NUMERICAL ANALYSIS OF HYDRAULIC FRACTURING AND RELATED CRACK

PROBLEMS

. by

DONALD RALPH PETERSEN

B.S.E.(M.E.), B.S.E.(Eng. Math.), University of Michigan-Dearborn (1977)

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 1980

© Massachusetts Institute of Technology 1980

Signature of /	Author	(1
•	-	1.	Departmer	nt of M	lechanical E Januar	ngineering y 18, 1980
Certified by			;)		
•		/1	· 1		Michael Thesis	P. Cleary Supervisor
Accepted by						
			Chai	irman,	Warrer Department	Rohsenow Committee
		ARCHIVES MAGSACHUCETTS IN OF TECHNOLOG	STITUTE			
		APR 1 8 1				

LIBRARIES

NUMERICAL ANALYSIS OF HYDRAULIC FRACTURING AND RELATED CRACK PROBLEMS

DONALD RALPH PETERSEN

Submitted to the Department of Mechanical Engineering on January 18, 1980 in partial fulfillment of the requirements for the Degree of Master of Science in Mechanical Engineering

ABSTRACT

The formulation for numerical analysis (by surface integral equation techniques) of crack problems related to hydraulic fracturing is presented along with solutions of several representative plane static and quasi-static problems. A general formulation for static problems involving plane cracks of arbitrary number and orientation in non-homogeneous media is given. Separate formulations for quasi-static problems are included, although, due to their developmental nature, they are restircted in scope to a single stationary plane crack. Results are presented for a static crack approaching and crossing an interface; for the effects of microcracks in adjacent strata and for simple models of crack branching and blunting. Results are also shown for the quasi-static stationary crack problems of pressure evolution in fluid filled cracks and fluid front advancement in partially filled cracks. In addition, the development and current status of a general purpose computer program for the simulation of hydraulic fracturing is discussed.

Thesis Supervisor: Dr. Michael P. Cleary Title: Associate Professor of Mechanical Engineering

ACKNOWLEDGEMENTS

I wish to thank my advisor, Professor Michael P. Cleary, for the many hours of help which he so willingly gave throughout the course of this project. His advice and suggestions have been extremely helpful and are sincerely appreciated.

I gratefully acknowledge I. Buttlar, Mary Toscano and Nancy Toscano for their patience and high quality of work in the typing of this thesis.

My parents, Mr. and Mrs. Ralph C. Petersen, cannot be thanked deeply enough for their unfailing support and encouragement. They have always provided for me unselfishly, and I am very grateful.

Special thanks are in order for my good friend Mark Proulx, whose willingness to listen to my problems and frustrations, even during the most difficult times of his own work are very much appreciated. Without the companionship of this fellow Detroiter, it would have been much harder to learn some of the more obscure customs of New England life (e.g., "cash and carry").

I also thank Mr. Jon Doyle for his friendship and encouragement.

My many friends and neighbors at Ashdown House have made life here much easier and much more enjoyable.

I would like to express my thanks to the Lawrence Livermore Laboratory and to the National Science Foundation for the generous financial support given to me.

DONALD R. PETERSEN, Cambridge, MA. January, 1980

- 3 -

TABLE OF CONTENTS

.

Pa	ae	
	3~	

ABSTRACT 2				
ACKNOWLEDGEMENT				
TABLE OF CO	NTENT	S	4	
LIST OF FIG	URES.	•••••••••••••••••••••••••••••••••••••••	6	
INTRODUCTIO	N	•••••	11	
CHAPTER 1:	FCRM FOR	ULATION OF PLANE STATIC CRACK PROBLEMS NUMERICAL ANALYSIS	17	
CHAPTER 2:	ANAL	YSIS OF STATIC-CRACK PROBLEMS	26	
	2.1	Introduction	26	
	2.2	Straight Crack Near an Interface	26	
	2.3	Effects of a Micro-Crack on Containment	32	
	2.4	Behavior of Stress Intensity Factors at the Tips of Singly Branched Cracks	38	
	2.5	The Behavior of Stress Intensity Factors at the Tips of Doubly Branched or Blunted Cracks	46	
CHAPTER 3:	QUAS	I-STATIC CRACK PROBLEMS	58	
	3.1	Introduction	58	
	3.2	Frac. Fluid Pressure Evolution: Explicit Formulation	59	
	3.3	Implicit Scheme for Tracing of Frac. Fluid Pressure Evolution	87	
	3.4	Fluid Front Advancement in Stationary Cracks	153	
CHAPTER 4:	DESC PURP FRAC	RIPTION AND STATUS OF FRACSIM: A GENERAL OSE COMPUTER PROGRAM FOR HYDRAULIC TURE SIMULATION	184	

-

- 5 -

TABLE OF CONTENTS (CONTINUED)

Page

4	4.1	Introduction	184
4	4.2	Functional Organization of FRACSIM	185
4	4.3	Program Structure	186
4	1.4	Format of Required Input Data	189
CHAPTER 5: C	CONCL	USIONS	197
REFERENCES	• • • • •		199
APPENDIX A	••••		202
APPENDIX B		•••••••••••	204

- 6 -

LIST OF FIGURES

<u>No</u> .		Page
1	Diagram of a typical hydraulic fracturing operation	16
1.1	Diagram showing coordinates and angles needed to formulate the general two-dimensional crack problem for numerical solution by the Gauss-Chebyshev scheme	25
2.1	(a) Single crack model for a crack approaching the interface; (b) two-crack model for a crack crossing the interface	30
2.2	 (a) Plot of stress-intensity factor vs. distance from interface for a crack approaching the interface; (b) plot of stress-intensity factor vs. distance between crack tip and interface for a crack crossing the interface 	31
2.3	Diagram of the microcracks problem	35
2.4	Plot of (P / , as a function of the distance from the tip of the hydraulic fracture to the interface for the microcrack problem	36
2.5	Plot of (P /) as a function of distance from the tip of the microcrack to the interface for the microcrack problem	37
2.6	Plot of stress-intensity factors as function of branching angle for the branched crack problem	43
2.7	Plot of K _I at tip A of an unsymmetrically branched crack	44
2.8	Plot of K _{II} at tip A vs.d/a for an asymmetrically branched crack	44
2.9	Plot of K _I at tip B vs. d/a for an asymmetrically branched crack	45
2.10	Plot of K _{II} at tip B vs. d/a for an asymmetrically branched crack	45

- 7 -

LIST OF FIGURES (CONTINUED)

.

<u>No.</u>	·	Page
2.11	(a) Two crack model for the blunted crack problem; (b) three-crack model, preferred because of its ability to capture the behavior of $\mu^{\beta 2}$ near the intersection.	52
2.12	Plot of stress intensity factors vs. size of secondary crack for the blunted crack problem	53
2.13	Stress intensity factors at the tip of a 30-deg asymmetric blunted crac. (a) K_{I} , K_{II} at tip A; (b) K_{I} , K_{II} at tip B; (c) K_{I} , K_{II} at tip C	54
2.14	Stress intensity factors at the tips of a 45-deg asymmetrically blunted crack. (a) K_I , K_{II} at tip A; (b) K_I , K_{II} at tip B; (c) K_I , K_{II} at tip C	55
2.15	Stress intensity factors at the tips of a 60-deg asymmetrically blunted crack. (a) K_I , K_{II} at tip A; (b) K_I , K_{II} at tip B; (c) K_I , K_{II} at tip C	56
2.16	Stress intensity factors at the tips of a 90-deg asymmetrically blunted crack. (a) K_I , K_{II} at tip A; (b) K_I , K_{II} at tip B; (c) K_I , K_{II} at tip C	57
3.1	Diagram of the pressure evolution problem	74
3.2	Optional fix-up schemes to retain specified borehole pressure. (a) Global renormalization; (b) local fix-up	75
3.3	These diagrams illustrate the operation of local smoothing after differentiation. (a) The process of differentiation of half of a curve similar to $g^{3}p'$. (b) The results of local smoothing	76
3.4	Results of a trial computation of evolving fracture fluid pressure using our combined finite difference- local smoothing method for evaluating $[s^{3}p']$. (a) Fracture fluid pressure; (b) solution of Eq. (1), $F = \mu \sqrt{1-x^{a}}$ (c) initial crack opening dis- placement; ; (d) initial $s^{3}p'$; (e) initial $[^{3}p']$ (before smoothing); (f) after smoothing	77

- 8 -

LIST OF FIGURES (CONTINUED)

<u>No</u>		Page
3.5	Schematic of procedure for tracing fracture fluid pressure evolution	78
3.6(a)	This plot shows the approximation of the shifted $[5^3 p']$ data obtained at 20 t, points (open circles) obtained from our hydrofrac program	79
3.6(b)	Plot of [6 ³ p']' obtained by termwise differentiation of the Chebyshev series plotted in Fig. 3.6(a)	80
3.6(c)	Approximation of [s ³ p']", obtained by termwise dif- ferentiation of the Chebyshev series shown in Fig. 3.6(a)	81
3.7(a)	Representation of $\delta^3 p'$ (computed by the hydrofracture program at 40 t, points denoted by open circles), and by a 40 term Chebyshev series, shown in solid lines. (b) Plot of $[\delta^3 p']$ obtained by termwise differentiation of the series described in Fig. 3.7(a). (c) Plot of $[^3p']$ calculated by termwise differentiation of the Chebyshev series shown in Fig. 3.7(a). There is an unacceptable level of roughness	82
3.8	(a) Representation of $\delta^3 p'$ (calculated by the approximation $\delta^3 = (1-t_k^2)^{3/2}$ at 20 t_k points shown by open circles) and by a 200 term Chebyshev series shown by a solid line. (b) Approximation of $[\delta^3 p']'$ obtained by termwise differentiation of the series described in Fig. 3.8(a). (c) Approximation of the series described in Fig. 3.8(a).	. 83
3.9	Approximation of $\delta^3 p'$ (calculated at 40 t, points (shown by open circles) by the approximate formula $\delta^3 = (1-x^2)^{3/2}$) with a 200-term Chebyshev series solid line. (b) Plot of $[\delta^3 p']'$ computed by termwise differentiation of the 200-term Chebyshev desies described in Fig. 3.9(a) . (c) Plot of $[\delta^3 p']''$ obtained by termwise differentia- tion of the Chebyshev series described in Fig. 3.9(a) although the noise has been substantially reduced from that in Fig. 3.8(c)	. 84

- 9 -LIST OF FIGURES (CONTINUED)

<u>No.</u>		Page
3.10	(a) Representation of $\delta^3 p'$ (computed approximately at 200 t, points using the approximation of $\delta = \sqrt{1-\frac{\pi^2}{2}}$ by a 200-term Chebyshev series. (b) Approximation of $[\delta^3 p']'$ obtained by termwise differentiation of the series described in Fig. 3.10(a). (c) Approximation of $[\delta^2 p']''$ by termwise differentiation of the series described in Fig. 3.10(a).	85
3.11	(a) Illustration of the differentiation method used to obtain the curve in Fig. 3.11(b) from $[\delta^3p']$ " in Fig. 3.10(b). (b) This approxi- mation of $[\delta^3p']$ " was obtained by differentiating the curve shown in Fig. 3.11(b), computed by termwise differentiation of a Chebyshev series, with the averaged finite-difference scheme il- lustrated in Fig. 3.11(a)	86
3.12	Result of a test of our pressure evolution program in which $s=\sqrt{1-z^{a_1}}$ was simulated and then integrated with δ_D via the matrix operations descri- bed in Section 3. The result is the expected constant " $10/42$ ", which deviates from uni- formity at the tips because of errors in explicit differentiation	98
3.13	Pressure evolution curves obtained using	99-109
3.14	Pressure evolution curves obtained under the same conditions as those in Fig. 3.13 (i.e., $\Delta \pm = e^{-2\beta \tau_c}$ same elastic constants and initial pressure distri- bution), but with $\alpha = 0.5$. Note the instability in \mathcal{P} and δ , manifested in the oscillating pressure gradients at the crack tips. (a)-(e) P; (f)-(h) δ ; (i),(j) δ	110-119
3.15	Pressure evolution curves obtained with $a = .9$, but otherwise under the same conditions as those in Fig. 3.13. Only slight instability at t=1.5($_{c}$ occurs, but it is apparent that the best results are obtained with a =1. (a)-(c) P; (d)-(f)6; (g), (h) δ	120-127

- 10 -

LIST OF FIGURES (CONTINUED)

<u>No.</u>	Page
3.16	Pressure evolution curves obtained with $\Delta \pm ./T_c$ but otherwise under the same conditions as those in Fig. 3.13: P ₀ /G=1, V =.3, \propto =1. Time steps of .1T _c or less are necessary for all but rough cal- culations. (a)-(c) P; (d)-(f) δ ; (g), (h) δ 128-135
3.17	Pressure evolution curves obtained with a large time step size ($\Delta t=.5T_{c}$), but otherwise under the same conditions as those in Fig. 3.13. These plots demon- strate the stability of the implicit scheme. (a)-(c) P; (d)-(f) δ ; (g),(h) δ
3.18	Pressure evolution curves computed from a different initial pressure distribution ($P(x,t=0) = \sqrt{1 + x }$). Note the reversal of curvature of P near the bore- hole after t=0 and the more rapid approach to uni- form pressure than is obtained with a triangular
5 7	$\alpha = 1, P/G=1, \gamma = .3.$ (a)-(c) P; (d)-(g)5; (h), (i) δ^{0}
3.19	Diagram of the fluid front advancement problem162
3.20	Curves showing fluid front advancement and pressure evolution in a stationary crack. Note the rapid change in the pressure distribution when the fluid reaches the crack tips'(e),(f), and the changes in the shape of the opening rate (§) curves as the crack is being filled. (a)-(g) P; (h)-(m) δ ; (n)-(t) δ
3.21	Plot of fluid front velocity as a function of time (solid curve)
4.1	Functional flow diagram of FRACSIM
4.2	Diagram showing both the hierarchy among the subroutines and the calling sequence followed in the course of a run
4.3	Organization of bookkeeping arrays in FRACSIM

~ ~ **n** -

INTRODUCTION

The work presented in this thesis was done as part of an ongoing project whose objective is to develop a general purpose computer program capable of full three-dimensional simulation of physically realistic hydraulic fracturing operations in brittle (including porous) media. Attainment of this goal will require the simultaneous capabilities of computing the various structural responses to arbitrarily loaded and oriented sets of cracks (even in highly irregular material regions) and of computing the time dependent loading of those cracks-coupled to the material response-caused by the flow of a viscous (possibly non-Newtonian) fluid within them, and possibly affected by flow of fluid in the pores of surrounding strata. The problems treated herein are mainly simplified versions of the most general problems, and were chosen for their ability to provide various preliminary insights into hydraulic fracturing problems and confidence in our approaches to these problems. Another important aspect of the project, namely program development, is also discussed.

Hydraulic fracturing (see review in [1]), while useful in other applications, is usually thought of as a technique for stimulating oil or gas wells to enhance production. Essentially, it is a means of producing a large crack which serves as a highly permeable passage-way with a large surface area into which gas or oil

- 11 -

can escape from a relatively impermeable rock formation; it can then flow back to the well-bore, even from very large distances. The crack is produced (see Figure (1)) by sealing off a part of the borehole with packers, then pumping in a highly viscous fluid until the pressure between packers is great enough to fracture the rock; pumping is then continued for some time until it is judged (by whatever means of prediction or measurement is available) that the crack has grown to the desired size. The high viscosity of the fluid serves three purposes: it reduces the loss rate through the pores in the rock, it allows much wider cracks (than those corresponding to natural rock toughness), and it enables the fluid to carry along in suspension some form of large particles (e.g., coarse sand or bauxite) which serve to prop the crack open after the fluid pressure is reduced and the well is put into production.

Hydraulic fracturing has been in use for some thirty years, but a disturbing percentage of the jobs attempted still are less than successful. An hydraulic fracturing job would theoretically be deemed a success if the resulting crack has the proper shape: usually this means that the crack extends a great distance away from the borehole without spreading upwards to a comparable extent. Above all else, the fracture should, if possible, be confined to the "pay zone" or region containing the resource being extracted. This last consider-

- 12 -

ation is especially important if the pay zone consists of a narrow stratum and surrounding strata are non-productive or can produce deleterious effects (e.g., unwanted fluids, blow outs or leak-off). Hydraulic fracturing operations can fail for any of a number of reasons, but in the present context we are especially interested in the question of containment. For instance, sometimes fractures may actually propagate primarily upward along the borehole, without ever extending very far away from it. That such occurrences go unpredicted (and often unnoticed) is primarily due to inadequate mechanical analysis of the hydraulic fracturing process.

Most hydraulic fracturing analyses focus upon estimating the surface area (and hence deducing effective length based on an assumed height), rather than trying to trace the detailed geometry of a prospective hydraulic fracture. All of these analyses involve somewhat unreal assumptions about the crack geometry and fluid pressure distribution. Upon reducing the geometry to a function of a single variable, a crack shape is calculated to satisfy mass conservation: the crack volume must make up the difference between the total amount of fluid pumped in and that supposed to have leaked out into the formation (e.g., [1-4]). Some of the more recent work (e.g., [5,6]) has taken into account some of the relevant solid mechanics considerations, but the resulting analyses seem to have

- 13 -

numerous shortcomings and the formulations have little potential for coping with more complex geometries: specifically, no proper solution has yet been obtained (even for the simplest geometries) for the coupled crack-opening and frac-fluid flow process.

Since the problem does not lend itself to closed-form solutions, except for various very approximate formulae, we must employ an appropriate numerical method such as a Surface Integral Equation (SIE) technique or Finite Element (FE) analysis. We have chosen to work with a particularly attractive SIE scheme [8], which will be discussed in detail in the chapters that follow. This SIE scheme has the advantage over others (e.g. [7]) of giving displacement type solutions based on known tractions and requiring only fundamental solutions which are well known [8]. In general, SIE schemes are more facile than FE analysis for these types of problems: they are based on surface (rather than volume) discretization, and so are not only more economical in modeling crack surfaces, but better suited for problems involving infinite or semi-infinite regions. However, there may be a need in some cases to use either FE analysis or a suitable "hybrid" SIE/FE scheme [9] for problems in highly irregular or nonlinear regions, owing to the SIE scheme's re-- quirement of a fundamental solution for each particular region. We emphasize, though, that enough such fundamental solutions do exist [8]

- 14 -

to give the SIE scheme enromous potential, and we can, indeed, compute the required numerical values for some influence functions that have not been worked out analytically. Thus, we regard this approach -- although limited to plane problems in this thesis -- as having the ability for realistic fully 3-D modelling of hydraulic fracturing processes in the future.

FIG. 1. Diagram of a typical hydraulic fracturing operation. Here the pay zone consists of a fairly narrow stratum in which the crack must be contained. our plane crack models represent cross sections, such as A-A or B-B, of such an hydraulic fracture.

CHAPTER 1: FORMULATION OF PLANE STATIC CRACK PROBLEMS FOR NUMERICAL ANALYSIS

We perform our analyses of crack problems with a special form of Surface Integral Equation, solution of which yields the density of dislocations or dipoles (distributed over the boundary of the region of interest) required to produce a known traction distribution on the same boundary. The method employs the fundamental solution of the governing equation pertaining to the region. It requires that the boundary be broken up into a number of discrete ele-The traction at any point on the boundary is then expressed ments. as the sum of the integrals over each element of the product of the dislocation or dipole density and the fundamental solution. The result is an integral equation in terms of the unknown dislocation or dipole density. This particular version of classical SIE schemes [e.g., Ref. 9] has been applied to a variety of solid mechanics problems; in particular, Cleary [Ref. 10] has used it in investigations of a number of phenomena germane to the present topic. In our work, we model a crack as a distribution of dislocations (or dislocation dipoles) and determine the dislocation density required to produce the known traction on the crack surface. The region of interest, then, is the body of material containing the cracks under study. Thus for static problems in the plane (quasi-static problems will be treated separately in Chapter 3) we obtained [15]

- 17 -

$$\sigma_{(\chi)}^{(\alpha,L)} = \sum_{j} \int_{s_{j}} \int_{(\chi_{j}, \pm)} \mu_{(\pm)}^{(\alpha,\beta,L)} \mu_{(\pm)}^{(\beta,j)} ds_{j}$$
(1.1)

where $\sigma^{(\alpha,i)}(x)$ is the α traction component at point x on element $\dot{\mathcal{L}}$, $\mu^{(\beta j)}(t)$ is the β component of the dislocation density at point t on element j. $\Gamma^{(\alpha\beta ij)}(x,t)$ is the fundamental solution (or influence function) which gives the stress $\sigma^{(\alpha i)}$ at x due to a dislocation at t. The particular influence function used in this work is that for a dislocation near an interface, and its most important feature is its inverse distance singularity (Γ is given in complete form in Ref. [8].)

For plane problems, we represent S_j by the function $t(\xi)$ and S_i by x(n), where $\xi, n \in [-1,1]$ with respect to the global origin. Equation (1.1) then becomes

$$\sigma_{(\mathcal{X}(\eta))}^{(\alpha,i)} = \sum_{j,\beta} \int_{-1}^{1} \int_{(\mathcal{X}(\eta), \pm(\xi))}^{(\alpha,\beta,i)} \mu(\xi(\xi)) E_{j} d\xi \qquad (1.2a)$$

where

$$E_{j} = \left[\frac{d\pm}{d\xi} \cdot \frac{d\pm}{d\xi}\right]_{j}^{j_{2}}$$
(1.2b)

It is most convenient to write Eq. (1.2) in terms of traction_components that are normal and tangent to each element S_i , and dislocation density components that correspond to the global i_1 and i_2 (x_1 and x_2) directions. Thus, the directions α and β refer to different coordinate systems, and in order to compute r, the stress in the global system (σ_{11} , σ_{12} , σ_{22}) must be transformed to coordinates normal and tangent to S_i :

$$\sigma^{(11)} = -\frac{1}{4} (G_{11} - G_{22}) \sin(2\varphi_{1} + \pi) + G_{12} \cos(2\varphi_{1} + \pi)$$

$$\sigma^{(21)} = \frac{1}{4} (G_{11} + G_{22}) + \frac{1}{4} (G_{11} - G_{22}) \cos(2\varphi_{1} + \pi)$$

$$+ G_{12} \sin(2\varphi_{1} + \pi)$$
(1.3)

where ϕ_i is the angle of inclination of S_i with respect to the global x_1 axis.

In order to solve Eq. (1.2) numerically, we must re-express it as a system of linear algebraic equations. This task may be accomplished by either of two means, namely local or global interpolation of the dislocation densities. The local interpolation approach consists of dividing each crack surface into a number of elements, then representing the dislocation density in terms of interpolation or "shape" functions defined locally on each element (Cleary [16] has performed extensive numerical computations using a "triangular" interpolating function):

$$\mu^{(\beta_{j})} = \sum_{k=1}^{N_{j}} a_{k_{j}} m_{k}^{(\beta_{j})}(\underline{t}) ; \underline{t} \in S_{j}$$
(1.4)

where the N_j interpolation functions on each element j are decided upon <u>a priori</u> in accordance with the problem being solved. Equation (1.2a) thus becomes

If each element is sub-divided into discrete nodes by choosing generic sets of points (or nodes) η_r , $r = 1, ..., N_i$ and ξ_i , $i = 1, ..., M_j$ at which to evaluate σ and the m_k , the desired system of linear algebraic equations is obtained. The usefulness of the local interpolation method in fracture problems has been investigated by Wong [11], who has used it with some success in dislocation dipole formulations.

In the global interpolation method, each crack is treated as a single boundary element on which we may conveniently express the dislocation densities in terms of interpolation functions, now defined over an entire crack surface (hence the name "global"):

$$\mu^{(\beta_{j})}(\underline{t}(\xi)) = \frac{F^{(\beta_{j})}(\underline{t}(\xi))}{(\underline{t}+\xi)^{\alpha}(1-\xi)^{\beta}}$$
(1.6)

- 20 -

.1.

The parameters α and β are chosen to reflect the anticipated singularity in <u>density</u> of dislocation μ (which is actually just the derivative $d\delta/dx$ of the crack width δ). The choice $\alpha = \beta =$ 0.5 is exact for cracks in homogeneous media and, for reasons that will be discussed below, is an advantageous approximation even for modelling of cracks in non-homogeneous media.

Erdogan and Gupta [12] have developed a method of solving singular integral equations of the form

$$S(x) = \frac{1}{\pi r} \int_{-1}^{1} \frac{F(x) dx}{(x-x) \sqrt{1-x^2}}$$
(1.7)

based on the Gauss-Chebyshev integration formula

$$\frac{1}{\pi} \int_{-1}^{1} \frac{F(t) dt}{\sqrt{1-t^{2}}} = \frac{1}{M} \sum_{k=1}^{M} F(t_{k}); t_{k} = \cos\left(\frac{\pi(3k-1)}{2M}\right) k = 1, ..., M \quad (1.8)$$

Their formula is

$$S(\chi_{n}) = \frac{1}{\pi} \int_{-1}^{1} \frac{F(t)dt}{(t-2)\sqrt{1-t^{2}}} = \frac{1}{N} \sum_{k=1}^{N} \frac{F(t_{k})}{(t_{k}-\chi_{n})}$$
(1.9a)

$$t_{k} = \cos\left(\frac{\pi(ak-1)}{aN}\right) \quad k = 1, \dots, N$$
(1.9b)

$$\mathcal{X}_{\mathcal{R}} = COS(\frac{\pi_{\mathcal{R}}}{N}) \quad \mathcal{R} = 1, \dots, N-1 \tag{1.9c}$$

where the t_k are the zeroes of the Chebyshev polynomials of the first kind, $T_N(t)$, and x_r are the zeroes of $U_{N-1}(x)$, the Chebyshev polynomials of the second kind. Since the singular part of Γ is $(x-t)^{-1}$, in general, this formula is very well suited to use in our work, and provides a very simple and economical means of solving Eq. (1.2). This formula is based upon the observation that $(1-t^2)^{-1/2}$ is the weighting factor for the Chebyshev polynomials. A similar formula [13] has been developed for other, arbitrary choices of α and β , based on the Gauss-Jacobi integration formula; because the required computation of the zeroes of the Jacobi polynomials is relatively difficult and time consuming, we have used the Gauss-Chebyshev method in all of our work, without any apparent loss in accuracy for the answers that we have been interested in extracting.

If we now define discrete points n_r and ξ_k :

$$\eta_{\pi} = \cos\left(\frac{\pi\pi}{(N_{i}-1)}\right) \quad \pi = 1, \dots, N_{i}-1 \tag{1.10a}$$

$$S_{k} = COS(\pi(ak-1)/aN_{i}) k = 1, ..., N_{i}$$
 (1.10b)

and substitute Eq. (1.6) with $\alpha = \beta = 0.5$ into Eq. (1.2), then apply Eq. (1.8) we get

$$\sigma_{(\mathcal{Z}(\eta_{n}))}^{(\alpha L)} = \sum_{\substack{n_{j} \\ j \neq k}} \frac{\pi}{k_{j}} \sum_{\substack{n_{j} \\ k \neq l}} \left[\prod_{\substack{(\alpha \beta L j) \\ (\mathcal{I}(\eta_{n}), \pm(\mathbf{s}_{k}) \in \mathbf{j})} E_{j} \right] F_{(\underline{z}(\xi_{k}))}^{(\beta j)}$$
(1.11)

which is the final form of our system of algebraic equations. Note that since on each element there is one less n_r than ξ_k , the system (1.11) will require several additional equations for completion, the number depending upon the number of crack surfaces and the range of α and β . Such additional conditions may be either contraints on the net entrapped dislocation (called closure conditions) or matching of dislocation densities (matching conditions) if two or more of the cracks intersect, depending upon the problem under investigation. The closure conditions may be stated for any plane crack problem as integrals of the appropriate dislocation densities:

$$\sum_{j} \int_{-1}^{1} \mu^{(\beta_{j})}(\underline{z}(\varsigma)) E_{j} d\varsigma = 0 \approx \sum_{j} \frac{\pi}{N} \sum_{k=1}^{N_{j}} F^{(\beta_{j})}(\underline{z}(\varsigma_{k})) E_{j}$$
(1.12)

for one or more crack surfaces S_j , where the sum is taken over intersecting cracks. Since there is a variety of matching conditions, each generally applicable only to a particular problem, they are discussed separately in appropriate sections of Chapter 2.

An illustrative example of the type of plane crack problems that we are equipped to solve is depicted in Figure (1.1); note, however, that we can include more than two surfaces, some or all of which may intersect, and we can also solve problems in which these cracks are near an interface. In this case, we have two straight crack surfaces, so that for surface S_1

$$\begin{cases} \mathcal{Z}(\eta) \\ \dot{z}(\varsigma) \end{cases}^{2} = \frac{1}{2} \left[t_{i}^{B} \left(i - \left\{ \frac{\eta}{\varsigma} \right\} \right) + t_{i}^{A} \left(i - \left\{ \frac{\eta}{\varsigma} \right\} \right) \right] \dot{z}_{i} \\ + \frac{1}{2} \left[t_{2}^{B} \left(i - \left\{ \frac{\eta}{\varsigma} \right\} \right) + t_{2}^{A} \left(i + \left\{ \frac{\eta}{\varsigma} \right\} \right) \right] \dot{z}_{2} \end{cases}$$
(1.13a)

$$E_{i} = \frac{1}{2} \left[\left(t_{i}^{B} - t_{i}^{A} \right)^{a} + \left(t_{a}^{B} - t_{a}^{A} \right)^{a} \right]^{\frac{1}{2}}$$
(1.13b)

and, for
$$S_{2}$$

$$\begin{cases} \mathscr{Z}(\eta) \\ \sharp(\mathfrak{g}) \end{cases} = \frac{1}{2} \left[t_{1}^{\mathcal{D}} \left(1 - \{ \mathfrak{g} \} \right) + t_{1}^{\mathcal{C}} \left(1 + \{ \mathfrak{g} \} \right) \right] \frac{1}{2}, \\ + \frac{1}{2} \left[t_{2}^{\mathcal{D}} \left(1 - \{ \mathfrak{g} \} \right) + t_{2}^{\mathcal{C}} \left(1 + \{ \mathfrak{g} \} \right) \right] \frac{1}{2}, \end{cases}$$
(1.13c)

$$E_{a} = \frac{1}{2} \left[\left(\pm \frac{D}{2} - \pm \frac{C}{2} \right)^{2} + \left(\pm \frac{D}{2} - \pm \frac{C}{2} \right)^{2} \right]^{\frac{1}{2}}$$
(1.13d)

Solution of Eqns. (1.11) now produces the strength $F^{(\beta j)}$ of dislocation density in the β -direction on each surface j. The stress intensity factors may be computed from the relations (similar to those given by Cleary [14]) after transforming $F^{(\beta j)}$ into local coordinates, namely

$$F^{(T_{j})} = F^{(I_{j})} \cos(\varphi_{j}) + F^{(2j)} \sin(\varphi_{j})$$

$$F^{(N_{j})} = -F^{(I_{j})} \sin(\varphi_{j}) + F^{(2j)} \cos(\varphi_{j}) \qquad (1.14)$$

$$K^{(\beta_{j})} = \frac{2G}{I-V} \sqrt{\frac{\pi J_{j}}{2}} F^{(\beta_{j})}$$

Fig. 1.1. Diagram showing coordinates and angles needed to formulate the general two-dimensional crack problem for numerical solution by the Gauss-Chebyshev scheme.

- 25

1

CHAPTER 2: ANALYSIS OF STATIC-CRACK PROBLEMS

2.1 Introduction

In this Chapter the results of our investigations of several static plane crack problems are presented. These problems (the numerical formulations of which were presented in Chapter 1) were chosen for the dual purposes of gaining preliminary insight into some relevant hydraulic fracturing situations and of perfecting the models to be used for studying similar crack geometries in quasi-static simulations (which account for the non-dynamic timedependent loading due to frac. fluid flow, as discussed in Chapter 3). Thus we have progressed toward the capability of simulating the changing of course (branching), blunting, containment in or breaking out of a stratum, and the effect of zones of damage or microscopic flaws on propagating hydraulic fractures.

2.2 Straight Crack Near an Interface

Perhaps the most important goal in the design of an hydraulic fracture is containment of the fracture in the "pay zone", or resource-bearing stratum. Thus, the first problem that we undertook to study was to determine the behavior of the opening mode stress intensity factors at the tips of a crack approaching and eventually penetrating an interface with a material having different elastic moduli (Figure 2.1).

- 26 -

This problem has been discussed by Cleary [17], and very similar problems have been solved numerically by Erdogan and his co-workers [13,21]. The model for a crack approaching an interface simply involves a single crack surface, consisting of a distribution of dislocations, employing the influence function for a dislocation near an interface. To model a crack which extends through the interface, however, we found it most effective to employ two crack surfaces which intersect each other tip-to-tip at the interface. The advantage of the two-crack model is that a large number of nodal points are concentrated around the interface, owing to the spacing required by the Gauss-Chebyshev scheme. With the two-crack model, we require two additional conditions to complete our system of equations. One of these is the requirement that there be no net entrapped dislocation (i.e. the crack must close at both ends), given by Equation (1.12). The other is a "matching condition" relating the value of F(0)to that of F(0). For this we adapt the condition used by Erdogan and Biricikoglu [13].

Their matching condition is a requirement that must be met to insure consistency between their solution and the calculated power of the stress singularity at the crack tips intersecting the interface: in its full form, it is quite a complicated relation, but for our purposes a simpler version which embodies the essential features of theirs seems to suffice. Thus, we use the following relation:

- 27 -

$$F_{(0)}^{(11)} = \alpha F_{(0)}^{(12)} \sqrt{\frac{L_{1}}{a_{2}}}$$
(2.1)

This condition is imposed at the two nodal points closest to either side of the interface. Our results indicate that the choice of α does not have an important effect. It may, however, be best to choose $\alpha = 0$ (see Sec. 2.4). In fact, although Erdogan and Biricikoglu use a Gauss-Jacobi scheme which gives better account of the fact that the stress singularity for a crack tip at an interface is not inverse square-root of distance, we are able to essentially reproduce their results, especially for behavior of stress intensity factors, with our Gauss-Chebyshev method. It seems likely that this agreement is due to the difference from 0.5 of the power of the singularity at the interface having only a very local effect on the solution. By choosing enough nodal points we can smooth out any imposed perturbation in the solution at the two points nearest the interface so that the solution at the crack tips remains relatively unchanged.

The results, which illustrate the behavior of K_I for varying tip-to-interface distances and relative shear moduli, are shown in Figure 2.2 (a) (for a crack approaching the interface) and Figure 2.2(b) (for a crack having penetrated the interface). The dependence of K_I on d/A and g is as anticipated by Cleary [17] who made his deduction on the basis of simple material deformation

- 28 -

matching arguments. As the crack approahces an interface with a stiffer medium (g < 1), K_I at tip A drops sharply to zero, whereas it rises sharply toward infinity if the interface is with a softer material (g > 1). For a crack which has penetrated an interface, going from a stiff material to a softer one, K_I at tip A has been found to drop sharply (as shown) from infinity, reach a broad local minimum, and gradually become asymptotic to its value remote from the interface. For a crack which has broken out of a soft material into a stiffer one (having somehow overcome the apparent "elasticity barrier" noted above) K_I rises sharply from zero, levels off, and remain nearly constant until d/A = -2 (the point at which tip B crosses over the interface), whereupon it drops sharply toward its remote value. The behavior of K_{IB} (K_I at tip B) can be obtained from Figure 2.2 by complementing d/A and inverting g.

While the strong decrease in K_I at the tip of a crack approaching a stiff adjacent medium leads us to conclude that the crack might be contained in the softer stratum, some care is required when applying this conclusion. The crack may break through the interface if, for example, the range in which de-cohesion takes place is greater than the distance at which K_I becomes strongly influenced by the interface. Also, as will be discussed in the next section, microcracks in the stiffer medium can be induced to propagate across the interface and link up with an hydraulic fracture.

FIG. 2.2. (a) Plot of stress-intensity factor vs distance from interface for a crack approaching the interface; (b) plot of stress-intensity factor vs distance between crack tip and interface for a crack crossing the interface.

- 31 -

- 32 -

2.3 Effects of a Micro-Crack on Containment

It was noted in the last section that an hydraulic fracture, propagating toward an interface with a stiffer material, will at some point encounter an "elasticity barrier" which will, in the absence of moderating microstructural conditions, drive K_I at the near-interface tip to zero. Among the strongest of these counteracting conditions is the presence of a micro-crack a short distance across the interface from the main fracture (Figure (2.3)). Under these circumstances, the near tip tensile stress field of the main fracture could potentially induce a large enough K_I on the tip of the micro-crack to cause it to propagate back across the interface and link up with the main fracture.

Our approach to this problem was to determine the fracfluid pressure (p_0) on the main crack required to produce a positive K_I at the near-interface tip of the micro crack if both cracks are in a region of compressive tectonic stress of magnitude σ_M . This solution was obtained by first solving the micro-crack problem with a unit positive normal load on the hydraulic fracture and no load on the micro-crack so as to obtain the stress intensity factor at the tip of the unloaded micro-crack, K_{Iu} . The problem was then solved for the converse crack loading to obtain the stress intensity factor at the tip of the loaded microcrack, K_I . By superposition we can write the expression for K_I at the micro-crack tip for the case where the hydraulic fracture is subjected to frac. fluid pressure P_0 and confining stress - σ_M and the micro-crack to - σ_M alone

$$K_{I} = (P_{o} - G_{m}) K_{IU} - G_{m} K_{IU}$$
(2.2)

from which we deduce that for K_I to be positive, the ratio of frac. fluid pressure to confining stress must exceed

$$\left(\frac{f_{s}}{G_{m}}\right)_{c} = \frac{K_{I}}{K_{I}} + 1$$
(2.3)

The effects of geometric and material parameters on $(P_0/\sigma_M)_c$ are shown in Figures 2.4 and 2.5. Of special interest is the fact that the capability to actually open the micro-crack is not strongly affected by the micro-crack's size. It is also apparent that the proximity of the hydraulic fracture to the interface is more important than that of the micro-crack. The ratio of shear moduli for the strata is also an important factor.

Figure 2.4 shows that it is possible to produce a positive K_I at the tip of a micro-crack without having a frac. fluid pressure excessively above the confining stress. For example, a frac-fluid pressure of $1.4\sigma_M$ in a 30 foot hydraulic fracture 1.5 feet from an interface (with a shear modulus ratio of 2) can produce a positive K_I at the tip of a 3.5 inch micro-crack 3.5 inches from the interface. Figure 4 shows that if the same hydraulic fracture were instead 4 inches from the interface (still not strongly under the influence of the elasticity barrier), the same frac. fluid pressure would produce a positive stress intensity factor at the top of a 3.5 inch microcrack as far as 3 feet beyond the interface. Statistically,* this provides a higher probability of finding enough micro-cracks and damage to back-propagate ahead of the major fracture.

We conclude that micro-cracks are significant factors influencing the containment of hydraulic fractures in shallow, soft strata. It is in these situations -- where the lateral confining stresses are small compared to the frac. fluid pressures required for hydraulic fracture propagation -- that micro-cracks in a stiff adjacent stratum can be easily induced to break through the interface and link up with the hydraulic fracture, thus allowing it to overcome the elasticity barrier presented by the stiff stratum and thereby break out of the pay zone. At greater depths, we expect the hydraulic fracture to be more readily contained in the pay zone by the elasticity barrier because the frac. fluid pressure required for propagation is then such that $(P_0 - \sigma_M)/\sigma_M$ can be too small for the mechanism above to operate.

Note that our conclusions here need very little modification in discussing the fully 3-D character of the real field operation.

Fig. 2.3 Diagram of the microcracks problem. We must determine the fracture fluid pressure required to cause a positive stress-intensity factor at the near-interface tip of the microcracks for given microcracks and hydraulic fracture lengths, distances from the interface and relative shear moduli

٩

- 35 -

Fig. 2.4 Plot of $(P_{A} / \sigma_{A})_{c}$ as a function of the distance from the tip of the hydraulic fracture to the interface for the microcrack problem.

- 37 -

2.4 <u>Behavior of Stress Intensity Factors at the Tips of Singly</u> <u>Branched Cracks</u>

Under certain conditions we might expect a propagating hydraulic fracture to branch (i.e., to change course) as it encounters unsymmetric stress fields, changes in material composition or structural defects. Branching would be expected, for instance, in an hydraulic fracture obliquely approaching an inclusion or interface. The type of event that occurs may range from formation of a single branch (the subject of this section) to generation of multiple branches (of which more than two usually are observed only under dynamic propagation conditions). The results of an investigation concerning the appropriate model for crack blunting -- an interesting and very important example of multiple branching -- will be presented in the next section, along with the results of a study of Some simple blunting problems.

We model the singly branched crack as two separate, intersecting crack surfaces. In this respect the problem is similar to that of a crack crossing an interface. Now, however, the two cracks are not collinear, and additional complications are thus introduced: specifically, since we must now solve for dislocation densities in two directions on two surfaces, we require not two but four extra equations to complete the resulting system. Two of these, naturally, are simply the closure conditions (Eq. (1.12)), namely, that there be no net opening or sliding dislocation over the entire branched crack. The question of what matching conditions

are appropriate for the branched crack problem is not so easily answered. While equations do exist in the literature [18], neither their physical motivation nor the extent of their applicability is clear, and our attempts at resolving these issues have not yet produced conclusive answers. However, we developed the notion that, in the immediate vicinity of the intersection, the opening and sliding dislocation densities may be adequately represented by an assumption of antisymmetry, which is certainly valid in one particular case of two cracks with identical loading and length. The adequacy of this assumption was verified by comparison with the results of Gupta [18] and Lo [19] (see Table 1), and is further vindicated by our observation that any reasonable relationship between the dislocation densities at the intersection produces equally satisfactory results, at least whenever crack lengths are of comparable order. Recently, however, Barr [22] has found that the agreement with Lo's results deteriorates somewhat for very short branches when using this specification of antisymmetry as a matching condition. He has obtained good agreement with Lo for a very wide range of branch lengths (2 < a/d < 200) by requiring the much stronger condition that all dislocation densities to vanish at the intersection, thereby excluding stress singularities at that point. He has implemented this requirement in two ways, with equally good results: by explicitly requiring $\mu^{\beta 1}$ and $\mu^{\beta 2}$ to vanish (which necessitates removing the integral equations at one of the points x_{\perp} near the intersection), or by requiring the dislocation

- 39 -

densities on only one of the cracks to vanish. While the latter method may appear to be insufficient, it seems to result in essentially vanishing μ on both surfaces and offers the advantage of allowing the governing integral equation to be written at all of the x_r 's.

It seems likely that similar requirements will prove to be more acceptable than the ones currently used for other intersecting crack problems such as a crack penetrating an interface (Section 2.2) and the blunted crack problem (Section 2.5). We are currently evaluating its performance in such problems.

Along with the results of Gupta and Lo cited above, we interpret as further validation of our branched crack model the results shown in Figure 2.6, where K_I and K_{II} are plotted as functions of branching angle θ for a symmetric branched crack (viz. a crack whose legs are of equal length). We attribute the decrease of K_I with increasing θ to the decreasing portion of the total crack length subject to loading in one of the two normal directions. Likewise, the increase in K_{II} is related to the increasing shear component on S_i of the frac. fluid pressure acting on S_j . If effective length were the only factor affecting K_I , we would expect the decrease to be very roughly described by

$$K_{r} = 5_{o} \sqrt{\pi a \left(1 + \cos(\theta) \right)}$$
(2.4)

Equation (2.4) is plotted as a dashed line in Figure 2.6. For small values of θ , the agreement between the computed K_I and that predicted by Equation (2.4) is quite good, but at greater angles we see that K_I does not drop as far as we would expect. It is likely that with increasing θ , the decrease of K_I is moderated by the tendency of one surface to partly influence the other, as if it were a free surface.

The behavior of the stress intensity factors with increasing extent of branching is shown in Figures 2.7-2.10. Figures 2.7 and 2.9 show the expected increase of K_I with branch length, and K_I curves for various branch angles are compared with the well-known elevation of K_I at the tips of a propagating straight crack (dashed line).

The behavior of K_I with increasing branch angle is as expected based on a crude "effective length" argument mentioned above. The behavior of K_{II} at the tip of the branch (Figure 2.10) is reasonable, since we would expect the contribution to the effective shear loading of the branch from the opening of the main crack to be greatest when the branch is very small; we would, therefore, expect an initial increase in K_{II} , followed by a falloff when the branch length (and thus the normal load due to frac fluid pressure) becomes significant. K_{II} at the tip of the main crack predictably increases from zero as the length of the branch surpasses that of the main crack and their roles reverse.

Comparison of results obtained by antisymmetric matching to results of K. K. Lo.

Results from antisymmetric matching ^a		
0, deg	$K_{1A}/o^{\circ}\sqrt{\pi d_2}$	$K_{11A}/a^{\circ}\sqrt{\pi d_2}$
15	1.1518	0.3214
45	0.6630	0.7238
75	0.6549	0.6489
Lo's results		
0, deg	Kin /0° Vado	$K_{IIR}/a^{\circ}\sqrt{\pi d_{2}}$

, ueg	<u>AIA VAG2</u>	<u>"118/0 V * 2</u>	
15	1.15	0.32	
45	0.65	0.72	
75	\sim 0.70	∿0.63	

$${}^{a}d_{2}/d_{1} = 0.5, \beta = 90 \text{ deg.}$$

Comparison of results obtained with antisymmetric matching to those reported by Gupta.

Gupta's resu	Supta's results for $\beta = 90 \deg$, $d_2 = d_1$	
0, deg	KIA/0° Vad2	$K_{IIA}/\sigma^{\circ}\sqrt{\pi d_2}$
30	1.0873	0.6833
45	0.7463	0.8405
60 .	0.3900	0.8319

Results by antisymmetric matchin	ng for $\beta = 90 \text{ deg, } d_2 = d_1$
----------------------------------	---

θ, deg	$K_{IA}/\sigma^{\circ}\sqrt{\pi d_2}$	K _{IIA} /a° √nd ₂
30	1.0852	0.6818
45	0.7450	0.8388
60	0.3880	0.8302

Comparison of antisymmetric matching with Gupta's results for $\beta = 60^\circ$, $\theta = 40^\circ$

^d 2 ^{/d} 1	Gupta's results $K_{IA}/\sigma^{\circ}\sqrt{\pi d_2}$	Antisymmetric matching, K _{IA} /o° $\sqrt{\pi d}_2$
0.1	0.9942	0.9948
0.05	0.9950	0.9889
0.025	0.9983	0.9902

TABLE I

- 42 -

FIG.2.7 Plot of K₁ at tip A of an unsymmetrically branched crack. The dashed line represents the theoretical elevation of K₁ when $\theta = 0$ deg.

FIG.2.3 Plot of K_{II} at tip A vs d/a for an asymmetrically branched crack.

FIG.2.0 Plot of K_{11} at tip B vs d/a for an asymmetrically branched crack. The dashed segment of the 30-deg curve is a region of unsatisfactory numerical behavior.

The relatively wide separation of K_I at the tip of a short branch for different branch angles is of great interest to us because of its implications for estimating the directional tendency of a hydraulic fracture. Apparently, based on any of the numerous branching criteria (e.g. [17]), we would not expect a straight hydraulic fracture in a homogeneous medium to deviate from its course if the tectonic stress field is consistent and it is driven by internal pressure: however, we have previously recognized [14] the various barriers and stress eccentricities that can easily make this branching more favorable.

2.5 <u>The Behavior of Stress Intensity Factors at the Tips of</u> <u>Doubly Branched or Blunted Cracks</u>

There are situations in which we might expect a propagating hydraulic fracture to form not one, but two branches. Perhaps the most likely (and the most important from the standpoint of containment) of these occurrences is crack blunting. This is a process by which the energy normally available to drive a crack across an interface would instead cause separation and frictional slippage on such an imperfectly bonded interface. Because of its importance in hydraulic fracturing, our investigations of doubly branched cracks focussed on crack geometries associated with such a blunting process. A complete study of blunting must include the frictional characteristics of the interface, as well as the tectonic stresses acting at the interface, since it is these

- 46 -

properties which may control the degree of blunting rather than the elastic moduli of the material on either side of the interface (Section 2.2); such a study has been undertaken by Papodopoulos [20].

Two different blunted crack models were evaluated. The simpler of the two is a two crack model in which the main crack and the blunted portion are two separate intersecting surfaces (Figure 2.11a). The second model, which yielded better numerical results, is the three crack model shown in Figure (2.11b), in which the blunt is imagined to be composed of two surfaces intersecting tip-to-tip at the point where the blunt joins the main crack, which is the third element.

Once again, additional equations are needed to complete the system formed by the governing integral equations. In the case of the two-crack model, we need four such conditions. The most important consideration is that there should not be any (even logarithmic) stress singularity in the material near the intersection, which is equivalent to requiring that there be no net jumps in dislocation density at the intersection. For our initial work with the two crack model for symmetric blunted cracks, we imposed this constraint through the following equations:

 $-\mathcal{M}^{(11)}(0) + \mathcal{M}^{(22)}(0+) - \mathcal{M}^{(22)}(0-) = 0 \qquad (a.5a)$ $\mathcal{M}^{(21)}(0) + \mathcal{M}^{(12)}(0+) - \mathcal{M}^{(12)}(0-) = 0 \qquad (a.5b)$

The remaining two equations came from requiring closure (Eq. (1.12b)), as before. Equations (2.5) are unsatisfactory for use with unsymmetric problems since, although they ensure boundedness of σ_{11} and σ_{12} , and σ_{22} is not bounded unless the blunt is perpendicular to the main crack. We thus decided that a different way of requiring bounded stresses near the intersection was in order. Because our Chebyshev formulation is not well suited to providing discontinuous dislocation densities on a single crack, we concluded that better numerical stability and perhaps physical realism could be achieved by specifying that the opening and sliding dislocation densities on the main crack vanish at the intersection, while densities are the same on either side of the intersection on the blunted portion of crack surface; namely

 $\mathcal{M}^{(N1)}(0-) = \mathcal{M}^{(N3)}(0+), \quad \mathcal{M}^{(T_{2})}(0-) = \mathcal{M}^{(T_{3})}(0+); \quad \mathcal{M}^{(X_{1})}(0) = 0, \quad \mathcal{M}^{(Y_{1})}(0) = 0 \quad (2.6)$

In view of the recent findings regarding matching conditions for branched crack problems (Section 2.4), it is probably best to require $\mu^{\beta j} = 0$ at the intersection on at least two of the crack surfaces. However, in the work presented here, Equations (2.6) proved to be satisfactory and, along with two closure conditions, were used in the three crack model, where six additional equations were needed to complete the system.

The results of our investigation of the behavior of

symmetric blunted cracks are shown in Figure 2.12. The essential features are the behavior of the opening mode stress intensity factors at the tips of both the primary and secondary cracks; namely $K_I(a)$ and $K_I(b)$, respectively. We note that the elevation of $K_I(a)$ with increased blunting reverses as expected when the length of the secondary crack exceeds that of the primary crack, but that, with increasing secondary crack length, $K_I(b)$ rises much more strongly than we had anticipated.

The initial rise of $K_{I}(a)$ is probably due to the development of a free surface effect like that encountered in the branched crack problem: the secondary crack offers much less resistance to the opening of the primary crack than would the unbroken material. When the secondary crack exceeds the primary in length, the effect of the fluid pressure in the secondary crack overwhelms the free surface effect by producing a compressive stress on the prospective locus of the primary crack thus decreasing $K_{I}(a)$, and thus dominates its further behavior.

In the absence of the primary crack $K_I(b)$ would increase as $\sqrt{d/\ell}$. We find this to be the case for large d/ℓ . The relative behavior of $K_I(a)$ and $K_I(b)$ is substantial evidence that once the secondary crack becomes long enough, propagation of the primary crack away from the secondary crack will be virtually stopped. Thus, we may make the preliminary conclusion that while blunting may result in containment of an hydraulic fracture, it may also inhibit propagation away from the interface.

Results for representative asymmetric blunted crack problems are shown in Figures 2.13 - 2.16. Here we examine the effects of blunting inclined at an angle θ to the axis of the main crack when one tip (tip B) is held stationary and the other (tip C) is advanced. These results were obtained from both the two and the three crack models, as noted on the plots. While the twocrack model offers the advantage of simplicity, we note that there are cases of numerical instability for certain combinations of blunt length and inclination. This situation was remedied by adopting the three crack model, with its greater facility for capturing the behavior of the dislocation densities at the intersection. We feel that the three-crack model is much more accurate and reliable than the two-crack model, and we plan to use it in our future work. The stress intensity factors at the three-crack tips display some mildly noteworthy behavior.

As usual the behavior that interests us most is that of K at the various crack tips. Regardless of the angle of inclination of the blunt there is an increase in K_{IA} , K_{IB} , and K_{IC} with increasing amounts of blunting. Both the rapidity of this increase and the initial magnitude of these stress intensity factors depend upon the angle θ , but the nature of the dependence is different for K_{IB} than for K_{IA} and K_{IC} : for any choice of ℓ , K_{IB} increases with increasing θ , but K_{IA} and K_{IC} decrease (albeit slightly).

- 50 -

It is most probable that $\ {\rm K}_{\mbox{IB}}$ is dominated by compressive stresses in the vicinity of the body of the main crack: as θ decreases, tip B moves into areas of larger compressive stresses which force K_{TR} to decrease with θ for a given frac fluid pressure. The behavior of $K^{}_{\rm I}$ and $K^{}_{\rm II}$ at tips A and C is quite similar to what we have seen in the branched crack results in the previous section (as might be expected from the shortness of the leg of the blunt between the intersection and tip B). The magnitudes of K_{IIA} , K_{IIB} , and ${\rm K}_{\mbox{IIC}}$ tend to level off and decline as the blunt becomes very large compared to the main cracks, thereby confirming some obvious intuitive predictions. A phenomenon which is best illustrated by Figure 2.16a is the reversal in sign of K_{IIA} which occurs when the relative shearing actions of the legs of the blunt reverse; in case of the 90° blunt this occurs when one leg surpasses the other in length. We quote all these observations in order to provide some confidence in the general correctness of the scheme, although there are many other more complicated phenomena of interest still to be pursued.

- 51 -

FIG. **a**. *||* (a) Two-crack model for the blunted crack problem; (b) three-crack model, preferred because of its ability to capture the behavior of $\mu^{\beta 2}$ near the intersection.

- 52 -

Fig. 2.12 Plot of stress intensity factors vs size of secondary crack for the blunted crack problem.

- 53 -

FIG.2-3 Stress intensity factors at the tips of a 30-deg asymmetric blunted crack. (a) K_I , K_{II} at tip A; (b) K_I , K_{II} at tip B; (c) K_i , K_{II} at tip C. For the two-crack model, we modeled both cracks with 20 nodes. For the threecrack model, crack 1 had 20 nodes and cracks 2 and 3 had 10 nodes each (negligible changes in the results occurred when 15 nodes were used on each surface). The dashed segments indicate regions of unsatisfactory numerical behavior.

FIG. 2.14-Stress intensity factors at the tips of a 45-deg asymmetrically blunted crack. (a) K_I , K_{II} at tip A; (b) K_I , K_{II} at tip B; (c) K_I , K_{II} at tip C. For the two-crack model, cracks 1 and 2 had 20 nodes. For the threecrack model crack 1 had 20 nodes, and cracks 2 and 3 had 10 nodes each. The dashed segments indicate regions of unsatisfactory numerical behavior.

- 55 -

FIG. 2.15 Stress intensity factors at the tips of a 60-deg asymmetrically blunted crack. (a) K_1 , K_{11} at tip A; (b) K_1 , K_{11} at tip B; (c) K_1 , K_{11} at tip C. For the two-crack model, cracks 1 and 2 each had 20 nodes. For the three-crack model, crack 1 had 20 nodes, while cracks 2 and 3 had 10 nodes each.

- 56 -

- 57 -

FIG2-/6 Stress intensity factors at the tips of a 90-deg asymmetrically blunted crack. (a) K₁, K₁₁ at tip A; (b) K₁, K₁₁ at tip A; (b) K₁, K₁₁ at tip C. For the two-crack model, both cracks had 20 nodes each. For the three-crack model, crack 1 had 20 nodes, and cracks 2 and 3 had 10 nodes each.

CHAPTER 3 QUASI-STATIC CRACK PROBLEMS

3.1 Introduction

Our studies of the static crack problems described in Chapters 1 and 2 have served two important purposes: they have provided some insight into the behavior of corresponding cracks in actual hydraulic fracturing operations, and they have served as stepping stones, providing us with modelling experience necessary to achieve our ultimate goal of full 3-D simulation of propagating hydraulic fractures. In order to reach that goal, we must have, in addition to the capability of modelling complex crack geometries, the capability of computing the characteristics of the flow of a viscous fracturing fluid in a propagating crack, as well as the effect of the fluid flow on the rate of propagation. Our approach to such quasi-static hydraulic fracturing problems has been to consider in sequence certain idealized models with increasing complexity. Thus, we first investigated the problem of fluid pressure evolution in a stationary plane crack filled with a quasi-statically flowing fluid; then we studied pressure evolution and fluid front advancement in such a crack. Work is now in progress on the problem of quasi-static propagation and fluid front motion in a plane crack, a problem which comes quite close to some actual field operations. We found, in the course of working on the pressure evolution problem, that the "explicit" scheme described in the next section seems totally inappropriate and that only the "implicit" formulation described in Section 3.3 is sufficiently stable.

- 58 -

- 59 -

3.2 Frac. Fluid Pressure Evolution: Explicit Formulation

The pressure evolution problem is illustrated schematically in Figure (3.1): the extremely viscous frac. fluid is pumped into a crack (already filled with the frac. fluid) whose length is held fixed. As the width of the crack increases, the fluid pressure distribution changes accordingly. Since we choose to pump the fluid at whatever rate is necessary to maintain a constant pressure at the borehole, the process will stop when the fluid pressure becomes uniform along the entire crack length.

In the early stages of our work on this problem, we felt that an "explicit" formulation following the general outline presented by Cleary [17], would be the simplest and most economical method of solution; since we anticipated having to carry out the solution over many discrete time steps, the latter are very important criteria. By explicit scheme we mean a method which allows the fluid pressure distribution at a time in the future to be calculated explicitly from the present crack opening and fluid pressure distributions. Such a method is considerably more economical than an "implicit scheme", in which the future pressure distribution depends implicitly upon the current state, thus requiring solution of a system of equations. Although some stability problems were anticipated, (as discussed below and in ref. [17]), we felt that they could be adequately taken care of.

In the development that follows (and in later sections) some simplifications of the notation used in Chapter 1 will be possible, since from here on we will be dealing with one crack only and normal tractions. Specifically, the superscripts used in reference to the traction \mathcal{G} , the influence function Γ , and the dislocation density μ will be dropped; further, the traction will be designated by p as a reminder that it is due only to an internal fluid pressure. In other words; $p \equiv \mathcal{G}^{(11)}, \Gamma \equiv \Gamma^{(111)}$ and $\mu \equiv \mu^{(11)}$. Also, since the crack will always be assumed to lie on the interval [-1,1], $E_1 \equiv 1$.

Our formulation starts with the equivalent of the integral equation (1.2):

$$P(x_{o}) = \int_{-1}^{1} \Gamma(x_{o}, x) \mu(x) dx$$
(3.1)

The appropriately specialized versions (presented in [17] along with the more general equations) of the equations of conservation of mass and momentum take the form

$$\frac{\partial}{\partial \chi}(V_{\delta}) = -\frac{\partial \delta}{\partial t}$$
(3.2)

and

$$\frac{\partial p}{\partial x} = -\hat{\eta} \frac{\nabla}{\delta x}$$
(3.3)

Equations (3.2) and (3.3) are readily manipulated to get

$$\frac{\partial}{\partial x} \left[\delta^3 \frac{\partial P}{\partial x} \right] = \hat{\eta} \frac{\partial \delta}{\partial x}$$
(3.4)

Differentiating (1) with respect to time and (4) with respect to x and substituting, we arrive at

$$\hat{\eta} \frac{\partial P}{\partial t} = \int_{-d}^{d} \Gamma(x_{\circ}, \chi) \frac{\partial^{2}}{\partial \chi^{2}} \left[\delta^{3} \frac{\partial P}{\partial \chi} \right] dx \qquad (3.5)$$

The solution procedure involves:

- Selecting an appropriate initial frac. fluid pressure distribution
- (2) Solving equations (3.1) for $\mu(x) = \delta'(x)$, hence δ
- (3) Evaluating the integral in Equation (3.5) and adding the increment in pressure to the previous pressure.
- (4) Updating the time, specifying the pressure at the borehole, and returning to step (2).

We have chosen to enforce a constant pressure at the borehole, a condition which is quite realistic; we can easily adapt to the more

usual field condition of constant pumping rate but that is not of fundamental importance yet. In general, however, the newly computed pressure curve at each time step must be corrected in some manner (Fig. 3.2). Perhaps the most appealing method is to simply set the pressure at the node x_0 in the borehole to the desired level. It may be more accurate, however, to apply some form of global renormalization, as shown in Fig. 3.2(a). It is important to scale borehole pressure p_0 and the frac. fluid viscosity γ_1 to the shear modulus G of the material (e.g., they might typically have relative magnitudes of

 $f_o/G = 10^{-4}$ and $\eta/G = 10^{-11}$ sec.). It is essential to relate the time steps assumed in iteration to a time τ_c which is based on the characteristics of fluid flow, relevant considerations of elastic crack opening, and the assumption of constant borehole pressure. The appropriate τ_c has been provided by Cleary [23] and, for the case of linear fluid equations used above, it takes the form

 $T_{c} \sim \left(\frac{G}{P_{c}}\right)^{3} \left(\frac{\eta}{G}\right)$

A corresponding expression for more general nonlinear fluid behavior has also been extracted by Cleary [24]. Considerable attention has thus been given to finding the appropriate fraction of T_c for use in our marching schemes. The crucial aspect, from a numerical standpoint is the evaluation of the second derivative appearing in the integral equation (3.5). We start by non-dimensionalizing the variables: $\delta = \frac{G\delta}{P_cl}$, $P = \frac{P_c}{P_c}$, $\dot{P} = \frac{\Gamma_c \dot{P}}{P_c}$ and $\chi = \frac{\Gamma_c}{G}$.

- 62 -

At first, we thought it best to explicitly expand this derivative:

$$\left[\delta^{3} p'\right]''= 6 \delta^{2} \delta' p'' + \delta^{3} p''' + 6 \delta(\delta')^{2} p' + 3 \delta^{2} \delta'' p'$$
(3.6)

and then evaluate the component derivatives separately. We seemed to encounter no great difficulties in evaluating \mathcal{S} and its derivatives. The first derivative, μ , is obtained directly from the solution of equation (3.1). In order to calculate \mathcal{S} and \mathcal{S}'' , we approximated μ by the polynomial

$$\mathcal{M}(x) = \frac{a_0 x}{\sqrt{1-x^2}} + a_1 + a_2 x + a_3 x^2 + \dots + a_m x^{m-1}$$
(3.7)

which can then be integrated to get δ and differentiated to get δ''

Accurate differentiation of p proved to be a much greater problem. We have observed that for any realistic pressure distribution, the resulting dislocation density will be of a form characteristic of that obtained for a uniform distribution. Thus, while we may always be confident that μ can be approximated well by a polynomial of the form (6), we need a more fool-proof method for evaluating the first three derivatives of p. We first tried several different simple scheme for interpolating and differentiating p, all based upon finding an interpolating polynomial of some sort and differentiating it. Specifically, we tried (i) ordinary polynomials (of various orders), (ii) local third order polynomials, and (iii) Chebyshev polynomials, as described later.

Ordinary Polynomials

Because of the simplicity of implementation our first attempts at finding the derivatives of p involved interpolation with ordinary polynomials. Two approaches were used for obtaining the values of p (initially known at the zeroes of second-order Chebyshev polynomials, $(\mathcal{X}_{\mathcal{I}}, \mathcal{I}_{\mathcal{I}} = l, \dots, N-l)$, plus p', p'', p'', at the first order Chebyshev zeroes, t_k , $k=1,\dots,N$. The first and simpler of the two was to collocate at the points x_r to obtain

$$\mathcal{P}(\mathcal{X}_{\mathcal{R}}) = a_{\bullet} + a_{1} \mathcal{X}_{\mathcal{R}} + a_{2} \mathcal{X}_{\mathcal{R}}^{2} + \dots + a_{\mathcal{R}} \mathcal{X}_{\mathcal{R}}^{\mathcal{M}}$$
(3.8)

and then evaluate this polynomial and its derivatives at the t_k . The second approach was to evaluate p at the points t_k first by low order Lagrangian interpolation and then collocate at the t_k to get a polynomial of the form (8). For an initial Gaussian pressure distribution $(p(x) = \overline{e}^{5x^2})$, the interpolation was done over the entire interval $-1 \le x \le 1$, but for a "square root" curve $(p(x)=\sqrt{1+|x|})$, the interpolation was carried out separately on the intervals $-1 \le x \le 0$ and $0 \le x \le 1$.

The results obtained by use of these interpolation schemes varied somewhat, but were bad in general. In particular, the approxi-

mation of the derivatives was much too inaccurate for purposes of stability and convergence toward the expected long-time response never was achieved.

Local Third Order Polynomials

Our final attempt to employ a simple, collocation-based polynomial scheme involved the use of ordinary third order polynomials, chosen so as to interpolate p at four consecutive points t_k . It was expected that by using low order polynomials, valid over a relatively short interval, interpolating functions could be found that not only gave reliable values of $p(t_{\mu})$ but in addition were sufficiently smooth to provide good approximations of the derivatives of p. This method was also a relatively simple one: values of $p(t_k)$ were first obtained by low-order interpolations from the values. of $p(x_r)$. Local cubic polynomials were then found by collocation at four consecutive t_k , then marching ahead one point and so forth. In other words, $p(t_1)$ was approximated by collocation at t_1, \ldots, t_4 ; $p(t_2)$ by collocation at t_2, \ldots, t_5 , and so on to t_{n-4} . Values of $p(t_{n-4}), \dots, p(t_n)$ were all obtained from the n-4th polynomial. This method gave very good approximations to $p(t_k)$ for both the Gaussian and square root pressure distributions, but it still gave highly unsatisfactory values of the derivatives.

While none of these relatively simple schemes provided close enough approximations to the derivatives of p, there were still several very promising alternatives. Since the problem seemed to lie in the lack of smoothness of the various interpolating functions tried so far, we expected that the use of functions of greater intrinsic smoothness could prove to be more fruitful.

The normal difficulties associated with numerical differentiation (especially in evaluating derivatives greater than first order) are made even more severe in the evaluation of $[\varsigma^3 p']^{"}$, because of the cumulative nature of δ and p. The future value of p is obtained by integration of $[\varsigma^3 p']^{"}$ with δ , an operation which does not smooth out ripples in the usual fashion of regular integration: this, at best, can only cause "noise" to be passed along unfiltered to the new p. The future δ is also determined by adding $[\varsigma^3 p']^{'dt}$; any inaccuracies in the computation $[\varsigma^3 p']'$ or its derivative will return in the next time step as noise in <u>both</u> δ and p. Thus, while it may be possible to project δ and p by one time step, subsequent computations can be extremely unstable. Clearly, a differentiation scheme which filters out all pre-existing noise in δ and p is required; it is imperative that at <u>each</u> time step, the integrand in Equation (3.5) be perfectly smooth.

The simplest such scheme involves differentiating p, then $\beta^{3}p'$ (without prior expansion, as in Eq. (3.6)) by finite

- 66 -

differences and locally smoothing rough areas in each derivatives by fitting with a relatively low order "least squares" polynomial (Figure 3.3). These operations were carried out separately on either side of the borehole location in order to preserve (at the borehole) slope discontinuities in pressure. This scheme was tried using a very simple "triangular" initial pressure distribution.

In addition, during this trial we allowed the borehole pressure to assume whatever value was dictated by the governing equations, rather than correct it at each time step to maintain a specified p(0,t). These simplifications were made because we can analytically predict with some confidence the results for the first time step under such circumstances. These tests were run using the algorithm described above in which we solve Equation (3.1) at each time step.

The first such trial involved computation of a new pressure curve after a very large time step (one quarter of the characteristic time (c)), to permit easy visualization. The results were generally good, except for slight asymmetry (Fig. 3.4). A significant finding was that, while our differentiation routine was designed to identify rough regions of a derivative and smooth them locally, the derivatives exhibited sufficient roughness (e.g., $[c^3p']'$ in Figure 3.4 (e)) that the smoothing was actually done globally on each side of the borehole. A similar test was run with a more reasonable time increment, but gross instability was observed in the computation by the third

- 67 -

time step. The problem seems to have been that the roughness in $[g^3p']'$ after the first time step was of great enough magnitude that a low order least squares polynomial no longer provides a sufficiently accurate representation of the true curve. The required second differentiation only aggravates this inaccuracy.

Our experience with the tests described above and others like them indicate, perhaps predictably from the viewpoint of skilled numerical analysts, that it is undesirable to smooth derivates by approximation with other functions; the noise present after differentiation is of sufficient magnitude to confound efforts to capture the true form of the derivative. In particular, we expect that a "least squares" fit (because it minimizes the squares of the errors) would be rendered increasingly ineffective by pervasive noise of large-and random-amplitude. We conclude that all measures taken to ensure smoothness of derivatives should at least begin with the function that is to be differentiated.

Among the methods that did show some promise was that of "transferring" $\delta^3 p'$ -- known at 20-40 zeroes (t_k) of the Chebyshev polynomials of the first kind -- to several hundred uniformly spaced points on the same interval, via Lagrangian interpolating polynomials of fourth or fifth order. Since both p and δ are initially quite smooth, the transfer should not introduce any bad behavior. Differentiation can be accomplished with finite differences,

- 68 -

as before, but instead of smoothing the derivative with some sort of global function, we simply compute the average value of the derivative over a number of the uniformly spaced points in the vicinity of a particular t_k^* . This method is simple and does not require much computation time, but the quality of the results can be heavily dependent upon the size of the interval over which the averaging takes place. We found, therefore, that its usefulness for smoothing strongly singular functions such as $[\delta^3 p']$ " was variable (although we have equipped our routine with the capability of smoothing over intervals of varying size on the crack surface, thus enabling it to capture anticipated sharp rises and falls in the derivative). Because of the mixed success, and the advent - before testing of this "filter" could be completed - of the scheme described below, this method has been relegated to the role of evaluating p' only.

While we have previously noted the difficulties attendant upon differentiating an interpolating function, this approach seems to be the only one capable of capturing the singular behavior of $[6^3p']$ ". Some observations regarding the nature of g^3p' and the Chebyshev polynomials (and their derivatives) led us to examine their use: in particular, we noted that the derivative did not have the character desired to represent $\mathcal{M}_{,t}$ and were thus led to *Thus we have something akin to a zero order "hold-circuit" low pass filter. explore expansions in these polynomials.

We consider again the case of a simple triangular pressure distribution which, with the resulting crack opening displacement, is sketched in Figure 3.5. Owing to the antisymmetry of $s^{3}p'$ (Figure 3.5(b)), we may shift both sides (without affecting derivatives) to obtain the continuous curve passing through the origin, shown in Figure 3.5(b). This shifted curve has two properties which immediately and strongly suggest approximation by Chebyshev polynomials: it attains extreme values at ± 1 and it passes through the origin, as do the odd-ordered T_k (first kind). We note, further, that termwise differentiation of a Chebyshev series introduces a division by $\sqrt{1-x^2}$, (see Ref. [27]), which has the right character to represent \mathcal{M}_{t} . Furthermore, orthogonal functions offer the advantage of being independent: coefficients are chosen on the basis of the integrated degree of presence of the corresponding member of the orthogonal set in the curve being approximated, rather than in an attempt to find a combination of potentially similar functions that may pass through the collocation points. Thus, since our modified anticipated $[6^3p']$ curve has the same general shape as would a combination of two or more Chebyshev polynomials (viz, T_1 , T₃, etc.), we might expect a very good approximation to $s^{3}p'$ and possibly a good approximation of $[s^3p]$; that is, we epxect both high accuracy and the required degree of smoothness in $[s^3p']'$.

- 70 -

Thus, in implementing this scheme, we represent $\beta^3 p'$ by the series [25]

$$[\delta^{3}p'](x) \approx \underline{A}_{o} + \sum_{k=1}^{N} a_{k} T_{k}(x)$$
(3.9a)

$$a_{k} = \sum_{k=1}^{N} [\delta^{3} p'](\chi_{m}) T_{k}(\chi_{m})$$
(3.9b)

$$x_m = \cos(m\pi/N), \quad m = 0, ..., N$$
 (3.9c)

The series (3.9) may be differentiated termwise using either the recursion relations

$$T_{N}(x) = 2\chi T_{N-1}(x) - T_{N-1}(x); \quad T_{0} = I \quad J \quad T_{1} = \chi$$
(3.10)

or the more direct formula given in Ref. [27]. In our general hydrofac formulation, the values of $[s^3p']$ are not known at the points x_m , but can be easily evaluated there by interpolation.

This scheme was tested using δ curves as computed by our fracture simulation program for various numbers of nodal points t_k and differing orders of the series (3.8). Typical results are shown in Figures 3.6 - 3.9. Two separate characteristics of the approximation of $[\delta^3 p^i]$ " may be observed upon examination of these plots. Firstly, while the general shape of $[\delta^3 p^i]$ " is right in all cases, it is plagued by noise, of which "frequency" is dependent

upon the order of the series (increasing with the number of terms, as might be expected); the amplitude seems to decrease with increasing number of t_k points employed to represent $\delta^3 p'$ before the expansion in equation (3.9a). Thus, we would expect the best performance from a series with a very large number of terms starting from an equally large number of t_k 's.

Furthermore, it is likely that we could obtain a particularly smooth fit of δ at a large number of points by starting with a relatively small number of t_k 's in the actual evaluation of equations (3.6)-(3.8), finding the coefficients from the Chebyshev series approximation of the integral of μ (see Appendix A), then evaluating the series at a larger number of points (preferably the x_m 's used to evaluate the a_k). The result should be a curve whose initial high degree of smoothness has been enhanced by the process of integration.

This hypothesis was subjected to a preliminary test by assuming $\delta = \sqrt{1-t_k^2}$ (not much different from the actual shape) and that $p' = \pm 1$; this saved the cost of solving a 200 x 200 system. We then computed $\delta^3 \rho'$ at 200 t_k points and fitted with a 200 term Chebyshev series to get the results shown in Fig. 3.10. Note that while $[\delta^3 \rho']''$ still has some high frequency noise (and some bad behavior* at ± 1), $[\delta^3 p']$ is markedly smoother than in any of the *This is to be expected from the high order of singularity introduced by double differentiation of Chebyshev polynomials (ref. 27).
previous trials. It seems, then, that better results for $[\delta^3 p']$ " might be obtained by differentiating the $[\delta^3 p']'$ computed with the 200 term series by finite differences, at the 40 t_k 's, using the averaging procedure illustrated in Figure 3.11(a). The result is shown in Figure 3.11(b), and seems to be exactly what we want. Hence, this scheme is currently installed in our hydrofrac program.

Summary of explicit time marching scheme.

The differentiation schemes (for operations like $[\delta^3 p']"$) which we hve described above have produced quite satisfactory results in our explicit time integration procedures, insofar as accurate numerical representation is concerned.

Essentially, our results show that, even for a fairly small time step size, the solution becomes totally unacceptable after just one step forward. Examination of the trend at the borehole suggests an increasingly singular character in all variables (especially pressure). This instability is caused very simply by the failure of the algorithm to produce a rate of crack opening, δ , that simultaneously satisfies the equations of elasticity (in relation to p). For instance, a sharp cusp develops in δ (Fig. (3.5)) -- a condition that would require a logarithmically infinite pressure at the borehole.

However, our work with explicit time integration has given us good insight into the pressure evolution problem. For instance, we have quickly recognized the need for a time integration scheme

FIG. 3.1 Diagram of the pressure evolution problem. Frac. fluid is pumped in at constant pressure p, while the crack is held at fixed length 21.

.

FIG.3.3 These diagrams illustrate the operation of local smoothing after differentiation. (a) The process of differentiation of half of a curve similar to $\delta^3 p'$. (b) The results of local smoothing.

.

FIG_{3.4} Results of a trial computation of evolving fracture fluid pressure using our combined finite difference-local smoothing method for evaluating $[\partial^3 p']$. (a) Fracture fluid pressure; (b) solution of Eq. (1), $F = \mu \sqrt{1 - x^2}$; (c) initial crack opening displacement, ∂_3 ; (d) initial $\partial^3 p'$; (e) initial $[\partial^3 p']$ (before smoothing); (f) after smoothing.

- 77 -

FIG.3.5 Schematic of procedure for tracing fracture fluid pressure evolution (see Figs.3.11 and 3.12-for details of typical cases).

- 78 -

FIG. 3.6 (a). This plot shows the approximation of the shifted $[6^3p']$ data obtained at 20 t_k points (open circles) obtained from our hydrofrac program. The resulting series was evaluated at the 200 points joined by the solid line

- 79

FIG. 3.6(b). Plot of $[s^{*}r']$ obtained by termwise differentiation of the Chebyshev series plotted in fig. 3.6(a). This curve, while reasonably smooth, is not accurate enough according to our predictions. In particular, the peaks in the vicinity of + 0.6 seem to have the wrong character. The worst feature is the sharp upturn at +1.

FIG. 3.6(c). Approximation of $[6^3p']''$, obtained by termwise differentiation of the Chebyshev series shown in fig. 3.6(a). This curve has the right general appearance but is plagued by low frequency noise and sharp spikes, which go in the wrong direction, at each end.

٩

FIG.3.7 (a) Representation of $\delta^3 \rho'$ (computed by the hydrofracture program at 40 tk points denoted by open circles), and by a 40 term Chebyshev series, shown by solid lines. (b) Plot of $[\delta^3 p']$ obtained by termwise differentiation of the series described in Fig. $^{3,7}(a)$. (c) Plot of $[\delta^{3}p']$ calculated by termwise differentiation of the Chebyshev series shown in Fig. 3.7(a). There is an unacceptable level of roughness.

-83

I

FIG.3.8 (a) Representation of $\delta^3 \tilde{p}'$ (calculated by the approximation $\delta^3 = (1 - t_k^2)^{3/2}$ at 20 t_k points shown by open circles) and by a 200 term Chebyshev series shown by solid line. (b) Approximation of $[\delta^3 p']'$ obtained by termwise differentiation of the series described in Fig.3.8 (a) Here, although the number of t_k points (20) is the same as in the sequence of curves in Fig.3.6 the noise is of much higher frequency confirming the frequency of noise depends mostly on the number of terms in the series. (c) Approximation of $[\delta^3 p']''$ obtained by termwise differentiation of the series described in Fig.3.8 (a). The true shape of this curve is completely marked by large amplitude, high frequency.

WWW WWW

0

x/I

[8³p']"

Ó

-3.75

-1

• 84

.

FIG.3.10 (a) Representation of $\delta^3 p'$ (computed approximately at 200 t_k points using the approximation of $\delta = \sqrt{1-t_k}$) by a 200-term Chebyshev series. (b) Approximation of $[\delta^3 p']'$ obtained by termwise differentiation of the series described in Fig. 3.19(a) Smoothness and accuracy to be used in dislocation dipole model. (c) Approximation of $[\delta^3 p']''$ by termwise differentiation of the series described in Fig. 3.19(a) Smoothness in this curve is of about the same frequency as that in Figs.3.9(c) and 3.16(c). Overall, the amplitude is much smaller (probably because the same number of terms is used in the series). This curve is not smooth or accurate enough for use in pressure evolution computations.

-85 -

- 86 -

FIG.3.11(a) Illustration of the differentiation method used to obtain the curve in Fig3.11 (b) from $[\delta^3 p']'$ in Fig.3.10(b), (b) This approximation of $[\delta^3 p']''$ was obtained by differentiating the curve shown in Fig.3.10(b), computed by termwise differentiation of a Chebyshev series, with the averaged finite-difference scheme illustrated in Fig. 3.11(α). which allows simultaneous satisfaction of both mass conservation and elasticity equations. The implicit marching scheme (which uses many of the numerical techniques developed for the explicit scheme), discussed in the next section, has proved to be the best such method.

3.3 Implicit Scheme for Tracing of Frac-Fluid Pressure Evolution

Although we have been able to develop numerical procedures stable enough to allow explicit computation of evolving fluid pressure and crack geometry (Section 3.2), the results obtained were, inevitably, too little influenced by the elastic properties of the rock, and were effectively dominated by the requirement of fracfluid mass conservation, which dictated the change in width from one step to the next. For this reason we felt it essential to employ a method by which frac-fluid pressure would be implicitly computed at each time step so as to satisfy simultaneously the requirements of elasticity and mass conservation. Further, because of the success achieved with the dislocation dipole scheme (as noted in Ref. 11), it was decided to base our implicit method on the latter, rather than the dislocation density scheme, in order to avoid anticipated trouble with the high-order differentiation.

Thus, we start with the integral equation relating fracfluid pressure and dipole density or crack opening displacement [11], which is obtained by integrating Equation (1.1) by parts:

- 87 -

$$P(x_{o}) = \int_{-1}^{\ell} \delta_{D}(x_{o}, \chi) \left[\delta(\chi) - \delta(\chi_{o}) \right] d\chi - \delta(\chi_{o}) \left[\delta(\chi_{o}, \chi) - \delta(\chi_{o}, \gamma) \right], \quad (3.11a)$$

where, for a homogeneous isotropic infinite medium,

$$\delta_{\rm D} = \frac{-1}{2\pi(1-\nu)} (x_{\rm o} - x)^{-2} \equiv -\frac{d\delta}{dx}$$
 (3.11b)

Here, \bigvee_D is the influence function which gives the stress at point x_0 due to the difference in dipole strengths δ at points x and x_0 , and \checkmark is the analogous influence function associated with dislocations [8]. Differentiating Equation (3.11a) with respect to time gives (for time-dependent and stationary crack-tips)

$$\dot{\mathcal{P}}(\chi_{o}) = \int_{-q}^{q} \chi_{D}(\chi_{o},\chi) \left[\dot{\delta}\right]_{\chi_{o}}^{\chi} d\chi - \dot{\delta}(\chi_{o}) \left[\dot{\delta}(\chi_{o},+L) - \dot{\delta}(\chi_{o},-L)\right] \quad (3.12)$$

We have seen before (Section 3.2) that the simplest fluid flow model --Poiseuille flow -- gives the result that $\eta \dot{\delta} = [\delta^3 p']'$ (here the apostrophe denotes* spatial differentiation, while the "dot" indicates differentiation with respect to time). If we now make the following approximations (which can, of course, be refined),

$$\overset{*}{\delta} = \alpha \overset{*+\Delta \pm}{\delta} + (1-\alpha) \overset{*}{\delta} , \quad \dot{p} = \overset{*+\Delta \pm}{\underline{p} - \overset{*}{\underline{p}}}$$
(3.13)

*Here $\hat{\eta}$ denotes an effective viscosity and we have used G, \vee for shear modulus and Poisson ratio of the surrounding rock.

and substitute into Equation (3.12), we get an equation which may be re-arranged so that only terms evaluated at time $t+\Delta t$ are on the left and only those at time t are on the right. When we completely non-dimensionalize all terms, we get (assuming fluid penetration all the way to the tip, viz. a stationary crack)

$$\begin{aligned} & \overset{t+\Delta t}{\tau_{c}} \mathcal{P}(x_{o}) - \frac{\Delta \Delta t}{\tau_{c}} \int_{-1}^{1} \vartheta_{p}(x_{o}, x) \Big\{ \overset{t+\Delta t}{\tau_{c}} \left[\delta^{3} \mathcal{P}' \right]'(x) - \overset{t+\Delta t}{\tau_{o}} \left[\delta^{3} \mathcal{P}' \right]'(x_{o}) \Big\} dx \\ & + \alpha \underline{\Delta t}} \overset{t+\Delta t}{\tau_{c}} \left[\delta^{3} \mathcal{P}' \right]'(x_{o}) \left[\vartheta(x_{o}, l) - \vartheta(x_{o}, -l) \right] \\ & = \overset{t}{\tau_{c}} \mathcal{P}(x_{o}) + \frac{(1-\Delta)\Delta t}{\tau_{c}} \int_{-1}^{1} \vartheta_{p}(x_{o}, x) \left\{ \overset{t}{\tau} \left[\delta^{3} \mathcal{P}' \right]'(x) - \overset{t}{\tau} \left[\delta^{3} \mathcal{P}' \right]'(x_{o}) \right\} dx \\ & - \frac{(1-\Delta)\Delta t}{\tau_{c}} \overset{t}{\tau} \left[\delta^{3} \mathcal{P}' \right]'(x_{o}) \left[\vartheta(x_{o}, l) - \vartheta(x_{o}, -l) \right] \end{aligned}$$
(3.14)

where, again, it is understood that p and δ are now dimensionless: that is,

$$\delta \leftarrow \frac{G\delta}{P_0 l}$$
, $p \leftarrow \frac{p}{P_0}$, and $T_c = \frac{\hat{\eta}}{G} \left(\frac{G}{P_0}\right)^3$

is the characteristic time predicted by Cleary [23]. The parameter

is chosen to provide the most stable solution; in fact, it will be seen later that the best choice is $\propto = 1$. If we make the assumption that $t+\Delta t = t \delta$ (or any other relation between $t+\Delta t \delta$ and $t \delta$) we can re-write Equation (3.14) as a set of linear algebraic equations by using the appropriate discrete formulas for integration and differentation. First, we approximate the integrals in Equation (3.14) by the Gauss-Chebyshev formula:

$$\int_{-1}^{1} \delta_{\mathfrak{d}}(x_{n}, t_{i}) \left[\delta^{3} \mathcal{P}' \right]' \Big|_{x_{n}}^{t_{2}} dx = \frac{\pi}{N} \sum_{i=1}^{N} \delta_{\mathfrak{d}}(x_{n, t_{i}}) \left[\delta^{3} \mathcal{P}' \right]' \Big|_{x_{n}}^{t_{i}} \sqrt{1 - t_{i}^{2}} \quad (3.15a)$$

$$x_{n} = -\cos(\pi N N)$$
 $n = 1, ..., N-1$ (3.15b)

$$t_{i} = -\cos(\pi(2i-1)/2N) \quad \dot{L} = 1, ..., N \quad (3.15c)$$

Since we wish to formulate the equations in terms of p, we need to represent $[s^3p']$ in terms of ς and p. Our previous success in termwise differentiation of a Chebyshev series leads us to use that method here:

$$\left[\delta^{3} \rho' \right]'(x) = \sum_{j=1}^{M} T_{j}'(x) \left\{ \frac{4}{17^{2}} \int_{-1}^{1} \left[\frac{T_{j}(x) \delta^{3}(x)}{\sqrt{1-x^{2}}} \sum_{j=1}^{L} T_{j}'(x) \int_{-1}^{1} \frac{T_{j}(x) p(x) dx}{\sqrt{1-x^{2}}} dx \right\}$$
(3.16)

Since we will need to impose two constraints on the solution for $t+\Delta t_p$ (viz. we will in particular maintain the borehole pressure at some desired value, and $t+\Delta t_p$ will be such that $t+\Delta t \delta |_{-1}^{+1} = 0$) we will have one more equation than unknowns (i.e., N+1 equations, N unknowns) unless we obtain $p(x_r)$ from a set of N+1 points by interpolation. Again we make use of the Chebyshev series:

$$\mathcal{P}(\mathcal{X}_{n}) = \sum_{l=0}^{L-1} T_{\ell}(\mathcal{X}_{n}) \left[\frac{a}{\pi r} \int_{-1}^{1} \frac{T_{\ell}(x) \, \mathcal{P}(x)}{\sqrt{1-x^{2}}} \, dx \right] \left(1 - \frac{1}{2} \, \delta_{\ell 0} \right) \tag{3.17}$$

If we apply the Gauss-Chebyshev integration formula in Equations (3.16, 17) substitute into Equation (3.15) and thence to Equation (3.14) we obtain our system of equations:

$$\sum_{k=1}^{L} (i - \frac{1}{2} \delta_{k_{1}}) T_{k_{1}}(x_{n}) \sum_{k=1}^{L} \frac{1}{2} T_{k_{1}}(t_{k}) \left[x + \lambda t \rho(t_{k}) - t \rho(t_{k}) \right]$$

$$= \frac{4\Delta t}{LM \tau_{e}} \left(\frac{\pi}{N} \right) \sum_{i=1}^{N} \sqrt[N]{}_{D}(x_{n}, t_{i}) \sum_{j=i}^{M} \left\{ T_{j}'(t_{i}) - T_{j}'(x_{n}) \right\} \sqrt{i - t_{k}} \sum_{k=1}^{n} T_{j}(t_{k}) \delta^{3}(t_{k})$$

$$\times \sum_{\ell=1}^{L} T_{\ell}'(t_{k}) \sum_{k=1}^{L} T_{k}(t_{k}) \left[\propto^{t + \Delta t} \rho(t_{k}) + (1 - \alpha)^{t} \rho(t_{k}) \right]$$

$$- \frac{4\Delta t}{LM \tau_{e}} \left[\sqrt[N]{}_{X_{n}, i} - \sqrt[N]{}_{X_{n}, j-i} \right] \sum_{j=1}^{M} T_{j}'(u_{n}) \sum_{k=1}^{M} T_{j}'(t_{k}) \delta^{3}(t_{k})$$

$$\times \sum_{\ell=1}^{L} T_{\ell}'(t_{k}) \sum_{k=1}^{L} T_{\ell}(t_{k}) \left[\propto^{t + \Delta t} \rho(t_{k}) + (1 - \alpha)^{t} \rho(t_{k}) \right]$$
(3.18a)

Here we find it natural to make the following identifications

$$t_{k,\Delta} = -\cos\left[\frac{\pi(\mathcal{F}(k, \Delta) - 1)}{\mathcal{F}_{L}}\right], k, \Delta = 1, \dots, L, L \equiv M$$
(3.18b)

- 91 -

Equations (3.18) may be simplified, and the time required to set up and solve them reduced, through the use of the following matrices:

$$A_{n,k} \equiv (1 - \frac{1}{2}\delta_{kl}) T_{\ell-1}(\chi_{n}) \qquad \pi^{-1} \dots N^{-1} \int_{k} \ell^{-1}(\dots, p_{k}) L \qquad (3.19a)$$

$$A'_{\ell A} \equiv \frac{2}{L} T_{\ell-1}(\ell_{A}) \qquad A^{-1} \dots p_{k} \int_{k} \ell^{-1}(\chi_{n}) \int_{k} \ell^{-1}(\ell_{A}) \int_{k} \ell^{-1}($$

$$\Delta_{jk} \equiv \delta^{s}(t_{k}) \, \delta_{jk} \,, \qquad (3.19g)$$

$$E_{kl} \equiv T_{l}'(t_{k}), \qquad (3.19h)$$

$$F_{eA} \equiv \frac{2}{L} T_{e}(t_{A}), \quad A = 1, ..., L,$$
 (3.191)

$$G_{nj} \equiv \delta_{nj} \left[\delta(\chi_{n,1}) - \delta(\chi_{n,-1}) \right]$$
(3.19j)

where

$$\delta_{L_{j}} = \begin{cases} 1, & i=j\\ 0, & i\neq j \end{cases}$$

Our experience with fitting functions by a Chebyshev series indicates that when the series is to be differentiated it is best to transform the function so as to make it pass through the origin and be antisymmetric, then re-transform the series if necessary (cf. Section 3.2). To effect the necessary transformations, we define these matrices:

$$H_{Aq} = -\delta_{Aq} \operatorname{sign}(t_{A}) + \delta_{(\frac{L}{2})A} \operatorname{sign}(t_{A})$$
(3.19k)

$$S_{ij} \equiv \delta_{ij} + \delta_{(\underline{M})j} \operatorname{sign}(t_i)$$
(3.191)

$$T_{jk} = -\delta_{jk} \operatorname{sign}(t_k) \tag{3.19m}$$

where

Sign(x) =
$$\begin{cases} +1, x>0 \\ -1, x<0 \end{cases}$$
 (3.19n)

and the borehole is located at $t_{M/2}$.

Here <u>H</u> and <u>T</u> are used for transforming p before and after fitting and differentiation, and <u>S</u> is used for transforming $\delta^3 p'$ before fitting and differentiation.

We may now define the "secondary" matrices

$$\underline{M1} = \underline{AA'}, \underline{MQ} = \underline{BDS}, \underline{M3} = \underline{TEEH}, \underline{M4} = \underline{GCDS}, \underline{M5} = \underline{C'DS}^{(3.20)}$$
so that Equation (3.18) can be written more compactly:

$$\underbrace{M1 - \underbrace{\prec \Delta \star}_{T_{c}} \underline{MQAM3}_{T_{c}} + \underbrace{\prec \Delta \star}_{T_{c}} \underline{M4AM3}_{T_{c}} \underline{M3}}_{T_{c}} \underbrace{M2}_{T_{c}} \underline{M3}_{T_{c}} + \underbrace{4\Delta \star}_{T_{c}} \underline{M3}_{T_{c}} \underbrace{M2}_{T_{c}} \underline{M3}_{T_{c}} + \underbrace{4\Delta \star}_{T_{c}} \underline{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4AM3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M4}_{T_{c}} \underbrace{M3}_{T_{c}} \underbrace{M3}_$$

or

$$\underline{M}^{\star+\Delta\pm}\underline{P} = \underline{R} \tag{3.21b}$$

As mentioned before, we need to impose two constraints on the solution $t^{\pm}\Delta t_p$. The first of these is the requirement that $t^{\pm}\Delta t_{-1}$ = 0 (by analogy with closure in our dislocation density schemes), which can be realized by adding a row to <u>B</u> and <u>R</u>

$$\underline{B}_{(N+1)j} = T_{j}'(+1) - T_{j}'(-1), \quad R_{N+1} = 0$$
(3.22)

The secondary constraint is on the borehole pressure, the value of which we wish to specify. We impose this constraint by adding rows to \underline{M} and \underline{R} :

$$\underline{M}_{(N+2)} \dot{j} = \delta_{(\frac{M}{2})} j \quad B_{N+2} = P_{0}$$
(3.23)

Our procedure for computing fluid pressure and crack opening starts by evaluating the matrices in Equation (3.21a), which need only be done once. Then, starting with an initial pressure distribution and crack geometry, we can compute the new pressure (viz. $t+\Delta t_p$). The new crack opening is obtained from the relation

$$t^{\pm 4t} S = \left[(1 - \alpha)^{t} \dot{S} + \alpha^{t+4t} \dot{S} \right] \stackrel{\text{dt}}{=} t^{t} + s \qquad (3.24a)$$

where

$$\dot{\delta} = \underline{M5} \underline{\Delta} \underline{M3} \underline{P} \tag{3.24b}$$

We may then continue to compute the next pressure, and so on. Note that $t+\Delta t_{\delta}$ is necessarily consistent with $t+\Delta t_{p}$; iteration on δ^{3} in $\delta^{3}p'$, although rigorously needed, produces only small effects for reasonable time steps. The implicit scheme may also be formulated on the basis of local interpolation methods [11]; although the local matrices would be simpler to generate, global interpolation offers the advantage of greater accuracy for the same number of nodal points, and it may provide more stability.

Results

Typical results from the global formulation of our implicit integration scheme are presented in Figures 3.12 - 3.18. These results yield great insight on the effects of the value of \propto ,

initial pressure distribution, and time-step size.

Figure 3.12 shows the result of a preliminary validation of the FORTRAN coding of our algorithm (see Chapter 4), especially the formulation and computation of the matrices in Eqn. (3.19). By using $p(t_s)=t_s$, $\delta^3(t_s)=\frac{1}{2} \sin^{-1}(t_s) + \frac{1}{2} t_s \sqrt{1-t_s^2}$, and replacing <u>H</u>, <u>S</u>, and <u>T</u> with identity matrices, we have $[\delta^3 p']' = \sqrt{1-t_s^2}'$ which, when integrated with δ_D , should produce a constant p. This curve, while constant over most of the interval (-1,1), has "spikes" at either end which are apparently the result of slight inaccuracies in the explicit computation of the various derivatives; we plan to remedy this, but it has not caused any serious perturbations in the rest of our computations.

Figure 3.13 shows a set of pressure evolution curves, obtained with $\ll =1$ and $t=.25T_{c}$, in which the borehole pressure is maintained at a constant level at each time step; as is the case for all other figures except Fig. 3.18, it starts from the triangular pressure distribution shown in Figure (3.13a). We note that, near the borehole, p has the positive curvature necessary to produce an ever increasing crack opening at the borehole (since $\dot{\xi} = (\xi^{3})'p' + \xi^{3}p'')$, which is consistent with the continuous addition of frac-fluid. At $t=1.5T_{c}$ the fluid pressure becomes essentially constant over the crack length, verifying that T_{c} is an excellent estimate of the time required for pressure penetration to the crack tips. Also at

- 96 -

t=1.5 c we note that the crack opening is very close to the analytical result, $\delta = \sqrt{1-x^2}$, that we would expect from a uniform pressure.

Figure 3.14 shows results of computations similar to those in Figure 3.14 except that we have chosen $\ll = .5$, bringing $t+\Delta t_p$ under the influence of the requirement of mass conservation at time t. The effect is that the algorithm tends to become unstable for t near τ_c . Similar calculations with $\ll = .9$ produced the results shown in Figure 3.16: the solutions exhibit nearly as much stability as for $\ll = 1$. We thus conclude that, in general, the best results are to be obtained when $\alpha = 1$ and that there is actually a slight computational disadvantage to using $\alpha < 1$.

The effect of changing the time step size is shown in Figures 3.16, 17 along with the previous results (Figure 3.13). Comparison reveals that there is enough difference between the curves obtained by various step sizes to warrant the use of $t = .10 C_c$, or smaller, for all but rough calculations.

Figure 3.18 shows the effect of using a different initial pressure distribution, in this case $p(x,t=0) = \sqrt{1+|x|}$ rather than the triangular distribution used in the other cases. Two phenomena

FIG. 3.13. Pressure evolution curves obtained using $\propto 1$, $\Delta t = 25T_c$, V = .3, $P_0/G = 1$. (a)-(d)P; (e)-(h) crack opening, 6; (i)-(k) rate of crack opening, 6.

- 100 -

- 101 -

ł

- 105 -

-108 -

- 109 -

FIG. 3.14. Pressure evolution curves obtained under the same conditions as those in fig. 3.13. (i.e., $\Delta t = .25 \text{ C}_c$, same elastic constants and initial pressure distribution), but with $\alpha = .5$. Note the instability in p and \dot{b} , manifested in the oscillating pressure gradients at the crack tips. (a)-(e) p; (f)-(h) δ ; (i),(j) \dot{b} .

-112 -

1

- 113 -

- 114 -

:

•

- 115 -

- 116 -

- 119 -

FIG. 3.15. Pressure evolution curves obtained with $\alpha = .9$, but otherwise under the same conditions as those in fig. 3.13. Only slight instability- at $t=1.5\tau_c$ - occurs, but it is apparent that the best results are obtained with $\alpha = 1$. (a)- (c) P; (d)-(f) δ ; (g),(h) δ .

- 121 -

ł 124 -

- 125 -

- 127 -

FIG. 3.16. Pressure evolution curves obtained with $\Delta t = .1 \zeta_{0}$, but otherwise under the same conditions as those in fig. 3.13: $f_{0}/c_{1}, V = .3, \alpha = 1$. Time steps of $.1 \zeta_{c}$ or less are necessary for all but rough calculations. (a)-(c) P; (d)-(f) ε_{c} ; (g),(h) $\dot{\varepsilon}_{c}$.

- 129 -

- 130 -

- 132 -

- 133 -

. 134 -

ה ג

FIG. 3.17. Pressure evolution curves obtained with a large time step size ($\Delta t_{=}.5t_{c}$) but otherwise under the same conditions as those in fig. 3.13. These plots demonstrate the stability of the implicit scheme. (a)-(c) p; (d)-(f)6; (g),(h) ξ .

õ

- 140 -

ł

- 141 -

- 143 -

FIG. 3.18. Pressure evolution curves computed from a different initial pressure distribution ($P(x_{j,t=0}) = \sqrt{1+|x_{i}|}$). Note the reversal of curvature of P near the borehole after t=0 and the more rapid approach to uniform pressure than is obtained with a triangular initial pressure distribution. Again, $\Delta t = .35 t_{c_{j}}$ $\propto = 1, t_{c_{j}/G} = 1, \forall = .3$. (a)-(c) P; (d)-(g) ε ; (h),(i) ε .

-145 -

- 146 -

- 147 -

- 148 -

- 149 -

1

.

ł

151 -

0

٠

- 152 -

.

:

are noteworthy: first, the pressure reaches an essentially uniform value more rapidly $(1.25T_{\rm C}$ vs. $1.5T_{\rm C}$), and as well, the negative (adverse) curvature of the initial pressure curve has reversed by time $.25T_{\rm C}$. The latter observation provides evidence that we can start with a variety of initial distributions and be assured of stability of the solution, and that the various pressure distributions will quickly tend towards the same shape with ongoing time.

3.4 Fluid Front Advancement in Stationary Cracks

A typical fluid front advancement problem is illustrated in Figure 3.19. In general, we again have the overall elasticity equation*, suitably non-dimensionalized

$$\dot{\mathcal{P}}(x_{o}) = \int_{\mathcal{X}} \overset{\mathbf{Y}}{\mathcal{Y}}(x_{o}, \chi) \left[\dot{\delta}(\chi) - \dot{\delta}(\chi_{o}) \right] d\chi - \dot{\delta}(\chi_{o}) \left[\mathscr{Y}(\chi_{o,1}) - \mathscr{Y}(\chi_{o,1}) \right]$$

$$\overset{\mathbf{Y}}{\mathcal{Y}}_{D} = -\frac{d}{d\chi} \mathscr{Y}$$
(3.26a)

With reference to this equation, we may now phrase the distinct conditions, one pertaining to the non-penetrated zone (size ω) near each tip while the other prevails in the fluid-filled region (where laminar flow of Newtonian fluid is assumed for simplicity in early testing of our routines)

$$\dot{p}(l \ge |x_{\circ}| \ge l - \omega) = 0, \dot{\delta}(l - \omega \ge |x| \ge 0) \simeq \frac{1}{\eta} \left[\delta^{3} p'\right]' \qquad (3.26b)$$

Note that this equation also applies, remarkably, to the moving crack problem.

Thus we must solve for fluid pressure in the fluid filled region of the crack and crack opening rate in the empty region. Our experience with the pressure evolution problem (Ref. 26-28) demands that an implicit method be used for the fluid front advancement problem. Further, since we must solve for the opening rate over part of the crack, it will be convenient to construct our system of equations so as to solve for opening rate over the entire crack.

By simple approximation of time derivatives, we obtain from Eq. (3.26) an implicit equation for $t+\Delta t\dot{\delta}$ and $t+\Delta t$ p which may be written in the following numerical form [28]:

$$\sum_{N=1}^{k+\Delta t} p(x_{n}) - \alpha_{\Delta t} \prod_{N=1}^{N} \sum_{i=1}^{N} \delta_{D}(x_{n}, t_{i}) \Big[\sum_{i=1}^{k+\Delta t} \hat{\delta}(x_{i}) - \sum_{i=1}^{k+\Delta t} \hat{\delta}(x_{n}) \Big] \sqrt{1-t_{i}^{2}} \\ - \alpha_{\Delta t} \sum_{i=1}^{k+\Delta t} \hat{\delta}(x_{n}) \Big[\delta(x_{n,j}) - \delta(x_{n,j}-1) \Big] \\ = \sum_{i=1}^{k} p(x_{n}) - (1-\alpha) \Delta t \prod_{N=1}^{N} \sum_{i=1}^{N} \delta_{D}(x_{n,j}, t_{i}) \Big[\sum_{i=1}^{k} \hat{\delta}(t_{i}) - \sum_{i=1}^{k} \hat{\delta}(t_{n,j}) \Big] \sqrt{1-t_{i}^{2}} \\ + (1-\alpha) \Delta t \sum_{i=1}^{k} \hat{\delta}(x_{n}) \Big[\delta(x_{n,j}) - \delta(x_{n,j}-1) \Big]$$
(3.28)

Over the fluid-filled region $(I-\omega \ge |\mathcal{X}_{r_s}, t_{\lambda}| \ge 0)$, this leads to the following matrix equations for the pressures at the "Chebyshev points" t_s ,

$$\sum_{l=1}^{L} (1-\frac{1}{2}\delta_{l}) T_{l}(\mathcal{X}_{\mathcal{I}}) \sum_{\Delta=1}^{L} \frac{1}{L} T_{l}(\pm_{\Delta}) \begin{bmatrix} t+\Delta \pm p(\pm_{\Delta}) - t p(\pm_{\Delta}) \end{bmatrix}$$

$$= \underbrace{A\Delta t}_{LMT_{c}} \left(\frac{\pi}{N} \right) \sum_{l=1}^{N} \delta_{D}(x_{n}, t_{i}) \sum_{j=1}^{M} \left\{ T_{j}'(t_{i}) - T_{j}'(x_{n}) \right\} \sqrt{1 + t_{c}^{2T}} \sum_{k=1}^{M} T_{j}(t_{k}) \delta^{3}(t_{k})$$

$$\times \sum_{l=1}^{L} T_{l}'(t_{k}) \sum_{k=1}^{L} T_{l}(t_{k}) \left[< t^{t+\Delta t} \mathcal{P}(t_{k}) + (1 - d)^{t} \mathcal{P}(t_{k}) \right]$$

$$= \underbrace{A\Delta t}_{LMT_{c}} \left[\delta(x_{n,1}) - \delta(x_{n,1}) \right] \sum_{j=1}^{M} T_{j}'(x_{n}) \sum_{k=1}^{M} T_{j}(t_{k}) \delta^{3}(t_{k})$$

$$\times \sum_{l=1}^{L} T_{l}'(t_{k}) \sum_{k=1}^{L} T_{l}(t_{k}) \left[< t^{t+\Delta t} \mathcal{P}(t_{k}) + (1 - d)^{t} \mathcal{P}(t_{k}) \right] ; t_{k,k} = -\cos\left[\frac{\pi(2(k,k) - 1)}{2L} \right]$$

$$k_{l} = I_{l}, \dots, L_{j} L \equiv M \equiv N+1; t_{i} = -\cos\left[\frac{\pi(2k-1)}{2N} \right], \lambda = I_{l}, \dots, N_{j} x_{n} = -\cos\left(\frac{\pi(2(k,k) - 1)}{2L} \right]$$
where $T_{c} \equiv \eta G^{2}/p_{0}^{3}$ is the characteristic time [23]. On the other hand $I - \omega < |x| \leq I$, we must use

$$\dot{\delta}(x) = \sum_{j=0}^{M-1} (1 - \frac{1}{2} S_{j0}) T_j(x) \sum_{A=1}^{L} T_j(x_A) \dot{\delta}(x_A)$$
(3.29b)

in Eq. (3.28) in order to guarantee that $\dot{\delta}$ is smoothly continued from $(\delta^3 p')'$ in the penetrated region. In the non-penetrated region we must impose $\dot{p} = 0$ to allow solution for the unknown $t+\Delta t\dot{\delta}(t_s)$. Thus, we solve Eqns. (3.29a) in the penetrated region and Eq. (3.28) in the non-penetrated zone, subject to the constraints

$$\begin{array}{l} \not L \neq \mu(t_{A}) = 0 \\ & \left\{ \begin{array}{l} \Delta = l_{j} \dots l \\ \Delta = RF + 2_{j} \dots l \end{array} \right\} \end{array}$$

$$(3.30a)$$

$$\overset{t+\Delta t}{\delta}(\iota) - \overset{t+\Delta t}{\delta}(\iota), \quad \overset{t+\Delta t}{p}(t_{\frac{L}{2}}) = t_{0}^{2}$$
(3.30b)

Note that Eqns. (3.30b) are the constraints of crack closure and constant borehole pressure. Simplicity and economy may be achieved by defining the appropriate matrices*:

$$A_{\Pi I} \equiv (I - \frac{1}{2} \delta_{II}) T_{I-I} (\mathcal{X}_{\Pi})_{j} \Pi = LF_{J} \dots, RF_{J} l = 1, \dots, L \qquad (3.31a)$$

$$A'_{la} = \frac{2}{2} T_{l-1}(t_a) \qquad l = 1, ..., L \quad j \quad A = 1, ..., L \quad (3.31b)$$

$$B_{\pi i} \equiv \prod_{N \in \mathcal{N}_{c}} \{\chi_{\pi}, t_{i}\} \sqrt{1 - t_{i}} \quad \pi = LF, ..., RF; \quad i = LF, ..., RF+1$$

$$= \prod_{N} \forall_{D} (\chi_{n}, t_{L-L}) \sqrt{1 - t_{L-L}^{2}}$$

$$\pi = LF, ..., RF = 1$$

$$\lambda = L + RF + 2, ..., L + N$$

$$= \prod_{N \in C} \delta_{D}(\mathcal{X}_{n-L}, t_{i}) \sqrt{1 - t_{i-L}^{2}} \qquad \mathcal{I} = L + 1, \dots, L + L F - 1; \mathcal{I} = L + R F + 1, \dots, L + N - 1$$

$$i = L F, \dots, R F + 1$$

$$\equiv \prod_{N} \forall_{D} (\chi_{n-L}, t_{i-L}) \sqrt{1 - t_{i-L}^{2}} \qquad n = L + 1, \dots, L + LF - 1; n = RF + L + 1, \dots, L + N$$

$$i = L + 1, \dots, L + LF - 1; i = L + RF + 2, \dots, L + N$$
(3.31c)

All of the matrices are <code>AMXAM</code>; any undefined elements are zero.

$$\begin{split} B_{n,i}^{'} &\equiv \delta_{n,i} \prod_{N \in i} \sum_{j=1}^{N} \mathcal{J}_{D} (\mathcal{X}_{n}, \pm_{j}) \sqrt{1 - \mathcal{X}_{j}^{-1}} \quad n = LF, \dots, RF \quad i = 1, \dots, N \\ &\equiv \delta_{(n-L)i} \qquad \qquad P_{i} = L + LF_{j}, \dots, L + RF \quad i = 1, \dots, N \\ &\equiv \delta_{n,i} \prod_{N=j=1}^{N} \sum_{j=1}^{N} \mathcal{J}_{D} (\mathcal{X}_{n}, \pm_{j}) \sqrt{1 - x_{j}^{-1}} \qquad P_{i} = L + 1, \dots, L + LF - 1 \quad P_{i} = L + RF + 1, \dots, L + N \\ &\equiv \delta_{n,i} \prod_{N=j=1}^{N} \sum_{j=1}^{N} \mathcal{J}_{D} (\mathcal{X}_{n}, \pm_{j}) \sqrt{1 - x_{j}^{-1}} \qquad (3.31d) \\ &\equiv -\delta_{n,i} \qquad P_{i} = L + LF_{j}, \dots, L + RF \quad i = L + 1, \dots, L + N \\ &\equiv -\delta_{n,i} \qquad P_{i} = L + LF_{j}, \dots, L + RF \quad i = L + 1, \dots, L + N \\ &\equiv (1 - \frac{1}{2} \delta_{j}(M + 1)) T_{j} - M - 1 (\pi_{k-M}) \qquad k = M + 1, \dots, 2M; \quad j = M + 1, \dots, 2M \quad (3.31e) \\ &C_{n,j}^{'} \equiv T_{j}^{'} (\mathcal{X}_{n}) \qquad P_{i} = 1, \dots, N - 1 \quad j = 1, \dots, M \end{split}$$

$$= (1 - \frac{1}{2} \delta_{j(M+1)}) T_{j-M-1} (\chi_{n-M}) \Lambda = M + 1, \dots, M + N - 1 j = M + 1, \dots, 2M (3.31f)$$

$$D_{jk} \equiv \frac{2}{L} T_{j}(t_{k}) \quad j, k = 1, ..., L$$

$$\equiv \frac{2}{L} T_{j-L-1}(t_{k-L}) \quad j, k = L+1, ..., 2L$$
(3.31g)

From here on, all undefined elements are part of a unit matrix (e.g., $E_{k1} = \delta_{k1}$), the rest being given by

$$E_{kl} = T_{l}(t_{k}) \quad k, l = 1, ..., L$$
 (3.31h)

$$F_{IA} = \frac{2}{N} T_{I}(\neq_{A}) \quad l, A = 1, \dots, L \quad (3.31 i)$$

$$G_{\pi j} = \underbrace{\delta_{\pi j} \left[\delta(\chi_{\pi,j}) - \delta(\chi_{\pi,j}-1) \right] \quad \pi = LF_{j}, \dots, RF \quad j = 1, \dots, L}_{T_{c}}$$

$$\equiv \underbrace{\delta_{\pi j} \left[\delta(\chi_{\pi-L,j}) - \delta(\chi_{\pi-L,j}-1) \right] \quad \pi = L+1, \dots, L+LF-1}_{j = L+1, \dots, 2L} \quad (3.31 j)$$

$$H_{Aq} = -\delta_{Aq} \operatorname{sign}(t_{A}) + \delta_{(\frac{1}{2})A} \operatorname{sign}(t_{A}) \quad A, q = 1, \dots, l \quad (3.31k)$$

$$S_{ij} = \delta_{ij} + \delta_{(\underline{M})j} sign(t_i) \quad i, j = 1, ..., L$$
 (3.31 1)

$$j_{k} = -\delta_{j_{k}} \operatorname{Sign}(t_{k}) \quad j, k = 1, \dots, L \quad (3.31m)$$

$$\Delta_{jk} \equiv \delta_{jk} \delta^{\dagger}(\pm_j) \quad \dot{j}_{jk} = 1, \dots, L \qquad (3.31n)$$

Use of the following secondary matrices lends further simplification:

$$M1 = DS$$
, $Ma = IEFH$, $M3 = C'DS$,

$$\underline{M4} \equiv \underline{AA'}, \quad \underline{M5} \equiv \underline{BC} - \underline{B'C'}, \quad \underline{M6} \equiv \underline{TC'FH}$$
(3.32)

Now M1, M2, M3, and M6 need be computed only once; only M4 and M5 are time dependent. The resulting system of equations is:

$$\left\{ \underline{M4} - \mathbf{4} \Delta \mathbf{K} \underbrace{M5} \underbrace{M1} \Delta \underline{Ma} + \mathbf{4} \Delta \mathbf{k} \underbrace{G} \underbrace{M3} \Delta \underline{Ma} \underbrace{3^{\star+\Delta \star} \underbrace{U}} \right\}$$

$$= \left\{ \underline{M4} - (\mathbf{1} - \mathbf{4}) \Delta \mathbf{k} \underbrace{M5} \underbrace{M1} \Delta \underline{Ma} + (\mathbf{1} - \mathbf{4}) \Delta \mathbf{k} \underbrace{G} \underbrace{M3} \Delta \underline{Ma} \underbrace{3^{\star} \underbrace{U}} \right\}$$

$$(3.33a)$$

or

$$\underline{M}^{\star+\Delta \star} \underline{U} = \underline{R}$$
(3.33 b)

where the vector of unknown variables is:

$$U_{A} \equiv P(\mathbf{t}_{A}) \quad A = 1, \dots, M$$

$$\dot{\delta}(\mathbf{t}_{A-M}) \quad A = M+1, \dots, \lambda M \qquad (3.33c)$$

The constraints (Eq. (3.30)) are imposed as follows: Eq. (3.30a) by setting $M_{sj} = \delta_{sj}$, $R_s = 0$ for $s = 1, \dots, LF-1$, $s = RF + 3, \dots, L$ L and $j = 1, \dots, 2L$; Eq. (3.30b) by setting B(N,1) = 1 and B(N,L) = -1 before computing <u>M5</u> and Eq. (3.30c) by setting $M_{\underline{L}} = \delta_{\underline{L}j}$, j=1,..., 2L. The time step size (Δt) is computed, based on the velocity of the fluid front, so as to bring the front to the next node x_r at $t = t + \Delta t$. Thus, we employ

$$\frac{\Delta t}{\tau_c} = \frac{\left[\delta^2 p'\right](\chi_{RF})}{\chi_{RFH} - \chi_{RF}}$$
(3.34)

Typical results for the fluid front advancement problem are shown in Figure (3.20). The fluid was allowed to advance to the crack tips, filling the crack entirely, and the pressure was then allowed to build up for some time afterward. The pressure distribution behaves as one might expect: the curves become steeper near the tips as time progresses and the crack fills out very quickly. One notable feature is the rather sudden increase in the fluid pressure at the tip just after the fluid reaches it (Figures 3.20e, f).

The curves showing the crack opening rate (Figures 3.20 (n-t)) undergo a change of character between the initial step (Figure (3.20n)) and the final step (Figure (3.20t)). Before the fluid front reaches the tip (Figure (3.20q)), $\dot{\delta}$ shows high narrow peaks near, but somewhat behind the points corresponding to the location of the fluid fronts. This phenomenon seems to be consistent with the large pressure gradient that develops at the fluid fronts. After the fluid fills the crack, the peaks broaden out and the overall magnitude begins to decline (Figures (3.20 (r-t)). The shape of the initial curve,

although the initial curve has a much smaller magnitude.

The velocity of the fluid front is compared to the corresponding velocity (also calculated via Eq. 3.34) of the same fluid flowing between two parallel plates, with a space of δ (t;x=0) between them and being driven by a uniform pressure gradient of $p'/p_0=1.0$ in Figure (3.21). Initially there is a large discrepancy between this latter velocity (dashed curve) and the calculated fluid front velocity; this result is consistent with the difference between the crack opening at the fluid front (.4) and the maximum opening (1.0). As time progresses, this difference in velocities decreases somewhat, and seems to stabilize. We conclude that predictions of fluid penetration times based on estimates of the crack opening and fluid pressure at the borehole may be quite conservative, but are of the right order to provide useful information; thus, estimates based on T_{c} (e.g., as given by Cleary [23] are useful guides to the process. We note, however, that such characteristic time estimates are easily made only in the case of a crack in a homogeneous medium, with constant borehole pressure. It would be difficult, for instance to include the effects of adjacent strata, inclusions, and the like. When our computer program is extended so that crack propagation in non-homogeneous regions can be simulated, we will probably be able to develop correlations for au_c based on our numerical calculations.

- 161 -

FIG. 3. 19 Diagram of the fluid front advancement problem. Fluid is pumped into the crack at the borehole at constant pressure p_{e} . The fluid front advances from one node x_{T} (r= LF, RF) to the next, while the crack tips are held stationary.

FIG. 3.20. Curves showing fluid front advancement and pressure evolution in a stationary crack. Note the rapid change in the pressure distribution when the fluid reaches the crack tips (e),(f) and the changes in the shape of the opening rate (\dot{s}) curves as the crack is being filled. (a)-(g)p; (h)-(m) δ ;(n)-(t) $\dot{\delta}$. Here we have used \Re/g -1, $\hat{\eta}/g$ =1, ν =.³.

1

I.

t

166 -

۰.

ł

170 -

1.6 1.4 1.2 1.Ø δ Ø.Ø Ł 171 -2 Ø.6 2 Ø.4 Ø.2 Ø.Ø (i) $t = .8224T_c$ -Ø.2 X Ø.Ø Ø.5 1.Ø -1.Ø -Ø.5

ut?

man in the state

403

- 172 -

- 174 -

. 178 -

- 179 -

- 180

1

- 181 -

- 182 -

FIG. 3.2]. Plot of fluid front velocity as a function of time (solid curve). The velocity of the same fluid flowing between two parallel plates with spacing $S(z - z, \frac{t}{\zeta})$ and uniform pressure gradient ($f'_{1/\rho} = 1.0$) is plotted as the dashed curve.

CHAPTER 4: DESCRIPTION AND STATUS OF FRACSIM: A GENERAL PURPOSE COMPUTER PROGRAM FOR HYDRAULIC FRACTURE SIMULATION

4.1 Introduction

Our ultimate goal is to have written a computer program capable of full three dimensional simulation of arbitrary hydraulic fracturing operations: these would include (but not necessarily be limited to) problems involving interaction of several arbitrarily shaped cracks, one or more of which is being propagated through a porous region containing interfaces, inclusions and/or other irregularities by internal hydraulic pressure. Thus, while developing the numerical techniques necessary for such problems (as described in the last two chapters), we have also been developing the computer program itself. In the course of our work this program has undergone several major revisions in order to incorporate increasingly versatile architecture. Currently the program, which has been dubbed FRACSIM (FRacture SIMulation), is capable of solving all of the problems discussed so far and can, in addition, solve any other plane static problems involving arbitrary numbers of arbitrarily oriented cracks (some or all of which may intersect) near an interface; however, some of the less important auxiliary subroutines for input/output, post-solution calculations, etc. are not up-to-date because of the number of different techniques tried in our work on pressure evolution). The basic structure of FRACSIM seems quite satisfactory and easily extendable for future work: it includes some important

simplifying features (such as the use of generic elements and connectivity" arrays [29]), which are apparently fairly widely used in SIE programs $\begin{bmatrix} 7 & 9 \\ 7 & 9 \end{bmatrix}$ and seem to be inspired by techniques used in many programs for finite element analysis.

4.2 Functional Organization of FRACSIM

FRACSIM consists of a main program (written in FORTRAN), which controls the various input/output and computational tasks that are performed by a group of subroutines*. As shown in Figure (4.1), these tasks are quite distinct and, with the exception of the various time dependent computations (viz., those required for the problems discussed in Chapter 3), are each associated with a particular subroutine. The subroutines fall naturally into five categories: control (FRACSIM), automatic data generation (AUTO, STRESS); assembly of matrices (MATRIX, STRCMP, DECOMP, CLOSRE); input/output (DUMP, RESTRT, OUTPUT, PLOT), and computation (all of the remaining subroutines). The roles of the subroutines are further clarified by arranging them in the calling hierarchy shown in Figure (4.2.). Subroutines NEWSTR, STATFL and MOVFL perform the computations

Technically, the name FRACSIM refers only to the main program. The subroutines are stored separately in a subroutine library named FRACLIB. This type of organization permits editing and re-compiling a particular subroutine independently of the rest. Great savings in time and cost are thus realized.

- 185 -

necessary for the fluid pressure evolution (explicit and implicit methods) and moving fluid front problems, respectively (which computes pressure evolution by explicit integration). NEWSTR is currently not used at all, and STATFL (pressure evolution by the implicit method) has been superceded by MOVFL; (moving fluid front computation). They are retained for possible future reference and comparison. A complete listing of FRACSIM and all of the subroutines is included as Appendix B.

4.3 Program Structure

The versatility of a program such as ours is largely dependent upon the quality of what might best be called the "bookkeeping": the internal representation of the various elements, nodes and crack surfaces and the manner in which each such piece of information is used in performing the necessary computations. Also, the program should be structured in such a way that all problems can be couched in terms of its normal input requirements. For example, in terms of the input data there is no fundamental difference between the branched crack and micro-crack problems; only the location of the cracks, the type of closure or matching conditions specified, and the relative elastic moduli need to be changed to solve one problem or the other. Outside of the steps required for automatic calculation of matching condition coefficients (which we regard as purely a convenience feature) each type of problem is handled by identically the same FORTRAN statements. There is no branching to one part of FRACSIM for branched crack problems or to another for three-crack-model blunted crack problems (except for the quasi static problems).

Toward these ends we have developed a bookkeeping system and have structured the major operations (such as evaluating matrix elements) so that they are applicable to all problems involving straight, plane cracks, and easily extendable to be completely universal when such capabilities are required.

In Chapter 1 it was noted that our special SIE method requires the division of crack loci into one or more elements, each of which is sub-divided into a number of discrete nodal points. The object of the method is to evaluate the dislocation density at some of these nodes based upon the known tractions at other nodes; (it is conceivable that, in some local interpolation schmes, these two sets of nodes would be identical). The purpose of phrasing the description of our SIE method as it was done in the first chapter (not the only possible -- nor even the simplest -- statement of it) is, in fact, that such a verbal description suggests a very powerful program structure. Thus, the entities which our program deals with are nodal points and boundary elements.

The information required by FRACSIM consists of two tables of nodal point coordinates (one set associated with the known tractions, the other with the unknown disloaction densities), two other tables which contain lists of the nodes that constitute each element, and the tractions (in local coordinates) at each of the "traction nodes". These tables correspond to the internal arrays

- 187 -

- 188 -

XNODE, TNODE, ELMNTT, ELMNTX, and STRSL, whose organization is shown in Figure 4.3. While these arrays could be typed manually, line by line, by the analyst and read directly by FRACSIM, we have obviated this tedious work by writing an automatic data generating subroutine (AUTO) which will fill in the bookkeeping arrays, based on a few input parameters, for 2-D crack problems in which we elect to use the Gauss-Chebyshev global interpolation scheme. A second task which has been automated for the convenience of the use is that of translating the appropriate closure and matching conditions into actual matrix elements. Subroutine CLOSRE is equipped to supply any combination of the closure and matching conditions discussed in Chapters 1 and 2, based upon choices that are made by the user and ready by AUTO.

Perhaps the most important point to note here is that in problems involving more than one crack there is no direct internal distinction between the various cracks; stated differently, none of the basic operations performed by FRACSIM require knowledge of the number of cracks or the particular crack upon which is located the node or element being operated on. Note also that, with the lack of internal distinction between elements and crack surfaces, there is really no internal "conceptual" difference between local and global interpolation methods. The implications of this last point are important: for instance, we should be able to use the same fundamental procedure (in subroutine MATRIX) for setting up a matrix for a 3-D problem, where we may have to use local interpolation, as for a 2-D problem where we can use the more convenient global method.

Another important feature of our program structure, although not explicitly apparent at this time because of our exclusive use of global interpolation, is that we use a single (set of) generic interpolation function(s) (i.e., functions defined on [-1,1] for the integration in Equation (1.5)). Use of this standard technique obviates a separate set of interpolation functions for each element.

Since the subroutines used for quasi-static (fluid injection) problems are still being developed, we have not yet endowed them with the same multi-crack and near-interface capabilities as we have those sections of FRACSIM which are devoted to static problems. Consequently, they lack the generalized structure as well: they are currently restricted to solving problems involving a single crack on the interval [-1,1] by global Gauss-Chebyshev interpolation.

4.4 Format of Required Input Data

The automatic data generation subroutine (AUTO) requires that values for its input parameters be arranged in the following order and format (all lines or cards must be included, except as indicated): line or card number:

1. ISTART (12) Choice of whether to read input data for a new problem (ISTART=1) or to re-start a previous problem from the state at which computation had stopped (ISTART=2: currently not supported). Number of material regions. For each region, one 2. NREG (12) set of the following cards (RTYPE; RPOS: E,NU,G) is required. RTYPE (I2) Specific geometric type of region. Current 3. options: RTYPE = 1infinite plane RTYPE = 2half plane Specific location of material region. For a 4. RPOS (array: 3F10.4) half plane: RPOS(1) x-coordinate of interface RPOS(2) = -1.region is to the left of the interface RPOS(2) = +1.region is to the right of the interface RPOS(3) is irrelevant in this case E,NU,G Elastic constants of region 5. (3F10.4) IDOF (I2) in Eq. (1.2). IDOF=2 6. The range of and unless all cracks are collinear and have purely normal loading, in which case the solution is more economical if IDOF=1.

7. NCC(I2)The number of closure/matching conditions required. For each condition, one set of the following three cards (ITYPE, ELMNT, DIR) is required.

The specific type of closure or matching condition: 8. ITYPE (I2) ITYPE = 1closure condition

> ITYPE = 2branched crack matching condition

ITYPE = 3blunted crack matching condition (two crack model)

- ITYPE = 4blunted crack matching condition (three crack model).
- 9. The surface number of each surface associated with ELMNT (array, 612)

the particular matching condition (See SURFNO).

10. DIR (array: 612)

in the particular matching condition in reference to the crack surface specified by the corresponding element of ELMNT:

The component of dislocation density to be used

DIR = 1 normal component

DIR = 2 tangential component

- NSURF (I2) The number of cracks in the problem. For each 11. crack, one set of the following cards (SURFNO, NBPTS, LTYPE, AA-BB, LOAD) must be supplied.
- SURFNO (I2) The number assigned to each crack (surface). 12. The numbering scheme used is arbitrary.

13. The number of the points on the surface. NBPTS (I2)

The type of load distribution desired on the sur-14. LTYPE (12) face (see also LOAD). The most frequently needed choices are:

LTYPE = 2 "square root" load distribution (see Chapter 3)

LTYPE = 3 uniform loading with desired magnitudes of both normal and severe components.

LTYPE = 4 triangular loading (see Chapter 3)

LTYPE = 7 triangular loading from x_{lfront} to

Xrfront.

- LFRONT, RFRONT XNODE numbers at which the left and right fluid 15. (213)fronts are located (meaningful only if LTYPE = 4).
- Magnitudes of normal and shearing tractions, LOAD (array: 16. 2E15.4) respectively. For nonuniform loading, LOAD (1) is the magnitude of the fluid pressure at the borehole and the value of LOAD (2) is irrelevant. Global x and y coordinates, respectively, 17. AA,BB (arrays: of the left (AA) and right (B) crack tips 2F10.4 ea) Stop time and time increments for quasi-static 18. TFIN, DT (F10.4 ea) problems (irrelevant for static problems) 19. Frac. fluid viscosity. VISCO (E15.4)

FIG. 4.1. Functional flow diagram of FRACSIM.

FIG. 4.2. Diagram showing both the hierarchy among the subroutines and the calling sequence followed in the course of a run. The sequence of events starts from the upper left end of the box representing the main program (FRACSIM) and ends at the lower right (next page). Note the correspondence to the flow diagram in fig. 4.1.

FIG. 4.2(continued).

	XNODE,	TNODE	
node #	x ₁ coord.	x ₂ coord.	x ₃ coord.
1			
2			
3			
٠			
•			
•			

ELMNTT, ELMNTX

	#of TNODES or	nodes	
element #	XNODES	<u>1. 2. 3.</u>	•••
1 .			
2			
3			
•			
•			
•			

CHAPTER 5: CONCLUSIONS

The problems discussed in the previous Chapters have served as a proving ground for the numerical techniques required to simulate more complicated fracture events, and at the same time have provided some valuable preliminary insights into some of the more important situations in actual hydraulic fracturing. From the modelling standpoint, we have established that it is best to employ a two crack model for a crack penetrating an interface (and for branched cracks, of course) whereas a three-crack model is needed for blunted crack simulation. Also, we have noted that there now appears to be a completely satisfactory "matching condition" (viz, setting. The dislocation density singularity to zero at the intersection) for branched crack problems, which will probably also prove to be the best extra condition for blunted cracks and cracks through interfaces. Our work with quasi-static problems (involving coupled fluid flow and crack_opening) has led to the rejection of explicit time integration methods, because of insufficient coupling of the requirements of fluid mass conservation and elasticity. We must use instead the very stable implicit scheme, in which mass conservation and elasticity requirements are satisfied simultaneously.

From our studies of some relevant static models, we have seen, for instance, how adjacent strata may make it easy for a propagating hydraulic fracture to break out of the pay zone (if the adjacent stratum is relatively soft) or provide an "elasticity barrier" to enhance containment (if the adjacent stratum is relatively stiff). It is apparent that micro-cracks in the adjacent stratum can be induced to break through the interface and link up with an hydraulic fracture, thereby circumventing this elasticity barrier. We note that there is a possibility that the blunting process may ensure containment, but it may also helpfully inhibit propagation away of the other tip from the interface. Branching, if it occurs, could also play a major part in the containment process. Our work on quasi-static problems has given us some insight on the nature of fluid flow within cracks; and in particular has shown that some early expectations (such as the characteristic time for fluid penetration [23] are essentially correct.

We have incorporated what we feel to be a very powerful basic structure into a general purpose computer program whose capabilities will be extended as our work continues.

- 198 -

REFERENCES

- 1. Howard, G. C. and Fast, C. R. <u>Hydraulic Fracturing</u>, Society of Petroleum Engineers of AIME, 1970.
- 2. Perkins, J. K. and Kern, L. R. "Widths of Hydraulic Fractures", J. Pet. Tech., 1961, p. 937.
- 3. Geertsma, J. and de Klerk, F. "A Rapid Method of Predicting Width and Extent of Hydraulically-Induced Fractures", J. Pet. Tech., Dec., 1969, p. 157.
- 4. Daneshy, A. A. "On the Design of Vertical Hydraulic Fractures", J. Pet. Tech., 1973, pp. 83-93.
- 5. Abe, H., Mura, J. and Keer, L.M. "Growth Rate of a Penny-Shaped Crack in Hydraulic Fracturing of Rocks", J. Geophys. Res., 81, (29), pp. 5335-5340, 1976.
- Mahmoud-Mohammed, N.O. "On The Development of a Numerical Method for Hydrofracturing Calculations", M.S. Thesis at Brown Univ., June, 1977.
- 7. Cruse, J.A. and Rizzo, F. (eds). <u>Boundary Integral Equation</u> <u>Methods: Computational Methods in Applied Mechanics</u>, published by ASME, 1975.
- 8. Cleary, M.P. First and Second Quarterly Reports to Lawrence Livermore Laboratories, 1978.
- 9. Brebbia, C.A., <u>The Boundary Element Method for Engineers</u>, John Wiley and Sons, New York.
- Cleary, M.P. "Fundamental Solutions for Fluid Saturated Porous Media and Application to Localised Rupture Phenomena", PhD Thesis at Brown University, Dec., 1975.
- 11. Wong, S.K. S.M. Thesis in progress, M.I.T., Dept. of Mech. Eng. 1981.
- Erdogan, F. and Gupta, G. D. "On The Numerical Solution of Singular Integral Equations", Quarterly of Applied Mathematics, January, 1972.
- Erdogan, F. and Biricikoglu, V. "Two Bonded Half Planes with a Crack Going Through the Interface", Int. J. Engng. Sci., 1973, Vol. 11, pp 745-766.

REFERENCES (CONTINUED)

- 14. Cleary, M. P. "Moving Singularities in Elasto-Diffusive Solids with Application to Fracture Propagation", Int. J. Solids Structures, 1978, Vol. 14, pp. 81-97.
- 15. Cleary, M.P. and Petersen, D.R., Quarterly Reports to Lawrence Livermore Laboratories, 1978,1979.
- 16. Cleary, M.P. "Continuously Distributed Dislocation Model for Shear Bands in Softening Materials", International Journal for Numerical Methods in Engineering, Vol. 10, 679-702 (1976).
- 17. Cleary, M.P. "Some Primary Factors Governing the Behavior of Hydraulic Fractures in Heterogeneous Stratified Porous Formations", ASME Paper No. 78-Pet-47, 1978.
- 18. Gupta, G.D. "Strain Energy Release Rate for Mixed Mode Crack Problem", ASME Paper No. 76-WA/PVP-7.
- 19. Lo, K.K. "Analysis of Branched Cracks", Journal of Applied Mechanics, Vol. 45, 1978, pp. 797-802.
- 20. Papadopoulos, J.B. "A Model for Crack Blunting at a Frictional Interface". S.B. Thesis at MIT, May 1979.
- Cook, J.S. and Erdogan, F. "Stresses in Bonded Materials with a Crack Perpendicular to the Interface", Int. J. Engng. Sci., 1972, Vol. 10, pp. 677-697.
- 22. Barr, D. "Thermal Cracking in Non-Porous Geothermal Reservoirs", S.M. Thesis at MIT, January 1980.
- 23. Cleary, M. P., "Rate and Structure Sensitivity in Hydraulic Fracturing of Fluid -- Saturated Porous Formations", to appear in the Proceedings of the 20th U.S. Symposium on Rock Mechanics, University of Texas at Austin, Juen 1979.
- 24. Cleary, M. P., "Comprehensive Design Formulae for Hydraulic Fracturing Operations", in preparation for publication, 1979.
- 25. Clenshaw, C. W. "Chebyshev Series for Mathematical Functions", Math. Tables, Vol. 5, Nat. Phys. Lab., Great Britain, 1962.
- 26. Cleary, M. P. and Petersen, D. R., Sixth Quarterly Report to Lawrence Livermore Laboratories, April, 1979.

- 201 -

REFERENCES (CONTINUED)

- 27. Cleary, M. P. and Petersen, D.R. Seventh Quarterly Report to Lawrence Livermore Laboratories, July, 1979.
- 28. Cleary, M. P. and Petersen, D.R. Second Annual Report to Lawrence Livermore Laboratories, October 1979.
- 29. Bathe, K. J. and Wilson, E. L., <u>Numerical Methods in Finite</u> <u>Element Analysis</u>, Prentice-Hall, Inc., 1976.

- 202 -

APPENDIX A: NUMERICAL INTEGRATION FORMULA FOR OBTAINING CRACK OPENING FROM DISLOCATION DENSITY

A very convenient and accurate method of integrating the dislocation density μ to obtain the crack opening δ by fitting F (see Chapter 1) with a Chebyshev series can be derived as follows:

$$\mathcal{M}(x) = \frac{F(x)}{\sqrt{1-x^{2}}} = \sum A_{k} T_{k}(x) / \sqrt{1-x^{2}}$$
(A.1a)

$$a_{k} = \frac{2}{N} \sum_{j=0}^{N} F(x_{j}) T_{k}(x_{j}); x_{j} \equiv \cos(\frac{\pi i}{N}), k=0,...,N$$
 (A.1b)

We now proceed to integrate both sides of Eq. (A.la):

$$\int_{0}^{\mathcal{X}} \mathcal{M}(\xi) d\xi = \delta(\chi) \simeq \sum_{k=1}^{N} \mathcal{A}_{k} \int_{0}^{\mathcal{X}} \frac{T_{k}(\xi)}{\sqrt{1-\xi^{2}}} d\xi$$
(A.2)

If we make the substitution

$$\mathcal{E} = COS(\theta), d\mathcal{E} = -Sin(\theta)d\theta$$

we obtain

$$\int_{0}^{\mathcal{X}} \frac{T_{k}(\xi) d\xi}{\sqrt{1-\xi^{2}}} = -\int_{0}^{\cos^{-1}(\chi)} \frac{\cos(k\theta) \sin(\theta)}{\sqrt{1-\cos^{2}(\theta)}} d\theta$$

(A.3)

or

$$\int_{0}^{\infty} \frac{T_{k}(\xi) d\xi}{\sqrt{1-\xi^{2}}} = -\frac{1}{k} \sin(k\cos^{-1}(x))$$
(A.4)

- 203 -

so that

$$\delta(x) = -\sum_{k=1}^{N} \frac{a_k}{k} \sin(k\cos^{-1}(x))$$
(A.5)

This formula is quite convenient because it makes use of the nonsingular function F and employs already existing subroutines (eq. CHEBY).

100	с		
200	С	FRACSIM	
300	С		
400	С	A GENERAL PURPOSE PROGRAM (UNDER DEVELOPMENT)	
500	С	FOR HYDRAULIC FRACTURE SIMULATION.	A
600	С		ge
700	С		EN I
800		IMPLICIT REAL*8(A-H,O-7)	U U
900		INTEGER TYPE(5), ELMNT(6), DIR(6), SURFNO	Â
1000		INTEGER CLROW(6), ALPHA, BETA	
- 1100		INTEGER CELMNT(6,6),CDIE(6,6),COL(6,6)	_
1200		INTEGER TSTEP, RTYPE, ORDER, R, RMAX	
1300		REAL*8 LOAD(2), HU(80,3), KAPPA1, HU	H A
1400	С		
1500		DIMENSION RLOC(5,3), RPOS(3), AA(2), P(2), NPTS(4)	, u
1600		DIMENSION A1(4,2),A2(4,2),ALFA(4)	0F
1700		DIMENSION A(80,80)	- H
1800		DIMENSION COEFF(80),SIGMA(80)	A A
1900		DIMENSION ELCON(2,3)	<u></u> • 2
2000		DIMENSION XA1(4),XB1(4),XA2(4),XB2(4)	
2106		DIMENSION ZETA(4,80), ETA(4,80)	04
2200		DIMENSION ICOL(6)	1
2300		DIMENSION C(6,6)	
2400	С		
2500		COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA	
260ú		COMMON /REG/ ELOC, TYPE, NREG	•
2700		COMMON /BKPING/ XNODE(80,3),TNODE(80,3),FIMUTT(4,60),ELMNTY(4,80)	
2800		COMMON /CLOSE/ A1, A2, ALFA, CLROW, NCL, CELMNT, CDLR, COL, C	
2900		1,ITYPE(10)	
3000		COMMON /SIZE/ ORDEF, NELMNT, NXNODE, NTNODE	
3100		COMMON /START/ IOLD, JOLD	
3200		COMMON /ARRAYS/ A, SIGMA, COEFF	
3300		COMMON /OUT/ STRSL(80,3), STRSC(80,3), ALOC(80,3), ACPET(80,3)	
3400		COMMON /ELAST/ G1,KAPPA1,NU,ELCON	

.

•

3500		COMMON /GP/ ZETA,NPTS	
3600		COMMON /TIME/ TSTART, TFIN, DT, TSTEP, 1	ľ
3700		COMMON /DOF/ IDOF	
3800		COMMON /INTHETH/ ICHCE	
3900	С		
4000		5 CONTINUE	
4100		READ(5,500) ISTART	
4200	50	O FORMAT(12)	
4300		IF(ISTART.EQ.1) GO TO 7	
4400	С		
4500		CALL RESTRT	
4600	С		
4700	С		
4800	С		
4900	С		
5000	С		
5100	С		
5200	С		
5300	С		
5400	С.		
5500	С		
5600	С		
5700		7 CONTINUE	
5800		TSTEP=0	
5900	C		
6000		CALL AUTO	
6100	С		
6200		T=TSTART-DT	
6300	С		
6400		CALL MATRIX	
6500		CALL CLOSRE	
6600	С		
ó700	1	C CONTINUE	
6800		IF(T.GT.TFIN) GO TO 100	
6900		TSTEP=TSTEP+1	

- 205 -

.

۰.

7000	2	O CONTINUE			
7100		CALL STRCMP		۰	
7200		CALL SOLVE(A, SIGHA, COEFF, ORDER)			
7300		CALL DECONP			
74.00		CALL TRNSFM	· .		
7500		CALL DSCALC			
7500					
7830		CALL COTION CALL INTERD (ALOC THODE NTHODE WIL)			
7750		T=T+DT			
7000		TELTCHEE EN 1) CALL NEUSTR(MU.A)			
7930		TE(TCHCE EQ O) CII CRUTE(AU) I)			•
8000		$\frac{1}{1} \left(1 \left($			
8100		IF(ICHCE.EQ.3) CALL MOVEL(NU/N)			
8200	10	U CONTINUE			
8300	С		•		
8400		CALL PLOT			
8500		CALL DUMP			
8600	С				
8 7 00		GO TO 5			
8800		END		I	
				20	•
				Ő	
				1	

.

•

100		SUBROUTINE ADD(A, IROW, ICOL, B, JROW, JCOL, C, IER)
200		IMPLICIT REAL+8(A-H,0-Z)
300		DIMENSION A(80,80),8(80,80),C(80,80)
400	С	
500		IF((IROW.NE.JROW).OR.(ICOL.NE.JCOL)) IER=1
600		IF(IER.EQ.1) GO TO 1000
700	С	
800		DO 20 I=1.IROW
900		DO 10 J=1,ICOL
1000		C(I+J)=A(I,J)+B(I,J)
1100	10	CONTINUE
1200	20	CONTINUE
1300	С	
1400	1000	CONTINUE
1500		RETURN
1600		END

.

. .

.

- 207 -

C C C C

C

С

C C

С

С

THIS SUBROUTINE AUTOMATICALLY GENERATES THE NODAL POINT AND ELEMENT DATA NECESSARY FOR PLANE STATIC AND QUASI-STATIC CRACK PROBLEMS WHICH ARE TO BE SOLVED WITH GLOBAL GAUSS-CHEBYSHEV INTERPOLATION.

SUBROUTINE AUTO

IMPLICIT REAL+8(A-H, O-Z) REAL+8 NONGAM,NONDEL,NONP,NONMU,LENGTH INTEGER TYPE(5),ELMNT(6),DIR(6),SURFNO INTEGER RTYPE,RFRONT,ORDER,R,RMAX,REGNO INTEGER CLROW(6),ELMNTT(4,80),ELMNTX(4,80),ALPHA,BFTA INTEGER CELMNT(6,6),CDIR(6,6),COL(6,6),TSTEP REAL+8 LOAD(2),MU,KAPPA1,NU

С

DIMENSION RLOC(5,3), RPOS(3), AA(2), B(2), NFTS(4) DIMENSION A1(4,2), A2(4,2), ALFA(4) DIMENSION XNODE(80,3), TNODE(80,3), STRSL(80,3), STRSC(80,3) DIMENSION A(80,80), C(6,6), ICOL(6) DIMENSION A(80,80), C(6,6), ICOL(6) DIMENSION COEFF(80), SIGMA(80), ACART(80,3) DIMENSION ALOC(80,3), ELCON(2,3) DIMENSION XA1(4), X51(4), XA2(4), X \overline{c} 2(4) DIMENSION ZETA(4,80), ETA(4,80) DIMENSION NDX(2), INTSZ(400), INTMID(400)

208

С

COMMON /DIFPAR/ NDX,INTSZ,INTMID COMMON /ENDPTS/ XA1,XE1,XA2,XU2 COMMON /REG/ RLOC,TYPE,NREG COMMON /BKPING/ XNODE,TNODE,ELMNTT,ELMNTX

```
COMMON /CLOSE/ A1,A2,ALFA,CLROW,NCC,CELMNT,CDIR,COL,C

1,ITYPE(10)

COMMON /SIZE/ OKDER,NELMNT,NXNODE,NTNODE

COMMON /START/ IOLD,JOLD

COMMON /ARRAYS/ A,SIGMA,COEFF

COMMON /OUT/ STKSL,STRSC,ALOC,ACART

COMMON /ELAST/ G1,KAPPA1,MU,ELCON

COMMON /GP/ ZETA,NPTS

COMMON /FLUID/ VISCO,LOAD

COMMON /FLUID/ VISCO,LOAD

COMMON /LPAR/ LTYPE

COMMON /DOF/ IDOF

COMMON /NONDIM/ NONGAM,NONDEL,NONP,NONMU,TAUC

COMMON /INTMETH/ ICHCE

COMMON /FILL/ LFRONT,RFRONT
```

ł

209 -

```
С
```

SIN(Q)=DSIN(Q) COS(Q)=DCOS(Q) ATAN(Q)=DATAN(Q) SQRT(Q)=DSQRT(Q)

С

ORDER=0
10L0=0
J0L0=0
11K=0
L=0
MIII
NRE5=1
RTYPE=1
CLC = 0
DO 1 I=1.4
ELMNT(I) = (
DIR(I)=0
ALFA(I)=0.
ICOL(I)=0

1 CONTINUE AA(1) = 0. AA(2) = 0. B(1)=0. B(2)=0. LOAD(1)=1. LOAD(2)=0. E=0. NU=.3 6=1. RPOS(1)=0.RPOS(2)=0. RPOS(3) = 0. READ DATA FOR MATERIAL REGIONS READ(5,502) NREG DO 27 IREG=1,NREG READ(5,502) REGNO READ(5,502) RTYPE READ(5,504) (RPOS(II),II=1,3) READ(5,504) E.NU.G ELCON(REGNO,1)=E ELCON(REGNO,2)=NU ELCON(REGNO,3)=G $RLOC(REGNO_1)=RPOS(1)$. RLOC(REGNO,2)=RPOS(2) RLOC(REGNO, 3) = RPOS(3)TYPE(REGNO)=RTYPE

1

С

С

C C

С

С

С

5 CONTINUE

1

READ(5,502) IDOF

С

~		
L		READ CLOSURE/ MATCHING CONDITION
С		PARAMETERS
C		
		READ(5,502) NCC
		DO 3 I=1.NCC
		READ(5,502) ITYPE(I)
		READ(5,500) (ELMNT(ICNT),ICNT=1.6)
		READ(5,500) (DIR(ICNT), ICNT=1,6)
С		READ(5,500) (ICOL(ICNT), ICNT=1,6)
С		READ(5,501) (ALFA(ICNT),ICNT=1,6)
		D0 4 J=1.6
		CELMNT(I,J) = ELMNT(J)
		CDIR(I,J)=DIR(J)
		$C(I \bullet I) = A I F A (I)$
		(0) (1, 0) = 100 (0)
	4	CONTINUE
	-1 -2	CONTINUE
C	J	CONTINUE
		READ CHREACE DATA
L C		READ SURFACE. DATA
ι		
		RLAD(5)5UZ) NSUKF
		UKDER=U
		L=0
		M=G
		NELMNT=NSURF
		ŭ = L
		D0 35 1=1,NSURF
		READ(5,502) SURFNO
		READ(5,502) NBPTS
		READ(5,502) LTYPE
		READ(5,517) LFRONT,RFRONT
		READ(5,503) LOAD(1),LOAD(2)
		READ(5,501) AA(1),AA(2),B(1),B(2)
	501	FORMAT(4F10.4)
	503	FORMAT(2E15.4)

•

- 211 -

•

•

```
502 FORMAT(12)
  504 FORMAT(3F10.4)
  517 FORMAT(213)
      XA1(SURFNO) = AA(1)
      XA2(SURFNO)=AA(2)
      XB1(SURFNO)=B(1)
      XB2(SURFNO)=B(2)
      NPTS(SURFNO)=NBPTS
      JMAX=NBPTS
      NONP=1./LOAD(1)
  500 FORMAT(412)
С
С
      JMAX=NFTS(I)
      DO 20 J=1.JMAX
      ARG=(2.*J-1.)*3.1415926535898/(2.*NPTS(I))
      ZETA(1,J) = -COS(APG)
   20 CONTINUE
      KMAX = JMAX - 1
      DO 22 J=1,KMAX
      ARG=3.14159265898*J/NFTS(1)
      ETA(I,J) = -COS(ARG)
   22 CONTINUE
С
      00 25 J=1, JMAX
    L=L+1
      ELMNTT(I,1)=NPTS(I)
      ELMNTT(I,J+1)=L
      TNODE(L,1)=.5*XA1(I)*(1.-ZETA(I,J))+.5*XB1(I)*(1.+ZETA(I,J))
      TNODE(L_{92})=.5*XA2(I)*(1.-ZETA(I,J))+.5*XB2(I)*(1.+ZETA(I,J))
      TNODE (L,3)=0.
      00 25 BETA=1.IDOF
      ORDER=ORDER+1
   25 CONTINUE
      DO 30 J=1.KMAX
```

- 212 -

```
M = H + 1
      ELMNTX(I,1)=NPTS(I)-1
      ELMNTX(I, J+1)=M
      XNODE(M,1)=.5*XA1(I)*(1.-ETA(I,J))+.5*XB1(I)*(1.+ETA(I,J))
     XNODE(M+2)=-5*XA2(I)*(1--ETA(I,J))*-5*XB2(I)*(1-+ETA(I,J))
      XNODE(M,3)=0.
- JU CONTÍNUE
      DO 190 JJ=2, JMAX
      JJK=JJK+1
      CALL STRESS(STRSL.LOAD.I.JJK)
  190 CONTINUE
   35 CONTINUE
С
      READ(5,510) TFIN,DT
С
  562 FORMAT(F10.4)
  510 FORMAT(2F10.4)
      NXNODE = M
      NTNODE=L
      NCC = 0
      KMAX=L
      II = S
С
С
      READ(5,288) VISCO
  288 FORMAT(E15.4)
   52 CONTINUE
      DO 55 ISURF=1.NSURF
      DO 50 ALPHA=1.IDOF
      II=1I+NPTS(ISURF)
      NCLC=NCLC+1
      CLROW(NCLC)=II
   50 CONTINUE
   55 CONTINUE
                  .
C
```

4

.

1

213

С READ CHOICE OF TIME INTEGRATION С С METHOD: С С ICHCE = 1 EXPLICIT INTEGRATION (NEWSTR) С IMPLICIT INTEGRATION (STATFL) = 2 С = 3 IMPLICIT INTEGRATION (MOVFL) С С READ(5,924) ICHCE С С READ PARAMETERS FOR SUBROUTINE DIFF С IF SUBROUTINE NEWSTR IS TO BE USED FOR PRESSURE EVOLUTION CONPUTATIONS С С READ(5,924) NDR 924 FORMAT(13) DO 943 II=1.NDR READ(5,925) INTSZ(II), INTMID(II) 943 CONTINUE 925 FORMAT(212) NDX(1)=NDR NDX(2) = NDR. С LENGTH=1. NONSAM=LENGTH/G NONDEL=G/(LOAD(1)*LENGTH) NONP=1./LOAD(1) NONMU=G/LOAD(1)TAUC=(12.*VISCO/G)*(G/LOAD(1))**3 С RETURN END .

- 214

100	С	SUBROUTINE CHEBY
200	С	
300	С	THIS SUBROUTINE FITS THE FUNCTION WHOSE
400	C	VALUES AT THE POINTS ARG1 ARE TRANSMITTED IN
500	С	TABO WITH A CHEBYSHEV SERIES. CHEBY COMPUTES
600	С	THE VALUE OF THE SERIES, ITS TERMWISE DERIVATIVES
7 Ŭ Ŭ	С	AND THE INTEGRAL OF THE FUNCTION*SORT(1-X**2)
800	С	AT THE POINTS ARG2 AND RETURNS
-900	С,	THEM IN F.
1000	C	
1100	С	
1200		SUBROUTINE CHEBY(ARG1, ARG2, NDIM1, NDIM2, TAB0, NDEG, NXC, NDER1V, F,
1300		1 IROW+JROW, IEVAL)
1405	С	
1500		IMPLICIT REAL+8(A-H,0-Z)
1600		INTEGER R
170 ũ		DIMENSION ARG1(IROW,1),ARG2(JROW,1),TAB(400,3),F(JROW,5)
1800		DIMENSION T(400,4), TABO(IROW,1)
1900		DIMENSION Y(400), A(400)
2000	С	
2100		COS(Q) = DCOS(Q)
2200		ACOS(Q) = DACOS(Q)
2300	С	
2400		IF((IEVAL.NE.0).AND.(IEVAL.NE.1)) GO TO 5000
2500	С	
2669		00 5 I=1.NXC
2750		XC=-COS(3.1415926535898*(I-1)/(NXC-1))
2800		CALL LGRNG(ARG1,TABO,XC,PT,NDIM1,5,IROW)
2990		TAB(I,1)=PT
3036		5 CONTINUE
3100	C	
3200		DO = 20 R = 1, NDEG
3300		SUM=0.
3400		$DO 10 J=1 \cdot NXC$

- 215-

: •

. . . .

. 6.

		· · · · · · · · · · · · · · · · · · ·
3500		FUDGE=1.
3600		$IF((J \cdot EQ \cdot 1) \cdot OR \cdot (J \cdot EQ \cdot NDEG)) FUDGE = .5$
3700		XXA=-COS((R-1)*3.1415926535898*(J-1)/(NXC-1))
3800		SUM=SUM+TAB(J:1)*XXA*FUDGE
3900	10	CONTINUE
4000		$A(R) = 2 \cdot SUM/(NXC-1)$
4166	20	CONTINUE
4200		A(1) = .5 * A(1)
4300	С	
4400	5000	CONTINUE
450û	С	
4600		T(1,1)=1.
4700		T(1,2) = 0.
4800		T(1,3)=0,
4900	СХ	T(1,4)=0.
5900	С	
5100		T(2,2)=1.
5200		T(2,3)=0.
5306	Сх	T(2,4)=0.
5400	C	
5500		DO 40 I=1,NDIM2
5600		DO 35 J=1,5
5700		F(I,J)=0.
5860	35	CONTINUE
59 <u></u> 0 u	С	
6000		T(2,1) = ARG2(I,1)
6100	C	
6200		DO 32 N=3,NDEG
6360		IF(IEVAL.EQ.1) GO TO 33
6400	C	
6500		T(N,1)=2.*ARG2(I,1)*T(N-1,1)-T(N-2,1)
6600		T(N+2)=(2+*T(N-1+1)+2+*ARG2(1+1)*T(N-1+2)-T(N-2+2))
6700	СХ	T(N+3)=(4.*T(N-1,2)+2.*ARG2(1,1)*T(N-1,3)-T(N-2,3))
6800	СХ	T(N_4)=(6.*T(N-1,3)+2.*ARG2(T,1)*T(N-1,4)-T(N-2,4))
6900	С	

1

•

•
7 005	F(T, T) = F(T, T) + A(N) + T(N, T)
7100	$F(I_{0}2) = F(I_{0}2) + A(N) + T(N_{0}2)$
7266	f(1,2) = f(1,3) = F(1,3) + A(N) + T(N,3)
7200	Cx = F(1,4) = F(1,4) + A(N) * T(N,4)
7400	
7566	IF (TEVAL.EQ.0) GO TO 32
760û	33 CONTINUE
7700	KKL=N-1
780 Ŭ	CX F(1,5)=F(1,5)-A(N)*DSQRT(1TCH(KKL,ARG2(1,1))**2)/DFLOAT(N-1)
7500	ARG=DFLOAT(KKL)*DACOS(ARG2(I,1))
800ũ	TCH=DSIN(ARG)/DFLOAT(KKL)
8100	$F(I_{9}5) = F(I_{9}5) - A(N) + TCH$
8200	C
8300	32 CONTINUE
8400	F(I,1)=F(I,1)+A(1)+T(1,1)+A(2)+T(2,1)
8500	F(1,2)=F(1,2)+A(1)+T(1,2)+A(2)+T(2,2)
8660	
8700	ARG=DACOS(ARG2(1,1))
8800	TCH=DSIN(ARG)
8900	F(1,5)=F(1,5)=0.5*A(1)*ARG2(1,1)=
900ŭ	1A(2) * 1CH
9100	
9266	40 CONTINUE HOTTEAC ETCN CAATIN IT-1 NDECN
9300	NKIILUNGDODJ UAUIJGII-IGNULUJ 634 FODMATIN G-OFIS AN
9400 963n	C SSCIUMARC
9606	
9700	FND
2100	

100	С	SUBROUTINE CONST			
260	С				
366	С				a.
400	С	THIS SUGROUTINE COMPUTES THE			
500	С	COMBINATIONS OF ELASTICITY CONSTANTS			
600	C	REQUIRED FOR EVALUATION OF THE CHOSEN			
730	C	INFLUENCE FUNCTION. CONST IS CALLED			
E 0 0	C	ONLY WHEN A NEW SET OF PARAMETERS IS			
900	С	REQUIRED, AS DETERMINED BY SUBROUTINE			
1000	С	LOCATE.			
1100	С				
1200	С				
1300		SUBROUTINE CONST(IREG, JREG, EMOD, A, B)			
1400		IMPLICIT REAL +8(A-H+0-Z)			
1500		REAL*8 KAPPA1:KAPPA2:MU			
1600		DIMENSION ELCON(2,3)			
1700		COMMON /ELAST/ G.KAPPA1,MU,ELCON			
1800	С		•		
1900	С	PARAMETERS FOR THE INFLUENCE FUNCTION FOR			
5000	C	A DISLOCATION NEAR AN INTERFACE. FOR			
2100	С	CONVENIENCE, WE CURRENTLY ASSUME THAT THE			*
2200	С	REGIONS WILL BE NUMBERED 1 AND 2.		-	21
2300	С				8
2465		G=ELCON(JREG,3)			8
2500		KAPPA1=34.*ELCON(JREC,2)			
2600		PI=3.1415926535898			
2700		EMOD=G/(PI*(KAPPA1+1.))			•
2800		IF(JREG.EQ.2) GAMMA=ELCON(1,3)/ELCON(2,3)			
2900		IF(JREG.EQ.1) GAMMA=ELCON(2,3)/ELCON(1,3)			
3000		IF(JREG.EQ.1) KAPPA2=34.*ELCON(2.2)			
3100		IF(JREG.EQ.2) KAPPA2=34.*ELCON(1.2)			
3200		$A = (1 \cdot - GAMMA) / (1 \cdot + GAMMA + KAPPA1)$			
3300		B=(KAPPA2-GAMMA*KAPPA1)/(KAPPA2+GAMMA)			
3400	C				
3500		RETURN			
3600		END			

	•
	,
100 C SUBROUTINE CLOSRE	•
200 C	
300 C THIS SUBROUTINE COMPUTES AND INSERTS	
400 C THE MATRIX ELEMENTS CORRESPONDING TO VARIOUS	
500 C CLOSURE AND MATCHING CONDITIONS.	
600 C	
700 SUBROUTINE CLOSRE	
800 IMPLICIT REAL+8(A-H,0-7)	
900 REAL+8 KAPPA1,MU	
1000 INTEGER ORDER	
1100 INTEGER ELMNTT(2,80),ELMNTX(2,80),BETA,CLROŴ(6),CELMNT(6,6)	
1200 INTEGER CDIR(6,6)	
1300 INTEGER ELMNT(6)	
1400 INTEGER COL(6,6)	
1500 C	
1600 DIMENSION XA1(4),XA2(4),XB1(4),XB2(4),A1(4,4),A2(4,4),ALPHA(4)	
1700 DIMENSION XNODE(80,3), TNODE(80,3), STRSL(80,3), STRSC(80,3)	
1800 DIMENSION A(80,80)	
1900 DIMENSION COEFF(80),SIGMA(80),ACART(80,3)	
2000 DIMENSION ALOC(80,3),ELCON(2,3)	
2100 DIMENSION C(6,6)	
2200 DIMENSION ZETA(2,80),NPTS(4)	
2300 C	
2400 COMMON /SIZE/ ORDER+NELMNT+NXNODE+NTNODE	
2500 COMMON /CLOSE/ A1, A2, ALPHA, CLROW, NCC, CELMNT, CDIR, COL, C	
2600 1,ITYPE(10)	
2700 COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA	
2800 COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX	
2900 COMMON /ARRAYS/ A,SIGMA,COEFF	
3000 COMMON /OUT/ STRSL,STRSC,ALOC,ACART	
3100 COMMON /ELAST/ G1,KAPPA1,MU,ELCON	
3200 COMMON /GP/ ZETA+NPTS	
3300 COMMON /DOF/ IDOF	
3400 C	

. .

3500		SIN(Q)=DSIN(Q)
3600		COS(Q) = DCOS(Q)
3700		ATAN(Q) = DATAN(Q)
3800		SQRT(Q)=DSQRT(Q)
3900	С	
4000		PI=3.1415926535898
4100		DO 1000 ICC=1,NCC
4200		ICLC=ITYPE(ICC)
4300		GO TO (100,500,700,800),ICLC
4400	С	
4500	С	
4600	С	
4700	1	Ü CONTINUE
4800	С	
4900	С	NET ENTRAPPED DISLOCATION=0:
5000	С	
5100		DO 10 J=1,ORDER
5200		A(CLROW(ICC), J) = 0.
5300		0 CONTINUE
5400		SIGMA(CLROW(ICC))=0.
5500		DO 20 L=1,4
5600		JEL=CELMNT(ICC,L)
5700		IF(JEL.EQ.0) GO TO 25
5800		0=LL
5900		DO 19 J=1,NELMNT
6000		DO 18 BETA=1, IDOF
6100		KMAX=ELMNTT(J,1)+1
6200		DO 16 K=2,KMAX
6300		JJ=JJ+1
6400		IF((J.EQ.JEL).AND.(BETA.EQ.CDIR(ICC.L))) A(CLROW(ICC).JJ)=SQRT((XB
6500		11(JEL)-XA1(JEL))**2+(XB2(JEL)-XA2(JEL))**2)*PI/(2.*ELMNTT(JEL.1))
6600	С	
6700		6 CONTINUE
6800		8 CONTINUE
6900		9 CONTINUE

220 -

7900		20	CONTINUE
7100		25	CONTINUE
7260			GO TO 1000
7300	С		
7400	5	00	CONTINUE
7500			TEST=5000.
7600			TEST1=5000.
7700	С		
7800			DO 510 J=1,ORDER
7900			A(CLROW(ICC),J)=0.
8000	5	10	CONTINUE
8100			SIGMA(CLROW(ICC))=0.
8200	С		
8300	С		MATCHING CONDITIONS FOR BRANCHED CRACKS:
8400	С		
8590	С		
8600			JJ1=NPTS(1)
8700			JJ2=1
8800			PHI=PI/2.
8900			THETA=P1/2.
9000			ARG=(XB2(2)-XA2(2))/(XB1(2)-XA1(2))
9100			ARG1=(XB2(1)-XA2(1))/(XB1(1)-XA1(1))
9200			IF(XA1(2).NE.XB1(2)) PHI=ATAN(ARG)
9300			THETA=ATAN(ARG1)
9400	С		
9500			JJ=0
9600			DO 526 L=1,2
9700			DO 525 BETA=1,IDOF
9800			IMAX=NPTS(L)
` 9900			DO 524 I=1,IMAX
10000			JJ=JJ+1
10100			IF((BETA.EQ.1).AND'(L.EQ.1).AND.(I.EQ.JJ1)) J1=JJ
10200			IF((BETA.EQ.2).AND.(L.EQ.1).AND.(I.EQ.JJ1)) J2=JJ
10300			IF((BETA.EQ.1).AND.(L.EQ.2).AND.(I.EQ.JJ2)) J3=JJ
10400			IF((BETA.EQ.2).AND.(L.EQ.2).AND.(I.EQ.JJ2)) J4=JJ

.

- 221 -

10500		524	CONTINUE
10600		525	CONTINUE
10700		526	CONTINUE
10800			COL(3,1)=J1
10900		÷.,	COL(3,2)=J2
11000			COL(3,3)=J3
11100			COL(3,4) = J4
11200			COL(4,1)=J1
11300			COL(4,2)=J2
11400			COL(4+3)=J3
11500			COL(4,4)=J4
11600			C(3+1)=SIN(THETA)
11700			C(3,2)=COS(THETA)
11800			C(3,3)=SIN(PHI)
11900			C(3,4)=COS(PHI)
12000			C(4,1) = COS(THETA)
12100			C(4,2) = -SIN(THETA)
12200			C(4,3)=COS(PHI)
12300			C(4,4) = -SIN(PHI)
12400		850	CONTINUE
12500			ALNTH1=SQRT((XB2(1)-XA2(1))**2+(XB1(1)-XA1(1))**2)
12600			ALNTH2=SQRT((XB2(2)-XA2(2))**2+(XB1(2)-XA1(2))**2)
12700	C		
12800	C		
12900			SIGMA(CLROW(ICC))=0.
15000	С		•
13100			DO 620 IK=1, ORDER
13200			A(CLROW(ICC),IK)=0.
13300		620	CONTINUE
13400			DO 630 J=1,4
13500			A(CLROW(ICC),COL(ICC,J))=C(ICC,J)
13600		630	CONTINUE
13700			GO TO 1000
13800	С		
13900	C		

- 222

.

14000	С		MATCHING CONDITIONS FOR BLUNTED CRACKS
14100	Ć		(TWO CRACK MODEL):
14200	С		
14300		700	CONTINUE
14400			NMAX=NPTS(2)
14500			DO 720 N=2 NMAX
14600			J=ELMNTT(2,N)
14700			K=ELMNTT(2+N+1)
14800			IF((TNODE(J,2).GT.0.).OR.(TNODE(K,2).LT.0.)) GO TO 719
14900	1		JJ1=N-1
15000			JJ2=N
15100		719	CONTINUE
15200		720	CONTINUE
15300			FACTOR=SQRT(1ZETA(2,JJ1)**2)
15400			C(3,3)=1./FACTOR
15500			C(4,3)=1./FACTOR
15600			FACTOR=SQRT(1,-ZETA(2,JJ2)**2)
15700			C(3+4)=1+/FACTOR
15800			C(4+4)=1+/FACTOR
15900			FACTOR=SQRT(1ZETA(1.NPTS(1)) **2)
16000			C(3,1)=1./FACTOR
16100			C(3,2)=0.
16200			C(4,2)=1./FACTOR
16300			C(4,1)=0.
16400			JJ=0
16500			DO 726 L=1,2
16600		•	DO 727 BETA=1,IDOF
16700			IMAX=NPTS(L)
16800			DO 724 I=1+IMAX
16900			JJ=JJ+1
17000			IF((BETA.EQ.1).AND.(L.EQ.2).AND.(I.EQ.JJ1)) J1=JJ
17100			IF((BETA.EQ.1).AND.(L.EQ.2).AND.(I.EQ.JJ2)) J2=JJ
17200			IF((BETA.EQ.2).AND.(L.EQ.2).AND.(I.EQ.JJ1)) J3=JJ
17300			IF((BETA.EG.2).AND.(L.EQ.2).AND.(I.EQ.JJ2)) J4=JJ
17400		724	CONTINUE

•

- 223 •

· ·

•

•

.

17500	73	27 CONTINUE
17600	7:	26 CONTINUE
17700		COL(3,3)=J1
17800		COL(3,4) = J2
17900		COL(4,3)=J3
18000		COL(4,4)=J4
18100		ALNTH1=SQRT((X82(1)-XA2(1))**2+(X81(1)-XA1(1))**2)
18200		ALNTH2=SQRT((XB2(2)-XA2(2))**2+(XB1(2)-XA1(2))**2)
18300	С	
18400		DO 730 J=1,4
18500		$A(CLROW(ICC) \circ COL(ICC \circ J)) = C(ICC \circ J)$
18600	7	30 CONTINUE
18700	С	
18800		GO TO 1000
18900	С	
19000	9	OO CONTINUE
19100	С	
19200		SIGMA(CLROW(ICC))=0.
19300	С	
19400		DO 920 IK=1, ORDER
19500		A(CLROW(ICC),IK)=0.
19600	9	20 CONTINUE
19700		00 930 J=1,4
19800		A(CLROW(ICC),COL(ICC,J))=C(ICC,J)
19900	9	30 CONTINUE
20000	8	00 CONTINUE
20100	С	
20200	С	MATCHING CONDITIONS FOR BLUNTED CRACKS
20300	С	(THREE CRACK MODEL):
20400	С	
20500		THETA=3.1415926535898
20600		IF(XA1(2).NE.XB1(2)) THETA=DATAN((XA2(2)-XB2(2))/
20700		1(XA1(2)-XB1(2)))
20800		PHI=THETA
20900		NMAX=NPTS(2)

				•	
21000		DO 977 l=1,4		I	
21100		DO 977 J=1,6			
21200		C(I,J)=0.			
21300	977	CONTINUE .			
21400		DO 520 N=2 NMAX			
21500		J=ELMNTT(2,N)			
21600		K = ELMNTT(2, N+1)			
21700		IF((TNODE(J,2).GT.0.).OR.(TNODE	(K+2).LT.0.)) GO TO 519		
21800		JJ1=N-1			
21900		JJ2=N			
22000	519	CONTINUE			
22100	520	CONTINUE			
22200	С				
22300		DO 687 I=1,6			
22400		DO 687 J=1,6			
22500		$C(\mathbf{I},\mathbf{J})=0.$			
22600	687	CONTINUE			
22700	С	· · · · · · · · · · · · · · · · · · ·			
22800		J1=NPTS(1)			
22900		J2=J1+NPTS(1)			
23000		J3=J2+NPTS(2)			
23100		J4=J3+NPTS(2)			
23200		J5=J4+1	•		
25300		J6=J5+NPTS(3)			
23400	С				
23500		D0 683 11=3,6	•		
23600		COL(II,1)=J1			
23700		COL(II,2)=J2			
23800		COL(II,3)=J3			
23900		COL(II+4)=J4			
24000		COL(II,5)=J5			
24100		COL(II,6)=J6			
24200	683	CONTINUE			

.

:

- 225 -

	C(3,1)=1./FACTOR
	C(4,2)=1.
С	
	FACTOR=SQRT(1ZETA(2.NPTS(2))**2)
	C(5,3) = SIN(THETA)
	C(5,4)=COS(THETA)
	C(6,3)=COS(THETA)
	C(6,4) = -SIN(THETA)
С	
	FACTOR=SQRT(1ZETA(3.1)**2)
	C(5,5) = -SIN(THETA)
	C(5,6) = -COS(THETA)
	C(6+5) = -COS(THETA)
	C(6,6) = SIN(THETA)
С	
	DO 610 J=1+ORDER
	A(CLROW(ICC),J)=0.
610	CONTINUE
	SIGMA(CLROW(ICC))=0.
С	
•	D0 623 J=1,6
	A(CLROW(ICC),COL(ICC,J))=C(ICC,J)
623	CONTINUE
С	
C	
1000	CONTINUE
	RETURN
	END
	C C C 610 C C C C C 1000

.

•

```
С
    SUBROUTINE DECOMP
                   THIS SUBROUTINE DECOMPOSES THE SOLUTION
С
C٠
                VECTOR, COEFF, INTO A TABLE OF VALUES (ACART) OF
                "F" IN THE GLOBAL Y (COLUMN 1) AND X (COLUMN 2)
С
С
                DIRECTIONS.
С
       SUBROUTINE DECOMP
       IMPLICIT REAL+8(A-H+0-2)
       INTEGER CLROW(6) + ELMNTT(4 + 80) + ELMNTX(4 + 80) + ALPHA + BETA
       INTEGER ORDER
       DIMENSION XNODE(80,3), TNODE(80,3), STRSL(80,3), STRSC(80,3)
       DIMENSION A(80,80)
       DIMENSION COEFF(80), SIGMA(80), ACART(80, 3)
       DIMENSION ALOC(80,3),ELCON(2,3)
Ċ
       COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX
       COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE
       COMMON /ARRAYS/ A.SIGMA.COEFF
       COMMON /OUT/ STRSL, STRSC, ALOC, ACART
       COMMON /DOF/ IDOF:
       IMAX = 0
       IMIN=1
       11=1
       DO 400 K=1.NELMNT
       IMAX=IMAX+ELMNTT(K,1)
       DO 395 BETA=1, IDOF
       DO 390 I=IMIN.IMAX
       ACART(I,BETA)=COEFF(II)
       II=II+1
   393 CONTINUE
   395 CONTINUE
       IMIN=IMAX+1
   490 CONTINUE
       RETURN
       END
```

- 227

100	С	SUBROUTINE DIF2	
2 Û Ú	C		
300	С	THIS SUBROUTINE COMPUTES THE DERIVATIVE	
4ΰύ	С	OF A FUNCTION BY AVERAGING OF FINITE DIFFERENCES.	
50û	С	THE DIFFERENTIATION IS DONE SEPARATELY ON EITHER	
600	С	SIDE OF THE ORIGIN IN ORDER TO PRESERVE SLOPE	
700	С	DISCONTINUITIES.	
866	С		
90û		SUBROUTINE DIF2(XC,F,NXC,TNODE,NTNODE)	
000	С		•
100		IMPLICIT REAL*8(A-H,O-Z)	
260		REAL+4 XY(2,460),XSCL(4)	
30ù		DIMENSION XC(400,3),F(400,5),TNODE(80,3)	
400	С		
500	C		
600		ITK=1	
700		DO 10 IXC=1,NXC	
800	С		
900		IF(((XC(IXC ₁).GT.TNODE(ITK,1)).OR.	
2000		1(TNODE(ITK,1).GT.XC(IXC+1,1))).OR.(ITK.GT.NTNODE))	• •
2100		260 TO 10	2
200	С		128
2300		WRITE(26,400) ITK	i
2400		405 FORMAT(* *•*ITK=*•I4)	
2500	С		
5990		$F(ITK_{9}3) = ((XC(IXC+2_{9}1) + XC(IXC_{9}1)) + (F(IXC+1_{9}2) - F(IXC-1_{9}2))$	
2706		1+(XC(IXC+1,1)-XC(IXC-1,1))*(F(IXC+2,2)-F(IXC,2)))/	
2806		2 (2.0*(XC(IXC+1,1)-XC(IXC-1,1))*(XC(IXC+2,1)-XC(IXC,1)))	
2900	С		
5006		IF(ITK.GE.NTNODE) GO TO 20	
5100	_	ITK = ITK + 1	
5200	С		
5306		10 CONTINUE	
5400		26 CONTINUE	

3500	С		
3600	1	00 30 I=1.NTNODE	
3700		XY(1,I) = TNODE(1,1)	
3800		$XY(2 \cdot I) = F(I \cdot 3)$	
3900	3	0 CONTINUE	
4000	C		
4100		ISCL=-2	
4200		XSCL(1) = -1.0	
4300		XSCL(2)=1.0	
4406		XSCL(3)=-20.	
4500		XSCL(4)=20.	
4600	С		
470ŭ		CALL QPICTR(XY,2,NTNODE,QX(1))	
4800	С		
490(l		WRITE(13,356) ((XC(II,JJ),JJ=1,3),(F(II,JK),JK=1,5),	
5000		1II=1,200)	
5100	35	6 FORMAT(* + 8E15.4)	
5200	с.		
5300		RETURN	
5400		END	
			ſ
			l l
		·	ſ
			, -

<pre>100 C SUPROUTINE DIFF 200 C 300 C THIS SUBROUTINE DIFFERENTIATES A FUNCTION 400 C BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS, 500 C THEM AVERAGING THE DIFFERENCES OVER INTERVALS OF 600 C SELECTED SIZES. THE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN 806 C ORDER TO PRESERVE SLOPE DISCONTINUTTIES. 900 C 1000 SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL+8(A-H+0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTFMP(400),NDX(2) 1400 DIMENSION INTSZ(400),INTMID(400) 1600 DIMENSION NDT(2) 1700 C 1800 C URITE(10,500) 500 FORMAT(///) 2200 WRITE(10,500) 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(1)=NDR(1)/2 2300 NDX(2)=161 2700 IMMX(1,2)=161 2700 IMMX(1,2)=161 2700 IMMX(1,2)=161 3100 IMMX(2,2)=320 3200 C 3300 C</pre>	·			
<pre>.10C C SUBROUTINE DIFF 200 C 3633 C THIS SUBROUTINE DIFFERENTIATES & FUNCTION 403 C BY FINITE DIFFERENCES AT & LARGE NUMBER OF POINTS, 500 C THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF 600 C SELECTED SIZES. THE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDF OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C 1000 SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL+8(A-H,0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION ININS2(2),IMAX(2,2),XMEW(400,3),YNEU(400,5) 1500 DIMENSION ININS2(2),IMAX(2,2),XMEW(400,3),YNEU(400,5) 1500 DIMENSION NOR(2) 1700 C 1800 C WRITE(10,500) 2100 SUBROUTINES(1)/2 2000 WRITE(10,500) 2100 SUBRON (1)/2 2000 NDX(1)=NDR(1)/2 2000 NDX(1)=NDR(1)/2 2000 NDX(1)=NDR(1)/2 2000 NDX(1)=NDR(1)/2 2000 IMIN(1,1)=1 2500 (IMIN(2,1)=160 2600 IMIN(2,1)=160 2600 IMIN(2,2)=161 2700 IMAX(1,2)=161 2700 IMAX(1,2)=160 300 - IMIN(2,2)=161 3100 IMAX(2,2)=320 3200 C</pre>				
200 C 201 C 303 C THIS SUBROUTINE DIFFERENTIATES A FUNCTION 400 C BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS, 500 C THEN AVERAGING THE DIFFERENTIATES A FUNCTION 500 C THEN AVERAGING THE DIFFERENTIATES AF FUNCTION 500 C SUBROUTINE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C IMPLICIT REAL+8(A-H,0-2) 1200 C IMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION INIX(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION INIX(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 NDX(1)>NDR(1)/2 2200 NDX(2)=NDR(1)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2600 IMIN(2,1)=161 <t< td=""><td>100</td><td>'n</td><td>SUBROUTINE DIFF</td><td></td></t<>	100	'n	SUBROUTINE DIFF	
303 C THIS SUBROUTINE DIFFERENTIATES A FUNCTION 439 C BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS, 500 C THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF 600 C SELECTEG SIZES. THE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C SUBROUTINE DIFF(X, Y, NX, NDERIV) 1100 IMPLICIT REAL+8(A-H, 0-2) 1200 C DIMENSION X(400, 5), YTEMP(400), NDX(2) 1400 DIMENSION IMIN(2,2), IMAX(2,2), NEW(400, 3), YNEW(400, 5) 1500 DIMENSION INTSZ(400), INTMID(400) 1600 DIMENSION NOR(2) 1700 C 1803 COMMON /DIFPAR/ NDR, INTSZ, INTMID 1900 C ' 2000 WRITE(10,500) B 2100 SUB(2)/2 ' 2100 NDX(1)=NDR(1)/2 ' 2300 NDX(1)=NDR(1)/2 ' 2400 IMAX(1,1)=160 ' 2500 IMAX(1,2)=160 ' 2600 IMAX(286	C C		
400 C BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS, 500 C THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF 606 C SELECTED SIZES. THE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDF OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL+8(A-H,O-Z) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION INISZ(400),INTMID(400) 1600 DIMENSION INISZ(400),INTMID(400) 1600 C 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2400 IMIN(1,1)=1 2500 IMIX(2,1)=160 2700 IMAX(1,2)=160 2700 IMAX(1,2)=161 3100 IMAX(2,2)=320 2600 C 3300 C	300	C C	THIS SUBROUTINE DIFFERENTIATES & FUNCTION	
SUD C THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF 600 C SELECTEG SIZES. THE DIFFERENTATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C USBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL*8(A-H,O-Z) 1200 C DIMENSION X(400,3),Y(400,5),YTFMP(400),NDX(2) 1400 DIMENSION IMIN2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1603 DIMENSION INTSZ(400),INTMID(400) 1604 DIMENSION NDR(2) 1700 C 1800 COMMON /DIFFAR/ NDR,INTSZ,INTMID 1900 C ' 2200 NDX(1)=NDR(1)/2 ' 2300 VAX(1)=NDR(1)/2 ' 2300 NDX(2)=NDR(2)/2 ' 2400 IMIN(1,1)=1 ' 2500 IMIN(1,1)=1 ' 2500 IMAX(2,1)=320 ' 2600 IMIN(1,2)=1 ' 2700 IMAX(2,1)=160 ' 2700 IMAX(2,2)=161 ' 3100	400	Č	BY FINITE DIFFERENCES AT A LARGE NUMBER OF POINTS.	
600 C SELECTED SIZES. THE DIFFERENTIATION IS CARRIED 700 C OUT SEPARATELY ON EITHER SIDT OF THE ORIGIN IN 800 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IHPLICIT REAL+8(A-H,O-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION ININ(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION INTS2(400),INTMID(400) 1601 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTS2,INTMID 1900 C 2000 WRITE(10,500) 2100 SOU FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=161 2500 IMAX(2,1)=320 2800 IMIN(1,2)=161 2900 IMAX(1,2)=160 300 IMIN(1,2)=161 3100 IMAX(2,2)=320 3200 C 3300 C	500	č	THEN AVERAGING THE DIFFERENCES OVER INTERVALS OF	
700 C OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN 865 C ORDER TO PRESERVE SLOPE DISCONTINUITIES. 900 C 1000 SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL*8(A-H,0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEU(400,3),YNEU(400,5) 1500 DIMENSION IMIN(2,2),IMAX(2,2),XNEU(400,3),YNEU(400,5) 1600 DIMENSION INTSZ(400),INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2200 NDX(1)=NDR(1)/2 2300 NDX(1)=NDR(1)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2630 IMIN(2,1)=320 2800 IMIN(1,2)=161 2900 IMAX(1,2)=161 3100 IMAX(2,2)=320 2800 IMIN(2,2)=161 3100 IMAX(2,2)=320 3200 C	600	Č	SELECTED SIZES. THE DIFFERENTIATION IS CARRIED	
866 C ORDER TO PRESERVE SLOPE DISCONTINUTTIES. 900 C 1603 SUBROUTINE DIFF(X,Y,NX,NDEPIV) IMPLICIT REAL+8(A-H,0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 SOUR(2)/2 2400 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=16 2506 IMAX(1,2)=161 2700 IMAX(1,2)=160 2600 IMIN(1,2)=161 2700 IMAX(1,2)=160 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 - 300 -	70 u	Č	OUT SEPARATELY ON EITHER SIDE OF THE ORIGIN IN	
900 C 1003 SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL*8(A-H,O-Z) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(406,5) 1500 DIMENSION INTSZ(400),INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(//) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMAX(1,1)=1 2500 IMAX(2,1)=320 2800 IMIN(1,2)=1 2700 IMAX(2,2)=160 300 - 300 - 1MAX(2,2)=320 3200 C	800	С	ORDER TO PRESERVE SLOPE DISCONTINUITIES.	
1000 SUBROUTINE DIFF(X,Y,NX,NDERIV) 1100 IMPLICIT REAL*8(A-H,0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTS2,INTMID 1900 C 2000 WRITE(10,500) 2100 S00 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(1)=NDR(1)/2 2400 IMIN(1,1)=1 2506 IMAX(1,1)=160 2700 IMAX(1,2)=160 300 - 300 - 300 - MIN(1,2,2)=160 300 - 3200 C	900	С		
1100 IMPLICIT REAL*8(A-H,0-2) 1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION INTS2(400),INTMID(400) 1600 DIMENSION NOR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTS2,INTMID 1900 C 2000 WRITE(10,500) 2100 Soo FORMAT(//) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 IMAX(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(2,2)=160 300 - 3100 IMAX(2,2)=320 3200 C	1000		SUBROUTINE DIFF(X,Y,NX,NDERIV)	
1200 C 1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION INTSZ(400),INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NOX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2506 IMAX(1,1)=160 2600 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(2,2)=320 2800 IMIN(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C	1100		IMPLICIT REAL+8(A-H,O-Z)	
1300 DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2) 1400 DIMENSION IMIN(2,2),IMAX(2,2),XNEW(400,3),YNEW(400,5) 1500 DIMENSION INTSZ(400),INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1800 COMMON /DIFPAR/ NDR,INTSZ,INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(1)=NDR(1)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2600 IMIN(2,1)=161 2500 IMAX(1,1)=160 2600 IMIN(2,1)=20 2800 IMIN(2,2)=161 2700 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C 3300 C	1200	С		
1400 DIMENSION IMIN(2,2), IMAX(2,2), XNEW(400,3), YNEW(400,5) 1500 DIMENSION INTSZ(400), INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR, INTSZ, INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2506 IMAX(1,1)=160 2600 IMIN(2,1)=161 2700 IMAX(1,2)=161 2700 IMAX(1,2)=161 2700 IMAX(1,2)=160 300 - 300 - 300 C	1300		DIMENSION X(400,3),Y(400,5),YTEMP(400),NDX(2)	
1500 DIMENSION INTS2(400),INTMID(400) 1600 DIMENSION NDR(2) 1700 C 1800 COMMON /DIFPAR/ NDR,INTS2,INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2600 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C 3300 C	1400		DIMENSION IMIN(2,2), IMAX(2,2), XNEW(400,3), YNEW(400,5)	٠
1600 DIMENSION NDR(2) 1700 C 1803 COMMON /DIFPAR/ NDR, INTSZ, INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2506 IMIN(2,1)=160 2600 IMIN(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 300 - 300 IMIN(2,2)=320 3200 C	1500		DIMENSION INTSZ(400), INTMID(400)	
1700 C 1803 COMMON /DIFPAR/ NDR, INTSZ, INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(///) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2630 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C	1600		DIMENSION NOR(2)	
1803 COMMON /DIFPAR/ NDR, INTS2, INTMID 1900 C 2000 WRITE(10,500) 2100 500 FORMAT(//) 2200 NDX(1)=NDR(1)/2 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 , IMAX(1,1)=160 2600 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C	1700	С	•	
1900 C Image: constraint of the state of the sta	1809		COMMON /DIFPAR/ NDR.INTSZ.INTMID	
2000 WRITE(10,500) NO 2100 500 FORMAT(///) NO 2200 NDX(1)=NDR(1)/2 . 2300 NDX(2)=NDR(2)/2 . 2400 IMIN(1,1)=1 . 2500 IMAX(1,1)=160 . 2600 IMIN(2,1)=160 . 2600 IMIN(2,1)=161 . 2700 IMAX(2,1)=320 . 2800 IMIN(1,2)=1 . 2900 IMAX(1,2)=160 . 300 - IMIN(2,2)=320 3200 C .	1900	С		t
2100 500 FORMAT(///) 8 2200 NDX(1)=NDR(1)/2 1 2300 NDX(2)=NDR(2)/2 1 2400 IMIN(1,1)=1 1 2500 IMAX(1,1)=160 1 2600 IMIN(2,1)=161 1 2700 IMAX(2,1)=320 1 2800 IMIN(1,2)=1 1 2900 IMAX(1,2)=160 1 300 IMIN(2,2)=161 1 3100 IMAX(2,2)=320 3200 3200 C 3300	2000		WRITE(10,500)	2
2200 NDX(1)=NDR(1)/2 . 2300 NDX(2)=NDR(2)/2 2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2600 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C	2100		500 FORMAT(///)	ö
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2200		NDX(1) = NDR(1)/2	8
2400 IMIN(1,1)=1 2500 IMAX(1,1)=160 2600 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=320 3200 C 3300 C	2300		NDX(2)=NDR(2)/2	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2400		IMIN(1,1)=1	
2600 IMIN(2,1)=161 2700 IMAX(2,1)=320 2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - IMIN(2,2)=161 3100 IMAX(2,2)=320 3200 C 3300 C	2500	,	IMAX(1,1)=160	
$\begin{array}{rcl} 2700 & IMAX(2,1)=320 \\ 2800 & IMIN(1,2)=1 \\ 2900 & IMAX(1,2)=160 \\ 300 & - & IMIN(2,2)=161 \\ 3100 & IMAX(2,2)=320 \\ 3200 & C \\ 3300 & C \end{array}$	2600		IMIN(2,1)=161	
2800 IMIN(1,2)=1 2900 IMAX(1,2)=160 300 - 3100 IMIN(2,2)=161 3200 C 3300 C	2700		IMAX(2,1)=320	
2900 IMAX(1,2)=160 300 - 3100 IMAX(2,2)=161 3200 C 3300 C	2800		IMIN(1,2)=1	
300 - IMIN(2,2)=161 3100 IMAX(2,2)=320 3200 C 3300 C	2900		IMAX(1,2)=160	
3100 IMAX(2,2)=320 3200 C 3300 C	300		IMIN(2,2)=161	
3200 C 3300 C	3100	-	IMAX(2,2)=320	•
330 U C	3200	C		
	3300	С		

3560 IDERIV=JDERIV+1 3600 INTO=13700 ISTART=1 3800 С 3900 DO 95 ISIDE=1,2 4009 INT1=INT0+NDX(JDERIV)-1 4100 Ċ 4200 С COMPUTE DERIVATIVE 4300 С 4400 IF(ISIDE.NE.1) GO TO 30 4500 H=X(2,1)-X(1,1)4600 ILO=14760 IHI=IMAX(1, JDERIV)-1 4800 DO 20 I=1L0,1H1 YTEMP(I)=(Y(I+1,JDERIV)-Y(I,JDERIV))/H 4900 5000 20 CONTINUE . GO TO 50 5100 5200 С 5300 **30 CONTINUE** 5400 IF(ISIDE.NE.2) GO TO 40 5500 ILO=IMIN(2, JDERIV)+1 5600 IHI=IMAX(2, JDERIV) 5700 DO 40 I = ILO, IHI5800 YTEMP(I) = (Y(I, JDERIV) - Y(I-1, JDERIV))/H5900 40 CONTINUE 0003 С 6100 50 CONTINUE 6200 WRITE(10,510) JDERIV, ISIDE, TLO, IHI 6300 510 FORMAT(* ***JDERIV=**12**ISIDE=**12**ILO=**13**IHI=**13) 6400 C 6500 С COMPUTE AVERAGES 6600 С 6700 DO 70 INT=INTO, INT1 6800 SUM=0. ISTOP=ISTART+INTSZ(INT)-1 6900

- 231 -

j'

	IMID=ISTART+INTMID(INT)-1
	IF((INT.NE.INT1).OR.(ISIDE.NE.1)) GO TO 55
	ISTOP=ISTART+INTS2(INT)-2
	IMID=ISTART+INTMID(INT)-2
1	55 CONTINUE
	IF((INT.NE.INTO).OR.(ISIDE.NE.2)) GO TO 60
	ISTART=IMIN(2, JDERIV)+1
	1STOP=ISTART+INTS2(INT)-2
	IMID=ISTART+INTMID(INT)-2
С	
	60 CONTINUE
1	DO 65 I=ISTART,ISTOP
	SUM=SUM+YTEMP(I)
	65 CONTINUE
	Y(INT, IDERIV) = SUM/DFLOAT(ISTOP-ISTART+1)
	X(INT, IDERIV) = X(IMID, 1)
С	
	WRITE(10,520) JDERIV, ISIDE, INTO, INT1, ISTART, ISTOP
5	20 FORMAT(* *,*JDERIV=*,12,*ISIDE=*,12,*INT0=*,13,*INT1=*,13,
	1*ISTART=*,13,*1STOP=*,13)
	ISTART=ISTOP+1
	70 CONTINUE
С	
	INTO=NDX(JDERIV)+1
	95 CONTINUE
С	
	DO 97 II=1,320
	XNEW(II,1)=X(II,1)
	97 CONTINUE
C	
	CALL TRANS3(X,Y,NDR(JDERIV),XNEW,YNEW,320,400,400,IDERIV)
	CALL TRANS3(X,Y,NDR(JDERIV),XNEW,YNEW,320,400,400,IDERIV) D0 98 II=1,320
·	CALL TRANS3(X,Y,NDR(JDERIV),XNEW,YNEW,320,400,400,IDERIV) DO 98 II=1,320 Y(II,IDERIV)=YNEW(II,1)
·	CALL TRANS3(X,Y,NDR(JDERIV),XNEW,YNEW,320,400,400,IDERIV) DO 98 II=1,320 Y(II,IDERIV)=YNEW(II,1) 98 CONTINUE
С	CALL TRANS3(X,Y,NDR(JDERIV),XNEW,YNEW,320,400,400,IDERIV) DO 98 II=1,320 Y(II,IDERIV)=YNEW(II,1) 98 CONTINUE
	с с с с

•

10500		100	CONTINUE
10600	С		
10700			RETURN
10800			END

10500 100 CONTINUE 10600 C 10700 RETURN 10800 END

i

۲ کی س

```
C SUBROUTINE DUMP
100
200
       С
                         THIS SUBROUTINE WRITES OUT ALL OF THE
       С
300
                       INFORMATION NEEDED TO RESTART THE RUN
406
       С
                       FROM THE CURRENT STATE.
       С
500
       С
600
             SUBROUTINE DUMP
 706
             IMPLICIT REAL*8(A-H, 0-Z)
800
             INTEGER ORDER, TSTEP
 909
             INTEGER ELMNTT(4,80),ELMNTX(4,80)
1000
       С
1100
             DIMENSION STRSL(80,3), STRSC(80,3), ALOC(80,3)
1200
             DIMENSION ACART(80,3)
1300
             DIMENSION XNODE(80,3), TNODE(80,3)
1400
             DIMENSION XA1(4), XB1(4), XA2(4), XB2(4)
1500
1600
       С
             COMMON /TIME/ ISTART TFIN. DT. TSTEP.T
1700
             COMMON /OUT/ STRSL, STRSC, ALOC, ACART
1800
             COMMON /SIZE/ ORDER.NELMNT.NXNODE.NTNODE
1905
             COMMON /BKPING/ XNGDE, TNODE, ELMNTT, FLMNTX
2600
              COMMON /ENDPTS/ XA1, XB1, XA2, XB2, THETA
2100
       С
2200
              WRITE(8,100) T,TSTEP,NXNODE,NTNODE
2300
              WRITE(8,200) ((STRSL(II,JJ),JJ=1,3),II=1,NXNOUE)
2430
              WRITE(8,300) ((XNODE(TI,JJ),JJ=1,3),II=1,NXNODE)
2500
              WRITE(8,300) ((TNODE(II,JJ),JJ=1,3),II=1,NTNODE)
2600
              WRITE(8,350) ((ELMNTX(II,JJ),II=1,4),JJ=1,80)
2700
              WRITE(8,350) ((ELMNTT(II,JJ),II=1,4),JJ=1,80)
2805
              WRITE(8,400) (XA1(II),II=1,4)
2900
              WRITE(8,400) (XA2(II),II=1,4)
3000
              WRITE(8,400) (XH1(II),II=1,4)
3100
              WRITE(8,400) (X02(II), II=1,4)
3200
3300
       С
          100 FORMAT(* *,E15.4,312)
3400
```

- 234

 3500
 200
 FORMAT(* *,3E15.4)

 3600
 300
 FORMAT(* *,3E15.4)

 3700
 350
 FORMAT(* *,4E15.4)

 3800
 400
 FORMAT(* *,4E15.4)

 3900
 C
 RETURN

 4100
 END

•

- 235 -

	•		
	C	FUNCTION F	
200	C	THIS CHURDEREDAY COMPLITIC THE ADDRADIATE	
300	U C	THIS SUBPRIGRAM CUMPUTES THE APPROPRIATE	
400	C	VALUE OF THE INFLUENCE FUNCTION FUR A	• · ·
500	C	DISLOCATION NEAR AN INTERFACE.	,
600	C		
/00		REAL FUNCTION F*8(J9K9ISURF9RR9ALPHA9BETA)	
800		IMPLICIT REAL*B(A-H)O-Z)	
900		INTEGER RR	
1000		KLAL*8 MU Integer aldul deta eluntita ogn eluntyak ogn	
1109		INTEGER ALPHA, BETA, LUNIT(4,80), LUNIX(4,80)	
1200		DIMENSION X(2), (2), XNOUE (80, 3), INOUE (80, 5)	
1300	~	DIMENSION XAI(4) + XBI(4) + XA2(4) + XB2(4)	
1400	C	CONNENT TOWERTHE A MARGE THORE FLUTT FLUTT	
1500		COMMON /BKPING/ XNODE INODE IFLMNI I ILMNIX	
1600		COMMON /START/ TULDAJULD	
1706	~	COMMON /ENDETS/ XAI, XEI, XAZ, XBZ, HEIA	1
1800	C		23
1900		SIN(Q) = USIN(Q)	On .
2500		COS(Q) = DCOS(Q)	1
2106		A A Q = D A A Q	
2200			•
2300	c	ABS(Q)=DABS(Q)	
2400	ι		
2500			
2600			
2700		$[(1)=INODE(ELMN)I(J_0K)_01)$	
2800	~	1(2)=INOUL(ELMNII(J)K)(2)	
2910	(,		
5000		LALL LULAIL(I)UNTUJ	
3100		LALE EUCATERATIREUT Tettader ne totov and tider ne totový calt constader ider emod	
3200		IFILINED INCOLULUIO ANNO CONCOUNCOILUII CALL CONSILINE GOREGOEMOUS	
5500	c	TURDI	
3400	ί		

•

•

. •

3500			$x_1 = x_{(1)} = T_{(1)}$
3600			$Y_1 = Y_1 $
3700			
3866			
3900			
4000			R1=S0RT (X1++2+X1++2)
4160			R2=SGRT(X2+=2) R2=SGRT(X2++2+Y2++2)
4200			
4300	C		
4400	v		TECHETA NE. 1) GO TO 10
4500	C		
4606	Č		NORMAL DISLOCATION:
4700	Ċ		CONTRACT DIGEOCHION.
4800	•		BX=0.
4900			BY=1.
5000			GQ TQ 15
5100		10	CONTINUE
5200	С		N
5300	С		TANGENTIAL DISLOCATION:
5400	С		
5500			BX=1.
5600			BY=0.
5700	С		
5800		15	CONTINUE
5900			RMOD=EMOD
6006			AA=X1/R1**2
6100			BB=X2/R2**2
6201			DD=Y2/R2**2
6360			CC=Y1/R1**2
640 0	С		
6500	C		SYY
6660	C		
6700			SA=BX*EMOD*(2.*CC*(2.*X1*AA-1.)*(3.*A-B-4.*A*X2*BB)*DD-(4.*A*C/P2**
6800			12)*(2·*X2*Y2*(4·*X2*BB-3·)/R2**2-2·*C*Y2*(4·*X2*BB-1·)/R2**2))
6960	C		

.

7000		SB=BY*EMOD*(2.*(32.*X1*AA)*AA-(5.*A+B-4.*A*X2*BB)*BB-(4.*A*C/R2*	
7100		1*2)*(18.*X2*BB+8.*X2*X2*BB*BB+2.*C*BB*(34.*X2*BB)))	
7200	С		
7300		SYY=SA+SB	•
7400	С		
7500	С	SXX	
7600	С		•
7700		SA=BX*EMOD*(-2.*CC*(2.*X1*AA+1.)*(A+B+4.*A*X2*BB)*BB-(4.*A*C/R2**2	·
7800		1)*(2•*(2•*X2*8B-1•)-(3•-4•*X2*8B)*4•*8B*X2+(2•*C*8B)*(6•-8•*X2*8B)	
7900		2))	
8000	С		
8100		SXX=SA+SB	
8200	C		
8300	С	SXY	
8400	С	· · · · · · · · · · · · · · · · · · ·	
8500		SA=BX*EMOD*(2.*AA*(2.*X1*AA-1.)+(3.*A-B-4*A*X2*BB)*BB-(4.*A*C/R2**	
8600		12)*(18.*X2*BB+8.*BB**2+2.*C*6B*(34.*X2*BB)))	
8700			
8800	С		ł
890û		SB=BY+EMOD+(2.+CC+(2.+X1+AA-1.)+(B+A-4.+A+X2+BB)+DD+(2.+A+C/R2++2)	23
9000	•	1*(4•*X2*DD-8•*X2*DD*(1•-2•*X2*E6)+2•*C*DD*(1•-4•*B8)))	ö
9100	С		i
9200		SXY=SA+SB	
9300	С		
9400	С	STRESS TRANSFORMATION:	
9500	C		
9600		THETA=3.1415926535898/2.	
97û ü		IF(XB1(ISURF).NE.XA1(ISURF)) THETA=ATAN((XB2(ISURF)-XA2(ISURF)	
9800		1)/(XB1(ISURF)-XA1(ISURF)))	
9900		THETA=THETA+3.1415926535898/2.	
1 0 0 00	C		
10100		IF(ALPHA.NE.1) GO TO 20	
13200	С	SIGMA NN:	
10300	С		
1 0 4 0 0		F=.5*(SXX+SYY)+.5*(SXX-SYY)*COS(2.*THETA)+SXY*SIN(2.*THETA)	

•. •

10500			GO TO 30
10600		5.0	CONTINUE
10700	С		
10800			F=5*(SXX-SYY)*SIN(2.*THETA)+SXY*COS(2.*THETA)
10900		30	CONTINUE
11000			RETURN
11100			END

۲.

-

· · ·

100	С	SUBROUTINE INTEG	
200	С		
300	С	THIS SUBROUTINE COMPUTES THE INTEGRAL OF A	
400	C'	FUNCTION EITHER BY THE TRAPEZOIDAL RULE OR FY THE	
500	С	METHOD SHOWN IN D. R. PETERSEN'S S.M. THESIS, INVOLVING	
600	С	FITTING WITH A CHEBYSHEV SERIES.	
700	С		
800		SUBROUTINE INTEG(DMUCHK,DDCHK,TNODE,NTNODE,XC,NXC,ICHCE,IROW)	
900		IMPLICIT REAL +8(A-H,0-Z)	
1000		REAL *4 A(2,400),B(2,400)	
1100		REAL*8 TNODE(80,3), DMUCHK(80,1), XC(400,3)	
1200		REAL*8 DDCHK(IROW,1),TAB(80,3),F(400,5)	
1300	С		
1400	С	COMPUTE INTEGRAL OF D(MU)/DT=D(DELTA)/DT:	
1500	С		
1600		IF(ICHCE+NE+1) GO TO 20	
1700		SUM=0.	N
1800		DO 10 I=2,NTNODE	8
1900		DX=TNODE(I,1)-TNODE(I-1,1)	1
2000		SUM=SUM+DMUCHK(1,1)+DX5+(DMUCHK(I,1)-DMUCHK(I-1,1))+DX	
2100		DDCHK(I,1)=SUM	
2200		10 CONTINUE	
2300		GO TO 1000	
2400	C		
2500		20 CONTINUE	
2600		DO 30 I=1,NTNODE	
2700	CPL	A(1,I)=TNODE(I,1)	
2800	CPL	OT A(2,I)=DMUCHK(I,1)	
2900		$TAB(I_{1}) = DMUCHK(I_{1}) * DSQRT(1_{0} - TNODE(I_{1}) * *2)$	
3000	•	30 CONTINUE	
3100	С		
2000		CALL CHERY/TNODE, YC ANTNODE, NYC A ΤΑΒΑΝΤΝΟΡΕΑΝΤΝΟΡΕΑ	

	3500		DO 40 I=1.NXC
	3600		B(1,1)=XC(1,1)
	3700		B(2, I) = F(I, 5)
	3800		DDCHK(1,1)=F(1,5)
-	3900	40	CONTINUE
	4000	CPLOT	CALL QPICTR(A,2,NTNODE,QX(1))
	4100		CALL QPICTR(B,2,NXC,QX(1))
	4200	С	
	4300	1000	CONTINUE
	4400		STOP
	456.0		END

C SUBROUTINE INTERP C

С С

С

С

С

THIS SUBROUTINE COMPUTES THE OPENING DISLOCATION DENSITY ON CRACK NO. 1 FOR USE IN FUTURE QUASI-STATIC COMPUTATIONS.

.

242.

SUBROUTINE INTERP(ALOC, TNODE, NTNODE, MU)

IMPLICIT REAL*8(A-H,0-Z) REAL*8 NU(80,3)

С

DIMENSION ALOC(80,3),TNODE(80,3) DIMENSION XA1(4),XB1(4),XA2(4),XB2(4) DIMENSION ZETA(4,80),NPTS(4) COMMON /ENDPTS/ XA1,XE1, A2, B2, HE A SQRT(Q)=DSQRT(Q)

С

DO 10 I=1,NTNODE MU(1,1)=ALOC(I,1)/SORT(1.-ZETA(1,I)*ZETA(1,I)) 10 CONTINUE

С

RETURN END

100	С	SUBROUTINE LGRNG	
200	С		
300	С	THIS SUBROUTINE LOCALLY INTERPOLATES A	
400	С	FUNCTION WITH LAGRANGIAN INTERPOLATING POLYNOMIALS.	
500	С		
600		SUBROUTINE LGRNG(X,Y,XBAR,YBAR,1DIM,1DEG,1ROW)	•
700		IMPLICIT REAL*8(A-H;0-Z)	
800		REAL*8 L(400)	
900		DIMENSION X(IROW,3),Y(IROW,3)	
1000	С		
1100		ICNT=1	
1200		LIM=IDIM-1	
1300		DO 10 I=1,LIM	
1400		IF(X(I,1).LE.XBAR.AND.XBAR.LE.X(I+1,1)) GO TO 20	
1500		10 CONTINUE	•
1600		20 IBAR=I	
1700		IF(XBAR.LE.X(1,1)) IBAP=1	1
1806	~	IF(XBAR.GE.X(IDIM.1)) IBAR=IDIM-1	. 24
1900	C		ω .
2000			•
2100			
2200			•
2300	C.	25 ISWICH=U	
2400	ι		
2000	1	SU DU SU I-IMINAIMAX	
2690		L(IJ-IOU DO 40 I-IMIN IMAY	
2800		$\mathbf{F}(\mathbf{I}) = \mathbf{F}_{\mathbf{O}} + \mathbf$	
2000		$\begin{array}{c} 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0$	
2 200			
3100		SC CONTINUE	
3200		YRAREA	
3366		DO 60 I=IMIN.IMAX	
3400		$YBAR = YBAR + I(T) * Y(T_1)$	

350û		60	CONTINUE
3600	C		
3700			IF(ABS(YBAR-TEMP).LE001) GO TO
3800			IF(ICNT.EQ.IDEG) GO TO 90
3900			ICNT=ICNT+1
4000			TEMP=YBAR
4100			ISWTCH=ISWTCH+1
4200			IF(ISWTCH.E0.2) GO TO 70
4300			IF(IMIN.EQ.1) GO TO 70
4400		69	IMIN=IMIN-1
4500			GO TO 30
4600	С		
4700		70	IF(IMAX,EQ.IDIM) GO TO 80
4800			IMAX=IMAX+1
490U			GO TO 25
5000	С		
5100		80	IF(IMIN.EQ.1) GO TO 90 .
5200			GO TO 69
5300	С		
5400		90	CONTINUE
5500			RETURN
5600			END

S0

.

244 -

1

100	С	SUBROUTINE LOCATE	
200	С		
300	С	THIS SUBROUTINE DETERMINES WHICH MATERIAL	
430	С	REGION A POINT WITH GIVEN COORDINATES IS LOCATED	
500	С	IN.	
600	C		
700		SUBROUTINE LOCATE(TT, IREG)	
800	С		
900		IMPLICIT REAL+8(A-H,0-Z)	
1000		INTEGER TYPE(5)	
1100		DIMENSION RLOC(5,3)	•
1200		DIMENSION TT(2)	
1300	С		
1400		COMMON /REG/ RLOC, TYPE, NREG	
1500	С		•
1600		T=TT(1)	
1700		DO 100 I=1,NREG	
1800		LINE=TYPE(I)	•
1900		GO TO (10,20,30,40,50),LINE	245
2600	С		
2100	С	INFINITE SPACE:	
2200	С		·.
2300		10 CONTINUE	
2400		IREG=1	
2500		GO TO 100	
2600	С		
2700	С	HALF PLANE:	
2800	С		
2900		20 CONTINUE	
3000		IF((RLOC(I,2).GT.U).AND.(T.GE.RLOC(I,1))) IREG=I	
3100		IF((RLOC(I+2)+LT+0)+AND+(T+LE+RLOC(I+1))) IREG=I	
2000		CO TO 100	

3500	4.0	CONTINUE		,	•		
3600	50	CONTINUE					
3700	С						
3800	100	CONTINUE					
3900		RETURN					
4000		END					

10ĉ	С	SUBROUTINE MATRIX
200	С	
300	С	THIS SUBROUTINE COMPUTES THE MATRIX
40ú	C	FOR PLANE STATIC CRACK PROBLEMS.
500	С	
600		, SUBROUTINE MATRIX
700		IMPLICIT REAL*8(A-H,O-Z)
800		REAL * 8 NONGAM, NONDEL, NONP, NONMU
900		INTEGER CLROW(6),ELMNTT(4,80),ELMNTX(4,80),ALPHA,BETA
1000		INTEGER ORDER, R, RMAX
1100	С	
1200		DIMENSION XNODE(80,3), TNODE(80,3), STRSL(80,3), STRSC(80,3)
1300		DIMENSION A(80,80)
1400		DIMENSION COEFF(80) + SIGMA(80) + ACART(80 + 3) + ALOC(80 + 3)
1500		DIMENSION XA1(4),XB1(4),XA2(4),XB2(4)
1600	С	
1700		COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA
1860		COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX
1900		COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE
2600		COMMON /ARRAYS/ A,SIGMA,CUEFF
2100		COMMON /OUT/ STRSL+STRSC+ALOC+ACART
2200		COMMON /DOF/ 100F
2360		COMMON /NONDIM/ NONGAM,NONDEL,NONP,NONMU,TAUC
2400	С	
2500		SQRT(Q)=DSQRT(Q)
2600	С	
2700	C	·
2800		I I = 0
2900		DO 105 IEL=1,NELMNT
3000		RMAX=ELMNTX(IEL,1)+1
3100		DO 100 ALPHA=1,ICOF
3200		DO 95 R=2•RMAX
3300		II=II+1
346ô		0 = L L

.

- 247 -

3500		DO 90 J=1,NELMNT
360ú		DO 85 BETA=1, IDOF
3700		KMAX=ELMNTT(J,1)+1
3800		DO 80 K=2,KMAX
3906	,	1+1
400ũ	С	
4100		SCALE=(XB1(J)-XA1(J))**2+(XB2(J)-XA2(J))**2
4200		A(II.JJ)=3.1415926535898*F(J,K,IEL,R,ALPHA,BETA)*SORT(SCALE)
4300		A(II,JJ)=NONGAM*A(II,JJ)/(2.*ELMNTT(J,1))
4400	C	
4506	- 80	CONTINUE
4600	85	CONTINUE
4700	9.0	CONTINUE
4900	35	CONTINUE
4000		
4700 6666	100	
5000	100	
2100	Tna	
5200		
5300		

•

- 248

•

.

•

•

100 С SUBROUTINE MOVFL 200 С С 300 THIS SUBROUTINE PERFORMS THE COMPUTATIONS 400 С FOR THE OUASI-STATIC FLUID FRONT ADVANCEMENT PROBLEM (STATIONARY CRACK). NOTE THAT THE ONLY С 500 · **OPTION CURRENTLY SUPFORTED IS ALPHA=1.0**. 600 С С 700 800 С 900 SUBROUTINE MOVFL(MU, BB) 1000 С 1100 IMPLICIT REAL*8(A-H, O-Z)REAL*8 M(80,80),M1(80,80),M2(80,80),M3(80,80),M4(80,80) 1200 REAL*8 M5(80,80),, MU(80,3), M6(80,80), KAPPA1 1300 REAL *4, XY(2,8 $\ddot{0}$), XSCL(4), DUMMY 1400 INTEGER R,S,ORDER,ELMNTT,ELMNTX,Q,TSTEP,RINDEX,PFPONT, RECOL 1500 1600 С DIMENSION A(80,80), APRIME(80,80), B(80,80), TEMP2(80,80), DDELDT(80) 1700 DIMENSION C(80,80), CPRIME(80,80), D(80,80), E(80,80) . 1800 DIMENSION F(80,80), G(80,80), H(20,80), SA(80,80), T(80,80), DELTAO(80)1900 DIMENSION DELTA1(80), PO(80), P1(80), TEMP(80,80), TEMP1(80,80) 2000 DIMENSION BB(80,80), YNODE(80,3), RR(80), YT(80), DDEL0(80), DDEL1(80) 2100 DIMENSION DEL1(80,60), DEL0(80,60), BPRIME(80,80), PPRIME(80) 2200 DIMENSION B1(80,80), BPRIM1(80,83) 2300 2400 С COMMON /OUT/ STRSL(80,3), STRSC(80,3), ALOC(80,3), ACAET(80,3) 2500 COMMON /BKPING/ XNODE(80,3), TNODE(80,3), ELMNTT(4,80), ELMNTX(4,80) 2600 COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE 2700 COMMON /TIME/ TSTART, FTIME, DT, TSTEP, TIME 2800 2900 COMMON /FILL/ LERONT, RERONT 3000 С 3166 TCH(N,X) = DCOS(DFLOAT(N) * DACOS(X))3200 TCHPR(N,X)=N*DSIN(DFLOAT(N)*DACOS(X))/DSORT(1,-X**2)3300 SIGN(X) = X/DABS(X)3400 С

1

3500 PI=3.1415926535898 3600 PBHL=1.0 3700 C READ(5,1) ALPHA, BETA, ILIM 3800 С 1 FORMAT(2F10,4,I3) 3900 ALPHA=1. 4000 ILIM=9 4100 *** TEMPORARY CARD. *** С 4200 TAUC=1.***** 4300 С 4400 NLNODE=NTNODE+1 4500 NMNODE=NLNODE 4600 NSIZE=2*NLNODE 4700 I COUNT=0 4800 RFCOL=RFRONT+1 4900 С NT2=NTNODE/2 5000 NL2=NLNODE/2 5100 5200 ITEST=2.*NL25300 IF(ITEST.LT.NLNODE) NL2=NL2+1 5400 C 5500 NM2=NMNODE/2 5600 ITEST=2*NM2 IF(ITEST.LT.NHNODE) NM2=NM2+1 5700 5800 С CALL CONST(IREG, JREG, EMOD, AA, BB) 5900 6000 $EMOD=2. \pm EMOD$ С 6100 6200 DO 5 I=1,NLNODE 6300 ARG=PI*(2.*I-1.)/(2.*NLNODE) 6400 Y NODE(I, 1) = -DCOS(APG)6500 5 CONTINUE 6600 С 6700 DO 19 I=1,NSIZEAPRIME(I,I)=1.6800 6900 DELO(I,I)=1.

١

1

- 250 -

1010		DEL1(I,I)=1.	
7100		E(I,I)=1,	
7200		F(I,I)=1.	
7300		H(I,I)=1.	
7400		SA(I,I)=1.	
7500		T(I, I) = 1.	
7600		19 CONTINUE	
7700	С		
7800		CALL TRANS3(XNODE, STRSL, NXNODE, YNODE, PO, NLNODE, 80, 80, 1)	
7900	С		
8600	С		
8100		6 CONTINUE	
8200		CALL INTEG(HU, DELTAO, TNODE, NTNODE, YNODE, NLNODE, 0, 80)	
C UE 8		SUM=0.	
8400	С		
8500	C		•
8600	С		1
8700	С	, .	
8800		DO 15 L=1,NLNODE	
8900		DO 15 S=1,NLNODE	.•
9000		APRIME(L,S)=TCH(L-1,YNODE(S,1))*2./(NLNODF)	
9100		15 CONTINUE	
9200	С	WRITE(6,500) ((APRIME(II,JJ),JJ=1,NSIZE),II=1,NSIZE)	
9300	С	WRITE(6,501)	
9400	С	500 FORMAT(4(5E15.4,/),///)	
9500	С	501 FORMAT('1')	
9600	С		
9 7 00		DO 40 R=1,NXNODE	
9800		DO 40 $J=1$, NMNODE	
9900		CPRIME(R, J) = TCHPR(J, XNODE(R, 1))	
10000		40 CONTINUE	
10100	С		
10230		RSTART=NMNODE+1	
10300		RSTOP=NMNODE+NXNODE	
		T S T & R T = N N N O D F + 1	

:

10500			
10600		KINDEX=U	
10700		DU 25 K=RSIARI,KSIOP	
10800			
10900		JINDEX=U	
11000		DU ZU J=ISIART,ISTOP	
11100		JINDEX=JINDEX+1 CDOIMBAR JN-MCU(JINDEX 4 VNODE(DINDEX 4))	
11200		CPRIME(R,J) = TCH(JINDEX = 1, XNODE(RINDEX, 1))	
11300		$\mathbf{Tr}(\mathbf{JTNDEA} \bullet \mathbf{EV} \bullet \mathbf{I}) = \mathbf{CrRTNE}(\mathbf{K}_{\mathbf{J}}\mathbf{J} - \bullet \mathbf{D}^{*}\mathbf{CrRTEE}(\mathbf{K}_{\mathbf{J}}\mathbf{J})$	
11400			
11600	C	X2 CONTINUE	
11700	C C	HETWELS SAAN ((CEETWELTT IT) IT-1 NETZE) IT-1 HETZE)	
1100		MUTE(0,500) ((CENTEC(II,00),00- FMSIGE),1I-1/MOILE)	
11000	Ċ	WRITE(0,501)	
12000	C C		
12100	L	DO 45 K=1 NTNODE	
12200		DO 45 R = 1, NENODE	
12306		$C(K_{1}) = TCHPR(I_{1}TNODE(K_{1}))$	
12400		45 CONTINUE	
12500	С		
12600	-	RSTOP=NNNODE+NTNODE	
12700		KINDEX=0	
12800		DO 35 K=RSTART, RSTOP	
12900		KINDEX=KINDEX+1	
13000		JINDEX=0	
13100		DO 30 J=ISTART, ISTOP	
13200		JINDEX=JINDEX+1	
13300		C(K,J)=TCH(JINDEX-1,TNODE(KINDEX,1))	
13400		IF(JINDEX.EQ.1) C(K,J)=.5*C(K,J)	
13500		30 CONFINUE	
13600		35 CONTINUE	
13700	С		
13800	С	WRITE(6,500) ((C(IT,JJ),JJ=1,NSIZE),II=1,NSIZE)	
13900	С	WRITE(6,501)	

- 252

•

4
		· · · ·	
	-	· ·	
14000	С		
14100		DO 65 J=1,NMNODE	
14200		DO 60 K=1,NMNODE	
14300		D(J,K)=2.*TCH(J,YNODE(K,1))/NLNODE	
14400		60 CONTINUE	
14500		65 CONTINUE	
14600	С		
14700		RSTOP=2*NMNODE	
14800		ISTOP=2*NMNODE	
14900		JINDEX=0	
15000		DO 85 J=RSTART, RSTOP	
15100		JINDEX=JINDEX+1	
15200		KINDEX=0	
15300		DO 80 K=ISTART, ISTOP	
15400		KINDEX=KINDEX+1	
15500		D(J,K)=2.*TCH(JINDEX-1,YNODE(KINDEX,1))/NLNODE	
15600		80 CONTINUE	
15700		85 CONTINUE	
15800	C		
15900	С	WRITE(6,500) ((D(II,JJ),JJ=1,NSIZE),II=1,NSIZE)	
16000	С	WRITE(6,501)	
16100	С		
16200	С		
16300		DO 50 K=1,NMNODE	
16400		DC 50 L=1,NLNODE	
16500	•	E(K,L)=TCHPR(L,YNODE(K,1))	
16600		5C CONTINUE	
16700	С	WRITE(6,500) ((E(II,JJ),JJ=1,NSIZE),II=1,NSIZE)	
16800	С	WRITE(6,501)	
169 00	С		
17000	С		
17100		DO 55 L=1,NLNODE	
17200		DO 55 S=1,NLNODE	
17300		F(L,S)=TCH(L,YNODE(S,1))*2./NLNODE	
174.50		55 CONTINUE	

17500	с	WRITE(6,500) ((F(II,JJ),JJ=1,NSIZE),TI=1,NSIZF)	
17600	С	WRITE(6,501)	
17700	С		
17800		DO 75 S=1,NLNODE	
17900		DO 70 $Q=1$, NLNODE	
18000		H(S, 0) = 0.	
18100		SA(S, 0) = 0.	
18200		T(S,0)=0,	
18300		70 CONTINUE	
18400	С		
18500		H(S,S) = -SIGN(YNODE(S,1))	
18600		H(S, NL2) = H(S, NL2) + SIGN(YNODE(S, 1))	
18700	С		
18800		SA(S,S)=1.	
18930		SA(S,NM2)=SA(S,NM2)-SIGN(YNODE(S,1))	
19000	С		
19100		T(S,S) = -SIGN(YNODE(S,1))	
19200	С	No. 20	
19300		75 CONTINUE	
19400	С	WRITE(6,500) ((H(II,JJ),JJ=1,NSIZF),II=1,NSIZF)	
19500	С	WRITE(6,501)	
19600	С	WRITE(6,500) ((SA(II,JJ),JJ=1,NSTZE),II=1,NSTZE)	
19700	С	WRITE(6,501)	
19600	С	WRITE(6,500) ((T(II,JJ),JJ=1,NSI2E),II=1,NSI2E)	
19900	С	WRITE(6,501)	
20000	С		
20100	С		
20200		CALL MULT(D, NSIZE, NSIZE, SA, NSIZE, NSIZE, N1, TER)	
20300	С		
20400	С		
20500		CALL MULT(T,NSIZE,NSIZE,E,NSIZE,NSIZE,TEMP,TER)	
20600		CALL MULT(TEMP, NSIZE, NSIZE, F, NSIZE, NSIZE, TEMP1, IER)	
20700		CALL MULT(TEMP1, NSIZE, NSIZE, H, NSIZE, NSIZE, M2, TER)	•
20800	С		
20900	С		

```
CALL MULT(CPRIME, NSIZE, NSIZE, D, NSIZE, NSIZE, TEMP, IEB)
21000
              CALL MULT(TEMP, NSIZE, NSIZE, SA, NSIZE, NSIZE, M3, IEB)
21100
21200
        С
              CALL MULT(T, NSIZE, NSIZE, CPRIME, NSIZE, NSIZE, TEMP, IER)
21300
              CALL MULT(TEMP, NSIZE, NSIZE, F, NSIZE, NSIZE, TEMP1, TER)
21400
              CALL MULT(TEMP1, NSIZE, NSIZE, H, NSIZE, NSIZE, M6, IER)
21500
21600
        С
        CTEST TEST TEST TEST TEST TFST
21700
               WRITE(16,500) ((C(II,JJ),JJ=1,NMNODE),II=1,NXNODE)
21800
        С
               WRITE(17,500) ((CPRIME(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
21900
        С
               WRITE(18,500) ((D(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
        С
22000
               WRITE(19,500) ((M3(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
        С
22100
               WRITE(20,500) ((M5(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
22200
        С
               WRITE(21,500) ((M2(II,JJ),JJ=1,NMNODE),II=1,NXNODE)
        С
22300
               WRITE(22,500) ((M4(II,JJ),JJ=1,NMNODE),TI=1,NMNODE)
        С
22400
        CTEST TEST TEST TEST TEST TEST
22500
22600
        С
        С
22700
22800
        С
                                               22900
        23000
        C=======
                                                  _____
23100
        C = =
        23200
23300
        С
        С
23400
        С
23500
        С
23600
          100 CONTINUE
23700
23860
        C.
        С
23900
              DO 101 I=1, NLNODE
24000
              XY(1,I)=YNODE(I,1)
24100
24230
              XY(2,I)=PO(I)
              WRITE(6,467) YNODE(I,1), PO(T)
24300
          101 CONTINUE
24400
```

- 255

24500	CALL QPICTR(XY,2,NLNODE,QX(1))
24600	ISCL=-2
24700	XSCL(1) = -1.0
24800	X SCL(2) = 1.0
24900	XSCL(3)=10
25000	X SCL(4) = 1.2
25100	CALL OPICTR(XY, 2, NLNOPE, $OX(1)$, otScl(tScL), $OXScL(XSCL)$)
25200	WRITE(6,468)
25300	467 FORMAT(2E15.4)
25400	468 FORMAT(////)
25500	C
25600	XSCL(4) = 1.5
25700	DO 102 $I=1, NLNODE$
25800	XY(1,I)=YNODE(I,1)
25900	XY(2,I) = DELTA1(I)
26000	102 CONTINUE
26100	CX CALL QPICTB(XY, 2, NLNODE, QTNIT(DUMMY), QX(1))
26200	CALL QPICTR(XY,2,NLNODE,QX(1),QISCL(ISCL),QXSCL(XSCL))
26300	C
26400	DO 103 I=1,NLNODE
26500	XY(1,I)=YNODE(I,1)
26600	XY(2,I) = DDELDT(I)
26700	103 CONTINUE
26800	CALL QPICTR(XY,2,NLNODE,QINIT(DUMMY),QX(1))
26900	C
27000	IF(ICOUNT.GE.ILIM)
27100	1GO TO 1000
27200	C
27300	DO 850 I=1,NSIZE
27400	DO 845 J=1,NSIZE
27500	$\Lambda(\mathbf{I},\mathbf{J})=0.$
27600	B(I,J)=0.
2 77 00	BPRIME(I,J)=0.
27800	G(I,J)=0.
27900	845 CONTINUE

.

4

·

- 256 -

20000	950	CONTINUE		
20000	C 0.50	CONTINUE		
20100	L.		·	
28200				
20300		DETC(I K)=0	٠	
20400		DELO(O,K)=0		
28500	105			
28700	105	DEIO(I, J) = DEI TAO(J) * * 3		
28866		DEL(1,1) = DEL(1,1) + 3	•	
28900	110	CANTTNIE		
29000	c			
29100	Č	**** CONPUTE A ****		
29200	Ĉ			
29300	Ċ			
29400		DO 112 R=LFRONT, RFRONT		
29500		DO 112 L=1,NLNODE		
29600		$\lambda(R, L) = TCH(L-1, XNODE(R, 1))$	1	
29700		IF(L.EQ.1) A(R,L) = .5 * A(R,L)	25	
2980ŭ	112	CONTINUE	7	
29900	С		1	
20002		DO 115 I=1,NMNODE		
30100		A(NTNODE, I) = 0.		
30200		λ (NMNODE, I)=0.		
30300	115	CONTINUE		
30400	С	WRITE(6,500) ((A(II,JJ),JJ=1,NSI2E),II=1,NSI2E)		
30500	С	WRITE(6,501)		
30600	С			
30700	С	***** COMPUTE B ****		
30800	С			
30900	С	FIRST QUADRANT:		
31000		DO 125 R=1,NXNODE		
31100		IF((R.LT.LFRONT).OR.(R.GT.RFRONT)) GO TO 125		
3 1 2 0 0	C			
31300		DO 120 I=1,NTNODE		
31400		IF((I.LT.LFRONT).OR.(I.GT.RFCOL)) GO TO 120		

- 257 -

31500			B(R,I) = DSQRT(1, -TNODE(I, 1) * * 2)
31600		1	/((XNODE(R, 1) - TNODE(I, 1)) * *2)
31700			B(R, I) = PI * EMOD * B(R, I) / (NTNODE * TAUC)
31800		120	CONTINUE
3 1 9 0 0		125	CONTINUE
32000	С		•
32100	С		SECOND OUADRANT:
32200			ISTART=NMNODE+1
32300			ISTOP=2.*NMNODE
32400			DO 135 R=1,NXNODE
32500			IF((R.LT.LFRONT).OR.(R.GT.RFRONT)) GO TO 135
32600			IINDEX=0
32700	С		
32800		2	DO 130 I=ISTART, ISTOP
32900			IINDEX=IINDEX+1
33000		,	IF((LFRONT.LE.IINDEX).AND.(IINDEX.LE.RFCOL).OR.
33100		1	(IINDEX.GT.NTNODE)) GO TO 130
33200	С		
33300			B(R,I)=DSQRT(1,-TNODE(IINDEX,1)**2)
33400		-	I/((XNODE(R,1)-TNODE(IINDEY,1))**2)
33500			B(R,I)=PI*EMOD*B(R,I)/NTNODE
33600	С		
33700		130	CONTINUE
33800		135	CONTINUE
33900	С		,
34000			DO 137 I=1, ISTOP
34100			B(NTNODE, I)=0.
34200		137	CONTINUE
34300			B(NTNODE, NT2-2) = 1.
34400			B(NTNODE, NT2+3) = -1.
34500	С		
34600	С		THIRD QUADRANT:
34700			RSTART=NMNODE+1
34800			RSTOP=2*NMNODE
34900			RINDEX=0

.

```
35000
               DO 145 R=RSTART, RSTOP
35100
               RINDEX=RINDEX+1
               IF((LFRONT.LE.RINDEX).AND.(RINDEX.LE.RFRONT).OR.
35200
              1(RINDEX.GT.NXNODE)) GO TO 145
35300
               B(R,RINDEX)=0.
35400
35500
        С
               DO 140 I=1, NTNODE
35600
               IF((I.LT.LFRONT).OR.(I.GT.RFCOL)) GO TO 140
35700
               B(R, I) = DSQRT(1. - TNODE(I, 1) * * 2)
35800
                      /((XNODE(RINDEX,1)-TNODE(I,1))**2)
35900
              1
               B(R, I) = PI + EMOD + B(R, I) / (NTNODE + TAUC)
36000
        С
36100
36200
          140 CONTINUE
36300
          145 CONTINUE
36400
        С
                           FOURTH OUADRANT:
36500
        С
36600
               RINDEX=0
36700
               DO 155 R=RSTART, RSTOP
               RINDEX=RINDEX+1
36800
                 B(R,R) = -1.
36900
        СХ
               IF((LFRONT.LE.RINDEX).AND.(RINDEX.LE.RFRONT).OR.
37000
              1(RINDEX.GT.NXNODE)) GO TO 155
37100
               B(R,R)=0.
37200
37300
               IINDEX=0
37400
        С
               DO 150 I=ISTART, ISTOP
37500
37600
               IINDEX=IINDEX+1
               IF((LFRONT.LE.IINDEX).AND.(IINDEX.LE.RECOL).OR.
37700
              1(IINDEX.GT.NTNODE)) GO TO 150
37800
        С
37900
               B(R, I) = DSQRT(1.-TNODE(IINDEX, 1)**2)
0008E
                       /((XNODE(RINDEX,1)-TNODE(IINDEX,1))**?)
              1
38100
               B(R,I)=PI*EMOD*B(R,I)/NTNODE
36200
38300
        С
           150 CONTINUE
38400
```

- 259 -

38500		155	CONTINUE
38600	С		WRITE(6,500) ((B(II,JJ),JJ=1,NSIZE),I]=1,NSIZE)
38700	С		WRITE(6,501)
38800	С		
38900	С		**** COMPUTE BPRIME ****
39000	С		
39100	C		FIRST QUADRANT:
39200			DO 170 R=1,NXNODE
39300			IF((R.LT.LFRONT).OR.(P.GT.RFRONT)) CO TO 170
39400	С		
39500			SUM=0.
39600			DO 165 I=1,NTNODE
39700			SUM=SUM+DSQRT(1TNODE(I,1)**2)
39800			1 /((XNODE(R,1)-TNODE(I,1))**2)
39900		165	CONTINUE
40000			BPRIME(R,R)=PI*EMOD*SUM/(NTNODE*TAUC)
40100		17Û	CONTINUE
40200	С		
40300	С		THIRD QUADFANT:
40400			RINDEX=0
40500			DO 172 R=RSTART, RSTOP
40600			RINDEX=RINDEX+1
40700			BPRIME(R,RINDEX)=1.
40800			IF((LFRONT.LE.RINDEX).AND.(RINDEX.LE.RFRONT)) CO TO 172
40900			BPRIME(R,RINDEX)=0.
41000		172	CONTINUE
41100	С		
41200	С		FOURTH QUADRANT:
41300			R INDEX=0
41400			DO 180 R=RSTART, RSTOP
41500			RINDEX=RINDEX+1
41600			BPRIME(R,R) = -1.
41700			IF((LFRONT.LE.RINDEX).AND.(RINDEX.LE.RFRONT)) GO TO 180
418UŨ			BPRIME(R,R)=0.
41900	С		

- 260 -

```
42000
               SUM=0.
42100
               DO 175 I=1, NTNODE
42200
               SUM=SUM+DSQRT(1.-TNODE(I.1)**2)
42300
                       /((XNODE(RINDEX, 1)-TNODE(I, 1))**2)
              1
          175 CONTINUE
42400
42500
               BPRIME(R,R)=PI*EMOD*SUM/NTNODE
42600
          180 CONTINUE
42700
        С
42800
               DO 183 I=1, ISTOP
42900
               BPRIME(NTNODE, I)=0.
43000
          183 CONTINUE
43100
        С
                WRITE(6,500) ((BPRIME(II,JJ),JJ=1,NSIZF),II=1,NSIZF)
43200
        С
                WRITE(6,501)
43300
        С
43400
        С
43500
        С
                          **** COMFUTE G ****
43600
        С
43700
        С
                       FIRST QUADRANT:
43800
              DO 190 R=1, NXNODE
43900
              DO 185 J=1, NXNODE
44000
               G(R,J)=0.
44100
          185 CONTINUE
44200
              IF((R.LT.LFRONT).OK.(R.GT.BFRONT)) GO TO 190
              G(R,R) = EMOD * ((1./(XNODE(R,1)-1.)))
44300
44400
                       -(1./(XNODE(R,1)+1.)))
              1
44500
              G(NTNODE, R) = 0.
44600
              G(NTNODE+1,R)=0.
44700
          190 CONTINUE
        С
44800
44900
        С
                       FOURTH QUADRANT:
45000
               RINDEX=0
45100
               DO 195 R=RSTART,RSTOP
45200
              RINDEX=RINDEX+1
45300
              G(R,R)=0.
45400
              IF((LFRONT.LE.RINDEX).AND.(RINDEX.LE.EFRONT)) GO TO 195
```

- 261 -

45500			G(R,R) = EMOD*((1./(XNODE(RINDEX,1)-1.))
45600		-	1 -(1./(XNODE(RINDEX,1)+1.)))
45700		195	CONTINUE ·
45800	С		
45900			DO 196 $I=1, ISTOP$
46000			G(NTNODE,I)=0.
46100		196	CONTINUE
46200	С		
46300	С		WRITE(6,500) ((G(II,JJ),JJ=1,NSIZE),II=1,NSIZE)
46400	С		WRITE(6,501)
46500	С		
46600	С		
46700	С		**** COMPUTE M4 ****
46800	С		
46900			CALL MULT(A, NSIZE, NSIZE, APRIME, NSIZE, NSIZE, M4, IEE)
47000	С		
471Jû	С		**** COMPUTE M5 ****
47200	С		
47300			CALL MULT(B, NSIZE, NSIZE, C, NSIZE, NSIZE, TEMP, TER)
47400			FACTOR=-1.
47500			CALL MULT(FACTOR, 1, 1, BPRIME, NSIZE, NSIZE, TEMP1, IEF)
4760ù			CALL MULT(TEMP1, NSIZE, NSIZE, CPRIME, NSIZE, NSTZE, TEMP2, IER)
47700			CALL ADD(TEMP, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M5, IFP)
47800	С	•	
47900	С		**** COMPUTE DT ****
48000	С		
48100			IF(LFRONT.EQ.1) GO TO 820
48200			CALL MULT(M6, NSIZE, NSIZE, P0, NSIZE, 1, PPRIME, TER)
48300			DX=XNODE(RFRUNT+1,1)-XNODE(RFFONT,1)
48400			V=PPRIME(RFRONT)*(DELTAO(RFRONT)**2)
48500			DT = -DX/V
48600		820	CONTINUE
48700	С		
48800	С		**** COMPUTE M ****
48900	С		

.

.

- 262

49000 C 49100 C 49200 FACTOR=ALPHA*DT 49200 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 49500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFF) 49500 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFF) 49600 C 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFF) 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP1, IFF) 50000 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFF) 50100 C 50200 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, TEMP1, IFF) 50400 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, TEMP1, IFF) 50500 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFF) 50600 CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFF) 50700 CALL MULT(TEMP1, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFF) 50800 C 51300 C 51300 C 51300 C 51300 CALL MULT(TEMP1, NSIZE, NSIZE, PO, NSTZE, IF, NSIZE, TEMP1, IFF) 51400 IF(ALPMA.NE.1) GO TO 860 51500 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP			
<pre>49100 C 49236 FACTOR=ALPHA*DT 49360 C 49400 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFE) 49500 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP, IFE) 49600 C 49600 C 49900 C 49900 C 49900 C 49900 C 50000 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IFE) 50100 C 50200 C 50200 C 50200 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP2, NSIZE, NSIZE, TEMP, IFE) 50500 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, TEMP2, IFE) 50500 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFE) 50500 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFE) 50600 CALL MULT(TEMP2, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFE) 50700 CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFE) 50800 C 51100 C 51100 C 51100 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA, NSIZE, NSIZE, P0, NSIZE, NSIZE, N, IFE, IFE) 51500 CALL MULT(TEMP4, NSIZE, NSIZE, P0, NSIZE, NSIZE, M, IFF) 51500 CALL MULT(M4, NSIZE, NSIZE, P0, NSIZE, 1, PE, IEP) 51600 C 51700 B000 CONTINUE 51800 C 51800 C 518</pre>	49000	С	•
49200 FACTOR=ALPHA*DT 49300 C 49400 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 49400 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 49500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, TEMP, IFF) 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, TEMP, IFF) 49900 C 5000 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFF) 50100 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFF) 50500 CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFF) 50500 CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFF) 50600 C 50700 CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IFF) 50700 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFF) 50800 C 50900 CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, N, IFF) 51000 C 51100 C 51300 FACTOR=(1, -ALPHA)*DT 51400 IF(ALPHA, NE, 1) GO TO 800	49100	С	
49300 C 49400 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IER) 49500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFR) 49600 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFR) 49600 C 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFR) 49600 C 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFR) 50000 CALL ADD(N4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFR) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP1, IFR) 5050 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP2, IFR) 5050 CALL MULT(TEMP, NSIZE, NSIZE, MSIZE, NSIZE, TEMP2, IFR) 50600 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFR) 50800 C 51300 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 860 51500 CALL MULT(TACTOR, 1, 1, M5, NSIZE, NEIZE, TEMP, IFR) 51600 GO TO 810 51700 GOL CONTINUE 51800 C 51800 </td <td>49200</td> <td></td> <td>FACTOR=ALPHA*DT</td>	49200		FACTOR=ALPHA*DT
49400 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IER) 49500 CALL MULT(TEMP, NSIZE, NSIZE, NI, NSIZE, NETRE, TFMP1, IEP) 49600 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NETRE, TFMP2, IFE) 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 49910 C 49910 C 50000 CALL ADD(N4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFE) 50100 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 50500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 50500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 50600 CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFE) 50600 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 50700 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IFE) 50800 C 50900 CALL MULT(TEMP, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M, IFF) 51000 CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M, IFF) 51100 C 511100 C 51200 CALL MULT(MA, NSIZE, NSIZE, PO, NSTZE, 1, PE, IEF) 51400 IF (ALPMA.NE.1) GO TO 80	49300	С	
49500 CALL MULT(TEMP,NSIZE,NSIZE,M1,NSIZE,NEIZE,TEMP1,IEP) 49600 CALL MULT(TEMP1,NSIZE,NSIZE,DEL1,NSIZE,NSIZE,TEMP2,IFE) 49700 CALL MULT(TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFE) 49700 CALL MULT(TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFE) 49700 CALL ADD(N4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IFE) 50000 CALL ADD(N4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IFE) 50100 C 50200 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP1,IFE) 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP1,IFF) 50500 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP2,TEP) 50600 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP2,IFF) 50700 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,NSIZE,TEMP2,IFF) 50800 C 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 GO TO 810 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSIZE,T,PE,IEP) 51600 GO TO 810 51700 B000 CONTINUE 51800 CALL MULT(TEMP,SIZE,NSIZE,NSIZE,TEMP,IFP) 52100 CALL MULT(TEM	49400	•	CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IER)
49600 CALL MULT(TEMP1, NSIZE, NSIZE, DEL1, NSIZE, NSIZE, NETZE, TEMP2, TEP) 49700 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP7, TEP) 49700 C 49700 C 50000 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, TEP) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP1, TEP) 50500 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, TEP) 50600 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, TEP) 50600 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, TEP) 50700 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, TEP) 50700 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, TEP) 50700 CALL MULT(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, NSIZE, N, N, NSIZE, NSIZE, TEMP2, TEP) 51000 C 51100 CALL MULT(H4, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, TEP) 51600 GO TO 810 51700 CALL MULT(FACTOR, 1, 1, NS, NSIZE, NSIZE, TEMP, IFP) 51800 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZ	49500		CALL MULT(TEMP, NSIZE, NSIZE, N1, NSIZE, NSIZE, TFMP1, IEP)
49730 CALL MULT (TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,TEMP7,IFF) 49800 C 49900 C 50000 CALL ADD (M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IFF) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT (FEMP2,NSIZE,NSIZE,NSIZE,TEMP1,IFF) 50500 CALL MULT (TEMP,NSIZE,NSIZE,MSIZE,TEMP2,IFF) 50500 CALL MULT (TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP2,IFF) 50600 CALL MULT (TEMP1,NSIZE,NSIZE,M2,NSIZE,NSIZE,TEMP2,IFF) 50700 CALL MULT (TEMP1,NSIZE,NSIZE,NSIZE,NSIZE,TEMP2,IFF) 50800 C 50900 CALL ADD (TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,NSIZE,H,IFF) 51000 C 51100 CALL ADD (TEMP1,NSIZE,NSIZE,NSIZE,NSIZE,NSIZE,NSIZE,N,IFF) 51200 C 51300 FACTOR=(1,-ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 800 51700 GO TO 810 51700 GO TO 810 51700 GO TO 810 51800 C 51800 C 51800 CALL MULT (FACTOR,1,1,NS,NSIZE,NSIZE,TEMP,IFF) 52000	49600		CALL MULT(TEMP1, NSIZE, NSIZE, DEL1, NSIZE, NSIZE, TEMP2, JEE)
49800 C 49906 C 50000 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IER) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,IFR) 50700 CALL MULT(TEMP,NSIZE,NSIZE,MZ,NSIZE,NSIZE,TEMP2,IFP) 50800 C 50900 C 51100 C 51100 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(H4,NSIZE,NSIZE,FO,NSIZE,T,FMP,IFF) 51600 GO TO 810 51700 8000 51800 C 51800 CALL MULT(FEMP,NSIZE,NSIZE,FO,NSIZE,TFMP,IFF) 51800 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TFMP,IFF) 51800 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TFMP,IFF) 51800 CALL MULT(FEMP,NSIZE,NSIZE,NSIZE,NSIZE,TFMP,IFF) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TFMP,IFF) 52000 CA	49700		CALL MULT (TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, IFP)
49936 C 5000 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IFR) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(FACTOR,1,1,G,NSIZE,NSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,NSIZE,TEMP2,IFP) 50600 CALL MULT(TEMP,NSIZE,NSIZE,M2,NSIZE,NSIZE,TEMP2,IFP) 50700 CALL MULT(TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,M,IFP) 50800 C 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51300 GATO 810 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFE) 51600 GO CONTINUE 51803 C 51904 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFE) 51905 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFE) 52006 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFE) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,NSIZE,MSIZE,NSIZE,TEMP2,IFF)	49800	С	
56000 CALL ADD(N4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEE) 50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(FACTOR,1,1,G,NSIZE,NSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFR) 50700 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP2,IFF) 50700 CALL MULT(TEMP,NSIZE,NSIZE,M2,NSIZE,NSIZE,TEMP2,IFP) 50800 C 50900 CALL ADD(TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,M,IFP) 51100 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSIZE,TEMP,IFP,IEP) 51600 GO TO 810 51700 800 51800 C 51900 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFP) 52000 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFP) 52000 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFP) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFP) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,NSIZE,TEMP,IFP) 52200 CALL MULT(TEMP1,NS	49906	С	
50100 C 50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(FACTOR, 1, 1, G, NSIZF, NSIZF, TEMP, IFR) 50530 CALL MULT(TEMP, NSIZE, NSIZF, NSIZF, NSIZE, TEMP2, IEP) 50600 CALL MULT(TEMP, NSIZE, NSIZF, DFL1, NSIZE, NSIZE, TEMP2, IEP) 50700 CALL MULT(TEMP, NSIZE, NSIZF, DFL1, NSIZE, NSIZE, TEMP2, IEP) 50800 C 50900 CALL ADD(TEMP1, NSIZE, NSIZE, MSIZF, NSIZE, M, IFP) 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 800 51500 CALL MULT(M4, NSIZE, NSIZE, PO, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 8000 CONTINUE 51800 C 52000 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, NSIZE, TFMP, IFF) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, MSIZE, NSIZE, NSIZE, TEMP2, IFP) 52100 CALL MULT(TEMP1, NSIZE, NSIZE, MSIZE, NSIZE, NSIZE, TEMP2, IFP) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, MSIZE, NSIZE, TEMP2, IFP) 52200	50000		CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IER)
50200 C 50300 FACTOR=FACTOR 50400 CALL MULT(FEND,NSIZE,NSIZE,NSIZE,TEMP,IFR) 50500 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,MSIZE,TEMP2,IEP) 50600 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,MSIZE,TEMP2,IEP) 50700 CALL MULT(TEMP1,NSIZE,NSIZE,MSIZE,MSIZE,TEMP2,IEP) 50800 C 50900 CALL ADD(TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,M,IFP) 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 8000 51800 C 51800 CALL MULT(FACTOR,1,1,NS,NSIZE,NSIZE,TEMP,IFE) 51600 GO TO 810 51700 8000 51950 CALL MULT(FACTOR,1,1,NS,NSIZE,NSIZE,TEMP,IFE) 52000 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,MSIZE,TEMP,IFE) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,MSIZE,NSIZE,TEMP2,IFF) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,RSIZE,TEMP,IFE) 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE	50100	С	
50300 FACTOR=FACTOR 50400 CALL MULT(FACTOR, 1, 1, G, NSIZF, NSIZF, TEMP, IFR) 50500 CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZF, NSIZE, TEMP2, IFR) 50600 CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFR) 50700 CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFR) 50700 CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, NSIZE, TEMP2, IFR) 50800 C 50900 CALL ADD(TEMP1, NSIZE, NSIZE, M2, NSIZE, NSIZE, M, IFR) 51000 C 511J0 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 800 51500 CALL MULT(M4, NSIZE, NSIZE, P0, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 800 51800 C 51900 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP2, NSIZE, NSIZE, MSIZE, NSIZE, TEMP2, IFP) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, MSIZE, N	50200	С	
50400 CALL MULT(FACTOR, 1, 1, G, NSIZF, NSIZF, TEMP, IFR) 50556 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP2, IEF) 50600 CALL MULT(TEMP, NSIZE, NSIZE, DFL1, NSIZE, NSIZE, TEMP2, IEF) 50700 CALL MULT(TEMP, NSIZE, NSIZE, MSIZE, NSIZE, TEMP2, IEF) 50800 C 50900 CALL MULT(TEMP1, NSIZE, NSIZE, MSIZE, NSIZE, TEMP2, IEF) 51000 C 51000 C 51100 C 51100 C 51200 C 51300 FACTOR=(1AIPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4, NSIZE, NSIZE, PO, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 8000 CONTINUE 51800 C 51900 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52400 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFR)	50300		FACTOR=FACTOR
50500 CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IEP) 50600 CALL MULT(TEMP2, NSIZE, NSIZE, DFL1, NSIZE, NSIZE, TEMP2, IEP) 50700 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, DFL1, NSIZE, TEMP2, IEP) 50800 C 50900 CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, TEMP2, IEP) 50900 CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M, IFP) 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4, NSIZE, NSIZE, PO, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 800 51800 C 51800 CALL MULT(FACTOR, 1, 1, N5, NSIZE, NSIZE, TEMP, IFF) 51800 C 51900 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFF) 52000 CALL MULT(TEMP1, NSIZE, NSIZE, NSIZE, TEMP, IFF) 52000 CALL MULT(TEMP2, NSIZE, NSIZE, M1, NSIZE, NSIZE, TEMP1, IFF) 52000 CALL MULT(TEMP2, NSIZE, NSIZE, MSIZE, NSIZE, TEMP, TEF) 52400 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IFF)	50400		CALL HULT(FACTOR, 1, 1, G, NSIZF, NSIZF, TEMP, IFR)
50600 CALL MULT(TEMP2,NSIZE,NSIZE,DFL1,NSIZE,NSIZE,TEMP2,IEP) 50700 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,MSIZE,TEMP2,IEP) 50800 C 50900 CALL ADD(TEMP1,NSIZE,NSIZE,MSIZE,NSIZE,MSIZE,M,IFP) 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP1,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,MI,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,MI,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP,IFR) 52000 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP,IFR)	50500		CALL MULT(TEMP, NSIZE, NSIZE, M3, NSIZE, NSIZE, TEMP2, IER)
50700 CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IEP) 50800 C 50900 CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M, IFP) 51000 C 51100 C 51100 C 51200 **** COMPUTE RR **** 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4, NSIZE, NSIZE, PO, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 BOO CONTINUE 51800 C 51900 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFF) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFF) 52100 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFF) 52100 CALL MULT(TEMP1, NSIZE, NSIZE, M1, NSIZE, NSIZE, TEMP2, IFF) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFF) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFF) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP, TEF) 52100 CALL MULT(TEMP2, NSIZE, NSIZE, NSIZE, NSIZE, TEMP1, IFF) 52400 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IFF)	50600		CALL MULT(TEMP2, NSIZE, NSIZE, DFL1, NSIZE, NSIZE, TEMF, IEF)
50800 C 50900 CALL ADD(TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,M,IFP) 51000 C 51100 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 BOO CONTINUE 51800 C CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52100 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP1,NSIZE,NSIZE,MI,NSIZE,NSIZE,TEMP2,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,MIZE,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,MIZE,NSIZE,TEMP1,IFR) 52000 CALL MULT(TEMP2,NSIZE,NSIZE,MIZE,NSIZE,TEMP1,IFR) 52000 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,TEMP1,IFR)	50700		CALL MULT(TEMP, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IEP)
50900 ČALL ADD(TEMP1,NSIZE,NSIZE,TEMP2,NSIZE,NSIZE,M,IFP) 51000 C 51100 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 800 51800 C 51900 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52100 CALL MULT(TEMP,NSIZE,NSIZE,DEIO,NSIZE,NSIZE,TEMP1,IER) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,DEIO,NSIZE,NSIZE,TEMP2,IFP) 52100 CALL MULT(TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,TER) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,TER) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEF)	50800	С	
51000 C 511J0 C 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,P0,NST7E,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,M5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,DELO,NSIZE,TEMP1,IER) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,DELO,NSIZE,NSIZE,TEMP2,IFP) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,TEE) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEP)	50900		CALL ADD(TEMP1, NSIZE, NSIZE, TEMP2, NSIZE, NSIZE, M, IFP)
511J0 C **** COMPUTE RR **** 51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NST7E,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,TEMP,IFR) 52100 CALL MULT(TEMP,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,IFR) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,IFE) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IER)	51000	С	
51200 C 51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFP) 52000 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFP) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,M1,NSIZE,NSIZE,TEMP2,IFP) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFE) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFE) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEP)	511J0	С	**** COMPUTE RR ****
51300 FACTOR=(1ALPHA)*DT 51400 IF(ALPHA.NE.1) GO TO 8CO 51500 CALL MULT(M4,NSIZE,NSIZE,PO,NSTZE,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IFR) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,DELO,NSIZE,NSIZE,TEMP2,IFR) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,NSIZE,NSIZE,TEMP,IER) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,TEMP1,IER)	51200	С	
51400 IF(ALPHA.NE.1) GO TO 8C0 51500 CALL MULT(M4,NSIZE,NSIZE,P0,NST7E,1,PE,IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(FACTOR,1,1,N5,NSIZE,NSIZE,TEMP,IFR) 52000 CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TEMP2,IFR) 52100 CALL MULT(TEMP1,NSIZE,NSIZE,DELO,NSIZE,NSIZE,TEMP2,IFR) 52200 CALL MULT(TEMP2,NSIZE,NSIZE,MSIZE,NSIZE,TEMP,TEE) 52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,TEMP1,IEP)	51300		FACTOR=(1ALPHA)*DT
51500 CALL MULT(M4, NSIZE, NSIZE, P0, NSTZE, 1, PE, IEP) 51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR, 1, 1, N5, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52100 CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR) 52200 CALL MULT(TEMP1, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFR) 52300 C 52400 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IEP)	51400		IF(ALPHA.NE.1) GO TO 800
51600 GO TO 810 51700 800 CONTINUE 51800 C 51900 CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR) 52000 CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, TEMP, IFR) 52100 CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR) 52200 CALL MULT(TEMP1, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP2, IFR) 52300 C 52400 CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, TEMP1, IER)	51500		CALL MULT(M4, NSIZE, NSIZE, PO, NSTZE, 1, PR, IEP)
51700800 CONTINUE51800C51900CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR)52000CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TEMP1, IFR)52100CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR)52200CALL MULT(TEMP1, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, TER)52300C52400CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IER)	51600		GO TO 810
51800C51900CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR)52000CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TFMP1, IFR)52100CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR)52200CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, TER)52300C52400CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IER)	51700	800	CONTINUE
51900CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR)52000CALL MULT(TEMP, NSIZE, NSIZE, NSIZE, NSIZE, TFMP1, IFR)52100CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR)52200CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, TER)52300C52400CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IER)	51800	С	
52000CALL MULT(TEMP,NSIZE,NSIZE,NSIZE,NSIZE,TFMP1,IER)52100CALL MULT(TEMP1,NSIZE,NSIZE,DELO,NSIZE,NSIZE,TEMP2,IFR)52200CALL MULT(TEMP2,NSIZE,NSIZE,M2,NSIZE,NSIZE,TEMP,TER)52300C52400CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IER)	51900		CALL MULT(FACTOR, 1, 1, M5, NSIZE, NSIZE, TEMP, IFR)
52100CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, TFR)52200CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, HSIZE, TEMP, TER)52300C52400CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IER)	52000		CALL MULT(TEMP, NSIZE, NSIZE, N1, NSIZE, NSIZE, TFMP1, IER)
52200CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, TER)52300C52400CALL ADD(M4, NSIZE, NSIZE, TEMP, NSIZE, NSIZE, TEMP1, IER)	52100		CALL MULT(TEMP1, NSIZE, NSIZE, DELO, NSIZE, NSIZE, TEMP2, IFR)
52300 C 52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEP)	52200		CALL MULT(TEMP2, NSIZE, NSIZE, M2, NSIZE, NSIZE, TEMP, TER)
52400 CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEP)	52300	С	
	52400		CALL ADD(M4,NSIZE,NSIZE,TEMP,NSIZE,NSIZE,TEMP1,IEB)

52500	С		
52600	С		
52700			FACTOR=FACTOR
52800			CALL NULT(FACTOR. 1.1.G.NSTZE.NSTZE.TEMP.TEP)
52900			CALL MULT(TEMP.NSTZE.NSTZE.M3.NSTZE.NSTZE.TEMP2.TEF)
53000			CALL MULT(TEMP2.NST7E.NST7E.DETO.NST7E.NST7E.TEP)
53100			CALL MULT/TEND NSTOF NSTOF NO HETOF HETOF TENDO TED)
53200	Ċ		CVTT HOTILICHI MOISH MOISTANNELVENTENEN TEL
53300	č		
53400	Ŭ		CALL ADD/TEMP1.NST7F.NST7F.TEMP2.NST7F NST7F TEMP TEP)
53500			CALL MULT(TEMP.NST7E.NST7E.PO.NST7E.1.RR.TEP)
53600		810	CONTINUE
53700	С	010	
53800	č		**** APPTY FOUNDARY CONDITIONS ****
53900	c		ULLUI COUDENI CONDITIUES
54000	C		DO 300 R=1.NYNODE
54100			TE((LERONY, LE. R), AND, (R. LE. RERONY)) CO TO 300
54200			DO 295 I=1.NSIZE
54300			M(R,T)=0
54400		295	CONTINUE
54500			TF(R, LT, LFRONT) M(R, R)=1
54600			TF(R, GT, RFRONT) M(F, R+2) = 1.
54700			BR(R)=0.
54800		300	CONTINUE
54900			DO 671 JJ=1.NSIZE
55000		-	M(NSIZE-1,JJ)=0.
55100			M(NSIZE, JJ)=0.
55200			M(NHNODE, JJ) = 0.
55300		671	CONTINUE
55400			M(NSIZE-1, NLNODE+1)=1.
55500			M(NSIZE, NSIZE) = 1.
55600			RR(NSIZE-1)=0.
55700			RR(NSIZE)=0.
55800	С		
55900			M(NMNODE, NM2) = 1.

- 264 -

.

56000		RR(NMNODE)=PBHL	•	
56100	С	WRITE(6,500) ((M(II,JJ),JJ=1,NSIZE),II=1,PSIZE)		
56200	С	WRITE(6,501)		
56300	С	WRITE(6,500) (RR(II),II=1, MSI7E)		
56400	С			•
56500	С	**** SOLVE SYSTEN ****		
6600	С			
56700		CALL SOLVE(M, PR, P1, NSIZE)		
56800	С			
56900	С			
57000	С	**** DECOMPOSE RESULTS ****		
5 71 00	С			
57200		INDEX=NMNODE+1		
57300		DO 200 I=1,NMNODE		
57430		PO(I)=P1(I)		
57500		DDELDT(I)=P1(INDEX)		3
E 7 600		DELTA1(I)=DELTA1(I)+DDELDT(I)*DT		22
5 77 00		DELTAO(I)=DELTA1(I)		ទ័
5 78 00		PO(INDEX)=P1(INDEX)		1
57900		INDEX=INDEX+1		
58000	200	CONTINUE		
56100	С	WRITE(6,501)		
58200	С	WRITE(6,500) (PO(II),TI=1,NSI7E)		
58300	С			
58400	С			
58500	С			
58600		TIME=TIME+DT		
58700		ICOUNT=ICOUNT+1		
00888		IF(LFRONT.EQ.1) GO TO 830		
58900		RFRONT=RFRONT+1		
59600		LFRONT=LFRONT-1		
59 1 00		RFCOL=RFCOL+1		
59200	830	CONTINUE		
E9300		WRITE(6,572) DT,TIME,RFRONT		
59400	572	FORMAT('DT=',E15.4, 'TIME=',E15.4, 'RFRONT=',I3)		

}

59500 GO TO 100 59600 C 59700 C

 100
 1000
 CONTINUE

 250
 RETURN

 300
 END

1

·

.

.

- 266 -

	•				
	100	С	SUI	BROUTINE MULT	
•	200	С			
	300	С		THIS SUBROUTINE MULTIPLIES TWO MATRICES, OR	
	406	С		ONE MATRIX BY A SCALAR.	
	500	С			
	60 Ü			SUBROUTINE MULT(A, IROW, ICOL, B, JROW, JCOL, PROD, IER)	
	70 u			IMPLICIT REAL*8(A-H,O-Z)	
	800			DIMENSION A(80,80),B(80,80),PROD(80,80)	
	900	С			
	1000			IF(ICOL.EQ.JROW) GO TO 10	
	1100			IF((IROW.EQ.1).AND.(ICOL.EQ.1)) GO TO 100	
	1200			1ER=1-	
	1300			GO TO 1000	
	1400	С	•		
	1500		10	CONTINUE	
	1600			DO 40 I=1, IROW	
	1700			00 30 J=1,JCOL	
	1800			PROD(1,J)=0.	
	1900	С		N 0	
	2000			DO 20 K=1,ICOL	
	2100			$PROD(I_{9}J) = PROD(I_{9}J) + A(I_{9}K) + B(K_{9}J)$	
	2200		20	CONTINUE	
	2300	C			
	2400		30	CONTINUE	
	2500		40	CONTINUE	
	2600			GO TO 1000	
	2700	С		,	
	2800		100	CONTINUE	
	2900	С			
	3000	C		MULTIPLICATION OF B BY A SCALAR	
	3100	С			
	3200			DO 120 I=1, JROW	
	3300			D0 120 J=1, JCOL	
	3400			PROD(I,J)=A(1,1)+B(I,J).	

•

3500	120	CONTINUE
3600	С	
3700	С	
3800	1000	CONTINUE
3900		RETURN
4000		END

· .

.

• •

:

•

•

C SUBROUTINE NEWSTR

THIS SUBROUTINE PEPFORMS QUASI-STATIC PRESSURE EVOLUTION COMPUTATIONS FOR STATIONARY CRACKS BY EXPLICIT TIME INTEGRATION. NEWSTR IS NOT CURRENTLY USED, BUT IS RETAINED FOR FUTURE REFERENCE AND COMPARISONS.

SUBROUTINE NEWSTR(MU,A)

```
IMPLICIT REAL*8(A-H,0-Z)

REAL*8 MU(80,3),LOAD(2),NONGAM,NONDEL,NONP,NONMU

REAL*4 D3P(10,400),D3P1(10,400),D3P2(10,400)

REAL*4 DPLOT,XY(2,400),XSCL(4)

INTEGER ORDER,ELMNTT(4,80),ELMNTX(4,80)

INTEGER TSTEP
```

С

с С

С

С

С

С

С

С

ÚIMENSION	DELTA(400,5),P(400,5),DERIV(80),DP(80),PINC(80)
DIMENSION	STRSL(80,3), TEMP(80,3)
DIMENSION	TNODE (80,3),XNODE (80,3)
DIMENSION	A(80,80),DMUDT(400,5)
DIMENSION	DPLOT(10,400),DTEMP(400,5)
DIMENSION	ZETA(4,80),NPTS(4)
DIMENSION	XA1(4),XB1(4),XA2(4),XB2(4),XC(400,3)
DIMENSION	XTEMP(400+3)+PTEMP(400+5)
DIMENSION	PROUGH(80), PSMTH(80)
DIMENSION	XT(400,3),DMUCHK(80,1),DPCHK(80),DDCHK(80,1)
DIMENSION	STRSC(80,3),ALOC(80,3),ACART(80,3)

С

COMMON /TEST/ ITEST COMMON /BKPING/ XNODE,TNODE,ELMNTT,ELMNTX CUMMON /SIZE/ ORDER,NELMNT,NXNODE,NTNODE COMMON /DEBUG/ DELTA,DPLOT,DMUCHK,PTEMP,DDCHK,DPCHK COMMON /GP/ ZETA,NPTS 269 -

```
COMMON /ENDPTS/ XA1,XB1,XA2,XB2
 COMMON /MITBR/ JDEG
 COMMON /FLUID/ VISCO,LOAD
 COMMON /CRM114/ ALPHA, BETA, IFREQ
 COMMON /DEL3PR/ DMUDT, XTEMP, NXTEMP, D3P, D3P1, D3P2
 COMMON /OUT/ STRSL, STRSC, ALOC, ACART
 COMMON /TIME/ TSTART, TFIN, DT, TSTEP, T
  COMMON /TCHPTS/ XC, NDEG
  COMMON /NONDIM/ NONGAM, NONDEL, NONP, NONMU, TAUC
  SGN(AA,Q) = DSIGN(AA,Q)
  ATAN(Q) = DATAN(Q)
          COMPUTE CRACK OPENING DISPLACEMENT AND DERIVATIVES,
       INTERPOLATE PRESSURE AND COMPUTE DERIVATIVES:
        •
  ILHL=NTNODE/2
PBH=STRSL(IBHL,1)
  NXTEMP=320
  NDEG=200
  NSIDE=100
  X = -1.00
  DO 5 I=1,NXTEMP
  XTEMP(I \cdot 1) = X0 + 2 \cdot *DFLOAT(I)/DFLOAT(NXTEMP)
5 CONTINUE
    1
  DO G I=1, NDEG
```

```
XC(I+1)=-DCOS(3+1415926535898*(I-1)/DFLOAT(NDEG-1))
```

```
XC(1,2)=XC(1,1)
```

```
b CONTINUE
```

С

С

С

C

С

С

С

270 •

```
25 CONTINUE
С
С
                             PLOT PRESSURE
С
      DO 26 I=1.NXNODE
      XY(1,I) = XNODE(I,1)
      XY(2,I) = STRSL(I,1)
   26 CONTINUE
      ISCL=-2
      XSCL(1) = -1.0
      XSCL(2)=1.0
      XSCL(3) = 0.0
      XSCL(4) = 1.5 + SNGL(LOAD(1))
      CALL @PICTR(XY,2,NXNODE,QX(1),QISCL(ISCL),QXSCL(XSCL))
С
С
С
             EVALUATE DMUDT:
С
С
                    TRANSFORM STRSL FROM XNODE TO XTEMP:
С
        CALL TRANS3(XNODE,STRSL,NXNODE,XTEMP,P,320,80,400,1)
СХ
        WRITE(6,536) ((XTEMP(II,JJ),JJ=1,3),(PTEMP(II,JK),JK=1,5),
СХ
       1II=1,325)
  536 FORMAT(8E15.4)
С
                    EVALUATE P .:
      CALL DIFF(XTEMP, P, 320, 1)
      WRITE(9,536) ((XTEMP(11,JJ),JJ=1,3),(P(11,JK),JK=1,5),
     111=1,325)
      DO 22 I=1.NXTEMP
      XT(1,2) = XTEMP(1,1)
      PTEMP(1,2)=P(1,2)
   22 CONTINUE
      CALL TRANS3(XT,P,NXTEMP,XC,PTEMP,NDEG,400,400,2)
      DO 544 II=1,NDEG
      XY(1,II) = XC(II,1)
```

- 271 .

```
XY(2,1I) = PTEMP(II,1)
  544 CONTINUE
      CALL QPICTR(XY, 2, NDEG, QINIT(DUMMY), QX(1))
С
С
                  · COMPUTE DELTA:
С
      CALL INTEG(MU,DELTA,TNODE,NTNODE,XC,NDEG,2,400)
      DO 694 I=1.NDEG
      XY(1, I) = XC(I, 1)
      XY(2,I) = DELTA(I,I)
  694 CONTINUE
      CALL QPICTR(XY, 2, NDEG, QX(1))
.
С
С
      WRITE(13,536) ((XC(II,JJ),JJ=1,3),(DELTA(IT,JK),JK=1,5),
     1[1=1,400]
С
С
                    COMPUTE (DELTA**3)*P* :
С
      DO 20 I=1,NDEG
      DMUDI(I,1)=PTEMP(I,1)*DELTA(I,1)**3
      WRITE(13,532) XC(I,1), DMUDT(I,1)
  532 FORMAT(* *,2E15.4)
   20 CONTINUE
С
СХ
        CONST=DMUDT(NSIDE.1)
      CONST=DMUDT(NSIDE,1)
     1
            -((DMUDT(NSIDE,1)-DMUDT(NSIDE-1,1))
            /(xc(NSIDE, 1) - xc(NSIDE - 1, 1)))
     2
     3
            *XC(NS1DE • 1)
С
      DO 81 1=1,NSIDE
      DMUDI(I,1)=DMUDI(I,1)-CONST
   81 CONTINUE
С
```

- 272

```
IMIN=NSIDE+1
C`X
       CONST=DMUDT(IMIN,1)
      CONST=DMUDT(IMIN,1)
     1
            +((DMUDT(IMIN+1,1)-DMUDT(IMIN,1))
            /(XC(IMIN+1,1)-XC(IMIN,1)))
     2
     3
            \star (-XC(IMIN:1))
С
      DO 82 I=IMIN,NDEG
      DMUDT(I,1)=DMUDT(I,1)-CONST
   82 CONTINUE
С
      DO 83 1=1,NDEG
      XY(1, I) = XC(I, 1)
      XY(2,I) = DMUDT(I,1)
   83 CONTINUE
      CALL QPICTR(XY, 2, NDEG, QINIT(DUMMY), QX(1))
С
С
С
С
                      DIFFERENTIATE:
С
      CALL CHEBY(XC,XC,NDEG,NDEG,DMUDT,NDEG,NDEG,2,DTEMP,
     1400,400,0)
С
С
      DO 84 I=1.NDEG
      XY(1, I) = XC(I, 1)
      XY(2,I) = DTEMP(1,2)
   84 CONTINUE
      CALL QPICTR(XY, 2, NDEG, QX(1))
С
С
      CALL RECNST(XC, DTEMP, 400, 2, NDEG, 0)
      DO 85 I=1,NDEG
      XY(1, I) = XC(I, 1)
```

```
XY(2,1) = DTEMP(1,2)
   85 CONTINUE
       CALL QPICTR(XY,2,NDEG,QX(1))
С
      CALL DIF2(XC, DTEMP, NDEG, TNODF, NTNODE)
СХ
         CALL REBILD(TNODE, DTEMP, NTNODE)
С
      00 30 I=1.NTNODE
      XY(1, I) = TNODE(I, 1)
                                                 ٩
      XY(2,I) = DTEMP(I,3)
      WRITE(6,673) TNODE(1,1), DMUDT(1,3)
  673 FORMAT(* *, *TNODE=*, E15.4, *DMUDT=*, E15.4)
       00\ 29\ J=1.5
      DMUDT(I,J) = DTEMP(I,J)
   29 CONTINUE
      DDCHK(I_1)=DMUDT(I_2)
      DMUCHK(I,1)=DMUDT(I,3)
   30 CONTINUE
      CALL QPICTR(XY,2,NTNODE,QX(1))
С
С
С
С.
              COMPUTE TIME DERIVATIVE OF PRESSURE:
С
      \mathbf{I} = \mathbf{i}
      DO 90 IEL=1,NELMNT
      IIMAX=ELNNTX(IEL.1)
      DO 80 II=1.IIMAX
      I = 1 + 1
      DP(I)=0.
      DO 70 J=1,NTNODE
      DP(I)=DP(I)+A(I+J)+DTEMP(J+3)
     1*DS@RT(1.-TNODE(J,1)**2)
   70 CONTINUE
      DPCHK(I) = DP(I)
```

- 274 -

```
80 CONTINUE
     I = I + 1
  96 CONTINUE
c
     DO 95 I=1,NXNDDE
     XY(1, I) = XNODE(I, I)
     XY(2,I)=DP(I)
  55 CONTINUE
     ISCL=-2
     XSCL(1) = -1.0
     XSCL(2)=1.0
     XSCL(3)=0.
     XSCL(4) = 1.5 \times PBH
     CALL QPICTR(XY:2:NXNODE:QX(1))
С
C
            ADD PRESSURE INCREMENT TO PREVIOUS PRESSURE:
С
     DO 100 I=1.NXNODE
     STRSL(I,1)=STRSL(I,1)+DP(I)+DT
  100 CONTINUE
С
С
            FIX UP NEW PRESSURE CURVE:
С
STRSL(IBHL,1)=PBH
******
CNEW
          CALL FIXUP(STRSL, DP, LOAD(1), IBHL, NXNODE)
С
С
            SMOOTH FINAL PRESSURE CURVE:
С
                                       ١
С
      DO 950 II=1.NXNODE
C.
      PROUGH(II)=STRSL(II,1)
С
  950 CONTINUE
С
     CHECK=10.D 07
С
```

- 275

```
С
    DO 562 ICNT=2,15
     SDEV=RGRESS(XNODE, PROUCH, PSMTH, 15, NXNODE)
С
СХ
    CHECK=1.5*CHECK
    IF(SDEV.GE.CHECK) GO TO 963
С
    WRITE(6,567) SDEV
    CHECK=SDEV
C 962 CONTINUE
C 963 CONTINUE
    WRITE(6,567) SDEV
C 567 FORMAT(* *,*SDEV=*,E15.4)
С
     DO 975 II=1,NXNODE
     STRSL(II.1)=PSMTH(II)
 975 CONTINUE
СХ
      IF(NXNODE.GE.1) GO TO 58
COMPUTE NEW DELTA .
     DO 53 I=1.NTNODE
     MU(I_1) = MU(I_1) + DMUDT(I_3) + DT
  53 CONTINUE
          GO THROUGH NEXT TIME STEP:
     CALL PSCALC
     CALL OUTPUT
     TSTEP=TSTEP+1
     IF(1.GE.TFIN) GO TO 1000
     T=T+UT
Ċ
     60 TO 25
                 ******* TEMPORARY CARD ********
```

С

С

С С С

С С

С C

С

Ċ

С С

- 277 -

100	С	SUBROUTINE OUTPUT	
20 U	С		
300	С	THIS SUBROUTINE CURRENTLY PRODUCES	
400	С	THE PRINTED OUTPUT ASSOCIATED WITH STATIC	
500	С	PROBLEMS.	
600	С		
700		SUBROUTINE OUTPUT	
860	С		
900		IMPLICIT REAL+8(A-H+O-Z)	
1000		INTEGER ELMNTT(4,80),ELMNTX(4,80)	
1100		INTEGER ORDER	
1200		INTEGER TYPE(5),CLROW(6),CELMNT(6,6),CDIR(6,6)	
1300		INTEGER COL(6,6)	
1400		INTEGER TSTEP	
1500		REAL+8 MUSKAPPA1	
1600		REAL*4 PPLOT, FPLOT, DMUPLT(10,80)	
1700		REAL*4 DPLOT	b
180ü	С		27
1900		DIMENSION XA1(4),XB1(4),XA2(4),XB2(4)	8
2000		DIMENSION XNODE(80,3), TNODE(80,3)	1
2160		DIMENSION RLOC(5,3), FLCON(2,3)	٥
2200		DIMENSION A(80,80),DDCHK(80,1),DPCHK(80)	
2360		DIMENSION SIGMA(80),COEFF(80)	
24û0		DIMENSION A1(4,2),A2(4,2),ALFA(4)	
2500		DIMENSION STRSL(80,3), STRSC(80,3), ALOC(80,3), ACART(80,3)	
2600		DIMENSION ICOL(6)	
2700		DIMENSION C(6.6)	
2800		DIMENSION PPLOT(10,80), FPLOT(10,80)	
2900		DIMENSION DPLOT(10,400)	
3000		DIMENSION DELTA(400,5), DMUCHK(80), P(400,5)	
3100	С		
3200		COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA	
3396		COMMON /REG/ RLOC+TYPE+NREG	
3400		COMMON /BKPING/ XNODF, TNODE, ELMNTT, ELHNTX	

•

. .

3500	COMMON /CLOSE/ A1,A2,ALFA,CLROW,NCL,CELMNT,CDIR,COL,C	
3600	1,ITYPE	
3700	COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE	
3800	COMMON /ARRAYS/ A,SIGMA,COEFF	•
3900	COMMON /OUT/ STRSL,STRSC,ALOC,ACART	
4000	COMMON /ELAST/ G1,KAPPA1,MU,ELCON	
4100	COMMON /TIME/ TSTART,TFIN,DT,TSTEP,T	
4200	COMMON /PLOTS/ FPLOT, PPLOT, DMUPLT	
4300	COMMON /DEBUG/ DELTA,DPLOT,DMUCHK,P,DDCHK,DPCHK	
4400	C	
4500	IF(TSTEP.NE.1) GO TO 783	
4600	WRITE(6+100)	
4700	100 FORMAT(*1*, T50, *M A T E R I A L S*,///,	
4800	1130, "REGION", T40, "E", T60, "NU", T80, "G", T100, "INTERFACE",/	
4906	2,130,6(*-*),140,*-*,160,**,180,*-*,1100,9(*-*),/)	
5000	UO 10 II=1,NREG	
5100	WRITE(6,150) II, ELCON(17,1), ELCON(11,2), ELCON(11,3)	N
5200		
3300 5400	TU CUNTINUE.	•
3400 5500	100 FURMAI(* **10091291009110+491059110+491759115+49	
5200 6200		
3009 5708	NOTECC DODE T	
5700	WRIIL(D\$200)) 200 EORMAT(210 TEO (O(0) 0) (TEO 0) 0 TOO 1) 0 (
5900	200 FURMAIL*1*9130930L***997913059***91809***979 1750.000.TEE 0TIME - E E15 / T00 5.0 / T00 5.0	
6000	11009***\$1009*110E_#_*\$C10#4\$1009***\$751009***\$1009***\$1009***\$	
6106	2/91509504***J9///J HDITE/4 - 250)	
6200	00 29 IT-1.NYMODE	
6300	$= \frac{1}{1} $	
6460	26 CONTINUE	
6566	350 FORMATCH ##////*T5##TNOUF##T16##V##T36.#V#.T06 #2#	
6600		
6700	21,31,7, 7,20,1,1,20,1, 30,00,47,97,91040,177,9109 21,44,135,14,155,14,175,67,47,10,00,774,40,77	
6800	μ μισσμικιμισσμιπτητεσματομητητητητητητητητητητητητητητητητητητη	
6900	του τουποίτοι - ττοτειτείτευτείου του του του τη του η του ητου ητου ητ	

7000	WRITE(6,350)	
7100	DO 30 II=1,NTNODE	
7200	WRITE(6,400) 11,(TNODE(II,JJ),JJ=1,3),(ALOC(II,JJ),JJ=1,2)	
7300	30 CONTINUE	
7400	250 FORMAT(* *,T5,*XNODE*,T15,*X*,T35,*Y*,T55,*Z*,	
7500	1T75, *SNN*, T95, *SNT*, T105, *THETA*, /, T5, 5(*-*), T15,	
7600	2*-*,T35,*-*,T55,*-*,T75,**,T95,**,T105,5(*-*),/)	
7700	300 FORMAT(* *,T5,I2,T10,E10.4,T30,E10.4,T50,E10.4,T70,E10.4	•
7800	1,T90,E15.4,T100,E15.4)	
7900	С	
8000	KETURN	
8100	END	

•

100	С	SUBROUTINE PLOT	
200	С		
300	С	THIS SUBROUTINE PRODUCES PLOTS OF	
4 Ü Ü	С	BOTH STATIC AND QUASI-STATIC CALCULATIONS.	
500	С	PLOT IN TURN CALLS PLOTTING ROUTINES THAT	
600	С	ARE USED AT THE M.I.T. JOINT COMPUTER	•
700	С	FACILITY. PLOT IS CURRENTLY OUT OF DATE	
800	С	BECAUSE OF RECENT CHANGES THAT HAVE BEEN	
900	С	MADE IN THE GUASI-STATIC ROUTINES.	
1000	С		
1100		SUBROUTINE PLOT	
1200		IMPLICIT REAL+8(A-H.O-Z)	
1306		CHARACTER*40 XLAB1,XLAD2,XLAB3,XLAB4,XLAB5,XLAB6,XLAB7,XLAB8,	
1400		1 XLAB9,XLAB10,XLAB11,XLAB12,XLAB13,XLAB14,	
1500		2 YLAB1, YLAB2, YLAB3, YLAB4, YLAB5, YLAB6, YLAB7, YLAB8,	
1600		3 YLAB9,YLAB10,YLAB11,YLAB12,YLAB13,YLAB14,	
1700		4 XLAB15+XLAB16+XLAB17+YLAB15+YLAB16+YLAB17	
1806		INTEGER ELMNTT(4,80), ELMNTX(4,80)	
1900		INTEGER ORDER	
2000		INTEGER TYPE(5),CLROW(6),CELMNT(6,6),CDIR(6,6)	
2100		INTEGER COL(6,E)	
2200		INTEGER TSTEP	
2300		REAL*8 MUSKAPPA1	,
2400		REAL+4 PPLOT,FPLOT,D3P,D3P1,D3P2	
2500		REAL * 4 DPLOT, DMUPLT, DDPLT, DPPLT	
2600		REAL #4 P1PLT(10,80),P2PLT(10,400),P3PLT(10,80),P4PLT(10,86)	
2700	_	REAL*4 D1PLT(10,80),D2PLT(10,80),D3PLT(10,80),D4PLT(10,80)	
2800	С		
2906		DIMENSION XA1(4), XB1(4), XA2(4), XB2(4)	
300ü		DIMENSION XC(400,3), DPCHK(80), DDCHK(80,1)	
3100		DIMENSION XNODE(80,3), TNODE(80,3)	
320ü		DIMENSION RLOC(5,3), ELCON(2,3)	
3300		DIMENSION A(80,80)	
3400		DIMENSION SIGMA(80), COEFF(8C)	

- 281 -

•

3500		DIMENSION A1(4,2),A2(4,2),ALFA(4)
3600		DIMENSION STRSL(80,3),STRSC(80,3),ALOC(80,3),ACART(80,3)
3700		DIMENSION ICOL(4), XTEMP(400,3), DMUDT(400,5), D3P(10,400)
3800		DIMENSION C(4,4),D3P1(10,400),D3P2(10,400)
3900		DIMENSION PPLOT(10,80), FPLOT(10,80)
4000		DIMENSION DPLOT(10,400), DMUPLT(10,80), F(400,5)
4100		DIMENSION DELTA(400,5), DMUCHK(80,1), DDPLT(10,80)
4200		DIMENSION DPPLT(10,80)
4300	С.	
4400		COMMON /ENDPTS/ XA1,X81,X82,X82,THETA
4500		COMMON /TCHPTS/ XC, NDEG
4600		COMMON /REG/ RLOC, TYPF, NREG
4700		COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX
4800		COMMON /CLOSE/ A1, A2, ALFA, CLROW, NCL, CELMNT, CDIR, COL, C
49üû		1, ITYPE
500G		COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE
510ú		COMMON /ARRAYS/ A.SIGMA.COEFF
520û		COMMON /OUT/ STRSL,STRSC,ALOC,ACART
5300		COMMON /ELAST/ G1,KAPPA1,MU,ELCON
540ú		COMMON /TIME/ TSTART, TFIN, DT, TSTEP, T
5500		COMMON /PLOTS/ FPLOT, PPLOT, DMUPLT
5600		COMMON /PLOTS1/ DDPLT. DPPLT
5700		COMMON /DEBUG/ DELTA,DPLOT,DMUCHK,P,DDCHK,DPCHK
5800		COMMON /PLTEMP/ PIPLT,P2PLT,P3PLT,P4PLT,D1PLT,D2PLT,D3PLT,D4PLT
5900		COMMON /DEL3PR/ DMUBT,XTEMP,NXTEMP,D3P,D3P1,D3P2
6000	С	
6100	С	ASSIGN AXIS LABFLS:
6200	С	
6300		XLAB1= PLOT#1 XNODE •
6400		YLAB1=* FRAC FLUID PRESSURE P(XNODE,T)*
6500	С	·
6603		XLAB2= • PLOT#2 TNODE •
6700		YLAB2= SOLUTION F(TNODF,T) ·
6800	С	
6906		XLAB3=*PLOT#3 TNODE *
		f · · · ·
		·

- 282 -

•

7000 YLAB3= . PLOT OF D(NU)/DT. 71ÚÚ С 7200 XLAB4= PLOT#4 **TNODE** • 1 7300 YLAB4=* PLOT OF D(DELTA)/DT* 7400 С 7500 XLAB5= PLOT#5 XNODE • 7600 FRAC. FLUID PRESS. INC. DP. YLAB5=* 7700 С 7860 XLAB6= PLOT#6 XNODE . 7900 YLAB6="P (DIAGNOSTIC)" 8000 С 8160 XLAB7=*PLOT#7 XNODE . 8200 YLAB7= P/ (DIAGNOSTIC) • 8300 С 8496 СХ XNODE . XLAB8= PLOT#8 8500 (DIAGNOSTIC) · СX YLAB8= P// 8600 СХ 8700 СХ XLAB9= PLOT#9 XNODE . 6800 СХ YLA89= P/// (DIAGNOSTIC) . 8960 С 9000 XLAB10= PLOT#10 **TNODE** • YLAB10= DELTA/ 9100 (DIAGNOSTIC) . 9200 С 9300 СХ XLAB11=*PLOT#11 TNODE . 9400 СX YLAB11="DELTA// (DIAGNOSTIC) * 9500 СX 9600 СХ XLAB12=*PLOT#12 TNODE . 9700 СХ YLAB12= DELTA/// (DIAGNOSTIC)* 9800 С 9900 XLAB13= • PLOT#12 TNODE . 16000 YLAB13= * DELTA (DIAGNOSTIC) . 10100 С 19200 XLAB14= • PLOT#13 **TNODE** • 10300 YLAB14=*CRACK OPENING DISP. (DELTA(TNODE,T))* 16400 С

- 283 -

10500			XLAB15= PLOT#14 XTEMP •			
10600			YLAB15=* (D**3)*P/ *			
10700	С					
10800			XLAB16=*PLOT#15 XTEMP*			
10900			YLAB16=* ((D**3)*P/)/ *			
11000	C		-			
11106			XLAB17=+PLOT#16 XTEMP+			
11200			YLAB17=* ((D**3)*P/)//*	•		
11300	С					•
11400	С					
11500	С		PLOT RESULTS:			
1160ú			NP=NTNODE			
11700			NP1=NXNODE			
11800			NP2=NXTEMP			
11900			NP3=NDEG			
12000			NP4=NDEG			
12100	С					
12200	С					1
12300			DO 10 I=1.NXNODE			782
12400			PPLOT(1,I)=XNODE(I,I)	•	•	++
12500			OPPLT(1,I)=XNODE(I,1)	·	1	•
12600		10	CONTINUE			
12700	С					
12800			DO 11 I=1.NTNODE			
12900			FPLOT(1,I)=INODE(I,1)			
1300ü			DMUPLT(1,I)=TNODE(I,1)			
1310u			DDPLT(1,I)=TNODE(I,1)			
1320ũ	С		· · ·			
13300	СХ		P1PLT(1,I)=TNODE(I,1)			
13400	СХ		P2PLT(1,1)=TNODE(1,1)			
13500	CX	Х	P3PLT(1,I)=TNODE(I,1)			
13600	C X		P4PLT(1,I)=TNODE(I,1)			
13760	С					
13800	_		D1PLT(1, I) = TNODE(I, 1)			
13900	C X .		D2PLT(1,I) = TNODE(I,I)			

.

)

14000	СХ	D3PLT(1,I)=TNODE(1,1)	
14100	СΧ	D4PLT(1,1)=TNODE(1,1)	
14200	С		
14300		11 CONTINUE	
14400	С		
14500		DO 20 I=1,NDEG	
14600		D3P(1,1)=XC(1,1)	
14700		DPLOT(1,I) = XC(I,1)	
1480Ú		D3P1(1,1)=XC(1,1)	
14900		20 CONTINUE	
15000	С		
15100		DO 30 I=1,NXTEMP	
1520Û		P2PLT(1,1)=XTEMP(1,1)	
15300		30 CONTINUE	
15400	С		
15500		DO 40 $I=1$, NDEG	
15600		D3P2(1+I)=XC(I+1)	
15700		40 CONTINUE	•
15800	С		N
15900		CALL QPICTR(PPLOT,10,NP1,QINIT(DUMMY),OX(1),QLABEL(11004),	G
16000		1QXLAB(XLAB1),QYLAB(YLAB1))	5
16100	С		
16200		CALL QPICTR(FPLOT,10,NP,QINIT(DUMMY),QX(1),QLABEL(11004),	
16300		1QXLAB(XLAB2),QYLAB(YLAB2))	,
16400	С		
16500		CALL QPICTR(DMUPLT,10,NP,QINIT(DUMMY),QX(1),QLABEL(11004),	
16600		1QXLAB(XLAB3),QYLAB(YLAB3))	
16700	С		
16800		CALL QPICTR(DDPLT,10,NP,QINIT(DUMMY),QX(1),QLABEL(11004),	
16900		1QXLAB(XLAB4),QYLAB(YLAB4))	
17000	С		
17100		CALL QPICTR(DPPLT,10,NP1,9INIT(DUMMY),0X(1),0LABEL(11004),	
17260		1QXLAB(XLAB5), GYLAB(YLAB5))	
17300	С		
17400	СХ	CALL QPICTR(P1PLT,10,NP2,QX(1),QLABEL(11004),QXLAB(XLAB6),	

г 285 г

17500	СХ	10YLAB(YLAB6))	
17600	С		•
17760		CALL QPICTR(P2PLT,10,NP2,GINIT(DUMMY),QX(1),QLABEL(11004),	
17800		1GXLAB(XLAB7),QYLAB(YLAB7))	
17900	C		•
18000	СХ	CALL QPICTR(P3PLT,10,NP2,QX(1),QLABEL(11004),QXLAB(XLAB8),	
18100	СХ	1QYLAB(YLAB8))	
18200	С		
18300	СХ	CALL QPICTR(P4PLT,10,NP2,QX(1),QLABEL(11004),QXLAB(XLAB9),	
18409	СX	1QYLAB(YLAB9))	
18500	С		
18600	Ĉ		
18700		CALL QPICTR(D1PLT,10,NP,QINIT(DUMMY),QX(1),QLABEL(11004),	
18800		1QXLAB(XLAB10),QYLAB(YLAB10))	
18900	С		
19000	СХ	CALL QPICTR(D2PLT,10,NP2,QX(1),QLABEL(11004),QXLAB(XLAB11),	•
19100	СХ	1QYLAB(YLAB11))	
19200	С		
19300	СХ	CALL QPICTR(D3PLT,10,NP2,QX(1),QLAEFL(11004),QXLAB(XLAB12),	1
19400	СХ	1QYLAB(YLAD12))	22
19500	С		<u> </u>
19600	СХ	CALL QPICTR(D4PLT,10,NP2,GX(1),QLABEL(11004),QXLAB(XLAB13),	1
15700	СХ	1QYLAB(YLAB13))	
19800	С		
19900	С		
20000	СΧ	CALL GPICTR(DPLOT,10,NP2,0X(1),QLABEL(11004),0XLAB(XLAB14),	
20100	СХ	1QYLAB(YLAH14))	
2ú200	С		
2 û 3 û û		CALL QPICTR(D3P,10,NP3,QINIT(DUMMY),QX(1),QLABEL(11004),	•
20400		1QXLAB(XLAB15),QYLAB(YLAB15))	
20500	С		
20600		CALL QPICTR(D3P1,10,NP3,QINIT(DUMNY),QX(1),QLAPEL(11004),	
20700		1QXLAB(XLAU16),QYLAB(YLAB16))	
2 Ü 8 0 Ü	C		
23900		CALL QPICTR(D3P2,10,NP,QINIT(DUMMY),QX(1),QLABEL(11004),	

.

21000	•	1QXLAB(XLAB17),QYLAB(YLAB17))
21100	C	
21200		RETURN
2130ŭ		END

o______

.

, · · ·

100	С	SUBROUTINE PSCALC
200	С	
300	С	THIS SUBROUTINE IS INTENDED TO
400	С	PERFORM POST-SOLUTION COMPUTATIONS
500	С	(SUCH AS CALCULATING STRESS INTENSITY
600	С	FACTORS) AND TO STORE CERTAIN RESULTS
700	С	FROM EACH TIME STEP FOR COMPOSITE
800	С	PLOTTING. LIKE SUBROUTINE PLOT, IT IS
900	С	SOMEWHAT OUT OF DATE, AND IS BEING
1000	С	RE-WRITTEN.
1100	С	
1260		SUBROUTINE PSCALC
1300	С	· ·
1400		IMPLICIT REAL+8(A-H+0-Z)
1500		REAL*8 MU,KAPPA1,K1A1,K2A1,K1A2,K2A2
1600		INTEGER ELMNTT(4,80),FLMNTX(4,80)
1700		INTEGER TSTEP, ORDER
1800		REAL*4 DPLOT(10,400),FPLOT,DMUPLT,PPLOT
1900		REAL + 4 DOPLT, DPPLT
2000		REAL+4 D1PLT(10,80),D2PLT(10,80),D3PLT(10,80),D4PLT(10,80)
2100		REAL*4 P1PLT(10,80),P2PLT(10,400),P3PLT(10,80),F4PLT(10,80)
2200		REAL*4 D3P(10,400),D3P1(10,400),D3P2(10,400)
2300	С	
2400		DIMENSION XNODE(80,3),TNODE(80,3),XA1(4),XB1(4),XA2(4),XB2(4)
2500		DIMENSION STRSL(80,3),STRSC(80,3),ALOC(80,3),ACART(80,3)
2600		DIMENSION ELCON(2,3),DMUDT(400,5),XTEMP(400,3)
2700		DIMENSION PPLOT(10,80), FPLOT(10,80), DMUPLT(10,80)
2800		DIMENSION DELTA(460,5),DMUCHK(80,1),P(400,5),XC(400,3)
2900		DIMENSION DDCHK(80,1),DPCHK(80),DDPLT(10,80),DPPLT(10,80)
3000	С	
3100		COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX
3200		COMMON /ELAST/ G1,KAPPA1,MU,ELCON
3300		COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA
3466		COMMON /OUT/ STRSL.STRSC.ALOC.ACART

•
3500		COMMON /PLOTS/ FPLOT, PPLOT, DMUPLT
3600		COMMON /PLOIS1/ DDPLI, DPPLI
3700		COMMON /TIME/ TSTART, TFIN, DT, TSTEP, T
3800		COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE
3900		COMMON /DEBUG/ DELTA+DPLOT+DMUCHK+P+DDCHK+DPCHK
4000		COMMON /PLTEMP/ P1PLT,P2PLT,P3PLT,P4PLT,D1PLT,D2PLT,D3PLT,D4PLT
4100		COMMON /DEL3PR/ DMUDT,XTEMP,NXTEMP,D3P,D3P1,D3P2
4200		COMMON /TCHPTS/ XC,NDEG
4300	С	
4400		SIN(Q)=DSIN(Q)
450Ŭ		COS(Q) = DCOS(Q)
4600		ATAN(Q) = DATAN(Q)
4700		SQRT(Q)=DSQRT(Q)
4800	С	
4900	С	
5000		IST=TSTEP+1
5100		DO 10 I=1.NTNODE
5200		FPLOT(IST,I)=ALOC(I,1)
5300		DMUPLT(IST,I)=DMUCHK(I,1)
5400		DDPLT(IST+I)=DDCHK(I+1)
5500	C	
5600		D1PLT(IST,I)=DELTA(I,1)
5700	C X	D2PLT(IST,I)=DELTA(I,2)
5806	СХ	D3PLT(IST,I)=DELTA(I,3)
5900	СХ	D4PLT(IST,I)=DELTA(I,4)
6000	С	
6100		P1PLT(IST,I)=P(I,1)
6200	CX	P3PLT(IST,I) = P(1,3)
6300	CX	P4PLT(IST,I) = P(I,4)
6400		D3P2(IST,I)=DMUDT(I,1)
6500	10	CONTINUE
6600	C	
6700		UO 20 I=1,NXNODE
6800		$PPLOT(IST_{I}I) = STRSL(I_{I}I)$
6900		DPPLT(IST,I)=DPCHK(I)

.

- 289 -

7000		20	CONTINUE	
7190	С			
7200			DO 30 I=1,NDEG	
7300			D3P(IST,I)=DMUDT(I,I)	
7400	СX		DPLOT(IST,I)=DELTA(I,1)	
7500		30	CONTINUE	
7600				
7700			DO 40 I=1,NDEG	
7800			$D3P1(IST_1) = DMUDT(I_12)$	
7900			D3P2(IST,I)=DMUDT(I,3)	
3000		40	CONTINUE	
8100	С			
8200			DO 50 I=1.NXTEMP	
8300			P2PLT(IST,I)=P(1,2)	
8400	_	50	CONTINUE	
8500	С			
8600			RETURN	,
8700			E NU	N
				06
				1

	168	C	SUBROUTINE RECNST	
	200	c		
•	300	C	THIS SUBROUTINE FIXES UP THE NEAR-TIP	
	400	С	REGIONS OF THE E(DELTA**3)*P*J* CURVE BY	
	500	С	SPLICING ELLIPTICAL ARCS OF APPROPRIATE LENGTH.	
	600	С		
	700		SUBROUTINE RECNST(X,Y,NROW,ICOL,NY,IODD)	
	800		IMPLICIT REAL+8(A-H+0-Z)	
	900		DIMENSION X(NROW,3),Y(NROW,5),YTEMP(400,5),XTEMF(400,5)	
	1000	С		
	1100		A=Y(22,ICOL)/DSQRT(1X(22,1)**2)	
	1200		B=Y(NY-21,ICOL)/DSORT(1X(NY-21,1)**2)	
	1300	С		
	1400		DO 10 I=1,21	, · · · · · ·
	1500		Y(I . ICOL)=A * DSQRT(1X(I.1)**2)	
	1600		Y((NY-21+I),ICOL)=8*DSART(1X((NY-21+I),ICOL)**2)	 6
	1700		10 CONTINUE	N
	1800	C		91
	1900		RETURN	8
	2000		END	

.

•

•

100	С	SUBROUTINE RESTRT	
200	C		
300	С	THIS SUBROUTINE READS DATA THAT HAS	
400	С	BEEN WRITTEN OUT BY SUBROUTINE DUMP.	
500	С		
600		SUBROUTINE RESTRT	
700		IMPLICIT REAL +8(A-H,0-2)	
800		INTEGER ORDER, TSTEP	
900		INTEGER ELMNTT(4,80),ELMNTX(4,80)	
1000	С		
1100		DIMENSION STRSL(80,3),STRSC(80,3),ALOC(80,3)	
1200		DIMENSION ACART(80,3)	
1300		DIMENSION XNODE(80,3), TNODE(80,3)	
1400		DIMENSION XA1(4),XB1(4),XA2(4),XB2(4)	
1500		DIMENSION ZETA(4,80),NPTS(4)	
1600	С		
1700		COMMON /TIME/ TSTART, TFIN, DT, TSTEP, T	
1800		COMMON /OUT/ STRSL,STRSC,ALOC,ACART	
1900		COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE	1
2000		COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX	5
2100		COMMON /ENDPTS/ XA1,XB1,XA2,XB2,THETA	26
2200		COMMON /GP/ ZETA+NPTS	1
2300		COMMON /TEM/ NSURF	
2460	C	``````````````````````````````````````	
2500		READ(8,100) T,TSTEP,NXNODE,NTNODE	
2600		READ(8,200) ((STRSL(II,JJ),JJ=1,3),II=1,NXNODE)	
2700		READ(8,300) ((XNODE(II,JJ),JJ=1,3), $II=1$,NXNODE)	
2800		READ(8,300) ((TNODE(II,JJ),JJ=1,5),II=),NTNODE)	•
2900		READ($8,350$) ((ELMNTX($11,JJ$), $11=1,4$), $JJ=1,80$)	
3000		READ(8,350) ((ELMNTT(II,JJ),II=1,4),JJ=1,80)	٠
3100		READ(8,400) (XA1(II),II=1,4)	
3200		READ(8,400) (XA2(II),II=1,4)	· · ·
3300		READ(8, 400) (XB](II), II=1,4)	
3400		READ(8•400) (X82(II)•II=1•4)	

•

3500	С	
3600	100	FORMAT(X,E15.4,312)
3700	200	FORMAT(X,3E15.4)
3800	300	FORMAT(X,3E15.4)
3900	350	FORMAT(X,412)
4000	400	FORMAT(X,4E15.4)
4100	С	
4200		RETURN
4300		END

,

.

130	C	SUBROUTINE SOLVE	
200	č	SUBRUCTINE UCETE	
300	Ċ	THIS SURROUTINE TRANSFERS MATRICES AND	
400	Ċ	VECTORS TO TEMPORARY ARRAYS, UNICH ARE THEN	
500	č	USED AS CALLING ARGUMENTS TO A LIBRARY POUTTOR	
600	č	FOR SOLVING LINEAR SYSTEMS OF FOUNTIONS LEATER	
700	č	TO SULVING LINEAR STSTERS OF EQUATIONS. LEWITE TS IN THE IMSELLIBRARY AT MITTES INCOMMATION	
800	r r	PROCESSING CENTER STHOLDS A MORTETER VERSION OF	
900	r r	A SUBBOUTINE IN THE SED FIDDADY AND TO ONE OF	
1600	č	THE POULTNES IN EDACIDE	
1100 -	č	THE ROUTINES IN TRACLID.	
1200	-	SUBROUTINE SOLVE (A.SIGMA.COFFE.NSIZE)	
1300		$IMPLICIT RFAL *8(A-H_0-2)$	
1400		INTEGER ORDER	
1500		DIMENSION B(80) Y1(80) WKARFA(80)	
1600		DIMENSION A(80.80) SIGNA(80) COFFE(80)	
1730		DIMENSION ATEMP(80.80)	
1800		$DO 10 I=1 \cdot NSIZE$	
1900		B(1)=0.	
2000		Y1(I) = SIGMA(I)	
2100		DO 10 J=1.NSIZE	、 I
2200		ATEMP(I,J) = A(I,J)	29 ·
2300		10 CONTINUE	4
2430		M=1	1
2500		IA=80	
2600		IDGT=4	
2700	С		
2800	С	CALL LEGTIE (A.M.NSIZE, IA.YI, IDGT, UKARFA, IFR)	
2900		CALL SIMU(ATEMP.Y1.NSIZE.KS.IA)	
3000	С		
310ü		DO 20 I=1.NSIZF	
3200		COEFF(1) = Y1(1)	
3300		20 CONTINUE	
3400	С	WRITE(6.100) IFR	

3500 WRITE(6,100) KS 3600 100 FORMAT(* *,T10,*IER=*,15) 3700 RETURN 3800 END

С SUBROUTINE STATFL С С THIS SUBROUTINE PERFORMS QUASI-STATIC С PRESSURE EVOLUTION COMPUTATIONS FOR STATIONARY С CRACKS USING IMPLICIT TIME INTEGRATION. С С SUBROUTINE STATFL(MU,BB) С IMPLICIT REAL*8(A-H.O-Z) REAL *8 M(80,80),M1(80,80),M2(80,80),M3(80,80),M4(80,80) REAL *8 M5(80,80),MU(80,3),KAPPA1 REAL *4 XY(2,80) * XSCL(4) * DUMMY INTEGER R.S.ORDER, ELMNTT, ELMNTX, R. TSTEP С DINENSION A(80,80), APRIME(80,80), B(80,85), TEMP2(80,80), DDELDT(80) DIMENSION C(80,80), CPRIME(80,80), D(80,80), E(80,80) DIMENSION F(80,80), G(80,80), H(80,80), SA(80,80), T(80,80), DELTAG(80) DIMENSION DELTA1(80), P0(80), P1(80), TEMP(80,80), TEMP1(80,80) DIMENSION BB(80,80), YNODE(86,3), RR(80), YT(80), DDEL0(80), DDEL1(80) DIMENSION DEL1(80,80), DEL0(80,80) С COMMON /OUT/ STRSL(80,3),STRSC(80,3),ALOC(80,3),ACART(80,3) COMMON /BKPING/ XNODE(80,3), TNODE(80,3), ELMNTT(4,80), ELMNTX(4,80) COMMON /SIZE/ ORDER, NELMNT, NXNODE, NTNODE. COMMON /TIME/ TSTART.FTIHE.DT.TSTEP.TIME С $TCH(N, X) = DCOS(DFLOAT(N) \times DACOS(X))$ TCHPR(N,X)=N*DSIN(DFLOAT(N)*DACOS(X))/DSQRT(1.-X**2) SIGN(X) = X/DABS(X)С PI=3.1415926535898 PBHL=1.0 IF(ISTEP.LT.0) GO TO 5

- 296

```
READ(5,1) ALPHA, BETA
      READ(5,3) KILL, ICUT, LOOP
    1 FORMAT(2F10.4)
    3 FORMAT(313)
      NLNODE=NTNODE+1
      NMNODE=NLNODE
C
      NL2=NLNODE/2
       ITEST=2.*NL2
      IF(ITEST.LT.NLNODE) NL2=NL2+1
С
      NM2=NMNODE/2
      ITEST=2*NM2
      IF (ITEST.LT.NMNODE) NM2=NM2+1
С
      CALL CONST(IREG, JREG, EMOD, AA, BB)
      EMOD=2.*EMOD
С
      DO 5 I=1,NLNODE
      ARG=PI*(2.*I-1.)/(2.*NLNODE)
      YNODE(1,1) = -DCOS(ARG)
    5 CONTINUE
С
С
    9 CONTINUE
      IF(KILL.NE.1) GO TO 248
CSHIFT
      DO 246 I=1+NXNODE
      P1(1)=STRSL(ICUT+1,1)
      YT(1)=XNODE(ICUT+I,1)
  246 CONTINUE
CTRANSFER
       NT = NXNODE - 2 * ICUT
      CALL TRANS3(YT, P1, NT, YNODE, P0, NLNODE, 80, 80, 1)
      GO TO 249
```

- 297 -

```
С
  248 CONTINUE
С
      CALL TRANS3(XNODE,STRSL,NXNODE,YNODE,P0,NLNODE,80,80,1)
С
  249 CONTINUE
      IF(KILL.NE.1) GO TO 6
      DO 8 I=1,ICUT
      PO(I)=0.
      PO(NLNODE-ICUT+I)=0.
    B CONTINUE
С
С
    6 CONTINUE
      CALL INTEG(MU, DELTAG, TNODE, NTNODE, YNODE, NLNODE, 0,80)
    SUM=0.
      DO 7 I=1,NLNODE
      DDELDT(I)=DELTAG(I)-DELTA1(I)
      DELTA1(I)=(1.+BETA)*DELTAD(I)
      SUM=SUM+DELTAO(I)+DSQRT(1.-YNODE(I,1)++2)
    7 CONTINUE
      SUM=PI*SUM/NLNODE
      WRITE(6,471) SUM
  IF (TSTEP.LT.0) GO TO 100
С
С
     DO 10 R=1, NXNODE
     DO 10 L=1.NLNODE
     A(R_{1}L) = TCH(L-1, XNODE(R_{1}))
      IF(L.EQ.1) A(R,L) = .5 \times A(R,L)
   16 CONTINUE
С
С
     DO 15 L=1.NLNODF
```

- 298

```
00 15 S=1.NLNODE
   APRIME(L,S)=TCH(L-1,YNODE(S,1))*2./(NLNODE)
   15 CONTINUE
С
Ċ
      NM2FL=NM2+1
      NM2MI=NM2-1
      DO 25 R=1, NXNODE
      DO 25 J=1.NMNODE
      SUM=0.
      SUM1=0.
      DO 20 I=1,NTNODE
С
      SUM=SUM+TCHPR(J,TNODE(I,1))*DSORT(1.-TNODE(I,1)**2)
     1 /((XNODE(R,1)-TNODE(I,1))**2)
С
      SUM1=SUM1+TCHPR(J, XNODE(R, 1))* SQRI(1, -TNODE(I, 1)**2)
     1
          /((XNODE(R,1)-TNODE(I,1))**2)
С
   20 CONTINUE
      B(R, J) =- PI*EMOD*(SUM-SUM1)/NTNODE
   25 CONTINUE
      DO 26 J=1.NMNODE
      B(NTNODE,J)=TCHPR(J,YNODE(NM2PL,1))-TCHPR(J,YNODE(NM2MI,1))
      B(NTNODE+1,J)=0.
   26 CONTINUE
С
С
      DO 40 R=1+NXNODE
      DO 40 J=1,NMNODE
      C(R,J)=TCHPR(J,XNODE(R,1)) }
   40 CONTINUE
С
С
      DO 45 K=1.NMNODE
```

١.

1

- 299 -

```
DO 45 J=1.NMNODE
С
      CPRIME(K,J)=TCHFR(J,YNODE(K,1))
С
       D(J,K) = TCH(J,YNODE(K,1)) + 2 \cdot / NLNODE
С
   45 CONTINUE
С
С
       DO 50 K=1.NMNODE
       DO 50 L=1,NLNODE
       E(K,L) = TCHPR(L, YNODE(K,1))
   50 CONTINUE
С
                   .
Ċ
       DO 55 L=1,NLNODE
       DO 55 S=1.NLNODE
       F(L,S)=TCH(L,YNODE(S,1))*2./NLNOPE
   55 CONTINUE
С
С
       DO 65 R=1,NXNODE
       DO 60 J=1,NXNODE
       G(R+J)=0.
   60 CONTINUE
       G(R_{*}R) = E MOD * ((1 \cdot / (XNODE(R_{*}1) - 1 \cdot )))
     1 -(1./(XNODE(R,1)+1.)))
       G(NTNODE \cdot R) = 0.
       G(NTNODE + 1, R) = 0.
   65 CONTINUE
С
С
       DO 75 S=1,NLNODE
       00 70 G=1.NLNODE
       H(S,0)=0.
```

Ġ,

, .

1 300 1

```
SA(S+4)=0.
      T(S,Q) = 0.
   70 CONTINUE
С
      H(S,S) = -SIGN(YNODE(S,1))
      H(S_{NL2}) = H(S_{NL2}) + SIGN(YNODE(S_{1}))
С
      SA(S,S)=1.
      SA(S,NM2)=SA(S,NM2)-SIGN(YNODE(S,1))
С
      T(S,S) = -SIGN(YNODE(S,1))
С
   75 CONTINUE
С
       WRITE(1,500) ((H(II,JJ),JJ=1,NLNODE), II=1,NLNODE)
С
       WRITE(2.500) ((SA(II.JJ).J)=1.NLNODE).II=1.NLNODE)
С
       WRITE(3,500) ((T(II,JJ),JJ=1,NLNODE),II=1,NLNODE)
  509 FORMAT(8E15.4)
С
С
      CALL MULT(A, NXNODE, NLNODE, APRIME, NLNODE, NLNODE, M1, IER)
      DO 76 J=1.NLNODE
      M1 (NTNODE, J) =0.
      M1(NTNODE+1+J)=0.
   76 CONTINUE
С
С
      CALL MULT(B, NMNODE, NMNODE, D, NMNODE, NMNODE, TEMP, IER)
      CALL MULT(TEMP, NMNODE, NMNODE, SA, NMNODE, NMNODE, M2, IER)
С
С
      CALL MULT(T,NMNODE,NMNODE,E,NMNODE,NLNODE,TEMP,IER)
      CALL MULT(TEMP+NMNODE+NLNODE+F+NLNODE+NLNODE+TEMP1+IER)
      CALL MULI(TEMP1, NMNODE, NLNODE, H, NLNODE, NLNODE, M3, IER)
С
С
```

- 301

```
CALL MULT(G.NMNODE,NXNODE,C.NXNODE,NMNODE,TEMP, IER)
     CALL MULT(TEMP+NMNODE,NMNODE,D+NMNODE,NMNODE,TEMP1,IER)
     CALL MULT(TEMP1, NMNODE, NMNODE, SA, NMNODE, NMNODE, M4)
С
С
     CALL MULT(CPRIME, NMNODE, NMNODE, D, NMNODE, NMNODE, TEMP, TER)
     CALL MULT(TEMP, NMNODE, NMNODE, SA, NMNODE, NMNODE, M5, IER)
С
С
CTEST TEST TEST TEST TEST TEST
С
       WRITE(16,500) ((C(II,JJ),JJ=1,NMNODE), II=1,NXNODE)
С
       WRITE(17,500) ((CPRIME(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
С
       WRITE (18,500) ((D(II,JJ),JJ=1,NMNODE), II=1,NMNODE)
С
      WRITE(19,500) ((M3(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
      WRITE(20,500) ((M5(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
С
С
      WRITE(21,500) ((M2(II,JJ),JJ=1,NMNODE), II=1,NXNODE)
      WRITE(22,500) ((M4(II,JJ),JJ=1,NMNODE),II=1,NMNODE)
С
CTEST TEST TEST TEST TEST TEST
С
C
  100 CONTINUE
С
С
      DO 161 1=1.NLNODE
      XY(1,1) = YNODE(1,1)
      XY(2,I) = PO(I)
  101 CONTINUE
      CALL QPICTR(XY, 2, NLNODE, QX(1))
      1S0L = -2
     XSCL(1) = -1.0
     XSCL(2)=1.0
     XSCL(3) = -.10
      XSCL(4) = 1.2
```

.302

```
CALL GPICTR(XY,2,NLNODE,QX(1),QISCL(ISCL),QXSCL(XSCL))
С
      XSCL(4) = 1.5
      DO 102 I=1,NLNODE
      XY(1, I) = YNODE(I, 1)
      XY(2,1) = DELTA1(1)
  102 CONTINUE
        CALL QPICTR(XY,2,NLNODE,QINIT(DUMMY),QX(1))
СХ
      CALL QPICTR(XY,2,NLNODE, 0X(1), 0ISCL(ISCL), 0XSCL(XSCL))
.
С
      Do 103 I=1,NLNODE
      XY(1,I) = YNODE(I,1)
      XY(2,1) = DDELDT(1)
  103 CONTINUE
      CALL QPICTR(XY,2,NLNODE,QINIT(DUMMY),QX(1))
С
      IF(TIME.GT.FTIME) GO TO 1000
С
С
      DO 116 J=1.NMNODE
      DO 135 K=1.NMNODE
      DELO(J,K)=0.
      DEL1(J,K)=0.
  135 CONTINUE
      DELO(J,J)=DELTAO(J)**3
      DEL1(J,J)=DELTA1(J)**3
  110 CONTINUE
С
С
С
                     COMPUTE M:
С
С
      FACTOR = - ALPHA*DT
С
                                                ٩.
С
```

303

.

CALL MULT(TEMP1,NMNODE,NMNODE,MANODE,MANODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,M3,NMNODE,NLNODE,TEMP1,IER) CALL ADD(M1,NMNODE,NLNODE,TEMP1,NMNODE,MLNODE,TEMP2,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DEL1,NMNODE,NMNODE,TEMP1,TER) CALL MULT(TEMP1,NMNODE,NMNODE,MS,NMNODE,NMNODE,TEMP,IER) CALL ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,TEMP,IER) CALL ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,M,IER) M(NLNODE,NL2)=1. COMPUTE RR: FACTOR=(1,-ALPHA)*DT CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP1,NMNODE,NMNODE,DELC,NMNODE,TEMP1,TER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,IER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP2,TER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP2,TER) FACTOR=-FACTOR CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP2,TER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,TER) FACTOR=-FACTOR	ALL	MULI(FACTOR, 1, 1, 1, M2, NMNODE, NMNODE, 1EMP1, 1ER)
CALL MULT(TEMP,NHNODE,NHNODE,M3,NHNODE,NLNODE,TEMP1,IER) CALL ADD(M1,NHNODE,NLNODE,TEMP1,NHNODE,HLNODE,TEMP2,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NHNODE,NHNODE,TEMP,IER) CALL MULT(TEMP,NHNODE,NHNODE,OEL1,NHNODE,NHNODE,TEMP1,IER) CALL MULT(TEMP1,NHNODE,NHNODE,M3,NHNODE,NHNODE,TEMP,IER) CALL AGD(TEMP2,NHNODE,NHNODE,TEMP,NHNODE,NHNODE,M,IER) M(NLNODE,NL2)=1. FACTOR=(1,-ALPHA)*DT CALL MULT(FACTOR,1,1,M2,NHNODE,DELC,NHNODE,TEMP,IER) CALL MULT(TEMP1,NHNODE,NHNODE,DELC,NHNODE,TEMP1,IER) CALL MULT(TEMP1,NHNODE,NHNODE,M3,NHNODE,TEMP,IER) CALL MULT(TEMP1,NHNODE,NHNODE,TEMP2,IER) CALL MULT(TEMP1,NHNODE,NHNODE,TEMP2,IER) CALL ADD(M1,NHNODE,NHNODE,TEMP2,NHNODE,NHNODE,TEMP2,IER) FACTOR=-FACTOR CALL ADD(M1,NHNODE,NHNODE,TEMP2,NHNODE,TEMP1,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NHNODE,NHNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NHNODE,NHNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NHNODE,NHNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NHNODE,NHNODE,TEMP1,IER)	CALL	MULT(TEMP1*NMNODE*NMNODE*DEL1*NMNODE*NMNODE*TEMP*IER)
CALL ADD (M1, NHNODE, NLNODE, TEMP1, NHNODE, HLNODE, TEMP2, IER) FACTOR=-FACTOR CALL MULT(FACTOR, 1, 1, M4, NHNODE, NHNODE, TEMP, IER) CALL MULT(TEMP, NHNODE, NHNODE, DEL1, NHNODE, NHNODE, TEMP1, IER) CALL MULT(TEMP1, NHNODE, NHNODE, M3, NHNODE, NHNODE, TEMP, IER) CALL ADD (TEMP2, NHNODE, NHNODE, TEMP, NHNODE, NHNODE, M, IER) M(NLNODE, NL2)=1. FACTOR=(1,-ALPHA)*DT CALL MULT(FACTOR, 1, 1, M2, NHNODE, NHNODE, TEMP, IER) CALL MULT(FACTOR, 1, 1, M2, NHNODE, MNODE, TEMP, IER) CALL MULT(TEMP1, NHNODE, NHNODE, MNODE, NHNODE, TEMP1, IER) CALL MULT(TEMP1, NHNODE, NHNODE, MNODE, NHNODE, TEMP2, IER) CALL ADD (M1, NHNODE, NHNODE, TEMP2, NHNODE, NHNODE, TEMP2, IER) CALL ADD (M1, NHNODE, NHNODE, TEMP2, NHNODE, NHNODE, TEMP2, IER) FACTOR=-FACTOR CALL MULT(FACTOR, 1, 1, M4, NHNODE, NHNODE, TEMP1, IER) CALL MULT(FACTOR, 1, 1, M4, NHNODE, NHNODE, NHNODE, NHNODE, TEMP2, IER) CALL MULT(FACTOR, 1, 1, M4, NHNODE, NHNODE, NHNODE, NHNODE, NHNODE, NHNODE, TEMP2, IER)	CALL	MULT(TEMP, NMNODE, NMNODE, M3, NMNODE, NLNODE, TEMP1, IER)
FACTOR = - FACTOR CALL MULT(FACTOR, 1, 1, M4, NMNODE, NMNODE, TEMP, IER) CALL MULT(TEMP, NMNODE, NMNODE, DEL1, NMNODE, NMNODE, TEMP, IER) CALL MULT(TEMP1, NMNODE, NMNODE, M3, NMNODE, NMNODE, TEMP, IER) CALL ADD(TEMP2, NMNODE, NMNODE, TEMP, NMNODE, NMNODE, M, IER) M(NLNODE, NL2) = 1. FACTOR = (1 ALPHA) * DT CALL MULT(FACTOR, 1, 1, M2, NMNODE, NMNODE, TEMP, IER) CALL MULT(FACTOR, 1, 1, M2, NMNODE, DELG, NMNODE, NMNODE, TEMP1, IER) CALL MULT(TEMP, NMNODE, NMNODE, DELG, NMNODE, NMNODE, TEMP1, IER) CALL MULT(TEMP1, NMNODE, NMNODE, M3, NMNODE, NMNODE, TEMP2, TER) CALL ADD(M1, NMNODE, NMNODE, TEMP2, NMNODE, NMNODE, TEMP2, TER) FACTOR = - FACTOR CALL MULT(FACTOR, 1, 1, M4, NMNODE, NMNODE, TEMP1, IER) CALL MULT(FEMP1, NMNODE, NMNODE, NMNODE, TEMP2, IER) FACTOR = - FACTOR CALL MULT(FEMP1, NMNODE, NMNODE, NMNODE, TEMP1, IER) CALL MULT(FEMP1, NMNODE, NMNODE, NMNODE, TEMP1, IER) CALL MULT(FACTOR, 1, 1, M4, NMNODE, NMNODE, TEMP1, IER) CALL MULT(FEMP1, NMNODE, NMNODE, NMNODE, TEMP2, IER)	CALL	ADD(M1+NMNODE+NLNODE+TEMP1+NMNODE+NLNODE+TEMP2+IER)
CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP;IER) CALL MULT(TEMP,NMNODE,NMNODE,DEL1,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP,IER) CALL ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,M,IER) M(NLNODE,NL2)=1. / COMPUTE RR: FACTOR=(1,-ALPHA)*DT CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DELG,NMNODE,TEMP,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,IER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP2,IER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP2,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,NMNODE,TEMP1,IER)	FACT	DR=-FACTOR
CALL MULT(TEMP, NMNODE, NMNODE, DEL1, NMNODE, NMNODE, TEMP1, TER) CALL MULT(TEMP1, NMNODE, NMNODE, M3, NMNODE, NMNODE, TEMP, TER) CALL ADD(TEMP2, NMNODE, NMNODE, TEMP, NMNODE, NMNODE, M, TER) M(NLNODE, NL2)=1.	CALL	MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP,IER)
CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP,IER) CALL ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,M,IER) M(NLNODE,NL2)=1.	CALL	MULT(TEMP, NMNODE, NMNODE, DEL1, NMNODE, NMNODE, TEMP1, TER)
CALL ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,M,IEP) M(NLNODE,NL2)=1. COMPUTE RR: FACTOR=(1,-ALPHA)*DT CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DELG,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,IER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP,IER) FACTOR=-FACTOR CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER)	CALL	MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP,IER)
M(NLNODE,NL2)=1. COMPUTE RR: FACTOR=(1ALPHA)*DT CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DELG,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,TER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,OEL0,NMNODE,NMNODE,TEMP2,IER)	CALL	ADD(TEMP2,NMNODE,NMNODE,TEMP,NMNODE,NMNODE,M,IER)
FACTOR=-FACTOR FACTOR=-FACTOR FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DELG,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER)	MONLI	NODE, NL2) =1.
FACTOR=(1ALPHA)*DT CALL MULT(FACTOR.1.1.M2.NMNODE.NMNODE.TEMP.IER) CALL MULT(TEMP.NMNODE.NMNODE.DELG.NMNODE.NMNODE.TEMP1.IER) CALL MULT(TEMP1.NMNODE.NMNODE.M3.NMNODE.NMNODE.TEMP2.TER) CALL ADD(M1.NMNODE.NMNODE.TEMP2.NMNODE.NMNODE.TEMP.IER) FACTOR=-FACTOR CALL MULT(FACTOR.1.1.M4.NMNODE.NMNODE.TEMP1.IER) CALL MULT(FACTOR.1.1.M4.NMNODE.NMNODE.TEMP1.IER) CALL MULT(TEMP1.NMNODE.NMNODE.TEMP2.IER)	1	COMPUTE RR:
CALL MULT(FACTOR,1,1,M2,NMNODE,NMNODE,TEMP,IER) CALL MULT(TEMP,NMNODE,NMNODE,DELG,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,IER) CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,0EL0,NMNODE,NMNODE,TEMP2,IER)	FACT	DR=(1ALPHA)*DT
CALL MULT(TEMP, NMNODE, NMNODE, DELG, NMNODE, NMNODE, TEMP1, TER) CALL MULT(TEMP1, NMNODE, NMNODE, M3, NMNODE, NMNODE, TEMP2, TER) CALL ADD(M1, NMNODE, NMNODE, TEMP2, NMNODE, NMNODE, TEMP, TER) FACTOR=-FACTOR CALL MULT(FACTOR, 1, 1, M4, NMNODE, NMNODE, TEMP1, TER) CALL MULT(TEMP1, NMNODE, NMNODE, NMNODE, TEMP1, TER)	CALL	MULT(FACTOR, 1, 1, M2, NMNODE, NMNODE, TEMP, IER)
CALL MULT(TEMP1+NMNODE+NMNODE+M3+NMNODE+NMNODE,TEMP2,TER) CALL ADD(M1+NMNODE+NMNODE+TEMP2+NMNODE+NMNODE+TEMP+IER) FACTOR=-FACTOR CALL MULT(FACTOR+1+1+M4+NMNODE+NMNODE+TEMP1+IER) CALL MULT(TEMP1+NMNODE+NMNODE+DEL0+NMNODE+NMNODE+TEMP2+IER)	CALL	MULT(TEMP, NMNODE, NMNODE, DELC, NMNODE, NMNODE, TEMP1, TER)
CALL ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP,IER) FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,DEL0,NMNODE,NMNODE,TEMP2,IER)	CALL	MULT(TEMP1,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP2,TER)
FACTOR=-FACTOR CALL MULT(FACTOR,1,1,M4,NMNODE,NMNODE,TEMP1,IER) CALL MULT(TEMP1,NMNODE,NMNODE,DEL0,NMNODE,NMNODE,TEMP2,IER)	CALL	ADD(M1,NMNODE,NMNODE,TEMP2,NMNODE,NMNODE,TEMP,IER)
FACTOR=-FACTOR CALL_MULT(FACTOR+1+1+M4+NMNODE+NMNODE+TEMP1+IER) CALL_MULT(TEMP1+NMNODE+NMNODE+DEL0+NMNODE+NMNODE+TEMP2+IER)		
CALL MULT(FACTOR, 1, 1, M4, NMNODE, NMNODE, TEMP1, TER) CALL MULT(TEMP1, NMNODE, NMNODE, DELO, NMNODE, NMNODE, TEMP2, TER)	FACTO	DREFFACTUR
LALL MULICIEMPIONNOULONNOULOULUONMNUULONNNUULOILONNNUULOILONNNUULOILONNNUULOILONN	CALL	MULI(FACIUR, 1, 1, M4, NMNODE, NMNODE, TEMP1, TER)
	LALL	MULICIEMPINNNODENMNODENVELUNNMNODENMNODENTEMP201ER)

.

.

• .

- 304

•

•

```
C
С
      CALL ADD (TEMP * NNNODE * NMNODE * TEMP1 * NMNODE * NMNODE * TEMP2 * IER)
      CALL MULT(TEMP2,NMNODE,NMNODE,P0,NMNODE,1,RR,IER)
      RR(NTNODE)=0.
      RR(NTNODE+1)=PBHL
С
С
С
      CALL SOLVE(M,RR,P1,NLNODE)
С
С
       IF(LOOP.NE.1) GO TO 235
       TSTEP = -100
      IF(KILL.NE.1) GO TO 232
CSHIFT
      DO 239 I=1.NLNODE
      PO(I) = P1(ICUT+I)
      YT(I)=YNODE(ICUT+I,1)
  239 CONTINUE
CTRANSFER
      NT=NLNODE-2*ICUT
      CALL TRANS3(YT, PU, NT, XNODE, STRSL, NXNODE, 80, 80, 1)
CCUT
       DO 241 I=1.ICUT
       STRSL(I,3)=0.
       STRSL(NXNODE-ICUT+I,1)=0.
  241 CONTINUE
С
  232 CONTINUE
       GO TO 1000
С
  235 CONTINUE
      CALL MULT(M5,NMNODE,NMNODE,DEL1,NMNODE,NMNODE,TEMP,IER)
       CALL NULT(TEMP+NMNODE+NMNODE+M3+NMNODE+NMNODE+TEMP1+TER)
```

305

.

```
CALL MULT(TEMP1,NMNODE,NMNODE,P1,NMNODE,1,DDEL1,TER)

CALL MULT(M5,NMNODE,NMNODE,DELG,NMNODE,NMNODE,TEMP,TER)

CALL MULT(TEMP,NMNODE,NMNODE,M3,NMNODE,NMNODE,TEMP1,TER)

CALL MULT(TEMP1,NMNODE,NMNODE,P0,NMNODE,1,DDELG,TER)

IF(KILL.NE.1) GO TO 148

DO 146 I=1,ICUT

P1(I)=0.

P1(NLNODE-ICUT+I)=0.

146 CONTINUE
```

```
C
C
```

Ċ

С

```
148 CONTINUE
```

```
SUM=0.
DO 150 I=1,NLNODE
DDELDT(I)=ALPHA*DDEL1(I)+(1.-ALPHA)*DDEL0(I)
DELTA0(I)=DELTA0(I)*DDELDT(I)*DT
'SUM=SUM+DELTA0(I)*DSORT(1.-YNODE(I,1)**2)
P0(1)=P1(I)
DELTA1(I)=(1.*BETA)*DELTA0(I)
WRITE(6,466) P1(I)
466 FORMAT(E15.4)
150 CONTINUE
SUM=PI*SUM/NLNODE
WRITE(6,471) SUM
WRITE(6,467)
467 FORMAT(///)
```

```
C
C
```

```
TIME=TIME+DT
GO TO 100
```

```
С
С
```

1000 CONTINUE RETURN END

			\cdot . \cdot	
	160	Ċ	SUBROUTINE STROMP	
	200	C C	SUBRUCTINE STREM	
	300	c c	THIS SUBROUTINE ASSEMBLES THE TRACTION	
	406	c	COMPONENTS CONTAINED IN THE ARRAY STRSI	
	500	C C	INTO THE "RIGHT- HAND SIDE" VECTOR OF THE	
	600	č	SYSTEM OF EQUATIONS.	
	700	Ċ		
	800		SUBROUTINE STRCMP	
	90 Ŭ		IMPLICIT REAL+8(A-H, 0-Z)	
	1000		INTEGER ORDER	
	1100		DIMENSION RLOC(5,3), RFOS(3), AA(2), B(2), NPTS(4)	
	1200		DIMENSION XNODE(80,3), TNODE(80,3), STRSL(80,3), STRSC(80,3)	
	1300		DIMENSION A(80,80)	
	1400		DIMENSION COEFF(80),SIGMA(80),ACART(80,3)	
	1500		DIMENSION ALOC(80,3),ELCON(2,3)	. •
	1600		DIMENSION ZETA(2,80),ETA(2,80)	
	1700	С		
	1800		COMMON /SIZE/ ORDER.NELMNT.NXNODE.NTNODE	
	.1900		COMMON /ARRAYS/ A.SIGMA.COEFF	
	2000		COMMON /OUT/ STRSL,STRSC,ALOC,ACART	ť
	2100		COMMON /GP/ ZETA,NPTS	30
	2260		COMMON /DOF/ IDOF	7
	2300	С		I
	2400	С		
	2500		I I = 0	
	2600		IMIN=1	
	2700		IMAX=0	
	2800		DO 185 J=1.NELMNT	
	2900		IMAX=IMAX+NPTS(J)-1	
	3000		DO 180 BETA=1, IDOF	
•	3100		DO 170 I=IMIN,IMAX	
	3200		II=II+1	
	3360		SIGMA(II)=STRSL(I,BETA)	
	3400	1	.7G CONTINUE	

•

3500		II=II+1				
3600	180	CONTINUE				
3700		IMIN=IMAX+1				
3800	185	CONTINUE				
3900		RETURN				
4000		END				
				•		
				,		

, . . .

•

.

•

100	CSI	JBROUTINE STRESS	
200	С		
300	С	THIS SUBROUTINE AUTOMATICALLY	
400	С	GENERATES INITIAL TRACTIONS WITH	
500	С	THE DESIRED FUNCTIONAL FORM.	
600	С		
700		SUBROUTINE STRESS(STRSL,LOAD,I,J)	
800	С		
90 û		IMPLICIT REAL*8(A-H,0-Z)	
1000		INTEGER ELMNTT(4,80),ELMNTX(4,80),RFRONT	
1100		REAL*8 LOAD(2), NONGAM, NONDEL, NONP, NONMU	
1200	C		
1300		DIMENSION XNODE(80,3),TNODE(80,3),STRSL(80,3),STRSX(80,3)	
140ŭ	C		
1500		COMMON /BKPING/ XNODE, TNODE, ELMNTT, ELMNTX	
1600		COMMON /LPAR/ LTYPE	
1700		COMMON /NONDIM/ NONGAM,NONDEL,NONP,NONMU,TAUC	
1800		COMMON /FILL/ LFRONT+RFRONT	1
1906	С		30
2000		EXP(Q) = DEXP(Q)	. 0
2100		SQRT(Q)=DSQRT(Q)	1
2200		ABS(Q)=DABS(Q)	· ·
2300	C		
2400		A=ABS(TNODE(1,1))	·
2500		IF((LTYPE.EG.1).OR.(LTYPE.EQ.5)) B=LOAD(2)	
2600		CONST=LOAD(1)*EXP(-8*0.25)	
2700	C		o
2800		IF(LTYPE.EQ.1) STRSL(J:1)=LOAD(1)*EXP(-B*XNODE(J:1)**2)	·
2900	С		·
3000		IF(LTYPE.EQ.6) STRSL(J,1)=LOAD(1)*(1(XNODE(J,1)/A)**2)	
3100		IF(LTYPE.EQ.2) STRSL(J,1)=LOAD(1)*SQRT(1ABS(XNODE(J,1)))	
3200	С		
3300		IF(LTYPE.EQ.3) STRSL(J,1)=LOAD(1)	·
3400	С		

3500		IF((LTYPE.EQ.4).AND.(XNODE(J,1).LT.0.)) STRSL(J,1)=LOAD(1)*
360ú		1(1.+XNODE(J.1))
3700	С	
380ü		IF((LTYPE+EQ.7).AND.(XNODE(J,1).LT.C.)) STRSL(J,1)=LOAD(1)*
390ŭ		1(XNODE(RFRONT,1)+XNODE(J,1))/XNODE(RFRONT,1)
4000	С	
4100		IF((LTYPE.EQ.4).AND.(XNODE(J.1).GE.0.)) STRSL(J.1)=LOAD(1)*
4200		1(1XNODE(J.1))
4300	С	
4400		IF((LTYPE.ER.7).AND.(XNODE(J,1).GE.G.)) STRSL(J,1)=LOAD(1)*
4500		1(XNODE(RFRONT,1)-XNODE(J,1))/XNODE(RFRONT,1)
4600	C	
4700		IF((LTYPE.EQ.7).AND.(J.LT.LFRONT)) STRSL(J,1)=0.
4800		IF((LTYPE.EQ.7).AND.(J.GT.RFRONT)) STRSL(J,1)=0.
4900	С	
5000		IF((LTYPE.EQ.5).AND.(ABS(XNODE(J,1)).GT.0.5)) STRSL(J,1)=0.
5100	С	
5200		IF((LTYPE.EQ.5).AND.(ABS(XNODE(J,1)).LE.0.5)) STRSL(J,1)=
5300		1LOAD(1)*EXP(-B*XNODE(J+1)**2)~CONST
5400	С	
5500		STRSL(J,1)=STRSL(J,1)*NONP
5600		STRSL(J+2)=LOAD(2)+NONP
5700		IF((LTYPE.EQ.1).OR.(LTYPE.EQ.5)) STRSL(J.2)=0.
5 80 0	С	
5900		RETURN
6000		END

.

.

:

,

.

•

.

100	C L	SUBROUTINE TRANS3
200	С	
300	С	THIS SUBROUTINE INTERPOLATES A FUNCTION
400	С	KNOWN FOR THE ARGUMENTS XTEMP AT THE NEW SET
500	С	OF ARGUMENTS XOLD (THESE NAMES ARE NO LONGER
60û	С	MNEMONIC, BUT WHEN THE SUBROUTINE WAS WRITTEN
700	С	THEY WERE RELEVANT). TRANS3 USES LGRNG TO
860	С	PERFORM THE ACTUAL INTERFOLATION, BUT DOES SO
900	С	IN SUCH A WAY THAT THE FUNCTION IS INTERPOLATED
1000	C	SEPARATELY ON EITHER SIDE OF THE ORIGIN, TO
1100	С	PRESERVE DISCONTINUITIES.
120ü	C	
1300		SUBROUTINE TRANS3(XTEMP,YTEMP,NXTEMP,XOLD,YOLD,NXGLD,
1400		1 IROW, JROW, JCOL)
1500	C	
1600		IMPLICIT REAL+8(A-H,0-Z)
1700		DIMENSION XSIDE(400,3), YSIDE(400,3)
1800		DIMENSION XOLD(JROW,3),YOLD(JROW,1),XTEMP(IROW,3),YTEMP(IROW,5)
1900	C	
2000		NXT=NXTEMP/2
2100		WRITE(25,100) NXT
2200		NSIDE=NXOLD/2
2300		ITEST=2*NXT
2400		IF(ITEST.LT.NXTEMP) NXT=NXT+1
2500		WRITE(25,10G) NXT
2600	_	100 FORMAT(* *,13)
2700	С	
2800		
2900		XSIDE(1,1)=XIEMP(1,JCOL)
3000		YSIDE(I)=YIEMP(I)JCUL)
3100		5 CONTINUE
3200	U	
3300		K=1
3400		DO IU IFIONSIUE
	$100 \\ 200 \\ 300 \\ 400 \\ 500 \\ 600 \\ 700 \\ 800 \\ 900 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 1200 \\ 2400 \\ 2500 \\ 2400 \\ 2500 \\ 2400 \\ 2500 \\ 2400 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 2500 \\ 3100 \\ 3200 \\ 34$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• •

. .

. -

			•	
3500			CALL LGRNG(XSIDE, YSIDE, XOLD(I,1), PT, NXT, 5, IROW)	
3600			YOLD(K,1)=PT	
3700			K=K+1	
3800		10	CONTINUE	
3900	С			
4066			IF(ITEST.LT.NXTEMP) NXT=NXT-1	
4100			N=NXT+1	
4200			DO 15 I=1,NXT	
4300			XSIDE(I,1)=XTEMP(N,JCOL)	
4400			YSIDE(I,1)=YTEMP(N, JCOL)	
4500			N=N+1	
4600		15	CONTINUE	
4700	С		·	
4800			NSIDE=NSIDE+1	
4900			DO 20 I=NSIDE,NXOLD	
5000			CALL LGRNG(XSIDE, YSIDE, XOLD(I, 1), PT, NXT, 5, IROW)	
5100			YOLD(K,1)=PT	
5200			K=K+1	
5300		20	CONTINUE	
5466	С		· · · · · · · · · · · · · · · · · · ·	
5500			RETURN	
5600			END	

100	С	SUBROUTINE TRNSFM	
200	С		
300	С	THIS SUBROUTINE USES THE VECTOR	•
436	С	TRANSFORMATION LAWS TO TRANSFORM THE	
500	С	VALUES OF THE SOLUTION "F" FROM GLOBAL	
600	С	INTO LOCAL COORDINATES.	
700	С		
800		SUBROUTINE TRNSFM	
900		IMPLICIT REAL*8(A-H+O-7)	
1030		INTEGER ELMNTT(4,80),ELMNTX(4,80)	
1100		INTEGER ORDER	
1200		DIMENSION XNODE (80,3), TNODE (80,3), SIRSL(80,3), SIRSL(80,3)	
1306		DIMENSION COEFF(80), SIGMA(80), ACARI(80, 5)	·
1400	1	DIMENSION ALOC(80,3), LLCON(2,3)	
1500		DIMENSION XAI(4) • XBI(4) • XA2(4) • XB2(4)	1
1666	C	A AN ART ARTICLE AND A MAR AND A THETA	ယ္
1700		COMMON /ENDPIS/ XAIAXBIAXAZAXDZAINEIA	13
1800		COMMON /SIZE/ URBERINLENNINNANUDEININUDEL COMMON /OUT/ CTDSC ALOC ACART	1
1900		COMMON TOUTT STRSLISTRSLIALDCHACART	
2000		ATANAO)-DATANAO)	
2100			
0765		CUC(0)-DCUC(0)	
2300	,		
2400	,	OFIR X = 0	
2000		DD 380 I=1.NELMNT	
2000		GAMMA=3,1415926535898/2.	
2800		ARG = (XB2(I) - XA2(I)) / (XB1(I) - XA1(I))	
2966		TE(XB1(T), NE, XA1(T)) GAMMA=ATAN(ARG)	
3000		IF(XB1(1).LT.XA1(I)) GAMMA=3.1415926535898+GAMMA	
3109		GAMMA = -GAMMA	
3200		JMAX=JMAX+ELMNTT(I,1)	
3300		DO 370 J=JMIN, JMAX	
3400	С		
	-		

3500		
1000		ALUC(J#1)-ACART(J#1)*CUS(GAMMA)+ACART(J#2)*SIN(GAMMA)
3600		ALOC(J+2)=-ACART(J+1)*SIN(GAMMA)+ACART(J+2)*COS(GAMMA)
3796	370	CONTINUE
. 3800		JMIN=JMAX+1
390û	380	CONTINUE
4000		RETURN
4100		END
*		

·

.