELEG.2) STRSLOUS1I=LOAD(1)#SORTC1.-2ASCXNODE(Jy112))

IFCLTYPE cEQe3) STRSLUUL1)=LOADCY])



3I5C0
360
3700
3800
390y
4000
4102
4200
430u
4400
45C 06
4600
4700
48G0
4990
5060
51040
9250
5304
5400C
B850
56060
857640
5800
855G 0
e

[g]

IFCCLTYPECEGe4) e AND (XRODEC(Js1) oL Talo)d) STRSLCGJy1I=LOADC]) +
1€1+XNOGECJ4 1))

IFCCLTYPECEQa7) « AND (XNOLE(U91) sl TaGad) STRSLUUG1I=LOADCT)
1(XNODECRFRONT ¢ 1) +XNODECU9 1))/ XNODECRFROMNT 1)

IFCCLTYPESEQa4) e ANDGU(XNOCE(JU91)eGEL0e)) STRSLCU41DI=L0OADC(1) *
1€(1e-XNODE(Js1))

IFCLLTYPE. EQ.?).AND.(XNODF(J,I).GF.C.)) STRSL(Js1)=LOAD(1) =
1(XNODE(RFRONT,1)~- XNODF(J;I))IXNODE(RFRONT'I)

IF((LTYPE.EQ.?).AND¢(d.LT.LFRONT)) STRSL(Js1)=0.
IFCCLTYPECEQe7) e ANDe (UJeGT«RFRONT)) STRSL{J91)=0. .

IFCCLTYPECEQeS) e AND o (ABSIXNODE(J91))oeGT4045)) STRSL(Je1)=0.

IFCOLTYPEEQeS )Y AND (ABSCYNODECJ91)) eLECeB)) STRSLCJ91)=
ILOADCLIY *EXP (D&« XNODE (Jg1)2%2)~CONST

STRSLCJ+1)=STRSL{Je1)*NONP
STRSLCGJ+2)=LOAD(2) =« NONP
IFC(LTYPECEQel) dORS(LTYPLLEGH)) STRSL(J42) =0,

RETURN
END
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100

200

300

400

b0

600

700

86 d

960
1000
11430
1200
136¢
1400
15G0
1600
17660
180¢C
1900
2000
2100
2200
2303
2400
2560
2460
27060
2860
29010
360U
3150
5200
330¢C
3400

aEnBeNeBelsEesEsNsNsReN e

SUBROUTINE TRANSS

100

. NXT=NXTFMFP/2

THIS SUBROUTINE IMTERPOLATES A FUNCTION
KNOWN FOR THE ARGUMENTS XTEMP AT THE NEW SET
OF ARGUMENTS XOLE (THESE NAMES ARE NO LONCLR
MNEMONIC,s BUT WHLN THE SUBROUTINE WAS WRITTEN
THEY WERE RELEVANT)e TRANS3 USES LGRNG TO
PERFORM THE ACTUAL INTERFOLATIONs BUT DOLS €0
IN SUCH A WAY THAT THE FUNCTION IS INTERPOLATED
SEPARATELY ON ETTHER SIDE OF THE ORIGINMNs TO
PRESERVE DISCONTINUITIES,

SUBROUTINE TRANS3I(XTEMP4YTEMP¢NXTEMP¢XOLDs YOLDSMNXGLDY
1IROM e JROWsJCOL)

IMPLICIT REAL*B(A=Hy0-2)
DIMENSTION XSIDEC400s3)sYSIDE(40043)
DIMENSTON XOLD(JROWs2) s YOLOCJROWs1) o XTEMP (IR0 +3) s YTEMPCIROW4S)

- L€ -

WRITE(254100) NXT
NSIDE=NXOLD/?2

ITEST=2+NXT
IFCITESTALTLNXTEHP) NXT=NXT+1
WRITE(2541006) NXT :
FORMAT(?Y *,13)

DO 5 I=14NXT
XSIDECT+1)=XTEMP(14JCOL)
YSIDECT+1)=YTEMP(T+JCOL)
CONTINUL

K=1
DO 10 I=14NSIDE



35090
3600
3700
3800
390¢
40660
4100
4264
4304
4430
4500
460U
4700
44060
4930
5000
5100
N24u
9300
5400
9500
5603

10

15

CALL LGRNG(XSIDEZYSIDE+XOLD(Is1)osPToNXT 53 IR0OW)
YOLD(Ke1)=FT

K=K+1

CONTINUE

IFCITEST.LT«NXTEMP) '

N=NXT+1

DO 15 I=14NXT
XSIDECI ¢ 1)=XTEMP(NsJCOL)
YSIDECI 91)=YTEMP(NsJCOL)
N=N+1

CONTINUE

NXT=NXT-1

NSIDE=NSICE+]

DO 20 I=NSIDEsNXOLD

CALL LGRNG(XSIDE+YSIODE o XOLD (T 41)4PToNXToSeIRIW)
YOLD(Ks1)=PT

K=K+1}

CONTINUL

RETURN
END
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160 C SUBROUTINE TRNSFM

200 C

3060 C THIS SURBRROUTINE USES THL VECTOR
490G C TRANSFORMATION LAUS TO TRANSFOKM THE
566 c VALUES OF THE SOLUTION “F" FROM GLOBAL
60t c INTO LOCAL COORDINATES.

100 C

80U SUBROUTINE TRNSFM

930G IMPLICIT REAL*8(A=Hs0-7)

1030 INTEGER ELMNTTC(4980)¢ELMNTX(C4480)

1160 INTEGER ORDER

1260 DIMENSION XNODE(80s2) s TNODE (B0 s2) 9STRSL(B0s3Y4STRSC(8BO43)
1306¢C DIMENSION COEFF(80)9sSIGMA(BD) 9ACART(8043)
1400 ) DIMENSION ALOC(8043)4ELCON(243)

1500 CIMENSION XA1(4)9XB1(4) o XA2(4) 4 XB2(4)

1600 C

1700 COMMON /ENDPTS/ XAl1sXB1eXAZ4XB2sTHETA

1600 ‘COMMON /SI12E/ ORDERsNLLMNToNXNODE s NTNODE
1900 COMMON ZQUT/ STRSL4STRSC4ALDOCsACART ,
20060 COMMON /BKPING/ XNODF s TNODE ¢ELMHNTTSELMNTX
21060 ATAN(Q)=DATAN(GR)

2206 SINCQY=LSINCQ)

2500 Co0S(QYI=NCOS(Q)

2400 ! JMAX=C
2500 JMIN=1

2600 GO 380 I=1.NELMNT

2700 GAMMA=3,141592653585872.

2800 ARG (XBZCI)=XA2(1))/Z(XB1(I)=-XA1(T1))

2966 IF(XB1CI)aNEXALCT)) GAMMA=ATAN(ARG)

3800 IFCXBICOI)eLToXALCL)) GAMMAZ3,1415926535098+GRMMA
3109 . GAMMA==GAMMA

3204 JMAXSUMAX+ELMNTT(I41)

33avu DO 370 J=JMINsJMAX
3400 C :
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35080 ALOC(Js1)=ACART(Us1)2COSCCAMMAY +ACART (U9 2)*SIN(GAMMA)

366G ALOC(Je2)==ACART(Js 1) *STINCGAMMA)+ACART (Js2) *COSCGAMMA)Y
370¢C 570 CONTINUE :
. 3800 JMIN=JUMAX+1]
3964 3846 CONTINUL
400G RETURN
41060 END
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