
NUMERICAL ANALYSIS OF HYDRAULIC FRACTURING AND RELATED CRACK

PROBLEMS

by

DONALD RALPH PETERSEN

B.S.E.(M.E.), B.S.E.(Eng. Math.),
(1977)

University of Michigan-Dearborn

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1980

@ Massachusetts Institute of Technology

Signature of Author
Department of Mechanical Engineering

January 18, 1980

Certified by
- I

Michael P. Cleary
Thesis Supervisor

Accepted by
Warren Rohsenow

Chairman, Department Committee
ARCHIVES

MA SSACHUZETTS INSTITUT7
O T E H 9 LOGY

A P R I 8E

LIBRARIES

1980



- 2 -

NUMERICAL ANALYSIS OF HYDRAULIC FRACTURING AND RELATED CRACK PROBLEMS

by

DONALD RALPH PETERSEN

Submitted to the Department of Mechanical Engineering
on January 18, 1980 in partial fulfillment of the
requirements for the Degree of Master of Science in

Mechanical Engineering

ABSTRACT

The formulation for numerical analysis (by surface integral
equation techniques) of crack problems related to hydraulic fractur-
ing is presented along with solutions of several representative
plane static and quasi-static problems. A general formulation for
static problems involving plane cracks of arbitrary number and
orientation in non-homogeneous media is given. Separate formulations
for quasi-static problems are included, although, due to their
developmental nature, they are restircted in scope to a single stationary
plane crack. Results are presented for a static crack approaching and
crossing an interface; for the effects of microcracks in adjacent strata
and for simple models of crack branching and blunting. Results are
also shown for the quasi-static stationary crack problems of pressure
evolution in fluid filled cracks and fluid front advancement in
partially filled cracks. In addition, the development and current
status of a general purpose computer program for the simulation of
hydraulic fracturing is discussed.
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INTRODUCTION

The work presented in this thesis was done as part of an on-

going project whose objective is to develop a general purpose computer

program capable of full three-dimensional simulation of physically

realistic hydraulic fracturing operations in brittle (including

porous) media. Attainment of this goal will require the simultaneous

capabilities of computing the various structural responses to

arbitrarily loaded and oriented sets of cracks (even in highly ir-

regular material regions) and of computing the time dependent loading

of those cracks-coupled to the material response-caused by the flow

of a viscous (possibly non-Newtonian) fluid within them, and possibly

affected by flow of fluid in the pores of surrounding strata. The

problems treated herein are mainly simplified versions of the most

general problems, and were chosen for their ability to provide

various preliminary insights into hydraulic fracturing problems and

confidence in our approaches to these problems. Another important

aspect of the project, namely program development, is also discussed.

Hydraulic fracturing (see review in [1]), while useful

in other applications, is usually thought of as a technique for

stimulating oil or gas wells to enhance production. Essentially, it

is a means of producing a large crack which serves as a highly per-

meable passage-way with a large surface area into which gas or oil



- 12 -

can escape from a relatively impermeable rock formation; it can

then flow back to the well-bore, even from very large distances. The

crack is produced (see Figure (1)) by sealing off a part of the bore-

hole with packers, then pumping in a highly viscous fluid until the

pressure between packers is great enough to fracture the rock;

pumping is then continued for some time until it is judged (by what-

ever means of prediction or measurement is available) that the crack

has grown to the desired size. The high viscosity of the fluid

serves three purposes: it reduces the loss rate through the pores

in the rock, it allows much wider cracks (than those corresponding

to natural rock toughness), and it enables the fluid to carry along in

suspension some form of large particles (e.g., coarse sand or bauxite)

which serve to prop the crack open after the fluid pressure is

reduced and the well is put into production.

Hydraulic fracturing has been in use for some thirty years, but

a disturbing percentage of the jobs attempted still are less than suc-

cessful. An hydraulic fracturing job would theoretically be deemed a

success if the resulting crack has the proper shape: usually this

means that the crack extends a great distance away from the borehole

without spreading upwards to a comparable extent. Above all else,

the fracture should, if possible, be confined to the "pay zone" or

region containing the resource being extracted. This last consider-
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ation is especially important if the pay zone consists of a narrow

stratum and surrounding strata are non-productive or can produce

deleterious effects (e.g., unwanted fluids, blow outs or leak-off).

Hydraulic fracturing operations can fail for any of a number of

reasons, but in the present context we are especially interested in

the question of containment. For instance, sometimes fractures may

actually propagate primarily upward along the borehole, without ever

extending very far away from it. That such occurrences go unpredicted

(and often unnoticed) is primarily due to inadequate mechanical

analysis of the hydraulic fracturing process.

Most hydraulic fracturing analyses focus upon estimating the

surface area (and hence deducing effective length based on an

assumed height), rather than trying to trace the detailed geometry of

a prospective hydraulic fracture. All of these analyses involve

somewhat unreal assumptions about the crack geometry and fluid pres-

sure distribution. Upon reducing the geometry to a function of a

single variable, a crack shape is calculated to satisfy mass con-

servation: the crack volume must make up the difference between the

total amount of fluid pumped in and that supposed to have leaked

out into the formation (e.g., [1-4]). Some of the more recent work

(e.g., [5,6]) has taken into account some of the relevant solid

mechanics considerations, but the resulting analyses seem to have
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numerous shortcomings and the formulations have little potential for

coping with more complex geometries: specifically, no proper solution

has yet been obtained (even for the simplest geometries) for the

coupled crack-opening and frac-fluid flow process.

Since the problem does not lend itself to closed-form solu-

tions, except for various very approximate formulae, we must employ

an appropriate numerical method such as a Surface Integral Equation

(SIE) technique or Finite Element (FE) analysis. We have chosen to

work with a particularly attractive SIE scheme [8], which will be

discussed in detail in the chapters that follow. This SIE scheme

has the advantage over others (eg. [7]) ofgiving displacement

type solutions based on known tractions and requiring only funda-

mental solutions which are well known [8]. In general, SIE

schemes are more facile than FE analysis for these types of problems:

they are based on surface (rather than volume) discretization, and

so are not only more economical in modeling crack surfaces, but

better suited for problems involving infinite or semi-infinite

regions. However, there may be a need in some cases to use either

FE analysis or a suitable "hybrid" SIE/FE scheme [9] for problems in

highly irregular or nonlinear regions, owing to the SIE scheme's re-

quirement of a fundamental solution for each particular region. We

emphasize, though, that enough such fundamental solutions do exist [8]
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to give the SIE scheme enromous potential, and we can, indeed,

compute the required numerical values for- some influence functions

that have not been worked out analytically. Thus, we regard this

approach -- although limited to plane problems in this thesis -- as

having the ability for realistic fully 3-0 modelling of hydraulic

fracturing processes in the future.
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FIG. 1. Diagram of a typical hydraulic fracturing operation. Here the pay
zone consists of a fairly narrow stratum in-which the crack must be contained.
our plane crack models represent cross sections, such as A -A or B-B, of
such an hydraulic fracture.



- 17 -

CHAPTER 1: FORMULATION OF PLANE STATIC CRACK PROBLEMS FOR NUMERICAL
ANALYSIS

We perform our analyses of crack problems with a special

form of Surface Integral Equation, solution of which yields the

density of dislocations or dipoles (distributed over the boundary of

the region of interest) required to produce a known traction distri-

bution on the same boundary. The method employs the fundamental

solution of the governing equation pertaining to- the region. It re-

quires that the boundary be broken up into a number of discrete ele-

ments. The traction at any point on the boundary is then expressed

as the sum of the integrals over each element of the product of the

dislocation or dipole density and the fundamental solution. The

result is an integral equation in terms of the unknown dislocation or

dipole density. This particular version of classical SIE schemes

[e.g., Ref. 9] has been applied to a variety of solid mechanics

problems; in particular, Cleary [Ref. 10] has used it in investi-

gations of a number of phenomena germane to the present topic. In our

work, we model a crack as a distribution of dislocations (or dis-

location dipoles) and determine the dislocation density required to

produce the known traction on the crack surface. The region of

interest, then, -is the body of material containing the cracks under

study. Thus for static problems in the plane (quasi-static problems

will be freated separately in Chapter 3) we obtained [15]
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where a (x) is the a traction component at point x on

element (t) is the a component of the dislocation

density at point t on element j. r(asi)(x,t) is the funda-

mental solution (or influence function) which gives the stress

a ( at x due to a dislocation at t. The particular influence

function used in this work is that for a dislocation near an inter-

face, and its most important feature is its inverse distance

singularity (r is given in complete form in Ref. [8].)

For plane problems, we represent S by the function

t( ) and S by x(n), where j,n eC-1,1] with respect to the global

origin. Equation (1.1) then becomes

where

-. -(1 .2b )

It is most convenient to write Eq. (1.2) in terms of traction-com-

ponents that are normal and tangent to each element Si, and dis-
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location density components that correspond to the global i and

S2 (xl and x2) directions. Thus, the directions a and o

refer to different coordinate systems, and in order to compute r,

the stress in the global system (013 al2' 022) must be transformed

to coordinates normal and tangent to S.:

( a-- -(6- ) 3in (pi+Tr) + 6a Cos(a 77')

(6: ,(+n6 3La.) + a (6"-6 axcsa p1 C05 7)

+ 61'a m(' +F) (1.3)

where $ is the angle of inclination of Si with respect to the

global xi axis.

In order to solve Eq. (1.2) numerically, we must re-express

it as a system of linear algebraic equations. This task may be

accomplished by either of two means, namely local or global inter-

polation of the dislocation densities. The local interpolation approach

consists of dividing each crack surface into a number of elements,

then representing the dislocation density in terms of interpolation

or "shape" functions defined locally on each element (Cleary C16]

has performed extensive numerical computations using a "triangular"

interpolating function):
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(n. (#*Y1 ) (1.4)

where the N. interpolation functions on each element j are decided

upon a priori in accordance with the problem being solved.

Equation (1.2a) thus becomes

(1ZJ 7u A )) (()) 1 (1.5)

If each element is sub-divided into discrete nodes by choosing generic

sets of points (or nodes) ' r, r = 1,..., N d 5, i 1 . M

at which to evaluate 6- and the mk, the desired system of linear

algebraic equations is obtained. The usefulness of the local inter-

polation method in fracture problems has been investigated by

Wong [11], who has used it with some success in dislocation dipole

formul ati ons.

In the global interpolation method, each crack is treated as

a single boundary element on which we may conveniently express the

dislocation densities in terms of interpolation functions, now de-

fined over an entire crack surface (hence the name "global"):

A(M) (1.6)
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The parameters a and a are chosen to reflect the anticipated

singularity in density of dislocation y (which is actually just

the derivative dd/dx of the crack width 6). The choice a = 8 =

0.5 is exact for cracks in homogeneous media and, for reasons that

will be discussed below, is an advantageous approximation even for

modelling of cracks in non-homogeneous media.

Erdogan and Gupta [12] have developed a method of solving

singular integral equations of the form

based on the Gauss-Chebyshev integration formula

Their formula is

(1.9b)

S7rCJ05(T r) I At/ - (1.9c)

N:
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where the tk are the zeroes of the Chebyshev polynomials of the

first kind, T N(t), and xr are the zeroes of UN-l(x), the

Chebyshev polynomials of the second kind. Since the singular part of

r is (x-t)~ , in general, this formula is very well suited to use

in our work, and provides a very simple and economical means of

solving Eq. (1.2). This formula is based upon the observation that

(1-t2 )-1/ 2  is the weighting factor for the Chebyshev polynomials.

A similar formula [13] has been developed for other, arbitrary

choices of a. and a, based on the Gauss-Jacobi integration formula;

because the required computation of the zeroes of the Jacobi polynomials

is relatively difficult and time consuming, we have used the Gauss-

Chebyshev method in all of our work, without any apparent loss in

accuracy for the answers that we have been interested in extracting.

If we now define discrete points nr and k

(1.10a)

C =co {7(ak- 3NL)k=1..W (1.10b )

and substitute Eq. (1.6) with a = = 0.5 into Eq. (1.2), then apply

Eq. (1.8) we get
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which is the final form of our system of algebraic equations. Note

that since on each element there is one less or than (k, the

system (1.11) will require several additional equations for

completion, the number depending upon the number of crack surfaces

and the range of a and a. Such additional conditions may be either

contraints on the net entrapped dislocation (called closure con-

ditions) or matching of dislocation densities (matching conditions)

if two or more of the cracks intersect, depending upon the problem

under investigation. The closure conditions may be stated for any

plane crack problem as integrals of the appropriate dislocation

densities:

for one or more crack surfaces S., where the sum is taken over

intersecting cracks. Since there is a variety of matching conditions,

each generally applicable only to a particular problem, they are

discussed separately in appropriate sections of Chapter 2.

An illustrative example of the type of plane crack problems

that we are equipped to solve is depicted in Figure (1.1); note,

however, that we can include more than two surfaces, some or all
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of which may intersect, and we can also solve problems in which

these cracks are near an interface. In this case, we have two

straight crack surfaces, so that for surface Sf % (t) - If'l (

-20 t + +M. (l1. 13a)

(1.13b)

and, for S2

+ (1.13c)

;L ;- (1.13d)

Solution of Eqns. -(1.11) now produces the strength F(a3)

of dislocation density in the a-direction on each surface j. The

stress intensity factors may be computed from the relations (similar

to those given by Cleary [14]) after transforming F into local

coordinates, namely

FN F sin (4/)+ F COS (6g) (1 .1 4)

K =F



B(tB, tA)

Sx, t2

0111) i I : x 1 , tI
0(21)

O(11

"22

01

DOt, tD) g(22)

T

P(122).
COt , tD)

igin1 2

A(t , tA)

Global or

Fig. j. I. Diagram showing coordinates and angles needed to formulate the general two-dimensional crack problem
for numerical solution by the Gauss-Chebyshev scheme.
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CHAPTER 2: ANALYSIS OF STATIC-CRACK PROBLEMS

2.1 Introduction

In this Chapter the results of our investigations of

several static plane crack problems are presented. These problems

(the numerical formulations of which were presented in Chapter 1)

were chosen for the dual purposes of gaining preliminary insight

into . same relevant hydraulic fracturing situations and of per--

fecting the models to be used.for studying similar crack geometries

in quasi-static simulations (which account for the non-dynamic time-

dependent loading due to frac. fluid flow, as discussed in

Chapter 3). Thus we have progressed toward the capability of simu-

lating the changing of course (branchingl blunting, containment

in or breaking out of a stratum, and the effect of zones of damage

or microscopic flaws on propagating hydraulic fractures.

2.2 Straight Crack Near an Interface

Perhaps the most important goal in the design of an

hydraulic fracture i5 containment of the fracture in the "pay zone",

or resource-bearing stratum. Thus, the first problem that we under-

took to study was to determine the behavior of the opening mode

stress intensity factors at the tips of a crack approaching and

eventually penetrating an interface with a material having different

elastic moduli (Figure 2.1).
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This problem has been discussed by Cleary (17], and

very similar problems have been solved numerically by Erdogan and

his co-workers (13,21]. The model for a crack approaching an

interface simply involves a single crack surface, consisting of a

distribution of dislocations, employing the influence function for

a dislocation near an interface. -To model a crack which extends

through the interface, however, we found it most effective to employ

two crack surfaces which intersect each other tip-to-tip at the

interface. The advantage of the two-crack model is that a large

number ofnodal points are concentrated around the interface, owing

to the spacing required by the Gauss-Chebyshev scheme. With the

two-crack model, we require two additional conditions to complete

our system of equations. One of these is the requirement that

there be no net entrapped dislocation (i.e. the crack must close

at both ends), given by Equation (1.12). The other is a "matching

condition" relating the value of F(0) to that of F(o) . For

this we adapt the condition used by Erdogan and Biricikoglu (13].

Their matching condition is a requirement that must

be met to insure consistency between their solution and the

calculated power of the stress singularity at the crack tips inter-

secting the interface: in its full form, it is quite a complicated

relation, but for our purposes a simpler version which embodies

the essential features of theirs seems to suffice. Thus, we use

the following relation:
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F = F "( ) (2.1)

This condition is imposed at the two nodal points closest to either

side of the interface. Our results indicate that the choice of

a does not have an important effect. It may, however, be best to

choose a = 0 (see Sec. 2..4). In fact, although Erdogan and

Biricikoglu use a Gauss-Jacobi scheme which gives better account

of the fact that the stress singularity for a crack tip at an

interface is not inverse square-root of distance, we are able to

essentially reproduce their results, especially for behavior of

stress intensity factors, with our Gauss-Chebyshev method. It

seems likely that this agreement is due to the difference from 0.5

of the power of the singularity at the interface having only a very

local effect on the solution. By choosing enough nodal points we

can smooth out any imposed perturbation in the solution at the

two points nearest the interface so that the solution at the

crack tips remains relatively unchanged.

The results, which illustrate the behavior of K1  for

varying tip-to-interface distances and relative shear moduli, are

shown in Figure 2.2 (a) (for a crack approaching the interface) and

Figure 2.2(b) (for a crack having penetrated the interface). The

dependence of KI on d/A and g is as anticipated by Cleary [17]

who made his deduction on the basis of simple material deformation
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matching arguments. As the crack approahces an interface with a

stiffer medium (g < 1), KI at tip A drops sharply to zero,

whereas it rises sharply toward infinity if the interface is with -a

softer material (g > 1). For a crack which- has penetrated an

interface, going from a stiff material to a softer one, K1 at

tip A has been found to drop sharply (as shown) from infinity, reach

a broad local minimum, and gradually become asymptotic to its value

remote from the interface. For a crack which has broken out of a

soft material into a stiffer one (having somehow overcome the

apparent "elasticity barrier" noted above) KI rises sharply from

zero, levels off, and remain nearly constant until d/A = -2 (the point

at which tip B crosses over the interface), whereupon it drops sharply

toward its remote value. The behavior of KIB (KI at tip B) can be ob-

tained from Figure 2.2 by complementing d/A and inverting g.

While the strong decrease in K1 at the tip of a crack approach-

ing a stiff adjacent medium leads us to conclude that the crack might

be contained in the softer stratum, some care is required when apply-

ing this conclusion. The crack may break through the interface if,

for example, the range in which de-cohesion takes place is greater

than the distance at which KI becomes strongly influenced by the

interface. Also, as will be discussed in the next section, micro-

cracks in the stiffer medium can be induced to propagate across the

interface and link up with an hydraulic fracture.
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FIG. al. (a) Single crack model for
proaching the interface; (b) two-crack
crack crossing the interface.
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FIG. a.a. (a) Plot of stress-intensity factor vs distance from interface for a crack approaching the interface; (b)
plot of stress-intensity factor vs distance between crack tip and interface for a crack crossing the interface.
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2.3 Effects of a Micro-Crack on Containment

It was noted in the last section that an hydraulic

fracture, propagating toward an interface with a stiffer material,

will at some point encounter an "elasticity barrier" which will,

in the absence of moderating microstructural conditions, drive KI
at the near-interface tip to zero. Among the strongest of these

counteracting conditions is the presence of a micro-crack a short

distance across the interface from the main fracture (Figure (2.3)).

Under these circumstances, the near tip tensile stress field of the

main fracture could potentially induce a large enough K1 on the

tip of the micro-crack to cause it to propagate back across the

interface and link up -with the main fracture.

Our approach to this problem was to determine the frac-

fluid pressure (p ) on the main crack required to produce a positive

KI at the near-interface tip of the micro crack if both cracks

are in a region of compressive tectonic stress of magnitude 6M

This solution was obtained by first solving the micro-crack problem

with a unit positive normal load on the hydraulic fracture and no

load on the micro-crack so as to obtain the stress intensity

factor at the tip of the unloaded micro-crack, K.u* The problem

was then solved for the converse crack loading to obtain the stress

intensity factor at the tip of the loaded microcrack, K1  . By

superposition we can write the expression for K1 at the micro-crack

tip for the case where the hydraulic fracture is subjected to frac.



- 33 -

fluid pressure P0 and confining stress-6-M and the micro-crack to

- C M alone

Kr =(-6)Kr -6 K (2.2)

from which we deduce that for K to be positive, the ratio of frac.

fluid pressure to confining stress must exceed

(L)+- 11-,. (2.3)
6c Knr(

The effects of geometric and material parameters on

(P 06M c are shown in Figures 2.4 and 2.5. Of special interest is

the fact that the capability to actually open the micro-crack is

not strongly affected by the micro-crack's size. It is also

apparent that the proximity of the hydraulic fracture to the inter-

face is more important than that of the micro-crack. The. ratio of

shear moduli for the strata is also an important factor.

Figure 2.4 shows that it is possible to produce a

positive K, at the tip of a micro-crack without having a frac.

fluid pressure excessively above the confining stress. For example,

a frac-fluid pressure of 1.46, in a 30 foot hydraulic fracture

1.5 feet from an interface (with a shear modulus ratio of 2) can

produce a positive KI at the tip of a 3.5 inch micro-crack 3.5

inches from the interface. Figure 4 shows that if the same hydraulic

fracture were instead 4 inches from the interface (still not strongly
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under the influence of the elasticity barrier), the same frac.

fluid pressure would produce a positive stress intensity factor at

the top of a 3.5 inch microcrack as far as 3 feet beyond the

interface. Statistically,* this provides a higher probability of

finding enough micro-cracks and damage to back-propagate ahead of

the major fracture.

We conclude that micro-cracks are significant factors

influencing the containment of hydraulic fractures in shallow,

soft strata. It is in these situations -- where the lateral

confining stresses are small compared to the frac. fluid pressures

required for hydraulic fracture propagation -- that micro-cracks

in a stiff adjacent stratum can be easily induced to break through

the interface and link up with the hydraulic fracture, thus

allowing it to overcome the elasticity barrier presented by the

stiff stratum and thereby break out of the pay zone. At greater

depths, we expect the hydraulic fracture to be more readily con-

tained in the pay zone by the elasticity barrier because the frac.

fluid pressure required for propagation is then such that

(P0~6M1/g can be too small for the mechanism above to operate.

*
Note that our conclusions here need very little modification in
discussing the fully 3-0 character of the real field operation.
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Fig. 2. Diagram of the microcracks problem. We must determine the fracture fluid pressure required to cause a
positive stress-intensity factor at the near-interface tip of the microcracks for given microcracks and hydraulic
fracture lengths, distances from the interface and relative shear moduli
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2.4 Behavior of Stress Intensity Factors at the Tips of Singly
Branched Cracks

Under certain conditions we might expect a propagating

hydraulic fracture to branch (i.e., to change course) as it

encounters unsymmetric stress fields, changes in material

composition or structural defects. Branching would be expected, for

instance, in an hydraulic fracture obliquely approaching an inclusion

or interface. The type of event that occurs may range from

formation of a single branch (the subject of this section) to

generation of multiple branches (of which more than two usually are

observed only under dynamic propagation conditions). The results

of an investigation concerning the appropriate model for crack

blunting -- an interesting and very important example of multiple

branching -- will be presented in the next section, along with the

results of a study of some simple blunting problems.

We model the singly branched crack as two separate,

intersecting crack surfaces. In this respect the problem is similar

to that of a crack crossing an interface. Now, however, the two

cracks are not collinear, and additional complications are thus

introduced: specifically, since we must now solve for dislocation

densities in two directions on two surfaces, we require not two

but four extra equations to complete the resulting system. Two of

these, naturally, are simply the closure conditions (Eq. (1.12)),

namely, that there be no net opening or sliding dislocation over the

entire branched crack. The question of what matching conditions
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are appropriate for the branched crack problem is not so easily

answered. While equations do exist in the literature [18], neither

their physical motivation nor the extent of their applicability is

clear, and our attempts at resolving these issues have not yet

produced conclusive answers. However, we developed the notion that,

in the immediate vicinity of the intersection, the opening and

sliding dislocation densities may be adequately represented by an

assumption of antisymmetry, which is certainly valid in one particular

case of two cracks with identical loading and length. The adequacy

of this assumption was verified by comparison with the results of

Gupta [18] and Lo [19] (see Table 1), and is further vindicated

by our observation that any reasonable relationship between the

dislocation densities at the intersection produces equally satis-

factory results, at least whenever crack lengths are of comparable

order. Recently, however, Barr (22] has found that the agreement

with Lo's results deteriorates somewhat for very short branches

when using this specification of antisymmetry as a matching con-

dition. He has obtained good agreement with Lo for a very wide

range of branch lengths ( 2 < a/d < 200) by requiring the much

stronger condition that all dislocation densities to vanish at the

intersection, thereby excluding stress singularities at that point.

He has implemented this requirement in two ways, with equally good

results: by explicitly requiring ul and ui to vanish (which

necessitates removing the integral equations at one of the points

xr near the intersection), or by requiring the dislocation
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densities on only one of the cracks to vanish. While the latter

method may appear to be insufficient, it seems to result in

essentially vanishing y on both surfaces and offers the advantage-

of allowing the governing integral equation to be written at all of

the xr 'S.

It seems likely thatsimilar requirements will prove to

be more acceptable than the ones currently used for other inter-

secting crack problems such as a crack penetrating an interface

(Section 2.2) and the blunted crack problem (Section 2.5). We are

currently evaluating its performance in such problems.

Along with the results of Gupta and Lo cited above, we

interpret as further validation of our branched crack model the

results shown in Figure 2.6, where KI and K11  are plotted as

functions of branching angle e for a symmetric branched crack

(viz. a crack whose legs are of equal length). We attribute the

decrease of KI with increasing 6 to the decreasing portion of

the total crack length subject to loading in one of the two normal

directions. Likewise, the increase in K11 is related to the in-

creasing shear component on S i of the frac. fluid pressure acting

on S . If effective length were the only factor affecting K1, we

would expect the decrease to be very roughly described by

7 ( c(2.4)
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Equation (2.4) is plotted as a dashed line in Figure 2.6. For small

values of 6 , the agreement between the computed K1 and that pre-

dicted by Equation (2.4) is quite good, but at greater angles we see

that KI does not drop as far as we would expect. It is likely that

with increasing 6 , the decrease of KI is moderated by the

tendency of one surface to partly influence the other, as if it

were a free surface.

The behavior of the stress intensity factors with in-

creasing extent of branching is shown in Figures 2.7-2.10.

Figures 2.7 and 2.9 show the expected increase of K1 with branch

length, and K1 curves for various branch angles are compared with

the well-known elevation of KI at the tips of a propagating

straight crack (dashed line).

The behavior of KI with increasing branch angle is as

expected based-on a crude "effective length" argument mentioned

above. The behavior of K11 at the tip of the branch (Figure 2.10)

is reasonable, since we would expect the contribution to the

effective shear loading of the branch from the opening of the main

crack to be greatest when the branch is very small; we would,

therefore, expect an initial increase in K 11, followed by a fall-

off when the branch length (and thus the normal load due to frac

fluid pressure) becomes significant. K11 at the tip of the main

crack predictably increases from zero as the length of the branch

surpasses that of the main crack and their roles reverse.
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The relatively wide separation of KI at the tip of a

short branch for different branch angles is of great interest to

us because of its implications for estimating the directional

tendency of a hydraulic fracture. Apparently, based on any of the

numerous branching criteria (e.g. [17]), we would not expect a

straight hydraulic fracture in a homogeneous medium to deviate from

its course if the tectonic stress field is consistent and it is

driven by internal pressure: however, we have previously recognized

[14] the various barriers and stress eccentricities that can

easily make this branching more favorable.

2.5 The Behavior of Stress Intensity Factors at the Tips of
Doubly Branched or Blunted Cracks

There are situations in which we might expect a propagat-

ing hydraulic fracture to form not one, but two branches. Perhaps

the most likely (and the most important from the standpoint of

containment) of these occurrencesis crack blunting. This is a

process by which the energy normally available to drive a crack

across an interface would instead cause separation and frictional

slippage on such an imperfectly bonded interface. Because of its

importance in hydraulic fracturing, our investigations of doubly

branched cracks focussed on crack geometries associated with such a

blunting process. A complete study of blunting must include the

frictional characteristics of the interface, as well as the

tectonic stresses 'acting at the interface, since it is these
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properties which may control the degree of blunting rather than the

elastic moduli of the material on either side of the interface

(Section 2.2); such a study has been undertaken by Papodopoulos

[20].

Two different blunted crack models were evaluated. The

simpler of the two is a two crack model in which the main crack

and the blunted portion are two separate intersecting surfaces

(Figure 2.lla). The second model, which yielded better numerical

results, is the three crack model shown in Figure (2.11b), in which

the blunt is imagined to be composed of two surfaces intersecting

tip-to-tip at the point where the blunt joins the main crack, which

is the third element.

Once again, additional equations are needed to complete

the system formed by the governing integral equations. In the case

of the two-crack model, we need four such conditions. The most

important consideration is that there should not be any (even

logarithmic) stress singularity in the material near the intersection,

which is equivalent to requiring that there be no net jumps in dis-

location density.at the intersection. For our -initial work with

the two crack model for symmetric blunted cracks, we imposed this

constraint through the following equations:

( ) + (o4) - (0-) = 0(

() +(-
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The remaining two equations came from requiring closure (Eq. (1.12b)),

as before. Equations (2.5) are unsatisfactory for use with un-

symmetric problems since, although they ensure boundedness of

61 1 and 6 2 and 6~22  is not bounded unless the blunt is

perpendicular to the main crack. We thus decided that a different

way of requiring bounded stresses near the intersection was in order.

Because our Chebyshev formulation is not well suited to providing

discontinuous dislocation densities on a single crack, we concluded

that better numerical stability and perhaps physical realism could

be achieved by specifying that the opening and sliding dislocation

densities on the main crack vanish at the intersection, while

densities are the s-ame on either side of the intersection on the

blunted portion of crack surface; namely

(N ) ( a (T3) (X) (Y' (2.6)
)A (0)"4(0+) 5, (0-)) ( "Uj'. (o;=0 1/' (o):=0 *

In view of the recent findings regarding matching conditions for

branched crack problems (Section 2.4), it is probably best to

require yi = 0 at the intersection on at least two of the crack

surfaces. However, in the work presented here, Equations (2.6)

proved to be satisfactory and, along with two closure conditions,

were used in the three crack model, where six additional equations

were needed to complete the system.

The results of our investigation of the behavior of
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symmetric blunted cracks are shown in Figure 2.12. The essential

features are the behavior of the opening mode stress intensity

factors at the tips of both the primary and secondary cracks; namely

K(a) and KI(b), respectively. We note that the elevation of

K1(a) with increased blunting reverses as expected when the length

of the secondary crack exceeds that of the primary crack, but that,

with increasing secondary crack length, K1 (b) rises much more

strongly than we had anticipated.

The initial rise of K1 (a) is probably due to the

development of a free surface effect like that encountered in the

branched crack problem: the secondary crack offers much less

resistance to the opening of the primary crack than would the

unbroken material. When the secondary crack exceeds the primary in

length, the effect of the 'fluid pressure in the secondary crack

overwhelms the free surface effect by producing a compressive stress

on the prospective locus.of the primary crack thus decreasing

K (a), and thus dominates its further behavior.

In the absence of the primary crack K1 (b) would

increase as /d/A. We find this to be the case for large d/Z. The

relative behavior of K1 (a) and K1 (b) is substantial evidence

that once the secondary crack becomes long enough, propagation of the

primary crack away from the secondary crack will be virtually

stopped. Thus, we may make the preliminary conclusion that while

blunting may result in containment of an hydraulic fracture, it
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may also inhibit propagation away from the interface.

Results for representative asymmetric blunted crack

problems are shown in Figures 2.13 - 2.16. Here we examine the

effects of blunting inclined at an angle 6 to the axis of the

main crack when one tip (tip B) is held stationary and the other

(tip C) is advanced. These results were obtained from both the two

and the three crack models, as noted on the plots. While the two-

crack model offers the advantage of simplicity, we note that there

are cases of numerical instability for certain combinations of

blunt length and inclination. This situation was remedied by

adopting the three crack model, with its greater facility for

capturing the behavior of the dislocation densities at the inter-

section. We feel that the three-crack model is much more accurate

and reliable than the two-crack model, and we plan to use it in our

future work. The stress intensity factors at the three-crack tips

display some mildly noteworthy behavior.

As usual the behavior that interests us most is that of

K at the various crack tips. Regardless of the angle of inclination

of the blunt there is an increase in KIA, KIB, and K with in-

creasing amounts of blunting. Both the rapidity of this increase

and the initial magnitude of these stress intensity factors depend

upon the angle e, but the nature of the dependence is different for

KIB than for KIA and K:IC for any choice of Z, KI8  increases

with increasing 6, but KIA and KIC decrease (albeit slightly).
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It is most probable that KIB is dominated by compressive stresses

in the vicinity of the body of the main crack: as e decreases, tip

B moves into areas of larger compressive stresses which force KIB
to decrease with 6 for a given frac fluid pressure. The behavior

of KI and K1 1  at tips A and C is quite similar to what we

have seen in the branched crack results in the previous section

(as might be expected from the shortness of the leg of the blunt

between the intersection and tip B). The magnitudes of KIIA, KIIB'
and K II tend to level off and decline as the blunt becomes very

large compared to the main cracks, thereby confirming some obvious

intuitive predictions. A phenomenon which is best illustrated

by Figure 2.16a is the reversal in sign of KIIA which occurs when

the relative shearing actions of the legs of the blunt reverse; in

case of the 90* blunt this occurs when one leg surpasses the other

in length. We quote all these observations in order to provide

some confidence in the general correctness of the scheme, although

there are many other more complicated phenomena of interest still

to be pursued.
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FIG. a.I (a) Two-crack model for the blunted crack
problem; (b) three-crack model, preferred because
of its ability to capture the behavior of yO near
the intersection.
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FIG.Q.1 Stress intensity factors at the tips of a 60-deg asymmetrically blunted crack. (a) K1, Kit at tip A;
(b) Ki, Kir at tip B; (c) Kr, Kui at tip C. For the two-crack model, cracks 1 and 2 each had 20 nodes. For the
three-crack model, crack I had 20 nodes, while cracks 2 and 3 had 10 nodes each.
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CHAPTER 3 QUASI-STATIC CRACK PROBLEMS

3.1 Introduction

Our studies of the static crack problems described in

Chapters 1 and 2 have served two important purposes: they have pro-

vided some insight into the behavior of corresponding cracks in actual

hydraulic fracturing operations, and they have served as stepping

stones, providing us with modelling experience necessary to achieve

our ultimate goal of full 3-D simulation of propagating hydraulic

fractures. In order to reach that goal, we must have, in addition to

the capability of modelling complex crack geometries, the capability

of computing the characteristics of the flow of a viscous fracturing

fluid in a propagating crack, as well as the effect of the fluid

flow on the rate of propagation. Our approach to such quasi-static

hydraulic fracturing problems has been to consider in sequence cer-

tain idealized models with increasing complexity. Thus, we first

investigated the problem of fluid pressure evolution in a stationary

plane crack filled with a quasi-statically flowing fluid; then we

studied pressure evolution and fluid front advancement in such a

crack. Work is now in progress on the problem of quasi-static

propagation and fluid front motion in'a plane crack, a problem which

comes quite close to some actual field operations. We found, in

the course of working on the pressure evolution problem, that the

"explicit" scheme described in the next section seems totally in-

appropriate and that only the "implicit" formulation described in

Section 3.3 is sufficiently stable.
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3.2 Frac. Fluid Pressure Evolution: Explicit Formulation

The pressure evolution problem is illustrated schematically

in Figure (3.1): the extremely viscous frac. fluid is pumped into a

crack (already filled with the frac. fluid) whose length is held

fixed. As the width of the crack increases, the fluid pressure dis-

tribution changes accordingly. Since we choose to pump the fluid at

whatever rate is necessary to maintain a constant presssure at the

borehole, the process will stop when the fluid pressure becomes uni-

form along the entire crack length.

In the early stages of our work on this problem, we felt that

an "explicit" formulation following the general outline presented

by Cleary [17], would be the simplest and most economical method

of solution; since we anticipated having to carry out the solution

over many discrete time steps, the latter are very important

criteria. By explicit scheme we mean a method which allows the

fluid pressure distribution at a time in the future to be calculated

explicitly from the present crack opening and fluid pressure dis-

tributions. Such a method is considerably more economical than an

"implicit scheme", in which the future pressure distribution depends

implicitly upon the current state, thus requiring solution of a

system of equations. Although some stability problems were anti-

cipated, (as discussed below and in ref. [17]), we felt that they
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could be adequately taken care of.

In the development that follows (and in later sections) some

simplifications of the notation used in Chapter 1 will be possible,

since from here on we will be dealing with one crack only and

normal tractions. Specifi.cally, the superscripts used in reference to

the tractiond6, the influence function ' , and the dislocation density

)A will be dropped; further, the traction will be designated by p

as a reminder that it is due only to an internal fluid pressure. In

other words; p36 f'r and p . Also, since

the crack will always be assumed to lie on the interval [-1,1],

E1al.

Our formulation starts with the equivalent of the integral

equation (1.2):

df) f(O)~/ 4 t .) L't (3.1)

The appropriately specialized versions (presented in [17] along with

the more general equations) of the equations of conservation of mass

and momentum take the form

(3.2)



- 61 -

and

(3.3)

Equations (3.2) and (3.3) are readily manipulated to get

. (3.4)
3%L ai 7t

Differentiating (1) with respect to time and (4) with respect to x

and substituting, we arrive at

The solution procedure involves:

(1) Selecting an appropriate initial frac. fluid pressure distri-

bution

(2) Solving equations (3.1) forgp()=6'(X) hence 6
(3) Evaluating the integral in Equation (3.5) and adding the incre-

ment in pressure to the previous press-ure.

(4) Updating the time, specifying the pressure at the borehole,

and returning to step (2.).

We have chosen to enforce a constant pressure at the borehole, a

condition which is quite realistic; we can easily adapt to the more
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usual field condition of constant pumping rate but thatis not of

fundamental importance yet. In general, however, the newly computed

pressure curve at each time step must be corrected in some manner

(Fig. 3.2). Perhaps the most appealing method is to simply set the

pressure at the node x in the borehole to the desired level. It may

be more accurate, however, to apply some form of global renormaliza-

tion, as shown in Fig. 3.2(a). It is important to scale borehole pres-

sure p0 and the frac. fluid viscosity 7L to the shear modulus G of

the material (e.g., they might typically have relative magnitudes of

/0 and "l/G 10" sec.) . It is essential

to relate the time steps assumed in iteration to a-time r c which is

based on the characteristics of fluid flow, relevant considerations

of elastic crack opening, and the assumption of constant borehole

pressure. The appropriate T. has been provided by Cleary [23. and,

for the case of linear fluid equations used above, it takes the form

A corresponding expression for more general nonlinear fluid behavior

has also been extracted by Cleary [24]. Considerable attention has

thus been given to' finding the appropriate fraction of T c for use

in our marching schemes. The crucial aspect, from a numerical stand-

point is the evaluation of the second derivative appearing in the

integral equation (3.5). We start by non-dimensionalizing the

variables: S-- G ) I /_ and
.dPcX _



- 63 -

At first, we thought it best to explicitly expand this derivative:

[s3" // s (3.6)

and then evaluate the component derivatives separately. We seemed to

encounter no great difficulties in evaluating 6 and its derivatives.

The first derivative, g , is obtained directly from the solution of

equation (3.1). In order to calculate 6 and 6", we approximated/k

by the polynomial

which can then be integrated to get 6 and differentiated to get 6"

Accurate differentiation of p proved to be a much greater

problem. We have observed that for any realistic pressure distri-

bution, the resulting dislocation density will be of a form

characteristic of that obtained for a uniform distribution. Thus,

while we may always be confident thatU can be approximated well by

a polynomial of the form (6), we need a more fool-proof method for

evaluating the first three derivatives of p. We first tried

several different simple scheme for interpolating and differentiating

p, all based upon finding an interpolating polynomial of some sort

and differentiating it. Specifically, we tried (i) ordinary poly-

nomials (of various orders), (ii)- local third. order polynomials,
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and (iii) Chebyshev polynomials, as described later.

Ordinary Polynomials

Because of the simplicity of implementation our first attempts

at finding the derivatives of p involved interpolation with

ordinary polynomials. Two approaches were used for obtaining the

values of p (initially known at the zeroes of second-order Chebyshev

polynomials, (%A,'1=I..,, A..I ), plus p', p, p''', at

the first order Chebyshev zeroes, tk, k=l,...,N. The first and

simpler of the two was to collocate at the points xr to obtain

'P ~ 4 a,'A%,, +tX a, AI6 (3.8)

and then evaluate this polynomial and its derivatives at the tk. The

second approach was to evaluate p at the points tk first by low

order Lagrangian interpolation and then collocate at the tk to get a

polynomial of the form (8). For an initial Gaussian pressure

distribution (p(x) = -5x2 ), the interpolation was done over the

entire interval -l xtl, but for a "square root" curve

(p(x)=Jl+ jxj'), the interpolation was carried out separately

on the intervals -la xe 0 and OxA 1.

The results obtained by use of these interpolation schemes

varied somewhat, but were bad in general. In particular, the approxi-
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mation of the derivatives was much too inaccurate for purposes of

stability and convergence toward the expected long-time response never

was achieved.

Local Third Order Polynomials

Our final attempt to employ a simple, collocation-based

polynomial scheme involved the use of ordinary third order polynomials,

chosen so as to interpolate p at four consecutive points tk. It

was expected that by using low order polynomials, valid over a

relatively short interval, interpolating functions could be found

that not only gave reliable values of p(tk) but in addition were

sufficiently smooth to provide good approximations of the derivatives

of p. This method was also a relatively simple one: values of

p(tk) were first obtained by low-order interpolations from the values.

of p(x r). Local cubic polynomials were then found by collocation at

four consecutive tk, then marching ahead one point and so forth. In

other words, p(t1 ) was approximated by collocation at t1 ..... ,t4;
p(t2) by collocation at t2,...,t 5, and so on to tn- 4. Values of

P(tn-4),...,P(tn) were all obtained from the n-4th polynomial.

This method gave very good approximations to p(tk) for both the

Gaussian and square root pressure distributions, but it still gave

highly unsatisfactory values of the derivatives.
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While none of these relatively simple schemes provided

close enough approximations to the derivatives of p, there were still

several very promising alternatives. Since the problem seemed to lie

in the lack of smoothness of the various interpolating functions tried

so far, we expected that the use of functions of greater intrinsic

smoothness could prove to be more fruitful.

The normal difficulties associated with numerical

differentiation (especially in evaluating derivatives greater than

first order) are made even more severe in the evaluation of p',

because of the cumulative nature of S and p. The future value of p

is obtained by integration of [6 3p']".with ' , an operation which does

not smooth out ripples in the usual fashion of regular integration:

this, at best, can only cause "noise" to be passed along unfiltered to

the new p. The future 6 is also determined by adding [53p']'dt;

any inaccuracies in the computation 63 p']' or its derivative will

return in the next time step as noise in both $ and p. ~Thus,

while it may be possible to project 6 and p by one time step,

subsequent computations can be extremely unstable. Clearly, a

differentiation scheme which filters out all pre-existing noise in

6 and p is required; it is imperative that at each time step, the

integrand in Equation (3.5) be perfectly smooth.

The simplest such scheme involves differentiating p,

then 3 p' (without prior expansion, as in Eq. (3.6)) by finite
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differences and locally smoothing rough areas in each derivatives

by fitting with a relatively low order "least squares" polynomial

(Figure 3.3). These operations were carried out separately on

either side of the borehole location in order to preserve (at the

borehole) slope discontinuities in pressure. This scheme was tried

using a very simple "triangular" initial pressure distribution.

In addition, during this trial we allowed the borehole

pressure to assume whatever value was dictated by the governing

equations, rather than correct it at each time step to maintain a

specified p(O,t). These simplifications were made because we can

analytically predict with some confidence the results for the first

time step under such circumstances. These tests were run using the

algorithm described above in which we solve Equation (3.1) at each

time step.

The first such trial involved computation of a new pressure

curve after a very large time step (one quarter of the characteristic

time Tc), to permit easy visualization. The results were generally good,

except for slight asymmetry (Fig. 3.4). A significant finding was that,

while our differentiation routine was designed to identify rough

regions of a derivative and smooth them locally, the derivatives

exhibited sufficient roughness (e.g., 63 p']' in Figure 3.4 (e)) that

the smoothing was actually done globally on each side of the bore-

hole. A similar test was run with a more reasonable time increment,

but gross instability was observed in the computation by the third
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time step. The problem seems to have been that the roughness in

C6 p'] after the first time step was of great enough magnitude that

a low order least squares polynomial no longer provides a sufficiently

accurate representation of the true curve. The required second

differentiation only aggravates this inaccuracy.

Our experience with the tests described above and others

like them indicate, perhaps predictably from the viewpoint of skilled

numerical analysts, that it is undesirable to smooth derivates by

approximation with other functions; the noise present after dif-

ferentiation is of sufficient magnitude to confound efforts to capture

the true form of the derivative. In particular, we expect that a

"least squares" fit (because it minimizes the squares of the errors)

would be rendered increasingly ineffective by pervasive noise of

large-and random-amplitude. We conclude that all measures taken to

ensure smoothness of derivatives should-at least begin with the

function that is to be differentiated.

Among the methods that did show some promise was that of

"transferring" 6 3p' -- known at 20-40 zeroes (tk) of the Chebyshev

polynomials of the first kind -- to several hundred uniformly spaced

points on the same interval, via Lagrangian interpolating poly-

nomials of fourth or fifth order. Since both p and 5 are

initially quite smooth, the transfer should not introduce any bad

behavior. Differentiation can be accomplished with finite differences,
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as before, but instead of smoothing the derivative with some sort of

global function, we simply compute the average value of the

derivative over a number of the uniformly spaced points in the

vicinity of a particular t*. This method is simple and does not

require much computation time, but the quality of the results can be

heavily dependent upon the size of the interval over which the

averaging takes place. We found, therefore, that its usefulness for

smoothing strongly singular functions such as [63p']" was variable

(although we have equipped our routine with the capability of

smoothing over intervals of varying size on the crack surface, thus

enabling it to capture anticipated sharp rises and falls in the

derivative). Because of the mixed success, and the-advent - before

testing of this "filter" could be completed - of the scheme described

below, this method has been relegated to the role of evaluating p'

only.

While we have previously noted the difficulties attendant

upon differentiating an interpolating function, this approach seems to

be the only one capable of capturing the singular behavior of

[6 p'] Some observations regarding the nature of 63P' and the

Chebyshev polynomials (and 'their derivatives) led us to examine

their use: in particular, we noted that the derivative did not have

the character desired to represent g and were thus led to

*Thus we have something akin to a zero order "hold-circuit" low
pass filter.
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explore expansions in these polynomials.

We consider again the case of a simple triangular pressure

distribUtion which, with the resulting crack opening displacement,

is sketched in Figure 3.5. Owing to the antisymmetry of

53p' (Figure 3.5(b)), we may shift both sides (without affecting

derivatives) to obtain the continuous curve passing through the

origin, shown in Figure 3.5(b). This shifted curve has two properties

which immediately and strongly suggest approximation by Chebyshev

polynomials: it attains extreme values at 2l and it passes through

the origin, as do the odd-ordered Tk (first kind). We note,

further, that termwise differentiation of a Chebyshev series introduces

a divisi6n by 7-x,' (see Ref. [27]), which has the right

character to represent ,A.,t . Furthermore, orthogonal functions

offer the advantage of being independent: coefficients are chosen

on the basis of the integrated degree of presence of the corresponding

member of the orthogonal set in the curve being approximated, rather

than in an attempt to find a combination of potentially similar

functions that may pass through the collocation points. Thus, since

our modified anticipated [63p'] curve has the same general shape as

would a combination of two or more Chebyshev polynomials (viz, T1,

T3, etc.), we might expect a very good approximation 
to 3p' and

possibly a good approximation of [63p ]; that is, we epxect both

h3
high accuracy and the required degree of smoothness in [5 p _i
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Thus, in implementing this scheme, we represent 63p' by

the series [25]

-& + A(3.9a)

63pZ (W (3.9b)

'x.= Cos ( /) W V foo= O,..-,N (3.9c)

The series (3.9) may be differentiated termwise using either the

recursion relations

T(%=%xT1 .)-1(7-) - T=1 T (3.10)

or the more direct formula given in Ref. [27]. In our general

hydrofac formulation, the values of [s p'] are not known at the points

xm, but can be easily evaluated there by interpolation.

This scheme was tested using 6 curves as computed by our

fracture simulation program for various numbers of nodal points tk

and differing orders of the series (3.8). Typical results are shown

in Figures 3.6 - 3.9. Two separate characteristics of the

approximation of [63p']" may be observed upon examination of these

plots. Firstly, while the general shape of CS'p']" is right in all

cases, it is plagued by noise, of which "frequency" is dependent
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upon the order of the series (increasing with the number of terms,

as might be expected); the amplitude seems to decrease with increasing

number of tk points employed to represent 5 p' before the expansion

in equation (3.9a). Thus, we would expect the best performance from a

series with a very large number of terms starting from an equally

large number of tk'S.

Furthermore, it is likely that we could obtain a particularly

smooth fit of 6 at a large number of points by starting with a

relatively small number of tk's in the actual evaluation of

equations ('3.6)-(3.8), finding the coefficients from the Chebyshev

series approximation of the integral of)L4 (see Appendix A), then

evaluating the series at a larger number of points (preferably the

xm's used to evaluate the ak). The result should be a curve whose

initial high degree of smoothness has been enhanced by the process

of integration.

This hypothesis was subjected to a preliminary test by

assuming 6 =F 1-t (not much different from the actual shape) and

that p' = ± 1; this saved the cost of solving a 200 x 200 system.

We then computedef'at 200 tk points and fitted with a 200 term

Chebyshev series to get the results shown in Fig.3.10. Note that

while [64:/]" still has some high frequency noise (and some bad

behavior* at ±1), (7 3 '] is markedly smoother than in any of the

*This is to be expected from the high order of singularity intro-
duced by double differentiation of Chebyshev polynomials (ref. 27).
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previous trials. It seems, then, that better results for(53p' ]

might be obtained by differentiating the[ 3']' computed with the

200 term series by finite differences, at the 40 tk's, using the

averaging procedure illustrated in Figure 3.11(a). The result is

shown in Figure 3.11(b), and seems to be exactly what we want.

Hence, this scheme is currently installed in our hydrofrac program.

Summary of explicit time marching scheme.

The differentiation schemes (for operations like [53a p l

which we hve described above have produced quite satisfactory re-

sults in our explicit time integration procedures, insofar as

accurate numerical representation is concerned.

Essentially, our results show that, even for a fairly

small time step size, the solution becomes totally unacceptable

after just one step forward. Examination of the trend at the bore-

hole suggests an increasingly singular character in all variables

(especially pressure). This instability is caused very simply by

the failure of the algorithm to produce a rate of crack opening, 6,

that simultaneously satisfies the equations.of elasticity (in

relation to p). For instance, a sharp cusp develops in 1 (Fig. (3.5))

-- a condition that would require a logarithmically infinite pres-

sure at the borehole.

However, our work with explicit time integration has given

us good insight into the pressure evolution problem. For instance,

we have quickly recognized the need for a time integration scheme
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FIG. 3. 1 Diagram of the pressure evolution problem. Frac. fluid is pumped
in at constant pressure p,while the crack is held at fixed length 21.



FIG.3.a Optional fixup schemes to retain specified borehole pressure. (a) Global renormalization; (b) local fixup.
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FIG.3.5Schematic of procedure for tracing fracture fluid pressure evolution (see Figs.3-it and 3.jM6for details of
typical cases).
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which allows simultaneous satisfaction of both mass conservation and

elasticity equations. The implicit marching scheme (which uses many

of the numerical techniques developed for the explicit scheme), dis-

cussed in the next section, has proved to be the best such method.

3.3 Implicit Scheme for Trading of Frac-Fluid Pressure Evolution

Although we have been able to develop numerical procedures

stable enough to allow explicit computation.of evolving fluid pres-

sure and crack geometry (Section 3.2), the results obtained were,

inevitably, too little influenced by the elastic properties of the

rock, and were effectively dominated by the requirement of frac-

fluid mass conservation, which dictated the change in width from one.

step to the next. For this reason we felt it essential to employ a

method by which frac-fluid pressure would be implicitly computed at

each time step so as to satisfy simultaneously the requirements of

elasticity and mass conservation . Further, because of the success

achieved with the dislocation dipole scheme (as noted in Ref. 11),

it was decided to base our implicit method on the latter, rather than

the dislocation density scheme, in order to avoid anticipated

trouble with the high-order differentiation.

Thus, we start with the integral equation relating frac-

fluid pressure and dipole density or crack opening displacement [111,

which is obtained by integrating Equation (1.1) by parts:
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4)o ~0 (4, (Y('.) - 8>(y,) ax-- 6(Xa D(x,,)-1 (3.11 a)

where, for a homogeneous isotropic infinite medium,

Here, is the influence function which gives the stress at point

x0 due to the difference in dipole strengths 6 at points x and x0'

and 6 is the analogous influence function associated with dis-
locations [8]. Differentiating Equation (3.lla) with respect to

time gives (for time-dependent and stationary crack-tips)

'fO(~)z.~~(%)[~~ -(3.12

We have seen before (Section 3.2) that the simplest fluid flow model --

Poiseuille flow -- gives the result that 35 = [5 3p']' (here the

apostrophe denotes* spatial differentiation, while the "dot"

indicates differentiation with respect to time). If we now make

the following approximations (which can, of course, be refined),

+ t 
(3.13)

*Here 1 denotes an effective viscosity and we have used G, V for
shear modulus and Poisson ratio of the surrounding rock.
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and substitute into Equation (3.12), we get an equation which may be

re-arranged so that only terms evaluated at time t+A t are on the

left and only those at time t are on the right. When we

completely non-dimensionalize all terms, we get (assuming fluid

penetration all the way to the tip, viz. a stationary crack)

where, again, it is understood that p and 5are now dimensionless:

that is,

±o(AP

$* N [sox)-fi]('

is the characteristic time predicted by Cleary (~23]. The parameter

is chosen to provide the most stable solution; in fact, it will

be seen later that the best choice is o 1. If we make the

assumption that tt= (or any other relation between
t+At S and t6) we can re-write Equation (3.14) as a set of linear
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algebraic equations by using the appropriate disc'rete formulas

for integration and differentation. First, we approximate the

integrals in Fquation (3.14) by the Gauss-Chebyshev formula:

14

r L-L

*. Cos(~Ck> 4

Since-we wish to formulate the

represent [53p'] in terms of

in termwise differentiation of

that method here:

equations in terms of p, we need to

6 and p. Our previous success

a Chebyshev series leads us to use

x3 (3-16))(x) 3(z)-

Since we will need to impose two constraints on the solution for

t+Atp (viz. we will in particular maintain the borehole pressure

at some desired value, and t+At w'ill be such that = 0)

we will have one more equation than unknowns (i.e., N+l equations, N

unknowns) unless we obtain p(xr) from a set of N+l points by

interpolation. Again we make use of the Chebyshev series:

(3.15a)

(3.15b)

(3.15c)
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f.-I

( _, (3.17)

If we apply the Gauss-Chebyshev integration formula in Equations

(3.16, 17) substitute into Equation (3.15) and thence to Equation

(3.14) we obtain our system of equations:

L

I4 )

-Tj TMM

Gtk) S 1(4~)

L
X T (4,) (.+* Pt) t- (-)

A I

Mv
I~L

L
S T

T~ (~) S 3 (tj)

L
(3.18a)

Here we find it natural to make the following identifications

(3.18 b)-C A )-)
S ,a=lJ...)L) L=M

)0(*)- (a

N
LM'CT

(tg * qAt (tj +- (-4 I (*A)
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Equations (3.18) may be simplified, and the time required to set

up and solve them reduced, through the use of the following matrices:

(3.19a) -
A,,

I= , (3.19b)

N f
(3.19c)

(3.19d)

74ct~) (3.19e)

(3.19f)

(3.19g)

(3.19h)

Dt

4A=,,. L

~tj I 'c 1~d) 6&A(/,/)I)]

(3.19i)

(3.19j)

Tt

I.L,..g I) ,...jL[Ti(t&-T ( Y'A)]

L )
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where

Our experience with fitting functions by a Chebyshev series indicates

that when the series is to be differentiated it is best to transform

the function so as to make it pass through.the origin and be

antisymmetric, then re-transform the series if necessary (cf.. Section

3.2). To effect the necessary transformations, we define these

matrices:

TEg -6gsign (i (3.19m)

where

Sign x) =(3.19n)

and the borehole is located at tM/2'

Here H and T are used for transforming p before and

after fitting and differentiation, and S is used for transforming

63 p' before fitting and differentiation.
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We may now define the "secondary" matrices

= A T (3. 20)

so that Equation (3.18) can be written more compactly:

+ 
(3.21a)

or

(3.21b)

As mentioned before, we need to impose two constraints on the

solution t+Atp. The first of these is the requirement that

t+ t5  = 0 (by analogy with closure in our dislocation density

schemes), which can be realized by adding a row to B and R

( )T. ( , =0 (3.22)

The secondary constraint is on the borehole pressure, the value of

which we wish to specify. We impose this constraint by adding rows

to M and R:

~~(N+2.) = 1 B 7f) (3.23)
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Our procedure for computing fluid pressure and crack opening

starts by evaluating the matrices in Equation (3.21a), which need

only be done once. Then, starting with an initial pressure distri-

bution and crack geometry, we can compute the new pressure (viz.

t+Atp). The new crack opening is obtained from the relation

(I- 4 + o 5 )9 +-(3. 24a)

where

MS. 4I (3.24b)

We may then continue to compute the next pressure, and so on. Note

that t+At6 is necessarily consistent with t+Atp; iteration on 3

in 6 3p', although rigorously needed, produces only small effects

for reasonable time steps. The implicit scheme may also be formu-

lated on the basis of local interpolation methods [11]; although the

local matrices would be simpler to generate, global interpolation

offers the advantage of greater accuracy for the same number of

nodal points, and it may provide more stability.

Results

Typical results from the global formulation of our implicit

integration scheme are presented in Figures 3.12 - 3.18. These

results yield great insight on the effects of the value of c ,
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initial pressure distribution, and time-step size.

Figure 3.12 shows the result of a preliminary validation

of the FORTRAN coding of our algorithm (see Chapter 4), especially

the formulation and computation of the matrices in Eqn. (3.19).

By using p(ts)=ts' 63(ts)= Sin (ts) + t -T , and replacing
H, S, and T with identity matrices, we have [63p, , = l-

which, when integrated with ' , should produce a constant p.

This curve, while constant over most of the interval (-1,1), has

"spikes" at either end which are apparently the result of slight in-

accuracies in the explicit computation of the various derivatives;.

we plan to remedy this, but it has not caused any serious per-

turbations in the rest of our computations.

Figure 3.13 shows a set of pressure evolution curves, ob-

tained with o< =1 and t=.25' T, in which the borehole pressurec

is maintained at a constant level at each time step; as is the case

for all other figures except Fig. 3.18, it starts from the triangular

pressure distribution shown in Figure (3.13a). We note that, near

the borehole, p has the positive curvature necessary to produce an

ever increasing crack opening at the borehole (sinceg = (63)'P, ,, 3p")

which is consistent with the continuous addition of frac-fluid. At

t=1. 5Tc the fluid pressure becomes essentially constant over the

crack length, verifying that c is an excellent estimate of the time

required for pressure penetration to the crack tips. Also at
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t=1.5 c we note that the crack opening is very close to the

analytical result, 6 = 1 that we would expect from a uni-

form pressure.

Figure 3.14 shows results of computations similar to those

in Figure 3.14 except that we have chosen o4 = .5, bringing
t+Atp under the influence of the requirement of mass conservation

at time t. The effect is that the algorithm tends to become un-

stable for t near -Cc. Similar calculations with ck= .9 produced

the results shown in Figure 3.16: the solutions exhibit nearly as

much stability as for o( = 1. We thus conclude that, in general,

the best results are to be obtained when d( = 1 and that there is

actually a slight computational disadvantage to using c < 1.

The effect of changing the time step size is shown in

Figures 3.16, 17 along with the previous results (Figure 3.13). Com-

parison reveals that there is enough difference between the curves

obtained by various step sizes to warrant the use of t = .1o,c'

or smaller, for all but rough calculations..

Figure 3.18 shows the effect of using a different initial

pressure distribution, in this case p(x,t=O) = g l+IxV rather than

the triangular distribution used in the other cases. Two phenomena
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are noteworthy: first, the pressure reaches an essentially uniform

value more rapidly (1.25T vs. l.5fc), and as well, the negative

(adverse) curvature of the initial pressure curve has reversed by

time .25Tc. The latter observation provides evidence that we can

start with a variety of initial distributions and be assured of

stability of the solution, and that the various pressure distributions

will quickly tend towards the same shape with ongoing time.

3.4 Fluid Front Advancement in Stationary Cracks

A typical fluid front advancement problem is illustrated

in Figure 3.19. In general, we again have the overall elasticity

equation*, suitably non-dimensionalized

(3.26a)

With reference to this equation, we may now phrase the distinct con-

ditions, one pertaining to the non-penetrated zone (size u ) near

each tip while the other prevails in the fluid-filled region (where

laminar flow of Newtonian fluid is assumed for simplicity in early

testing of our routines)

1) (3.26b)

*
Note that this equation also applies, remarkably, to the moving crack
problem.
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Thus we must solve for fluid pressure in the fluid filled region of the

crack and crack opening rate in the empty region. Our experience

with the pressure evolution problem (Ref. 26-28) demands that an

implicit method be used for the fluid front advancement problem.

Further, since we must solve for the opening rate over part of the

crack, it will be convenient to construct our system of equations so

as to solve for opening rate over the entire crack.

By simple approximation of time derivatives, we obtain from

Eq. (3.26) an implicit equation for t and t+ p which may be

written in the following numerical form [28]:

Over the fluid-filled region (-.. 7.),this leads to the

following matri x equations for the pressures at the "Chebyshev

points" ts '
L
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M(,M

,D CAL) kL) KT
L L

)( L Z+jt 4

M I M

where 4 3 7/ /

hand 1..w< JZ/

M-4

x"O

is the characteristic time

we must use

L

A(; 4)
Af

[23]. On the other

(3.29b)

in Eq. (3.28 )*

from (6 p')'

we must impos

Thus, we solv

in order to guarantee that 6 is smoothly continued

in the penetrated region. In the non-penetrated region

e = 0 to allow solution for the unknown t+A(t sI

e Eqns. (3.29a) in the penetrated region and Eq. (3.28

in the non-penetrated zone, subject to the constraints

A-= /I...) LF

-= R+ -- >.. L (3. 30a)

S(i) - (3(-0)

LAAZG

LM4C

'k Cos U ( !k '-I)I

(*Z) _T (XJL) i F-Z.

L L

X ; (*4) LT4
4=1

t 10 (-w t (I -d") 'F (t 4] -;
hA.... L 1 LZAA= +1 ti* = -co .- ,.. Y , - co (.J ^/ i)Pir-7 ~

)

t-f-At P L)
X

(3.30b)
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Note that Eqns. (3.30b) are

constant borehole pressure.

by defining the appropriate

the constraints of crack closure and

Simplicity and economy may be achieved

matrices*:

(3.31a)

A m --

ZJU YD L k)V l

Nc

TT D it.-L I i-L) F, -L

3 2- l, L (3.31b)

ALF)..RF . L,...) LF-,

SL tI,. ) L+ L- IA+E F+( ,Lt-1

(3. 31c)
)%= ~ l ,..,L+-L F -1 ) L1= R F+L +1 ..- L -

Z= ~i -- C+ L F-( +RF>,.,u

*
All of the matrices are AMX M: any undefined elements are zero.

A /.;= (- ) . ( c fJL L,.., F ,,.,L -

J= -- )L



[ULL+F 1 - .) L+APJI

(3.31d)

C~ ~T~(*~)

M1- +-l.)m 3 1e

(3.3 iF)
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N Al 2

f
N

Gt4~, *~)

I -- ) A& t

L-i- RF:

Is 0)

fL = L4- L P, . - -) L*Pp

JL= 13 ... j N-1

A=M+i),Oo) M+N-1

A _M
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D A a T (

FL l n

From here on, all unde

(3.31g)

fined elements are part of a unit matrix (e.g.,

Ekl kl). the rest being given by

Ek I It*) (3.31h)

(3.31 i)

L--L * .. RF
,{= I,. .1.)

(3.31 i)

-6* Al S .C* + s n (;t

Li 6.

(3.31 k)

+6 (3.31 1)

a-6 5h8in(

6~
(3.31m)

(3.31n)

I , ]I =1,.., L

i) k = Ltl) *' * ) LL

3( O&-LJ

GIL

A=L+lj---i L+LF-1
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Use of the following secondary matrices lends further simplification:

ML = 3;S M_ M

- AA'
A/ E (3.32)

Now Ml, M2, M3, and M6 need be computed only once; only M4 and M5

are time dependent. The resulting system of equations is:

M+-(I±-O-.AtM A4 A
Qh Ct+

* M3.-

A. _

where the vector of unknown variables is:

UJA y S(*. A-= 0.

(3.33c)

The constraints (Eq. (3.30)) are imposed as follows:

by setting Ms = 5 , Rs = 0 for s = 1,..., LF-I , s

Eq. (3.30a)

=RF + 3,... ,

(3.30b) by setting B(N,l) = 1

(3.33a)

(3.33 b)

Ef =Itj ,

and B(N,L) = - 1L and j = 1,.. .,2L; Eq.
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before computing M5 and Eq. (3.30c) by setting ML.= '

2L. The time step size (at) is computed, based on t e velicity of

the fluid front, so as to bring the front to the next node xr at

t = t +A t. Thus, we employ

- . .(3.34)

Typical results for the fluid front advancement problem are

shown in Figure (3.20). The fluid was allowed to advance to the

crack tips, filling the crack entirely, and the pressure was then

allowed to build up for some time afterward. The pressure dis-

tribution behaves as one might expect: the curves become steeper near

the tips as time progresses and the crack fills out very quickly.

One notable feature is the rather sudden increase in the fluid

pressure at the tip just after the fluid reaches it (Figures 3.20e, f).

The curves showing the crack opening rate (Figures 3.20 (n-t))

undergo a change of character between the initial step (Figure (3.20n))

and the final step (Figure (3.2ot)). Before the fluid front reaches

the tip (Figure (3.20q)), shows high narrow peaks near, but some-

what behind the points corresponding to the location of the fluid

fronts. This phenomenon seems to be consistent with the large

pressure gradient that develops at the fluid fronts. After the fluid

fills the crack, the peaks broaden out and the overall magnitude

begins to decline (Figures (3.20 (r-t)). The shape of the initial

curve (Figure 3.20(n)) is not unlike that of the final curve,
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although the initial curve has a much smaller magnitude.

The velocity of the fluid front is compared to the cor-

responding velocity (also calculated via Eq. 3.34) of the same fluid

flowing between two parallel plates, with a space of 6 (t;x=0)

between them and being driven by a uniform pressure gradient of

p' /p0=1.0 in Figure (3.21). Initially there is a large discrepancy

between this latter velocity (dashed curve) and the calculated fluid

front velocity; this result is consistent with the difference

between the crack opening at the fluid front ( .4) and the maximum

opening ( 1.0). As time progresses, this difference in velocities

decreases somewhat, and seems to stabilize. We conclude that pre-

dictions of fluid penetration times based on estimates of the crack

opening and fluid pressure at the borehole may be quite conservative,

but are of the right order to provide useful information; thus,

estimates based on 'Cc (e.g., as given by Cleary [23] are useful guides

to the process. We note, however, that such characteristic time

estimates are easily made only in the case of a crack in a homo-

geneous medium, with constant borehole pressure. It would be

difficult, for instance to include the effects of adjacent strata,

inclusions, and the like. When our computer program is extended so

that crack propagation in non-homogeneous regions can be simulated, we

will probably be able to develop correlations for --c based on our

numerical calculations.
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FIG. 3..1 Diagram of the fluid front advancement problem. Fluid is pumped
into the crack at the borehole at constant pressure p,. The fluid front advances
from one node xr (r= LF, RF ) to the next, while the crack tips are held
stationary.
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CHAPTER 4: DESCRIPTION AND STATUS OF FRACSIM: A GENERAL PURPOSE
COMPUTER PROGRAM FOR HYDRAULIC FRACTURE SIMULATION

4.1 Introduction

Our ultimate goal is to have written a computer program

capable of full three dimensional simulation of arbitrary hydraulic

fracturing operations: these would include (but not necessarily be

limited to) problems involving interaction of several arbitrarily

shaped cracks, one or more of which is being propagated through a

porous region containing interfaces, inclusions and/or other ir-

regularities by internal hydraulic pressure. Thus, while- developing the

numerical techniques necessary for such problems (as descr1'bed in the

last two chapters), we have also been developing the computer program

itself. In the course of our work this program has undergone several

major revisions in order to incorporate increasingly versatile

architecture. Currently the program, which has been dubbed FRACTIM

(FRacture SIMulation), is capable of solving all of the problems

discussed so far and can, in addition, solve any other plane static

problems involving arbitrary numbers of arbitrarily oriented cracks

(some or 'all of which may intersect) near an interface; however,

some of the less important auxiliary subroutines for input/output,

post-solution calculations, etc. are not up-to-date because of the

number of different techniques tried in our work on pressure

evolution). The basic structure of FRACSIM seems quite satisfactory

and easily extendable for future work: it includes some important
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simplifying features (such as the use of generic elements and

connectivity" arrays [29]), which are apparently fairly widely used
-7.-

in SIE programs [7.9 ] and seem to be inspired by techniques used in

many programs for finite element analysis.

4.2 Functional Organization of FRACSIM

FRACSIM consists of a main program (written in FORTRAN),

which controls the various input/output and computational tasks that

are performed by a group of subroutines*. As shown in Figure (4.1),

these tasks are quite distinct and, with the exception of the

various time dependent computations (viz., those required for the

problems discussed in Chapter 3), are each associated with a particu-

lar subroutine. The subroutines fall naturally into five categories:

control (FRACSIM), automatic data generation (AUTO, STRESS); assembly

of matrices (MATRIX, STRCMP, DECOMP, CLOSRE); input/output (DUMP,

RESTRT, OUTPUT, PLOT), and computation (all of the remaining sub-

routines). The roles of the subroutines are further clarified by

arranging them in the calling hierarchy shown in Figure (4.2.).

Subroutines NEWSTR, STATFL and MOVFL perform the computations

*
Technically, the name FRACSIM refers only to the main program.
The subroutines are stored separately in a subroutine library
named FRACLIB. This type of organization permits editing and
re-compiling a particular subroutine independently of the rest.
Great savings in time and cost'are thus realized.
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necessary for the fluid pressure evolution (explicit and implicit

methods) and moving fluid front problems, respectively (which com-

putes pressure evolution by explicit integration). NEWSTR is current-

ly not used at all, and STATFL (pressure evolution by the implicit

method) has been superceded by MOVFL; (moving fluid front computation).

They are retained for possible future reference and comparison. A

complete listing of FRACSIM and all of the subroutines is included as

Appendix B.

4.3 Program Structure

The versatility of a program such as ours is largely dependent

upon the quality of what might best be called the "bookkeeping":

the internal representation of the various elements, nodes and crack

surfaces and the manner in which each such piece of information is used

in performing the necessary computations., Also, the program should

be structured in such a way that all problems can be couched in terms

of its normal input requirements. For example, in terms of the input

data there is no fundamental difference between the branched crack

and micro-crack problems; only the location of the cracks, the type

of closure or matching conditions specified, and the relative elastic

moduli need to be changed to solve one problem or the other. Out-

side of the steps required for automatic calculation of Matching

condition coefficients (which we regard as purely a convenience

feature) each type of problem is handled by identically the same

FORTRAN statements. There is no branching to one part of FRACSIM
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for branched crack problems or to another for three-crack-model

blunted crack problems (except for the quasi static problems).

Toward these ends we have developed a bookkeeping system

and have structured the major operations (such as evaluating matrix

elements) so that they are applicable to all problems involving

straight, plane cracks, and easi.ly extendable to be completely uni-

versal when such capabilities are required.

In Chapter 1 it was noted that our special SIE method re-

quires the division of crack loci into one or more elements, each of

which is sub-divided into a number of discrete nodal points. The

object of the method is to evaluate the dislocation density at some

of these nodes based upon the known tractions at other nodes; (it is

conceivable that, in some local interpolation schmes, these two sets

of nodes would be identical). The purpose of phrasing the description

of our SIE method as it-Was done in the first chapter (not the only

possible -- nor even the simplest -- statement of it) is, in fact,

that such a verbal description suggests a very powerful program

structure. Thus, the entities which our program deals with are

nodal points and boundary elements.

The information required by FRACSIM consists of two tables

of nodal point coordinates (one set associated with the known

tractions, the other with the unknown disloaction densities), two

other tables which contain lists of the nodes that constitute each

element, and the tractions (in local coordinates) at each of the

"traction nodes". These tables correspond to the internal arrays
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XNODE, TNODE, ELMNTT, ELMNTX, and STRSL, whose organization is

shown in Figure 4.3. While these arrays could be typed manually,

line by line, by the analyst and read directly by FRACSIM, we have

obviated this tedious work by writing an automatic data generating

subroutine (AUTO) which will fill in the bookkeeping arrays, based

on a few input parameters, for 2-D crack problems in which we elect

to use the Gauss-Chebyshev global interpolation scheme. A second

task which has been automated for the convenience of the use is that

of translating the appropriate closure and matching conditions into

actual matrix elements. Subroutine CLOSRE is equipped to supply any

combination of the closure and matching conditions discussed in

Chapters I and 2, based upon choices that are made by the user and

ready by AUTO.

Perhaps the most important point to note here is that in

problems involving more than one crack there is no direct internal

distinction between the various cracks; stated differently, none of

the basic operations performed by FRACSIM require knowledge of the

number of cracks or the particular crack upon which is located the

node or element being operated on. Note also that, with the lack

of internal distinction between elements and crack surfaces, there

is really no internal "conceptual" difference between local and

global interpolation methods. The implications of this last

point are important: for instance, we should be able to use

the same fundamental procedure (in subroutine MATRIX) for setting up

a matrix for a 3-0 problem, where we may have to use local inter-
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polation, as for a 2-D problem where we can use the more convenient

global method.

Another important feature of our program structure, although

not explicitly apparent at this time because of our exclusive use of

global interpolation, is that we use a single (set of) generic inter-

polation function(s) (i.e., functions defined on C-1,1] for the inte-

gration in Equation (1.5)). Use of this standard technique obviates

a separate set of interpolation functions for each element.

Since the subroutines used for quasi-static (fluid injection)

problems are still being developed, we have not yet endowed them with

the same multi-crack and near-interface capabilities as we have those

sections of FRACSIM which are devoted to static problems. Con-

sequently, they lack the generalized structure as well: they are

currently restricted to solving problems involving a single crack on

the interval C-1,1] by global Gauss-Chebyshev interpolation.

4.4 Format of Required Input Data

The automatic data generation subroutine (AUTO) requires

that values for its input parameters be arranged in the following

order and format (all lines or cards must be included, except as

indicated):
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line or card number:

1. ISTART (12)

2. NREG.(12)

3. RTYPE (12)

4. RPOS (array:
3F10.4)

5. ENU,G
(3Fl 0.4)

6. IDOF (12)

Choice of whether to read input data for a new

problem (ISTART=1) or to re-start a previous

problem from the state at which computation had

stopped (ISTART=2: currently not supported).

Number of material regions. For each region,; one

set of the following cards (RTYPE; RPOS: E,NU,G)

is required.

Specific geometric type of region. Current

options:

RTYPE = 1 infinite plane

RTYPE = 2 half plane

Specific location of material region. For a

half plane:

RPOS(l) x-coordinate of interface

RPOS(2) = -1. region is to the left of the

interface

RPOS(2) = +1. region is to the right of

interface

RPOS(3) is irrelevant in this case

Elastic constants of region

the

The range of and in Eq. (1.2). IDOF=2

unless all cracks are collinear and have purely

normal loading, in which case the solution is more

economical if IDOF=1.
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7. NCC (I2)

8. ITYPE (12)

9. ELMNT (array
612)

10. DIR (array:
612)

11. NSURF (12)

12. SURFNO (12)

13. NBPTS (12)

The number of closure/matching conditions

required. For each condition, one set of the

following three cards (ITYPE, ELMNT, DIR) is

required.

The specific type of closure or matching condition:

ITYPE = 1 closure condition

ITYPE = 2 branched crack matching condition

ITYPE = 3 blunted crack matching condition

(two crack model)

ITYPE = 4 blunted crack matching condition

(three crack model).

The surface number of each surface associated with

the particular matching condition (See SURFNO).

The component of dislocation density to be used

in the particular matching condition in

reference to the crack surface specified by the

corresponding element of ELMNT:

DIR = 1 normal component

DIR = 2 tangential component

The number of cracks in the problem. For each

crack, one set of the following cards (SURFNO,

NBPTS, LTYPE, AA-BB, LOAD) must be supplied.

The number assigned to each crack (surface). The

numbering scheme used is arbitrary.

The number of the points on the surface.
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14. LTYPE (12) The type of load distribution desired on the sur-

face (see also LOAD). The most frequently needed

choices are:

LTYPE = 2

LTYPE = 3

LTYPE =

LTYPE =

"square root" load distribution

(see Chapter 3)

uniform loading with desired magnitudes

of both normal and severe components.

triangular loading (see Chapter 3)-

triangular loading from xlfront to

15. LFRONT, RFRONT
(2I3)

16. LOAD (array:
2E15.4)

17. AA,BB
(arrays:
2F10.4 ea)

18. TFIN, DT
(FlO.4 ea)

19. VISCO
(E15.4)

Xrfront*

XNODE numbers at which the left and right fluid

fronts are located (meaningful only if LTYPE = 4).

Magnitudes of normal and shearing tractions,

respectively. For nonuniform loading, LOAD (1)

is the magnitude of the fluid pressure at the

borehole and the value of LOAD (2) is irrelevant.

Global x and y coordinates, respectively,

of the left (AA) and right (B) crack tips

Stop time and time increments for quasi-static

problems (irrelevant for static problems)

Frac. fluid viscosity.
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Functional flow diagram of FRACSIM.

Call appropriate subroutine
for quasi-static calculations:
NEWSTR -press. ev. exp. int.
STATFL- " " impl. "

MOVFL-fl. front. impl. int., Dump current state of
variables for restart.

FIG. 4. 1.



FRACSIM

(restart from
previous run)

(automatic
data ner.-
ation

(add closure (assemple
and matching traction vector)'

conditions)

(decompose
solution)

(solve system)

FIG. 4.2.
course of a
(FRACSIM)

(evaluatef) (compute 1
from C.L

Diagram showing both the hierarchy among the subroutines and the calling sequence followed in the
run. The sequence of events starts from the upper left end of the box representing the main program
and ends at the lower right (next page). Note the correspondence to the flow diagram in fig. 4.1.

'I



(compute (assemble (produce
) i o. to printed

plotted) eac? time
step)

STATFL

INTEG MULT MULT/ADD SOLVE MULT

(compute (compute final (com uteHEBY secondary matrices. 13 IMQ 3 calls)
matrices. 11 calls to MULT.

LGRN3 cosecutive 4 to ADD) (solve

(compute calls) system)

initial )

MULT MULT/ADD VC

(compute time - (compute time -
independent dependent sec - E

secondary ondary matrice,
matrices. 9 m and final

conseutive matrices. 24 callsconsecutive to MULT, 6 to ADD)
calls)

I PLOT I DUMP, . I
(produce plots) (write out all info.

needed to restart
the program from the
current state)

FIG. 4.2(continued).

£

U'

a



- 196 -

XNODE,

x coord.

ELMNTT,

#of TNODES or
XNODES

TNODE

x coord. x coord.-3.

ELMNTX

nodes
1. 2. 3.

STRSL

node #

1
2
3

Organization of bookkeeping arrays in FRACSIM.

node #

1
2
3

element #

FIG. 4. 3.
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CHAPTER 5: CONCLUSIONS

The problems discussed in the previous Chapters have served as

a proving ground for the numerical techniques required to simulate more

compli'cated fracture events, and at the same time have provided some

valuable preliminary insights into some of the more important situations

in actual hydraulic fracturing. From the modelling standpoint, we have

established that it is best to employ a two crack model for a crack

penetrating an interface (and for branched cracks, of' course) whereas a

three-crack model is needed for blunted crack simulation. Also, we have

noted that there now appears to be a completely satisfactory "matching

condition" (viz, setting. The dislocation density singularity to zero at

the intersection) for branched crack problems, which will probably also

prove to be the best extra condition for blunted cracks and cracks through

interfaces. Our work with quasi-static problems (involving coupled fluid

flow and crackopening) has led to the rejection of explicit time inte-

gration methods, because of insufficient coupling of the requirements of

fluid mass conservation and elasticity. We must use instead the very

stable implicit scheme, in which mass conservation and elasticity re-

quirements are satisfied simultaneously.

From our studies of some relevant static models, we have seen,

for instance, how adjacent strata may make it easy for a propagating

hydraulic fracture to break out of the pay zone (if the adjacent

stratum is relatively soft) or provide an "elasticity barrier" to en-

hance containment (if the adjacent stratum is relatively stiff). It
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is apparent that micro-cracks in the adjacent stratum can be induced

to break through the interface and link up with an hydraulic fracture,

thereby circumventing this elasticity barrier. We note that there is

a possibility that the blunting process may ensure containment, but it

may also helpfully inhibit propagation away of the other tip from the

interface. Branching, if it occurs, could also play a major part in

the containment process. Our work on quasi-static problems has given

us some insight on the nature of fluid flowwithin cracks; and in

particular has shown that some early expectations (such as the

characteristic time for fluid penetration [23] are essentially correct.

We have incorporated what we feel to be a very powerful basic

structure into a general purpose computer program whose capabilities

will be extended as our work continues.
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APPENDIX A: NUMERICAL INTEGRATION FORMULA FOR OBTAINING CRACK

OPENING FROM DISLOCATION DENSITY

A very convenient and accurate method of integrating the disloca-

tion density AU. to obtain the crack opening 6 by fitting F (see

Chapter 1) with a Chebyshev series can be derived as follows:

(A.1a)

g=o

(A.lb)

We now proceed to integrate

) i= S6xWz:.

both sides of Eq.

N %

J~:J o

If we make the substitution

T= COSe),

we obtain
cos''(z)

- CD-

(A.la):

(A. 2)

T( L

.. IF T- (A.3)

EL- L
=-ZA -kTkl (,,

Tr'=Cos (11
" ) )

4c = -sin (edL9l
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a- -I Sin

0 T|l
(kcos~ (zA)

so that

-- S in(kCos'c)) (A.5)

This formula is quite convenient because it makes use of the non-

singular function F and employs already existing subroutines

(eq. CHEBY).

(A.4)



100 C
200 C F R A C S I M
300 C
400 C A GENERAL PURPOSE PROGRAM (UNDER DFVE L0P rMNT)
500 C FOR HYDRAULIC FRACTURE SIMULATION.
600 C

700 C
800 IMPLICIT REAL*8(A-H,0-Z)
900 INTEGER TYPE(5),ELMNT(6),DIR(6),SURFNO -
1000 INTEGER CLROW(6),ALPHABETA
113U INTEGER CELMNT(6,6),CDTP(6,6),COL(6,6)
120jO INTEGER TSTEPRTYPE,ORDER,R,IRfAX
1300 REAL*8 LOAD(2),MU(80,3),KAPPA1,NU
14J C-
1500 DIMENSION RLOC(5,3),RPOS(3), A(2),P(2),NPTS(4 )
1600 DIMENSION A1(4,2) ,A2(4,2) ,ALFA(l) n
17U0 DIMENSION A(80,80) -n
1800 DIMENSION CoEFm(80),STCM A (80)
19)3 DIMENSION ELCON(2,3) A a
2000 DIMENSION XA1(4),XB1(4),XA2(4) ,XB2(4)
2100 DIMENSION ZETA(t4,PG),ETA(4I,80)
22JU DIMENSION ICOL(6)
2300 DIMENSION C(6,6)
24)0 C
2530 COMMON /ENDPTS/ XA1,XB1,YA2,XP2,THrTA
2600 COMMON /REC/ PLOC,TYPE,NRFG
2700 COMMON /BKPING/ XNODE(80,3),TNODE(80,3),FI.MtTT(4l,FO),EIMNTY(4,80't)
2800 COMMON /ClOSE/ A1, A2, ALFA ,CLROW,NCL,CFTMNT,CPII ,COT,C
2930 1,ITYPE(10)
3000 COMMON /SIZE/ ORDEFNFL"NT,NXNODF ,NTNODE.
310 f)COMMON /START/ IOLD,JOLD
3200 COMMON /ARRAYS/ A ,STGMA,COFFF
3300 COMMON /OUT/ STRSL(80,3) ,S'TPSC(8O,3),A.OC(PC,3),ACPF'( P0,3)
3430 COMMON /ELAST/ G1,KAPPA1,NU,"LCON



COMMON /GP/ ZETANPTS
COMMON /TIME/ TSTART,TFlN,DT,TSTEP,T
COMMON /DOF/ IDOF
COMMON /INTKETH/ ICHCE

5 CONTINUE
1RPAD(5,500) ISTART

500 FORMAT(12)
IF(ISTART.EQ.1) GG TO 7

CALL RESTRT

3500
3630
37i00
3800
39 Ci 0
4000
4130
4200
1 30 0
4400
4500
4630
4700
4800
4930
5000
5100
5230
533C
S400
5500
5630
5700
5830
5930
60300
6100
62;0 0
6300
6430

66)0
670u
6800
693)

IC CONTINUE
IF(T.GT.TFIN) GO TO 100
TSTEP=TSTEP+1

7 CONTINUE
rSTEP=o

CALL AUTO

T=TSTART-DT

CALL MATRIX
CALL CLOSRE



7000 20 CONTINUE
7130 CALL STRCKP
7200 CALL SOLVE(ASIGHt,COFFoCRDER)
7300 CALL DECOMP
7400 CALL TRNSFM
7500 CALL PSCALC
7690 CALL OUTPUT
7730 CALL INTERP(AL0C,TNODE,NTNOF,VU')
7800 T=T+DT
7930 IF(TCHCE.EQ.1) CALL NEUSTR(MU,A)
8050 IF(ICHCE.EQ.2) CALL STATFL(MU,A)
8100 IF(ICHCE.EQ.3) CALL MOVFL(MUA)
6200 190 CONTINUF
8330 C
8400 CALL PLOT
8500 CALL DUMP
8600 C
87:0 GO TO 5
8800 END

1



6 0

SUYROUT INE ADD( A, IPOWI COL,
IMPLICIT REAL*8(A-H,-Z)
DIMENSION A(80,80),l(80,80)

IF(( IROW.NE.JROW). OR. (I COL.
IF(IER.EQ.1) GO TO 1000

Bs JR OWJCOLC, IER)

,C(8c080)

NE.JCOL)) IER=1

DO 20 I=1,1ROW
DO 10 J=1,ICOL
C(IJ)=A(I,J)+B(IJ)
CONTINUE
CONTINUE

10 0
200

300
50 0

600

8 0 0
90 Gi

100 u
1100
1200
130 6
140G
1500
1600

1000 CONTINUE
RETURN
END



C SUBROUTINE AUTO

THIS SUBROUTI
GENERATES THE NODA
DATA NECESSARY FOR
QUASI-STATIC CRACK
TO BE SOLVED WITH
INTERPOLATION.

NE AUTOMATICALLY
L POINT AND ELEMENT

PLANE STATIC AND
- PROBLEtPS WHICH ARE
GLOIAL GAUSS-CHE6YSHEV

SUHKOUTINE AUTO

IMPLICIT REAL*8(A-H,0-Z)
REAL*8 NONGAMNONDEL ,NONPNONMULENGTH
INTEGER TYPE(5),ELMNT(6)JoDIR(6),SURFNO
INTEGER RTYPERFRONT,OIDER ,R ,R MAXfREGNO
INTEGER CLROW(6),ELMNTT(4,80),ELMNTX(4,80),ALPHAFTA
INTEGER CELMNT(6,6),CDIR(6,6f)
REAL*8 LOAD(2),MUKAPPA1,NU

,COL(6,6),TSTEP

RLOC(5,3),RPOS(3),AA(?),
Al(4,2),A2(4,2),ALFA(4)
XNODE
A(80,
COEFF
ALOC(
XA1 (4

(80,3) , TNOtF (80 , 3),

(80),SIGMA(80),ACAR
f80, 3) ,tLCON (2,3)
),vX61 I( 4),pX A 2 (4),%X 2

b( 2) ,NF IS (4)

STRSL8 ,3),STFSC( 8C,3)

T(80,3)

(4)
ION ZETA(4,80),ETA(4,8o)
ION NOX(2),INTSZ(400),INTMID(400)

/fDIFPAR/ NOXtINTSZINTMID
/E.NDPTS/ XAI,XE1,XA2,XU2
/REG/ RLOCTYPENREG
/bKPING/ XNOE , TNODE ,L MJT T ,ELMNTX

ION
ION
ION
ION
ION
ION
ION

D I ME NS
DI MENS
F. I Mt NS
DIML.NS
D I MEN S
)I ME NS
)I ME NS
iIM t NS

DI MENS

COM ON
CO MM ON
COMM O) N
COMNuN



COA1ON /CLOSE/ A1, A2,ALf A ,CLROWNCC ,CE L NT ,CDIRCOLC

1, I TYPE (10)
COMMON /SIZE/ ODE)[RINEL MNTNANOF'DNTNIODE
COMMON'J /START/ 1OLDJOLD
COMM1ON /ARRAYS/ A,SIGMA,COEFF
COMMON /OUT/ STRSLSTRSCs ALOCACARI

COMMON /ELAST/ GIKAPPA1,MUELCON
COMMON /GP/ ZETANPTS
COMMON /TINE/ TFIN,0TTSTCPT
COMMON /FLUID/ VISCOLOAD
COMMON /LPAR/ LTYPE
COMMON /DOF/ IDOF
COMMON /NOND IM/ NONGAMNONDEL , NONP ,NONMU, TAUC
COMMON /INTMETH/ ICHCE
COMMON /FILL/ LFRONTRFRONT

C
SIN(Q)=0SIN(0)
COS(Q)=oCOS(Q)
AT AN( 0)=DAT AN(Q)
SQRT (Q) =DSQRT (0)

C
ORDER= -
1OLC=0
JOLu= 0
JJK=O
L 'U-

NREG1
NREuj1
RTYPE=1
CLC =0
00 1 1=1,4
ELMNT(I) =0

ALFA( I)=0.
ICOLt J)=0



1 CONTINUE
AA (1) 0.
AA (2) 0.
b( 1 )0.
B( 2)=0.
LOAD(1)=1.
LOAD(2)=0.
E=0.
NU=.3

G=1.
RPOS(1 )=0.
RPOS(2)=0.
RP OS ( 3) =0.

READ D-ATA
REG IONS

FOR MATERIAL

READ(5,502) NREl;
DO 27- IREG=loNREG
REAO(5,502) REGNO

REAU(5,9502) RTYPE
REAt)(5,504) (RPOS(II
READ(5,5041 (~,tlUG
ELCON(REGNO,1)=L
ELCON(REGNO,2)=NU
ELCON(REGN0,3)=G
RLOC(REGNO,1)=RPOS(1
RLOC(REGNO,2)=RPOS(2
R L 0C (R E6 N0, 3) =R P OS (3
TYPE(REGNO)=RTYPL

), Il=1,3)

)
)
)

5 CONTINUE

READ(b,02) IDOF



READ CLOSURE/ MATCHING CONIITI ON
PARAMETERS

P E AD ( ,15)2 ) NCC
DO 6 I=101CC
READ('jb2.) ITYPE( I)

P E Af' i ~5 G ) (E-LMNT(ICNT)
REAE)(5*5i0) (DIR(J.CNT) 91
REAI)(5,500) (IC.OL(ICNT)i
kEADft".b&1) (ALFA(ICNT) w
00 'i J1,o6
CELIINT( I,J)=ELMNT(J)
CDlIkUJ)=DIR(J)
C( Itj)ALFA(J)
COL( 1,J)=ICOL(J)
CONTI NUC
CONT INUE

, lCNT196)
C N T = le 6)

ICNT1l *6)

READ SURFACE DATA

R[A0(5%"liO2) NSURF
ORDEF=G

bE LIN T =NSURF

DO0 35f 1=1NSURF
READi(5,502) SURUNO
REAU(59502) NIHPTS
RCAD(bI1502) ITYPE
Rf1AW~(5,51 7) LFRONTIPFROIT
Rf A0)(59 563) LOAO( 1), LOAD( 2)
RLAD(bt01) AAM)s)AA(?),ii(1 ),t(2)

501 FORMAT ('ff10.4)
50.5 FOhIWAI( 2F15.4)



FORMAT(12)
F0RfMAT(3F10.4)
FORMAT(213)
XA1(SIJRFNO)=AA(1)
XA2(SUHFNO)=AA(2)
XBl(SURFNO)=B( 1)
XB2(SURFNO)=B(2)
NPTS (SURFNO)=NBPTS
JMAX=NBP T S
NONP=1./LOAD(1)

500 FORMAT(412)

JMAX=NPTS(I)
D0 26 J=1,JMAX
ARz=(2.*J-1.)*3.1415926535898/(2.*NPTS(I))
ZE TA( 1,J)=-COS(APG)

20 CONTINUE
KMAX=JMAX-1
Do 22 J=1,KMAX
AR ( =3. I 4159265898* J/NF T S I)
ETA(IJ)=-COS(ARG)

22 CONTINUE

00 25 J=1,JMAX
.L=L+1
ELMNTT(1,1)=NPTS(1)
E L MN TT ( I sJ+ 1)= L

TNODE(L,2)=.5*XA2(I)*(I.-ZETA(IJ))+.5*X02(
TNODE(L93)=0.
G0 25 [iETA=1,IDOF
ORDER=ORDER+l

25 CONTINUF
DO 30 J=1,KMAX

1)*(I.+ZETAEl,J))
I)*(1.+ZETA(I ,J))

502
504
517



0 0 0

LILMNTX (1,1)=NPTS (1)-i
[LMN'TX ( I, J*I) =M1

XNOb[(M,1)=.5*XA21()*(I.-ETA(1,J))*.5*X321)*(1.+FTA(I,J))

XNODE (M93)=0*
3 U C.ONI 1NtiL

D0 1963 JJ=2,JMAX
JJK::JJK4 1
CALL STRLISS(STRSL9LOAO,1,JJK)

19(1 CONTINUEC
35 CONTINUE

C
READ(5,9i1O) T F IN,0T

562 FORI'AT(F1O.Q)
510 FORMAT-(2F1O*4)

N XNODE L= M
NT'NOUE = L
NCC=C
KMAX(L

REAO(59288) VISCO
288 i-ORPIAT(E.15'i)
52 CONTINUE

D0 t5 ISUKF1,*NSURF
DO005,10 ALPHA=1,IDOF
11=1 INPTS(!SURF)
1 CL C=N CL C.
CLRJ)W (eCLC) 1 1

5t UC oN I PUF
55 CONTINUE



0 0 S 9 9 Uw

C
C READ CHOICE OF TIME INTEGRATION
C METHOD:
C
C ICHCE = I EXPLICIT INTEGRATION (NEWSTR)
C = 2 IMPLICIT INTEGRATION (STATFL)
C = 3 IMPLICIT INTEGRATION (MOVFL)
C
C

READ(b,924) ICHCE
C
C READ PARAMETERS FOR SUBROUTINE DIFF
C IF SUBROUTINE NEWSTR IS TO BE USED
C FOR PRESSURE EVOLUTION COMPUTATIONS
C

READ(5,924) NDR
924 FORMAT(13)

DO 9q3 1I1,NDR
READ(b,925) INTSZ(lI),INTMID(II)

943 CONTINUE
925 FORIMAT(212)

NDX (1) =ND
NDX(2)=NDR

C
LENGTH=1.
N ONGAM=LENGTH/G
NONDEL=G/(LOAO(1)*LENGTH)
NONP=1 ./LOAD (1)
NONMU=G/LOAD (1)
TAUC=(12.*VISCO/G)*(G/LOAD(1))**3

C
RE TUR N
END



0 0 S S 0

100 C SUBROUTINE CHEBY
200 C
36i0 C THIS SUPROUTINE FITS THE FUNCTION UHOSE
400 C VALUES AT THE POINTS ARGC1 ARE TRANSMITIED IN
500 C TABO WITH A CHEBYSHEV SERIES. CHEBY COMPUTES
600 C THE VALUE OF THE SERIES, ITS TFRMWISE DERIVATIVES
700 C AND THE INTFGPAL OF THE FUNCTION.*SORT(1-X*2)
800 C AT THE POINTS ARG2 AND RETURNS

-9u 0 C, THEM IN F.
1000 C
1100 C
120 3 SUBROUTINE CHLY(ARG1 ,ARG2,NDIMINDIM?, T ABO,:NDfE,tNXC,NDE RIVF
130 a 1I~ROW#JROWIEVAL)
140 3 C
15G0 IMPLICIT REAL*8(A-H,0-Z)
1600 INTEGER R
170 u DIMENSION ARGlI IROW,1)e AR62(JROW1),TAB3(400,3),F(JROW5)
180u DIMENSION T(400,4),TABO(TROW,1)
190 DIMENSION Y(400),A(400)
2000 C
2100 COS(Q)=DCOS(Q)
226a ACOS(O)=DACOS(0)
23600 C
2400 IF((TEVAL.NE.0).AND.(IEVAL.NJE.1)) GO TO 5000
2500O C
2630 00 5 I1=,NXC
27i0 XC=-COS(3.1415926535898*(I-1)/(NXC-1))
2800 CALL LGRNG(ARG1,TAB0,XC,PT,NDIMI ,5,IROU)
2930 TAB(I,1)=PT
3600 5 CONTINUE
3100 C
32i u 00 20 R=1,NDEG
330 SUM=0.
34u0 DO 10 J=1,tXC

0 0



350 o
3 6 0 Li
3700
380 6

4 30 ,
4j 4 0 0

4500
4 6 00
4 70 11

-f 80 5
4900

510 (
52-00

5300 L
540 c,

55 0 a

5600
57

5900
609 I

6100
6200
6360
6406

6700
6)800 U
69300

DO 32 N=3,NDEG
IF(IEVAL.E[Q.1)

T(N, 1 )2. *

T(N,2) (2.
T(N,3) =4

T (N,4 ) =4(

GO TO 33.

ARG2 ( , 1
*1 (N-1,1
**T(N-1,
6. * T (N -1

)*T(N-1,1)-T
) +. * AR (I,
2)*2.*ARC2(1
,3)+2.*AR G2(

(N-2,1 )
1 )*T(A-1,2)-T(N-2,2))
,1)*T(NJ-1,3)-T(N-2,3))
1,1) *T (N-1,4) -T (N-2,4i))

FUDGE=1.
IF ( J.EQ.1).OR. (J.EQ.NDEG)) FUDGF=.5
XXA=-COS((R-1)*3.141592535898*(J-1)/(NXC-1))
SUM=SUM+TAB (J, 1) *XXA*FUD'GE

10 CONT INUE
A(R)=2.*SUM/(NXC-1)

20 CONTINUE
A(1)=.5*A(1)

C

5000 CONTINUE
C

T(1,1)=1.
T(I,2)=0.
T(1,3)=O0

CX T(1,4)=O.
C

T(2,2)=1.
T (2, 3) =0

Cx T(2,4=0
c

DO 40 I=1,NDIM2
DO 35 J=1,5
F( IJ)=.

35 CONTINUE
C

T(2,1)=ARG2(1,1)

CX
CX
C



F(1,
F ( I,

F 4
F (

1)=F

193)
It,4l)

(I,1)+A(N)
(1,2)+A(N)
=F4 ( 3)+ A(
=F(1,' 4)+A(

7200
7300
7 4L )

7I600
-17 u if
780

8000i
8100
820 0
81300
8400
50 0

8800
8900
9000
9100
92C0
9300
9400
9500
960
9700

32 CONTINUE
F(I,1)=F(
F(I,2)=F(

*T(N, 1)
* T (N, 2 )
N) *T ( N, 3)
N) *T(N,4)

T 32

N ) *DSQRT
COS(ARG2
A T (KlKL)
*TCH

(1.-TCH(KKLARG2(1,1))**?)/DFLOAT(N-1)
(11))

I,1)+A(1)*T(1,1)+At2)*Tt2,1)
1,2)+A(1)*1(1,2)+A(2)*T(2,2)

ARG=DACOS(ARG2(1,1))
TCH=DSINt(ARG)
F(1,5)=F(I,5)-0.5*A(1)*ARG?(1,1)-
1A(2)*TCH

40 CONTINUE
WRITE(6,

536 FORMAT(%
536) (A(II),11=1,NDEG)
1,8E15.4)

RLTURN
E NID

C
IF(IEVAL.EO.0) GO

36 CONTINUE
KKL=N-1

CX F(1,5)=Ff(,5)-A(
ARG=DFL0AT(KKL)*DA
TCH=DSIN TARG)/DFLO
F(I,5)=F(I,5j)-A(N)



1 u C C SUBROUTINE CONST
2C 0 C
36 U C
40 C C THIS SURR OUTINE COMPUTES THE
500 C COMOINATIONS OF ELASTICITY CONTANTS
63 C C REQUIRED FOR LVALUATION OF THE CHOSEN
7u C INFLUENCE FUNCTION. CONST IS CALLED
E c ONLY WHEN A NEW SET OF PAlAMFTERS IS
900 C REQUIRED, AS DETERMINED BY SUBROUTINE

100c C LOCATE.
1100 C
120 C
1300 SUBR OUT I NE CONS T ( IR EG, JR EG, EMOD, A ,s)
14#00 IMPLICIT REAL*8(A-H,0-7).
1500 REAL*8 KAPPAIKAPPA2,MU
1603 DIMENSION ELCOIJ(2,3)
1700 COMMON /FLAST/ GKAPPA1,MUFLCON
1800 C
190b C PARAMETERS FOR THE INFLUENCE FUNCTION FOR
20U0 C A DISLOCATION NEAR AN INTERFACE. FOR
2100 C CONVENIENCE, WE CURRENTLY ASSUME THAT THE 
2200 C REGIONS WILL SE, NUMBERED I AND 2.
2300 C

G=ELCON JREG, 3)
2530 KAPPA13 .-4. * L CON (J EG ,2)
2600 PI=3.1415926f.53569P
2700 EMOD=G/(PI*(KAPPAI+I.))
2 8 0 IF(JREG.E0.2) GAMMA=ELCON(1, 3 /ELCON(2,3)
2900 IF(JREG.LG.I) GAMMA=ELCOlN(?,3)/ELCON(l9,3)
3.00 IF(JREG.E.1) KAPPA2=3.-4.*ELCON(2,2)
3100 IF(JREG.F0o.2) KAPPA?=3.-4.*ELCON(1,2)
3 2 0 0 A=(1.-GAMMA )/(1.+GAMMA* KAPPAI)
330( 8=(KAPPA2-GAMMA*KAPPAI) /(KAPPA?.+GAMM A)
3400 C

3bC0J RETURN
36J END



C SUBROUTINE CLOSRE

THIS SUBROUTINE
THE MATRIX ELEMENTS
CLOSURE AND MATCHING

SUBROUTINE CLOSRE
IMPLICIT REAL*8(A-H,0-7)
REAL*8 KAPPA1,MU
INTEGER ORDER
INTEGER ELMNTT(2,80),ELMNT
INTEGER CDIR(6,6)
INTEGER ELMNT(6)
INTEGER COL(6,6)

100
200
300
400
500
600
700
800
900

1000
1100
1200
130C
1400
1500
1600
170)
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400

COMMON
COMMON

1,ITYPE
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

COMPUTES AND
CORRESPONDING
CONDITIONS.

INSERTS
TO VARIOUS

X(2,80),BETACLROW(6),CELMNT(6,6)

XA1(4),XA2(4),XB1(4),XB2(4),A1(4,4),A2(4,4),ALPHA(4)
XNODE(80,3),TNODE(80,3),STRSL(80,3),STRSC(80,3)
A(80,80)
COEFF(80),SIGMA(80),ACART(80,3)
ALOC(80,3),ELCON(2,3)
C(6,6)
ZETA(2,80),NPTS(4)

/SIZE/ ORDER*NELMNTtNXNODE*NTNODE
/CLOSE/ AlA2,ALPHACLROWNCCCELMNTCDIRCOLC

(10)
/LNDPTS/ XA1,XHIXA2rXB2,THETA
/AKPING/ XN0DFTN0DEELMNTTELMNTX
/ARRAYS/ ASIGMACOEFF
/OUTJ STRSLSTRSCALOCACART
/ELAST/ G1,KAPPA1,MUELCON
/GP/ ZETANPTS
/0OF/ IDOF

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION

I\)



3500 SIN(Q)=DSIN(Q)
3600 COS(Q)=DCOS(Q)
3700 ATAN(Q)=DATAN(Q)
3800 SQRT(Q)=DSQRT(O)
3900 C
4000 PI=3.1415926535898
4100 00 1000 ICC=1NCC
4200 ICLC=ITYPE(ICC)
4300 GO TO (100,500,700,830),TCLC
4400 C
4500 C
4600 C
4700 100 CONTINUE
4800 C
4900 C NET ENTRAPPED DISLOCATION=O:
500 C
5100 DO 10 J=1,ORDFR
5200 A(CLROW(ICC),J)=0.
5300 10 CONTINUE
5400 SIGMA(CLROW(ICC))=0.
5500 DO 20 L=1,4
5600 JEL=CELMNT(ICCL)
5700 IF(JEL.EQ.0) GO TO 25 a
580 j JJ=O
5900 DO 19 J=1,NFLMNT
6000 00 18 BETA=1,IDOF
6100 KMAX=ELMNTT(Jt1)+1
6200 DO 16 K=2,KMAX
6300 JJ=JJ+1
6400 IF(tJ.EQ.JEL).AND.(D[ETA.FQ.CDIR(ICCL))) A(CLROW(ICC),JJ)=SQRT((XB
6500 11(JEL)-XA1(JEL))**2+(XB2(JEL)-XA2(JEL))**2)*Pl/(2.*ELMNTT(JELS1))
6600 C
6700 16 CONTINUE
6800 18 CONTINUE
6900 19 CONTINUE



0 000

7000 20 CONTINUE
7100 25 CONTINUF
7260 GO TO 1000
7300 C
7400 500 CONTINUE
7500 TEST=5000.
7600 TEST1=5000.
7700 C
7800 00 510 J=1ORDER
7900 A (.CLROW( ICC),J)=0.
8000 510 CONTINUF
8100 SIGMA(CLROW(ICC))=0.
8200 C
8300 C MATCHING CONDITIONS FOR bRANCHED CRACKS:
8400 C
8500 C
8600 JJ1=NPTS(1.)
873a JJ2=1
8800 PHI=PI/2.
8900 THETA=PI/2.
9000 ARG=(XB2(2)-XA2(2))/(XB1(2)-XAI(2))
9100 ARG1=(XA2(1)-XA2(1)) /( X(1(1)-XA1t 1))
9200 IF(XA1(2).NE.XB1(2)) PHI=ATAN(ARG)
9300 THETA=ATAN(ARG1)
9400 C
9500 JJ=O
9600 DO 526 1=I,2
9100 DO 525 BETA=1,IDOF
9800 IMAX=NPTS(L)
'9900 00 524 I=lolMAX
10000 JJ=JJ+I
10100 IF ((BETA.EQ.1).AND" (L.EQ.1).AND.(I.FO.JJI)) J1=JJ
10200 IF((BETA.EQ.2).AND.(L.EO.1 )AND.(I.EQ.JJ1)) J2=JJ
10300 IFU(BETA.EQ.1).AND.(L.F0.2).AND.(l.E.JJ2)) J3=JJ
10400 IF((BETA.EQ.2).AND. (L.E0.2).AND.(I.FO.JJ2)) J4=JJ

0



10500 524 CONTINUE
13600 525 CONTINUE
10700 526 CONTINUE
10800 COL(3,1)=J1
10900 COL(3,2)=J2
11000 COL(3,3)=J3
11100 COL(3,4)=J4
11200 COL(4,1)=J1
11300 COL(4$2)=J2
11400 COL(4,3)=J3
11500 COL(4,4)=J4
11600 C(3,1)=SIN( THETA)
11700 C(3,2)=COS(THETA)
11800 C(3,3)=SIN(PHI)
11900 C(3,4)=COS(PHI)
12000 C(4,1)=COS(THETA)
12100 C(4,2)=-SIN(THETA)
12200 C(4,3)=COS(PHI)
12300 C(4,4)=-S IN(PHII)
12400 850 CONTINUE a
12500 ALNTH1=SQRT((XH2(1)-XA2(1))**2+(XB1(1)-XA1(1))**2)
12600 ALNTH2=SQRT((XF2(2)-XA2(2) )**2+(XB1(2)-XA1(2))**2)
12700 C
12800 C
12900 SIGMA(CLROW(ICC))=O.
13000 C
13100 DO 620 IK=1,ORDER
13200 A(CLROW( ICC),1K)=0.
13300 620 CONTINUF
13400 00 630 J=1,4
13500 A(CLROW(ICC),COL(ICCJ))=C(ICCJ)
13600 630 CONTINUE
13700 GO TO 1(00
13800 C
.13900 C

0 k



& 0

MATCHING CONDITIONS FOR BLUNTED
( TWO CRACK MODEL):

CRACKS.114000
14100
14200
14300
14400
114500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
.16400
16500
16600
16700
16800
16900
17000
17100
17200
17300
17400

JJ=JJ+1
IF( (BETA
IF ((BE T A
IF( (BETA
IF( (BETA

724 CONTINUE

*Eo
.EQ

.EG

.1)

.1)

.2)

.2)

AND.
AND.
AND.
AND.

L.FO.2) .AND)
L.E02)*AND

L.F0.2).AND
L.FO.2).AND

.f.JJ1) )

.EO.JJ2))

.EQ. JJ1))
E0o.JJ2))

GO TO 719

J1=JJ
J2=JJ
J3=JJ
J4= tIJ

700 CONTINUE
NMAX=NPTS(2)
DO 720 N=2,NMAX
J=ELMNTT(2,N)
K=ELMNTT(2,N*1)
IF((TNODE(J,2).GT.0.).OR.(TNODE(K,2).LT. 0.))
JJ1=N-1
JJ2=N

719 CONTINUE
720 CONTINUE

FACTOR=SORT(1.-ZETA(2,JJ1)**2)
C(3,3)=1./FACTOR
C (4,3)=1 ./FACTOR
FACTOR=SQRT(1.-ZETA( 2, JJ2)**2)
C(3,4)=1./FACTOR
C(4,4 )=1 ./FACTOR
FACTOR=SQRT(1.-ZETA(1,NPTS(1))**2)
C(3,1)=1./FACTOR
C(3,2)=C.
C(4,2)=1 ./FACTOR
C(4 ,1)= .
JJ=0 -
DO 726 L=1,2
DO 721 HETA=1,IDOF
IMAX=NPIS(L)
DO 724 1=1,IMAX



727 CONTINUE
726 CONTINUE

COL(393)=J1
COL(3,*4)=J2
COL(4,3)=J3
COL(4,*4)=J4
ALNTH1=SORT
ALNTH2=SQRT

17500
17600
17T00
17800
17900
18000
18100
18200
18300
18400
18500
18600
18700
18800
18900
1900 0
19100
1920 0
19300
194 00
19500
19600
19700
19800
19900
20000
20100
20200
2 030 U
2 0 400
20500
2J00 C
23700
20800
20900

Do 730 J=1,4
A (CLROW (ICC) 9COL( I

730 CONTINUE
CCSJ))=C(ICCOJ)

GO TO 1000

900 CONTINUE

SIGMA(CLROW(ICC))=O.

DO 920 IK=1,ORDER
A(CLROW(ICC),IK)=0.

920 CONTINUE
DO 930 J=1,4
A(CLROW( ICC),COL( ICC

930 CONTINUE
800 CONTINUE

,J))=C( ICCS J)

MATCHING CONDITIONS FOR BLUNTED
(THREE CRACK MODEL):

CRACKS

THETA=3 *14 15926535898
IF(XA1(2).NF.X81(2)) ilfTTA=DATAN((XA2(2)-X82(2))/

1(XA1(2)-X01(2)))
PHI=THETA
NMAX=NPTS(2)

((XB2(1)-XA2(1))**2+(XD1(1)-XA1(1))**2)
((XB,2(2)-XA2(2))**2+(XB1(2)-XA1(2))**2)



00 977 1=1,4
00 977 J=1,6
C(I ,J) =.

977 CONTINUE
DO 520 N=2,NMAX
J=ELMNTT(2,N)
K=ELMN T(2,N+1)
IF((TNODE(J,2).GT.0.).OR.(TNODE(K,2).LT. 0.))
JJ1=N-1
JJ2=N

519 CONTINUE
'20 CONTINUE

GO TO 519

21000
21100
21200
21300
21400
21500
21600
21T0 0
21800
21900
22000
22100
22200
22300
22400
22500
22600
22700
22800
2290 C
23000
23100
23200
23300
23400
23500
23600
23700
23800
2390 d
2400 C
24100
24200
24300
24400

Jl=NPTS (1)
J2=Ji+NPTS( 1)
J3=J2+NPTS(2)
J4=J3+NP TS(2)
J5=J4+1
J6=J5+NPTS(3)

00 683 1
COL (II ,1
COL(II,2
COL(II,3
COL(II,4
COL(IIb
COL(II6

683 CONTINUE

1=3,6
)=J1
)=J2
)=J3
)=J4
)=J5
)=J6

FACTOR=SOR T (1.-ZET A( l NPTS (1) )*A2)

DO 687 1=1
00 687 J=1
C(IJ)=0.

687 CONTINUE

0



0 S

24500
24600
24700
24800
24900
25000
25100
25200
2530 U
25400
25500
25600
25700
25800
25900
26000
26100
2620-0
26300
26400
26500
26600
26700
26800
26900
27000
27100
27200

C(391 )=1./FACTOR
C (4,2)=1.

FACTOR=SQRT (1.'-ZETA
C(53)=SIN( THETA)
C (5,4)=COS(THETA)
C (6,3)=COS (THETA)
Ct6,4)=-SIN(THETA)

FACTOR=SQRT (1.-ZETA
C(55)=-SIN( THETA)
C(56)=-COS(THETA)
C(6,5)=-COS (THETA)
C(6,6)=SIN( THETA)

Do 610 J=19ORDER
A(CLROW(ICC) ,J)=0.

610 CONTINUE
SIGMA(CLROW(ICC))=0.

DO 623 J=196
A(CLROW(ICC)tCOL(ICCJ))=C(ICCJ)

623 CONTINUE

1U00 CONTINUE
RETURN
END

(29NPTS(2) ) * *2)

(3,1 **2)



00 9

C SUBROUTINE DECOMP
C THIS SUBR OUTINE FCOMPOSES T hE SOLUTION
C. VECTOR% COEFF, INTO A TAIALE OF VALUES (ACART) OF
C "F" IN THE GLOBAL Y (COLUMN 1) AND X (COLUMN 2)
C DIRECTIONS.
C

SUJROUTINE DECOMP
IMPLICIT REAL*8(A-HO-?)
INI GFR CLROW(6 ) ,ELMNTT (498t),ELMNTX(4,O) ,ALPHA tIE TA
INTEGER ORDER
DIMENSION XNODE(8O,3),TNODF(8C,3)hSTRSL(80,3) ,STPSC(8O,3)
DIMENSION A(80,80)
DIMENSION COEFF(80),SIGMA(80),ACART(80,3)
DIMENSION ALOC(80,3),ELCOt(2,3)

C
COMMON /BKPING/ XNODE, TNODE ELMNTT , ELMNTX
COMMON /SIZE/ ORDfRNELMNT,NXODENTNODE
COMVON /ARRAYS/ ASIGMACOEFF
COMMON /OUT/ STRSLSTRSCALOC,ACART
COMMON /UOF/ IDOF'
I MAX =0
IMIN=I
I1=1.
DO 400 K=1,NELMMN1
IMAX=IMAX+FLMNTT(Ki)
DO '9 bETA=1,If)OF
DO 390 I=IMINIMAX
ACART(I,BETA)=COEFF(II)
1 1=1*1

39J CONTINUE
395F, COUTINUE

IMIN=IMA-X+1
400) CONTINUE

ITURN -
END

0



100
200
1000

110L

130 0

400

500

1600
T700

9 0 0 U

1000
1100
1200
1300
1400
1506
1600
1700
1800
190 0
2000
2100
2200
2300

250 0
2600

2 00
2900
3006
3100
32d0
3306 C
3400 C

IMPLICIT REAL*8(A-Hi0-7)
REAL*4 XY(2,400),XSCL(4)
DIMENSION XC(400,3),F(40O,5)

ITK=l
00 10

,TNODE(80, 3)

IXC=1 ,NXC

IF(( (XC ( IXC 1).6T. GTNODE ( ITK,1)) .OR.
1(TNODE(ITK,1).CT.XC( IXC+1,J I)).OR.(ITK. GT. NTNODE))
2GO TO 10

WRITE(26,400) ITK
400 FORMAT9 * ,'ITK=',14)

F(ITK,3)=((XC(IXC+2,1)-XC(IXCo1))*(F(IXC+1,2)-F(
1+(XC(IXC1l,1)-XC(IXC-1,1))*(F(IXC+2,2)-F(IXC,2))
2 (2.0*(XC(IXC+1,1)-XC(IXC-1,1))*(XC(IXC+2,1)-XC(

I XC-1,2))

I XC , 1)))

IF(ITK.GE.NTNODE) GO TO 20
ITK= ITK+1

10 CONTINUF
26 CONTINUE

C SUBROUTINE DIF2
C
C THIS SUBROUTINE COMPUTES THF DERIVATIVE
C OF A FUNCTION dY AVERAGING OF FINITE DIFFERENCES.
C THF DIFFERENTIATION IS DONE SEPARATELY ON EITHEF
C SIDE OF THE ORIGIN IN ORDER TO PRESERVE SLOPE
C DISCONTINUITIES.
C

SUBROUTINE DIF2(XCF ,NXC ,TNODE ,NTNODE)



3500) p
363 6 00 30 I1=sNTNODF
370 CXY(1,l)=TN0DE(1,1)
3600 XY(2,T)=F(1,3)
390C 30 CONTINUE
4000 C
4160 ISCL=-2
4200 XSCL(1)=-I.0
430u XSCL(2)=l.0
410C XSCL(3) -20.
4500 XSCL(4)=20.
4600 C
4700 CALL QPICTR(XY,2,NTN0DEGQX(1))
4800 C
496f WRITE(13,356) ((XC(I1,JJ),JJ=1,3),(F(IIeJK),JK=1,5),
5'0 0 111=1,200)
5130 356 FORMAT($ ',8E15.4)
5200 C
5306 RETURN
5400 END -



,10 c SUBROUTINE DIFF
200 C
303 C THIS SUbROUTINE DIFFERENTIATES A FUNCTION
400 C BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS,
50u C THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF
660 c SELECTED SIZES. THE DIFFERENTIATION IS CARRIED
7Ou C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN
80 u C ORDER TO PRESERVE SLOPE DISCON-TINUITIES.
900 C
100 SUBROUTINE DIFF(XYNX,NDERIV)
1100 IMPLICIT REAL*8(A-HO-Z)
1200 C
1300 DIMENSION X(400,3),Y(400,5) YTFMP(400),NDX(2)
1400 DIMENSION IMIN(2,2),IMAX(2,2).XNEW(4O003),YNEW(4O0,5)
1500 DIMENSION INTSZ(400) ,INTMID(400)
160.0 DIMENSION NDR(2)
1700 C
180 0 COMMON /DIFPAR/ NOR, INTSZ9INTMID
1900 C
2000 WRITE(10,500)
2100 b00 FORMAT(///)
2200 NDX(1)=NDR(1)/2
23U0 NDX(2)=NDR(2)/2
2400 IMIN(1,1)=1
2500 IMAX(.191)=160
26dC IMIN(2,1)=161
2700 IMAX(291)=320
2800 IMIN(1,2)=1
2900 I'MAX(1,2)=160
300 - IMIN(2,2)=161
31 u 0 IMAX (2,2) =320
3200 C
330L C
310 0 DO 100 JDERIV=INDERIV



0 9 0

IDER IV=JDER I V*
INT0=1
ISTART=l

Do 95 ISIDE=I,2
IN T 1IN T 0+ NDX ( JDE R I V )-1

360 0
3700
3800
3900
400 0
410r0
4200
4 30 0
4400
A 50 0
4600
4700
4800
490 0
5000
51606
5 20 G
5300
5400
5506
560 0
5700
58 0 0
5900
& b G 0
610G
6200
6 30 0
6400
650 0
6600
670 %
6800
6900

IF(ISIDE.NE.1) GO TO 30
H=X(2,1)-X(1,1)
ILO=1
IHI=IMAX(1,JDERIV)-1
DO 20 I=1ILO,I1HI
YTEMP(I)=(Y (I+1,JDER IV)-Y(ItJDERIV))/I

20 CONTINUE
GO TO 50

36 CONTINUE
IF(ISIDE.NE.2) GO TO 40
ILO=IMIN(2,JDER IV)+1
IHI=IMAX(2,JDERIV)
DO 40 I=1L0,1I1
YTEMP(I)=(Y(l JDER IV)

40 CONTINUE
-Y(I-1,JDERIV))/H

50 CONTINUE
WR IT E (10,910) JOFR I V , IS IDE EI LO s IHI

510 FORMAT( It JDER IV=*, 12, TSIDE= *, 12,ILO =e13,'IHI=',13)

COMPUTE AVERAGES

00 70 INT=INTO,1NTI
SUM=O.
ISTOP=ISTART+INTSZ(INT)-1

COMPUTE DERIVATIVE

0 -



0 0

7000
7100
72C00
1300
740 U
1500
7600
7700
7800
7900
8000
8100
8200
830 U
84 0 6
6500
8600
8 700
6800
8900
9000
9100
9200
930 0
9400
9500
9600
9700
9800
9900

10000
10100
1 J2OU
1.0300
10 00

WRITE(10,520) JDERIVISIDE
520 FORMAT(e 1,'JDERIV=1,12,0I

1tISTART=*,I3,*ISTOP=*,3)
ISTART=ISTOP*

70 CONTINUE

,INT0 sI
S IDE?:*,

GO TO 55

GO TO 6

IMID=ISTART+INTMID(INT)-1
IF(( INT*NE. INT)) .OR.( IS I-DE.NE.'1))
ISTOP=ISTART+TNTSZ(INT)-2
IMID=ISTART+INTMID(INT)-?

55 CONTINUE
IF((INT.NE.INTO).OR*(ISIDE.NE.2))
ISTART=IMIN(2,JDERIV)+i
ISTOP=ISTART+INTSZ(INT)-2
IMTD=ISTART+INTMID(INT)--2

60 CONTINUE
DO 65 I=ISTARTISTOP
SUM=SUM+YTEMP(I)

65 CONTINUE
Y(INTIDERIV)=SUM/DFLOAT(ISTOP-IS
X(INTTDERIV)=X(IMID,1)

INTO=NDX(JDLRIV)+1
95 CONTINUE

DO 97 11=1,320
XNEW(II, )=X(II,1)

97 CONTINUE

CALL TRANS3IXYNDR(JOEPIV),XNfWYNEWd20,40,400,IDERIV)
00 98 11=1,320
Y(IIIDERIV)=YN4EW(II,1)

98 CONTINUE

TART+ 1)

NT1 ISTARTISTOP
12,*INT0=',I3,'INT1'=,13,



1050U 10b CONTINUE
1U60B C
16700 RETURN
10800 END

I-



0 0

10C C SU[ROUTINE DUMP

THI S SUBROUT INE WRITES OUT ALL OF THE
INFORMATION NEECED TO RESTART THE RUN
FROM THE CUPRENT STATE.

SUPR OUT
IMPLICI
INTEGER
INTEGER

200
3000

5100

600J
70 0.

900
100 0
110 0
12 0 9
1300
140 0
1500
160b

180 [

19t0 0

2210
2 2 9 0

24 "1
2500
2600
2706

2 6U I 7

3020 "'1
3100
320 U
3300
3'100 I

COMMON
COMMON
COMMON
COMMON
COMMON

INE DUMP
I PEAL*8(A-HO-Z)
ORDER,TSTEP
ELMNTT(4,80),ELMNT X(4,8(,)

STRSL(80,
ACART(80,
XNjo0E (80,
XA1(4) ,Xb'

3),STRSC(80,3),ALOC(83,3)
3)
3) , TNJODE (80 , 3)

1(4),XA2(4),XB(?4)

/TIMF/ TSTAPT,TFINJ,(DTTSTEPT
/OUT/ STRSLSTRSCALOCACART
/SIZE/ ORDERNELMNTNXN0DENTNODE
/iKPING/ XN0DiE ,TIOf)EFELtTTefLMNTX
/ENDPTS/ XA1,XB1, A2,X?,TiETA

WRITE(8,100)
WRITE(8,200)
WRITE(B, 300)
WRITE(8,300
WRITE(8,350)
WRITE(8*350)
WRITE(8,400)
WRITE(8, 400)
WRITE(8,400)
4 RIT E(8,400)

TSTrfPNXNODE ,NTNODL
(STRSL (II, JJ) , JJ=1,3) , I =,NXNODE)
(XMIODEf(IIJJ),JJl=1,3),il=1.N4XN0DEj)
( T NODE ( I ,JJ) ,JJ=1, 3), II=1,N T NOD)E )

(ELMNTA(IIJJ),II=1,4)JJ=1,80)
(ELMNTT(IIJJ),11=1,4),JJ=180)
XAI1I),II=1,4)
XA2(II)oII=1,4)
Xli (11), 1=1, 4)
Xl2(I I), I1=1,4)

160 FORMAT(' e,Elb.4,312)

DIMENSION
DIMENSION
DIMENSION
DIMENSION



FORMAT($
FORMAT(*
FORMAT($
FORMAT($

9 3E 5.4)
, 3E15.4)

',412)
* ,4F15.4)

RETURtN
END

2 60

350
400 D

35J
3600

3600
390 c

41G00



C FUNCTION F
C
C THIS SUBPROGRAM COMPUTES THE APPROPRIATE
C VALUE OF THE INFLUENCE FUNCTION FOR A
C DITLOCATION NEAR AN INTERFACE.

10 0
200
30 0
40 0
4 03 0

60 U

8 00

910 0 a

1100

1200
1300
1406
1500
1600
1716
1800
1900

2000

2100

2300

2400

2 'u

2800

31000

3100

3200
3500
3400

COMMON
COMMON
COMMON

/HKPING/
/START/
/ENDFTS/

XNODFINODE
IOLD, JOLD
XAlXP1,XA2

,FL.MNTTFLMNTX

* XfD2 ,TH$ETA

SIN(O)=DSIN(0)
COS(Q)=0COS(Q)
ATAN(Q)=DATAN(0)
SQRT(O)=DSQRT(0)
ABS(Q)=DADS(Q)

=XNODE(ELMNTX(
=XNCDE(ELMNTX(
=TN(DE(ELMNTT(
=TNODE(ELMNTT(

SURF,RR),1)
SURF ,RR ) ,2)
,K), 1)
,K) ,2)

CALL CONST(IRFGJREGEMOD,

CALL LOCATE(TJREG)
CALL LOCATE(XIREG)
IF((IREG.NE.IOLD).AND.(JREG.NE.JOLD))

1AB)

REAL FUNCTION F*8(J,K,ISURFRRALPHABETA)
IMPLICIT REAL*8(A-HO-Z)
INTEGER RR
REAL*8 MU
INTEGER ALPHABIETAELMJTT(4,80),ELMNTX(4,80)
DIMENSION X(2),T(2),XNOiF(80,3),TN00F(80,3)
DIMENSION XA1(4),XHl(4),XA2(4),Xb?(4)

X(1)
X(2)
T(1)
T(2)



0 0

350 0
3600
3700
3F0 0
399 L'
4000
410 0
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5601J
5700
58 0 0
590 
600fla
6100
620L
630 Li

64 0 u
6 0 0

670 L
6£800
6900U

TANGENT IAL DISLOCATION:

BX=1.
HBY=.-

15 CONTINUE
RMOD=E MoD
AA=X1/R1**2
BB=X2/R2 **2
0D=Y2/R2**2
CC=Y1/R **2

s y y

SA=6X*E V0D*(?.*CC*(2.*X1*AA-1.)+(3.*A - -4.*A*XC/1'2**

X1=X (1 ) - T (1)
Y1=X(2) -T(2)
Y2=Y1
C=T ( I1)
X2=X1-2.*C
R1=SQRT(X1**2+Y1**2)
R2=SQRT ( X2**2*Y2**2)
C=ABS(C)

IF(BETA.NE.1) GO TO

NORMAL DISLOCATION:

BX=0.
BY=1.
60 TO 15

10 CONTINUE



0.

SB=BY*EMOD*(2*(3.-.*XI*AA)* A A- -5.*A+1-4.*A*X2B8)*B4**C/P2*
1*2)*(1.-8.*X2*BB+8.*X2*X2*6B*BH+2.*C*B* (3.- .*X2*li)) )

SYY=SA+SB

Sxx

701 u 0
710 [J
7200
7300
740 0
7500
7600
*7 0
780 *9
7900
800 0
8100
820 0
8300
8400
8500
660 0
870 b
880 0
890 a
900 0
910 0
9200
930 0
940
95 : U
960o
970 U
9800
990 0

1 (1 00 0
10100
1200
10300
1 140 C

(4 * AC / R 2 * *2
(6.-8.* X2*b I,.)

SXX=SA+SB

SXY

SA=BX*EOD*(2.*AA*(2.*uX1*AA-1.)4(3.*A-B-4*A*X2*fBB
12 )* I1.*- 8.** X 2 *BBH+8.9*bu* * 2+ 2.o*C * bB* (3 .- 4.e* X2 * HB) ) )

) *PB- (4 .* A *C/i2**

SB =BY*EMOD*(2.*CC*(2.*X1*AA-I.)+(p+A-4.A*X2* BB1)*DD+(2.
1* ( 4 *X2*DD-8. *X2** 00(1 -2. *X2*fIt)+?. *+ ** (1.-4.*BB)) )

* A * C / P 2 * *2)

SXY=SA+SB

STRESS TRANSFORMATION:

THETA=3.1415926535898/2.
IF(XB1(ISURF).NE.XA1(ISURF)) TH[TI=ATA ( (XB2(ISURF)-XA2(ISURF)

1)/(XBI.(ISURF)-XA1(ISURF)))
T HET A=T HLT A+3. 14159265 3569 12.

IF(ALPHA.NE.1) GO TO 20
SIGMA NN:

F=.5*(SXX+SYY)+.5*(XX-YY)*COe(2.*THETA)+SXY*SIN(2.*THETA)

SA=BX*EMOD*(-2.*CC*(2.*X1*AA+1.)(A+4F+4.*A* X2*BB)* Pb-
) (2.*( 2.*X2*B'B-1. )-(3.A -4. *X2*0 () *4. *BF*X2+ (?. *C*fiS)

.0 0



1u509 GO TO 30
1U600 20 CONTINUE
107l00 C
1u" 0 F=-.5*( SXX-SYY) *SIN(2.*THFT A)+SXY*COSf 2. *TilE[TA)
10900 30 CONTINUE
11000 RETURN
11u10 END

S



C SUBROUTINE INTEG
C
C THIS SUOROUTINE COMPUTES THE
C' FUNCTION EITHER BY THE TRAPEZOIDA
C METHOD SHOWN IN D. R. PETERSEN'S
C FITTING WITH A CHEBYSHEV SERIES.

INTEGRAL OF
RULE OR FY
.M. THESI7,

10 0
200
300
400
500
600 c
706
800
900

1000
110
1200
1300
1400
1500
160 u
1100
.1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400

10 I

IF(ICHCLNE.1) GO TO 20
SUM=0.
00 10 I=2,NTNODE
DX=TNODE (I,1)-TN00E (I-1,1)
SUM=SUM+DMUCHK(I,1)*[)X-.5*
DDCHK(I.1)=SUM
CONTINUE
GO TO 1000

20 CONTINUE
DO 30 I=1,NTNODE

CPLOT A(1,I)=TNOOE(I,1)
CF LOT A(2, I )=DMUCHK 1,1 )

TAB(1,1)=DMUCHK(1,1)*DSQRT
30 CONTINUE

C
CALL CHEBY(TNODEXCNTNO0E
1 2,F,80,400,1)

A
THE
INVOLVING

SUBROUTINE INTEG(OMUCHKD0CHKTNODENTNODE,XC
IMPLICIT REAL*8(A-HO-Z)
REAL*4 A(2,400),B(2,400)
REAL*8 TNODE(80,3),DMUCHK(80,1),XC(400,3)
REAL*8 DDCHK(IROW,1),TAB(80,3),F(400,5)

COMPUTE INTEGRAL OF D(MU)/DT=D(DELTA)/DT:

,NXCICHCEIROW)

(DMUCHK(I,1)-OMUCHK(I-1,1))*DX

(1 .-TNO0fE1, 1) **2 )

, NXC, TABi,NTNOD E, NTNODE,



3500 00 40 1=1,NXC
360(1,)XC(1,1)
3700U(2, F(,5)
3800 DDCHK(I,1)=F (1,5)
3900 40 CONTINUE
4000 CPLOT CALL QPICTR(A,?NTN00EOX(1))
4100 CALL QPICTR(B,2,NXCCX(1))
4200 C
4300 1000 CONTINUE
4400 STOP
4*5G.0 END



C SUBROUTINE INTERP
C
C THIS SUBROUTINE COMPUTES THE
C DISLOCATION DENSITY ON CRACK NO.
C IN FUTURE QUASI-STATIC COMPUTATI
C

SUBROUTINE INTERP(ALOCTNODENTN00EMU)

OPEN IN G
1 FOR USE

ONS.

IMPLICIT REAL*8(A-HO-Z)
REAL*8 MU(80,3)

DIMENSION ALOC( 80,3),TNO0E(80,3)
DIMENSION XA1(4),XB1(4),XA2(4),Xf)2(4)
DIMENSION ZETA(4,80),NPTS(4)
COMMON /ENDPTS/ XA1,XEl, A2, b2, HE A
SQRT(G)O=SQRT(Q)

00 10 I=1,NTNODE
MU( IN)=ALOC(1,1)/SORT(1.-ZETA(1,I)*2ETA(1,1))

1u' CONTINUE

RE T U R N
LND



0 0

C SUBROUTINE LGRNG
C
C THIS
C F UNCTIO1N

SLIfiRROUT1INE LOCALLY INTERPOLATES A
WITH LAGPANGIAN INTERPOLATING POLYNOMIALS.

1 0 C200

300
0 0

500
600
7oo
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
29000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
330
3400

10
26

ICNT=1
LIM=I-DIM-1
DO 1.0 I=1,LIM
IF(Y(I,1).LE.XBAR.
CONTINUE
IBAR=I
IF(XBAR.LE*.X(1,1))
IF(XBAR.GF.X(IDIM,

IDIM, IDEtE , O0W)

AND.XBAR.LE.X(I+1,1)) GO TO 20

IBiAP=1
1)) 1BAR=IDIM-1

TEMP=O.
IMIN=IBAR
IMAX=IBAR+1

2b ISWTCH=0

30 DO 50 I=IMIN,IMAX
L(1) =1.* 0
DO 40 J=IMINIMAX
IF(J.EQ.I) GO TO 40
LA(I)=L(I)*(XBAR-X(J,

49 CONTINUE
50 CONTINUE

YBAR=O.
00 60 1=IMIN,IMAX
YBAR=YBAR+L(I)*Y(1,1

SUBROUTINE LGRNC(XY,XBAR ,YBAR,
IMPLICIT RFAL*8(A-HO-7)
REAL*8 L(400)
DIMENSION X(IROW,3),Y(IROW,3)

1))/(X(191)-X(Jll))



3500 60 CONTINUE
3600 C
3700 IF(ABS(YBAR-TEMP).LE..001) GO TO 90
380 0 IF(ICNT.EO.IDEG) 60 TO 90
3900 ICNT=ICNI+1
4000 TEMP=YBAR
4100 ISWTCH=ISWTCH1~
q4200 IF(ISWTCH.EO.2) GO TO 71
4300 IF(IMIN.EO.1) GO TO T0
4400 69 IMIN=IMIN-1
4500 GO TO 30
4600 C
4700 7C IF(IMAX.EQo.IDIM) GO TO 80
4800 IMAX=IMAX*1
4900 GO TO 25
5000 C
5100 80 IF(IMIN.EO.1) GO TO 90.
5200 GO TO f9
5300 C
5400 90 CONTINUE
5500 RETURN
5600 END



C SUBROUTINE LOCATE
C
C THIS
C REGION A

SUBROUTINE
POINT WITH

IN.

SUBIROUT INE LOCATE( TT,IREG)

100
200
300
430
500
60 C
100

900
1u00
1100
1200
1300
14 00
1500
160 0
1700
180 0
190 Q
2000
2100
2200
2300
2400
2500
2600
2T00
2800
2900
3000
3100
3203
3300
3400

DETERMINES WHICH MATERIAL
GIVEN COORDINATES IS LOCATED

REAL*8(A-tl,0-Z)
TYPE(5)
N RLOC(5,3)
N TT(?)

COMMON /REG/ RLOCTYPENREG

T=TT(1)
0 100 I=I,NREG
LINE=TYPE(I)
GO TO (10,20O30,40,50),LINF

INFINITE SPACE:

10 CONT INUE
IREG=I
GO TO 100

HALF PLANE:

20 CONTINUE
IF((RLOC(I,
IF((RLOC(Ie
GO TO 100

2).GT.0).AN.(T.GE.RL0C( 1,)))
2).LT.0).AND.(T.LE.RLOC(I,1)))

I RG=I
I REG= I

30 CONTINUE

IMPLICIT
INTE GER
DIMENSIO
DIMENSIO



350G 40 CONTINUE
3600 50 CONTINUE
3700 C
3800 100 CONTINUE
3900 RETURN
40 0 U END

CA



C SUBROUTINE MATRIX
C
C THIS SUBROUTINE COMPUTES THE tATRIX
C FOR PLANE STATIC CRACK PROBLEMS.

10 G
200
300
400
500
600

700
900

1000
110
1 20 0
1300
1400 (
150 0
1600
1T0 0
1800
190 C
2600
2100
2200
2360
2400
2500
2630
2700
2800
2900
3006
3100
3200
3300
34 (6

DIMENSION
DIMENSION

XNOE (80,3), TNO0F(80, 3) ,STRSL (80
A (80,80)

DIMENSION COEFF(80),SIGMA(80),ACART(80,3),
DIMENSION XAl(4),XB1 (4),XA2(4) , X82(4)

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

, ALPHlAL3ETA

, 3), c T R SC(80,3)

ALOC(P0,3)

/ENDPTS/ XAIXtIXA2,XB2,THlETA
/UKPING/ XNODETN0DEELMN4TTELMNTX
/SIZE/ ORDERNLLMNTNXNODENTNODE
/ARRAYS/ ASIGMACOEFF
/OUT/ STRSLSTRSCALOCACART
/DOF/ 1OF
/NONDIM/ NONGAM, NOND FL , NONP, NONMt, T AUC

SQRT(Q)=DSQRT1Q)

II=0
00 105 IEL=1,NELMNT
RMAX=ELMNTX(IEL,1)*1
00 100 ALPHA=1,ICOF
D0 95 R=2,RMAX
11=11+1
JJ=0

SUBROUTINE MATRIX
IMPLICIT REAL*8(A-H,0-7)
REAL*8 NONGAMNONDELsIONP ,NONMU
INTEGER CLROW(6),CLMNTT(4,80) ,ELMNTX(4,80)
INTEGER ORDERRRMAX



0 0 0

3500 DO 90 J=1,NELMNT
3600 00 85 BFTA=1, IDOF
310 0 KMAX=ELMNTT(J,i)+1
3800 DO 80 K=2,KMAX
390G JJ=JJ+
4006 C
4100 SCALE=(XB1(J)-XA1(J))**2*(XFB2(J)-XA2(J))**2
420 0 A(II, JJ)=3.1415926533898*F (J,K, IEL, RALPHIAET A)* SOR (SCAL E)

4300 A(IIJJ)=NONGAM*A(IIJJ)/(2.*ELMNTT(J,1))
4400 C
4506 80 CONTINUE
460u 85 CONTINUE
4T00 90 CONTINUE
4803 95 CONTINUE-
4900 IIII+1
b06 0 100 CONTINUE
5100 105 CONT INUE
b203 RETURN
5300 END

00



C SUBROUTINE MOVFL
C
C THIS SUPROUTINF PERFORMS THF COMPUTA TTON5
C FOR THE QUASI-STATIC FLUID FRONT ADVANCF"ENT
C PROBLEN (STATIONARY CRACK). NOTE Th A T THE CNIY
C OPTION CURRENTLY SUPPORTED TS ALPHA=1.0
C
C

SUBROUTINE MOVFL(14U,BB)
C

IMPLICIT REAL*8(A -HO-Z)
REAL*8 M(80,80),?11(P0,80) ,M2(8O,8O),H3(8O,8O),M4l(R&,8O)
REAL*8 M5(8O,8O), ,MU(80,3),M6(83,80),KAPPA1
REAL*4, XY(2,8u),XSCL(4),DUMMY
INTEGER R,S,ORDERELMNTTELNTX,,TSTEP,RNDEXPRFPNTRFCOL

100
200
3i0
400
500 -
600
730
800
900

1000
1100
1200
1330
1400
1500
1600
1700'
1830 3
1900
2000
2100
2200
2300
2400
2500
2630
2700
26& 30
2900
3036

3200
3300
3400

COMMON
COMMON
COMMON
COMMON
COMMON

AC 80,80) ,APRTIIE( 80, 8) ,B( 80, 8) ,TFMP2( 80 ,PO) ,DDETJDT UVI
C(80,80),CPRIME(8
F(80,80) ,G( 80,80)
DELTA1( 80) ,PF( 80)
BB(80,80 ),YNODE(8
DEL1(80 ,0) ,DELO(
B1( 80,80),BPRI M1(

,HI( e ,80) g,-A(80),80),oT(80,80),DELTA0)(,,)
,P1(80),TEMiP( 80,80) ,TEMP4V1(80,80)
0,3),RR(80),YT(80),D 0( ), r 18 )
830,8c) ,BiPRIMF( 80,80),PPEIME(80)
80,83)

/OUT/ STHSL(80,3) ,STRSC(80,3),ALOC(80, 3),AC APT(8P0,3)
/BKPING/ XNODE(80 ,3) ,TNODE(80,3),EIrNTT(4,80) ,FIFN TX(4,R )
/SIZE/ ORDER,NFLMNTNXNODE,NTNODE
/TIME/ TSTARTFTIMFDTTSTEP,TTME
/FILL/ LFRONT,RFRONT

. TCII(NX)=DCOS(DFLOAT(N)*DACOS(y))
TCHPR(N,X)=N*DSIN(DFLOAT(N)*DACOS())/DOFT(1.-"**2)
STGN(X)=X/DABS(X)

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION



3500 PI=3.1415926535898
3630 PBlL=1.o0
3700 C REA D(5, 1) ALPHiA,BETA ,ILI1
380U C 1 FORMAT(2F10,4l,3)
3900 ALPH A=1.
4050 ILIK=9
41)5 C *** TEMPORARY CARD.***
4200 TAUC=I.
4300 C
4400 NLNODE=MTNODF+1
4500 NMNODE=NLNODE
4630 NSIZE=2*NLNODE
4700 ICOUNT=O
4830 RFCOL=RFRONT+1
4950 C #
5000 NT2=NTNODE/2
51u0 NL2=NLNODE/2
5200 ITEST=2.*NL2
5300 IF(ITEST.LT.NLNODE ) NL2=N12+1
5400 C
5500 NM2=NNNODE/2
56;5 ITEST=2*NM2
5700 IF(ITEST.LT.NMNODE) NM2=NM2+1
5800 C
5930 CALL CONST(IREGJRFGEMOD,AARB)
6000 EMOD=2.*EMOD
6100 C
6200 DO 5 1=1,NLNODE
6300 ARG=PI*(2.*I-1.)/(2.*NLNODF)
6430 YNODE(I,1)=-DCOS(APG)
65'00 5 CONTINUE
6600 C
6730 DO 19 I=1,NSIZE
680U APRIME(IT)=1.
6900 DELO(II)=1.



DEL1(l,1)=1.
E(II)=l.
F(I,I)=1.
H (I)=1 .
SA(I,I)=1.
T(1,I)=1.

19 CONTINUE

7030
-7100
7200
730 U,
7400b
7560
7630
77JO
78U00
19900
8000

8200
830 3
8400
8500
86T0
8700
8800

9300

9400
9500
9600
9700
9800
9930

10006
10130
1230
10300
1040 3

DO 15 L=1,NLNODE
DO 15 S=1,NLNODE
A PR I ME (LS)=T CH( L -1,Y NOD E (S, 1 ) )*2./(tN L NOD)F )

15 CONiTINUE
WRITE(6, 500) ( RM( ,JJ=,S7 .I=,E7
WRITE(6,501)

500 FORMAT(4(5E15.4,/),///)
5L1 FORMAT('1*)

DO 40 R=1,NXNODE
DO 40 J=1,NMNODE
CPRI ME(R ,3)=TCHIPR( J, XN ODE(, 1) )

40 CONTINUE

RSTART=NMNODE+1
R STOP=NMNODE+NXNODE
ISTART=NMNODE+1

CALL TRANS3(XNODESTRSL, NYNODE,YNODE, PO,NLnDE,80,8P0,1)

6 CONTINUE
CALL INTEG(MU,DELTAOTNODENTNODE ,YNODE,Nl0DE,0,Fi0)
SUM=0.



0 0 0 0

10500
106 ,)3
1073u0
10800
109u0
11000
11100
11200
113i(0
114J0
11500
11603
11700
11830
11930
12000
12130
12200
12300
12430
12500
1263
12730
12800
12900
13000
131 00
13200
13330
13430
13500
13630
13700
13600
1393

ISTOP=2*NNNODF
RINDEX=0
DO 25 R=RSTARTRSTOP
RINDEX=RINDEX+1
JINDEX=O
DO 20 J=ISTART,ISTOP
JINDEX=JINDEX+1
CPRINE(R,J )=TCH(J INDEX-1
IF(JINDEX.EQ.1) CPRIME(R
CONTINUE
CONTINUE

,YNOE)(RTNDEX,1))
, J)=.5*CPR IVE( R,J)

WRITE(6,500)
WRITE(6,501)

DO 45 K=1,NTNODE
DO 45 J=1,NMNODE
C(K,J)=TCHPR(J,TNODE(K,1))

45 CONTINUE
C

RSTOP=NNNODE+NTN0DE
KINDEX=O
DO 35 K=RSTART,RSTOP
KINDEX=KINDEX+1
JINDEX=O
DO 30 J=ISTART,ISTOP
JINDEX=JINDEX+1
C(K,J)=TCII(JINDEX-1,TNODE(KINDFX,1))
IF(JINDEX.EQ.1) C(KJ)=.5*C(K,J)

3Q CCN TINUE
35 CONTINUE

WRITE(6,500)
WRITE(6,501)

20
25

9 0

((CPR IMF (I IJJ),jJJ=1,rNS IZFI141

((C(II,JJ),JJ=1,NSIZE),II=1,NS;IZP)



DO 65 J=1,NNOI)E
DO 60 K=1,NNNODE
D(J,K)=2.*TCi(J, YN ODE (K, 1))/NLNIODF
CONTINUE
CONTINUE

14000
14100
14200
14300
14400
14500
1463)
1470
14800
149 00
15000
15130
15200
15300
15400
15500
15600
15730
15800
15930
16000
16130
16200
16300
16433
16500
16630
16700
16800
16930
1700

17100
17230
17300
174 JO

1,YNODE(KINDEX,1))/NLNODE

WRITE(6,500)
WRITE(6,501)

DO 50 K=1,NNNODE
DO 50 L=1,NLNODE
E(KL)=TCHIPR(L,YNODE(K,1))

5C CONTINUE
WRITE(6,500) ((E(IT,JJ) ,JJ=1,NSIZE),TI=1 ,NST7F)
WRITE(6, 501)

DO 55 L=1,NLNODE
DO 55 S=1,NLNODE
F(LS)=TCH(LYNODE(S, 1))*2./NLNODE

55 CONTINUE

60
65

80
85

R ST OP=2* N NNODF
ISTOP=2*NMNODE
JINDEX=0
DO 85 J=RSTART,RSTOP
JINDEX=JINDEX+1
KINDEX=O
DO 80 K=ISTART,ISTOP
KINDEX=KINDEX+1
D(JK)=2.*TCH(JINDFX-
CONTINUE
CONTINUE

1 0

((D(IIJJ),JJ=1,NSIZE ),II=1,NSIZF)



WRITE(6,500)-((F(II,JJ),JJ=1,NSIZE),TI=1,NSIZF)
WRITE(6,501)

DO 75 S=lNLNODE
DO 70 Q=1,NLNODE
H(SQ)=0.
SA(S,0)=0.
T(SQ)=0.

7G CONTINUE

17500
17630
17700
17900
17900
1800,
18100
18230
18.330
18400
18500
18600
18700
1860c)
18930
19053
19100
19200
19330
19400
19550
19600
19700
19600
19900
20000
20130
20200
2030
20)4'00
2050G6
20600
207U0
20800
23900

75 CONTINUE
WRITE(6,500)
WRITE(6,501)
WRIT,E(6,500)
WRITE(6,501)
WRITE(6,500)
WRITE(6,501)

((H(II,JJ),JJ=1,NSIZF),T=1,NSJ7F)

((SA(II,JJ),JJ=1,JSTZE),T=1,NSTF)

CALL MULT(DNSIZE,1SIZE,SA,ST7E,NSIZE,M1,TR)

CALL
CALL
CALL

MULT(TNSIZE,NSTZE,E,NSIZF,NSTZF,TEMPTFR)
MULT(TEMPNSIZENSIZrF,NSIZFNSIZE,TEM P1,TFP)
MULT(TEMP1,NSIZE.,NSIZE,Hii,NSIZrNSIZ,#2,TERi)

H(S,S)=-SIGN(YNODE(S,1))
H(SINL2)=H(S,NL2)+SIGN(YNODFE(S,1))

SA(SS)=1.
SA(S,NM2)=SA(S,NN2)-STGN(YNODF(S, 1))

T(SS)=-SIGN(YNODE(S,1))



0 0- 0

CALL MULT(CPRINE,NSIZENSIZE,DNSIZENSI'ZE,TEMIFP)
CALL MULT(TEMP,NSIZE,!NSIZE,SA , SIZE,NSTZFM3,1E7)

CALL
CALL
CALL

210C00
21100
2120.
21300
21430
21500
21600
2 170
21800
21903
2200 %
22100
22200
22300
22400
22500
22600
22700
22800
22900
23100
23100
232UO
23300
23400
23500
23600
2370u'
23800
23900
24000
24100
24200
2430u'
24400

MULT(T,NSIZENSIZE,CPRTmr,NSIZE, NSIZTF'P ,T
NULT(TEMP,NSIZE, NSTZFeMSIZENSITZ,TEMP1 ,TF
MULT(TEMP1,NSIZENSIZE,H,NSIZENSIZE,M6,IP)

TEST TEST TEST
WRITE(16,500)
WRITE(17,500)
WRITE(18,500)
WRITE(19,500)
WRITE(20,500)
WRITE(21,500)
WRITE(22,500)
TEST TEST TEST

TEST TFST
(C(II,JJ ),JJ= 1,.MNNODE),TI=1,qNqNO,)
((CPRIME(II,JJ),JJ=1,NMNOD),II=1,NNO)1

((M5(ITJJ),JJ=1,NMNODE),TTI1,NNOnE)

((M2(IIJJ),JJ=1,NTTODT),I=1,SXTODF)
TEST TEl-ST

C-

C
C

100 CONTINUE

DO 101 I=1,NLNODE
XY(1,I)=YNODE(I,1)
XY(2,I)=P0(I)
WRITE(6,467) YNODE(I,1),P0(T)

101 CONTINUE

C
CTEST
C
C
C
C
C
C
C
CTEST



24500
24600
24700
24803
2190
25 0 0'
25130
25200
25300
25400
25500
25633
25700
25800
259C'0
26000
261600
26200
26300
26400
26500
2660 )
26700
26800
26900
27000
27100
27200
27300
27403
27500
27600
2770 Q
27800
27930

DO 850 I=1,NSIZE
DO 845 J=1,NSIZE
A(I,J)=0.
B(I,J)=0.
BPRIME(IJ)=0.
G(I,J)=0.

845 CONTINUE

CALL QPTCTR(XY,2,NLNODE,0y(1))
ISCL=-2
XSCL( 1)=-1.00
XSCL(2)=1.0
XSCL(3)=- 10
XSCL(4)=1.2
CALL OPICTR(XY,2,NLN0DE,QX(1),OTSCL(ISCL),(,YSCI(XcCL))
WRITE(6,468)

462 FORNAT(2E15.4)
468 FORMAT(////)

C
XSCL(4)=1.5
DO 102 I=1,NLNODE
XY( 1 ,)=YNODE(1, 1)
XY (2,I)=DELTA 1(I)

102 CONTINUE
CX CALL OPICTR(XY,2,NLNODEOTNT(DUMMY),OX(1))

CALL OPICTR(XY,2.,NLNODE,QX(1),oTSCL(ISCL),QXSC,(XSCI))
C

DO 103 I=1,NLNODE
XY(1,I)=YNODE(, 1)
XY(2,I)=DDELDT(I)

103 CONTINUE
CALL OPICTR(XY,2,NLNoDFQTNTT(riUM' Y),QX(1))

C
IF(ICOUNT.GE.ILIM)

1GO TO 1000



850 CONTINUE28000
28100
28200
28300
28403
28500
28600
28700
28800
28900
290u0
29100
29200
2930J
29400
29500
29600
29730
2980 1
29900
30003
301 JO
30200
3 330
30400
30530
3u6C,0
30700
30803
309 0
31000
31100
31200
31330
31400

DO 115 I=1,NMNODE
A(NTNODE)=O.
A(NMNODEI)=0.

115 CONTINUE
WRITE(6,500) ((A(1IJJ),JJ=1,MSIZE),I1=1,NSI )
WRITE(6,501)

***,** COMPUTF **

FIRST QUADRANT:
DO 125 R=1,NXNODE
IF((R.LT.LFRONT).OR.(R.GT.PFRONT))

DO 120 I=1,NTNODE
IF((I.LT.LFRONT).OR.(I.GT.RFCOL))

GO TO 125

CO TO 120

DO 110 J=1,NMN0DE
DO 105 K=1,NKNODE
DELG(J,K)=0.
DEL1(JK)=0.

105 CONTINUE
DELO(JJ)=DELTA0(J)**3
DEL1(J,J)=DELTA1(J)**3

110 CONTINUE

* COMPUTE A

DO 112 R=LFRONTRFRONT
DO 112 L=1,NLNODE
A(R,L)=TCH(L-1,XNODE(R,1))
IM(L.EQ.1) A(RL)=.5*A([,L)

112 CONTINUE



0 0

31530
31600
31703
3160o
31900
32003
321Q00
322)0
323)0
32400
32530
326300
32730
326J0
32900
33000
33100
3 3200
333000
334,0
33500
33600
3370G
33b30
339)0
34000
34130
3423G
34300
3440
34500
346 3
347J0
34600
34900

B(R,I)=DSQHT(1.-TN0DE
1/((XN0DE(R,1)-TN0D(I
B(R,I)=PI*EKOD*B(R,I)

(TINDEX, 1 )**2)
IN)EY,1))**2)
/NTNof.

136 CONTINUE
135 CONTINUE

DO 137 I=1,ISTOP
P(NTNODEI)=O.

137 CONTINUE
B(NTNODE,NT2-2)=1.
B(NTNODENT2+3)=-1.

THIRD QUADRANT:
RSTART=NNNODE+1
RSTOP=2*NMNODE
RINDEX=O

B(R, I)=DSQR T (1.-T NODE(I,1)**2)
1 /((XNoTE(R,1)-TNor(F.I,1 ))**2)
B(iI)=PI*EMOD*B(R,I)/(NTNODE*TAUC)

12C CONTINUE
125 CVONTINUE

SECOND QUADRANT:
ISTART=NHNODE+1
ISTOP=2.*NMNODE
DO 135 R=1,NXNODE
IF((R.LT.LFRONT).OP.(I.,T.RFRONT)) P' TO 135
IINDEX=O

DO 130 I=ISTARTISTOP
IINDEX=IINDEX +1
IF((LFRONT.LE.IINDEX).AND.(IINDEX.LE.RPCOL).OR.

1(IINDEX.GT.NTNODE)) GO TO 130



0 9

35003 DO 145 R=RSTART,RSTOP
35103 RINDEX=RINDEX+1
35200 IF((LFRONT.LE.RINDFX).AND.(RTNDEX.LE.PPRONT).0R.
35300 1(RINDEX.GT.NXNODE)) GO TO 145
35400 B(R,RINDEX)=0.
35530 C
35600 DO 140 T=1,NTNODE
35700 IF((I.LT.LFRONT).OR.(I.CT.RFCO1)) CO TO 140-

35830 B(R,I)=DSQRT(1.-TNODE(I,1)**2)
35900 1 /((XNODE(RINDEX,1)-TNODF(I,1))**2)
36000 B(R,I)=PI*EMOD*B(RI)/(NTNOI)E*TAUC)
361)0 C
36200 140 CONTINUE
36300 145 CONTINUE
36400 C
36530 C FOURTH OUADRANT:
36630 RINDEX=O
36700 DO 155 R=RSTARTRSTOP
36833 RINDEX=RINDEX+1 U'

36930 CX B(R,R)=-1.
37000 IF((LFRONT.LE.RINDE).AND.(RINDEX.LE.BFRONT).OP.
371JJ 1(PINDEX.GT.NXNODE)) GO TO 155
37200 B(R,R)=0.
37300 IINDEX=0
37400 C
37530 DO 150 I=ISTART,ISTOP
37630 IINDEX=IINDEX+1
3773i IF(( LFRONT.L E.IINDEX ) .A D.(ITIDX .LF.RFCOI).OR .
37830 1(IINDEX.GT.NTNODE)) GO TO 150
37900 C
38000 B(R,I)=DSORT(1.-TNODE(IINDEY,1)**2)
38103 1 /((XNODE(RINDEX,1)-TNODE(IINDEX,1))**?)
36200 B(R,I)=PI*ENOD*B(R,I) /NTNOPE
38333 C
38400 150 CONTINUE



155 CONTINUE -
WRITE(6,500)
WRITE(6,501)

((B(IT,JLJ),JJ=1,NSIZE),11=1,pISTZ )

**** COMPUTE BPRTME ****

38500
386 00
38700
38800
38930
39000
39130
39200
393bO0
39430
39500
39630
39700
39803
39900
40000
40100
40200
40330
40400
40500
40630
40700
43830
4-90 0
41000
41100
41230
41300
4 140 0
41500
4 16D3
41700
4 1800
4190

TO 170

THIRD QUADRANT:
RTNDEX=O
DO 172 R=RSTART,RSTOP
RINDEX=RINDEX+1
BPRIME(RRINDEY )=1.
IF((LFRONT.LE.RINDEX).AND.(PINDEX.LE.,RFPONT))
BPRIME(R,RINDEX)=0.

172 CONTINUE

FOURTH QUADRANT:
RINDEX=0
DO 180 R=RSTART,RSTOP
RINDEX=RINDEX+1
BPRIME(R,R)=-1.
IF((LFRONT.LE.INDEX).AND.(RINEX.L,.RFFOfT))
BPRIME(R,R)=0.

FIRST QUADRANT:
DO 170 R=1,NXNODF
IF((R.LT.LFRONT).0R.(P.GT.RFRONT)) CO

SUM=O.
DO 165 I=1,NTNODE
SUM=SUM+DSORT(1.-TN0DE(T,1)**2)
1 /((XN0DE(R,1)-TNODE(I,1))**2)

165 CONTINUE
BPRINE(RR)=PI*EMO)*SUM9/(NTNODE*TAUC)

170 CONTINUE

CO T0 172

qO TO 1.80



SUM=0.
DO 175 I=1,NTNODE
SUM=SUM+DSQRT(1.-TN0DE(I

/((XNODE(RINDEX,
, 1)**2)
1)-TN0DE(I,1))**2)

175 CONTINUE -
BPRIME(RR)=PI*EMOD*SUM/NTNODE

180 CONTINUE

4200)0
42100
42200
42330
42400
42500
42600
42700
42800
42900
43000
43100
43200
43300
4 3 4'00
43530
43630
43700
43800
43900
44000
44133
44200
44300
4441'D
44500
446J30
44700
44600
44900
45006
45100
452,00
45300
145400

**** COMPUTE G ****

FIRST QUADRANT:
DO 190 R=1,NXNODE
DO 185 J=1,NXNODF
G(R,J)=O.

185 CONTINUE
IF((R.LT.lFRONT).0o.(R.T.PFROMT))
G(R,R)=EMOD*((1./(XNODr(R,1)-1.))

1 -(1./(XNODF(R,1)+1. ) ))
G(NTN0DER)=0.
G(NTNODE+1,oR)=O.

190 CONTINUE

GO TO 190

FOURTH QUADRANT:
RINDEX=0
DO 195 R=RSTART,RSTOP
RINDEX=RINDEX+1
G(R,R)=0.
IF((LFRONT.LE.RINDEX).AnD.(1vrNI)EX.LF.EFROtIT)) ('10 TO 195

DO 183 I=1,ISTOP
BPRIME(NTNODE,1)=0.

183 CONTINUE
WRITE(6,500) ((BPRTIME(II,JJ),JJ=1,NSI7F) ,IT=1,1ST7V)
WRITE(6,501)



G(R, R)=EMOD*((1./(XNODE(R IND!EX,1)-1. ))
1 -( 1./(XNODE (R INDEX ,1)+1.)) )

195 CONTINUE-

DO 196 I=1,ISTOP
G(NTN0DE,I)=0l.

196 CONTINUE

45500
45630
45700
45800
45930
46000
46100
46200
46300
46430
46500
46600
46730
46800
46900
47030
471 00
47200
47330
47400
47500
471600
47700
47830
47900
480'0
48100

48330
48400
48500
48600
48700
48800
48930

COMPUTj M4

CALL MULT(ANSIZE,NSIZFAPRIMF,NSIZE,NIT?E,M4 ,TEEP)

COMPUTE M5 **

CALL MULT(BNSIZENSIZF,C,NSIF',NSI;ZE,TE'MP,IFRP)
FACTOR=-1.
CALL MULT(FACTOR,1,1,BPRIME,NSIZE,NSIZF,TFMP1IPF)
CALL MULT(TEMP1,NSIZENSTZE,CPPIMtSI7E,NST7E,TEMr2,IEP)
CALL ADD(TEMP ,NSIZENSIZE,Tf-MP2,NSIZE,NSTZF,M5,IFP)

**** COMPUTF DT ****

IF(LFRONT.EQ.1) GO
CALL MULT(M6,NSIZE
DX=XNODE(RFRONT+1,
V=PPRIME(RFRONT)*(
DT=-DX/Y

820 CONTINUE

TO 820
,NSI7E ,PO,NT?E, 1,PPPTMF,TEP)
1)-XNCDr( RFFCN1T, 1)
DELTA0( FFRONT)**2)

**** COMPUTF M ****

*0 9

WRITE(6,500)
WRITE(6,501)



419000 C
4l91!) 0 r
49 230 FACTQR=ALPHA*DT
49300 C
49400 CALL MULT(FACT0R,1,1,lMKSI.ENSIZETEPPR)

49500 CALI; IULT(TEHPNSIZENSIVP~,M1,tJSTZE ,N-cIF TF'M.lTI ,EP)
496:)0 CALL MULT(TE$P1,tISIZE,NSTZE,DFL1NSZNS?F,T'M?,TF1.)
49750 -CALL VULT ('rEP2IN SIZE ,jSIZFM2 I S Me NSTZE,TFlwPfIFP-)
498'00 C
4i9916G C
r56000 CALL AD(~NTENIETMISZeSIEPFP
50100 C
50200 C
50300 FACTOB=FACTOR
50400 CALL MULT(FACTOB,1,1,C',NSTZFNSIZFTEtMP.TFP)5
_505)0 CALL MULTCTEMPNSIZED NSTZU, 13, 1ST?FNSTZE ,TEMP2,IrP)

50600CALLA

50700 CALL MULTf(TEMPFHST7DNEol,M2NIEoSTZ' TFMP2, TIP)
r50800 C
5U900 tALL ADD(TEKP1,1SIZF, NSIZFi,TE1P2,NSIZPN IZE, KIPP)
5103a C
5 io C ***COMPUTE RR
51200 C
51330 FACTOR=( I1,-ALPHA )DT
514 00 IF(ALPHA.KE.1) GO TO 800
51550 CALL NULT(114,NSIZENSTZR ,P0,NSTE,,PT-, IEP)
E16J0 GO TO 810
51700 800 CONTINUE
51830 C
5 193 0 CALL HULT(FACTOR ,1,1 M5, NSI7E ,NSI?E ,TFNP, IFB V
52000 CALL MULT(TEMPNSIZE,NSIZEK1,NSIZFNSI7FTFMP1,I1fP)
52100 CALL MULT(TEHPlDNSIZENSTZEDJ.0,NSIEfJST?E,PP2rIFP)
52200 CALL MULT(TEMP2,NSIZEP,rtJSIZEom&2,WNSTZE DtSIZF,T1rYPTrU)
52300 C
524)0 CALL ADD (N4 ,NSI*ZEv NSI FTY~MPN STZF,.NSTZflTFM PloTFP)



52500 C
s2600 C
52700 FACTOR=FACTOR
52800 CALL MULT(FACTOR,1,1,G,NSIZENSTZF,TEMP,TFF)
52900 CALL MULT(TEMPNSIZE,NSI7E,H3,NSIZFNSI7F,TEt4P2,TF) -
5300' CALL MULT(TEMP2,NSIZENSIZFDELO,NSIZENSIZETFlPIF))
53130 CALL MULT(TEMP,ISIZE,NSZEM2,NSIZE,NSI'TF'.,TP2,IFEF)
53200 C
53300 C
53400 CALL ADD(TEMP1, NSIZE,NSIZE,TEMP2,INSIZJENSTF,TE'MP, TEP)
53500 CALL MULT(TEMPNSIZE,NSIZ, POtSTZFe,1,RR, TEp)
53600 810 CONTINUE
53700 C
53830 c **** APPLY FOUNDARY CDNDITONS ****
53900 C
54000 DO 300 R=1,NXNODE
54100 IF((LFRONT.LE.R).AND.(H.LE.RFPNT)) CO TO 300
54200 DO 295 I=1,NSIZE
54300 M(R,1)=0.
5 4400 295 CONTINUE
5;4500 IF(R.LT.LFRONT) M(RR)=1.
54630 IF(R.GT.RFRONT) M(PR+2)=1.
54700 RR(R)=0.
54003 30 CONTINUE
54900 DO 671 JJ=1,NSIZE
55000 M(NSIZE-1,JJ)=0.
551503 M(NSIZE,JJ)=0.
55200 tM(NMNODE,JJ)=0.
55300 671 CONTINUE
55400 M(NSIZE-lNLNODE+1)=1.
55500 M(NSIZENSIZE)=1.
55600 RR(ISIZE-1)=0.
55730 RR(NSIZE)=0.
55800 C
55900 M(NMNODENM2)=1.



RR(NNNODE)=PBHiL
WRITE(6,500) (MIJJ1NIFI1TIF
WRITE(6,501)
WRITE(6,500) (RR(IT),II=1,tSI7E)

56090
56100
56200
56300
56400
56500

56700
56800
56930
57000
57100)
57200
57300
57400
575J0
57600
57700
57800
57930
58030
58100
58200
58300
58430
58550
58600
58700

58900
59 L ')£
59130
59 2'0 a

5934 t
59400

TIME=TIME+DT
ICOUNT=ICOUN
IF(LFRONT.EQ
RFRONT=RFRON
LFRONT=LFRON
RFCOL=RFCOL+

830 CONTINUE
WHITE(6,572)

572 FORMAT('DT='

T+1
.1) GO TO 830
T+1
T-1
1

DTTIVTE,RFR0NT
,E15. 4, *TvE= * ' 15.4 , 'rRONT=', 13)

SOLVE SYSTEM *

CALL SOLVE(MPR,P1,NSIZE)

**** PFCOMPOSE RESULTS *

TNDEX=NMNODE+1
DO 200 I=I,NMNODE
PO(I)P1(I)
DDELDT(I)=P1 (INDEX)
DELTA 1(I)=DELTA1( I)+DDELDT(I )*DT
DELTAO(I)=DELTA 1(1)
PO(INDEX )=P1(INDEX)
INDEX=INDEX+1

200 CONTINUE
WRITE(6,501)
WRITE(6,500) (P0(II),TT=1,NSI7F)



5 9500
59600
59730

100
200
300

GO TO 100
C
C

1000 CONTINUE
RETURN
END

0



C SUBROUTINE MULT
C
C THIS SUBROUTINE MULTIPLIES TWO
C ONE MATRIX BY A SCALAR.
C

SUBROUTINE MUL T(A, IROWICOL, B,JROWJCOL,
IMPLICIT REAL*8(A-H,0-7)
DIMENSION A(8O,80),3(80,80),PR00(80,80)

100
200
300
406
500
60 u
70

800
900

1000
1100
1200
1300
1400
1500
160 0
110 0
1800
1900
2000
2100
2200
2300
240 0
250 0
2600
2700
2800
2900
3000
31h0)
320 Z1
3300
34 0 0

MATR ICE S,

PROD, TIR)

TO 100

10 CONTINUE
00 40 1=1, IROW
00 30 J=1,JCOL
PROD(IJ)=0.

00 20 K=1,ICOL
PROD( I,J)=PROD( I ,J)*A( I ,K) *11(K, J)

20 CONTINUE

CONTINUE
CONTINUE
GO TO 1f00

100 CONTINUE

MULTIPLICATION OF b BY A SCALAR

DO 120 1=1,JROW
00 120 J=lvJCOL
PROD ( I,J)=A( 1, 1)*[j(IJ).

OR

IF(ICOL.EQ.JROW) GO TO 10
IF((IROW.EO.1).AND.(ICOL.EO.1)) GO,
IER=1-
GO TO 1000



0 0

3500 120 CONTINUE
3600 C
3700 C
3800 1000 CONTINUE
6900 RETURN
4000 END

I



C SUBROUTINE NEWSTR
L
C THIS SUBPOUT INE PE PFORkMS QUAFI-STATIC PRESSURE
C EVOLUTION COMPUTATIONS FOR STATIONARY CRACKS 6Y
C EXPLICIT TIME INTEGRATION. NEWSTR IS NOT CUPIENTLY
C USED, BUT IS RETAINED FOR FUTURE RFFfENE!CE. AND
C COMPARISONS.
C

SUPROUTINE NEWSTR(MUA)

IMPLICIT REAL*8(A-HIO-Z)
REAL*8 MU(80,3),LOAD(2),NONGAMNONDELNONPNONMU
REAL*4 D3P(10,l400),03P1(10,402),D3P2(1C,400)
REAL*4 DPLOTXY(2,400) ,XSCL.(4)
INTEGER ORDERELMNTT(4,80),EULM4NTX(4,80)
INTEGER ISTEP

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIME[NSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DI ME N S 1 N
DIMENSION

COMMON
COMMON
C M MON
COMMON
COMMON

DELTA (40,5) ,P(400,5), PER IV(80) ,0(P (80) ,PINC(80)
STRSL(80,3),TFMP(80,3)
TNODE(80,3),XNODE(80,3)
A(80,80),DMUDT(400,5)
DPLOT( 10, 400) , DTEMP( 4 0 1', 5)
ZETA(9,80),NPTS(4)
XA1(4 ),XB13(4),XA2( 4),XB2(4 ),XC(400c,4)
XTEMP(400,3),PTEMP(40,s5)
PROUGti(80) ,PSMTH( 60)
XT (400,3) ,0MUCHK (80, )), DPCfHK ( 8b0),DODCHK (8,1)
STRSC(b0,3),ALOC(P,0,3),ACART(PO,3)

/TEST/ ITEST
/B3KPING/ XNOIJE,TNODE,EiLMNTTELMNTX
/SIZE/ OPDERNELMNTNdXNoDE ,NTIODF
/DEBHUG/ D'ELTAPFLOT,9MUCHKPTFMPDUCH1KDPCHK
/GP/ ZETANPTS



/ENDPTS/ XAIX0JXA2,X6'2
/MITBR/ JDEG
/FLUID/ VISCOLOAD
/CRM114/ ALPHA,bTAIFRE0
/DEL3PR/ DMUDTXTEMP,NXTEMP,)3P0",P1,3F'P2
/OUT/ STRSLSTRSCALOC,ACART
/TIME/ TSTARTTFIN,DTISTEPT
/TCHPTS/ XCNbEG
/NONDIM/ NONGAMNONOELNiONENONMJTAUC

SGN(AA,0)=DSIGN(AAQ)
ATAN(U)=DATAN(O)

COMPUTE CRACK OPENING
INTERPOLATE PRESSURE AND

DISPLACEMENT AND DERIVATIVES,
COMPUTE DFRIVATIVES:

IbHL=NTNODE/2
PbH=STRSL( IBHL,1)
NXTEMP=320
NDEG=200

NSlUL=160

DO S I=1,NXTEMP
XTLMP(I,1)=X0+2.

S CONTINUE

DO 6 I=1,NDEG
XC(I,1)=-DCOS(3.
XC(1, 2)=XC(1,1)
CONTINUL

*DFLOAT(I)/DFLOAT(NXTEP)

1415926535898*(-1-)/DFLOAT(N)EG-1))

CO M MON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON



25 CONINiUE
C
C PLOT PRFES!UKF
C

DO 26 11I,NXNOD[
XY (191 )XNODE (1,1)
XY(2,1)=STRSL(I,1)

26 CONTINUE

ISCL=-2
XSCL( 1 )=-1O
X Sc L(2) =1 *

XKSCL (3)=O*O
XSCL(4)=1.5 *SNGL (LOAD(1) )
CALL CJP)ICTR(XY,2,NXNOLEOX(1),QISCL(ISCL),OXSCL(XSCtI))

C
C
C EVALUATE DMUOT:
CI
C TR(ANSFORM STBSL FROM XNODE TO XTEMF:
C

CALL TRANS3(XNOlL,STIRSLNXN)OPEXTEMPPP,32O8OI4OC, )
CX WRITE(6,)536) ((XTEMP( ITJJ),JJ=193), (PTLMP(TlIJK) ,JK=1 ,)
CX 111=19325)

530 [ORMAT(8i15.')
C EVALUATE Ps':

CALL OIFF(XTEMPP,2320,1)

111=1, 52))
DJO A22 1,1NXTEMP
XT(1,2)=XT[MP(I,1)
[TEMP I I2)=P( 1,2)

22 CONTINUEL
CALL TRANiS3(XTPNXTEMPsXCPTEMPNEG.L0 OG,'PO2)
00 '.4 II~lvNDUG
XY C 1, 1)=Xc( 11,1)



XY I2,I) =PTEMP(I I,1)
544 CONTINUE

CALL QPICTR(XY,2,NDEGQ0NIT(DUMMY),QX( 1))

' COMPUTE DELTA:

CALL INTEG(MUDELTATNODENTNODE',XCNDE
00 694 T=1,NDEG
XY(1, I)=XC(I,1)
XY(2,1 )=DELTA( ,1)

694 CONTINUE
CALL QPICTR(XY,2,NDLG,OX(1))

WRITE(13,536) ((XC(I
1 1I=1,400)

G,2,400)

I,Jd) ,JJ=1, 3) , (DELTA(IT ,JK ) ,JK=1,)

COMPUTE (DELTA**3)*P* :

DO 20 1=1,NDEG
DMU[T (I, 1)=PTEMP( ,
WRITE(16,532) XC(I,

532 FORMAT(' I,2E15.4)
26 CONTINUE

CONST=DMUDT (NS IDE
CONST=DMUDT(NSIDE,1

1 -((DMUDT(NSIDE
2 /(XC(NSIDE,1)-
3 *XC(NSIDf,1)

00 1 1=1,NSIDE
DMUl1 (I,1)=DMUDT( 1,

hI CON TINUF

1)*DELTA( I,1 )A*3
1) ,DMUDT(1,1)

,1)

,1)-DMUDT(NSIDE-1,1 ) )
XC(CNSOIDE-1, 1)))

I )-CONST

CX



0 0

I Ml IJ N=N SI 0 E*~1
C~X CONST=0MUDT(IMIN*1)

CONST=DMUOTC IMIN9l)
1 + I((OMUDT I hIN 1,1 )-OMUO)T(I 111W, 1))
2 / (XC(ILMIN'191 )-XC CIMIN, 1)))
3 *(-XC(IMINe1))

DO 82 IIjMINNO'G
OMU)T (1,1)=DMUDT (1,1)-CONST

82 CONlINUE

DO 83 11I,NDEG
XY (I1 I)=XC (1,1)
XY(291I)=DMUDT( Il)

63 CONTINLIF
CALL OPICT.R(XY, 2vNOEGsQlNIT (DUMMY) IQX( 1))

D IFFEFPENT I ATF :

CALL CH-EBY(XCXC ,NDEGNL)EGOMUDT riNDGrIrJG2DT[MP,
Piu0G40J9O)

DI~O 834 1=
)(Y(l I)=
XY(2, I)=

84 CONTINUE

1 v1 REGC
XCI 1,.1.)
UTEMPI (1,2)

CALL (PICTR (XY% ?,NDEGs OY( I) )

CALL. RECNST(XC,
[)O 85i IzlNDEG
XY(1,I)=XC(It1)

U T F M F,'40 U2, N DL ,0o



XY(2, I)=DTEMP(I,2)
85 CONTINUE

CALL QPICTR(XY,2,NDEGQX(1))
C

CALL IF2(XCDTEMPNDEG, TNODFNTNODF)
CX CALL REBILD(TNODEDTEMP,NTNODE)
C

0 30 1=1,NTNODE
XY (1,I)=TNODE (1,1)
XY(2,I)=DTEMP(1,3)
WRITE (6,673) TNODE( I,1),DMUDT( 1,3)

673 FORMAT(* *,*TNODE=,El5b.4, DMUDT=*,E15.4)
DO 29 J=195
DMUDT(1,J)=DTEMP(IJ)

29 CONTINUE
DDCHK(I,1)=DMUDT(1,2)
DMLJCHK( I1)=DMUDT( I,3)

30 CONTINUE
CALL -QPICTR(XY,2,NTN0DEQX())

C

C
C COMPUTE TIME DERIVATIVE OF PRESSURE:
C

0 90 IEL=1,NELMNT
IIAX=ELMNTX(IlEL,1)
DO 86 II=19IIMAX-
I=1+1
DP(I)=0.
DO 10 J=1,NTNODE
OF ( I)=0P (I)+A (I, J) *DTEMP(J,3)

1*WS(,R T ( 1.-TNODE t J, 1 **2)
7V CONTINUE

D)PCUtK( I )=DP( I)



80 CONT0INUE

96 CONTINUE
C

Do 95 I=19NXN0DE
XY1, I)=XNODE(I,1)
XYt21.I)= UP(I)

95 CONTINUE

ISCL=-2
XSCL(1)=-1.O
XSCL(2)=1*0
XSCL ( 3) =0.
XSCL (4) =1.5*POH
CALL GPICTR(XY22*fJXNDEOX(1))

C
C ADD PRESSURE INCREMENT TO PREV IOUS PRESURE:
C

00 100 I=1,NXNO0E
STRSL(I,1)=STRSt(1,1)+DP(I)*DT

100 CONTINUE
C
C FIX UP NEW PRESSURE CURVF:
C
C***********************TEMPORARY CARD********************

STRSL ( IBHL I )=PbH
C ******* * * ****** * *** ***** * * ** A* **** ************** ** AA* * A* **A*

CNEW CALL FIXUP(STRSLDPLOA(1),IB3HL,NXNODE)
C
C SMOOTH FINAL PRESSURE CURVE:
C
C DO 950 II=1,NXNODE
C. PROUGH(II)=STRSL(I 1)
C 9b0 CONTINUE
C
C CIIECK=10.D 07



C DO '162 ICNT=2,Ib
C SOEV=RGRESS(XNODEPROUGHPSMTH,15,NXNODE)
CX CHECK=1.5*CHECK
C IFtSDEV.GE.CHECK) GO TO 963
C WRITL(6,56T) SDEV
C CHLCK=SDEV
C 962 CONTINUE
C 963 CONTINUE
C
C
C WRITL(6,567) SDEV
C 567 FORMAT(* ','SDEV=*,E15.4)
C 00 975 II=1,NXNOOE
C STRSL(II,1)=PSMTH(II)
C 975 CONTINUE

******************* TEMPORARY CARD ***********************-*

CX IF(NXNODE.GE.I) GO TO 58

C
C COMPUTE NEW DELTA$:
C

[O 53 IriNTNOD[
MU (I,1) =MU(1,1)+DOMUDT (I s3) *01

53 CONTINUE
C
C GO THROUGH NEXT TIME STEFF:
C

CALL PSCALC
CALL OUTPUT
TSTE-P=TSTEP+-1
IF(I.GE.TFIN) GO TO 1000
T=T*IT

C
GO TO 25

CARD *************0*** *** ******* *** ******TEMPORARY



CX 58 COJNTINUE

1000 CONTINUE
R IE T U RN
E NDU



00

C SUBROUTINE OUTPUT

THIS SUbRGUTINE
THE PRINTED OUTPUT
PROFP LFMS.

CURRENTLY PRODUCES
ASSOCIATED WITH -STATIC

SUBROUTINE OUTPUT

100
20u
300 L
4 00
500
100
100
800
900

1000
1 100
1200
1300
1400
1500
1600
1700
180u
1900
2000
2103
2200
236-0
240 0
2500
2600
2700
2800
2900
300 U
3100
3206
330 b
340 U

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSI ON
DIMENSION
DIMENSION
DIMENSI ON
DIMENSION

XA1 ( 4
XNODE
RLOC (
A(80,
SIGMA
Al (4,
STRSL
ICOL (
C (6, 6
PPLOT
DP LOT
DELTA

s XB( 4 q),9XA 2(4 )iXB32 (4)
(80 ,3) ,TNODE (8C,3)
5,3),FLCON'(2,3)
80),sIDCHK(80,l) ,DPCHK(
(80),COEFF(80)
2),A2(4,2),ALFA(4)
( 80, 3 ), ST PSC (8 (1,3) ,A L
6J)

)
(1
(1
(4I

P81)

IMPLICIT RFAL*8(A-tO-2)
INTEGER ELMNTT(4,80) ,ELfVNTX(4F,8L)
INTEGER ORDER
INTEGER TYPE(S),CLROW(6),CFLMNT(6,(),CDIR(6,')
INTEGEoR COL46,6)
INTEGER TSTEP
REAL*8 MU,KAPPAI
REAL*4 PPLOTFPLOT4DMUPLT(10,80)
REAL*4 DPLOI

C(80,3),ACART(80,3)

0,80),FPLOT(10,80)
t, 40 )

00,), MUCHK(80),P(400,5)

COMMON /ENDPTS/ XA1,X1 ,XA2,XB2,THETA
COMMON /REG/ RLOCTYPENRFC
COMMON /iKPING/ XNCDFTHODEELMNTTFLNTX

0 i



COMMON
1IITYPE
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

/CLOSE/ A1,A2,ALFACLROWNCLCFLMNTCDIRCOL ,C

/SIZE/ ORDERNFLMNTNXNlODFNTNF
/ARRAYS/ AtSIGMACOEFF
/OUT/ STRSLSTRSCALOCACART
/ELAST/ G1,KAPPA1,MtUELCON
/TIME/ TSTARTTFINvDTTSTEPT
/PLOTS/ FPLOTPPLOT,[WUPLT
/DEBUG/ DELTADPLOTLDMUCHKP,00CHIK,DPCHK

3500
3600
370O
3800
3900
4000

4200U
4300
4400u
4500
4i600 C
41700
4*800
4900
5 00 0
5100
5200
5300
5400
5500
5600

5700

6100

6300

6500
6600
6700
6800
5900

35u FORMAT(* *,////,T5,
1T75,'F OPENtT95,0F
2*-l , T359,- sTS , -*

400 FORMAT(G ',TSI2,T1
1,T90,E15.4)

,
T100,'INTERFACEf,/
10,Lcj(t-*r,/)

),tLCON(11,3)

T* ,/0, .* T" w I *

(S TRSL(1JJJ),JJ=1,3)

0 L IOE * , / 3 T5, 5 t*-. ,TI ) , I 
,T75,6(W-9),T95,7(*-*),/)
0,EPI)0, 4,9T 3 0,F10.*4,T5,E10 I .4 .T70,E10.4

IF(TSTEP.NE.1) GO TO 783
WRITE(6,100)

100 FORMAT(Ol',TSO,*M A T F R I A L 5'',///
1T30, REGION', T40,O *T60, 'NiUl , T1 0, 'G',
2, r30,6(*-'),T40,'-',T60,*--*,TA0,*-*,T
DO 10 11=1,NRFG
WRITE(6,150) II,ELCON(I,1),ELCON(ll,?
1,RLOC(II,2)

10 CONTINUE
150 FORMAT(' ',T35,2,T35,F15.4,Tb5 15F.4,

1 T95,E15.4)
783 CONTINUE

WRITE(6,200) T
200 FORMAT( *1IT50,30(**),/,TSC,**9,TRC,

1T50,9*9,T55,*TIME = ,Flb.4,T80,***/,
21,T50,304 **),///)

WRITE(6,250)
00 20 II=1,NXN0DE
WRTE(600)

20 CONTINUE



0 0

W RI11E (6,35 0)
DO 30 I1=NTMOO(L

WRIIE(6,'00) Ill (THJOIEi( II ,JJ) ,JJl
36 CONTINUE~

250i FORMAT(* 9tT590XNOOI*,TIS,'X',135#
l175,ISNN9,T95,9'SN3,PT05VTiJETAS,/

300 FORMAT(t 99*T5,129T1UvFl1k. 4$T30%EiO0
1, T90 gEl5.1$ Ti 00,1715.4)

9 3)9.( ALOC (I I JJ)9)JJlo2)

e 4 , 5 oE 1 o ,

7 00 i0

7200
7300
1400
7506
7600
7700
18 0 0~
7900

HETURN
END)

T I
5(9T79)*/)



0 0

C SUUROUTINE PLOT

THIS SUB
BOTH STATIC
PLOT IN TUR
ARE USED AT
FAC ILI TY.
BECAUSE OF
MADE IN THE

ROUTINE PRODUCES PLOTS OF
AND QUASI-STATIC CALCULATIONS.

N C.ALLS PLOTTING ROUTINES THAT
THE M.I.T. JOI COMPUTER

PLOT IS CURRENTLY OUT OF DATE
RECENT CHANGES THAT HAVE BEEN

CUASI-STATIC ROUTINES.

10 G
200

400

5 ,J u

lou
500
9 0 c.

1100
1200
1300
1400
1500
1600
17 0 L
180 G
190
2000
2100
2200
2300
2400
25u0
2600
2700
2800
2.900
3000
3100
3200
330u
34 aC

CHAkACTE RA4G XLAB1,,XL,XLAB3,XLA4XLAFY5,XLA
XL A69,XLAIOXLAB11,XLAB12,XLAB13
YLABLYLAB2,YLAB3,YLAB4,YLAB5,YLA
YLAB9,YLA 16,YLABI11,YL A~12,YLAB13 3
XLABI5-,XLAi16,XLAIB 17,.YLAl1 b,YLAfi1

INTEGER- ELMNTT(4,80),FLMNTX(4,80)
INTEGER ORDER
INTEGER TYPE(5),CLROW(6),CELMNT(6,6),CD
INTEGER COL(6,E)
INTEGER TSTEP
REAL*8 MUKAPPA~
REAL*4 PPLOTFPLOT,f3P,03P1,03F?
REAL*4 DPLOT,0MUPLTDDPLTDPPLT
REAL*4 P1PLT(10,80),P2PLT(10,400) ,P3PLT
REAL*4 01PLT(10,80) ,D2FLT(10,80),U3PLT(

DIMENSI
DIMENSI
DIMENSI
DIIMENSI
DIMENSI
DIMENSI

XA1(4),XB1(4),XA2(4)
XC(400,3),DPCHK(80),
XN00#E(80,5),TNODE(80
RLOC(5,3),ELCON(?,3)
A (80,80)
SIGMA (80

Il, I XLAb7,XLAB8,
,XLA14,
F6,YLA67, YLAIIU,
,YLAB14,

6, Y L A [17

IF ( 6, b)

(10,80),P4PLT(10,80)
10,80) ,4PLT (10,80)

9 X132 (is )
UDCHK(80,1)
'3)

,,COEFF(PC)

SUBROUTINE PLOT
IMPLICIT REAL*8(A-1,0-2)



0 0

Al (4,?) , A2,(4 ,2) ,ALFA( )
STRSL (80, .),STRSC(80,3), ALOC(8
ICOL (4),XTEM
C(4,4)9,3P1(
PPLOT(10,8C)
DPLOT(10,400
DELTA(400,5)
DPPLT(10,80)

P(400,3
10,400)
,FPLOT(
), MUPL
DMUCIK

0, 3) %A C A RT ( 0 , 3)
)I,0MODY(40o6I,15),Dr3P(
,D3P2(10,4f00)
10,80)
T ( 10,8 0 ,V ) (4i 0 , 5)
( 80,1) , DPLt T (11 t,8)

Su 10t 0)

35L!
3600
3100
3800
3906

4100
420 6
4300

4500
4600
4T00
480 C;L
4900

5300

550 U
560 C
57 0 6
580 (
590 0
6000
6100
62 0 0
63%0
6400
65 C0
660 J
67 7
6 60
6906

DIMENS
DIMENS
DIMENS
DIMENS
DIMENS
DIMENS
DIMENS
DIMENS

COMMON
COMMON
COMMON
COMMON
COMMON

1 ,ITYPE
COMMON
COMMON
COMMON
COMMON
C OMM ON
COMMON
COMMON
COMMON
COMMON
COMMON

LT ,2PLT ,D3PLT ,04PL T
, D 3 P2

ASSIGN AXIS LABFLS:

XLAB1I=PLOT#1 XNOVE'
YLAB1= FRAC FLUID PRESSURE P(XNOF.,T)'

XLAB2=$PLOT#2 TNODEI
YLAB2=' SOLUTION F(INODFT)*

XLAB3='PLOT13

ION
ION
ION
ION
ION
ION
ION
ION

/FNDPTS/ XA1,XPlXA2,X2bTHfTA
/TCHPTS/ XCNDfG
/REG/ RLOCTYP7,NREG
/BKPING/ XNODFTNODE,ELMNTTELMNTi
/CLOSE/ AlA2,ALFACLROWiNCL,CELMNT.,CDIFCOLC

/SIZE/ ORDERNELMNTNXNODENtTNODE
/ARRAYS/ AsSIGMACOEFF
/OUT/ STRSLSTRSCALOCACART
/ELAST/ GI,KAPPA1,MUELCON
/TIME/ TSTARTTFINDTTSTEPT
/PLOTS/ FPLOTPPLOT,0MUPLT
/PLOTSI/ (OPLTfPPLT
/DEBUG/ DFLTA,0PLOTPMUCHIKPDDCHKIKD
/PLTEIMP/ P1PLTP2PLT.P3PLTP4PLT,Li1P
/DELSPR/ f)MUDT , X TEMP,NX TEMP,D.3P e 3P1

TNOD*##



YLAB3= PLOT OF D(MU)/DTl

XLAB4=IPLOT4
YLAB'4= PLOT

XLA85='PLOT#5
YLAB5=9 FRAC

TNorEs
OF D(DELTA)/DTI

XNOOF
. FLUID PRESS. INC. DPt

7000

120 0
7300
7400

71606
7700
786 0
7900
8060
8100
8200
ii 30
i1 43 L
8500
8600
870
6800
89c 0
9000
910o
920 &
930b
9400
950 UL
96; C,
97 ui
9806
9900

160 0 "
10100
1 '20 6
10 300
1 L 6 00

XLA9= 'PLOT #9
YLAB9=tP///

XLAB10='PLOT#10
YLAB1O 'DELTA/

XLAB 11= 'PLOT# 1
YLABII=YDELTA/

XLAB12= PLOT i
YLAB12=0DELTA/

XLAB13='PLOT#12
YLAB13='DELTA

)NODE*.
(DIAGNOSTIC)t

TNODFI
(DIAGNOSTIC)'

1 TNODE1
/ (DIAGNOSTIC)'

2 T NO5.Er*
// (DIAGNOSTIC)*

TN O0F
(DIA GNOSTIC)

XLAB14=§PLOT41.3 TNDOE'
YLAB14=sCRACK OPENING DISP. (DELTA(TNODET))

XLAB6=1PLOT#6 XNODE'
YLAB6='P (DIAGNOSTIC)$

XLAB7=$PL.OT#7 XNODF'
YLAB7='P/ (DIAGNOSTIC)$

XLAB8=PLOT#8 XNO0E'
YLABB='P// (DIAGNOSTIC)*

C
CX
CX
Cx
CX
Cx
C

C
CX
c x
CXC A
c x
C
C



0 0 0 0

XLAB15='PLOT ul 4
YLABI5=' (D**

X TF MF*
3)*P/ *

XLABI6=*PLOT#15 XTEMPI
YLAB16=* ((D**3)*P)/)/ I

XLAB1.7=*PLOT#16
YLA817=t ((D*

XIEMP*
* 3)* P )// I

10500
1.0600
1 U 700
1080u
10900
11000
11100
11200
1130
11400
11500
11606
11700
11800
11900
12000
12100
12200
12300
12409
12500
1 2600
12100
12800
12900
1300u
13 10 u
13200
13300
1 3400
13500
13600
13700
13803
1390 0

DO 10 1=1,
PPLOT(1 *I)
DPPLT(1,1)

10 CONTINUE

DO 11 1=1,
FPLOT(1 ,1)
DMUPLT(1,I
DDPLT (1,1)

PIPLT 
P2PLT(

X P3PLT
P4PLT(

NXNODE
=XNODE(I,1)
=XNODE (I v 1 )

NTNODE
TN0[DE( I

)=TNODE (
=TNODE[(I

)=TNODE(i,1
)=TNODE(1,1

)=TNODE( I,
) =TNODE (1, 1

DIPLT(1,1)=TNODE(1,1)
CX D2PLT(1,I)=TN00E(I,1)

PLOT RESULTS:
NP N TN 0 DE
NP1=NXNODE
NP2=NXTEMP
NP3=NDEG
NP4=NDEG

0 0



0 0 
0 0

D3PLT(1, 1)=TNODE 1 , 1)
C4PLT(1I)=TNUEE(I,1)

11 CONT INUE

1400
1410 1
1420
14 30
14400
1450 0
14600
14703
14800
14900
1500u
15106
15200
153-0 6
15400
15500
1560 0
15700
15800
1590 )
16000
16£ 100
16200
16300
16400
16 50 0
1660 C
1 6 10 G
168 0
16 9 0 0
17003
17100
172G0
17300

DO 30 I=
P2PLT (1,

30 CONTINUE

DO 40 1=
03P2(1, I

4u CONTINUE

iNXTFMP
1)=XTE.MP(I,1 )

1,NDEG
) =XC ( I,1)

CALL QPICTR(PPLOT, 10,NPIP1NIT(
10XLAB(XLAB1),YLAB(YLAB1))

CALL QPICTR(FPLOT,10,NPQINIT(Li
1QXLAB(XLAB2),QYLAB(YLAB2))

CALL QPICTR (DMUPLT910,NP,0INIT (
10XLAB(XLAB3),0ABLA(YAB33))

CALL QPICTR (DDPLT,10,NP,0INI T( (
10XLAB(XLAB4QYLAb(YLAP4))

CALL QPICTR(DPFLT, 1,NP1,t0NIT(
10XLAB(XLAB5)iYLAb(YLABt))

D*UHi Y) , () , LABF L. 11004)

MIMY) ,OX( 1), QLARFLC 11004),

DUMMY),Q X (1) , L A!REL (11004),

UMMY) ,X( 1)9 ,LARE L (11004)

CALL OPICTR(PIPLT,10,NP2,OX( 1 ),0LABEL( 116041) ,0XLAP(XLAB6),

cX
cX
C

DO 20 I=1,NDEG
D3P(1,11=XC(1,1)
DPLOT(1,1)=XC(I,
03P1(1,I)=XC(I,1

20 CONTINUE

0 0

17400 CX



1OYLAFJ( YLAF-6) )

CALL QPJCTR (P2PLT, 10 ,NP2 iQlNI
10XLAB(XLAB7),0YLAB(Yt-t3 7))

1750 6
11600f
17 76 0
17800
17900r
1, 11 060
18106
18200
18 3U0
18'eOO
18500
18 ~ioa
18700
188 a0
18900
196000
1910 0
19200
19 3 0 &
19400
195b0 0
19600
15,100
198 0 ,
1990 c
2 L000 U
2 6100U
2 U20 0
20U-3 06
2 6 ii 0 0
2 u5O 50
20600
20700
2 LIB 10U
2 i9 0

T ( DUMMY ) 9) 1) t QL BL (1I10011 )

10 ,NP2 ,OX(1) ,QLAk3ITL( 110 04 )sOXI A ( XLI89)s

CALL QPICTR(D1PLTt10,NPCIINIT
I QXLA ( XLABI 0) 9QYLAB( YL AP-10) )

CALL QPICTR(D2PLT
1OYLAI3( LAH11))

CALL QPICTR(DSAPLT
lOYLAHI(YLAU12))

CALL QPJCTR(L)4PLT
1QYLAB(YLAB13)) I

CALL (2P1CIR([.)PLOT
lOYLAB ( YLAI11i) )

(f)UMMY)*0X(1),GQLAfiLL(110C4)9

910,NP2,QX(1),QLABEL(110L),OXLAB(XLABI1),

,10,NF2,0X(1),QLAIWL(11004),QXLACXLAJ2),

910 , .JP2 GX( 1) ,('qLAIEL( 110 04) ,GXL AfIl XLABI.3)t

CALL QPITR(DS)P, 10 NP3sQINJT(O
IQXLAB(XL.AH15),OQYLAfI(YLAB~s)))

CALL OP1ICTR D3P10rJP3 sGINIT (rUMMY)'oX (1 I ,OLAPrL (1 1004),p
1t)XLAB(XLAt$16),POYLAI3(YLAV.16))

CALL OPICTR()3i210NPQINIT(DUMMY),QX(I)s),LAb'LiL 1160i)I

c X

S 0 S

Cx
cx

CALL OPICTR(P3PLT,
1QYLAB ( YLAB8) )

CALL QPICTR4P4PLI,
1QYLAB(YLAIB9))

cx
cx
C
C x
C x

cx
cx

ilUvtv'P29VX(l)vULAFiF.L.(1100q).o('Xt.Af- fXLA614).p

Lit!MY)9(,%X(j)-oOLAP,!:L(11LO ),t



21000 10XLAB(XLAB17)iQYLAgB(YLA317))
21100 C
2120% RETURN
21300U END

a

00,
4o



C SUBROUTINE PSCALC
C
C THIS SUBROUTINE IS INTENDED TO
C PERFORM POST-SOLUTION COMPUTATIONS
C (SUCH AS CALCULATING STRESS INTENSITY
C FACTORS) AND TO STORE CERTAIN RESULTS
C FROM EACH TIME STEP FOR COMPOSITE
C PLOTTING. LIKE SUBROUTINE PLOT,1T IS
C SOMEWHAT OUT OF DATE, AND I% BEING
C RF-WRITTEN.

100
200
300
400
5(10
600
700
800
900

1100
1100
1200
1300
1400
1500
1600
1700
180 G
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400

IMPLICIT REAL*8(A-HO-Z)
REAL*8 MU,KAPPA1,K1Al.K2AIKIA2,K?A2
INTEGER ELMNTT(4,80),FLMNTX(4,80)
INTEGER TSTEPORDER
REAL*4 DPLOT(1O,400),FPLOTDMUPLTPPLOT
REAL*4 DDPLTDPPLT
REAL*4 D1PLT(1O,80) ,D2PLT(10,80),D3PLT(1
REAL*4 PIPLT(1O,80) ,P2PLT( 10,400),Pr3PLT(
REAL*4 03P(10,400) ,D3P1(10,400) ,03P2(10,

ION
ION
ION
ION
ION
ION

XNODE(80,3),TNO0F(80,
STRSL(80,3),STRSC(80,
ELCON(2,3),DMUDT(400,
PPLOT(10,80),FPLOT(10
DELTA(460,)vJMUJCHK(8
0DCHK(80,1),DPCHlK(80)

/IKPING/ XNODE,
/ELAST/ G1,KAPP
/ENDPTS/ XA1,XB
/OUT/ STRSLSTR

0,80),
10,80)
400)

04PIT(10,80)
,f4PLT(10,80)

3),oXA1(4),XB'1(4)tXA2(4)sXB244)
3,ALOC (80,3),ACART(80,3)
5),XTEMNP(400,3)
,80)tr)MUPLT(10,80)
0,1) ,P(4 00,5) ,XC(400,3)
,DDPLT(10,80) ,DPPLT( 10,80)

TNO0EELMNTTELMNTX
AlMUELCON
1,XA2,XB2,THETA
SCALOCACART

0 0

SUBROUTINE PSCALC

DIMENS
DIMENS
DIMENS
DIMENS
DIMENS
DIMENS

COMMON
COMMON
COMMON
COMMON



0 &

350 0 COMMON /PLOTS/ FPLOT ,PPLOT ,DMUPLT
13600 COMMON /PLOIS1/ DDPLTDPPLT
3100 COMMON /TIME/ TSTARTTFIN,DTTSTFP,T
3800 COMMON /SIZE/ ORDERvJELMNTNXNODENTNODE
3900 COMMON /DEBUGI DELTA ,DPLOT ,OMUC IK ,PFDCHK, DPCHK
4000 COMMON /PLTEMP/ P1PLTP?PLTP3PLT,P4PLT, IP LLTD2PLT,03PLTsD4PLT
4100 COMMON /DEL3PR/ DMUDTXTEMPNXTEMPD3P,03P1,D3P2
4200 COMMON /TCHPTS/ XCNDEG
43U0 C
'4430 SIN(G)=DSIN(Q)
4501) COS(Q)=DCOS(O)
4600 ATAN(Q)=DATAN(Q)
4700 SQRT (0)=DSORT (Q)
4800 C
4900 C
5000 IST=TSTEP+1
5100 00. 10 1=1,NTNODE
5200 FPLOT(IST,I)=ALOC(1,1)
5300 DMUPLT(IST,1)=MUCHK(I,1) 00
5400 DDPLT(ISTI)=DDCHK(I*1)
5500 C
5630 ODPLT(IST,1)=DELTA(1,1)
5700 CX D2PLT(IST,1)=DELTA(I,2)
580L6 CX D3PLT(IST,I)=DELTA(I,3)
5900 CX D4PLT(ISTI)=DELTA(1,4)
6000 C
6100 P1PLT(ISTI)=P(I1,1)
6200 CX P3PLT(ISTI)=P(I,3)
6300 CX P4PLT(ISTI)=P(1,4)
64i0o 03P2(IST,1)=DMUDT( I,*)
6500 16 CONTINUF
6600 C
6705 00 20 I=1,NXNODE
6800 PPLOT(IST,I)=STRSL(1,1)
6900 DPPLT(IST,I)=DPCHK(I)

0



0 0

20 CONTINUE

Do 30 J=1,NDEG
03P(ISTI)=DMUDT(Is1

CX DPLOT(ISTI)=DELTTA
30 CONTINUE

7000
7100
7200
7300
7400
7500
7600
77300
7800
7900
3000
8100
8200
8 300
8400
85u 0
8600
8100

)
(1,1)

,NDG
1)=DMUDT(I,2)
I)=DMUDT(1,3)

NoNXTEMP
,I)=P(192)

RETURN
END

DO 40 1=1
D3PI (IST,
03P2(IST,

40 CONTINUE

DO 50 1=1
P2PLT(IST

'0 CONTINUE



10 C C SUBROUTINE RECNST
200 C
300 C THIS SUBPOUTINE FIXFS UP THE NEAR-TIP
400 C REGIONS OF THE [(DELTA**3)*Pt 39 CURVE BY
500 C SPLICING ELLIPTICAL ARCS OF APPPOPRIATE LENGTH.
6 0 0 C
700 SUBROUTINE RECNST(X*YNROWICOLNYIODD)
800 IMPLICIT REAL*8(A-H,0-Z)
900 DIMENSION X (NROW,3),Y(NROW,5) tYTEMP(400.5),XTFMF(400,5)

1000 C
1100 A=Y(22, ICOL)/DSORT(1.-X(22,1)**?)
1200 B=YtNY-21,ICOL)/DSORT(1.-X(NY-21,1.)**?)
1300 C
1400 DO 10 1=1,21
1500 Y(IICOL)=A*DSORT(1.-X( I,1)**2)
160L, Y((NY-21+I),ICOL)=B* 0898 T( .- X((NY-2-1+I), ICOL)**?)
1700 10 CONTINUE
-1803 C
1900 RETURN
2000 END



THIS SUBROUTINE READS DATA TilAl HAS
BEEN WRITTEN OUT BY SUBROUTINE DUMP.

SUBROUTINE RESTPT
IMPLICIT REAL*8(A-H, 0-Z)
INTEGER ORDERTSTEP
INTEGER ELMNTT(4,80),ELMNTX(4,80)

200

50 0
600

80 6
90 a

1000
110 e
1200
1300
1 '.0 C
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
24600
2500
2600
2700
2800
290 %
3000
3100
3200
330 u
3400 0;

COMMON
COMMON
COMMON
COMMON
COMMON
COMMON
COMMON

STRSL(80,3),STRSC(80,3),ALOC(8O,3)
ACART(80,3)
XNODE(80,3),TNODE(80,t)
XA1(4-),Xl1(4),XA2(4),XB2(4)
ZETA(4,80),NPTS(4)

/TIME/ TSTARTTFINDT,TSTEPT
/OUT/ STRSLSTRSCALOCACART
/SIZE/ ORDERNELMNTNXNODENTNODE
/BKPING/ XNODETNODEELMNTTELMNTX
/EINDPTS/ XA1,XBlvIXA2,X62,THETA
/GP/ Z7TANPTS
/TEM/ NSURF

READ(8, 100)
READ(8,200)
READ(8,300)
READ(8,300)
READ(8, 350)
READ(8,350)
READ(8,400)
READ(8,400)
READ(8,s40)
READ(8,400)

TTSTE P,
((STPSL(
((XNODF (
((TNODE(
(( ILMNTX
((FLMNTT
(XAI1(11)
(XA2 (I )
(X01(I )
(X32( II)

NXNODENTNODE
II ,JJ) ,JJ=1 ,3), 1 I=1,NXN0DE)
II ,JJ) ,JJ=l 3) 911=1,NX400E)
II,JJ),JJ=1,3),11=1,NTNODE)
( 1II JJ),II1 =1,4)tJJ= 1,80)
(II ,JJ) ,111,4),JJ=180)
91 =11,4)

,11=1,4)

,I I=1,4.)

0 0

100 C SUBROUTINE RESTPT

DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION



3 0 01 0 c

3500 C
360C 100 FORMAT(XE1'.4,312)
37u0 200 FORMAT(X,3E15.4)
380C 300 FORMAT(X,3El.4)
3900 350 FORMAT(X,412)
4000 400 FORMAT(X,4E15.4)
4100 C
4200 RETURN
43 0b END

83



100 C SUBROUTINE SOLVE
200 C
300 C THIS SUBROUTINE TRANSFERS MATRICES AND
400 C VECTORS TO TEMPORARY ARRAYS, WHICH 'ARE THEN
b00 C USED AS CALLING ARGUMENTS TO A LIBRARY ROUTItJF
600 C FOR SOLVING LINEAR SYSTFMS OF E0UATIONS. LEOTIF
700 C IS IN THE IMISL LIBRARY AT MIT'S INFORMATION
8 00 C PROCESSING CENTER. SIMQ IS A MODIFIED VERSION OF
93) C A SUBROUTINE IN THE SSP LIBRARY, AND IS ONE OF

lGu0 C THE ROUTINES IN FRACLIB.
11u00 C
1200 SUBROUT INE SOLVE (AS IGMACOEFF, NSIZE)
1300 IMPLICIT REAL*8(A-HO-Z)
1400 INTEGER ORDER
1500 DIMENSION 8(80),Yl(80),WKAREA(80)
160C DIMENSION A(80,80),SIMA(80),CoEFF(80)
1730 DIMENSION ATEMP(80,80)

1800 DO 10 11,NSIZE
1900 D(I)=0.
2000 Y1(I)=SIGMA(I)
2100 DO 10 J=1,tSIZE
2200 ATEMPCIJ)=A(I,J)
230C 10 CONTINUE
2410 M=1
2500 IA=8O
2600 IDGT=4
2700 C
2800 C CALL LEOT1F(AMNSIZEIAY1,IDGT,0KAREAtIER)
2900 CALL SIM0(ATEMPY1,NS12E,K',vA)
30jo C
3106 DO 20 I=1,NSIZE
3z 205 0 COEFF(I)=Y1(I)
330U. 20 CONTINUE

340 C WRITE(6,100) IER



WRITE(6,
100 FORMAT(*

RETURN
END

100) KS
SsT10,'IER=*,J5)

35 U U
3600 C
38 0 G

3806



C SUBROUTINE STATFI

THIS SUBRkOUTINE I.Ef[FOFIMS
PRESSURE EVOLUTION COMPIJTATI
CRACKS U.SING IMPLICIT TIME I

SU AS I -ST ATI C
GNS FOR STATIONARY
NTEGRAT ION.

SUHRkaUTINE STATFL(MUtulf)

IMPLICIT RfAL*8(AI-H, 0-?)
REAL*k3M8,0 f1(Of,28C8)M(O8)Ms8,O
REAL *8 M5(8O,8O ) MU(80*3) IKAPPAl
REAL*'* XY(2s80)vXSCL(i)%DUMiY
INJ LGUK R9 SORDFRFLMNTTLLftNTX-if,,TSTEr'

D I MEN SION
DIMENSION
[)Ii h E N 3- 10 N
iI II FN SI ON

LiI :FFN S ION
D IMENS ION

A(8O, 80) ,APRIME( 80 .80)tH
C(80,f30),CPRIMF(B8~lO~)(
F(8O,80)9C(&e09f0)sH(80,o8(t
DELTAJ(b0)tP0tUO)sPl(80)s
88 (809,80 ) YNOOE (86 .3)9 ,

DELl (80t80)tDIELO(A0,B0)

TFMP(80*80)*lFMPl(8('e,$80)
80), YT(8ri) ,f3FLO (80) ,f)EII..l (80)

COMtiON /OUT/ STI'\ SL(8O3)STRf-C(U0,o-),AtOC(8-0,3),ACARIT(8P, ')
COMMON /i3KPING/ XNO E(80,3),TNOOEI-(80,3) ,ELMNTT(4,80o),LMNTX(9,3Ci)
COMMON /SIZE/ ORf'FR9NELMNTtNXNOPEsNTNOOE.-
COMMON /TIME/ TSTARTfTIi1EOTTSTE'PT Il..

TCH(N. X) =DCOS (DFLOA T(N )AOACOS( X))
TCHP'R(NsX)=N*O)SIN(L\FLOATIt)*DACO(X)/SORT(.-Xt**')

SlIJ( X)=X/A3S( X)

PI.5 *I.1 5926535898
PiO'HL=1 .i
Jf(TSTEP.LT.O) 60 O 10'

0



RCtU5,1) ALPHAFPLTA
RFAfl(593) KiLL, JCUTLO0P

1 FORMIAT (2F10 4)
3 FORMAT(313)

N L.NOD N TN ODE I
NMNODEiNLNODE

N L2 N LNODE /2
ITEST=2.*NL2
LF(ITESToLT*NLNODE) NL2=tNL2+1

C
NM2=NMNOOE/2
ITC ST=2* NM2
IF(ITEST*LTNMJODE) NM2=NM2+1

c
CALL CONST( IREG9JPEG9EMODvAAHi)a
FM00)2. *EMOD

C
Do 5 =19NILNODE
ARG=Pl*(2**I-lo)/(2**NL.NO))
YNOf#( ,1)=-DCOS(APG)

5 CONTINUE
C
C

9 (CON IINU E
IF(KILL.rJE*1) GO TO 2qP

C Si- tI
[JO d"Cl.i6 1,NXNOP-lE
l1:(])=STRSL(ICUT*+I,1)
YT (1)=XNODE (ICUT~1 , )

24., COtIlNUE
CYRIANSF[R

NT=#IXN ODE-2* ICU'I
CALL IRANS3(YTtPlsNTvYNOOEjPONtLNODr,88QeO1.)
GO TO 249



248 CONTINUE

CAL.L TRANS3(XNO05ESTRSLNXNO DE,YNOD EPl,NLNODE ,80,8,1)

249 CONTINUE
IfKILL.NE.1) GO TO 6
D0 8 I=191CUT
P 3 (1) = 0.
PO(NLNODE-ICUT+I)=0.

8 CONTINUE

6 CONTINUE
CALL INTEG(MUDELTA0,TNODE,
SUM=0.
00 7 I=1,NLNODE
OOELDT I)=DELTAG (I)-DELTA1(
DELTA1(1)=(1.+WETA)*DELTA0(
SUM=SUM+DELTAO( I )*0SQRT( 1.-

I CONTINUE
SUM=P I *SUM/NLNODE
WRITE(6,471) SUM

471 FORMAT (********** FLUID VOL
IF(TSTEP.LT.o) GO TO 100

00 10 R=1,NXNODE
DO 10 L=1,NLNODE
A(PL)=TCH(L-1,XNoDE (R,1))
IF(L.EU.1) ARL)=.5*A(RqL)

161 CONTINUE

NTNODC. YNODENLNODE, ( ,P)

I)
I)
YNODE(I ,T)**2)

UME =,E15.4,' **********,)

DO )I L=1,NLNODF



0 0 0

DO 1') S1,-NLNoDL.
APRIME(LS)TCH-(L-1,YNODE(S,1) )*2./(NLNO)E)

It CONTINUE'

NM2[ L=NM2+1
rNM2MI=NM2-1
00 25 K=1,NXNOJF
LO 25 J=1*NMNODE.
SUMizi3.
s U m I =
D)O 20 I11NTNODE

SUM-iSUM*TCHPIR(JTNODLE(1,I))*LPOP(IT(
I /(C(XNO)E CR, I )-TNOL (1,1) )**2)

I /((XNOOE(R,1)-TNODF(I,I ))**?)

20I CONJINUL
bitp,tJ)=-PI*EMO,*(S.JM-SUMI)/NTNOMI

25 CONTINUE.
D0 26 J=1,NMNODE
BC NINODE J)=TCHPR CJYNODE (NM2PL, 1)
L3 (NT N 01)LI.1,J)=0.

26 CONTINUE

DO 40) R1,vNXNODF
0O 11(1 J1,oNMNOIC
C CR J)=TCHPR (J,PYNODE (R, ))

4" CONTINUE

1 .-TNO)F.( 1,1) **2 )

1iii.-TNODE(li ) A* 2

)-TCH-lR(J#YNO1)EUJMk2MIs1))

Do 45 K=19NMNODF

. 0



0 0

DJO 4£j J:.INMKIODF

CPR IM[(KJ)=TCHF'R(JYNOflE(K, 1))

G(JK)ITCH(JsYJODE(K,1))*2./NLNOOE

4*5 CONTJINUE

DO 50 K=1,NMNo0F
DO 50 L=1,NLNODEf

bi CONTINUE

DO '55, L1,tNLNOOC
D0 t)5 S=1,NLNODE
F(L,S)=TCH(L*YNODE(S,1))*2./NLNOIP E

55 CONTINUE

DO (*S. H=1,NXNOU[
DO t6C J=1,NXNOOL
G(R*J)=0.

6( C ON TI 1UF
C (R9,R ) EMO)* ((1*

O (NTINO OFvR)=0.
G(1( T NOOE .1 ItR )0.

6!.) CONTINUE

06' 7b S=1*NLNOOf.
D0Oi70 Q=1,NLNODE
HI( S VC. )=o0

/(XNOUII(R,1)-1.))
ODE(R, 1 )+1 * ) ) )



S A I 'm;t &i) =Go
T ( S , 0) =0.*

7'i CONTIN~UE

h(SS)=-SIGN(YNOOL(S9I))
H( SNL2)=( SNL2)+S1GN (YNU7(tI))

S A ( S, S )1=I.
'SA(Fs NM2) =S A(Sv NM2 )-SIGN(YNO1OE(S*1) )

T(S*S)=-SIGN(YN0UE(Sq1))

7:- CONTINUE.
W fRI T E(1500)
WRITE (2,500)
WR I IE0(9500)

50.5 FOHI-AT(kiEi5o4)

( CH(11 O,iJ) *JJ= It
((SAC I IJJ),JJZ
C CTC IIJJ)tJJ1,

NLN'OOF)s
*NIN DE)

NINODE)v

1=1 91N1fNODE)
11T1NLNODF)

1,NLN0DF)

CALL MULT(ANXNOD)LNLNODEAPHHIL fNLNODENlLN.OU)EM1,IFPi)
D)0 16 J=19NLNOJL

I'll (NTNOOITJ)=0,
till (NTNODEfrlJ)=0.

7i. CONTINUE

CALL. MtJLT(BiNMNOL)f iF,JMNDEDNMrI)DFN1t.CjN[oUTEMIPs IFR)
CALL MULIC(TEMPNNMNODEt MNOD1 SA NVW1ODEd MNO9[IA&, *TE k

C A L L.
CALL
CA LL.

M UL T (T,9NMN 0 DEN M N 01E E 9 NiN DftILtj 0 DF i TE F1 PvIIF P)
ML1ATEMPNMNofENL,'oo[,EFNpfLNODFN.tJ0DE9TE!PiI IER)

MULl1 (TEMPI I NMNODI tNLNGI..' % it NLNOISE 9 rLNODL, M39 JER)

wA

01



CALL
CALL
CALL

MULT(GNMNODfZNXN(ODL,oCNXrWDE7,OF NMN 0Df- TEMPF i I R)
MULT(TEMPIHNOCENINnOU.,o,~Nh'-NODE ,NMNODEoTE~P1,iER)
MLILT(TLMP1 ,t !MNODEvf'iMWOUT', SANMN0DFNMNOp[,tM4)

C A LL MiUL T (CPR I MLv IiMN~ ODE t NMNOI)E s ,1 N~ 1NtODE s NI-INIOtE , T EMP I F P
CALL M,'ULT(TEMPN~MNOI)LNMNoDFSPNMNOPE,9NMNOO[,E~Mr, I PFF)

C 141S T
C
C
C
C
C
C.
C
CITES T
C

IC ST
Uf [I
w R I
w R I
W R 1
WP I
WR1
w R I

TEST

TEIST TEST
TEL(1.6,50 0)
TE( 17,500)
TE ( 18,95 00 )
iF (19,500)

T Ft 2tii*500)
T E (2 1,t5 00 )
TE (22150.0)
TEST TEST

EST TE1ST
I c( I
(CPR

(MSI

(Mb2
(M2 (

I I F (I

I tJJ) .
II 19 JJ)
I Is JJ)
1I DJJ)
I I J J.)

J J1INMN ODE), II11 1=tI J)(NOOF )
i JJ) JJ= 1 9NM N 0ff) IT1=1,sN M MOUF)

,JJ 1 ,NMNOOE ) t I 1 WINMOOE )

s d~zl ,N Wt,10DE ) 9I II=1 s N~F ODE )

TEST TFST

C

1053 CONTINUE

DO lf)l 1=1-oNLN0DE
XY(liD=YN0DFfI*l)
XY(2tI)=Pa(l)

101 CONTINUE
CALL QF)ICTR(XYt29NLNOf)Ft0X(l))
1SCL=-2
XSCL(I)=-IO
XSCL(2)=1.0
X"ICL( 3 )=-7*10

XSCL(4)=I.d'->



CAL.L OPI CTR (XY,2sNLh'ODE9,X( 1) 90IS-CL( IS CL) 9(;XSCL ( XCL))
C

D0 102 11,NLNOUF
XYtllI)=YNODE(1,1)
XY(2, 1)=DELTA1( I)

102 CONTINUE
CX CALL OPICTR(XY,2,NLNOPEIUINIT(U)UMMY) ,QX(i.))

CALL QPICTR(XY,2,NLNOOD9X(1),o(ISCL( ISCL),OXSCL.(XSCL))
C

Do0 I
XY I1
X Y (2

1U3 CONT
CALL

ii3* 1,1.NLNODE
,1)=YNODE(II.)
1l)=DDELDT (I)

I NU E
OPICTR(XY,2,tNLNODECdINIT(DUMFMY),oQX(l))

IF(TIMFL.GJ.FTTME) GO TO 1000

Do 1161 J1,tNMNOriE
DOi 1i5 K1,pNMNODE
DEL -.j(JsK)=0&
[)ELI4J9K)=6o

1 u- E C ONT INUE
I'E LiO( JsJ) =E LTAO(
I AlLL I ( J sJ

110) CONTINUE

J) * *3

)=DELTA1 (J)**'j

CO1ipuT[ M:

F ACTOR =-ALP HA* D



CALL MUL.T(FACTOH,1,1,M2,NMN.O)ENtiiqODFTFMPI,1CR)
CALL MOLTL(TEMPi It MNODE v NMMUOOE sDELI%, NMNODE o NMNODiE vTE MPS TER)
CALL M(JLTtTEMP:NMNOFENMNOriFM3,NMNODEi NLNO[KC.TLMP1, JEIP

C
C

CALL ADDU(Ml 9NMpjODE NLjJLF TEMI *NMNODE rLNOFI TWi~P2 IIFR)
C
C

F AC TOP=-F AC TOR
CALL MUJLT(FACIORI ,1,tM'INfiOOF,*IMNOETEMPIER)
CALL MUJLT(TEM ,NMNODEa4I4NODi~dEL1NMNIOU[,NMNOOETLEMPI, TE-R)
CALL MULT(TEMP1,NMNODEtiNOOEM3,NMNODCNMNODETEMP11R)

C
C

CALL AbO4iTEMP2,NMNODEtNMNOOETEMPoNMNODFFNMNOOEiM, IEP)
C

M(NLNOENL2)=1.
C
C COMPUTE R K
C
C

[AC 10R=(1 -ALPHA)*I)T
C

CALL MLJLT (FACTOR,11 I M?,NMNODEAJMNOrW,-TEMPtIER)-
CALL MULT(TEMPNMNODEN-'NODEDEL~fNMNODFNMNODETEMIP1ICIR)
CALL MUJLT(TEMPlNMNODENMNO)EM39,NMNO(WNMNOrLTM-P,EP)

C
C

CALL ADDMi NMNODiENMNODF 9 TEM06*,i 4NOPE tNMNO4,sTEIMP vIER)
C
C

[AC f ORt =-FACTOR
CALL MOLT (FACTOR t 104 sfMNCDE INMNI0'Ev TEMPI. t IFR)
CALL MULl (TEMPINMNODENIMNI)rtleELONt4 NOrCEPNMNtOr)rTEMP?, 117R)
C AL L MU LT (T EMP 2vNM NOOFPNMND0FM3 sN MNO)E 9NMNOE, T FPL" , FR)



CALL ADD (TEMP9NHWODENMNOfOE 9T PlNMNODE,'.NMN0DF 9 T-M2,iJ[R)
CALL MUL T(TE MP2 iNMNOODf NNOD9PPONMNODE 91 vRRtI ER
P H(WNTN OD) )=0.
RH (19TNODE+1) =PBtI!L

CAL.L SOL+VE(M9Rv PINLNODE)

IF(t.OOP.NEe1) GO TO 235~
TS TEP=-100
IF(K'ILL.NE.1) GO TO 232

C S H I V
D0 239 1=1,NLNOCE
PO(1)=P1 ( CUT.J)

YT t )=YNODL( ICUl .1,1)
239 CONTINUE

CT HAN S 1 ER
N T N L N01) -2' 1CUT
CALL TFANS3(YTPONT9

CCUT
XNOOE,'STNSLNXNODFv8098091)

00 '241 I=1,ICUT
STHSL (1,3)0.
STRSL(NXMDE-ICUTItl,)=0.

24i1 CONIINUE

232 CONTINUE
G-O TO 1coo

235~ CONTINUE
CALL MULT(M5,NMNOCPiMNODL,0EL,NMNUENMN~bF)Ttf',1Elf-l)
CALL MULT(TEMPNMNOOEsNMfJOOEtt3NMNODEiMNOPffTLMP1,IEiR)



0 0

CALL MUT(EP19NND IOEYPI*MOE91*1iL E
t

CALL
CALL.
C AL L

MU L T
MUL T(
MU L T(

MbNDE*NNOEDE0LNMNOC~t'MNor.,
TEMP p'MNODE ,NMNOUF ,M3,tNMNODE ,NMNODU,
TEMP 1,NMNODENMNOD[,P),NNODE,1,rJOEL

T F.MPI T FPR)
T E M1 , IE
0 1 IFH)

IF(KILL.NE*1) GO TO 148
Do I. 4crtI 11CUT
P1 (1)0O.
P1 (NINOLjE-ICUT I )OD.

14h6i CONTINUE

148 CON~TINUE

DO 150 I1,NLNODE*
)ukILOI(I)=ALPH-A kODEL1( I)*. 1-ALPHA )*DDEL104 )

IOELTAO(I)=)ELTAO(1).ODELI)Tu)*o)T

DEL IAliCI)=(le+BETA) *D1LTAO( I)
WkITE(69466) P1(1)

4 6 GF rR fI AIT( E15 4)
150 CONTINUE

SUM=P I*SUM1/NLNOUE
WtRITE(6t4~71) SUM

V~t -RMA1 (III6)

TI L=T IMLT+DT
GO TO 1t,,,

CONT INUE
RU TURN
END

10 0 Li



0 0 00 0

C SUBROUTINE STRCMP

THIS SUHROUTINE ASSE
COMPONLNTS CONTAINED I
INTO THE "%IGHT- HAND
SYSTEM OF EQUATIONS.

MBLES
N THE
S I DF

THE TRACTION
AFRAY STRSL
VECTOR OF THE

10
200
300
400

1100

60 U

I ) 0

8700
1860U

900
1000
1100
120 0
130 1)
14l00
150 0
160 
1100
1800

.1900
2000
2100
220 (
2300I
24 0
2500 t
26 30
2T00
2800
2900

3100
3200
3300 I

34l 0 0

/SIE/n ORDERNFLMNTNXNDENTNO)E
/ARRAYS/ A,SIGMACOEFF
/OUT/ STRSLSTRSCALOCACART
/GP/ ZETANPTS
/0OF/ IDOF

SI=0
IMIN=1
IMAX=0
DO 185 J=lsNELMtNT
IMAX=IMAX+NPTS(J)-1
00 180 OFrA=1,IDOF
00 170 I=IMINIMAX
11=1 I+1
SIGMA(I I)=STRSL( IqETA)

17u- CONTINUE

SUBROUTINE STRCMP
IMPLICIT REAL*8(A-HO-Z)
INTEGER ORDER
DIMENSION RLOC(5,3),RFOS(3),AAt2)L (2) ,NPTS(4)
DIMENSION XNODE(80,3),TNDOOF(80, 3), STRSL (80,3) ,STR SC(80, 3)
DIMENSICN A(80,80)
DIMENSION COEFF(80),SIGMA(80),ACAPT(80,3)
DIMENSION ALOC (80,3) ,ELCON(2,3)
DIMENSION ZETA(2,80) ,ETA(2,P0)

COMMON
COMMON
COMMON
COMMON
COMMON



0 0

50"1 II=II+1
3600 180 CONTINUE
370Q IMIN=IMAX*1
3806 185 CONTINUE
396d RETURN
4 006 EIND

00

I



100 C SUBROUTINE STRESS
200 C

THIS SUBROUTINE
GENERATES INITIAL
THE DESIRED FUNCTI

AUTOMAT ICALLY
TRACTIONS WITH
ONAL FORM.

SUBROUTINE STRESS(STRSLLOAOIJ)

IMPLICIT REAL*8(A-H-,0-Z)
INTEGER ELMNTT(4,80),ELMNTX(4,80),RFRON:T
REAL*8 LOAD(2),NONGAMNONDELNONPNONMU

30
40
50
60
7 0
80
90

100 (
110
120
130
140
150
160
170
180
190
200C
210

230

250
26 U
270
286
290
3061
31 U
32,
330
34C

COMMON
COMMON
COMMON
COMMON

/BKPING/ XNO0ETN0F,ELMNTTELMNTX
/LPAR/ LTYPE
/NONDIM/ NONGAMNONDELNONPNONMUTAUC
/FILL/ LFRONTRFRONT

EXP(O)=0EXP(0)
SQRT(0)=DSQRT(0)
ABS(0)=DA BS ( 0)

A=ABS(TNGDE(1,1))
IF((LTYFF.EC.1).OR.(LTYPL.FO.5)
CONST=LOAD(1)*EXP(-8*0.?5)

) B=LOAD(2)

IF(LTYPE.ECl.1) STRSL(Jl)=LOAD(1)*EiXP(-6*XNODE(j, 1)**2)

IF(LTYPE .FQ.6)
1F(LTYPL.EQ0.2)

STRSL(J,1)=L AD (1)*(1.-(XNODE(J,1)/A)**2)
STRSL(Je1)=LOAD(1)*SQRT(1.-ABS(XNODE(J,1)))

IF(LTYPE.L.3) STRSL(J,1)=L0ADC)) -

DIMENSION XNODF(80,3),TNODL(80,3) ,STRSL(80,3)tSTRSX(80,3)



IFC (LTYPLEE.4)
It I +xr~otE(J% 1) )

*AND& (Xto'O[)E (JoI) #LT&..)) STRSL(J,1 )=LOAID(1)*

1f((L.TYPE.UEQ.7).AN).(XMOL[jE(J,1) .LT.0.)) STIRSL(Jq
I (XNODE (RFRQNTo )XNOflE ( d , ))/XiCII)F(PFROflT# I)

1)=LOADS1) *

IF ((LTYP[.EQ*4)
I (1.-XNODE(Jsl) )

3C 6

3700

390 U
4 0 0 0

42.00

4700

4900
5 0a0
5100
52%
5 3 0
5400

560 .j
5700
5800

5S0 c

IF((LTYPE.EQ.7).ANO.*(J.LT.LFRON)T))
IF( (LTY[f.EE.7) .AND. (J.GToRFRONT))

L(Jtl )=LQA)()*

STRSL (J, 1)=04
STPSL(Jtl)=G.

IF( (LTYPE.EQ.5) .ANDO.(ABS(XNODE (J,1)) .GT *0.5)) STRSL tJ,1)0.,

IF((CLTYP'E.FQ.5) *AND. ( ABS(XNODE(J 1) ) .ir.0 5)
ILOAD(l.)*EXP(-[i*XNODF(J,1)**2)-CONST

) STHSL(Jo1)=

STRSL(Jv I)=STRSL(J9 I)A NOJP
STKSL(Jv2)=LOAD(2) fNONP
IF( (LTYPF.EO.1 ) OR. (LTYPII~t705)) STRS1-(Jv2)=3.

RET URN
EiND[

0

IF((LTYPIE(E~.7).AN~o(XNOQF(J,1 )oGE.0.)) STRS
I(XNODE(IRFRONT,1)-XNODF(J,1))/XNODE(RFPONT,1)

*AND. (XNOC;E (Jol. ) oGE*Oo ) ) STRSL-(Jm I )=LOAI)( 1 ) *



0 4 0

C SUBROUTINE TRANS3100
206
30u

600

900
Lou 0
110
120G
130 0
1.40 0
150U

1600

1800
1900
200 u
2100
2200
230 G
2400
2500
2 600

2700
28 00
2900
3 0 ii

31 u 6

3200
3306
340

.NXT=NXTFMP/2
WRITE(25,100) NXT
NSIDE=NXOLO/2
ITLST=2*NXT
IF (I TEST.L T.NXT EMP)
WRITE'(25,100) NXT

100 FORMAT(4 ei13)

DO 5 1=1
XSIDE (I,
Y SIDE (I,

5 CONTINUL

NX T=NX T+1

,NXT
1)=XTEMP(I ,JCOL)
I)= YTF MP ( IsJCOL)

K=1
00 10 I=1,NSIDE

THIS SUBROUTINE INTERPOLATES A FUNCTION
KNOWN FOR THE ARGUMENTS XTEMP AT THE NEW SET
OF ARGUMENTS XOLD (THESE NAMES ARE NO LONGEP
MNEMONICs BUT WHEN THE SUBROUTINE WAS WRITTEN
THEY WERE RELEVANT). TRANS3 USES LGRNG TO
PERFORM THE ACTUAL INTEPFOLATION, BUT DOES SO
IN SUCH A WAY THAT THE FUNCTION IS INTERPOLATED
SEPARATELY ON EITHER SIDE OF THE ORIGIN, TO
PRESERVE DISCONTINUITIFS.

SUBROUTINE TRANS3( XTEMP, YTEMPNXTEMPXOLD,YOLDSNX LD,
11ROWJROWJCOL)

IMPLICIT REAL*8(A-H,O-Z)
DIMENSION XSIDE(400,3) ,YSIDE.(400,3)
DIMENSION XOLD(JROW,3),YOLD(JROW,1),XTEMP(IROW,3),YTEHP(IROW,5)

0



35300 CALL LGRNG(XSIDEYSIDEXOLD(,l1),PTNXT,,1ROW)
3160 bYOLD(K,1)=PT
3700 K=K*1
3800 10 CONTINUE
3900 C
4000 IF(ITEST.LT.NXTEMP) NXT=NXT-1
4100 N=NXT+1
420J D 15 1=.1,NXT
430t) XSIDE (I,1)=XTEMP (N, JCOL)
4466 YSIDE(I,1)=YTEMP(NJCOL)
4506 . N=N+1
4600 15 CONTINUE
I100 C
4 800 NSIDE=NS TDE+1
491)0 00 20 I=NSIDENXOLD
S036 CALL LGRNG(XSIDEYSIDE,XOLD(T,1),PTNXT,'5IROW)
5100 YOLD(K,1)=PT

2 60 uKK+1
5300 20 CONTINUE
546% C
5500 RETURN
56C)5 END



0

C SUBROUTINE TRNSFM
C
C THIS SUBROUTINE USES THE VECTOR

C TRANSFORMATION LAWS TO TRANSFOkM THE

C VALUES OF THE SOLUTION 'F" FROM GLOBAL

C INTO LOCAL COORDINATES.
C

SUBROUTINE TRNSFM

IMPLICIT REAL*8(A-H,0-7)
INTEGER ELMNTT(4,80),ELMNTX(Ai80)
INTEGER ORDER
DIMENSION XNODE (80, 3), TNODE (80,3) ,STRSL( 80,3), STRSC (80,3)

DIMENSION COEFF(80) ,SIGMA(80) ,ACART(80,3)

DIME.NSION ALOC(80,3),ELCON(2,3)
DIMENSION XA1(4),pXi3 1(4),XA2(4),Xh?(4)
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COMMON /ENJDPTS/ XA1 ,Xl1,XA2,XB2,THETA
COMMON ISIZE/ ORDERNELMNTNXNODENTNODIE
COMMON /OUT/ STRSLSTRSCALOCACART

COMMON /BKPING/ XNODETNODE-,ELMNTTELMN TX

ATAN(Q)=DATAN(Q)
SIN(Q)=bSIN(Q)
COS(Q)=DCOS(0)
JMAX=0
JMIN=l
00 380 1=1,NELMNT
GAMMA=3.145926535ci8/2.
ARG=(XB2(I)-XA2(I))/(X81 (I)-XA 1(1))

IF(XB1(I).NE.XA1(I)) GAMMA=ATAN(ARG)

IF(XB1().LT.XA1(I)) GAMMA3.141592539898+AMMA
GAMMA=-GAMMA
JMAX=JMAX+ELMNTT (I , 1.)
00 370 J=JMIN,JMAX



.0

35% ALOC(JI =ACART(Jtl)*COSCCAMMA)ACART(J,2)*SIN(GAMMA)
36CjuALOCCJ,2)=-ACAPT(JI )*SIN(GAMMA)+ACAFRT(J,2).*COS(GAMMA)

3700 S70 CONTINUL
3800^ JMIN=JMAX*1
3 9 G u 38G CONTINUE
'*000 RETURN
4*100 END


