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ABSTRACT

A theoretical and experimental study of the anomalous Hall
effect in (Hg,Cd)Te is reported and a model successfully
explaining these anomalies is presented. It is shown that the
anomalous Hall coefficient, which is characterized by either a
"peak' or a "double reversal of sign' in its temperature
dependence, is not attributable to classical transport theory
for electrically homogeneous semiconduction of holes or
electrons in a crystal lattice.

The results of the surveys on anomalous Hall properties
observed in five other semiconductors and the possible models
for their anomalies show that the conducting-surface model --
the existence of an n-type surface on a p-type sample -- is
more favorable for (Hg,Cd)Te. A theory is developed on the
basis of this model to include the effects of the magnetic
field and the bulk and the surface properties on the apparent
Hall quantities that one measures. A method for deducing the
bulk carrier density directly from the anomalous data is
derived.

The model accounts for the previously unexplained phenomena,
such as the effects of the impurity density, the sample thickness,
and the magnetic field strength on the anomalous Hall coefficient,
and the results of the electron irradiation experiments. A
good qualitative agreement between data and calculations is
obtained.



With a different fabrication technique p-type Hall characteristics
are obtained from several previously measured peak-type samples.
The bulk hole densities for several peak-type samples are calculated
to be less than 2 x 1015 cm-3 . Finally, a more general model is
developed to give more flexibility in the physical interpretations
of the anomalies.
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CHAPTER I

INTRODUCTION

1.1 INTRODUCTION

The alloy system Hg. xCdxTe has been of great interest in the

field of infrared detection in recent years because the energy

gap of this alloy can be varied continuously from -0.3 eV in

semimetal HgTe to 1.6 eV in wide gap semiconductor CdTe by

adjusting the composition x . As a result, the alloy is

suitable as an intrinsic photon detector covering the major

atmospheric windows of the infrared spectrum at short (around

2 microns), middle (3 to 5 microns) and long (8 to 14 microns)

wavelengths. To understand the basic electrical properties is

a critical step in the development of (Hg,Cd)Te.

The two most important parameters in the study of the elec-

trical properties of materials are the carrier concentration

and the mobility. The experimental technique employed to

measure these quantities is the Hall effect which is usually

measured as a function of temperature between 4* and 300*K.

The electrical properties of n-type (Hg,Cd)Te have been

reported by a number of authors and were reviewed in reference

(1). However, the behavior of the Hall coefficient R and the

resistivity P as functions of temperature in some (Hg,Cd)Te

samples is much more complex and difficult to interpret by

classical semiconductor physics.



The primary goal of this thesis research is to verify the

hypothesis that an n-type layer on p-type bulk is responsible

for the anomalous Hall effect in (HgCd)Te. The ultimate value

of this research is that it offers the possibility that here-

tofor uninterpretable Hall data on (Hg,Cd)Te may finally be

understood.

1.2 CLASSIFICATION OF (Hg,Cd)Te ELECTRICAL PROPERTIES

In general, there are four types of (HgCd)Te samples as

depicted by their measured Hall properties. Plotting the abso-

lute Hall coefficient R las a function of temperature T, one

finds that all plots can be classified into the following four

groups:

a) n-type: the Hall coefficient is negative at all

temperatures and is temperature independent from

4.2*K up to the on set of the intrinsic region;

b) p-type: the Hall coefficient is positive at low

temperatures and negative at high temperatures

and has a single crossover next to the intrinsic

region;

c) Peak-type*: the Hall coefficient is negative at

all temperatures and is temperature independent

at low temperatures, reaching a "maximum" next to

the intrinsic region;

* A "peak" in the |R| vs T plot is actually when R reaches a

minimum if R is negative.
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d) DCO-type (double crossover): the Hall coefficient

is negative at low temperatures, positive at

medium temperatures and becomes negative again at

high temperatures and has two crossover (sign

reversal) points.

Typical examples of these four types of temperature dependent

Hall coefficients are shown in Figure 1.2.1 and their corres-

ponding temperature dependent resistivities and mobilities are

shown in Figures 1.2.2 and 1.2.3, respectively. Previously,

(Hg,Cd)Te samples characterized as Peak- or DCO-type by their

Hall measurements were not fully understood in terms of clas-

sical semiconductor physics. This means that these anomalous

electrical properties, unlike those of n- and p-type material,

were not interpreted by means of conductions of electrons and/

or holes in the conducting bands. Therefore, the Peak- and

DCO-type samples were classified as material having anomalous

electrical properties. This research will be dealing with

these anomalous (Hg,Cd)Te materials.

1.3 SCOPE OF THIS THESIS

To achieve clarity of presentation, the Hall effect in classical

materials (n-type or p-type with mixed conduction), will be pre-

sented first.



In Chapter II, expressions for the Hall coefficient, conducti-

vity and mobility for classical materials will be derived from

the transport equations; numerical calculations will be made

for p-type Hg0 .8Cd 0.2Te. The calculations serve two purposes:

first, they prove that anomalies cannot be realized by the

classical conduction processes involving the effects of mixed

conduction, compensation and freeze-out; second, they provide

the mathematical groundwork for the later analysis of the ano-

malies.

In Chapter III, reviews on the anomalies observed in five other

semiconductors and on a number of models proposed to explain

such anomalies will be given. A particular model will be

selected to explain anomalies in (Hg,Cd)Te.

In Chapter IV, a theoretical analysis of this model, the

conducting-surface model, will be presented. In Chapter V,

this model will be applied to explain various experimental

results.

The concluding chapter, Chapter VI, will be a discussion of

the results, of the areas for further investigation, and of the

conclusions that can be drawn from this study.



CHAPTER II

BULK CONDUCTIONS IN SEMICONDUCTORS

In this chapter we present and discuss the bulk conduction mecha-

nisms in semiconductors, that is, carrier transport in the con-

ductive band and the valence band. This is to lay down a ground

work which is essential both for the study of classical n- and

p-type semiconductors and for the treatment of anomalous pheno-

mena in the chapters to come.

We begin by deriving the Hall coefficient, the conductivity and

the Hall mobility from the transport equations for the case

where both electrons and holes are present. Then we discuss

qualatatively the temperature dependence of these parameters

under the influence of compensation and freezout of impurities.

Next, we make some numerical calculations for the case of p-type

(Hg0 .8Cd0 .2 )Te material. Finally, we do some quantitative ana-

lysis on the magnetic field dependence of the Hall coefficient

on the basis of the equations we have derived.

2.1 THE BULK TRANSPORT FORMALISM

In 1879 the American physicist E. C. Hall (1855-1929) discovered

the so called "Hall Effect" which is a direct manifestation of

the Lorentz force on moving charges under the presence of a



magnetic field B and an electric field E. Suppose first that

the moving charges are electrons, having a negative charge

-Iqi. When the electric field E is applied in the positive x

direction, the actual motion is in the negative x direction

with the velocity vn (see Figure 2.1.1). When the magnetic

field B is applied along the positive % direction (into the

paper), the electrons are subjected to an additional force

-Iql(vn x B) which results in the negative y direction. There-

fore the electrons drift to one side of the sample which con-

sequently become negatively charged. The other side, being

deficient in the usual number of electrons, becomes positively

charged.

-J

As a result an electric field EHn in the negative y direction

is produced. When the force -|qJE n on the electrons, which

is directed in the positive y direction, equilibrium results.

A similar analysis can be made to hole transport, only now

both the charge q and the drift velocity v are positive. It

is interesting to note that both electrons and holes deflect

toward the same side of the sample, therefore this correspond-

ing Hall field will have opposite polarities. By measuring

the polarity of the resulting field, one is able to tell whether

the dominant carriers are electrons or holes.
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Now we are ready to examine the dynamics of charged carriers

in a crystal. The total current density for each type of car-

riers is the sum of the current densities due to the electric

field, to the magnetic deflection, and to the concentration

gradients. The drift velocities E due to the electric field

for electrons and holes are given by

vEn " nE;

Ep pE'

where the subscripts "n" and "p" refer to electrons and holes

respectively; and n and 4 are the drift mobilities for the

corresponding carriers; the negative sign indicates that elec-

trons drift against the direction of the electric field. The

drift current densities are

JEn = jqjn VEn =q- n nE;

Jp = |qn v = qIp E.
Ep Ep p

.A
The Hall velocities, vH , due to the magnetic deflection are

given by

VHn kLHn (yEn x B) = n pn (E x B);

Hp Hp Ep x B) = ,p p (E x B),

where p'n and p are the Hall mobilities of electrons and

holes, respectively. Their associated current densities are



J "H= -qn v( = - qn pHn -n (E x B);

JHp = |q pVHp iHp p (E x B).

The current densities due to the concentration gradients are

given by

J n = -|q I(-Dn~ n;~Dn n

JDp = jqj (-D ) p,

where D and D are the diffusion coefficients of the corres-n p
ponding carriers.

The total current densities are the sum of all these three com-

ponents, and hence

Jn = q n nE -jgln pHn 4n (E x B) + Iq D n n; (2.1.1)

J, = Iqi p p E +|qlp 4p 4 p (E x B) - jq D p. (2.1.2)

Now let the longitudinal electric field E , the Hall field EH'

and the magnetic field Bz be in the x, y and z directions respec-

tively as shown in Figure 2.1.1. Further, if we assume that

the electrons and holes are in equilibrium, we can ignore the

diffusion currents since the gradients are zero. The vector

equations (2.1.1) and (2.1.2) can be reduced to their scalar

forms in the y direction:

iny = qn 4n E + Iqn PHn 4 n Ex Bz; (2.1.3)

J = q p E - jg| p pp tp Ex B . (2.1.4)

The sign changes in these equations compared with their vector

forms are due to the property of the determinart associated with



the cross products.

Under steady state conditions the sum of the electron and hole

current densities must be zero. It follows that

J = J + J = 0 (2.1.5)
y ny py ,

The steady state condition, together with (2.1.3) and (2.1.4),

serve to determine E ,

E = - E B (2.1.6)
y n + p x x,

Now we must pause for a moment and note the difference between

the drift mobilities, 4n and p , and the Hall mobilities, pmn
and p. In general, one can relate them by a proportionality

constant v, namely,

'Hn =Yn }n; (2.1.7)

LEp = p 4p'1

where y and yv depend on the nature of the scattering, the
np

band structure, the magnetic field strength, and on the statis-

tics characterizing the distribution of velocities of the car-

riers. Their functional dependence on these variables is usual-

ly small, and in most cases their values differ from unity by

less than ±50 per unit. Since our main concern in this research

is not in scattering mechanisms, we will let vn = p = 1 through-

out this paper for convenience.

Equation (2.1.6) may become more transparent by using the fol-

lowing definition:

2 2
n 4 pn _. - p (2.1.8)
nn + p



where 4 is the effective Hall mobility for the mixed conduction

of both electrons and holes. By means of (2.1.7) and (2.1.8),

we may rewrite (2.1.6) as follows:

E = -k. E B . (2.1.9)
y x z

The electric field E and the current density J can be related

by manipulating the scalar forms of equations (2.1.1) and (2.1.2)

in the x direction:

nx = jq n x - jqn pHn n E Bz

Jp = jqp p E + Jqjp pHp p Ey Bz.

The total current density J is the sum of the two. Using

equation (2.1.6), we have,

J= [qin (1 + H2 Bz2) + |qjp L (1+ pHp 2 B2)] E.

(2.1.10)

If we consider the case where Bz = 0, the conductivity a can be

defined as follows

J
a = B = jqjn p.n + I qp kp (2.1.11)

z

Substituting (2.1.10) into (2.1.9), we have

E = J B (2.1.12)y a x z.



Now we are ready to make the following definition:

E
R = JB (2.1.13)

x z

where R is called the Hall coefficient. From (2.1.12) and 2.1.13),

we obtain the following relationship

R = (2.1.14)

2 2
or 4. n - p

R =- n p (2.1.15)

N (pnn + p p)

For extrinsic semiconductors, (2.1.8), (2.1.11) and (2.1.15)

can be simplified as follows:

f4n for n-type (2.1.16)

-p for p-type

on qjn T n for n-type, (2.1.17)

jqI p p a p for p-type;
and

R / qlnE Rn for n-type,

/jqjp R for p-type.

From (2.1.13) we know that R is a measurable parameter. It

is very important quantity in solid state physics because,

together with the conductivity, it enables us to know both the

carrier concentration from (2.1.18) and the mobility from



(2.1.14). The sign of R (or 4), reveals the type of majority

carriers. In other words, a negative R (or positive p) indica-

tes that the sample being measured is n-type.

Equations (2.1.2) applies only to the Hall effect in the limit

of small magnetic field. If we want to express the Hall coef-

ficient in terms of a magnetic field with arbitary strength,

quantities which are of second order in the magnetic field must

be considered. According to Chamber 20, the magnetic field de-

pendent Hall coefficient can be expressed as follows

a2 2 2 2 2o R + a R +a a B R R (R + R )
R=n n p p n p n p n p (2.1.19)
R =2 2 2 2 _2
(R - + a a B (R + R )(n p) +n p n p.

Clearly when B = 0, these equations becomes its original form

2.2 TEMPERATURE DEPENDENT BULK ELECTRICAL PROPERTIES OF
CLASSICAL n- AND p-TYPE MATERIALS

In the preceeding sections, we derived expressions for the con-

ductivity, the Hall coefficient and the Hall mobility for the

mixed conduction of electrons and holes in semiconductors. We

now summarize our results as follows:

a = JqJ Ln +)qJ p; (2.2.1)



2 2
p, n - Lp

R = - n p 2 (2.2.2)
ql ( n + p )2

2 2
= n p . (2.2.3)

n + p

Also we have the following expressions for the extrinsic case:

an = Iq nn ; (2.2.4)

a = Iq4 pp ; (2.2.5)

R = ~ ;1 (2.2.6)
n qn

R = ; (2.2.7)

n= - n (2.2.8)
a
n

and
-R

p -C-i (2.2.9)

where the subscripts "n" and "p" represent the extrinsic car-

rier types.

By means of the separation of carrier types, (2.2.1) to (2.2.3)

can be rewritten in a more concise form:

a =a + a ; (2.2.10)
n p

R 2 2 ;(2. 2.11)

30



and

a = 4n -n + Lp C2 ; (2.2.12)
a ar

For simplicity, we first assume that the donor level and the

acceptor levels are merged with the conduction band and the

valence band respectively. Thus, even at very low temperatures

the carriers are fully ionized having the same densities as

their corresponding impurity densities, and they remain con-

stant as the temperature is raised, since intrinsic excitation

will be small compared to the free carriers from the impurities.

The mobilities in this temperature range will be constant if

impurity scattering is small. However, at some higher tempera-

ture, the mobilities decrease due to thermal scattering while

the free carrier densities remain constant. This gives rise

to a fall in the a(T) curve as depicted in Figure 2.2.1. As

the temperature is further increased, the mobilities will con-

tinue to fall while the free carriers increase exponentially

due to intrinsic excitation and eventually will prevail and

the conductivity will rise rapidly.

The R(T) curves differ drastically from n- to p-type semicon-

ductors as contrary to the a(T) curves. In an n-type semicon-

ductor, in which R is always negative, the temperature depen-

dance of R is similar to the temperature dependence of the in-
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verse of n and is represented by the dotted curve in Figure

2.2.2. The donor density Nd can be obtained from the value of

Rn at low temperatures (2.2.6).

On the other hand, a p-type semiconductor will have positive

R at low temperatures. Since is in general larger than

2.
, as the temperature rises, eventually the term 4 n in

(2.2.2) will dominate and the sign of R will change to negative.

The crossover point of R is where tin a = t a . After R

changes to negative, its absolute value rises rapidly with in-

creasing temperature, reaches a maximum at a = a , then falls
n p

and matches up with the n-type curve in the intrinsic region.

The maximum of IRI can be determined by setting the derivative

of |JN with respect to the temperature to zero, and is given

by 26
2

IRMI = -b) (2.2.13)

where b is the electron to hole mobility ratio,

b = -n (2.2.14)
p

Using the conditions that R reaches a maximum at an p

with large b value, and p ~ NA at such high temperature, at

equilibrium, we obtain the following from (2.2.13):

NA p = 4 q[R In i(TM)] 2 (2.2.15)



and

b (TM) = [4 q RJ nj(TM] (2.2.16)

where TM is the temperature at which R = RM . Provided that

n (T) is known, R(T) enables us to calculate simultaneously

the doping density and the mobility ratio. The plateau region

of R(T) may be used to calculate NA according to (2.2.7). But

for many p-type simiconductors, such as (Hg,Cd)Te, the freeze-

out effect which will be discussed in the next section together

with the reversal of sign will obscure the plateau region of R(T)

As a result, the accuracy of calculating the acceptor density

using the plateau is reduced. This is the reason why (2.2.15)

is widely used in doping determination for p-type materials.

As indicated in Figure 2.2.2, an overshout in the p-type R(T)

curve appears which, according to Putley 26, is always the

case when b >3.7.

The situation considered so far is rather ideal.

In reality, semiconductors are generally compensated - the

presence of both donors and acceptors, and the donor levels

and the acceptor levels are separated from the conduction

band and the valance band respectively. Hence, the Hall ef-

fect is only the measurement of the conduction by the "excess"



carriers which is proportional to the degree of compensation,

and by the "ionized" carriers which is governed by the activa-

tion energy.

Let us now consider a compensated semiconductor. At absolute

zero all carriers are tied to their impurity centers. As

the temperature rises a few degrees, electrons gain enough

energy to be free from donors and likewise holes are liberated

from acceptors. Electrons will then recombine with holes un-

til the exhaustion of one type of carriers. Then the excess

carriers can either be electrons or holes depending on the den-

sity of the donor compared to that of the acceptors. Some of

these excess carriers will be ionized to the conductor band

or the valence band and will contribute to the conduction. At

low temperatures, the ionized excess carriers are of small quan-

tity, corresponds to a large value of |R|. As the temperature

rises, more excess carriers are ionized and |R| decreases ac-

cording to (2.2.6) or (2.2.7), flattening out when the impurity

centers are exhausted. The plateau region now can only be used

to calculate the compensated impurity density, i.e. IN - IND

As intrinsic excitation becomes appreciable, jRd shows a cross-

over and both IRpj and IR nI will decrease exponentically when

intrinsic conduction predominates (Figure 2.2.3).
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2.3 NUMERICAL CALCULATIONS ON p-TYPE (Hg0.8Cd0.2)Te

In this section, we will use the model developed in the pre-

ceding sections to calculate R as a function of temperature

using x = .2 p-type (Hg1 _ Cd )Te as a representative material.

The effects of compensation and freeze-out of acceptors will

be taken into account so that the mathematical model presented

here can describe realistically the Hall behaviors of any clas-

sical p-type (Hg0 .8Cd0 .2)Te sample and serves as an illustra-

tion in the understanding of the complicated conduction in p-

type semiconductors in general. The calculations will therefore

lay down a mathematical groundwork for future material evalua-

tions and will demonstrate the fact that the observed anomalous

Hall behavior is not attributable to the effects of mixed con-

duction, compensation or freeze-out.

In order to calculate the temperature dependence of the Hall

coefficient, we need to know the temperature dependence of the

intrinsic carrier density n (T), the hole density p(T) and the

electron and hole mobilities, 4n(T) and p (T), respectively.

n. vs absolute temperature for (Hg,Cd)Te has been calculated

and conformed to experimental results by curve fitting. The

following expression was written to give n in closed form:

1 14
n.(T) = (8.445 - 2.2875 x +0.00342) 101



3/4 3/2
E (T) T exp (-E. /2KT), (2.3.1)
g g

where x is the mole fraction, T is the temperature in *K, and

E is the band gap in eV which is given by2 8
g

E (T) = 1.59x - 0.25 + 5.233 *10~ - (1-2 .08x)

-T + 0.327x 3. (2.3.2)

With both compensation and freeze-out of acceptors taken into

account, the temperature dependence of p is no longer simple.

Fortunately, in the temperature range considered here (4.2 -

300 *K), the Fermi energy for the p-type (Hg,Cd)Te is always

a few KT above the valence band.28 This enables us to use the

result given by Blakemore 50 that the net ionized acceptor den-

sity is

+ 2(N -Nd
Na(T) d )=[l+(Nd Nv )exp(Ea)]+ [[l+(Nd/Nv)exp (Ea

+ (4/N v)(Na-Nd)exp(E a)) 1/2 (2.3.3)

where N and N are ionized acceptor and donor densities re-

spectively; Na and Nd are total acceptor and donor densities

respectively; # = 1/2 is the degenacy factor; E a = E a/KT is

the reduced acceptor energy level;

N= 2 27rmh KT 3/2

v h 2

is the effective density of states in the valence band. At



equilibrium, the charge neutrality implies the following:

p(T) = - [(N a - N N+) + 4n. ; (2.3.4a)2 a 4a d ii

2
n(T) = n. (T)/p(T). (2.3.4b)

Thus we obtain a complete description of the temperature de-

pendence of p and n.

The next parameter to be considered is the electron mobility

29
4 (T) which has been discussed by various authors . But, no
n

theoretical calculation has yet been developed which can satis-

factorily describe experimental results for all temperatures.

Furthermore, the calculated expression for n involves integra-

tion which is difficult to evaluate. Therefore we adopt the

empirical approach. The temperature dependence of pn for all

n-type (Hg0 .8Cd0 .2)Te shows similar fashion: Un increases

slightly from 4.20K to approximately 40*K, then it decreases

rapidly with increasing temperatures. The scalings with tem-

perature are a 0.125 power at low temperatures and a (-2.27)

power at high temperatures. But the magnitude of Pn at 4.2*K

varies with doping and compensation, hence a constant scaling

factor has been added to modify the empirical equation.

Assuming that at 300*K, Un is doping independent and has a

4 2
value of 10 cm /v-s, we obtain, by curve fitting, the following

expression from Figure 2.3.1:
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1 1 + 1
n (T) jIn.A(T) Unh(T), (2.3.5)

where the low temperature mobility un is given by

Vi (T) = un (4-.2*K) T0 .12 5  (2.3.6)
1.2

and the high temperature mobility U nh is given by

Unh (T) = 4.2 X 10 X T2.27 (2.3.7)

In (2.3.6), un (4.20K) is the scaling factor which can be found

from Figure 8 of Reference 29 if the free carrier concentration

5 2
at 4.20K is known, otherwise it is assumed to be 1.5 X 10 cm /

v-sec0

The hole mobility up is a much less known quantity. No theo-

retical consideration has yet been given. Its low temperature

values uP (T) are found directly from Hall measurements when

the sample is p-type; its high temperature values "ph(T) can

be calculated after the intrinsic region is reached.

From equations (2.2.1) and (2.2.1), with the condition that

n=p=n , Uph(T) can be written as

Iph T) = unh (T) + R (2.3.8)

when unh is given empirically by (2.3.7), R and a are measured

quantities at the corresponding temperatures. Equation (2.3.8)

has rather low accuracy because it determines uph from



subtracting two large quantities unh and R- (R is negative).

But these values of ph can be checked by the two calculated

values of Up. Assuming intrinsic conduction, up(To), where To

is the temperature at which R = 0, is given by

= (To) n. (To)
() Un ( n i at R = 0, (2.3.9)

p p

where v (To) and n. (To) are to be evaluated at T = To and p

can be obtained from (2.2.15). The other value of u can be

found at T = Tm which is the temperature when IRlis a maximum,

that is

un(Tm)
Pp(TM) = b(Tm) at IR = IR , (2.3.10)

where b(Tm) is given by (2.2.16) and u(Tm) by (2.3.7).

A typical p-type (Hg0 .8Cd0 .2 )Te Hall mobility for holes is

shown in Figure 2.3.1. The low and high temperature slopes

found in the log-log plot are .8 and -1.35, respectively. The

Hall coefficient and the resistivity of this sample are shown

in Figure 2.3.2 for reference. The acceptor density calculated

17 3
from Figure 2.3.2 is about 4 X 10 cm . A point to be noted

is the absence of freeze-out even at the lowest temperature

which enablesus to check the doping calculated from R . The

two calculations are within a factor of 1.5. For comparison, we

also plot in Figure 2.3.1 the hole mobility for a p-type

16 -3 . 30
(Hg0 .8Cd0 .2)Te with 1.6 X 10 cm acceptor density . The
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low doping sample apparently has a higher hole mobility at the

temperature slope calculated from this sample is consistent

with the one we obtain. We will use the average values of the

two curves in our calculations,

u (T) = 500 X T0.8  (2.3.11)
200.8

Uph(T) = 150 X 300 1.3 KT 1 .35. (2.3.12)

And the complete hole mobility expression is again

1 1 1= --- + --- (2.3.13)
Vp (T) upA Pph.

Now an explicit expression for the temperature dependence of

the Hall coefficient can be obtained by substituting p(T),

n(T), Vp(T), and y (T) into (2.2.2). R(T) vs /T is then

plotted in Figure 2.3.3, Figure 2.3.4 and Figure 2.3.5 as func-

tions of various parameters.

Figure 2.3.3 illustrates the freeze-out effect on the uncom-

17 -3
pensated 10 cm p-type (Hg,Cd)Te. We can see that the value

of the slope at low temperatures is proportional to the acceptor

activation energy EA, while the high temperature region is

almost unaffected.

Figure 2.3.4 illustrates the effect of compensation on p-type

materials having NA = 1017 cm-3 and EA = 0.004 eV. Increasing

compensation would increase the relative magnitude and shift

both the maximum and the crossover positions toward lower
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15 3
temperatures. For ND <10 cm , the compensation effects are

negligible on the R(T) curves.

Figure 2.3.5 shows a family of R(T) for various aceptor concen-

trations with EA = .003 eV and ND = 0. Note that NA has a

similar effect on R(T) as ND, that is increasing NA would

increase the relative magnitude and shift both the maximum

and the crossover positions toward lower temperatures. But

unlike the effects of compensation, increasing N A tends to

move the onset of freeze-out to a higher temperature. For

N = 1018 cm 3, the freezing out of holes starts almost at the
A

crossover temperature which is 16.7*K.

2.4 QUANTITATIVE ANALYSIS ON THE MAGNETIC FIELD
DEPENDENT HALL COEFFICIENT

Our concern in this section is to examine equation (2.1.19)

for (Hg,Cd)Te as a function of temperature and magnetic field.

Before going into numerical details, we first simplify (2.1.19)

based on the fact that the mobility ratio for (Hg,Cd)Te is

large. Then we consider the case for n-type material in which

(2.1.19) can be further simplified by ignoring contribution

from holes. Finally, numerical computation will be made to

show the magnetic field dependence of the variable temperature

Hall coefficient for p-type (Hg,Cd)Te.



For convenience, let us rewrite (2.1.19) below in a different

form:

2 2
an R C + a RC (241R(B) =r n Rn Cn py p P C (2.4.1)

2 2 2 2 2'*
(a C-IaGC) + B(a R C+a RGC)
nn p p n nn p p p

where

Cn = (unB) ;

-2 (2.4.2)
C = (u B)
p p

It can be shown that (2.4.1) is identical to (2.1.19). We

know that un>>UP for (Hg,Cd)Te. For n-type materials, we have

ni >>4pi for i = 1 or 2. Equation (2.4.2) thus reduces to

Rn (B) - ( qfnb for O<B 10 5 G,

which is independent of B. For p-type material, however, n i

may be comparable to p4  (i = 1,2) at the crossover tempera-

ture region, and R,(B) is clearly B dependent when mixed con-

duction prevails. Figure 2.4.1 shows that the p-type Hall

coefficient, which is calculated on the basis of quantities

obtained in the previous section, varies as a function of the

magnetic field. Note that the effects of increasing B-field

are to lower the value I R max and shift the crossover to a higher

temperature. These calculations are consistent with measure-

8
ments done on p-type InSb
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Although transport properties for p-type semiconductors are

complicated by mixed conduction at high temperatures and effects

of freeze-out and compensation at low temperatures, the temper-

ature dependence of the Hall coefficient cannot account for the

anomalous behaviors as characterized by the peak and DCO men-

tbned in Chapter I. Therefore, we conclude that the anomalies

are not due to either single or mixed conduction via the con-

duction band or/and the valence band which will be referred to

as "bulk conductions" hereafter. Various models have been

proposed to account for the anomalous conduction and they will

be discussed in detail in Chapter III.



CHAPTER III

ANOMALOUS CONDUCTION IN SEMICONDUCTORS

Since the discovery of the Hall effect, Hall measurements have

been made in almost every semiconductor in the study of the

electrical properties. It was soon discovered that certain

anomalies associated with the variable temperature Hall quan-

tities were reproducible and they were found in many semicon-

ductors. They are called anomalies because they cannot be inter-

preted on the basis of "bulk" conduction which has been dis-

cussed in the previous chapter. Being able to identify the

origins of these anomalous conductions will be extremely

valuable from the standpoints of fundamental physics as well

as device applications.

This chapter is concerned with the present-day understanding

variable temperature Hall properties of these anomalies. We

begin by reviewing the anomalous temperature dependent Hall

coefficients found in five representative semiconductors.

Similarities and major differences among them will be summarized.

We then present six models proposed to account for the anomalies

in vari)us semiconductors. Finally, we recommend the most

favorable model for (Hg,Cd)Te.



3.1 REVIEW OF ANOMALOUS ELECTRICAL PROPERTIES IN SEMI-
CONDUCTORS

Anomalous Hall coefficient temperature relationships have been

observed in many other semiconductors as well as in (Hg,Cd)Te.

The terminology used in Section 1.2 for (Hg,Cd)Te can also be

applied to classify anomalies observed in other semiconductors

if the corresponding temperature regions are modified. In

other words, all anomalous Hall coefficients either show a peak

or DCO. However, this does not mean that anomalies of all

materials are due to a single origin. Anomalies of various

materials may appear in a similar fashion even if they are

caused by different mechanisms. In fact, as we will discuss in

Section 3.2, there are quite a few models proposed to explain

the anomalies in different materials. In this section, we

briefly review anomalous Hall measurements done on a group of

semiconductors: Ge, InSb, GaAs, Mg2 Sn and InSb-

(a) Ge (n- and p-types): The observations of Hung
2'3'4

and Fritzsche on Ge showed that at temperatures between

800K and 900 0K the Hall coefficients behaved classi-

cally, that is, n- or p-type. But as the temperature

was reduced from 800K to 4.20K, the Hall coefficients

showed peaks at temperatures where the resistivities

seemed to saturate. With increasing impurities, the

onsets of the anomalies shifted to higher temperatures.



Yonemitsu et al further observed DCO's of the Hall

coefficients in the heavily compensated samples.

(b) InSb(p-type): Anomalies identical to those discovered

8
in Ge had been found in p-type InSb at low temperatures.

Putley9 pointed out that the anomalies depended on the

nature of the surface. Etching reduced the value of

the peak in the Hall coefficient by about an order of

magnitude and produced a corresponding decrease in the

resistivity. The mobility, however, was not very

dependent upon the surface treatment. Vinogradova et

al later found DCO's when high biased current was

applied. As the current was reduced, the second cross-

overs disappeared and the Hall coefficients were left

with peaks only which were no longer sensitive to the

current.

(c) GaAs n-type): The temperature dependent Hall coeffi-

cient showed two peaks. The lower temperature peak

might occur over a wide range of temperatures11 (from

150K to 100 0K), while the high temperature peak only

occurred at the onset of the intrinsic regi12,13

Both the magnitude and the position of the low temper-

ature peak were impurity density dependent while those

of the high temperature peak were not.



(d) M92Sn (n- and p-types): At low temperatures, n-type

Mg2Sn samples showed DCO's and p-type samples showed

14only peaks . Ground surfaces seemed to show a lower

second crossover temperature than cleaved surfaces.

(e) InAs (p-type): DCO's and peaks very similar to those

observed in (Hg,Cd)Te were found in heavily compen-

17 -3 15916sated (NA<10 cm ) p-type InAs * . Later, it was

found that anomalies could be removed by etching the

17$18 15.
surface or by heat treatment The second sign

reversal laid at lower temperatures for samples having

15,018
higher dopingl . Peaks at low temperatures similar

to those in Ge and InSb had also been reported19.

Anomalous Hall coefficients for all the semiconductors discussed

above are plotted in Figures 3.1.1 to 3.1.5 for comparison
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By studying the anomolous in these materials, one can summarize

their general features as follows:

a. The second crossovers in most of these simiconduntors

generally occur at the very low temperatures, unlike those

associated with (Hg,Cd)Te, which appear in the medium

temperatures and over a much wider range.

b. The second crossovers always appear at lower temperatures

than the peaks for all semiconductors mentioned.

c. The Hall coefficient is alwasy negative at the intrinsic

region. The sign for the peaks is determined by the number

of crossovers.

d. For the materials having more than one peak, the low

temperature peaks are larger both in magnitude and in covered

temperature range than the near-intrinsic peaks.

e. All peaks increase in magnitude and shift to lower temperatures

as the impurity doping is reduced.

f. Most anomalous are sensitive to sample surface treatments.

Examples of the wide variety of anomalous Hall coefficients

observed in (Hg,Cd)Te are shown in Figure 3.1.6-7.These data are

all for Hg1 Cd Te ingots of nominal composition x s 0.2. The

major differences between the anomalies of (Hg,Cd)Te and those

of other semiconductors are:



4 4 4

1000/T ( K~ )

FOR SEVERAL (Hg0 .8 0d0 .2)Te SAMPLES.

0

cY~
S
C)

10

10

Fig. 3.1.6 R Vs 103 /T



106

10 5 _-D82-55-F.

0 - D75-21-E4 --""". --. '.

D82-81-F3
lo10 D87-138-E2''------------*

S310 D87-138-E4

o ~ D91-100-F

2

D91-179-E3

10
1 10 100

TEMPERATURE ('K)

FIG. 3.1.7 HALL MOBILITIES VS TEMPERATURE FOR SEVERAL

(Hg0 .8Cd0 .2 )Te SAMPLES.



a. The peaks of R(T) always occur at the onset of the intrinsic

temperatures, unlike those of Ge, InSb and Mg2Sn which occur

at low temperatures, or those of GaAs which occur at either

high or low temperatures.

b. The second crossovers of R(T) occur over a wide range of

temperatures, unlike those of InAs ohich always occur at

high temperatures( greater than 100*K), or those of Ge,

InSb, and Mg2 Sn which always occur at low temperatures

(less than 10 0 K).



3.2 REVIEW OF VARIOUS MODELS

Various models have been put forward, most of which have in

common that the current is carried by at least two parallel

conduction mechanisms, while the degree to which the various

mechanisms participate varies with temperature. The total

conductivity a is the sum of the conductivity in the "bulk",

which is conduction via the conduction band and/or the valence

band (indicated by the subscript b) and the conductivity in the

"anomalous origins" (subscript a), each mechanism has its own

mobility and carrier density*,

a = Aaa+Ab = A q ub (3.2.1)

and the Hall coefficient is *

R = - 2aa a a + ybAbPba , (3.2.2)
(aa + ab)

where A and Ab are the fractions of the total cross section of

the sample passed by the two currents, and Ya and Yb are the

Hall coefficient factors depending on the nature of the scatter-

ing. Equation 3.2.2 leads to a maximum in R = IR(T)J if na/nb
19varies with temperature while Pa#04b . It may also give rise to

* In general, one may write

ar = 7,Akok*a~kk
and k

R = - t YkAkukak

(rk Ak -



DCO if na and nb are of different types of carriers. The

bulk components have been treated in detail already . In this

section, our main concern is the origin of the anomalous com-

ponents. Models proposed to account for the anomalies are

reviewed in the following.

a) Surface Conduction

Most of the anomalies in various semiconductors depend

on surface treatment as mentioned in the last section.

This is a good indication of the importance of the con-

duction at the surface. The surface conduction arises

from the space charge layer at the surface due to the

existence of surface states which trap holes or elec-

trons at the surface of the sample. The carrier densi-

ties at the surface are different from that in the bulk.

The carrier densities and the carrier types at the sur-

face are determined by the density and charge of the

surface states. Thus, it is not uncommon to have an

n-type layer coated on a p-type bulk or vice versa. The

surface component together with the bulk make the overall

conductivity and Hall coefficient fairly complex and can

possibly give rise to anomalies if the prescribed condi-

tions (3.2.1) and (3.2.2) are satisfied. 2

This model has been suggested to explain anomalies in

InAs20 and Mg2Sn14.



b) Inhomogeneity Conduction

Anomalous phenomenon may also be due to macroscopic or

microscopic inhomogeneities within the crystal. Macro-

scopic inhomogeneities can be detected by electrical,

thermal and optical probings. However, a crystal could

be highly inhomogeneous microscopically even if it is

proved by such methods to be macroscopically homogeneous.

Microscopic inhomogeneities could result from segrega-

tion of impurities around dislocations or crystalline

imperfections which are not easy to detect.

Owing to such inhomogeneities, the crystals may consist

of sections having a different concentration of carriers

and therefore both a different conductivity and a dif-

ferent temperature dependence of conductivity. The over-

all conductivity that one measures will be the sum of

each individual component. If the mobility variation

is large, such inhomogeneous conduction will have a

large effect on the measured Hall voltage and DCO or

peak may be expected if the required condition is satis-

fied.

This model was named to explain anomalies in InAs15 and

10
InSb -



c) Impurity Band Conduction

An electron occupying a donor has a wave function local-

ized about the impurity and an energy slightly below the

conduction band minimum. Because there is a finite

overlap of the wave function of an electron on one donor

with neighboring donors, a conduction process is pos-

sible in certain circumstances in which the electron

moves between centers by tunneling without activation

into the conduction band. This is called impurity band

conduction. The circumstance in which impurity band

conduction is possible even though the overlap between

centers is very small it the presence of "compensation"

- the presence of charged minority dopants which recom-

bine some carriers from the majority dopants and thus

allows the movement of carriers from an occupied major-

ity center into an unoccupied one.

One feature of impurity band conduction, which distin-

guishes it from the normal semiconduction, is its

extreme sensitivity to impurity concentration. Another

feature is that, when the impurity concentration is low,

the semi-log plot of the resistivity versus 1/a exhibits

a finite slope in the temperature range where impurity

conduction predominates, suggesting that the charge

transfer between impurity centers must itself be



thermally activated. Above a critical doping level,

the resistivity becomes independent of temperature,

because the carrier can move freely without thermal

activation. The Hall coefficient expressed by (3.2.2)

thus shows a peak at the temperature where conductions

in both the impurity band and the conducting bands take

place. If the hole mobility is small, a heavily com-

pensated p-type material will exhibit DCO at the temper-

atures where electron movement among acceptors pre-

dominates.

.2-5,7 8 11Anomalies in Ge 2 , InSb and GaAs are claimed to

be associated with this mechanism.

d) Higher Sub-band Conduction

In some semiconductors, there are higher-lying sub-bands

above the lowest conduction band minimum which may have

influence on the transport properties. An electron in

the conduction band can be excited into these higher

sub-bands by absorbing a photon or under the influence

of a high electric field. Usually these sub-bands lie

so high that electrons can hardly remain them in ther-

mal equilibrium. However, in some semiconductors the

sub-bands are only a few tenths of an eV above the

lowest conduction band that electrons can be evaporated



into these bands when temperature is increased. Thus,

these sub-bands can play a role in the conduction.

Electrons in the higher sub-band are expected to have a

higher mobility than those in the lowest conduction band

if the effective mass at the sub-band is smaller. For

a constant total number of electrons, (3.2.2) predicts

an increase in the Hall coefficient with increasing

occupation ratio na/nb (n a'n b are electron concentra-

tions at the sub-band and the lowest conduction band,

respectively), i.e., with increasing temperature. A

maximum is reached when the total number of electrons

(n a+n b) starts to increase at the onset of the intrinsic

region, since then the Hall coefficient drops rapidly.

This mechanism predicts that a peak of the Hall coeffi-

cient can only occur at the onset of the intrinsic tem-

perature. It fails to account for DCO since it involves

only one type of carrier, hence, the Hall coefficient

consists of components which are of the same sign. GaAs

is believed to have higher sub-band conduction which

13
causes the anomalous Hall properties .

e) Hall Contact p-n Junctions

If a crystal has a mixture of n-type and p-type regions,

a "floating potential" will appear at the p-n junctions



in a magnetic field. By solving the transport equations,

Madelung24 showed that after application of a magnetic

field, a floating potential must be set up to bias the

p-n junction in such a way that the diffusion currents

balance out the ambipolar currents. Thus, this floating

potential can either enhance or even overcompensate for

the Hall voltage drop in the p-region depending on the

ambipolar current density of the p-region compared with

that of the n-region. In general, according to Madelung,

the floating potential is always directed opposite to

the Hall voltage of the region in which the larger ambi-

polar current flows, i.e., essentially the Hall voltage

of the more weakly doped region.

For the case where the n-region is doped much higher than

the p-region, we have24

VM = - (v+p )E B L ; (3.2.3)
M n p x zn

similarly, when the p-region has much higher doping than

the n-region, we have

V M= - (u +u )E B L , (3.2.4)
M n p x zp

where VM is the Madelung floating potential, Ln and L

are diffusion lengths for the n- and p-regions, respect-

ively.



Now consider the case where we have a p-type semi-

conductor in the magnetic field at which the Hall probe

is a contact with a p-n junction extending immediately

in front of it. The p-type bulk is bounded by two p-n

junctions and the net voltage appears at the Hall probes

will be the sum of the Hall voltage drop of the p-region

which is positive at low temperatures, and two Madelung

voltages which are always negative. The influence of

the Madelung potential can become so great that a second

sign reversal may occur in the Hall coefficient if the

following condition is satisfied:

I V Pi< IVMI (3,2.5)

where Vp is the Hall voltage drop across the p-region

and is given by equation (2.1.12), or

V = p E B d (3.2.6)
p p x z P

where dp is the thickness of the p-type bulk.

This effect was proposed to explain anomalies in InAs.

f) The Elliott - Spain Model

Elliott and Spain25 proposed a simple model, involving

a deep acceptor level with an activation energy com-

parable to the band gap, to account for the anomalies.

They assumed that the acceptor density Na was greater



than the donor density Nd, and that at very low temper-

atures, the acceptor activation energy, Ea, was greater

than the band gap and was tied to the valence band. The

donor levels were assumed to be merged with the conduc-

tion band. They further assumed that the band gap

increased with temperature.

At zero degree Kelvin, there will be Nd free electrons

and no free holes (Figure 3.2.la). As the temperature

is raised, the energy gap increases and the electron

concentration will remain constant until Ea lies up with

the bottom of the conduction band (Figure 3.2.1b). This

would correspond to a negative Hall coefficient at low

temperatures. Further increase in temperature results

in a decrease in free electrons due to the presence of

the acceptors. This would correspond to a rise in the

Hall coefficient. As the temperature is further

increased, the intrinsic region begins to occur and the

Hall coefficient reaches a maximum before declines as

1/qn .

The detailed behavior of the Hall coefficient, accord-

ing to Elliott and Spain, depends on the degree of

compensation. For a more lightly compensated material,

IRI may have a "dip" before reaches a maximum. A DCO
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may occur if at some temperatures when apup > an4n'

This model is suggested to account for the anomalies in

(Hg,Cd)Te because the band gap for this material is

rather sensitive to temperature.

3.3 A MODEL FOR (Hg,Cd)Te

The summary of possible models in the preceding section is by

no means exhaustive. Any mechanism which can be expressed by

(3.2.1) and (3.2.2) can also give rise to anomalous Hall beha-

vior. Most of these models are phenomenological, and give us

little in the way of a fundamental framework for the experi-

mental findings in (Hg,Cd)Te. The reason, of course, is the

great complexity of the problem when anything approaching a

realistic model is employed.

Which model is more favorable for (Hg,Cd)Te? The impurity

band conduction model fails to explain the presence of the

high temperature peak. The higher sub-band model cannot

account for the DCO. The inhomogeniety model predicts low

reproducibility of the anomalies which is not the case. The

Elliott-Spain model lacks substantial experimental support.

The Hall contact model cannot explain the peak. The only model

left is the conducting surface model.

Scott et al23 first postulated that the anomalous properties

observed in (Hg,Cd)Te were attributed to surface conduction.



They showed the effects of surface treatments and heat treat-

ments on a DCO-type sample. The results showed that the influ-

ence of the surface on these anomalies was tremendous. Ant-

cliffe36 et al reported the existence of an inversion layer

on p-type (Hg,Cd)Te by means of magnetoresistance measurements.

Voronkov22 et al took into consideration the effects of the

Hall contact p-n junctions together with the conductivity

layers on all lateral surfaces, and they were able to explain

at least quantatively both the peak and DCO in the Hall coeffi-

cient of InAs.

In the early stage of this research, the author found the

following fact deduced from the rich collection of Hall data

supplied by Honeywell Radiation Center. That is the correla-

tion between the sample thickness and the anomalous Hall coeffi-

cient and resistivity at low temperatures. These two quantities

measured on thicker samples are in general larger than those

on thinner ones. This effect has been observed in samples cut

from the same ingot. From these observations, which will be

discussed in more detail in Chapter V, we can rule out the

possibilities of the impurity band model, the higher sub-band

model, the Elliott-Spain model and the p-n junction model

because they are clearly thickness independent. The inhomo-

geniety model was also rejected because it cannot explain the



direct proportionality between the measured quantities and the

thickness.

Being motivated by the work of Scott 23, Antcliffe36 and

Voronkov 22, and by the observation of a thickness dependence

in the data, we considered the conducting surface model to be

preferable and concentrated our investigations mainly on this

model. This does not mean that we excluded the possibility of

any other models, but we directed our attention to the hypo-

thesis that an inverted n-type surface was responsible for

the anomalous Hall effect in (Hg,Cd) Te. The goal of this

research was to verify or to reject this hypothesis on the

basis of the theoretical study compared with experimental inves-

tigations.



CHAPTER IV

THE CONDUCTING-SURFACE MODEL

At the end of the preceding chapter, we made a comparative

study of various models for the anomalous Hall properties in

(Hg,Cd)Te. There are strong indications that the surface plays

an important role in the anomalies. In order to investigate

the conductivity and Hall properties of the surface, we need

to understand the physics of semiconductor surfaces. Because

of this, we will, in this chapter, develop the theoretical

groundwork for the conducting-surface model with which we may

quantitatively analyze existing anomalous Hall data of (Hg,Cd)Te

and design specific experiments to verify the validity of this

model.

We begin by considering the conditions at the sample surface.

Then we study the characteristic properties of the surface

such as the potential, the carrier concentration and the mobi-

lities at the surface. Next, we derive the total conductivity

and Hall coefficient by integrating the transport equations

from the surface to the bulk and express the total as the sum

of the surface and the bulk components by means of the effective

mobility formalism. Next, we derive an expression for NA which

enables us to find NA from the anomalous R(T) data. Finally, we

remove the constraint on the magnetic field B and express R as

a function of B of arbitrary strength.
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4.1 CONDITIONS OF SEMICONDUCTOR SURFACES

There are often states whose wave functions are concentrated

in the vicinity of the surfaces of crystals. The energy levels

of such "surface states" may either be discretely or conti-

nuously distributed and may be either within the band gap or

within the allowed bands.

Surface states on clean semiconductor surfaces can be related

to different causes. Tamm31 assumed that the lattice potential

terminated in an asymmetrical manner and predicted a band of

energy states between the valence and conduction band edges

aid localized at the surface. Schockley 3, using a symmetric

termination of the lattice potential, obtained the result that

the bands of states should exist both between as well as over-

lapping the conduction and valence bands. Both Tamm and

Schockley states depend on the nature of the perturbations and

predict that the number of surface states available to trap

electrons is approximately eqal to the number of surface atoms

that have unsaturated bands. The other type of surface state

is more analogous to the bulk centers, arising from impurities

or defects underneath or upon the surface. The third type of

surface state does not originate in the semiconductor itself;

it comes from layers of foreign materials coated on the semi-

conductor surface which are either an accidental or deliberate

result of the preparation procedure.
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All these types of surface states may, in principle, act as

traps, recombination centers, or both. All surface states,

regardless of their origins, can be characterized by their

charge. The acceptor type states should make a clean surface

become negatively charged and cause the surface of an n-type

semiconductor to develop p-type surface conductance (depletion

or inversion).

4.2 POTENTIAL WITHIN THE SEMICONDUCTOR SURFACE

Due to the existence of the surface states which introduce

localized charges at the surface, the carrier concentrations

may vary more or less rapidly as functions of position in the

sample. The situation then becomes much more complicated,

since any gradient in the free carrier concentrations will

set up a diffusion current, and equilibrium can be obtained

only if there is an electric field which would offset this

current locally. Along with the field, there is necessarily

a departure from electrical neutrality and this results in a

space charge region. Thus, we must deal with the Poisson

equation which relates the potential and the net charge den-

sity to the position.

Consider the energy band diagram of a p-type semiconductor

shown in Figure 4.2.1 in which the surface potential 4s is

measured from the intrinsic energy level. We shall calculate
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the potential and charge distribution within the semiconductor

as a function of $s for a uniform doping N -NA using the Pois-

son equation.

The charge density within the semiconductor Pt(z) is the sum of

the charge due to holes, electrons and ionized impurities in

the bulk:

$(z) = q[p(z)-n(z) + N -N]] (4.2.1)

For a nondegenerate semiconductor, we have

n(z) = nb ef = n 1 (4.2.2)

p(z) = pbe-ft = nie P(b+O)

where O(z) is defined as zero in the bulk of the semiconductor

and equal to 0s at the surface, nb and pb are the equilibrium

densities of electrons and holes, respectively, in the bulk

of the semiconductor, and p M q/kT.

The Poisson equation is given by

'a =- (z) (4.2.3)
8z s

= [pb(e -1) - nb

where Es is the permittivity of the semiconductor.

We shall introduce the following parameter:

d 2 qg(P + n (4.2.4)
s q(Pb +n



which is twice the effective Debye length (4.2.4). The effec-
d

tive Debye length L - ,-characterizes the width of the inver-

sion layer. More detailed calculations33 show that, in accu-

mulation and inversion layers, the characteristic length is a

fraction of L, whereas in depletion layers, it is several times

L.

With the help of (4.2.2) and (4.2.4), the Poisson equation

becomes Equation (4.2.3), which can be more concisely expressed

by using the following notations

=V

8$b = ub;

and the hyperbolic functions. (4.2.5) can thus be written as

-2 s h4ugs - tanh u( 4.2.5)
az s b

Multiplying both side by 2 dv/dz, we can integrate once and,

using the conditions that dv/dz = 0 and y = 0 for z = e, we

obtain

= - cosh (ub+v) - v tanh ub] (4.2.6)bz ds Lcosh ub b

The upper sign (minus) refers to u > 0, the lower sign (plus) to

U<0.

Equation (4.2.7) cannot be solved in closed form for the gene-

ral case, but can be evaluated numerically34



For convenience, (4.2.7) can be rewritten by introducing the

notation F(ub,v):

= F- F(ub V), (4.2.7)

where

F(ub,V) = 2 cosh(ub+V) - - y tanh u /2 (4.2.8)

The important conclusion to be drawn from these equations is

that the potential in the surface space charge region decreases

approximately exponentially with distance from the surface.

The characteristic length in which the potential drops to one-

third of its value at the surface is the effective Debye length.

4.3 SURFACE EXCESS CARRIER DENSITY

The change in the number of holes or electrons per unit area

which results from a finite surface potential can be described

by the concept of surface excess carriers. The surface excess

carrier densities are defined as the number (per unit area)

of mobile electrons ANs, and hole's APS, in the space-charge

layer with respect to their numbers at flat band (0, = 0).

According to these definitions, the surface excesses are given

by o
ANs = S (n(z)-nb)dz;

0p )(4.3.1)

P = So (p(z)-pb)z.



Substituting (4.2.2) and (4.2.8) into (4.3.1) and changing

the variable to V, we obtain

AN= nbdsS ds
svs T-F(ubv(432 1 (4.3.2)

s = Pbds F 0 dv,

For the case of majority carriers in accumulation layers,

(4.3.2) can be written as

= s n bG+ ub's) for vg0 in n-type(u,2U);

(4.3.3)

4s +~ fo
Ps = ~bG (ub'Vs) for v in p-type ubg0),

where ns and ps are majority carrier concentrations (cm-3) in

accumulation layers, and G+ ub'Vs) is given by

+t (bs) Vs evml d
F(Iub[,v)

which is always positive and has been numerically evaluated

in reference 34. Another case of interest is minority carriers

in inversion layers, where (4.3.3) can be written as

dN +
4ns = (ub,vs) for vg0 in n-type(u 0);

J (4.3.4)
APs +

f=ps = nbg (ub,N ) for v <0 in p-type(u.0)T s b(ubSs y



where n and p are minority carrier concentration (cm -3) in

the inversion layers, and g+ (Ub',s) is given by

g+ (ubvs) = e2 Ub s F(-b jub )dy

which is always positive and has been evaluated numerically

in reference 34.

4.4 SURFACE EFFECTIVE MOBILITY

The surface excess carriers are expected to have mobilities

different from those in the bulk. Their mobilities are

usually called surface effective mobilities. When the surface

is bombarded by carriers, it may behave as a completely diffuse

(random) scatterer or, on the other extreme, as a specular

(perfect) reflector. The former implies that carriers emerge

from the surface with a Boltzmann distribution. This type of

scattering clearly leads to a reduction in mobility. An

increase in surface potential will also result in a decrease

in surface mobility because the inversion layer width decreases

with increasing surface potential and the narrower the layer,

the more surface scattering. Specular reflection, on the other

hand, requires that only a reversal of sign of the velocity

normal to the surface, the velocities parallel to the surface

remaining unchanged. There can obviously be no mobility reduc-

tion under these conditions. Specular reflection is the type of

scattering one expects from an ideal surface.



Scbreiffer37 presented a classical approach to formulate sur-

face effective mobility due to diffuse scattering by solving

the Boltzmann transport equation. He predicted that the effec-

tive mobility was always less than the bulk mobility. He had

plotted the effective mobility as a function of surface poten-

tial (see Figure 4 of Reference 37). His calculations have

been refined to include the influence of the potential barrier

V.

For the case of electrons in inversion layer of a p-type

sample, the surface effective mobility for electrons is given

by 34

XnbXn[b -' (4.4.1)
O = pnb 'a (ubsvs'X '1'

where the subscript "n" indicates electrons; "s" and "b" indi-

cate surface and bulk components respectively, ANs is given by

(4.2.1), vs is the surface potential, x unb is the
q 2W

mean free path for electrons and r is defined as

0 V

T, (u b's vV~) S e 1ep rf'S
-VS "E- T F(ub~v7

(4.4.2)

where F(uv) is given by (3.2.9) and r = which can be

shown to be

NOW-



m (nbpb
r = ds = Unb 2es (4.4.3)

Using (4.2.4) and (4.4.2), equation (4.4.1) can be written as

[ rUns =Lnb 1 - ge2 b Tr (IubIlv I' ) 444

The values of As/#b for minority carriers in inversion layers

under strong inversion as obtained by integrating (4.4.2)

numerically, are given in reference 38.

By and large, the quantitative agreement with experimental

observation is not particularly good. The observed mobilities

are generally greater than that predicted by Schreiffer's

theory, although they do fall as the surface potential is

39
increased3. By juggling the ratio of the specular to diffuse

scattering, the theory can be brought into closer agreement0

The discrepancies are not entirely surprising when some of

the assumptions underlying the classical approach are consi-

dered. In the first place, the inversion layer is normally

very narrow, approximately 1001 for (Hg,Cd)Te at 4.20K, and

comparable to the de Broglie wavelengths of a carrier. Conse-

quently, it is doubtful if Boltzmann statistics are appropriate.

Secondly, since the electric field within the inversion layer

is large (most s measurements employ the field effect), quan-

tization effects in this region may be important. In fact, the



separation of the quantization energies increases as the field

becomes larger. Surface transport in the electric quantum

limit, in which only the lowest electric sub-band is occupied,

has been treated in reference 41.

443,45The temperature dependence of the effective suiface mobilities *

in inversion layers of silicon have been measured. For strongly

inverted surfaces, the mobilities are constant at low temper-

atures and decrease as T- at room temperature where a varies

from 1.5 to 2.0. The temperature independence at low temper-

ature is the major characteristic of the effective surface mobi-

lities for large values of the surface potential.

4.5 THE SURFACE-BULK TRANSPORT FORMALISM

The presence of a space charge region at the surface will give

rise to a change in the measured transport parameters. The

variation in the Hall effect for a sample having space charge

layer is due to:

1) the change of the carrier density in the space charge,
and

2) the reduction of the carrier mobility by the additional
surface scattering.

These two phenomena have been discussed in the foregoing sec-

tions. In this section, we will address the influence of the

surfaces on the measured transport quantities.



The formulation of the problem starts with the Boltzmann equa-

tion, where the distribution function depends on the energy as

well as the distance z from the surface. Petritz introduced

the effective mobility formalism to transform the Boltzmann

distribution integrals into parameters in terms of the z-depen-

dent carrier densities and mobilities. This brings the z-

dependent terms into the transport equation. We then eliminate

the z-dependence by integrating the equations from the surface

into the bulk. Finally, we will apply the effective mobility

formalism again to eliminate all the integrals and obtain

closed forms for the average conducting Hall coefficient and

mobility.

The general expressions for the conductivity and the Hall

42
coefficient with the z-dependence imposed are similar to

equations (3.2.1) and (3.2.2):

'd
a = a(z)dz; (4.5.1)

R = d R(z)a (z)dz (4.5.2)
a(z)dzW

where d is the sample thickness. From equations (2.1.1) and

(2.1.2), we can write the z-dependent transport equations in

the x and the y directions formally as



J (z) = jq I )knk(z)<pk(z)>Ex + rkk B (z) ; (4.5.3)

J (z) = |q knk(z<k(z)> -)E knlk(Z)<p (z)>E Bz, (4.5.4)
y -n~)4~ y -k O

where nk(z) is the density of the k species (holes or elec-

trons) and <pk(z)> are appropriate averages over momentum space

for i = 1, or 2; qk is positive for holes, negative for elec-

trons. The total currents are thus given by

d
I s=W J (z)dz :Wd J ; (4.5.5)

d

I = A so J (z)dz = 0, (4.5.6)

wjere W and 1 are sample width and length, respectively, and

the boundary condition is such that the total current in the

y direction vanishes. We can now express a and R by substituting

(4.5.3)-(4.5.6) into their definitions, (2.1.11) and (2.1.13),

SI n)>dz; (4.5.7)
x B =0 q o k(z)<Lk(z

z

d

E d k, o knk(z)< k(z)>dz (4.5.8)
R y_ = dok 2(4 5 8

JXBz 1. n k(z)<pk(z)>dz
[ k oI

Note that (4.5.7) and (4.5.8) are similar to (4.5.1) and (4.5.2),

respectively, if we can write the local conductivity and Hall



coefficient respectively as

a(z) = qc y nk(z)<4k(z)>; (4.5.9)
k

R(z)a2 (z) = 7 qknk(z)<u (z)> (4.5.10)
k

In the bulk, when the surface boundary condition is negligible,

we have

<4kb= kb; (4.5.11)

and from (2.1.7) and (4.5.11)

< kb2 > = Rb4kb = "Hkb kb (4.5.12)

As stated in Section 2.1, we let kb = 1 for convenience. In

the region near the surface, <k(z) will differ from <pkb

because of surface scattering. In section 4.4 we discussed

essentially <Pk(z)>which is the z-dependent effective surface

conductivity mobility. Under the presence of the magnetic field, the

effective surface mobility will change, just as the bulk mobility.

Zemel43 has calculated the effective surface Hall mobility and

found that it is some 13% less than the effective surface con-

ductivity mobility for large values of the surface potential,

that is Yks -. 885. But again, for convenience, we let Yks=1 -

We now use the effective mobility formalism again to eliminate

the integrations which appear in (4.5.7) and (4.5.2). For

simplicity, we begin by considering only the electrons and thus

drop unnecessary subscripts. Because of the linearity of (4.5.9)

and (4.5.10), the contribution from the holes can be added to

the expressions later. 93



The parameters n(z), <U(z)> and <p2(z)> in (4.5.7) and (4.5.8)

can be written as

n(z) = nb + &n(z); (4.5.13a)

<U = b + 4<g (z)>; (4.5.13b)

where i = 1 or 2. Ignoring the correlation terms in Ref. 42

which depend on the overlap of two spatial integrals, we can

rewrite (4.5.7) and (4.5.8) as follows:

S- [ nb d + nusd ; (4.5.14)

R = 2 bp 2 nbdb + nsd2 , (4.5.15)
a dd

where

d = db + ds; (4.5.16a)

ns nb + Ls; (4.5.16b)

d

us b + a<p (z)>dz, (4.5.16c)

and where ds is defined in (4.2.4), Ans is defined in (4.3.4)

and, in general, we expect U bi for i = 1 and 2.

If our concern is the ease that an n-type inversion layer exists

on a p-type or intrinsic bulk, then we can ignore the holes in

the space change layer. Hence, the apparent conductivity and

Hall coefficient are given by:

db ds
a = ab ~' + ans d (4.5.17)



db 2 ds n 2
R Rb - - + Rns - - (4.5.18)

where

ab = 1q[nbfnb + Pb"pb ; (4.5.19)

2 2
Unbnb - /Jpb PbRb (4.5.20)

b Ob |q I(ynbn b+ppb~b b

ans = Iq n s s ; (4.5.21)

-n, s i
R = - = ; (4.5.22)
ns as8  gn

and where the subscripts are self-explanatory. The apparent

mobility is again defined by

y =. Ra . (4.5.23)

We want to comment on the significance of ignoring the correla-

tion terms which involve integrating over regions where the

surface terms overlap the bulk terms. Ignoring these terms is

equivalent to decomposing the semiconductor into two indepen-

dent regions: "surface" (O<z ds) and "bulk" (d <z<d) within

which the transport properties are thought to be constant.

This abrupt separation approximation turns out to be highly

admissible because, from exact calculations, the correlation

terms always turn out to be negligible compared to the bulk

and the surface terms.



4.6 BULK CARRIER DENSITY DETERMINATION FROM THE ANOMALOUS
HALL MEASUREMENTS

If we assume that the anomalous Hall properties are due to a

conducting surface, it is important to know if the anomalous

data can give any information on the bulk properties. This

section will address this issue.

Let us rewrite (4.5.12) in a more transparent form:

|q~b - nb ~ nsS
R = 2 (4.6.1)

[ iQp pbb(pb+bnb) + S J

where

b = pnb Upb'

and

S a s ds/d . (4.6.2)

We want to find an expression for pb when R is a maximum, i.e.,

when d R/dT = 0. With some algebraic manipulations, one can

show that for the approximation b>>l, the expression for pb

when IRI= IR iaxs given by (See Appendix )

= bn - -2 Uns S . (4.6.3)

Substituting (4.6.3) into (4.6.1), one obtains the expression

for R( in terms of p or n:



pn s) 2n d1

Ra= b unb n d ( )ns (4.6.4)
4mx , 1 Jq 1i"ns2 sd

'nb n d

Three approximations can be made.

Case I: when uns >>Ppb, (5.6.4) becomes

R b 2 (4.6.5)
max 4 ql i [I uns 2 n d

I)nb) r d

2 2 d
Case II: when n n (4.6.4) becomes

4nb b>>nns d'

R max 2n 1 - d (4.6.6)
I mx~41q n.2  L bnb rb j

Case III: when both Case I and Case II are applicable, (4.6.4)

becomes

R b (4.6.7)

which is identical to the p-type case.

Note that in Case I, IR cax d; in Case II, JRmax jl/d; and in

Case III, [R axl R(d). Experimental data seem to indicate that

'RI is directly proportional to d which makes Case I more favo-

rable. Having solved for pb from (4.6.5), we obtain from Case I



the expression:

p N = 4(qj IRAn. 2  (4.6.8)b 'A 's nsd ds1 - 4IqlIRax() s

This is the key equation in the determination of the bulk

carrier concentration from the anomalous R(T) curves. It is

valid for both Peak- and DCO samples.

The accuracy of NA obtained from this equation is limited by

the accuracy in our estimations for Unb' Uns and ns d s. In Sec-

tion 5.7, we will use (4.6.8) to calculate NA for several

(Hg,Cd)Te ingots, and will discuss in more detail the accuracy

of this equation.

4.7 THE DEPENDENCE OF R ON THE MAGNETIC FIELD

Equation (4.5.18) applies when the magnetic field B is weak.

Now we derive an expression for a magnetic field of arbitrary

strength. We did this for the bulk transport case at the end

of Section 2.1. Equation 2.4.1 is for the bulk; therefore, it

does not take into account the fraction of the total cross

section A of the sample passed by each carrier type (see (3.2.2)).

In general, the dependence of R on magnetic field can be

expressed by

D+BR(B) = 2 1 2 2
D 2 + B D I



where

Dk Rk Ckj

D A~ A
2 kj kj kj'kj ki

where

2 2 -1
Ck. = (1 + l kj B )

where the subscript "k" stands for carrier type (n or p) and

the subscript "j" indicates the location of the j th carrier

(surface or bulk); Akj is the fraction of the total cross

section of the sample passed by the carrier "kj". For the

case in which we only have an n-type surface on a p-type bulk,

(4.7.1) reduces to

R(B) = 2 2 2 (4.7.2)
D 4+ B D3

where

2 2 2
D3 = anb Rnb Cnb+pb R pbC pb+ns R C ds/d;

D = anbC nb+apbCpb+ansC ss/d.

As expected, when B = 0, R(B) returns to its original form

(4.5.18).



CHAPTER V

EXPERIMENTAL VERIFICATIONS OF THE CONDUCTING-SURFACE MODEL

Having developed the theoretical basis for the conducting-

surface models, we are ready to determine if the theory is

able to explain the previous observations associated with the

anomalous Hall properties of certain (Hg,Cd)Te samples.

Attempts to quantify the model will be made in order that com-

parative studies can be done. Thus, we will compare the results

of four observationswith the predictions of the conducting-

surface model. These observatiors are the doping dependence,

the sample thickness dependence, the electron irradiation and

the magnetic field dependence experiments. Next, we report

the result of our experiment which shows a direct conversion

from a Peak-type to a p-type Hall coefficient by employing a

new sample fabrication technique. We then apply the method

proposed in Section 4.6 to determine NA for several (Hg,Cd)Te

ingots. Finally, we generalize the conducting-surface model to

allow more flexibility in the physical interpretation of the

anomalies.

5.1 QUANTITATIVE ANALYSIS OF THE MODEL

In the preceding chapter, we defined several quantities which

are essential in the conducting-surface model. Now we calcu-

late these quantities for (Hg,Cd)Te at low temperatures using
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the equations we have derived. The first one to consider is

the effective Debye length L. For x = 0.2 (Hg,Cd)Te, the

35permittivity is roughly 20 . At 20*K, the effective Debye

length L of a sample having pb = 5 X 1015 cm-3 is, according

to (4.2.4), equal to 1.95 X 10-6 cm.

The surface carrier density Ais(cm- 3) can be estimated for a

given value of fNs(cm -2) and ds. Experimental results show

12 -223 36
that ANs-120 (cm-223. From this, together with our calcu-

lation for L, we obtain at 20*K,

17 -3
Ans =L =5.2 X 10 cm

From (4.3.4) we know that Ms is related to pb by g+. Given

that pb = 5 X 1015 cm -3, equation (4.3.4) implies that

+ s 2
g = -- 10 .

With the help of Ref. 34, we find that the condition for g +

1210 2is

[ s-2 ub - 8.5, for 0.5 < ubI< 50.

Now we want to know the value for pn when Vs-2 ub-8.5. in

order to do this, we have to evaluate ub and r in (4.4.4). ub

is defined in (4.2.2)

Pb
u 1n - -20

b = n. 2
1.
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827
where ni(T-20 *K)'-5X102. r is the ratio of the mean free path

of electrons X to the effective Debye length L.

The mean free path for electrons is

P'nb KT me 2XO
= ij KT m,, 2.8 X 10-6 cmmc

5 2 29
where we have used pnb (4.20K) - 1 X 10 cm /V-sec and m=

.005 m 3 for x = .2 (HgCd)Te materials. Hence, r can be

evaluated:

r L= 1.4

Now we are ready to get a feel for the value of the ratio

pns/nb. Given that r = 1.4 and I7)8-2ub-- 8.5, a value for

yns/Pnb estimated from Ref. 38 is roughly

.05,

'nb

which is almost independent of Iub ' nb at low temperature

has been measured on n-type samples to be from 1 to 8 X 105

cm2 /v-sec.

Thus, the limits estimated for yn lie within:

3 2 4
5 X 10 < Pns(cm /v-sec) < 4 X 10

These values are in good agreement with experimental results.

The measured mobilities at low temperatures for samples which

exhibit "Peak" Hall behavior usually lie within 103 to 4X104
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cm 2/v-sec. According to our assumption that the surface com-

ponent appearing in (4.5.17) and (4.5.18) predominates at low

temperatures, the measured mobilities must be the surface

effective mobilities. This shows the consistency between the

theoretical calculations and experimental observations. To

understand the effects of doping on uns and we turn to equa-

tion (4.4.3) and (4.2.4) together with Figure 4.3.2. Increasing

the doping (pb) would result in a larger r, a smaller Uns'

and a narrower L.

Having calculated these values, we are ready to compare quan-

tiatively the surface terms and the bulk terms in equations

(4.5.17) and (4.5.18). From Figure 2.3.1 in Chapter II, we

know that at 20*K, upb = 300 cm 2/v-sec. Hence

Ob b = .24 (1/e-cm).

The surface contribution to conductivity for a sample of 20u

thick is
d d

S -

as qnsu - - 3.24 (1/0-cm).

4
where we use n =2 X 10 and ds = 2L. These two terms will,ns

be comparable when a thicker sample is used. But pb at 200K

15 -3
is usually much less than 5 x 10 cm due to the freeze-out

effect and the surface conduction will be further enhanced.

The overall conductivity is the sum of the two,
d

a = ab + as -d- = 3.48 (1/r-cm),
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which corresponds to a resistivity P given by

p _ 287 ( n-cm),

which is consistent with measurements. The surface and bulk

components of the Hall coefficient equation (4.5.18) can also

be calculated as follows,

Rb( 2 5.95 cm3 /coul ,

where we let db = d, and

d 2 d

Rs- s 4.5 X 10 cm /coul

Therefore, we have shown quantitatively that at low temperature,

the calculated surface terms predominate and have values close

to the experimental results. The calculations are very impor-

tant in two regards. First, they verify the assumption that at

low temperatures the contribution from the inverted surface to

the total conduction is larger than that from the p-type bulk;

secondly, they show excellent consistency between theory and

data which makes the conducting surface model very appealing.

Before closing this section, we want to make the following

assumptions which enable us to do variable temperature calcula-

tions for the surface-bulk system. The first assumption is

that yns(T) is constant at low temperatures until it reaches

the intrinsic region, and falls off exactly the same way as
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Unb (T) at high temperatures. The second assumption is that ns

is independent of temperature. These two assumptions are

supported by experimental results in which both p(T) and R(T)

are rather temperature insensitive at low temperatures and by

our analysis which proved quantitatively that y and R measured

at low temperatures represent their surface components. At

higher temperatures, however, the bulk terms will be dominant

and any error introduced by our oversimplified assumptions

about the surface quantities will not be significant.

Our assumption of pn (T) gains further support from research done

on the inverted Si surface because p ns(T) of Si shows exactly

the same temperature dependence44,45 as we assumed.

5.2 THE IMPURITY DENSITY DEPENDENCE OF R(T)

Dixon15 had found that a definite correlatidn existed between

acceptor concentration and the behavior of the anomalous Hall

coefficient in InAs. As in (Hg,Cd)Te, the Hall coefficient of

17 -3
heavily doped InAs (NA>2X1O cm ) showed p-type behavior. At

17 -3
a carrier concentration of 1.5 X 10 cm , the Hall coefficient

was further decreased the DCO behavior was replaced by a Peak

behavior.

As we pointed out in Chapter III, both InAs and (Hg,Cd)Te were

reported to show anomalies in a very similar fashion which may

in part be due to the fact that both semiconductors have very
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high electron to hole mobility ratios (both are greater than one

hundred).

In Figure 5.2.1 we show the calculated R(T) as a function of

N A by means of (4.5.18) with the assumed parameters shown in

the figure. The heavily doped (N A>2X1017 cm ) material shows

p-type behavior. At a carrier concentration between 5 X 1016

cm-3 and 2 X 1017 cm -3, R(T) shows a DCO and further decrease

in NA (NA <1 16 cm 3 ), R(T) reduces to a peak.

The anomalies can be understood in the light of the conducting-

surface model as follows. At low temperatures conduction via

n-type surface predominates due to either one or a combination

of these reasons: high surface electron to bulk hole mobility

ratio, weakly doped p-type bulk, or freezing out the acceptors

in the bulk. If the acceptor density is so low that conduction

via the valence band is still incomparable even at exhaustion

temperatures, then R will remain negative throughout. Since a

low acceptor density corresponds to a large Rm 26, as the

temperature reaches Ta, R which is the sum of R.1 andIR

will give rise to a peak.

For more heavily doped p-type materials, the conduction via the

valence band may at some temperatures prevail the conduction

via the n-type surface due to either the rising hole mobility

or the diminishing freeze-out effect with increasing temperatures.
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This results in a change of sign (from negative to positive)

for R. When the intrinsic temperature is reached, R will

eventually change back to negative because the higher electron

mobility will dominate. As a result a DCO is observed.

Caution must be noted on the transition from one type to

another. The condition for type-changing depends on the sur-

face excess density, surface mobility, compensation, freeze-out

as well as acceptor concentration. Therefore, the situation

described by Figure 5.2.1 is an idealized one in which we

assume NA is the only independent parameter while the rest of

the quantities remain constants. In general, we can make the

following statement:

On the basis of the conducting-surface model, the temperature

dependent Hall coefficient of a p-type sample having an

inverted surface will show

(i) Classical p-type if

2d

pb > ns ( 2Pb d - , for all temperatures; (5.2.1)

(ii) DCO if

IUnb 2 2ns d

pb < nb i+ -) at low tem-

4pb kPpb peratures,
and 1 2 d (5.2.2)

pb > ns ( at medium temperatures;
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(iii) Peak if

(Enb 2 Ons2

pb b s U d for all
pb ) pb temperatures

and 2 (5.2.3)
nb > n - , at high temperaturesbnb

5.3 THE SAMPLE THICKNESS DEPENDENCE OF R AND cT

We have shown in Section 5.1 that at low temperatures, the sur-

face terms predominate. Applying this condition in equations

(4.5.17) and (4.5.18), we obtain

d
a(TL ) as ; (5.3.1)

L s ds

R( ) Rs ( d (5.3.2)R (TL)R [T1 RsT
cS

and

R(TL)
L - - (5.3.3)

~L a(L) aB

where TL stands for low temperature. From the above equations,

it is clear that both R(TL) and a(T ) are dependent on d while

g(TL) is not. Thus, an investigation was made on the existing

low temperature Hall data at Honeywell to see whether such

correlations exist.

We carefully examined R, a and p at 4.2*K of fourteen samples

with an average x value equal to 0.2 and ten samples with an

average x value equal to 0.3. All of these samples showed
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Peak-type behavior in the R(T) curves. They are listed in

Table 5.3.1 and R, a and 4 for these samples are plotted versus

sample thickness in Figure 5. 3.1-3.The thickness dependence of

R and a are apparent for the two values of x. The scattered

diagram of P = P(d) shows no apparent correlation.

Figure 5.3.4 shows the temperature dependent Hall coefficients

and resistivities for two Peak-type samples from adjacent slabs

of the same ingot; one is thick (d = 8.75 X 10 2.cm) and one

is thin (d = 4 X 10~ cm). The thickness dependence of both R

andy' appears in a wide range of temperatures. This indicates

that the surface does play an important role even at about

1000K.

In Figure 5.3.5 we calculate R andP for various thicknesses on

the basis of the conducting-surface model from (4.5.18). The

thickness dependence is apparent and similar to the experiment

results.

The thickness dependence of a DCO-type sample is expected to be

more drastic since thinning the sample down may enhance the

surface in such a way that it prevails over the bulk holes

throughout the temperature range. We picked a DCO-type sample

and lapped it down to 4 microns and then remeasured R as a

function of T.
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SAMPLE LABLE x a(1/O-cm) R(cm /coul) p (cm /V-s) d(cm)

D59-149-F4 1 .196 3.57 5.0 x 103 2 x 104  1.8 x 10-3

D82-80-El 2 .199 7.14 2.0 x 103 1.5 x 104  4.0 x 10-4

D82-81-F3 3 .191 0.33 7.0 x 104 2.0 x 104 - 8.8 x 10-2

D9-141-F3 4 .204 0.45 2.0 x 104 9.0 x 103 7.7 x 10-2

1008-150-P4 5 .213 0.40 3.0 x 104 1.0 x 104 7.8 x 10-2

D63-121-F3 6 .196 0.67 1.6 x 104  1.0 x 104 8.1 x 10-2

D63-161-F4 7 .202 0.40 2.0 x 104 8.0 x 103 9.9 x 10-2

D77-216-F2 8 .199 1.30 1.9 x 104  2.5 x 104 8.7 x 10-2

D82-120-F5 9 .206 1.25 1.8 x 103 2.0 x 103 2.8 x 10-3

D87-138-E2 10 .197 7.14 1.4 x 103 1.0 x 104 2.0 x 10-3

D85-120-F3 11 .208 0.10 >.0 x 104  2.0 x 103  1.1 x 101

D85-142-F3 12 .204 0.14 2.6 x 104 3.6 x 103 8.1 x 10-2
D82-121-F2 13 .206 0.15 8.0 x 104 1.2 x 104 8.5 x 10- 2

D82-121-F4 14 .214 0.25 6.0 x 104 1.5 x 104 8.6 x 10-2

05-180-F3 1 .311 0.22 4.0 x 103 1.0 x 103 2.8 x 10-3
05-230-001 2 .315 0.24 4.9 x 103 1.2 x 103 1.0 x 10-3

10-132-F2 3 .313 0.03 1.0 x 105 2.2 x 103 9.2 x 10-2

05-180-F4 4 .309 0.83 1.3 x 103 1.1 x 103  1.4 x 10-3

05-203-2-1-2 5 .308 0.91 3.8 x 103 3.0 x 10 . 9.5.x 10~4

05-203-2-1-4 6 .306 0.10 7.0 x 103 7.0 x 103  2.0 x 10-3
05-203-2-1-5 7 .310 0.59 8.5 x 10 3  5.0 x 10 3  2.7 x 10- 3

05-196-F3-5 8 .309 0.77 2.4 x 103  2.0 x 103 1.0 x 10-3

08-167-F2 9 .313 0.03 1.3 x 105 3.5 x 103 1.1 x 10-1

08-167-F3 10 .313 0.02 9.Ox 104 2.0 x 10 3  1.1 x 10 1

Table 5.3.1 R, a, AND p. AT 4.2 *K OF SAMPLES WITH VARIOUS THICKNESSES
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Figure 5.3.6 shows that the previously DCO-type sample 100 ses

all its crossovers as it is thinned down. In the same figure, we

show that the calculations based on our model predict the losing of

both crossover points for a thin DCO-type sample.

No attempt was made to fit the calculated curves to the data

points. The calculations were intended to show the qualitative

features of the anomalous thickness dependence as compared to

experimented observations.
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The thickness dependence is one of the strongest supports for

the conducting-surface model. Of the models reviewed in

Section 3.2, none of them except the conducting-surface model

give rise to the dependence of R and a on sample thickness.

5.4 THE ELECTRON IRRADIATION EXPERIMENT

A series of experiments employing high energy electrons inci-

dent on (Hg,Cd)Te Hall-samples have been done since 197230,46

The Hall measurements were made as a function of temperature

from about 800 to 300*K both before and after irradiation by

4.5 to 5.0 MeV electrons up to a fluence of 8.5 X 1014 e/cm2

Since measurements were performed at temperatures higher than

800K, it is not clear from the R(T) curves done whether the

sample was classical or anomalous. But with the help from the

P(T) and Y(T) curves, the sample type can still be identified.

The pre-irradiation electrical properties of two samples used

in the experiment are shown in Figure 5.4.1 and Figure 5.4.2.

Sample QM13-9 was clearly n-type since p at 80*K was high and

,P(T) revealed the presence of a "dip". On the other hand,

sample 217 (3.5-4.2)H was what we call Peak-type since 4 showed

a peak at 100*K (compare it with curve (c) in Figure 1.2.3).

The experimental set-up allowed the electrical properties of

these two samples to be measured at various intervals during

the irradiation of electrons. The measured carrier densities
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(electrons) as a function of the irradiation fluence are plotted

in Figure 5.4.3 and Figure 5.4.4. The electron irradiation

resulted in an increase in donor density. The range of 5 MeV

electrons in (Hg,Cd)Te is estimated to be deeper than the thick-

ness of the samples 9, hence these created donors are expected to

be uniform in the bulk.

Comparing Figure 5.4.3 with Figure 5.4.4, one notes that for

the n-type sample (QM13-9), the slope of the plot is constant

throughout and intersects the ordinate axis at a value equal

to the pre-irradiation electron comcentration. For the Peak-

type sample (217(3.5-4.2)H), however, the slope can be extra-

polated to approach the origin and at low fluence values the

curve bends upward to approach the pre-irradiation carrier con-

centration. Consequently, the electron radiation results show

that for a Peak-type sample, the conduction mechanisms before

and after the irradiation are not quite the same as indicated

by the nonlinearity of the slope in the electron density versus

fluence plot.

The results of the electron radiation experiment can well be

understood by the conducting-surface model which postulates that

a Peak-type sample is essentially a p-type sample with an n-type

skin. Hence, the model actually predicts a zero electron density

in the bulk before electron irradiation as illustrated by
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extrapolating the slope in Figure 5.4.4 which approaches the

origin. According to the model, the upward bending of the

curve at low fluence can be understood as due to the prevailing

shielding effects of the surface. In this region, new donors

created by the fluence merely serve to compensate the holes in

the bulk. Until these added donors exceed the number of accep-

tors in the bulk and predominate the electrons at the surface,

the curve in Figure 5.4.4 starts to have a constant slope.

5.5 THE MAGNETIC FIELD DEPENDENCE OF R

At the end of Section 4.5, we derived an expression for the B-

field dependent Hall coefficient on the basis of the conducting-

surface model.

Equation 4.7.2 is the crucial equation in the magnetic field

dependence calculations. For (Hg,Cd)Te, ( nsB) 2 and (ApB)2

are much less than (PnbB) 2, therefore, we can ignore the first

2 2
two as compared to unity but keep the term 1 + 4nb B

Let us apply these approximations to (4.7.2) and analyze it at

the region where the surface terms predominate, in other words,

at low temperatures. We consider the two asymptotic forms of R

at the limits of high and low magnetic field.

Case I: If l>>(AnbB) 2 >(nsB)2 >(upbB) 2, then

I R(B)[IR d/ds, at low B (5.5.1)
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Case II: If (NnbB)2,,l>("pbB)2, then

d 1
R(B) -. 2 2 at high B-field (5.5.2)

A nb

In fact, the Hall coefficient of a Peak-type (Hg,Cd)Te sample

measured at low temperatures was reported to decrease with

increasing B-field and the results are shown in Figure 5.5.125

It had been reported also that a sufficiently high magnetic

field could actually cause the Hall coefficient of a Peak-type

sample to show DCO (see Figure 5.5.2). A computation is made

based on equation 5.5.1 with the magnetic field as a parameter

aid is shown in Figure 5.5.3.

One can see that calculations are qualitatively in agreement

with measurements. The appearance of the DCO at higher B field

can be explained by the fact that both bulk and surface elec-

tron mobilities are higher than hole mobility which makes the

electron terms in (4.7.2) diminishing at higher field, as a

result the p-type bulk terms prevail.

Note that there are discrepancies between the theoretical pre-

dictions and experimental results. Equation 5.5.2 predicts

that R is proportional to B~ but- Figure 5.5.1 shows that R

is proportional to B . Equation 4.7.2 predicts that

as B is further increased, eventually R will change from DCO

to p-type. But Figure 5.5.2 shows that R is p-type at a medium

magnetic field and becomes DCO at a higher field. The reason

for these discrepancies is not obvious.

126



10

r 4

0

0 ~

C*4 10

00

10 3 i i I |1 L 101 2

01
~1010

B (K Gauss)

FIG. 5.5.1 MEASURED JR1 AT 4.20K VS MAGNETIC FIELD 
B (REF. 25).

127



3
10

r- 2: 10
0

0B = 10.78 KG

010 B = 19. 2 KG

10 5

1000/T (*K0 )

Figure 5.5.2 MEASURED MAGNETIC FIELD DEPENDENCE OF R(T) ON SAMPLE
ZPU-4-32 (Ref 47)



0 G

.- 0--

-4-- 000

10 KG

* B = 20 KG

I /

*1
. -

Assumed Parameters

x = .2

NA = 5x1015 cm-3

ND = 13 cm-3

E A= .003 eV
EA *0-2e
d = 8x10 -2m -

n = 2x10 cm

p. (4*K) = 2x10 cm 2/v-sec

1~01. ~02' I I Li L I 
100

0 5 10 15 20 25 30 35 40 45 50 100 150 200 250

1000/T (OK~)

Figure 5.5.3 CALCULATED R(T) AS A FUNCTION OF THE MAGNETIC FIELD B.

0

Si 2
Cn 1

B =

B



The virtue of the conducting-surface model, however, is that

it is able to account for the two anomalous phenomena asso-

ciated with the magnetic field: first, it shows that R

decreases with increasing magnetic field at low temperatures;

secondly, it predicts that DCO will appear for a Peak-type

sample under the influence of high magnetic field.

5.6 OBSERVATION OF PEAK- TO p-TYPE CONVERSION

We have developed a way to restore the p-type Hall characteris-

tic from the Peak-type (Hg,Cd)Te samples. We applied this new

sample fabrication technique to prepare several Hall samples.

The results showed good reproducibility.

We outline the experimental procedure as follows:

(1) A sample with a parallelioipiped shape was polished

and etched in bromine methane solution.

(2) Six Cu leads were bonded to the sample by In solder-

ing (Figure 5.6.1).

(3) Hall effect measurements were made from 4.2*K up to

3000K, results are shown in Figures 5.6.3 and 4.

(4) If the results showed a peak in R(T), then the leads

were removed from the sample and the sample was patterned

with teflon tapes as shown in Figure 5.6.2(a) for air-

brading.

(5) Pattern the Hall sample again with teflon tapes as shown

in Figure 5.6.2(b) for In evaporation.
130



Cu Leads

Hg,Cd)Te
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(6) Au leads were bonded to the In contacts by thermal

compression.

(7) Remeasured the variable temperature Hall properties.

Results are shown in Figure 5.6.3 and 4.

The results of this experiment show that the anomalous Hall

properties are very sensitive to the sample fabrication proce-

dures. It also gives us some important insight in the under-

standing of the anomalous data. It demonstrates experimentally

that the peak in the Peak-type R(T) is closely related to Rmax

if the same sample becomes p-type. This proves the validity

of using the peak values in determining NA as suggested in

Section 4.6.

The question arising from the results of this experiment is:

What are the major factors involved in our new fabrication

procedure that cause the conversion? If our research leads to

the belief that anomalies are due to an inverted surface, then

we know that these factors somehow reduce or eliminate the

effects of the inverted surface. In order to answer the above

question, more experiments have to be done to isolate these

factors so that each of them can be identified. All we know

now is that samples with either soldered In or evaporated In

(through photo mask) contacts do show anomalies. This is the

rule rather than the exception.
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5.7 CALCULATING NA FROM THE ANOMALOUS DATA

In section 4.6, we have derived an expression for the acceptor

density in terms of the measured anomalous Hall quantities (see 4.6.8)

The accuracy of this expression can be estimated by examining the

validity of the assumptions we made in our derivation.

The first assumption we made was that the bulk electron to hole

mobility rates is temperature independent. This is not so as shown

in Figure 2.3.1. However, at the temperatures where the peak occurs,

the changes of carrier concentrations with temperature are much

larger than that of the mobility ratio. Hence this assumption is

still valid.

The second assumption we made was the the magnetic field B is small

compared to the reciprocal of the bulk electroh mobility in order

that the weak magnetic field limit can be applied, i.e.

(pnb B2

This assumption is clearly questionablewhere the magnetic field is as

high as 2KG at which the data were taken. In order to show the

dependence of R on B for a peak-type sample, we show the calculated
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Hall coefficients by means of (4.5.18) in Figure 5.7.1 for two

different values of B. We can see the effects of the 2KG magnetic

field on R(T). At low temperatures the effects are minor, but those

at temperatures near the peak cannot be neglected because the NA

calculations depend on the value of Rmax'

In order to understand the effects of the magnetic field on the

acceptor density calculations, we compare the values of the

calculated NA with those of the assumed N A. The calculated NA

is determined by means of (4.6.8) in which the Hall quantities

are taken from the theoretical R = R(T) curve which a 2KG magnetic

field is assumed. The assumed NA is the input parameter for calculating

the theoretical R = R(T) curve. The comparison are shown in Table

5.7.1. The results indicate that the calculated and the assumed

14 -3
values of N A are within a factor of 2 over the'range from NA =10 cm

16 -3
to 2 x 10 cm-. It leads us to believe that (4.6.8) can still

be used to estimate NA from the anomalous Hall measurements taken

at a magnetic field of 2KG.

Let us now proceed to calculate the values of NA for several

peak-type samples. Several assumptions have to be made which are

similar to the ones we made in all our theoretical calculations.
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First, we assume that pns is constant from 4.2*K up to the

intrinsic region and then it falls off as T-2.27 at higher

temperatures. Secnndly, p nb(T) is assumed to be given by curve (C)

in Figure 1.2.3 which is a typical n-type mobility curve. Thirdly,

n d is assumed to be temperature independent and its value is given

by:

n d = d/( q R(4.2*K )

with all three assumptions in mind, we rewrite (4.6.8) as follows

NA 4 q RM n 2(TM)/D(T '

where

D(TM) = 1-4( RM / R(4.20 K) )(ns (T) nb(TM

where TM is the temperature at which R is at a maximum RM, and

n (T M) can be evaluated by means of (2.3.1). Using these two

equations, we calculate N for seven peak-type samples. The results

are listed in Table 5.7.2. Note that five out of seven are taken

from the same ingot D82.

To conclude, we may remark that the conducting surface model has

for the first time enabled estimates for the bulk acceptor density

for anomalous samples. The results show that peak-type Hgo.8Cdo.2Te

15 -3
samples are generally weakly doped p-type with N A '10 cm.
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Table 5.7.1 THE COMPARISON BETWEEN THE CALCULATED AND THE
ASSUMED NA; OTHER ASSUMED PARAMEfRS A4E x =
.2, d = 8 x 10-2 cm, ns L 2 x 10 cm ,
t (4 *K) = 2 x 1o4 cm2/V-s, B = 2 x 1o3 G.

Table 5.7.2 THE CALCULATED NA OF SEVERAL PEAK-TYPE (Hg0.8 Cd0 .2 )Te
SAMPLES
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ASSUMED NA (cm ) CALCULATED NA (cm )

1.0 x 10 4 1.22 x 1014

5.0 x 1014  6.70 x 1014

1.0 x 1015 1.39 x 1015

5.0 x 1015 3.59 x 1015

2.0 x 1016 3.61 x 1016



5.8 THE GENERALIZATION OF THE MODEL AND OTHER REMARKS

In all our calculations we have assumed the surface layer

thickness ds to be equal to the effective debye length which is a

function of temperature and the free carrier density in the bulk.

Because of this assumption, the calculated R(T) always shows a

finite slope at low temperatures since R is proportional to T-1/2

However, this constraint on d can be removed without affecting our
S

conducting surface model; in fact, in doing so, we generalize it.

We will now address these points.

Recall that the effective Debye length was defined by the Poisson

equation. We later introduced the quantity called ''surface excess

carrier density" which is the product of surface density and surface

layer thickness; namely, n d . From then on, n and d always

appeared together in all equations we derived, including the

magnetic field dependent ones. Therefore, it does not matter if ds

is the effective Debye length as long as nsds had the appropriate

values. By removing the constraints on ds, we are free from having

the T -1/2 dependence on R(T) and from giving account for the presence

18 -3
of 10 cm ns.

We now generalize the conducting surface model to the four parallel

conductor model. Figure 5.8.1 shows how the semiconductor slab is
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separated into a bulk (with thickness db) and a surface (with

thickness d ) region and each of which is separated into single-
s

band conductors n and p. These four slabs are considered to be

homogenious and they are electrically connected in parallel in

both the x and y-directions. Two boundary conditions are given:

(1) the thickness of the sample d = db + ds; (2) 1y = Iys + Iyb = 0.

The magnetic field is in the z-direction. This model automatically

satisfies all our equations if the contribution from slab "ps" is

small compared to the rest which means that the surface holes are

less conductive. It allows us more degrees of freedom in the

interpretations of the anomalies. It no longer requires the

concept of outer surface inner bulk as described by the Poisson

equation. As long as the four conductors are connected in parallel,

they will give rise to anomalous Hall properties.

We next comment on the influence of the p-n junctions on the anomalies

which was neglected in all our calculations (see Section 3.2e). As

one may expect, if an n-type layer (or p-type) exist on the yz-

plane, covering the whole lateral surfaces of a sample. Then the

effects of the p-n junctions on the Hall voltage have to be considered.

According to Madeling 24 , there is always a "floating potential"

V set up at each of the surface p-n junction parallel to the direction

of the magnetic field because of the Hall current of the minority
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carriers. This additional potential is always negative. This

means that for a p-type sample, the positive Rpb due to holes has

one more negative opponent in addition to the negative R and R .nb ns

The presence of the Madelung potential results in shifting the

second crossover to a higher temperature in a DCO-type sample.

We will now calculate how high in temperature this second crossover

point will drift to due to this additional negative component in the

overall Hall coefficient. m can be estimated if we assume the diffusion

length L to be ~ 4 x 10 cm at 77*K. From (3.2.4) V is given
p m

by V =-(4 + pE B L a - 4 x 102E B. Compare it to the value
m nx z p x z

of V due to holes in the bulk given by

V =4Pdb E B z 50 E B .
p p x z x z

These calculations show that the measured R being dominated by

negative terms will be negative throughout regardless of the dopant

concentration NA. As a result, including the Madelung voltage will

eliminate the DCO behavior in R = R(T). The reason for the absence

of the Madelung voltage in the measured Hall coefficient is that

the boundary between the n-type inversion layer and the p-type bulk

cannot be considered as a p-n junction because the thickness of this

layer is much smaller than a diffusion length on which the Madelung

voltage is based. For a layer thickness on the order of a few

hundred anstrongs, the carriers can actually tunnel through

without experiencing any resistance. 144
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We also renark that in all our calculations x = .2 was assumed.

This is because this material is better understood and has more

data available, both classical and anomalous. But similar anomalies

have been reported in samples having various compositions and the

conducting-surface model is certainly valid in them as well.

To conclude this chapter, we want to illustrate the perfection of

the conducting surface model by comparing the calculated R, p and p

to their corresponding measured quantities. The electrical properties

of a Hg0.8Cd0.2Te sample of 8.75 x 10- 2cm thick was measured under

2KG B-field and the measurements are given in Figure 5.8.2 and 3

by discrete points. We calculated ns d from Hall coefficient measured

at 20*K from (5.3.3) and assumed it to be independent of temperature.

Then we obtained pns from the measured p at 20*K. Substituting

these values in (5.5.1) (4.5.17) and (4.5.23) with pb as an

adjustable parameter for curve fitting, we calculated. R, p and p

as shown in Figure 5.8.2 and 3 by lines. The agreement between

calculations and measurements is more than satisfactory for such

a simplifying model we employed.
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CHAPTER VI

CONCLUSIONS

Surveying the results described in this thesis, we may draw the

following conclusions and point out certain areas for further

investigation.

The peak and DCO-type variable temperature Hall coefficients in

(Hg,Cd)Te are classified as anomalous because they cannot be

interpreted in terms of semiconduction via the conduction band or/and

the valence band in a homogenious material. Scott et al23 first

postulated that these anomalies were attributable to the presence

of an n-type layer on a p-type (Hg,Cd)Te sample. In chapter IV

we derived expressions for the apparent Hall coefficient, conductivity

and mobilty on the basis of the conducting surface model.. The

numerical calculations based on these expressions with appropriate

values for material parameters showed satisfactory agreement with

the experimental results.

The anomalies can be understood in the light of the conducting

surface model as follows. At low temperatures conduction via n-type

surface predominates due to either one or a combination of these

reasons: high surface electron to bulk hole mobility ratio, weakly

doped p-type bulk, or freezing out the acceptors in the bulk. If
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If the acceptor density is so low that conduction via the

valence band is still incomparable even at exhaustion temperakires,

then R will remain negative throughout. Since a low accepter

density corresponds to a larger IR 26 as the temprature

reaches Tmax, JRwhich is the sum of fRs and |Rmaxj will give rise

to a peak.

For more heavily doped p-type materials, the conduction via the

valence band may at some temperature prevail theconduction via

the n-type layer due to either the rising hole mobility or the

diminishing freeze-out effect with increasing temperatures.

This results in a change of sign (from negative to positive)

for R. When the intrinsic temperature is reached, R will

eventually change back to negative because the sample is p-type.

As a result a DCO is observed.

This hypothesis is supported by five observations presented in

Chapter V. First, anomalies in InAs15 as well as (Hg,Cd)Te

showed that values of NA for DCO type samples were always

greater than those for peak type. Secondly, a definite correlation

existed between the low temperature R, f and the thickness of

the anomalous type samples. Thirdly, the results of the electron

radiation experiment30/46 showed that the reirradiation electron

density of a peak-type sample was actually zero. Forthly, the

anomalies were shown to be highly sensitive to the magnetic
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47
field . A peak-type might convert to have a DCO under an

appreciable magnetic field strength. Finally, peak-type sample

fabricated with the "taped" method could show p-type characteristic.

All these experimental observations are in qualitative agreement

with the conducting surface model of Chgpter IV.

At the end of Chapter V, we expanded the conducting surface

model to a more general parallel-conductors model. The diff

is that the n-type layer now is not directly bonded to the

surface but can be present via intermediate layers. This

generalized model gains more flexibility in the physical

interpretation of the anomalies. The conducting surface mod

thus becomes a special case, although there is a clear

correlation between the surface treatments and the anomalies

as reported by Scott et al.23 ,

erence

el

The conducting surface model (or the parallel-conductors model)

has for the first time enabled estimates of the bulk acceptor

density for anomalous samples. The values of NA calculated from

the Hall properties of several peak-type Hg0 .8Cd 0 .2Te samples

13 15 -3
vary from 5 x 10 to 1 x 10 cm 3 .

The consequences of this research give us more insight on

interpreting 770K Hall data. For x = 0.2 peak-type Hg1  Cd Te at

77*K is in the multi-conduction region where all three conductions,
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the bulk electrons, the bul holes and the surface electron

conduction, are comparable. For x : 0.3 peak-type materials,

77*K Hall data are still surface conduction limited due to the

wider band gaps. Thus the 77*K Hall data can be used to

investigate the surface properties for x - 0.3 materials.

If an n-type surface is shown to exist on a p-type sample, it

is possible that this n-type surface may exist on an n-type

sample as well. But because of the fact that p is always

smaller than !pnbby an order of magnitude, the surface

conductivity is negligible compared to the bulk.

There are at least two areas in which further investigation is

needed. The first is the cause for the n-type layer. The

results of the present research have demonstrated that fabrication

techniques do play an important role for the existence of this

n-type layer. In order to explain the existence of the n-type

layer, a comparative study of various fabrication techniques

has to be done.

The second area recommended for future research will be based

on the results of the first. It concerns the ability to create

or eliminate the existence of the n-typelayer or even to control
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the measure of the n-type layer in order that we can operate

the device in peak-, DCO- or p-typerode by design.

In conclusion, we feel that the conducting surface model (or

parallel-conductors model) is a satisfactory explanation for the

anomalous Hall properties of (Hg,Cd)Te and this model predicts

some of the quantitative features of the experimental observations

presented in Chapter V.
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APPENDIX

DERIVATION OF AN EXPRESSION FOR THE "PEAK" IN THE ANOMALOUS R(T)

From equation (4.6.1), we have

R qt tpb 2(b-b 2nb) s

{ ipbb(pb+bnb) + S} ,

where

S =01 s
S -

We want to find the condition at which R is a maximum. By

taking the derivative of R with respect to T, we have

BR =qj p pb 2 ( pb 2b-b nb)LnsS b
~~ 2 b n ~ (A 1)6T (ab+S) BT (crb+S) 3T ,T *

The maximum of IR(T)I always appears near the intrinsic region and

as a result all impurities should be completely ionized at this

temperature region. Thus we have

n = p - NA

or

Bn = p (A.2)

BT bT

and

-- =r b g pp (+b -
bT q Ib(~)BT .(A.3)
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Substituting (A.2) and (A.3) into (A.1), and setting - =0,
BT

we have

lp pb 2(b+2 )pb~19 2pb2b2nb+(I'nb of 2Ans) S = 0. (A.4)

For the case where b >> 1, (A.4) becomes

Pb = b"b _ Unb Uns (A.5)

pbb apb
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