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Abstract

Chapter I: With each linear ordering, e, with first

and last element we can associate a Boolean algebra D . We

discuss a Cantor-Bendixon like classification of order types

due to Erd6s and Hajnal [1], whereby with each order type 9

and each ordinal v we associate the vth derived linear
ordering, T(V). ?( ) is defined to be the least ordinal,

for which £(v) = £(vl). We discuss a similar classification

of Boolean algebra isomorphism types due to Mostowski and

Tarski [2], whereby with each Boolean algebra isomorphism

type, B, and each ordinal, v, we associate the vth

derived Boolean algebra isomorphism type, B(v). 8(B) is
defined to be the least ordinal, v, such that B(v) = B(v+1)
We show that, for any linear ordering with first and last
element, £, and any ordinal, v, (D,)(v) is isomorphic
to D.(v). We use this fact to give non-topological proofs
of some standard properties of Boolean algebras.

Chapter II: We discuss countable Boolean algebras. We define
strict Boolean algebras and we discuss Lindenbaum algebras of
Theories. We define what is meant by a TT1, (F l 1
arithmetic, recursive) Boolean algebra.

Chapter III: We show that, for any subset X of the natural
numbers, there is a partial ordering, 01 , such that & is

- ii -



Thesis supervisor: Hartley Rogers, Jr.

Title: Professor of Mathematics

- iii -

r.e. in X but not isomorphic to a X-recursive partial

ordering; there is a linear orderng'l, such that T is

T7 in X, but £ is not isomorphic to any X-recursive

linear ordering; and there is an HX -recursive Boolean algebra,

B, such that B is not isomorphic to any X-arithmetic Boolean

algebra.

Chapter IV: We show that any E strict Boolean algebra with

a scattered base is isomorphic to a recursive Boolean algebra.

We show that there is a TT' strict Boolean algebra, B,

with a scattered base such that B is not isomorphic to any

E Boolean algebra. We show that if B is the Lindenbaum
TTI teorythenKleene

algebra of a 71 axiomatizable theory, then 6(B) en

However, there is a Lindenbaum algebra B of a

' -axiomatizable theory such that 6(B) > o leene
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NOTATION

N is the set of natural numbers., = (N,0, +.}

is the standard model for arithmetic. J(x,y) is the

standard pairing function which associates ordered pairs

with natural numbers. J 1(x) = (K(x), L(x)) e N . pn

is the (n+l)-th prime.. s is a sequence number, denoted

by seq (s), iff (x)(p divides s -> (y)<x (p y
divides s)). If seq (s), then 1(s) = n, iff n is the

greatest number such that p n divides s, and y = s(i),

riff y + 1 is the greatest number, r, such that p

divides s.

Hi =the complete set Hn+1 = H', for n > 1.n+ n-

= (ilK(i) e H }. H = X'. HX+ =(HX) , for n > 1.
L(i) l n

x x
H = (ijK(i) e H ). If T and 9' are linear orderings

CL) L(i)

(partial orderings), and T is isomorphic to 9', we write

X a 9'. We say "'e is the G6del number for a recursive linear
or eeLi

ordering",Aiff there is a relation, A1(x,y), whose field is

N, such that R (x,y) is a linear ordering, and (x)(y)

(A(x,y) <-> (e}(x,y) = 0). Since every r.e. linear ordering

is isomorphic to a recursive linear ordering (See Crossley [i]),

we consider only recursive linear orderings. o is the least

- v -



uncountable ordinal, and W, is the least non-recursive

ordinal.

If B is a Boolean algebra, we say that B is strict,

iff (a)eB (b)eB (a -, b -> a = b). If f:B -> B', we

say that f is a Boolean homomorphism, iff for every a, b, c

e B:

(i) a U b - c -> f(a) U f(b) f(c);

(ii) a n b - c -- > f(a) n f(b) f(c);

(iii) a - b -- > f(a));

(iv) a < b -> f(a) < f(b)

Furthermore, if, in addition to (i)-(iv), we have

(a) eB(b) eB (f (a) < f (b) -> a < b), and (a) e> tb) eB(f (b) -a),

we say that f is a Boolean isomorphism, and we write B Z B'.

If B is a Boolean algebra and B has IT1 (1 A ,

recursive) field, operations, and relation, we say that B

is T (1l, A , recursive).

a(l) or (2) written before a logical w.f.f. is

not a reference to a footnote, but is a device used to refer

to the formula later on.
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INTRODUCTION

In this paper we study countable structures which

are not isomorphic to a structure whose field, operations

and relations are recursive. Similar known results include:

(i) the construction of a sentence with no r.e.

models; and

(ii) the proof that no non-standard model of

arithmetic is r.e.

Most of the constructions of a sentence with no r.e.

models reduce to the fact that Von Neumann Bernays set theory

has no r.e. models. A very nice proof of this fact can be

found in Rabin [ii]. The proof that there are no r.e. non-

standard models of arithmetic is due to Tenenbaum [iii].

However, in this paper we discuss partial orderings,

linear orderings and Boolean algebras. The problem which we

discuss is that of finding a partial ordering (linear ordering,

Boolean algebra) at level 9, say, of the Hensel-Putnam

Hierarchy [iv] which is not isomorphic to any partial ordering

(linear ordering, Boolean algebra) at any level 9' < 9.

In Chapter III we use a method of "Coding functions

into the isomorphism type of an ordering" to show that for any

subset of the natural numbers, there are:
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(i) partial orderings which are r.e. in X, which

are not isomorphic to any partial ordering recursive in X.

(ii) linear orderings which are 1TT in X which

are not isomorphic to any linear ordering which is recursive

in X; and

(iii) Boolean algebras whose field operations and

relations are recursive in Hx which are not isomorphic to

any Boolean algebra whose field, relation and operations are

arithmetic in X.

We prove (i) and (ii) by constructing an X- r.e.

partial ordering (X-TT0 linear ordering) which is not

elementarily equivalent to any X-recursive partial ordering

(X-recursive linear ordering). We prove (iii) by constructing a

Boolean algebra whose operations and relations are recursive

in Hx, but which is not elementarily equivalent in the weak

second order theory (see pp. 54-55 ) to any Boolean algebra

whose operations and relation are X-recursive.

For any ordinal 9 < o , if we let X = H, we

observe that, by (i) and (ii), there is a partial ordering

(linear ordering) at level 9 + 1 of the Hensel-Putnam

hierarchy which is not isomorphic to any partial ordering

(linear ordering) at level 9. We can modify the proof of

(iii) to show that, if "A < 1 and A is a limit, then there
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is a Boolean algebra at level X which is not isomorphic

to any Boolean algebra at any level 9 < X. This fact is

not proved explicitly in this paper.

In Chapter I, we use results of Erd6s and Hajnal [1]

and Tarski and Mostowski [2] to give non-topological proofs

of some classical properties of Boolean algebras. These

properties when dualized via the Stone representation theorem,

[v] become well known theorems of O-dimensional topology. In

particular, we assign a rank 6(B) to each Boolean algebra B.

In chapter IV, we perform a constructive analysis of 6 by

means of the analytic hierarchy to obtain:

(i) If B is Fl strict Boolean algebra with a

scattered base (see Chapter I, p.11 of this paper.) then B

is isomorphic to a recursive Boolean algebra; and

(ii) there is a 7T1 strict Boolean algebra with a

scattered base which is not isomorphic to a E_ Boolean algebra.

We also prove:

(i) If B is a r strict Boolean algebra, then

6(B) < w. However, there is a T strict Boolean algebra

such that 6(B) > o 1,

(ii) If B is the Lindenbaum algebra of a TT -

axiomatizable theory, then 6(B) < o1. However, there is a

Lindenbaum algebra, B, of a 7 -axiomatizable theory, such that

8(B) > w1 .
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CHAPTER I

The Erd6s-Hajnal classification of denumerable

order types, and the Tarski-Mostowski classification of

Boolean Algebras with ordered bases
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§1. 3

Let £ = L,-<) be a linear ordering. If S is

a subset of L, we say S is dense in £ iff S contains

more than two members, and, for every a, b e S, a-< b

implies there is a c e S such that a-< c-< b. If L has

no dense subsets, then £ is said to be scattered. A

subset S c L is said to be a segment of £ iff, for every

a, b, c e L, (a-< c-< b & a e S & b e S) -> c e S.

If two linear orderings are isomorphic, they are said to be

of the same order type. In Chapter I, we will usually make

no distinction between linear orderings and order types.

However, in Chapters II, III, and IV, the actual presentation

of an order type will become important. T is the order

type of any countable dense ordering with no first and no

last element. A point a e L is said to be isolated iff,

(x e L I a-< x) has a-<- least member. If I is denumerable

and has no isolated points, then I is one of the types

1, 1 + T, 1 + 9 + 1, r + 1, S.

The following definition is due to Erd6s and Hajnal

[1]

Definition 1.1: Let I = (L,-< ) be a linear ordering. For

each ordinal T, we define an equivalence relation, - on

L as follows: If T = 0, then a - £ b iff a = b.-0

- 2 -



Suppose that T > 0, and that I has been defined for

every v < T. Furthermore, suppose that, for every a, b e L,

and every v' < v < T:

(i) z is an equivalence relation on L;

(ii) a - , b -> a - b ;

(iii) (a-< c-< b & a = b) > a c.
-V -V

Let v be an ordinal < T. If b e L, define [b]

to be the equivalence class of b under the relation -

Define [a]v.< [b]v to mean a-< b & a b
V

Observe that £(v) = {{[b]v beL ' <v is a linear odering.

X(v) is called the vth derived linear ordering of £. If

T is a limit define a i b to mean (3a v < T &

a £ b). If, for some v, T = v + 1,

define a - b to mean

" x e([c] v L [a] <-< x< [b] or [b] -< x-< [a] V

is finite"

In either case observe that (i), (ii) and (iii)

hold for every a, b, c e L, every v' < V < T+l.

Let B(9) be the least ordinal t such that, for

every a e L, b e L, a 17 b <-> a 1 b. )(9) is
-T -T+l

- 3 -



the least ordinal T, such that 9(T) has no isolated points.

B(Ts) is an invariant of the order type of 9.

Example: If Z = the reals, then 3(9) = 0. If 9 = c, then

(1= 1. If X = w + 1, then F (9) = 2. (W2) (1) =

= 3. H
The following facts can be found in [1]. We shall list

them here, and sketch the proof in some cases.

Lemma 1.2: If £ is a denumerable linear ordering, then

)(Z) < 0.

Lemma 1.3: If £ is scattered, then ( 1. If £

has a dense subset, then () is dense.

Proof: Observe that, for any v, £ has a dense subset, iff

£(v) has a dense subset. If ( has a dense subset, it

is not difficult to see that I must also have a dense subset.

Conversely, if S is a dense subset of T, we can prove by

induction on v, that for any a, b, e S, a b. This

shows that [[a] }aeS is a dense subset of (v).

The following facts are not stated explicitly in [1],

but we shall need them later so we list them here.

Lemma 1. 4: Let S be a segment of Z. Let Z (S be Z

restricted to. S. If a, b e S then, for every v., a -- b

<-> a- b. Therefore, 3(T P S) <-v



Lemma 1.5: If I is scattered, then (9) is the least v

such that I(v) = 1. In other words, 3 (9) is the

least v such that, for every a, b e Z, a -_~ b.
-V

Lemma 1.6: If Z is scattered and has a greatest and a

least element, then ? (Z) isn't a limit.

Proof: Let a and b be the least and greatest elements

of £ respectively. £(()) = 1. Therefore a - £ b.

If ?(9) is a limit, there is a v < 2(Z), such that

a _- b. However, for any element c of £, a-< c-< b.

Therefore a c, for any element c of Z. Thus,

(V = 1, and ?3(T) < v. Contradiction. jj

Theorem 1.7: If £ is scattered, then 3((£-o) + 1) >

Proof: Let t = (T,-o) + 1. Let £. be the ith copy of

£ in , and let p be the greatest element of . We wish

to prove that, for any a e ., and for any ordinal T <

p / a -> p a. The fact is obvious for T = 0.

Suppose we have proved it for v < -r < 2(I). If T is a

limit, then p - a implies (~3y)( v< y & P ~ a).T - v

Contradiction. Suppose T is a successor. T = v + 1.

Furthermore, suppose that p - a, for some a / p. This

means that [[a] , [pI) contains a finite number of elements,

[qlv ... [q ] , where [q ]v is the greatest of these elements.

qn e j, for some j., Choose q+1 e j+2* We claim that

- 5 -



n v q1 v v n+1 ,then for any

X, y e j+ - v y. Thus, by 1-1.4, )(1j+1 *

Contradiction. By our inductive hypothesis, qn+1 p.

Therefore, [q n+1v is greater than [qn]v , but less than

[p]v , which contradicts the fact that [qnv is the greatest

element of [[a]v, [pv).

We have proved that ((X,.w) + 1)( contains at

least two elements. Since £ is scattered, (1-CO) + 1 is

scattered, and by 1-1.5, B(9) < ((,-co) + 1). I I

Definition 1.8: We define ao) as follows:

Mo0 = 1 ;

if T is a limit, w T = Aimw v
V<T

if T = v+, o' = MO

An ordinal is called a principal number for addition

if it is not a finite sum of lesser ordinals.

Lemma 1. 9: co is the ath principal number for addition.

Proof: Straightforward induction on x.

Theorem 1.10: For any Tr:

(i) 3(CO) = T;

(ii) (a) + 1) > )(oUT).

Proof: The theorem is trivial for T = 0. Suppose that for

- 6 -



any v < ', = v and ;.(oy + 1) > B(af). We wish

to prove that )(WT ) = T, and 3(oD + 1) > (oT).

Case (i): T is a limit.

Choose any 9 < oT By 1-1.8, there is a # < T such that

< WT <(o)= <oc. Therefore, 0 9, which

implies that 0 - C 9. This shows that (1) = l. Thus,
-T

> ().

Now, suppose that v < T. M < aT. Since T is a

limit, v + 1 < T, and, therefore +1 T +

= v + 1 >V. Because Dv+1 is a segment of CD, W(oD T ) >\ ,

by 1-1.4. Therefore ?(CD) = . By 1-1.6, a(W
T +1) must be

a successor. Since T is a limit, B(oT + 1) > B(oDT ).

case (ii): T = v + 1

Consider a linear ordering £ of order type my-D .

Let ai e £ be the first element of the ith copy of o *?

Let p be the greatest element of £. By our inductive

hypothesis, )(Mv + 1) > M() and BQov) = and (DV)(v) 1

Using this fact one can easily prove that:

(i) for any i > 0, a i a+ 1 '
(ii) for any element c of £, if c / p, then,

c - a, where i is the greatest integer such that a

is less than c;

(iii) for any c / p, p c.

-7 -



This shows that
v+1 (v ) = v+1)W= and (W + 1)

= w + 1. T

Therefore

hus
(v+1 (v+l) = 1 and

S(o v+1) = j+1 and (ov+ + 1)

(v + 1 ) (V+1)

> v + 1. 11

Theorem 1.11: If Z is a denumerable linear ordering,

then:

where each is scattered

is one of the types 1,

(ii) 2(c) =

proof: (i)

A-u-b.

1++1, n+1, i, 1+i;

[(X( r )Jre ).

See [1, p.119].

(ii) Straightforward application of results

previously.

- 8 -
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§2.

Let B be a Boolean algebra. Let I be an ideal

of B. There is a natural Boolean homomorphism i:B _> B/I.

If a e B, we define jai, to be i(a). The set, I o B,

of elements bounded by a finite union of atoms is easily seen

to be an ideal of B. B/I is called the first derived

algebra of B. If f:B -> B' is a Boolean homomorphism,

then f is called a Boolean monomorphism iff (a) eB(f(a)

- 0 <-> a - 0).

Lemma 2.1: If f:B -> B' is a Boolean monomorphism, then:

(i) (a)B (b)eB (a < b <-> f(a) < f(b));

(ii) f~(Il ) r I .

Lemma 2.2: Let B be a Boolean algebra and let b be an

element of B, then b J I , iff b bounds Xe disjoint

elements of B.

Definition 2.3: (Tarski-Mortowski [3]). If B is a Boolean

algebra, then for each ordinal T we define an ideal,

I Bc B as follows: I = (al aeB & a _ 0). If v is a

limit, then I = I . If T= v+ 1, then
v<T

B (B/IB)
I = (alaeB & lai B 1

v

- 9 -



For all v, let jal be lal B , and let B(v )
B I

be B/I . Let 6(B) be the least v such that I =I+1'

6(B) is the least v such that B(v) is atomless.

Examples: If B is finite, then 8(B) = 1. If B is the

algebra of all finite-cofinite subsets of the integers, then

B(B) = 2. If B is atomless, then 6(B) = 0.

Lemma 2.L4: If f:B -> B' is a monomorphism, then, for any

ordinal v, f ) ,
V Y

Proof: Do induction on y , using 1-2.1. ff
In the study of the elementary properties of Boolean

Algebras, one very useful source of examples is the class

of interval algebras. If I = (L, -<) is a linear ordering

with first and last element, then the interval algebra, Dg,

of I is the set

{SIScL & S = [a1,bl) U...U [an, bn)'

for some finite sequence, a -< b1 -< . ..- < an-< bn' of

elements of L). Let b be the greatest element of £.

It is easily seen that D, is a subalgebra of the power

set of L - (e). If I is isomorphic to ', then D, is

isomorphic to D,,. However, the converse if false. For

example, Do+1 is isomorphic to D1+o*+1'

- 10 -



Definition 2.5: A subset S _ B is called an ordered basis

of B iff:

(i) the ordering of B restricted to S is total,

that is for any s, t in S either s < t, or t < s;

(ii) S generates B, that is any element of B is

a Boolean combination of elements of S.

A strict ordered basis, S, of B is an ordered basis

of B such that for any a, b e S, a b. For any ordered

basis, S, of B, there is a strict ordered basis of B

such that c S. If I is a linear ordering with first and

last element a and b, respectively, then ([a,x)|xeX} is

a strict ordered basis of T. Conversely, if B has a strict

ordered basis, 9, of order type I, then B is isomorphic to

D.. (See [2])

We say that a Boolean algebra has a scattered basis

iff it has a strict ordered basis which is scattered.

Lemma 2.6: Let I c B be an ideal of B and let S c B

be a subset of B. If S generates B, then ( Jal, aeS)

generates B/I. If S is an ordered basis of B, then

( ai I aeS) is an ordered basis of B/I.

We now turn to the main result of this Chapter. As

far as the author can tell it has not appeared in the literature,

though consequences of it can be found in [2] and Mayer and

- 11 -



Pierce [4 ].

Theorem 2.7: If £ is a linear ordering with first and

last element, then, for any ordinal v, (D )(v ) is isomorphic

to D (v).

This theorem will be an immediate consequence of the

following lemma.

Lemma 2.8:

For any a,

Let B = D, where I has first and last element.

b e £, any ordinal v,

Proof: If v = 0, then a _ I-0 b <-> [a,b) = #.

[a,b) e IB

Suppose

the lemma is true for V < T. We prove it for

case (i): T is a limit.

a - b <-
-T

(3 Y)(v <

(~v)(v <T & a b) <->

& [a,b) e Iy) <-> [a,b) e I

case (ii): r = v + 1.

Suppose a V b. By I-1.1, there is an infinite sequence

(c.} of elements of

(i) for every i,

1, such that:

c ci+1'
(ii) either (i)(c 1-< ci+1 )

(iii) (c } c [a,b).

By our induction hypothesis,

or (i)(ci+1 -< ci);

for every i, [c ,i+

U[c i+1, c) I .i Therefore, I [a, b) bounds disjoint

- 12 -
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non-zero elements of B/I , and, by I-2.3, 1[a,b)| is

B/ Inot a member of I Y

Conversely, suppose a - b. That is, there is a
-T

finite sequence a.< c -< c2 -< cc< ... -< -< b, such that

a=c c c2  C3  ''' n = b, and for any

element z of £, a < z < b implies z c i for some
y

1< i < n. [a,b) = [c 1 , c 2 ) [a
n.2 U"o*U[Cn-l-Cn) Jab)tJe

I[c1,c 2 )1 U... U[c l,c )I . We now use the induction

hypothesis to show that I[cicc is an atom, for every

< i < n. Let [z ,z2) be an interval such that [z 1 2
[ci, ci+ 1). We say that [z1,z2) "fills" [cci+1)f

z c. and z 2  c By our induction hypothesis,

if [fz 1 z 2 ) fills [c , ci+1 ) then [c , i+l [z1,z2) I,

and if [z1,z2 ) does not fill [c ,ci+1), then [zi,z 2) 1 B

Let i be a member of D such that C c [c, ci+1 ). By our

B B
induction hypothesis, [c., 1 or I , depending

on whether or not there exists an interval of E which fills

[c , c ). Thus [c ,ci+ 1 )I is an atom. H
To conclude the proof of II-2.7, we note that, by

II-2.6, {[0, a) is an ordered basis for B(Y). Thus

11-2.8 and 11-2.5, B is isomorphic to D ( i

From now on when we write D£, we shall assume that

- 13 -



9 has first and last elements.

Lemma 2.9: is atomless, iff £ has no isolated points.

Corollary 2.10:

proof: See 1-1.11.

Z= S(D9).

1!J
Corollary 2.11:

Boolean Algebras.

There are isomorphism types of countable

If BstaB', then 6(B) = 8(B'). If T < T', then

+ <

Remark: See [4,

and, by 1-2.10, DOT+1 p6 D WTt'+1

pp. 937-938] for a topological proof of this

fact.

The following facts will be useful in Chapter III.

Lemma 2.12: I is scattered, iff

B has a scattered ordered basis,

(D t) ( Dl.

then every basis

scattered.

Follows immediately from 11-2.7 and 1-1. 3.

Lemma 2.13: If f:Dr -. Dy, is a monomorphism and 9'

scattered, then so is £.

Let B be D and B' be DL,. Let i be the

natural homomorphism from

a monomorphism from

(B' ) " k al

f- B(IB'
f )(s

- Di.

B/f 1(I

Therefore

B' into B'/I B'

i; t

B/f 1(I ,

B

BI/I B1

SD 1 .

i of induces

, . However.,

By 1-2.1,

Thus, B (Y) _< ) (1' ),

- 14 -
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and (B)?)(r) D 1. By 1-2.12, £ must be scattered.

Lemma 2.14: If 9 and 9' are ordinals and 9 < @', then

there is a monomorphism from D9+1 into D9'+1'

Proof: Let be an order preserving map from 9 onto an

initial segment of 9'. Let f be an order preserving map

from 9 + 1 into 9' + 1 such that f 9 = and f(9+l)

= 9'+1. f induces a monomorphism from D9+1 into D 9'+1'
Theorem 2.15: If I is denumerable and scattered then

D 2 D for some ordinal 9.

Proof: See Mazurkievicz and Sierpinski [8, pp. 2-21.].f1

Remark: In Erd6s and Hajnal [1], we find the following classi-

fication of denumerable scattered linear orderings. Let

O = (0,1}. Let 0 = all w-sums and o*-sums of members

of L) 0,. Then 0 = 0 , is the collection of

all denumerable scattered linear order types. The authors

express their belief that the classification is so natural

that it must have appeared somewhere before in the literature.

This author has not been able to find it if it has. However

if we look at the Stone spaces of the interval algebras of

the order types, it turns out that Erdbs and Hajnal's

classification theorem is equivalent to Sierpinski-Mazurkievicz's

theorem that every countable compact space is homomorphic

to an ordinal. We can do induction on a to show that for

- 15 -



every denumerable scattered linear ordering Z, with first

and last element, D is isomorphic to D8 , for some

9 < P. Now the Stone Representation theorem tells us that

every countable compact Space (a countable compact Space

must be Boolean) is homeomorphic to an ordinal. In this non-

topological proof of a classifical topological theorem the

classical fact that every countable ordinal is an w-sum of

smaller ordinals takes the place of separability and the well

ordering of the ordinals takes the place of compactness.

Conversely for any denumerable scattered linear ordering £

with first and last element, Z is isomorphic to D cc
o n+ 1

We can do induction on (an) to show that, for any

denumerable scattered £ with first and last element, £ 0.

The classification theorem follows easily from this. We can

also use the Classification theorem to prove that, if B

is a countable Boolean algebra and B/(atomless elements)

has a scattered basis, then B is isomorphic to D

TwQ

where QcY a <)

- 16 -



CHAPTER II

Countable Boolean Algebras and Boolean Algebras

whose elements are integers.

- 17 -



§1. Countable Boolean Algebras

The following theorem is part of the "folklore" of

the subject of Boolean algebras. We include it here for

completeness.

Theorem 1.1: Every denumerable Boolean Algebra has an

ordered basis.

Proof: Let a1 , a2, ... be an enumeration of the members of

B. We define inductively an increasing sequence of finite

sets as follows

A [ 1 )

Suppose An = {b1, ... , bn) has the following properties:

(i) 0 < b 1< ... _< b n - 1'

(ii) Each ai, 1 < i < n, is a Boolean combination

of the members of A .

Let c1 = b U an+1 c = b U c , for 1 < i < n.

Now b < ci, for < i < n, and hence:

-- 0 < b 1 n an+1 < b 1

-- b < b c < b for 1 < i < n; and

-- cn-1 n bn < bn < cn *

- 18 -



Thus, An U (b 1 an 1 )
l<l<n

ordered by < .

Let An+1 = An U (b n a n+1 U (C n} U

(b n( c } is totally

U
l<i<n

{b i-

We now claim that a+1 is a Boolean combination of

a n+1 b 1and

computati on.

C . To see this, we perform the following

an+1 = (b U an+1 ) n

an+ = (b U a n+ 1 ) n

an+1 = (b U an+1) U

(~b U an+1)

(b n an+1

(b n a+

an+ = U (b, n an+1)

Similarly, c is a Boolean combination of c n bi+1 and

c+'for 1 < i < n. Thus, an+1 is a Boolean combination of

( an+1 n b1 , b2 n c1, b3  2 , . .., b cn n n-1 , Cn}, and, hence,

an+1 is a Boolean combination of members of An+1'

Let S =

and S generates

U
n > 1 A. S is totally ordered by <

B.

- 19 -
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We will now discuss Boolean algebras whose elements

are integers, and whose relations and operations are relations

and function of integers. In doing this, we can take two

points of view. We can regard the equivalence relation "-"

as an equality relation, and say that two integers represent

the same elementof the Boolean algebra, iff they are the same

integer. In this case, our Boolean algebra will be a strict

Boolean algebra, that is, one in which any two equivalent elements

are, in fact, identical. On the other hand, we can take the

point of view that "<" is not a strict partial ordering, and

that two distinct integers may be equivalent in the algebra.

As an example of our first point of view, we will discuss

interval algebras of linear orderings of integers. It can be

seen by our definition of an interval algebra (I-p.11 line 12)

that an interval algebra is strict. As an example of our

second point of view, we will discuss Ltndenbaum algebras of

theories. We will regard the elements of the Lindenbaum algebra

to be G6del numbers of sentences. Certainly, two Gbdel numbers

can represent equivalent sentences or even the same sentence.

We will now begin our discussion of interval algebras

with the following lemmas, which will be useful in Chapter IV.

1 1
Lemma 1.2: If Z is a E (w1 , recursive) linear ordering

(L,,<}, then D, can be presented as a Boolean Algebra whose

- 20 -



operations and relations are 1 (V , recursive).

Proof: Let a and b be the first and last elements of £,

respectively. We will present D as the union of the set

{0) with the set of all strictly ascending, finite sequences,

s, of elements of Z, such that the cardinality of s is even.

The integer 0 will represent the 0 element of D . To

prove the lemma we shall write down the definitions of <, n,

U, and observe that they are F ( , recursive) if £

is 1 ( 1 recursive.).

(i) xe D:

x e D <-> x = 0 V(seq (x) & (i)<L(x)(K(x(i)-< L(x(i))

& (i)" O _< i < I(x) -> L(x(i))-< K(x(i+1)) '

(ii) x :

x C <-> x = OV (seq (x) & (i)<L(x) (K(x(i)-< L(x(i))

&~~ (1 < i < I (x) -> L(x(i) )--< K(x(i+1)) .

(iii) x < y:

x < y <-> x e D & y e D & (1) (3 j)

(K(y(j)).-< K(x(i)) & L(x(i) -< L(y(j)))> / )(::-o

- 21 -



(i.'

(i)<g(X)(K(x(i)

(j)(K(y(j)

& y e h 9 &

) L(x(i)) - > (

/ L(y(j)) -> Q2i)(

(x(i) = y(j)))

(x(i) = Y(j))

x ~ y says that x and y are equal modulo empty

intervals.

(v) x =

x = y <->

\{ (y = 0 &

e D£ & y e

x = 2 1+-J(ab))

D 9 & ((x=

y (x z

0 & y = 21+J(ab)

& A(y) + 1 &

K(z(0) = & L(z(t(z))) = b & (i)K 0 < i < A(z) ->

L(z(i)) =

= L(y(i-1)) .

(vi) xU y-z: If

x U y" be

term of z

x, y and z are sequence numbers let "z r

the recursive predicate which asserts that every

is either a term of x or a term of y.

z <-> x e D I

& ((y = 0

& y e D & z e D£

& x = z) \4 (x = 0

& x <

& z = y)

- 22 -

x y:

x ~ y <-> x e

7)
..

x U y

& y <

& (i)(O < i < A (z) -> K(z (i) )



(z) (~2s)(seq(s) & s c x U y & K(s(O)) = K(z(O))

& L(z(L(z))) = K(s(A(z)) & (j)<,js) (2 (1+s(j)) < X 21+z(i)))

(vii) x n y = 2 < U y

We observe that, in (i) - (vii), "_<" occurs only in

a positive fashion. Therefore, we bring the function quan-

tifiers of (i) - (vii) to the front (as in Kleene [:5 ,p. 315])

and observe that, if £ is r recursive), then so are the

predicates (i) - (vii). H

Lemma 1.2?: Let x c N. If £ is an x-recursive linear

ordering, then D can be presented as a Boolean algebra whose

operations and relations are X-recursive.

Lemma 1.3: There exist recursive functions g1, g2' 93' g4' g5
such that if e is the Gbdel number which defines a recursive

linear ordering, the for every x, y, z

(i) x = 0 iff x is the zero element of D1+r+1'

(ii) tg,(e)) (x) iff x e D1+9+1'

(iii) 2e)(xy) iff x <1+r+1

(iv) (g3 (e)}(x,y,z) = 0 iff x U1+ y =

(v) (g(e)}(x,y,z) = 0, iff x ++y = z;

(vi) (g5 (efl(xy) = 0, iff x y

Proof: Similar to the proof of 11-1.2. H

- 23 -



Lemma 1.4: If B is a denumerable strict Boolean algebra

with recursive field, and U, n,~ are recursive, then there is

a recursive linear ordering, £, such that B D

Proof: Use the proof of II-1.1 to show that B has a

recursively enumerable strict ordered basis S. Let 9 be

a recursive linear ordering of the same order type as S. B D

Lemma 1.14': If B is a strict Boolean algebra with X-recursive

fiel d, operations and relations, then B z D for some

-recursive linear ordering £.

Corollary 1.5: If B is a strict Boolean algebra with

hyperarithmetic field relation and operations, then B z D

where £ is hyperarithmetic.

We conclude this chapter with a discussion of our

second kind of Boolean algebra. From this second point of

view)we regard the Boolean algebra as being specified by its

natural ordering, <. So when we say that a Boolean algebra

of the second kind is z , A1, arithmetic, recursive), we mean

that < is 7T A}, arithmetic, recursive). For example,

consider the Lindenbaum algebra of a theory, T. In this case,

we regard, "_<" as being the derivability relation "a 0"

where a and @ are sentences of the language, (, of T.

If B is a Lindenbaum algebra, then B has the

following nice properties:

-24 -



(i) The field of B is recursive. (It is just the sentences

of ).

(ii) There are recursive functions f , f2' f3 such that for

every x, y, z e B, f1 (x,y) x U y. f2  x l y'

f3 (x) x

(The functions f , f2 ' f3 are just the propositional

connectives v, A, ~.)

In general, however, the predicates x n y - z,

x U y - z, x - z are arithmetically definable in terms

of <. This gives us the following lemma.

Lemma 1.6: If B is a Boolean algebra whose natural ordering,

<, is hyperarithmetic (arithmetic) then B is isomorphic to

a strict Boolean algebra whose operations, relation and

field are hYperarithmetic (arithmetic).

Proof: If a e B, let [a] be (xjxeB & x __- a). Let

f be a hyperarithmetic (arithmetic) choice function which

chooses a member from each class in the collection {[a]} aeB

Let be the range of f. Since the relations, x n y - z,

x U y - z, x - z are arithmetically definable in terms

of <, these relations are hyperarithmetic (arithmetic).

Since f is hyperarithmetic (arithmetic) so is $. The

relations x U y = z, x n y = z, x = z, when restricted

- 25 -



to are hyperarithmetic (arithmetic) operations. The

relation "~ ", when restricted to becomes the

equality relation "= ". B is isomorphic to h . |I

- 26 -



CHAPTER III

Coding Functions into the Isomorphism Type of an Ordering
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§1. Preliminaries

The following lemma and definitions will be useful

in what follows.

Definition 1.1: Let A(x1 ,...,xn,y) be an arithmetic

predicate. We say that y is E.A.N. in A(x1,...,x?)

iff,

(x1 )... (xm)(r)(.A(xl,...,xm,r) -> ( ~A(x1,...,xm'

Remark: E.A.N. stands for "everywhere or almost nowhere."

Definition 1.2: An arithmetic predicate is said to be in

predicate form iff it is in the form Q z1,Q z2 ' 'z

R(Xz 1, ..., zn), where R(g,z 1, ...,zn) is recursive, and

Q5 ,..., Qn are alternating unbounded quantifiers. Every

arithmetic predicate is equivalent to a predicate in predicate

form. (See Rogers [7., p.126 ].)

Definition 1.3: If Q z1,...,Q zn R(g,z1 ,...,zn) is in

predicate form where R is recursive, then Q1 z 1,...Qnzn
R(g,z 1, ..., zn) is said to be in E.A.N. form iff, for every

1 < k < n, Qk = V implies z is E.A.N. in

QSk+1 zk+1 '' Qnzn R(E z , 5...,lzp...,zn)'

Lemma 1.4: Every arithmetic predicate, A, is equivalent to

a predicate in E.A.N. form.
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Proof: By 111-1.2, we may assume A is in predicate form

We do an induction on the number, N, of universal quantifiers

preceding the recursive predicate to show that A is

equivalent to a predicate in E.A.N. form. If N = 1, then

A is in one of the following forms where R is recursive:

(i) (y) R (1,y); or

(ii) (y)(z)R(,yz); or

In the first case A is equivalent to (y)(u)<y R(9,u),

which is in E.A.N. form. In case (ii),

A <-> (y)(u)<y (3z)R( ,u,z)

<-5% ) (-g Z) (u) <yR( ,u, (z)uI'

where (1) is in E.A.N. form. The third case reduces to

the second by observing that, in general, if A( ,z) is in

E.A.N. form, then so is (3z)A(1,z). Before proceeding to

the induction step, we prove the following claim.

Claim: If y is E.A.N. in A( ,u,y), then it E.A.N. in

(u)<v A( ,u,y).

Proof: Suppose ~(u)<v A(9,u,r) holds for some 2,r. This

implies (3u)<v A(9,u,r). Thus, for some t _< v,

Because y is E.A.N. , (y). ~A(,V1,y) holds. This implies
-. L



r (au)< A(-,u,y) or equivalently (Y)>r ~(u)< A(Z,u,y).

Using the claim, the induction on N may be completed.

Suppose the theorem is true for N = n. Let A be

(y 1)(3z) (Y2 ) 2 ) ... R(2,y1 ,zly 2,z2 ,...), where A has

n + 1 universal quantifiers preceding the recursive

predicate. By our induction hypothesis, we can assume that

(y2 3z2)..R(9,y1 ,z1 ,...) is in E.A.N. form. A <> (2)

(yl)(u)<y()z)(y2 ) ... R( ,u,zly 2,...) where y is

E.A.N. in (2). We now drive "(u) y1 inwards (as in Kleene

[6,p. ]) and observe that, every yk is E.A.N. in

(zk )...R(,u,(zl)u' 1 ( 2 u' ' ' z'' - y ,... ) and,

therefore, by our claim every yk is E.A.N. in

(u) () zk ) ... R(2 , 1u' '. ' ' 'k-

Therefore after l(u) is driven all the way

inward, the resulting predicate is in E.A.N. form.
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§2. Partial Orderings

The proof that every recursively enumerable linear

ordering whose field is total is a recursive linear ordering

depends on the fact that a linear ordering 9 is connected,

that is, for any a, be £, either a-< b or b-< a. If 9

is an r.e. partial ordering and is not connected, then,

as we will prove below, need not be isomorphic to a

recursive partial ordering.

Theorem 2.1: There is a recursively enumerable strict partial

ordering which is not isomorphic to a recursive strict partial

ordering.

Proof: Let be the language of the elementary theory,

of partial orderings, and let w< be its relation symbol.

Let = P,.<} be a model of T. is a strict partial

ordering iff, for any two elements a, b e , a = b implies

a-b. A set S of elements of is called an antichain

iff any two elements of S are -<- incomparable. It is

clear that any anti-chain can be extended to a maximal anti-

chain. It is also clear that, for every integer n, there is
n na sentence n of T such that n asserts the existence

of a maximal anti-chain of cardinality n.

Lemma 2.2: (i) If is a recursive partial ordering, then
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ordering then hi(t

Proof: (i) "f I=

(1) (3s) (seq(s)

1= J") e E3'

n-

& A(s) = n

(i)< (j)

(z) (3 j)<n (s(j) --< z V z -.< s(j)),

where a-< b means a-< b or a = b.

relation. We apply the

k" t

Tarski-Kuratowski

is a recursive

algorithm (see

[7', pp. 131-133]) to (1)

is proved similarly. I|

to see that (1) is in r2*

Thus, to prove the theorem, it suffices to find a

r.e. partial ordering

Let R(m,y,y 2,'y3,n)

(i) n > 2

6 such that A n)
C 73 2'

be a recursive predicate such that:

& (3m)(y) (3y 2)

and

is E.A.N. in (:]y2 )R(m,y 1,y2,n)

We seek a r.e. partial ordering P such that

($ ,n <-> Y (3m) (y1 ) (y 22)R(m,y1 ,y2 n)).

- 32 -
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(ii)

(ii)

3 2

(n) >2

ago---- --,--

(ii) If is a recursively enumerable partial

(i) / j -> ~ (s(i) -< sj))



P can be visualized as follows:

I a
A* &

% & 9
4 . S

If

n '-

£ ~ * a

p

a
p

a
e a

4k

(n,m,x,i) n > 2 & O < x < n & (x < n <-> i*)

xi* & n / * & m *

For notational convenience, we will deal with a

symbol * in addition to the integers. That is, the field

of the relation we will construct will be a subset of the

fourth cartesian power of (*,0,1,2,3,4,...}

Let P be the following set of 4 -tuples.



We define the following relation on P:

(n,m,x,i).< (nt,m',x',i') <->

(n,m) < (n',m') / ((n,m) = (n',m') &

i < i & x = x' = n & (gy2) R(m,i,y 2,n) &

(2Y 2) R(m,i,y 2 ,n)) V ((n,m) = (n',m') &

x < n & x 1 = n & (Sy 2 ) R(m,i',y2 ,n))

Let = {(P, -<). 'l<" is an r. e. relation.

Claim (i): is a strict partial ordering.

Proof: Follows from an examination of the definition ofS.

The reader will get some idea of what looks like by checking

that this claim is true.

Claim (ii): If S is an antichain of , and both (n,m,x,i)

and (n',m',x',i') are members of S, then (n,m) = (n',m').

Thus if S is an anti-chain we define S1 = n and

S2 m, where (n,m,x,i) is an element of S. Let

A = (n',m',x,i) (n',m',xi) e P & 0 < x < n

& (n,m) = (n',m')

Bn= (n',m',x,1) (n',m',x,i) e P & x = n &

(y2 R(m,i,y2,n) & (n',m') = (n,m)
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e P & x = n

R(m, i, y2,n) & (n',m') =

Claim (ii): Suppose that S is a maximal anti-chain of P

and that S1 = n, S2 = m,9 and the cardinality of S (card S)

is > 2,

(i) (y1) (2 )R(m,y,y 2 ,n) -> card S = n, and

y2 ,m) -> card S = .

Proof: An examination of the definition of 6 will be

justification for the assertions made in this proof.

the

(i)

Card An = n.

(ii)

there is an

card C=
m

s='YC0.H

If (yl) ( y2)R(M, y , y2, n), then nS must be Am*

Since y1 is E.A.N. in (.5y2 ) R (m, yy 2,n),

T such that

Since S is maximal, Cn c S, so card

We now conclude the proof of Theorem 2.1. If

then for some(2M) (y )3y2)R(m,yl y2,n),

(ff,y, ,y,,n). By Claim (ii),

cardinality n, and, thus,

An is a maximal anti-chain of

n . Conversely, suppose

In this case, if

anti-chain, and S = n, then card S =

S is a maximal

On the other hand,

if S = ' / n, then either card S =) or card S = hn n.

- 35 -

Cnni (n',m',x,1)

& ~(3 Y2) (n, m)

then:

Thus,

(ii) ~(yl )(:A2) R(M,Y, ,

(yl )>r -; 2 ) R(m, yVy2 , n).

R, (y 1) ( y2) R

(m)~(y )( y2 ) R(m,yl ,y2 ,n).



Therefore, n ) n.
Theorem 2.1: Let X c N. There is a X-r.e. partial

ordering which is not isomorphic to an )( -recursive partial
ordering.

- 36 -
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3. Linear Orderings

The proof that every r. e. linear ordering is isomorphic

to a recursive linear ordering depends upon the fact that

every r.e. relation is isomorphic to an r.e. relation whose

field is total. (This latter fact will be proved in chapter

III, §1). In this section we will construct a R 0 linear

ordering, £, which is not isomorphic to a recursive linear

ordering. In particular, I is not isomorphic to any TT 0

relation whose field is total. For if T is TT 0 and the

field of £ is total, then for every X, y e T, x-< y <->

.(y.-< x), and, thus, I is r.e. which means that £ is

recursive.

Theorem 3.1: There is a J 7 scattered linear ordering not

isomorphic to a recursive linear ordering.

Proof: Let -< be the relation symbol in the language

of the elementary theory, T, of linear order. Let £ = {L,z}1

be a model of T. A set S c L is said to be a successor-

chain iff for any a e S, b e S, [a,b) is finite. It is

clear that any successor-chain can be extended to a maximal

successor chain. It is also clear that for every integer n,
n ofnthere is a sentence of such that i asserts the

existence of a maximal successor-chain of cardinality n.
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If T is a recursive

n()= fn) 3
(ii) If I is a I 1 linear ordering then

(i) £|= #n is equivalent to I= A where

(~3s)(seq(s)

(z) (s(0)

& ,(s)

< z < s(n) ->

(z)(z < s(0) ->

(z) (s(n)

(-3y)(z < y < s(0))

< z -> (2y)(s(n) < y < z).

We apply the Tarski-Kuratowski algorithm to (A) to

show that (A) e 73. The proof of (ii) is similar.

Thus to prove the theorem it will suffice to construct

a TT 0 linear ordering £ such that

( n ) ', F '3 *

111-1.4 will be useful in constructing such an

R(m,y,y 2 'Y3,n) be a recursive predicate such that;

Let

(i) n > 2 & (21 m)(y)( y2) 3 )R(m,y ,y2 ' 3,n) C F: - 5:3;

(ii) "(2m)(y)(3y 2 r 3 )R(m,yly 2 'y3 ,n)" is in E.A.N.

form.

- 38 -

Proof:

= n

A is

Lemma 3. 2: (1) linear ordering then

& (1)< (s (i) < s(1+1)) &

(~ ci (z = s(1 )



As in the proof of Theorem 2.1, we deal with a symbol

* in addition to the integers. Let L be the following set

of 5-tuples

& O < x < n

& (x = n -> (i / *

& (x < n -> (i,j)

& i / *)) & x / * & m *J.

We define the following linear ordering on L.

(n,m,x,i,j) -<

((n,m) = (n',m'

(n' ,m',x' ,i',j')

)& x <x')Vg'

<-> ((n,m) < ex.

((n,m) = (n',m') &

& i > i') I ((n,m) (ni,m' ) & x = x' = n &

i = i' & j < ji).

It is not too difficult to see that the order type of

We now define a

(n,m.x. i. j)

i = 0) V (x = n

(n,m,x, i, j) e L &

& i > 0 & (3y2<j

(x < n \{ (x = n

N 3 )R(m,1-1,y2 y3,n)).
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x = x'

(L,-<) is

W-. *)-o.(n +
n>2

subset t of L.

j(n,,MX,,i-,i)ln>2

e t <->



If A c L, let

A. Let A be the set

( (n',m', x, i, j)|(n',m')

We wish to show that,

A be the restriction of £ to

= (nm) & x = n).

The following observations,

establishing

which will be useful in

(2), are direct consequences of the definiticns

of T', L, and .
(i) For every n and m,

(y ) y2) 3)R(m.y ,y2 'Y3 ,n) -> n rfAS s w.o*.

(ii) For every n and m,

() 2 32) (y3 )R(m,y,y 2 'y3,n) -- > £ Oz w. q

where q is the least integer such that

~y 2 )(Y3 )R(m,r,y2 y 3,n).

(iii) If S is a maximal successor-chain of x r , then

have a least element. Furthermore,,if

it is necessary (though not sufficient)

of S be of the form

S is to be finite,

that the least element

(n,mx,i,j) where x = 0.

We now conclude our proof of 111-3.1.

of the definitions of

An examination

L, t and £ will be the justification

for the assertions made below.
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Suppose that

(3m)(y )(y 2 y 3 )R(m,y1 ,y2 '3 ,n) holds for some n.

Therefore, for some M, (y1)(Gy 2) 3 )R(r,y1 ,y2 'y3 ,n)

holds. By (i), (n',m') = (n,)

\& x< n

is a maximal successor chain of £ f. ((nj,n-l,*,*) is

a lower limit point. (n,i,*,*) is an initial point if

n = 2, and an upper limit point if n > 2.)

Conversely, suppose that, for some n,

(3 m) (y1)( y2)(y3 )R(m,y1 ,y2y 3, n). Furthermore, suppose

that S is a maximal successor-chain of £ and that S
has least element (n.,m,o,*,*). Let B be the set

m

((n',m',xi,j)|(n',m',x;i,j) e L & (n',m') = (nff) & x < n').

If £IAZ ( A i w.w*, then S = B , and, therefore the cardinality
m m

of S is K. On the other hand, if I A o L . $,for some

integer q, then one easily checks that the cardi.nality of

S is infinite. In fact, in this case, £ S s o. Thus, it

follows from Lemma 2.6, that either card s = ' or card S =N
0depending upon whether or not (yl) (y 2 ) (Y3 )R(m',y ,y2 'y 3'

holds. However, it follows from our assumption that if n = ",
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then, for any %, (yl)( Y 2)(y 3 (m, yly 2 ' 3, .') does not

hold. Thus, either card S = n / n or card S =N .

Theorem 3.1': Let X c N. There is a scattered linear

ordering which is ~lT in X and which is not isomorphic

to any X-recursive linear ordering.
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§ 4 Coding H -recursive functions into Recursive Orderings03
The following theorem will give us a method for

constructing a recursive structure whose isomorphism type has

a non-arithmetic collection of elementary properties. In

particular, at the end of this section we will construct a

recursive linear ordering, £, such that the set of all

elementary statements true of I is not arithmetic.

Definition 4.1: Let e be a number, and T be an order type.

We say lel = £, iff for every n, (e}(n) is defined and

J-'(We) is a linear ordering of order type £.

Theorem 4.2: There is a recursive function e(e,a,m,n) such

that if e defines a recursive function of n + 1 arguments

(see Kleene [8, pp. 288-289]), then for every integer a:

(i) (2z1 )(z2)( z3) (z 4 )...({e)(zl,z2,z3 ,...,a) = 0)

-> le(e,a,m,n) = om+n+l

(11) ~(4z 1 )(z2 )(:2z 3 )(z4 )...({e)(z,z 2,z3 ,...,a) = )

-> le(e,a,m,n) = om+n

The proof of this theorem will require several lemmas.

Lemma 4.3: There is a recursive function 7r(ea,m,n) such

that, if e defines a recursive function of n + 1 arguments,
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then, for every z 1, .. . , a:

(i) ({ e)}(z, ...,zn, a) = 0) -- > 1(e, a,m,n) =m+1

(ii) ({e)(z 1,...,zna) / 0) -- > ?(e,a,m,n) =m

Proof: Straightforward. |

The function, r, will correspond to the recursive

matrix of an arithmetic predicate in predicate form. We

will now define two recursive functions, T and 1, which

will correspond to V and 3, respectively.

Lemma 4.14: There is a recursive function F such that, if

e is a number such that, for every n, { e}(n) is defined

and I{e)(n)l = In, then 1E(e)l =

Proof: Suppose we are given a number e. Let r(e) be the

Gadel number of the following partial recursive function:

Given n, to find (F(e))(n), we:

(i) let Qn c (0,... ,n x {0,...,n) be the set of all pairs (i, j)
2e(O, ... ,n) such that the computation of ( e}(i) terminates

in at least n steps, and, furthermore the computation of

((e)(i)}(j) terminates in at least n steps;

(ii) let = K({(e}(i)J(j)), and let

lij=L { ( ) ;



(iii)

An= (jOP

& k < 1

& (i<i'V

& (i?,jI)e,

& k' < 1

(i, j)=(i' )

(iv) Let r be the least m such that Am and let [E(e)}(n)

be the least element of

Cn = Ar+n-

(Y.,(e ) }(n) = (E(e)}(n-1), otherwise.

Z is recursive and has the desired properties.

Lemma 4.5: There is a recursive function,

e is a number such that, for every n,

such that,

(e} (n) is defined

and (e}(n)J = Zn, then

Proof: Similar to that of 4.4.

Lemma 4.6:

define f(z,

i j<i a

I I
Let A(z,y) be an arithmetic predicate.

y) recursively. If for every

(i) A(z, y) -> (if ( -,y) I
m+1

; and

where q is an integer whose

value depends on z,y; then, for every
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kij,i )' J ( IP

&k<k)

if C / ,I and let

if

Let
-4Z -1Y;

-- -- - - - I

let

IE(e)|

(ii) ~A(-Zy) -> = om. q),9( If (Z, Y) I



(1) ( Ay)A(Z,y) -- > (a(Sn (e,)) ( m 2; d

(2) ~.y)A(Zy) -> ( (S (e, Z))

Proof: By 111-4,5, is

That is, 1E(Sn (e,Z))I = E9

Co < 91 < M+ 1.If (:y)A(Z,y)

w-sum of ordinals.

wherefor every i,

holds, then Mom+l occurs

times in the w-sum, and, therefore, the sum will be

m+2. If (y) ~ A(zy), then, for every i,

Therefore the o-sum will be om+1

Lemma 4.7: Let A(z,y) be an arithmetic predicate.

define f(2,y) recursively. If y is E.A.N. in A(Z,y),

and, if for every z,y;

(If(*, y)1 = m+1)

(ii) ~A(z,y) -> (If(Z, y)j = wm)

then, for every z;

integer whose values depends

m+2

= q)

on

Proof :By 111-4. 4,
ieN

; and

where q is

-4
z.

where, for every
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Ag

G < m+1

Let

and

and

Ir~.(S'(e,-z)))

(1) A(-Z, y) ->

()(y)A(Zly) -> ( IE(Sn (e,-Z))lI

(2) ~(y)A(Z,y) -> (17, ') I(Sn ( e., 'z



either 9 = m or 9 i= m+1. If (y)A(Z,y), then

m m+1 m+2.(i)(0 m) and 29 = CD -o = y . is E.A.N. in

A(Z,y). Therefore, if ~(y)A(z,y), then there is an r

such that (y) ~ A(Z,y). In this case, (1)>r(Oi = om)
m+T

and G. = W .q where q < r.

Lemma 4.8: There is a recursive function A such that, if

e defines a recursive function of n + 1 arguments, then:

(i) A(e) defines a recursive function of n + 1 arguments;

(ii) for every a, (3z )(z2)(: z3)(z4)... ({e)(zl,...,zn a) = 0

<-> (3zl)(z2)('3z3)... ((X(e))(z 1  .1,zna) = 0);

(iii) ( z) (z 2 ) (. z3 )... ((e))(z, ... ,zm, a) = 0) is in E.A.N.

form.

Proof: Look at the proof of 1-1.4. This proof gives an

effective procedure which given the G6del number defining the

recursive matrix of an arithmetic predicate, A, yields a

G8del number of the recursive matrix of an arithmetic predicate

A, where A is in E. A. N. form and A is equivalent to A. 1

We now complete the proof of IV-4.2. We will define

e(e,a,m,n) for the case where n is odd. (The case where n

is even is similar and will not be discussed further). Let

(e}(z 1 ,..., zn,a) be a recursive function. We define

e1 (e,a,m,n)..., en(e,a,m,n) inductively as follows:
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~ ,,(n- 1
(i) ~e(e,a,m,n) defines r(S (r(A(e),a,m,n),z

as a n-1 place function;

(ii) For 0 < 2i+l <n, e2 i+1(e,a,m,n) defines

f(Sn-(2i+1)(e2 1,z1 ,...,zn(21+1)) as a n - (2i+l) place

function. For 0 < 2(i+l) < n, e2 (i+l) defines

7s(Sn-2(1+1 2 1 , z,...,zn-2(i+1))) as a n - 2(i+l) place

function.

Let e(e,a,m,n) = en(eea,m,n). It is a straightforward

inductive proof, using 111-4.6 and I11-4.7, to show that

e(e,a,m,n) has the desired properties. Observe also that

e(e,a,m,n) is recursive. H

Definition 4.1': Let e be a number, and Z be an order

type. We say !ex! = £, iff for every n, (e}(n) is defined

and J~ (We) is a linear ordering of order type £.

Theorem 4.2': There is a recursive function w(e,a,m,n), such

that, if X c N and if e defines an n + 1 place function

recursively in X (see Kleene [8, pp. 266-281]), then for

every z ,.. .zn,a:

() (2z )(z2 (3z3)... ({e}x(z,..., zn,a) = 0) -> ( e(e,a,m,n) X =om+n+1
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(ii) ~3z)(z2)(3z3 )...({e)x(z1,...,z,a) = 0)

x m+n
(Tr(e,a,m,n)Xl = mn).

Proof: Alter the proof of 111-4.2 by making the following

replacements: an expression of the form "(t)." is

replaced by "(tX)?.

an expression of the form " It1 = I" is replaced by

an expression of the form "t defines a recursive function..."

is replaced by "t defines, relative to x, an x-recursive

function ... "

Observe that this altered proof is a proof of 4-2'.

The assertions in the altered proof are shown.to be correct

by an argument very similar to the proof of the relativization

of the Kleene S theorem (Kleene [10, pp. 150-155].) 1n

The following corollaries will give us 111-4.2 in

the form we need it.

Lemma 4.9: There is a recursive function 9 such that for

every n, G(n) defines an n + 1 place recursive function,

and

(a) (n) (aeH n 1-> ( z2) (2z3)z4)... ({-(n))(z9,-. .. ,zna)=0))

-49 -



Proof: Look at the proof of the Post representation theorem.

(See Davis [ 9, pp. 158-161]) Observe that this proof gives

us an effective procedure which given a number, n, yields

the G6del number which defines the recursive matrix of Hn'

Corollary 4.10: Let (a,m,n) = r(9(n),a,m,n). For every

a, n:

(i) a e Hn -> (1P(a,m,n) = om+n+1

(ii) a Hn -> (IP(a,m,n)? = W ).

If in 111-4.9 and 111-4.10, we make the replacements

listed in the proof of 111-4.2', we obtain the relativized

versions, 111-4.9' and 111-4.10'.

Corollary 4.10': There is a recursive function p(a,m,n)

such that if X _- N, then for every a, n:

(i) a e H > (1P(a,m,n)x, = om+n+l)

(ii) a H -- > (xP(a,m,n)XI = m+n
n

We will now use IV-4.10 to construct a recursive linear

ordering, £, such that the set of elementary statements true

in T is Turing equivalent to H . First, we will need

several preliminaries.

Definition 4.11: Let be a structure and let II be a

language of the same similarity type as Z. The truth set of
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is the set (11§ is a sentence of &

Lemma 4.12: If is a denumerable structure of finite

similarity type , whose field is an arithmetic subset of N,

and whose relations and operations are arithmetic, then the

truth set of is Turing reducible to H .

Proof: Look at the model-theoretic definition of " T"

and keep in mind that every member of TT 0 U E0 is Turingn n

reducible to Hnn

Lemma 4.13: Let ( be the language of the elementary theo

of linear order. The predicate "There exists an nth induc

upper limit which is also a lower limit point." is expressa
insi

in .

Proof: Let v, v 2 , v 3 ... be the variablesand -< be the

relation symbol of G;. We define the w. f. f. 's L~(v 1 )

inductively:

ry

tive

ble

L 0 (v) <-> (3v2)(v2<vl) & (V2)(V2<Vl -- > 3v3)(v v2-<vl).

Ln+1 v1) <-> L 0 (v l) relativized to L(v 1 ).

Now we define the w.f.f. 's L (v,) and n

L (v1 ) <-> (3V2) (v-< v2 & (v2)(vl-< v 2 --> (v3)(vv 3 <v2

<-> (v 1 )(L~(vl) & L (v))
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n asserts the existence of an nth inductive

upperlimit point which is also a lower limit point. I

Lemma 4.14: The exists a 1-1 recursive function cp such

that:

(i) 0 /, range w;

(ii) for every integer n, ((n) + 1, ... , p(n) + L(n) + 1) is

disjoint from the range of m.

We are now in a position to construct a recursive

linear ordering whose truth set is Turing equivalent to H .

Consider an ordering of the form, I = 7 (om+1+o*), where
meQ m

Q r N. It is not difficult to see that 9 |= 4 , iff

m e Q. We are looking for a recursive linear ordering of the

form E (wm+l+o*), such that, for every a,n:
meQ

(i) p(J(a,n)) + n + 1 eQ <-> a eH

(ii) e(J(a,n))+ n e Q <-> a / H

If we can find such a recursive linear ordering £,

then (a)(n)(a e Hn <-> r = J(an)+n+1) and we see that

H is 1-1 reducible to the truth set of £. Let

^A(K(i)), o(i), L(i)I where p is the function defined

in 111-4.10. It is not difficult to prove the existence of a

number e' such that (i)(1(eJ)(i)| = Ai +1+w*). Let £ = IF(e)I.
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By III-4.14, for every i, either A = o~ep(i)+L(i)+1)

or A 1 = o((i)+L(i)) depending on whether or not

K(i) e H L(i). Therefore, by our construction of p,

K(i) e HL(i) i = w(co(i)L(i)+1)) Hence, we

see that (i)(K(i) e HL(i) __ (to(i),L(i)+1)
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§5. Boolean Algebra

In this section we apply the methods of III-%2

and III-§3 to the problem of constructing a Boolean

algebra which is not isomorphic to a recursive one.

In attempting to code a non-recursive function into

the isomorphism type of a Boolean algebra, we immediately run

up against that fact that every Boolean algebra has a recursive

truth set in the elementary theory of Boolean algebra [See

Tarski [11, pp. 62-64]. Therefore we look at a variant of

the weak second order theory described in Ehrenfeucht [ 12 ].

Let A be a set of relation and operation symbols. Let

"Indiv" be a one variable relation symbol such that "Indiv"

e A. We will denote by k(A) the set of all formulas of

the lower predicate calculus with identity,"=" which contains

the predicates e and predicates from A only. As models

of F(A) we will admit those models for the set formulas

in which:

(i) (Indiv ('xJ) is a set of individuals;

(ii) I M (the set of elements of the model M) is the smallest set

X such that i(Indiv (x) c X and, if x e ,..,Xk e X

and, for every 1 < i < k, Indiv (xi), then {xl,...,xk) e X;

(iii) the members of A are interpreted as relations ard operations
A

on x (Indiv (x)) ;
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(iv)

(v)
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e is the set-theoretical e-relation in M;

means "equality. "

Let 2 = (A 1, R ,2 ... be a structure (where

is the universe of( ). We designate by h", the

structure

(S & card S < ) e , Indiv, R ,R , .. }

Lemma 5. 1: If / is an arithmetic structure of finite

similarity type, then the truth set of n (in Indiv,

R . .o ,Rn ) is _<T HW .

Proof: Since is an arithmetic structure, there is a

sequence of integers, m 1,..*,mn+1, such that I 4( Hm

R1 :T Hm , .., R < H . Choose m > max(m 1 ,.. .mn+1'
2 n T mn+l

Using Hm as an oracle, we can G6del number the members of

in such a way that:

xe is Hm-recursive;

1Indiv (x)" is H*-recursive;

is Hm-recursive;

R,5...,R n are Hm-recursive.

(For every 1 < i < n, R will fail to hold unless each of

A
its arguments is in x(Indiv (x).)).

Now that A * is presented in this way, we use 111-4. 12. I I

Let A = (Indiv., <, n, U, -}. If we can find an

(i)

* (ii)

(iii)

(iv)



H -recursive Boolean algebra B such that H is 1-1

reducible to the truth set of B in -(Indiv., <, n, U, ),

then B can't be isomorphic to a Boolean algebra whose

relations and operations are arithmetic. III-4.10' will be

useful towards this end.

First we will list some properties of Boolean algebras

which can be expressed in the weak second order theory. Let

v1, v 2, . stand for individuals and V, V2, ... stand

for finite sets of individuals.

(i) "v is bounded by the union of the members of V " or as

we shall write, " V(v 1 , V1 ):

(vl' V1 ) <-> ((v2 )((v3 )(v3 e 1 -> v3 < v2) -> vl:v2))

(ii) "lVln is an atom", or An(vl) (See 1-2.3):

A(v 1 ) <-> ((v 1 0 & (v2)(v v2 -- 0 y' v< v2

Suppose A0 (v1 ,...,An(v 1 ) have been defined. Let "vle In"

(See 1-2.3) be the w. f. f. , (3 Vl) ( (v 3 ) (v 3 e V 1 ->(yV Q

N3...V\/An(v 3 )) & v1 , v1). We now define A+1 (v1 )

as follows:

A n+(v)<>-~(vleIn) & (v2 )(vl0v 2 C In V 2-v e In))

"lv-n 5v26n'
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(iv) " Vt n V n

(v) "1i v1! n bounds

(3v2 ) (An (v2 ) & V21 n < I! _) & (V2)((v)(v 2e 1->(An 2

V 21n < 1vi 1n1) - (2v3)( O(v4e V1 -> Iv4n ;

Iv3In Ivln & An (V3) )

is completely atomic"

(v2) ( Iv2 in I vn -> (2v 3 ) (An( v3)
& 31n < Iv2 n)'

(vii) " lvlIn bounds atoms, but no completely atomic element

bounded by IVlIn

(viii) Let £n

bounds atoms", Cn(V

be (3vV)Cn(v9).

We now consider Boolean algebras of the form

where r = ( E
meQ

(m) (meQ iff B i= m).

and Q r-- N. We wish to prove that

We shall do this in several steps.

Claim (1):

Claim (ii):

( m, (Wm'-k + q1)) +
mCQ

Let F e B. If for every m,

an interval of order type om +

(See 1-1. 1)

does not

then F = tl U t2,

bound

where

is atomic and F2 is atomless.
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I
I

(vi) " V

Iv3 n

B = D,

(Wm+ 7)) +



m

Proof: F = [a ,bl) U...U[an,bn), where a -< b 1-< a 2-< ...- <an bn'

We claim that for every 1 < i < n, [a.,b.) = U where

2 is atomless and is completely atomic.

case I: Suppose b. lies in some summand T. If a lies

below ', then [a ,bi) bounds a segment of type om for

some m. Therefore a also lies in T and [a.,b.) is

atomless.

case II: Suppose b lies in some summand o . op is

preceded by a summand of the form o+ q . If a lies in

or below w then [ai,b ) bounds a segment of type .

Therefore a must either lie in T or in a. If a lies

in oP then [a.,b.) is completely atomic. Let * be the

least element of wo. If a lies in T then [a.,b )

= [ai,*) U [*,bi) where [ai,*) is atomless and [*,bi) is

atomic.

To complete the proof, we let F - l n

l<i<n

Claim (iii): B = iff 1 e Q.

Proof: If 1 e Q, then choose a point a in the first

rational interval. [O,a) bounds atoms, but no completely

atomic subinterval of [O,a) bounds W atoms. Suppose

1 , Q. Let F be a member of B. If F bounds a segment of
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type om + I for some m, then m > 1, and, therefore, a

completely atomic subinterval of some interval of F will

bound W atoms. If not, then F = (1 U (2 where l is

completely atomic and E2 is atomless. If g bounds {

atoms, then (1, which is completely atomic, must bound

atoms, since (2 is atomless.

Claim (iv): B# |= #n, iff n + 1 e Q.

Proof: Observe B(n) = D [ n 1]

- meQ

Since B n., ff (B (n) A o, we see B4  fn iff

1 e x(x = m'-n & meQ). Hence B, = i iff n + 1 Q

Corollary 5.2: The weak second order theory of Boolean

Algebras has 20 completions.

We now turn to the main theoren of Q 5.
Theorem 5.3: There is a strict Boolean algebra B (See II)

whose field, relation and operations are H -recursive such

that B isn't isomorphic to any Boolean algebra whose field,

relation and operations are arithmetic.

Proof: Recall 4.10', for the case where X = H . Let
H

Ai = p(k(i), ep(i), L(i)) 1. It is not difficult to see that
H

there is a number e such that |((' (n))wI = A. + T. Let
H

£ = I (r~e)) "), and let I = + 1. 1 is isomorphic to an

H -recursive linear ordering. Let B = D By an argumentW 91
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very similar to that given in the example at the end of

§4, we can show that

((+i)L(A) <-> K(i) e Hi.

Therefore by claim (iv),

(i)KK(i) e H (, <-> B = (i)+L(i))
L(i

H
Thus H is 1-1 reducible to the truth set of B . Thus,

by 111-5.1, B is not isomorphic to a Boolean algebra whose

field, relation and operations are arithmetic. By II-1.2',

the field, relation and operations of B are H -recursive.

Theorem 5.3': Let X r N. There is a strict Boolean algebra,

B, whose relation, field and operations are H -recursive such

that B is not isomorphic to a strict Boolean algebra whose

operations, field, and relation are arithmetic in X.
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CHAPTER IV

Analysis of 3 by Means of the Analytic Hierarchy
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§1. Preliminaries

The following facts will be needed in §2 wherein

the main results of this Chapter are discussed. We give the

preliminaries all at once in order to facilitate the

exposition in §2.

Lemma 1.1: Any infinite recursively enumerable relation

fj (x,y) is isomorphic to an r.e. relation whose field is

total.

Proof: Let f be the recursive function such that

(x)(y)(6(x,y) <-> J(x,y) e Range f).

We define as follows. Tr(O) = J(0,l) if K(f(O)) / L(f(O)).

(O) = J(0,O), if K(f(O)) = L(f(O)). Suppose that f(O),. .. , f(n)

have been defined. If K(f(n+l)) = K(f(i)), for some 0 < i < n,

then let K('T(n+l)) = K(?(i)). If K(f(n+l)) = L(f(i)), for

some 0 < i < n, then let K(I'(n+l)) = L(?(i)). Otherwise,

let K(f(n+l)) be the least number x such that, for any

0 < i < n, x / K(T(i)), x / L(ff(i)). If L(f(n+l)) = K(f(n+l)),

then let L(f(n+l)) = K(f(n+1)). If, for some i, K(f(n+l))

is equal to K(f(i)) or L(f(i)), then let L( (i)) be

K(f(i)) or L(T(i)) respectively. Otherwise, let L(f(n+l))

be the least number x such that, for any 1 < i < n,

x / k(r(i)), x / L( (i)), x / k(?(n+1)).
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is recursive. Range if = N, and the relation

"J(x,y) e Range I" is isomorphic to R .

Lemma 1.1': Let X c N. Any X-r. e. relation isomarphic to an

X-r. e. relation whose field is total.

Corollary 1.2: Any hyperarithmetic relation is isomorphic

to a hyperarithmetic relation whose field is total.

Lemma 1.3: Let (P ieN be a sequence of ordinals. If B a,

then:

(i) oco;

(ii) on' = E o .

ieN

Proof: (i) Follows from the definition of o7.

(ii) By I-1. 9, co > 5 o > o n , for every n. I
i<n

Lemma 1. 4: Let 0 be the standard 7Il'1 set of notation for

the recursive ordinals (See Kleene [11, pp. 51-52]. There is

a partial recursive function, f, such that if e e 0 and

[e] is the ordinal named by e, then |f(e)I = o[. (See

111-4.1).

Proof: We use effective transfinite induction. We seek a

partial recursive function such that:
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f(1) = dl, where Idll = o,

f(2e) = 7(d2 (b)), where d2 (b) is the G8del

number of the constant function which assigns

f(b) to every integer. (See 111-4.4);

f(3 .5Y) = r(d3 (b)), where d3 (b) is the Gbdel

number of the recursive function f((y}(n)).

We see by the Rogers' recursion lemma that such a

partial recursive function exists (See Rogers [1$, p.849].

Using IV-l.3 we prove by induction on <0 that f has

the desired properties. f
Corollary L 5:

(i) If x is a recursive ordinal, then so is (A.

(ii) M 1  1 .

(iii) 9 < o<-> )(9) <o.l

Proof: (i) Immediate from 1.4

(ii) Any finite sum of recursive ordinals must clearly

be recursive. Thus, by 1-2.9, w = w , for some c. If

cc < o ,then a is recursive. Contradiction 4 Thus c = o

(iii) If 9 < w, then by 1-1.8, there is a P < w

such that 9 < co < o 1 . Thus, ? (9) < p < ol. Conversely, if

9 > o1, then >_ o.
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Lemma 1.6: If 9 is isomorphic to a r( T, ) linear

ordering, then so is 1 + I + 1.

Proof: Let £ = (L,, .<} where L and -< are 1( T )

Define x << y as follows: x << y <-> x = 0 V y = 1 V{

x + 2 -< y + 2.

= (x(x=O \/ x=1 V x=z + 2 where zeL), <<}

is F ( TT) and is isomorphic to 1 + I + 1.
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§2. Analysis of 3 by means of the analytic hierarchy

Definition 2.1: (Spector [1S]) A set S of natural numbers)

is said to be "inductively defined with respect to a predicate

Q" iff, for each ordinal 'r, S = x((3v)(v < T & Q(x,Sv
where (T1 r T2, & Q(x,Tl)) -> Q(x,T2 ), and S = Sc, c

being the least ordinal such that Sc = Sc+1

Theorem 2.1: (Spector [15]) The ordinal c of a set

inductively defined with respect to a predicate is < w.

Theorem 2.3: If 9 = (L,< is a A1  linear ordering, then

,(£) < o.

Proof: By IV-1.1, we may assume that the field of I is total

Let S v J(xy) x - y}. By IV-2.2, it will suffice, for

the proof of the theorem, to show that S is inductively

defined with respect to a A predicate. (See I-1.1). Let

Q(x,T) be the following predicate:

Q(x, T) <-> x = J(y, y) V x e T V{ (3 s) (seq(s) &

(z)(K(x)-< z-< L(x) V L(x)-< z -< K(x)) -> ( 0)(O < i < A(s) &

J(z, s(i)) e T).

Q(x,T) is A , and, by I-1.1, S is defined inductively

with respect to Q. Therefore ;(9) = c < M1 . I

Corollary 2.4: If £ is a A scattered linear ordering, then

< (10
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Proof: Since Z is a A scattered linear ordering, so

is (£-o) + 1. If 3(Z) = w, then, by 1-1.7, 2'((T.c) + 1)

> ( = w. Contradiction. I1

Lemma 2.5: If B is a strict Boolean algebra with a scattered

base and the operations and relations of B are hyperarithmetic,

then;

(1) 6 (B) <

(ii) B s Dg where 9 < w ,

(iii) B ~~ B' where B' is strict and the operations

and relations of B' are recursive.

Proof: By II-1.5, B f D., where £ is hyperarithmetic. By

1-2.12, 1 is scattered. By 1-2.10, and IV-2.4, 6(B) < a) 1 .

By L-2.14 and IV-1.5, B P DQ, where 9 < WI. (iii) holds

by 11-1.2. H1

We now wish to prove that if I is 7, then <() <

If we try to apply IV-2.2 directly, we run into the following

difficulty: If £ is a 1 linear ordering, then the set

S ,(r' defined in the proof of IV-2.3, need not necessarily be

defined with respect to a 1 predicate. This is so because

the equivalence relations, range over the field of 9,
-- v

and, if X is E , then its field need not be (In fact,

if I is 1 and not A, then its field can't be iT ,.)

Therefore, we take the following indirect approach. Let "Scat"

be

- 67 -



e e is the G6del number of a scattered

recursive linear ordering

Lemma 2.6: (i)

(11)

Scat e TFV
1Scat E~ 1

Proof:

(i) "e e Scat" <-> e e Li & (f)[(~3x)(ly)((e}(f(x),f(y)) = 0 &

(z) ~({e)(f(x),z) = 0 & (e}(z,f(y)) 0)].

Since Li is arithmetic, "Scat" is T71.
1

(ii) Suppose "Scat" e F . Scat e ' =A . We are going to

use the hyperarithmetic predicate, "e e Scat", to take a hyper-

arithmetic sum of all scattered recursive linear orderings.

Let pn be the (n + 1)th prime. Let g(m) be the

mth member of Scat. If Scat is A , then g is a hyper-

arithmetic function. Let L = {(m n . We define a
n (m.,n)eN 2

linear ordering, -<, on I as follows:

m &tx<y<->x P= p & = & (n <n'vy

(n = n' & (g(n)}(m,m') = 0).

Let £ = (L, -<}. T is a scattered, A1  linear1

ordering, and every scattered recursive linear ordering is

isomorphic to a segment of £. Therefore, for any : < o ,
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o is isomorphic to a segment of £. Thus, (X.) > M,

for any c _< wo, and, therefore, 3(T) > ol. This

contradicts Corollary 2.4. H|
Lemma 2.7: If B is a strict Boolean algebra with a scattered

basis and the field, relations, and operations of B are E,

then:

(i) 6(B) < :

(ii) B ; D., for some ordinal 9 < w1 .

Proof: (i) Suppose that B satisfies the hypothesis of

IV-2.7, and 6(B) > o . If e e Li, let hell = {N,-<),

where (x)(y)(x-< y <-> [e)(x,y) = 0). We give the following

E definition of Scat:

"e eScat" <-> (e e L & (3f)(f:D 1+1 e|+1 -- > B &

f is a Boolean monomorphism. )

First of all, we claim that (1) is, in fact, a definition

of "scat.". If such a monomorphism f, exists, then, by 1-2.13,

1 + ||ell + 1 is scattered, and, hence, Hjell is scattered.

Conversely, suppose |1ell is scattered.

Then 1 + 1|ell + 1 is scattered and recursive. By

IV-2. 4, (1 + l|e I + 1) < l. By IV-2. 5, Di+ ll ell+1 ~D~9

where 9' < o . By 1-2.14, 1-2.10, and IV-1.5, B ~ D,
A

where @ >wo1 By 1-2.13, there is a monomorphism, f:D,, D
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f by means of the following diagram:

DG

D1+1 lel 1+1

I

-> Dg

> B-- - -

Thus, it suffices, for the proof of IV-2.7, to show

1 .that (1)

11-1.3)

To do this, we just write it out.

Let 6 be the zero element of B.

"le e Scat"

-> x e B)

(1)
(e e Li & (af)(x)(y)(z)(({

& ({g 2 (e)) (x,y)

g1 (e))(x) =

= 0 -> x < y)

({g3 (e)}(x,y,z)

((g4 (e)}(xy,z)

([g5 (e)}(x,y) 
=

(({gl(e))(x) = 0

-> x U y =

= 0 -> x r y

0 -> x = y) &

& f(x) = 6 )

(See

-> x =
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Noting that "x e B", "x < y", "x n y = z"

"x U y = z", "x = y are , and bringing the function

quantifiers of (1) to the front of (1), we see that (1) is

in * .

(ii) This follows directly from (i). f
Lemma 2.8: If . is a scattered, E linear ordering, then

< VD._

Proof: Follows directly from 11-1.2, and IV-2.7.

Theorem 2.9: If Z = (L,-<} is a E linear ordering then

B(s) <co .

Proof: By I-1.11, £ = , £r where each Zr is scattered,
A r rreil

and where I(.) = L.u.b. (1(r) re). If 3(1) > co, then

there is some . such that ; (X) > W . There must be two
r r

elements a, b e I such that a b. Let ria,b)={t,<<}.

By 1-1.1, 3(1 i[a,b)) > o1. However, £r[a,b) is scattered
1.

and El; i.e. x << y <-> a-< x,< b & a-< y-< b & x-< y.

Contradiction. |

Theorem 2.10: If B is a strict Boolean algebra whose field,

1-
relation and operations are El , then 8(B) < w.

Proof: Suppose B satisfies the hypothesis of IV-2.l0, and

6(B) > w . By II-1.1, and 1-2.7, there is an isomorphism
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f:B -> D where 3(9) > W . As in the proof of IV-2.9,

there are two elements a, b e I such that I£[a,b) is

scattered and ? (X' [a,b)) > w. Let -f~ ([a,b)). We

define the following Boolean algebra

(i) The field of is (x B & x <

(ii) For every x, y, z e A, (x 0 y z <-> x U y = z)

and (x A y = z <-> x n y = z) and (x = iff x = n n z).

ZDZ[a,b] .. is strict and scattered and its

field, operations and relations are easily seen to be 71

Since )(xI[a,b)) > og, 8(A) > o1. This contradicts IV-2.8. 11

Example: Let 9 = (L, -) be the Gandy ordering [1,6] with

UT1 initial segment O of order type o . 9 is recursive
~ 1*

and W() = . Let =x(x e L & x e 01 ). Let x << y

mean x e and y e f and x-< y, and let = (t, <<).

is a 71 linear ordering of order type w * .2 is a

1TR linear ordering of order type co 2.3( -2) > .

6(D > M 1. By 11-1.2, D is a strict Boolean algebra
02 .2

whose relation and operations are iT1. By 111-2.5, D

can't be isomorphic to any strict Boolean algebra whose

operations, field and relations are 7 .

Corollary 2.11: There is a strict Boolean algebra B with a
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scattered basis such that the operations, field and relation

of B are TI and B isn't isomorphic to any strict Boolean
11

algebra whose field, operations and relations are 7.

Now we turn to an interesting parallel between strict

Boolean algebras whose field, operations, and relations are

11E( and Lindenbaum algebras of TR - axiomatizable theories.

This parallel is expressed in the following theorem. (See

Chapter II, pp.'1.A-' ).

Theorem 2.12: If B is the Lindenbaum algebra of a F$ -
axiomatizable theory, T, then 6(B) < o .

Proof: Let b be the language of T. If a is a sentence

of 5 , and I - B is an ideal, let Jai, be the equivalence

class of a in B/I. If C r- B, let I(C) be the ideal

generated by C. Let A B be the i71 set of axioms.

Claim: The following predicates are in a, @ and C:

(i) = < 0;

(ii) a _< a A~ a

(iii)IMIl(c) WI(c)'

(iv) IMl(c) < 0;

(v) |=1I(c) is an atom;

(vi) |HI (c) is a finite union of atoms.

Proof of claim: (i) < iff = -AP. The only occurrence of

the predicate "r eA" in the proof theoretic definition "-

Of
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posiinV (ii) Special case of (i).(iii) |x|I(c) I(c)

<-> "There is a sequence ... ,T of elements of C

such that p c < TI V. . .V T n . - ()is an atom

<-> (T)(T is a sentence of (I ) -> A aI(c) = 0

Ia'I(c) <) (vi) Follows directly from (v). 11

We define Q(c,C) as follows:

Q(Cx:,C) <- > 1 aII(c) = 0 y" II(c) is a

finite union of atoms " H I = 0.

IB) (see 1-2.3) is inductively defined with respect

to Q and Q is -T. Therefore, by IV-2.2, 6(B) < .

Example: Let 9 = {L,--<} be the Gandy ordering. We can

assume without loss of generality that L = N. Let ? ,29' 3

be a countable set of propositional letters. Let Q; be the

set of all Boolean combinations of {P }. Let A - &be the

following set of axioms.

(~pn nn < n' V (n' < n & n' 01)}.

A is a E set.

and let B be the

ordered basis for

Thus 8(B) > w. I I

Let T be the theory

Lindenbaum algebra of

B. The order type of

whose axioms

T. (pn)neN

{pn~neN is

are

is

Ml

A,

an

+ 1.
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Remark: To justify IV-2.12 which might, at first glance

seern somewhat artificial, we make the following observations.

In order for the proof of IV-2.ll to go through it sufficeD

that B be a Boolean algebra such that <" is T, and

that there exist hyp. functions f1(x,y), f2  y f3

such that for every x, y e B:

(i) f1 (xy) - x U y;

(ii) f2 (xy) x n y;

(iii) f3 (x)

However B is isomorphic to an algebra which satisfies

these conditions iff B is isomorphic to the Lindenbaum

algebra of a TT axiomatizable theory. If B is the Linden-

baum algebra of some TT1-axiomatizable theory then < is

T and f1,f2 'f3  are the propositional connectives

On the other hand, if B satisfies the conditions mentioned

above, then we can use the standard proof that every Boolean

algebra is isomorphic to the quotient of a free algebra and a

filter, to show that B is isomorphic to the Lindenbaum

algebra of a FI-axiomatizable theory.
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