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Abstract

Chapter I: With each linear ordering, £, with first

and last element we can associate a Boolean algebra DS. We
discuss a Cantor-Bendixon 1like classification of order types
due to ErdBs and Hajnal [1], whereby with each order type ¢
and each ordinal v we associate the 'R derived linear
ordering, x(v). A(£) is defined to be the least ordinal,
for which £ v) = £(v+l). We discuss a similar classification

of Boolean algebra isomorphism types due to Mostowski and
Tarski [2], whereby with each Boolean algebra isomorphism
type, B, and each ordinal, v, we associate the vth
derived Boolean algebra isomorphism type, B(v).' §(B) is
defined to be the least ordinal, v, such that B(¥) = p{vt1)
We show that, for any linear ordering with first and last
element, &, and any ordinal, v, (DS)(V) is isomorphic

to Ds(v). We use this fact to give non-topological proofs

of some standard properties of Boolean algebras.

Chapter II: We discuss countable Boolean algebras. We define
strict Boolean algebras and we discuss Lindenbaum algebras of
Theories. We define what is meant by a 'TT%, (Z%, A%,
arithmetic, recursive) Boolean algebra.

Chapter III: We show that, for any subset X of the natural
numbers, there is a partial ordering, &D »  such that éP is
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r.e. in X but not isomorphic to a X-recursive partial
ordering; there is a linear ordering £, such that § 1is

TT? in X, but § is not isomorphic to any X-recursive
linear ordering; and there is an H;-recursive Boolean algebra,
B, such that B 1is not isomorphic to any X-arithmetic Boolean
algebra.

Chapter IV: We show that any 2% strict Boolean algebra with
a scattered base is isomorphic to a recursive Boolean algebra.
We show that there is a TT% strict Boolean algebra, B,

with a scattered base such that B is not isomorphic to any
2% Boolean algebra. We show that if B 1is the Lindenbaum
algebra of a TT% axiomatizable theory, then §(B) < wﬁleene'

However, there is a Lindenbaum algebra B of a
5(B) > wﬁleene.

X}—axiomatizable theory such that

Thesis supervisor: Hartley Rogers, Jr.

Title: Professor of Mathematics
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NOTATION

N 1is the set of natural numbers.‘/@/= (N,0,',+,.}
is the standard model for arithmetic. J(x,y) is the
standard pairing function which associates ordered pairs
with natural numbers. J‘l(x) = (K(x), L(x)) e N2, P,
is the (nt+l)-th prime. s 1is a sequence number, denoted
by seq (s), iff (x)(p, divides s —> (¥)ey (P v
divides s)). If seq (s), then £(s) = n, iff n is the
greatest number such fhat P, divides s, and y = s(i),
iff y + 1 1is the greatest number, r, such that p i

divides s.

!
H, = the complete set H ,, = H, for n> 1.

H = (1]K(1) e HL(_) ). B = xe. H | = (#)', for n > 1.
1

X

H = (1]K(1) e B~ }. If & and §' are linear orderings

® (1)

(partial orderings), and § is isomorphic to £', we write

L~ L We say "e 1s the Gbdel number for a recursive linear
or eeLi

ordering",,iff there is a relation, 5{(x,y), whose field is

N, such that &{(x,y) is a linear ordering, and (x)(y)

(R (x,y) <—> {e)(x,y) = 0). Since every r.e. linear ordering

is isomorphic to a recursive linear ordering (See Crossley [i]),

we consider only recursive linear orderings. 0O 1s the least



uncountable ordinal, and , 1s the least non-recursive

ordinal.

If B is a Boolean algebra, we say that B 1is strict,
. : e - . S '
iff (a) g (b) g (2 =D > a =Db). If f:B > B', we

say that f 1s a Boolean homomorphism, iff for every a, b, c

¢ B:
(i) aUb=c —> f(a) U £f(b) — f(c);
(i1) anb—c—> f(a) n £(b) — f(c);
(11i) a="Db —> f(a) = T(0);
(iv) a<b—> f(a) < £(b)

Furthermore, if, in addition to (i)-(iv), we have

(a) 5(0) 5 (F(a) < £(b) —> a < b), and (a) g {Fo) z(£(d) =a),
we say that f 1is a Boolean isomorphism, and we write B X B'.
If B 1is a Boolean algebra and B has TT% (E%, Ai,

recursive) field, operations, and relation, we say that B

. 1 1 1 R

is Ty (23, 8 recursive).

l’
a(l) or (2) written before a logical w.f.f. 1is
not a reference to a footnote, but is a device used to refer

to the formula later on.
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INTRODUCTION

In this paper we study countable structures which
are not isomorphic to a structure whose field, operations
and relations are recursive. Similar known results include:

(1) the construction of a sentence with no r.e.
models; and

(1i) the proof that no non-standard model of
arithmetic is r.e.

Most of the constructions of a sentence with no r.e.
models reduce to the fact that Von Neumann Bernays set theory
has no r.e, models. A very nice proof of this fact can be
found in Rabin [ii]. The proof that there are no r.e. non-
standard models of arithmetic is due to Tenenbaum [iii].

However, in this paper we discuss partial orderings,
linear orderings and Boolean algebras. The problem which we
discuss is that of finding a partial ordering (linear ordering,
Boolean algebra) at level ©, say, of the Hensel-Putnam
Hierarchy [iv] which is not isomorphic to any partial ordering
(linear ordering, Boolean algebra) at any level ©' < o.

In Chapter III we use a method of "Coding functions
into the isomorphism type of an ordering" to show that for any

subset of the natural numbers, there are:

- vii -



(1) partial orderings which are r.e. in X, which
are not isomorphie to any partial ordering recursive in X.

(11) 1linear orderings which are TT? in X which
are not isomorphic to any linear ordering which is recursive
in X; and

(iii) Boolean algebras whose field operations and
relations are recursive in Hﬁ which are not isomorphic to
any Boolean algebra whose field, relation and operations are
arithmetic in X.

We prove (i) and (ii) by constructing an X-r.e.
partial ordering (X—TT? linear ordering) which is not
elementarily equivalent to any X-recursive partial ordering
(X-recursive linear ordering). We prove (iii) by constructinga
Boolean algebra whose operations and relations are recursive
in Hz, but which is not elementarily equivalent in the weak
second order theory (see pp. 54-55 ) to any Boolean algebra
whose operations and relation are X-recursive.

For any ordinal © < w , if we let X = HQ , wWe
observe that, by (i) and (ii), there is a partial ordering
(linear ordering) at level 6 + 1 of the Hensel-Putnam
hierarchy which is not isomorphic to any partial ordering
(1inear ordering) at level ©. We can modify the proof of

(1ii) to show that, if A < w, and A 1is a 1limit, then there

1
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is a Boolean algebra at level A which is not isomorphic
to any Boolean algebra at any level © < A. This fact is
not proved explicitly in this paper.

In Chapter I, we use results of Erdds and Hajnal [1]
and Tarski and Mostowski [2] to give non-topological proofs
of some classical properties of Boolean algebras. These
properties when dualized via the Stone representation theorem,
[v] become well known theorems of O-dimensional topology. In
particular, we assign a rank &§(B) to each Boolean algebra B.
In chapter IV, we perform a constructive analysis of & by

means of the analytic hierarchy to obtain:

1
1

scattered base (see Chapter I, p.1ll of this paper.) then B

(i) If B 1is ¥; strict Boolean algebra with a
is isomorphic to a recursive Boolean algebra; and
(ii) there is a TT% strict Boolean algebra with a
scattered base which is not isomorphic to a Z% Boolean algebra.
We also prove:
(i) If B 1is a zi strict Boolean algebra, then

§(B) < w However, there is a TT} strict Boolean algebra

l.
such that &(B) > Wy 5

(ii) If B is the Lindenbaum algebra of a TT%—
axiomatizable theory, then §(B) < ®,. However, there is a
Lindenbaum algebra, B, of a Zi-axiomatizable theory, such that
5(B) > Wy .

- ix -
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CHAPTER 1

The Erdbs-Hajnal classification of denumerable
order types, and the Tarski-Mostowski classification of

Boolean Algebras with ordered bases



81.

Let & = {L.<} be a linear ordering. If S is
a subset of L, we say S 1is dense in & 1iff S contains
more than two members, and, for every a, b e S, a=< b
implies there is a ¢ ¢ S such that a< c¢c< Db, If L has
no dense subsets, then £ 1is saild to be scattered. A
subset S ¢ L 1s said to be a segment of &£ 1iff, for every
a, b, cel, (a<c=<Db & ae¢S & beS) —>c e S.
If two linear orderings are isomorphic, they are said to be
of the same order type. In Chapter I, we will usually make
no distinction between linear orderings and order types.
However, in Chapters II, III, and IV, the actual presentation
of an order type will become important. T 1is the order
type of any countable dense ordering with no first and no
last element. A point a e L. 1is said to be isolated iff,
{(x ¢ L | a=< x} has a—- least member. If § is denumerable
end has no isolated points, then £ 1is one of the types
1, i+ 7, 1 +7+ 1, M+ 1, M.

The following definition is due to Erdbds and Hajnal
[1]

Definition 1.1: Let £ = {L,~< } Dbe a linear ordering. For

A

each ordinal T, we define an equivalence relation, — on

—

L as follows: If 7 = O, then a Yo iff a=b.

Rl



Suppose that r > 0, and that = i has been defined for

every Vv < r. Furthermore, suppose that, for every a, b ¢ L,

and every ' < v < 7
(i) = f is an equivalence relation on L;
(i1) a = f, b ———>~a.§5,§ b ;
(i1) (a<c=<Dbd & a=£b) —> a =" e,
Let v be an ordinal < rt. If b e L, define [b]v
to be the equivalence class of b under the relation — § .

Define [a], . [b], tomean a=<1b & a,ié 5 b.
v

Observe that £(v) = {[[b]v}beL "<v} is a linear odering.

x(”) is called the vth derived linear ordering of &, If

T is a limit define a — f b to mean (Bw)(v <T &

a — i b). If, for some v, T =y + 1,

define a = ¥ b to mean

“{X el [C]v}CeL ' [a]v‘<\) x.<v [b]v or [b]v <v xxv [a]v}

is finite"

In either case observe that (i), (ii) and (iii)
hold for every a, b, ¢ ¢ L, every v' <y < 7+1,
Let 3(£) be the least ordinal T such that, for

— & — £ .
every a el, bel, a—_ b<—>a=7"_ b 3 is



the least ordinal T, such that £(T) has no isolated points.
3(£) 1is an invariant of the order type of &.

Example: If &£ = the reals, then 3(£) = 0. If § = w, then

il

3(£) = 1. If £=w+ 1, then 3(£) = 2. (mz)(l) = W,
3(@) = 3. |]

The following facts can be found in [1]. We shall list
them here, and sketch the proof in some cases.
Lemma 1.2: If £ 1is a denumerable linear ordering, then
d(g) < 0.
Lemma 1.3: If £ is scattered, then (£)°(8) - 1. 1r ¢
has a dense subset, then (S)B(x) is dense.
Proof: Observe that, for any v, & has a dense subset, iff
S(v) has a dense subset. If £(V) has a dense subset, it
is not difficult to see that & must also have a dense subset.
Conversely, if S 1is a dense subset of §, we can prove by
induction on v, that for any a, b, ¢ S, a,ié f b. This
shows that {[a]\)]aeS is a dense subset of £(“). I

The following facts are not stated explicitly in [1].
but we shall need them later so we list them here.
Lemma 1.4: Let S be a segment of §£. ILet £ s be ¢

restricted to. S. If a, b ¢ S then, for every v, a — ¥
Vv

— ¢is
v

b

<> 3 —

b. Therefore, 3(£ [ 8) < 3(g).



Lemma 1.5: If § 1is scattered, then 3(f) is the least v

such that £(v) = 1. In other words, 3(f) is the
least v such that, for every a, b ¢ £, a.EEii b.

Lemma 1.6: If § is scattered and has a greatest and a
least element, then 3(£) isn't a limit.

Proof: TLet a and b be the least and greatest elements
of £ respectively. ¢(£)) _ 1. Therefore a.EE'i(x) b.
If 3(£) 1is a limit, there is a v < 3(f), such that

a ::»f b. However, for any element ¢ of §, a< c=< b,
Therefore a — % c, for any element ¢ of §£. Thus,
S(v) = 1, and 3(&) < v. Contradiction. ||

Theorem 1.7: If £ 1is scattered, then 3((£:w) + 1) > 3(£).

Proof: Let £= ($'w) + 1. Let £, be the ith copy of

£ 1in &, and let p be the greatest element of @. We wish
to prove that, for any a e £, and for any ordinal T < 3(¢£),
P#a—>p ié $ a. The fact is obvious for r = O,

Suppose we have proved it for v < 1 < 3(g£). If 1 is a

)

limit, then p — . & Aimplies (Av)(v<r & P = % a).

Contradiction. Suppose T 1is a successor. T = y + 1.
Furthermore, suppose that p EEE% a, for some a # p. This
means that [[a]v, [p]v) contains a finite number of elements,
[ql]v v [qn]v, where [qn]v is the greatest of these elements.

aQ, € SJ, for some j.. Choose 9+ © £j+2' We claim that



8 8 — 8
a, ié v 9n+1 ié v g. If QG = Qi ° then for any
X, ¥ o€ 8449 X:EE\J y. Thus, by I-1.4, a(£j+1) < \;<£a(£).
Contradiction. By our inductive hypothesis, A+ v P
Therefore, [qn+l]v is greater than [qn]v s but less than
[p], s which contradicts the fact that [qn]v is the greatest
element of [[a]v, [p]v).

9 (‘S) contains at

We have proved that ((£:w) + 1)
least two elements. Since £ 1is scattered, (£:w) + 1 1is
scattered, and by I-1.5, 3(f) < 3((fw) + 1). ||

Definition 1.8: We define ' as follows:

o)
w =1

. . .. T v
if v is a limit, o = gim o ;
v<T

. T v
if 1r=v+ 1, ® = o *w.

An ordinal is called a principal number for addition

if it is not a finite sum of lesser ordinals.

th principal number for addition.

Lemma 1.9: o is the «
Proof: Straightforward induction on «, ||

Theorem 1.10: TFor any T:

(i) (") = 7;
(i1) 3(a" + 1) > 3(a").

Proof: The theorem is trivial for =+ = 0. Suppose that for



any v <1, 3()=v and 3@’ + 1) > 3(«¥). We wish
to prove that a(w') = 7, and »3(w + 1) > 3w").

Case (i): T 1is a limit,

Choose any © < w'. By I-1.8, there is a B < 7 such that
6<a <", 3(P)=p <« Therefore, 0 = @6, which

implies that 0 =— 2 0. This shows that (a)T)(T) = 1. Thus,

T >3(w).
Now, suppose that v < T. o’ < o'. Since T is a
limit, v + 1 < 1, and, therefore o' T < . a(w">+l)

1 is a segment of ', 3(w') >V,

= v+ 1>V. Because o’
by I-1.4. Therefore a(w') = 7. By I-1.6, 3(w'+1) must be
a successor. Since T is a limit, 3(0' + 1) > 3(w").
case (ii): Tt =v + 1

Consider a linear ordering & of order type w\"w.

Let a; € ¢ be the first element of the ith copy of ¥ .

Let p be the greatest element of £. By our inductive

hypothesis, 3(w’ + 1) > 3(w’) and 3(w’) = and (cov)(v) = 1,
Using this fact one can easily prove that:
. . By .
(i) for any i >0, a; Zv a3,y 3

(i1) for any element c¢ of &, if c¢ # p, then,

c :\f’ a;, where 1 1is the greatest integer such that ay

is less than c;

(iii) for any c¢ # p, pz‘sc.
v



v+1)(v) (mv+l

This shows that (o

= w+ 1. Thus (wv+l)(v+1) = 1 and (a?+i'+ 1)(”+1) = 2.

Therefore a(wy+l) =y+1 and a(uy+l'+ 1) >v + 1. |]

= @ and + 1)

Theorem 1.11: If £ 1s a denumerable linear ordering,

then:

(i) £= =, &, where each £, is scattered and
ﬁ is one of the t§;és 1, 1+m+1, ™+1, M, 1+M;

(11) () = su-d. (3(s,)[reh).
proof: (i) See [1, p.119].

(ii) Straightforward application of results stated

previously.



g2.
Let B be a Boolean algebra. Let I be an ideal

of B. There is a natural Boolean homomorphism 1:B B/I.

_—>

If a e B, we define |a|; to be i(a). The set, IE c B

of elements bounded by a finite union of atoms is easily seen
to be an ideal of B. B/IT 1is called the first derived
algebra of B. If f:B——> B' is a Boolean homomorphism,

then f 1is called a Boolean monomorphism iff (a)eB(f(a)

— 0 <—> a — 0).

B

Lemma 2,1: If f:B ——> B' 1is a Boolean monomorphism, then:
(1) (a),5 (0) 5 (8 <b<—> f(a) < £(b));

B
1'
Lemma 2.2: Let B be a Boolean algebra and let b be an

(11) 7RI o1

element of B, then b 4 I?, iff b Dbounds Xo disjoint
elements of B.

Definition 2.3: (Tarski-Mortowski [3]). If B 1is a Boolean

algebra, then for each ordinal + we define an ideal,

B B

I ©B as follows: I = {alaeB & a—0}. If v is a

O
limit, then 12_= \v) 2. If t= v+ 1, then
v<Tt v

B/12
B (alaeB & |a| 5 e Ii v) }.
I

v

Z[,r =



For all v, let |a] bve |al p » and let glv)
¥ I

Y
B B_ .B
be B/I; . Let &(B) be the least v such that I = Ij ..

§(B) 1is the least v such that B(v) is atomless.
Examples: If B is finite, then &(B) = 1. If B 1is the
algebra of all finite-cofinite subsets of the integers, then
d3(B) = 2. If B is atomless, then &(B) = O.

Lemma 2.4: If f:B —-> B' 1is a monomorphism, then, for any
B

Y L]

Proof: Do induction on y , using I-2.1. ||

- 1
ordinal v, f l(IE ) cI

In the study of the elementary properties of Boolean
Algebras, one very useful source of examples is the class

of interval algebras. If £ = (L, <} 1s a linear ordering

with first and last element, then the interval algebra, D

£’
of £ 1is the set
{s|scL & s = [a;,b;) U...U [a,, b ),
for some finite sequence, al—< bl«< e =< an—< bn’ of
elements of L}. Let b Dbe the greatest element of ¢£.
It is easily seen that D£ is a subalgebra of the power
set of L - {e}. If &£ is isomorphic to £', then D, is

£

isomorphic to D However, the converse if false. For

g£re

example, D is isomorphic to D

wt+1 T+w*+1°

- 10 -



Definition 2.5: A subset S - B 1s called an ordered basis

of B iff:
(1) the ordering of B restricted to S 1is total,
that is for any s, t in S either s < t, or t < s;
(i1) S generates B, that is any element of B 1is
a Boolean combination of elements of S.

A strict ordered basis, S, of B 1is an ordered basis

of B such that for any a, b ¢ S, a.?é b. For any ordered
basis, S, of B, there is a strict ordered basis 8 or B
such that 8 c 8. If £ 1is a linear ordering with first and
last element a and b, respectively, then {[a,x)]|xef} 1is
a strict ordered basis of &. Conversely, if B has a strict
ordered basis, é, of order type &, then B isisomorphic to

D.. (See [2])

£.
We say that a Boolean algebra has a scattered basis

iff it has a strict ordered basis which is scattered.
Lemma 2.6: Let I B be an ideal of B and let S c B
be a subset of B, If S generates B, then {‘a]I aeS}
generates B/I. If S is an ordered basis of B, then
{lal faeS} is an ordered basis of B/I.

We now turn to the main result of this Chapter. As
far as the author can tell it has not appeared in the literature,

though consequences of it can be found in [2] and Mayer and

- 11 -



Pierce [4].

Theorem 2,7: If § 1s a linear ordering with first and

last element, then, for any ordinal v, (Ds)(v) is isomorphic
to DS(V)°

This theorem will be an immediate consequence of the
following lemma.
Lemma 2.8: Let B = Dy, where £ has first and last element.
For any a, b ¢ £, any ordinal v, a Effj b <—> [a,b) ¢ Is .

Proof: If y = 0, then a — f b <—> [a,b) = #. Suppose

the lemma is true for v < 1. We prove it for v = 7.

case (i): T 1s a limit.

£

a= o< (Av)(v < & e =

b) <—>

(:3\>)(v <t & [a,b) e IE) <—> [a,b) ¢ IT .

case (ii): 7= v + 1.
Suppose a.ié i b. By I-1.1, there is an infinite sequence
[ci} of elements of £, such that:
. . Ly ,

(1) for every i, cy ;é § i1’

(ii) either (i)(c;=< ci+l) or (i)(e;,,—=< ¢;);

By our induction hypothesis, for every i, [ci,ci+1)

B . s

U[ci+1,ci) £ I, . Therefore, l[a,b)lY bounds ?(o disjoint

- 12 -



non-zero elements of B/I? , and, by I-2.3, |[a,b)] is

B \ g
not a member of I?/IY
Conversely, suppose a — f b. That is, there is a
finite sequence a-~< ¢;-< c, < c3 ~< ...~ ¢ =D, such that

£ £
azclzv QZY 3z z = b, and for any

element z of £, a<z<b 1mp11es z - c., for some

P vy i
1<i<n [ab)=[eg, cy) U..Ule _j.c). l[a,b)lv
|[Cl’c2)‘v U...Ul[cn_l,c )| . We now use the induction

hypothesis to show that |[ec, ’C1+l)‘v is an atom, for every

1 <i<n. Let [zl,zg) be an interval such that [zl,zg)

- [ci,ci+l). We say that [zl,ze) "£ills" [ci,ci+l) iff,

zq Ezfs c; and z, — i ¢;,1- By our induction hypothesis,

if [zl,zg) fills [ec. ’c1+l) then {c.,ci+1) - [zl,ze) € I§ s

and if [zl,zg) does not fill [c 5C. +1), then [zl,zg) € I?
ILet £ be a member of D£ such that £ < [c, ,cl+1) By our
induction hypothesis, [ci’ci+1) - E ¢ I& or € ¢ IE , depending

on whether or not there exists an interval of £ which fills
[c;5¢447)- Thus |[ej,cy,5)ly is an atom. ||

To conclude the proof of II-2.7, we note that, by
II-2.6, {![O a) | } X-.is an ordered basis for B(v). Thus
I1-2.8 and II-2. 5 B(v) is isomorphic to

D -
g ()
From now on when we write Dx, we shall assume that
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&£ has first and last elements.

Lemma 2.9: D& is atomless, iff £ has no isolated points.

Corollary 2.10: 3(£) = 6(Dg).

proof: See I-1,11, ||

Corollary 2.11l: There are 'A{l isomorphism types of countable

Boolean Algebras.
Proof: If B = B', then 6(B) = 6(B'). If 1 <T', then
3(@™+1) < 30’ '+1), and, by I-2.10, Dyr,; S Dyriqe ||
Remark: See [4, pp. 937-938] for a topological proof of this
fact.

The following facts will be useful in Chapter III.

Lemma 2.12: £ is scattered, iff (D) 3(£) D,. Thus,if

B has a scattered ordered basis, then every basis of B is
scattered.
Proof: Follows immediately from II-2.7 and I-1.3.

Lemma 2,13: If f:D, - D is a monomorphism and &' is

£ £
scattered, then so is £.
ILet B be D£ and B' Dbe D£ ILet i Dbe the
natural homomorphism from B' into B /IB(S, i of induces

a mon?mfjphlsm from B/f" (IA(S')) into B! /IB(£’) . However,
(L
(B') = D;. Therefore B/f (Ia(s')) ~ Dy. By I-2.1,

(I )) = 12

(s a()e B/Iy(p) ®Dpe Thus, 3(s) <3(sh),
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and (B)a(x) ~D;. By I-2.12, £ must be scattered.

Lemma 2.14: If © and ©' are ordinals and 6 < ©', then

there is a monomorphism from Doyl into Dgiryq-

Proof: Let % be an order preserving map from 6 onto an

initial segment of ©'. Let f be an order preserving map
from 6 + 1 into 6' + 1 such that £ © = and f(e+1)
= ©'+l, f induces a monomorphism from Dg+1 into DG'+1‘ ll

Theorem 2.15: If & 1is denumerable and scattered then

DS pt Dg for some ordinal o,
Proof: See Mazurkievicz and Sierpinski [3, pp. 2—21.].'!
Remark: In Erdds and Hajnal [1], we find the following classi-

fication of denumerable scattered linear orderings. Let

OO = (0,1}, Let O(T = all w-sums and w*-sums of members
of L_) O ,. Then O = \J} O , 1is the collection of
o'<e o <0 o

all denumerable scattered linear order types. The authors
express their belief that the classification is so natural

that it must have appeared somewhere before in the literature.
This author has not been able to find it if it has. However,

if we look at the Stone spaces of the interval algebras of

the order types, it turns out that Erd®s and Hajnal's
classification theorem is equivalent to Sierpinski-Mazurkievicz's
theorem that every countable compact space is homomorphic

to an ordinal. We can do induction on ~ to show that for
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every denumerable scattered linear ordering &, with first
and last element, D& is isomorphic to De , for some

© < 0. Now the Stone Representation theorem tells us that
every countable compact Space (a countable compact Space

must be Boolean) is homeomorphic to an ordinal. In this non-
topological proof of a classifical topological theorem the
classical fact that every countable ordinal is an w-sum of
smaller ordinals takes the place of separability and the well
ordering of the ordinals takes the place of compactness.

Conversely, for any denumerable scattered linear ordering &

with first and last element, & 1is isomorphic to D _ .
o ntl

We can do induction on (e«,n) to show that, for any
denumerable scattered §£ with first and last element, £ e O.
The classification theorem follows easily from this. We can
also use the Classification theorem to prove that, if B
is a countable Boolean algebra and B/(atomless elements)
has a scattered basis, then B is isomorphic to D
» (e_+m) °
T
TeQ
EA
where Q ¢ V(¥<0).
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CHAPTER 1II

Countable Boolean Algebras and Boolean Algebras

whose elements are integers.
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§1. Countable Boolean Algebras

The following theorem is part of the "folklore" of
the subjéct of Boolean algebras. We include it here for
completeness.

Theorem 1.1: Every denumerable Boolean Algebra has an

ordered basis.

Proof: 1Let a a be an enumeration of the members of

l} 2’ .« o o
B. We define inductively an increasing sequence of finite

sets as follows
Ay = (&)

Suppose A = {bl, cees bn} has the following properties:
(1) 0<by <... <b <1
(i1) Each a;, 1< i <n, is a Boolean combination

of the members of An.

cy=Dby Ua.,

Now by <c;, for 1 <1 <n, and hence:

Let ci = bi U ci » for 1 < i < n,

- 0O<b;nea ;2 bl 5

IA
o
D
(9]
A

<b; for 1<1i<n; and
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Thus, A U (byna )V {b, nec. .} is totally
n+1 1<1<n 1 i-1

ordered by < .

Let A = A U {b, n a } U {c_} U \~/J {b, nc }
n+1 n 1 n+l n l_<_'1_<_n i i-1

We now claim that g is a Boolean combination of

n+l

a, nb and ¢ To see this, we perform the following

n+1 1
computati on.

lo

a4 = (bp Ua J)n (b, U= aq)

a1 = (Pp VA 0) n (BN 1)

ey = (Py Vg i) U (by na )

81 = ¢ U (Py noa )
Similarly, c; 1s a Boolean combination of ey N bi+l and
Ci+1’ for 1 <1 <n. Thus, an+1 1s a Boolean combination of
{am_l N bl’ b2 n cls b3 NChs vues b n c 10 © }, and, hence,
a is a Boolean combination of members of A
n+1 +1°

Let S = U A . is totally ordered by <,

n>1

and S generates B. ||
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We will now discuss Boolean algebras whose elements
are integers, and whose relations and operations are relations
and function of integers. In doing this, we can take two
points of view, Wé can regard the equivalence relation "—"
as an equality relation, and say that two integers represent
the same elementof the Boolean algebra, iff they are the same
integer. 1In this case, our Boolean algebra will be a strict
Boolean algebra, that is, one in which any two equivalent elements
are, in fact, identical. On the other hand, we can take the
point of view that "<" 1is not a strict partial ordering, and
that two distinct integers may be equivalent in the algebra.

As an example of our first point of view, we will discuss
interval algebras of linear orderings of integers. It can be
seen by our definitiqn of an interval algebra (I-p.ll line 12)
that an interval algebra is strict. As an example of our
second point of view, we will discuss Iindenbaum algebras of
theories., We will regard the elements of the Lindenbaum algebra
to be Gbdel numbers of sentences. Certainly, two GBdel numbers
can represent equivalent sentences or even the same sentence.

We will now begin our discussion of interval algebras
with the following lemmas, which will be useful in Chapter IV.

1

Lemma 1.2: If &£ is a £] (ri, recursive) linear ordering

(L,~<}, then D can be presented as a Boolean Algebra whose

By
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(1)

(i1)

(111)

1
1

Proof: TLet a and b be the first and last elements of &,

operations and relations are ¥ (F:lL, recursive).
respectively. We will present D,S' as the union of the set
{0} with the set of all strictly ascending, finite sequences,

s, of elements of &, such that the cardinality of s is even.

The integer O will represent the O element of DS' To
prove the lemma we shall write down the definitions of < N,
U, = and observe that they are zi ( TT%, recursive) if ¢

. 1,1 .

is ®7 (m],recursive.).

X e D£=

X e D£ <—> x = 0VY(seq (x) & (i)ﬁz(x)(K(x(i)~< L(x(1))

& (l)<0 < i< .@(X) — L(x(i) )__< K(X(l-{-l))\)

‘x € SS:

x e B, <—> x = 0y (seq (x) & (1) g (x) (K(x(2) < L(x(1))

& (1)(0<1i<a(x) —> L(x(1)) = K(x(1+1)) .

s‘

X<y <—>x eD, & ¥y e D, & (1)55(}()(;3}5_2(3’)

(K(r()= K(x(1)) & L(x(1) = L))V x=o,
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(iv)

(v)

(vi)

X~y
x~ny<—>xeb, &y el &

(1) ¢ () (K(x(2)) # B(x(1)) —> (R () K@) = ()
(D g (r)EG ) £ L) —> @)y (K1) = ¥())) -

X ~ Yy Says that x and y are equal modulo empty

intervals.
x ='§'£:

J
X = g*s <—>XxeDy & y eDy & ((x=0 & y = o1+ (a,b))

Vy=0 & x=2"3@P)y  (x Lz & 2(y) +1 &

K(z(0) = a & L(z(4(2))) =b & (1){(0<1<t(z) —>
L(z(1)) = K(y(1))) & (1)(0 <1 < (z) —> K(z(1))

= L(y(i-1)) -

xUYy=z: If x, y and z are sequence numbers let 'z &

x Y y" be the recursive predicate which asserts that every

term of 2z 1s either a term of X or a term of y.
Ly s
XU y=2 <—>X ¢ Dg & Yy e Dy & z ¢ D£ & x < z

& y < 2 & <(y =0 & x=2) V(x=0 & z=1y)

- 22 -



(vii)

(1)gz) (As)(sea(s) & scxbvy & K(s(0)) = K(2(0))
& L(z(8(2)) = K(s(a(2)) & ()04 (2030)) < & p12(t)y),

x.nx V= 2 «—> ,§7£ Ux yﬂszsﬁf%'

We observe that, in (i) - (vii), "

<" occurs only in

a positive fashion. Therefore, we bring the function quan-
tifiers of (i) - (vii) to the front (as in Kleene [§ p. 315])
and observe that, if £ is 2% (W%, recursive), then so are the
predicates (i) - (vii). ||

Lemma 1.2': Let x c N. If £ is an Xx-recursive linear

ordering, then D£ can be presented as a Boolean algebra whose

operations and relations are X-recursive.

Lemma 1.3: There exist recursive functions 81> 8o gS, gy g5

such that if e 1is the Gbdel number which defines a recursive
linear ordering, the for every x, y, z @

(1) x= 0 1iff x 1is the zero element of Dytgr1’
(i1) {g,(e)}(x) iff x e D

1+8+1°
s s s . +$+
(lll) {gg(e)}(X’Y) iff x < L+o+1 v 3
° 1
(V) {84(9)}(}(:.’%2) = O, iff X n +o+1 y = Z3
—14+8+1

(vi) {gs(e)}(x,y) = 0, iff x=7y .

Proof: Similar to the proof of II-1l.2. |]
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Lemma 1l.4: If B is a denumerable strict Boolean algebra

with recursive field, and U, n,  are recursive, then there is
a recursive linear ordering, &, such that B “'DS'

Proof: Use thé proof of II-1.1 to show that B has a
recursively enumerable strict ordered basis S. Let § be

a recursive linear ordering of the same order type as S. B ~ D&'

Lemma 1.4': If B is a strict Boolean algebra with X-recursive

fie'd, operations and relations, then B zli for some
)(-recursive linear ordering ¢£.

Corollary 1.5: If B 1is a strict Boolean algebra with

hyperarithmetic field relation and operations, then B szs,
where & 1is hyperarithmetic.

We conclude this chapter with a discussion of our
second kind of Boolean algebra. From this second point of
view}we regard the Boolean algebra as being specified by its

natural ordering, <. So when we say that a Boolean algebra

of the second kind is W% (Z}, A%, arithmetic, recursive) we mear
that < 1is W% (Zi, A%, arithmetic, recursive). For example,

consider the Lindenbaum algebra of a theory, T. In this case,

we regard, "<" as being the derivability relation "

s Ta”
where o« and P are sentences of the language,(g;, of T,
If B is a Lindenbaum algebra, then B has the

following nice properties:
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(1)

(11)

The field of B is recursive. (It is just the sentences
of‘C;).

There are recursive functions fl, f2, f3 such that for
every X, ¥, z e B, fl(x,y)EEch)yu fg(x,y) = xnvy,
f3(X) -— X .

by f are just the propositional

(The functions f o0 T3

1’
connectives v, A, ~.)
In general, however, the predicates x ny — z,

——t— ——

x Uy — 2z, X— 2z are arithmetically definable in terms
of <., This gives us the following lemma,

Lemma 1,6: If B 1is a Boolean algebra whose natural ordering,
<, 1is hyperarithmetic (arithmetic) then B is isomorphic to

a strict Boolean algebra ﬁ whose operations, relation and
field are hyperarithmetic (arithmetic).

Proof: If a e B, let [a] be (x|xeB & x — a}. ILet

f be a hyperarithmetic (arithmetic) choice function which
chooses a member from each class in the collection {[a]}aeB .
Let B ve the range of f. Since the relations, x n y — z,
xUy— 2z, x-— 72z are arithmetically definable in terms

of <, these relations are hyperarithmetic (arithmetic).

Since f 1is hyperarithmetic (arithmetic) so is B. The

relations x Uy =12z, Xxny=2, X-= 2, when restricted
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to ﬁ, are hyperarithmetic (arithmetic) operations. The

"

relation — ", when restricted to B becomes the

equality relation "= ". B 1is isomorphic to 8. I
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CHAPTER III

Coding Functions into the Isomorphism Type of an Ordering
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§1. Preliminaries
The following lemma and definitions will be useful
in what follows,

Definition 1.1: Let A(x .,xn,y) be an arithmetic

l,-.

predicate. We say that y 1is E.A.N. in A(Xl"--:xnil)

iff,

ﬁvﬁk (xl)...(xm)(r)<~A(xl,...,xm,r) _— (y)Zr ~A(X1,...,Xm,Y)>~

Remark: E.A.N. stands for "everywhere or almost nowhere."

Definition 1.2: An arithmetic predicate is said to be in

predicate form iff it is in the form lel’QEZE”"’ann
R(f,zl,...,zn), where R(X,zl,...,zn) is recursive, and

Ql’ ceos Qn are alternating unbounded quantifiers. Every
arithmetic predicate is equivalent to a predicate in predicate
form. (See Rogers [7, p.126].)

Definition 1.3: If Qzy,...,Q 2, R(X,zl,...,zn) is in

predicate form where R 1is recursive, then lel""’ann
R(i,zl,...,zn) is said to be in E.A.N. form iff, for every
1l <k <n, Qk = \f implies zk is E.A.N. in

Qk+1 Zk+l o s o ann R(x’ Zl’vncyzk[-oo,zn).

Lemma 1.4: Every arithmetic predicate, A, 1is equivalent to

a predicate in E.A.N. form.
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Proof: By III-1.2, we may assume A 1s in predicate form
We do an induction on the number, N, of universal quantifiers
preceding the recursive predicate to show that A is
equivalent to a predicate in E.A.N. form. If N = 1, then
A 1is in one of the following forms where R 1is recursive:
(1) (v) R (X,y); or

(1) (M) (F2)R(RX,y,2); or

(1i1) (Bt)(Y)(EZ)R(i:Y’Z)-
In the first case A 1is equivalent to (y)(u)<y R(%,u),

which is in E.A.N, form. In case (ii),

A <—> (y)(u)ﬁy (Rz)rX,u,z)
<~ley) az) (u)fy R(X,u, (z) )

where (1) is in E.A.N. form. The third case reduces to
the second by observing that, in general, if A(Y,z) is in
E.A.N. form, then so is Caz}A(i,z). Before proceeding to
the induction step, we prove the following claim.

Claim: If y is E.A.N. in A(X,u,y), then it E.A.N. in

(u)<V A(K,u,y).

Proof: Suppose ~(u)<v A(X,u,r) holds for some X,r. This
implies (E§u)<v ~A(X,u,r). Thus, for some U < v,~A(X,U,r).

Because y 1is E.A.N., (y)>r ~A(X,¥,y) holds. This implies
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(Y)zr (Eu)ﬁvd(ﬁ,u,y) or equivalently (y)Zr ~(u)_<—VA(X,u,y).}
Using the claim, the induction on N may be completed.

Suppose the theorem is true for N = n. Let A be
(yl)(:3zl)(Y2)(?322) v R(X,yl,zl,yQ,ze,...), where A has
n + 1 wuniversal quantifiers preceding the recursive
predicate. By our induction hypothesis, we can assume that

2
(yg)(jazg)...R(X,yl,zl,...) is in E.A.N. form. A <—> (2)
(yl)(u)iyl(jazl)(ye) ce R(i,u,zl,yg,...) where y, is
E.A.N. in (2). We now drive "(u)<y " inwards (as in Kleene

[6,p. 1) and observe that, every ¥, 1s E.A.N. in
(jazk)...R(?,u,(zl)u, yl,(zg)u, cees (?K—l)u’ yk"") and,

therefore, by our claim every Ve is E.A.N. in

(u)ﬁyl (sz) R(X’u,(zl)u, cees Vo oeen)

!

Therefore after “(u)<y " is driven all the way
-1

inward, the resulting predicate is in E.A.N. form. ||
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§2. Partial Orderings

The proof that every recursively enumerable linear
ordering whose field is total is a recursive linear ordering
depends on the fact that a linear ordering § is connected,
that is, for any a, b ¢ §, either a=< Db or b-< a. If'ﬁ>
is an r.e. partial ordering and é? is not connected, then,
as we will prove below, 67 need not be isomorphic to a
recursive partial ordering.

Theorem 2,1: There is a rééursively enumerable strict partial

ordering which is not isomorphic to a recursive strict partial
ordering.

Proof: Let (E; be the language of the elementary theory,

of partial orderings, and let =< Dbe its relation symbol.

Let @ = {P,«<} Dbe a model of T. 63 is a strict partial
ordering iff, for any two elements a, b ¢ f>, a = b implies
a-£b. A set S of elements of F’ is called an antichain
iff any two elements of S are - incomparable. It is
clear that any anti-chain can be extended to a maximal anti-
chain. It is also clear that, for every integer n, there is
a sentence 3" of T such that &" asserts the existence

of a maximal anti-chain of cardinality n.

Lemma 2.2: (i) If é§> is a recursive partial ordering, then
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A n
n(63‘= ) e £y
(i1) 1If 63 is a recursively enumerable partial

ordering then ﬁ({f”‘: Qn) ¢ I3

Proof: (i) "fk & <
N1= @ @o)seats) & 2(s) = n &
(1) (D (1) £ 5 —> ~ (s(1) < s(4)) &
(2)(Ri)n (53) < 2V 22 s(3)),

where a-—< b means a—=<b or a=Db. '<" is a recursive
relation. We apply the Tarski-Kuratowski algorithm (see
[7, pp. 131-133]) to (1) to see that (1) is in wx,. (ii)
is proved similarly. ||

Thus, to prove the theorem, it suffices to find a
r.e. partial ordering ((;) such that ﬁ(?k @n) € T3 - T,
Let R(m,yl,yz,y3,n) be a recursive predicate such that:

(1) 'mz2 & (3Am)(y)(Rv,) Rimyyym)' e 7pon,

and

(ii) y; 1is E.A.N. in (Eﬂyg)R(m,yl,yg,n).

We seek a r.e. partial ordering (> such that

(m)sp (PF" <—> Kb (3m)(37) (Fr,)R(m3,755m)).
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For notational convenience, we will deal with a
symbol * in addition to the integers. That is, the field
of the relation we will construct will be a subset of the
fourth cartesian power of (*,0,1,2,3,4,...]}.

Let P Dbe the following set of UL-tuples.

(nm,x,i)In>2 &0<x<n & (X <n<—>i==*) g

X#* & nfF* & m#

P can be visualized as follows:
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We define the following relation on P:
(n,m,x,1) < (n',m',x',i') <—>

(nsm) <, o (nt,m') VY <(n,m) = (n',m') &
i<i' & x=x'"=n & (3y,) Rmi,y,yn) &
(2v,) R i%y,,n)) V((nm) = (n',m') &
XxX<n & x'=n & (:yyg) R(m,i',yg,n)> .

Let d? = (P, =<}. 'w<" 1is an r.e. relation.
Claim (i): é$> is a strict partial ordering.
Proof: Follows from an examination of the definition of<§).
The reader will get some idea of what 63 looks 1like by checking
that this claim is true.

Claim (ii): If S 1is an antichain of 6:), and both (n,m,x,1i)

and (n',m',x',i') are members of S, then (n,m) = (n',m').

Thus if S 1is an anti-chain we define S1 =n and
82 = m, where (n,m,x,i) is an element of S. Let
AE = {(n',m',x,i) (n',m',x,i) e P & O0<x<n }:
& (n,m) = (n',m')
Bg = ((n',m',x,i)|(n',m',x,1) e P & x=n & }
(@vy) Rmiyym) & (a'm') = (n,m)
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(n',m',x,i) ¢e P & x=n

Cn = 1(<n',m',x,i>

& ~(J¥,) R(m,1,y,5mn) & (n',m') = (n,m)

Claim (iii): Suppose that S is a maximal anti-chain of P

and that $; = n, 82 = m, and the cardinality of S (card S)
is > 2, then:

(1) (yl)(HyE)R(m,yl,yg,n) —> card S = n, and

(ii) ~(y1)(3y2)R(m,yl,y2,m) —> card S = }éo'

Proof: An examination of the definition of 6’ will be the
Justification for the assertions made in this proof.
. n

(1) If (yl)(ayg)R(m,yl,yg,n), then S must be A .
Card AI?! = n.

(ii) Since y; is E.A.N. in (Hyg)R(m,yl,yg,n),
there is an N such that (yl)zr ~(§y2)R(m,yl,y2,n). Thus,
card Cg = }Qo’ Since S 1s maximal, C; < S, so card
s =X, |

We now conclude the proof of Theorem 2.1. If
(Bm)(yl)(] yg)R(m,yl,yg,n), then for some f, (yl)(EYE)R
(fn‘,yl,yg,n). By Claim (ii), A; is a maximal anti-chain of

cardinality n, and, thus,@ }=:§n. Conversely, suppose
(m)~(yl)(3 y2)R(m,y1,y2,n). In this case, if S 1is a maximal
anti-chain, and S1 = n, then card S = No' On the other hand,

if s = N # n, then either card S =MO or card S = ® # n,
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Therefore,E?‘)é 3", |

Theorem 2.1: Let X < N. There is a X-r.e. partial

ordering which is not isomorphic to an )(~recursive partial

ordering.
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§3. Linear Orderings

The proof that every r.e. linear ordering is isomorphic
to a recursive linear ordering depends upon the fact that
every r.e. relation is isomorphic to an r.e. relation whose
field is total, (This latter fact will be proved in chapter
III, §1). In this section we will construct a TT i linear
ordering, &, which is not isomorphic to a recursive linear
ordering. In particular, £ is not isomorphic to any TT i
relation whose field is total. For if § is T i and the
field of & 1is total, then for every X, y ¢ &£, X< y <>

~(y= x), and, thus, & 1is r.e. which means that & is

recursive,

Theorem 3.1: There is a T g scattered linear ordering not
isomorphic to a recursive linear ordering.

Proof: Let =< Dbe the relation symbol in the language (E;

of the elementary theory, T, of linear order. ILet § = {Lx)
be a model of T. A set S c L 1is said to be a successor-
chain iff for any a ¢ S, b e S, [a,b) is finite. It is
clear that any successor-chain can be extended to a maximal
successor chain. It is also clear that for every integer n,
there is a sentence &° of (E; such that &" asserts the

existence of a maximal successor-chain of cardinality n.
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Lemma 3.2: (i) If & 1is a recursive linear ordering then

A
n(ﬂ: @n) e }:3.

(i1) If & is a ‘!i linear ordering then
l/f\l(Sl!:@n) € My

Proof': (i) £k 3" is equivalent to N LA where A is
(Fs)(sea(s) & £(s) =n & (i), (s(i) < s(itl)) &

(z)(s(0) <z < s(n) —> (A1) (2 = s(1))) &

(z)(z < 8(0) —> (Ay)(z <y <s(0)) &

(z)(s(n) < z —> (Hy)(s(n) <y < z).

We apply the Tarski-Kuratowski algorithm to (A) to
show that (A) e 3. The proof of (ii) is similar. ||
Thus to prove the theorem it will suffice to construct

a [T i linear ordering &£ such that
Acke?) e RN

III-1.4 will be useful in constructing such an §. Let

R(m,yl,yg,y3,n) be a recursive predicate such that;

(1) m>2 & @m)(y) @ yy) (v3)R(my,5¥,,755n)" € 7y -
(i1) "(3m)(y1)(Fy)3)R(my;,y,5¥550)"  is in E. AN

form,
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As in the proof of Theorem 2.1, we deal with a symbol
* in addition to the integers. Let L Dbe the following set

of 5-tuples
{‘(n,m,x,i,J)!nze & 0<x<n & (x<n—>(i,3) = (**))
& (x=n-—> (L £* & J#*))& X#* & m# f}.

We define the following linear ordering on L.

(n,m,x,1,3) —< (n',m',x',1i',3") <———>(thﬂ <pex. (n',m*))y

I

((n,m) (nt,m') & x <x')\ ((n,m) = (n',m") &

x=x"=n & i>1i') Y ((n,m) = (n',m') & x=x"=n &

il

it & Jg< J').

N
i

It is not too difficult to see that the order type of

(L, <} is

E:(n +  wew*)-w.
n>2

We now define a [ g subset £ of L.
(n,m.x.1.J) e £ o (n,m,x,i,j) e L & (x<nVy (x=n &

i=0)y (x=n & i>0 & (']3372)5J (y3)R(m,i-1,y2,y3,n)).
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(i1)

(iii)

If Ac L, let ¢ A Dbe the restriction of £ to

A. Let Ag be the set

{(n',m",x,1,3)|(n",m') = (n,m) & x = n}.
We wish to show that,
(2) (n)zg(stﬁ“—‘ q,n <> (gm) (yl) (33’2) (Y3)R(m:yl’y2,y3:n) ) .

The following observations, which will be useful in
establishing (2), are direct consequences of the definitions
of §, L, and ﬁ.

(1) For every n and m,

e 4

ﬁﬂA;: X W w*,

(v1) (3y,) (v3)R(myy5¥55¥35n) —> £
For every n and m,
~(y,) (@y,) (¥y3)R(m,¥,¥,,¥3,0) —> & [’in,qmn X w-q
where q 1is the least integer such that
~(A¥5) (¥3)R(m, 7, y5,55,n).
If S 1is a maximal successor-chain of s[‘ﬁ, then S must
have a least element, Furthermore, if S 1is to be finite,
it 1s necessary (though not sufficient) that the least element
of § Dbe of the form (n,m,x,i,j) where x = O.

We now conclude our proof of III-3.1. An examination
of the definitions of 1L, ﬁ and £ will be the Jjustification

for the assertions made below.
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Suppose that
(Zim)(yl)(fiyg)(y3)R(m,y1,y2,y3,n) holds for some n.
Therefore, for some m, (yl)(zgyE)(yS)R(ﬁ’yl’yg’y3’n)

holds. By (i), {(n',m',x,i,j) (n',m') = (n,%)
& X <n

is a maximal successor chain of ¢ £. ((n,M,n-1,%,%) is

a lower 1limit point. (n,M,0,*,*) is an initial point if
n =2, and an upper limit point if n > 2.)

Conversely, suppose that, for some n,
~,(':am.)(yl)(:3yé)(y3)R(m,yl,y2,y3,n). Furthermore, suppose
that S 1is a maximal successor-chain of ¢§ ?ﬁ and that S
has least element (7,M,0,%,*). Let Bﬁ be the set

o~
m

((n',m',x,1,3)[(n',m',x;4,3) e L & (n',m') = (N,®) & x < n').

If £ rAﬁ(j ﬁ ~ w-w*, then S = B?f s and, therefore the cardinalit
m

i} A
of S is @. On the other hand, if § [‘A;ﬂLQ:GJ.%‘for some
integer q, then one easily checks that the cardinality of
S 1is infinite. 1In fact, in this case, & PS =~ w. Thus, it
follows from Lemma 2.6, that either card s = I or card S:=?Q;,
depending upon whether or not (y,) (Byg)(y3)R(ﬁ,yl,yg,y3,ﬁ')

holds. However, it follows from our assumption that if n = #,
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then, for any fi, (yl)(ayg)(y3)f{(m,yl,y2,y3,ﬁ) does not

hold. Thus, either card S =70 #n or card S = No .

Theorem 3.1': ILet X c N. There is a scattered linear

ordering which is TT ({ in X and which is not isomorphic

to any X-recursive linear ordering.
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(1)

(11)

§ 4 Coding Hb—recursive functions into Recursive Orderings
The following theorem will give us a method for
constructing a recursivé structure whose isomorphism type has
a non-arithmetic collection of elementary properties. 1In
particular, at the end of this section we will construct a
recursive linear ordering, £, such that the set of all
elementary statements true of & 1is not arithmetic.

Definition 4,1: Let e be a number, and § be an order type.

We say |e| = &, iff for every n, {e}(n) 1is defined and
Cr-l(we) is a linear ordering of order type £.

Theorem 4,2: There is a recursive function e(e,a,m,n) such

that if e defines a recursive function of n + 1 arguments

(see Kleene [8, pp. 288-289]), then for every integer a:

(R2)(25) (A23) (2y). .. ((e)(21,2,5255. .. 58) = 0)

—> |e(e,a,myn)| = o™t

N&Eﬁzl)(zg)(EQZB)(zq)...({e}(zl,zg,z3,...,a) = )

—> |e(e,a,m,n)| = o™,

The proof of this theorem will require several lemmas.
Lemma 4.3: There is a recursive function w(e,a,m,n) such

that, if e defines a recursive function of n + 1 arguments,
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(11)

(i1)

then, for every zl,...,zn,a:

+
((e)(215- 0 52p8) = 0) —> |T(e;amn)| = o™
((e}(zqs--.s258) # 0) —> |7(e,a,m,n)| = o,

Proof: Straightforward. ||

The function, m, will correspond to the recursive
matrix of an arithmetic predicate in predicate form. We
will now define two recursive functions, ¥ and f, which

will correspond to \f and 73, respectively.

Lemma 4.4: There is a recursive function % such that, if

e 1s a number such that, for every n, {e}(n) 1is defined

and |{e}(n)| = £, then |z(e)| = ? L

Proof: Suppose we are given a number e, Let w(e) be the

Gbdel number of the following partial recursive function:

Given n, to find (=(e)}(n), we:

let Q < (0,...,n} x (0,...,n} be the set of all pairs (i,])

e{O,...,n}2 such that the computation of {e}(i) terminates
in at least n steps, and, furthermore the computation of

{{e}(1)}(J) terminates in at least n steps;

let ﬂb

P

14

I

oij K({{e}(1)}(j)), and let

Il

L({{e}(1)3(3));
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(iii)

(iv)

(11)

let

An = J(J(P kij’i)’ J( |P k'i'j' ) i') (i’j)eQ.n & (i':J')eQ.n
& k<1l &k' <1
& (i<i'y(1,d)=(1',J') &k<k

Let r be the least m such that A # f and let (z(e)l}(n)

be the least element of
Co = Ao L(2(e)1(0),..0s(2(e)}(n-1)) if C_ £ §, and let

{v(e)}(n) = {=(e)}(n-1), otherwise. ||

T - — - W - e = S A - ——— P> " . - - — - . o w— " M. —— . -

T 1s recursive and has the desired properties. ||

Lemma 4.5: There is a recursive function, f; such that, if
e 1s a number such that, for every n, (e}(n) is defined

and |{e}(n)] = £, then IZ(e)l == 5 ¢,
ig<i Y

Proof: Similar to that of 4.4, |]

Lemma 4.6: Let A(Z,y) be an arithmetic predicate. Let e

define f(z,y) recursively. If for every E,y;

AZy) —> (1£(Z,y)] = &™) 5 and

~A(Z,¥) > (|£(Z,y)| = o™ q), where q is an integer whose

value depends on E,y; then, for every zZ,
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(1)

(11)

(1) (RAy)a(z,y) —> (‘f(sr{(e"z‘))‘ _ wm+2; and
(2) ~473y)A(Z,y) —_— (;5(32(6’2))‘ _ wm+1.

Proof: By III-4,5, 15(8?(8,2))' is an w-sum of ordinals.
That is, 1fksg(e,2))f = £, , where for every i,

@ <6; < P oy (Fy)A(Z,y) holds, then o™ occurs
§<o times in the w-sum, and, therefore, the sum will be

o™, 1Ir (y) ~ A(Z,y), then, for every i, o, < wm+1.

i
m+1
Therefore the w-sum will be o . !|
Lemma 4.7: Let A(E,Y) be an arithmetic predicate. Let e
define f(z,y) recursively. If y is E.A.N. in A(Z,y),

and, if for every Z,y;

A(Z,y) —> (1f(_z°,y)f = a)m+l) ; and

~A(Z,y) —> (\f(z,y)! = "

) s

-
then, for every z;

;5 and

Il

(1) (VAEFy) —> ('2(s](e,2)) ! = ™)

(2) ~(y)A(Z,y) —> (!=(s](e,Z)! = w™q, where q 1is an

il

. -
integer whose values depends on z .

Proof:By ITI-4.4, ]Z(S?(e,?))[ = £ ©,, where, for every i,
ieN
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either o, = ®" or e; = o™l e (y)A(Z,y), then

(1)(8; = &™), and zo; = o™ty = o™2 y is E.AN in
A(Z,y). Therefore, if ~(y)A(Z,y), then there is an r
such that (¥),, ~ A(Z,y). In this case, (1),,(84 = @"),
and 291 = wm+T»q where q < r. lf -
Lemma 4.8: There is a recursive function A such that, if
e defines a recursive function of n + 1 arguments, then:
(1) A(e) defines a recursive function of n + 1 arguments;
(ii) for every a, (Zﬁzl)(zz)CE]z3)(24)...({e}(zl,...,zn,a) =0
<> (Egzl)(zg)(faz3)...({x(e)}(zl,...,zn,a) = 0);
(1ii) (321)(22)(323)...({?\(e)}(zl,...,zm,a) = 0) is in E.A.N.
form,
Proof: Look at the proof of I-1.4. This proof gives an
effective procedure which given the Gddel number defining the
recursive matrix of an arithmetic predicate, A, yields a
G8del number of the recursive matrix of an arithmetic predicate
ﬁ, where ﬁ is in E.A.N. form and ﬁ is equivalent to A.!!
We now complete the proof of IV-4.2. We will define
e(e,a,m,n) for the case where n is odd. (The case where n
is even is similar and will not be discussed further). Let

{e}(zl,...,zn,a) be a recursive function. We define

e;(e,a,mn)...,e (e,a,mn) inductively as follows:
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(1)

(11)

~,.n-1
el(e,a,m,n) defines Z(S? (F(A(e),a,m,n),zl,...,zn_l))
as a n-1 place function;

For O < 2i+l <n, (e,a,m,n) defines

€oi+1

gxsg—(21+1)(eei’zl”"’zn-(21+1)) as a n - (2i+l) place

function. For O < 2(i+l) < n, €2 (i+1) defines

n-2(i+1) :
»(8y (621+1’zl"'"Zn-2(i+l))) as a n - 2(i+l) place
function,
Let ¢(e,a,m,n) = e (e,a,myn). It is a straightforward

inductive proof, using III-4.6 and III-4.7, to show that
e(e,a,m,n) has the desired properties. Observe also that
e(e,a,m,n) is recursive. ||

Definition 4.1': Let e be a number, and £ be an order

type. We say le™! = £, iff for every n, {e}(n) is defined
and J_l(wg) is a linear ordering of order type &£.

Theorem 4.2': There is a recursive function w(e,a,m,n), such

that, if X o N and if e defines an n + 1 place function
recursively in X (see Kleene [8, pp. 266-281]), then for

every Zl,...,Zn, a.

(Eﬂzl)(22(2123)...({e}x(zl,...,zn,a) = 0) —> (I7(e,a,m,n)* =™
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(i1)

~(321)(z2)(’3z3)...({e}x(zl,...,z,a) = 0)

_ (1w(e,a,m,n)X1 = wm+n).

Proof: Alter the proof of III-4.2 by making the following

replacements: __ an expression of the form "{t}." is

replaced by "{t¥}".

__an expression of the form "!t| = £" is replaced by
X = g,

__an expression of the form "t defines a recursive function...”
is replaced by "t defines, relative to x, an x-recursive
function ..."

Observe that this altered proof is a proof of 4-2°7,

The assertions in the altered proof are shown.to be correct

by an argument very similar to the proof of the relativization

of the Kleene Sg theorem (Kleene [10, pp. 150-155].) !}

The following corollaries will give us III-4.2 in

the form we need it.

Lemma 4.9: There is a recursive function © such that for

every n, ©(n) defines an n + 1 place recursive function,

and

(a)(n)(aeH <—> (:321)(22)(2123)(24)"°({Q(n)}(zl""’zn’a)=0))
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(11)

(1)
(11)

Proof: Look at the proof of the Post representation theorem.

(See Davis [ 9, pp. 158-161]) Observe that this proof gives
us an effective procedure which given a number, n, yields
the Gbdel number which defines the recursive matrix of H . '

Corollary 4.10: Let B(a,m,n) = m(6(n),a,m,n). For every

a, n:
a e Hn _> (‘B(a,m,n)’ = (Dm+n+1);
a 4 H —> (!B(a,mn)] = &™P).

If in III-4.,9 and 1III-4.10, we make the replacements
listed in the proof of III-4.2', we obtain the relativized
versions, III-4.9' and III-4.10'.

Corollary 4.10': There is a recursive function pH(a,m,n)

such that if X < N, then for every a, n:

m+n+1
w )

b4

i

a e H —> (1f(a,mn)¥|

wm+n )

a g - —> (|B(a,m,n)*I

We will now use IV-4,10 to construct a recursive linear
ordering, &, such that the set of elementary statements true
in £ 1is Turing equivalent to H&. First, we will need
several preliminaries.

Definition 4.11: Let ‘91 be a structure and let (E; be a

language of the same similarity type as §£. The truth set of
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is the set (&|% 1s a sentence of & & X a3},

Lemma 4.12: If ?( is a denumerable structure of finite
similarity type ', whose field is an arithmetic subset of N,
and whose relations and operations are arithmetic, then the
truth set of ?( is Turing reducible to @m.

Proof: Look at the model-theoretic definition of "}="

and keep in mind that every member of T Z U Zg is Turing
reducible to H_ . ||

Lemma 4.13: Let (5 be the language of the elementary theory

of linear order. The predicate "There exists an nth inductive

upper 1limit which is also a lower limit point." is expressible
in C; .
Proof: Let VysVpo Vg be the variablesand —< be the

relation symbol of (E;. We define the W.f.f.'s L-(v,)

inductively:
13(vy) <> (vy)(vzvy) & (9) (v, —> (Fug) (vs<vsev).
Loq(vy) <—> L (v;) relativized to L;(vl).

Now we define the w.f.f.'s Lz(vl) and @n(vl).

L;(vl) <> (3\)2)(\)1‘< Vo & (Vg)(\) -< Vo > (3\)3)(\’":\’3 2)

n

B > (Fvy) (Lp(vy) & L7 (v,))
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(1)
(i1)

3" asserts the existence of an nth inductive
upperlimit point which is also a lower limit point. ||

Lemma 4.14: The exists a 1-1 recursive function ¢ such

that:

0 £ range o;

for every integer n, {o(n) + 1, ..., o(n) + L(n) + 1} is
disjoint from the range of .

We are now in a position to construct a recursive
linear ordering whose truth set is Turing equivalent to Hm.
Consider an ordering of the form, £ = ¥ (wm+l+w*), where
Q —« N. It is not difficult to see thatmeg = @m, iff

me Q. We are looking for a recursive linear ordering of the

form ¥ (wm+l+w*), such that, for every a,n:
meQ

o(J(a,n)) + n+ 1 eQ <—> a e Hy 3
o(J(a,n))+ n e Q <—> a £ H

If we can find such a recursive linear ordering £,
then (a)(n)(a e H <—> ¢ = Qw(J(a,n)+n+l)’ and we see that
H& is 1-1 reducible to the truth set of £. Let
Ay = lp(K(i)), ow(i), L(i)! where P 1is the function defined
in III-4.10. It is not difficult to prove the existence of a

number € such that (1)(1{8}(1)] = A;+1l+w*). Let £ = |2(¥)].
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By ITII-4.14, for every i, either A, = o(@(1)+L(1)+1)
or A, = olo(1)+L(1)) depending on whether or not
K(1) e HL(i)‘ Therefore, by our construction of o,

K(i) e HL(i) <> (Hi)(’\i = w(w(l)+L(l)+l)). Hence, we

see that (i)(K(i) e HL(i) <> &= @(co(i),L(i)ﬂ)). I
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(11)

(iii)

§5. Boolean Algebra

In this section we apply the methods of III-§2
and III-§3 to the problem of constructing a Boolean
algebra which is not isomorphic to a recursive one.

In attempting to code a non-recursive function into

the isomorphism type of a Boolean algebra, we immediately run

up against that fact that every Boolean algebra has a recursive

truth set in the elementary theory of Boolean algebra [See
Tarski [11, pp. 62-64]., Therefore we look at a variant of
the weak second order theory described in Ehrenfeucht [ 12 ].
Let A be a set of relation and operation symbols. Let
"Indiv' Dbe a one variable relation symbol such that "Indiv"
e A, We will denote by ;i(A) the set of all formulas of

n_n

the lower predicate calculus with identity )which contains
the predicates ¢ and predicates from A only. As models
of Fi(A) we will admit those models for the set formulas

in which:

%thiv (‘x)) is a set of individuals;

| M| (the set of elements of the model M) is the smallest set
X such that ,;'((Indiv (\c X and, if x; e X,ooosXy e X
and, for every 1 < i < k, Indiv (Xi)’ then {xl,...,xk} e X;

the members of A are interpreted as relations and operations

on R (Indiv (x)) 3
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(iv) e 1is the set-theoretical e-relation in M;
(v) "=" means '"equality."
Let 7(== (s Ri>R,5...} De a structure (where
M) is the universe of J{ ). We designate by }1#, the

structure

{é(se!?tw(sg?(] & card S < NO)) y € 3= » Indiv, Ro,Rl,...].

Lemma 5.1: If 71 is an arithmetic structure of finite
1
similarity type, then the truth set of J * in E,( Indiv,
Rl,...,Rn) is < Hw’
Proof: Since 7( is an arithmetic structure, there is a
. ,m

sequence of integers, m such that | M| o H

1
R, <, H , ..., R < H . seeesm o],
1-T “m, n—Tm,,. 1 “Tnt+l

Using Hm as an oracle, we can Gbdel number the members of

n+1’
Choose m > max{m

1’.0

l)14! in such a way that:
(1) "x e lf(#l” is H -recursive;
(11) "Indiv (x)" 1is Hp-recursive;
(i1i) "e" 1is H-recursive;

(iv) R are H -recursive.

1,...,Rn
(For every 1< i <mn, R, will fall to hold unless each of

its arguments is in Q(Indiv (x).)).

Now that 71'# is presented in this way, we use III-4.12.1|

Let A= {Indiv., <, n, U, —}. If we can find an
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ﬁm-recursive Boolean algebra B such that Qw is 1-1

reducible to the truth set of B +

in (Indiv., <, N, U, =),
then B can't be isomorphic to a Boolean algebra whose
relations and operations are arithmetic. III-4.10' will be
useful towards this end.

First we will 1list some properties of Boolean algebras

which can be expressed in the weak second order theory. Let

stand for individuals and Vl’ Vs oo stand

\)l) \)2’ 2

for finite sets of individuals.

(1) "vl is bounded by the union of the members of Vl", or as

we shall write, " \Vkvl, Vl):

(vy2 V1) <> ((3,) ((v3) (v5e Vi — vy < vp) —> vy<v,))
(i1) "lv is an atom", or An(vl) (See I-2.3):

4

A%(v)) <> ((v 20 & (v,)(v; N vy = 0V vy 5 vp)).

1!n

Suppose Ao(vl,...,An(vl) have been defined. Let "v; e I "
(See ;[-2.3) be the w.f.f., (3 Vl)((\)3)(\)3e V,—>(Vv3=0
, n : n+l
VAN vaN(v)) & V(s vy). We now define AMl(y))

as follows:
ALy ) (a(vsel) & (vo) (v, € IV vo-vy & L))
Vi ~\V1€4y Vo /ivyiVo n 2™V1 n

(111) "oyl = luol "
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(iv)

(vii)

(viii)

el < vl

”lvlln bounds N*o atoms" .

(Evg)(An(Vg) & ‘vg!n = 1\)111'1) & (\{‘)((v?)(VQGVr>(An(v?} &
valn < 1)) = (Qv3) () e Vi — Tuyly Z lugl, @
logly < Ivyly & A%(v5)).

”|vl|n is completely atomic"

(Vg)(‘\’g‘n < ‘Vl!n —> (2V3)(An(‘)3) & !\)3'1’1 < l\)g'n).

"!vl!n bounds ?éo atoms, but no completely atomic element

bounded by |v,| ~ bounds ?VO atoms", Cn(vl).

Let " ve (Eavl)Cn(vl).

We now consider Boolean algebras of the form B = DS’

where § = (¢ (wm+n))+ 1 and Q = N. We wish to prove that
meQ

(m) (meQ iff B*k=@m). We shall do this in several steps.
claim (1): £®) = (2 (@K 4 m)) 4 1. (see I-1.1)
meQ

Claim (ii): ILet € ¢ B. If for every m, £ does not bound

an interval of order type o™ + m, then ¢ = §l U 52, where

£l is atomic and €5 is atomless.
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Proof: € = [al’bl) U...U[an,bn), where a,-=< b, < a,=< ..f<an-<b

1 1 2
We claim that for every 1 <1 <n, [a;,0y) = gi U E; where
gé is atomless and gi is completely atomic.
case I: Suppose bi lies in some summand T. If ay lies
below T, then [ai,bi) bounds a segment of type «" for

some m, Therefore a; also lies in 7 and [a;,b,) is
atomless,

case I1I: Suppose bi lies in some summand w°. ® is
preceded by a summand of the form wq + n, If ay lies in

or below wq, then [ai’bi) bounds a segment of type wq.

Therefore ai must either lie in T or in wp. If ai lies

in mp then [ai’bi) is completely atomic., Let * be the
least element of . If a; lies in T then [ai’bi)
= [ai,*) U [*,bi) where [ai,*) is atomless and [*,bi) is
atomic.

To complete the proof, we let El = L/) Ei s

\,) i 1<i<n
_E2= 52- ‘1

1<i<n

Claim (iii): B k 8° iff 1 ¢ Q.

Proof: If 1 ¢ Q, then choose a point a in the first
rational interval. [O,a) bounds ?Q; atoms, but no completely
atomic subinterval of ([O,a) bounds }{3 atoms. Suppose

1 4Q Let £ be a member of B, If Ff bounds a segment of
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type wp + N for some m, then m > 1, and, therefore, a
completely atomic subinterval of some interval of £ will
bound ><o atoms. If not, then € = gl u §2 where gl is
completely atomic and F, is atomless. If £ bounds }{o
atoms, then Ey> which is completely atomic, must bound )JO
atoms, since £, 1is atomless. 1

Claim (iv): BY k &, iff n+ 1 ¢ Q.

Proof: Observe B(M) - p men .
( T (w + M) + 1]

- meQ

since B* k &7, iff (B(n))£ E 8%, we see B* E % irff
1 e Q(x = m-n & meQ). Hence Bf = % iff n o+ 1 e Q.

Corollary b5.2: The weak second order theory of Boolean

N
Algebras has 2 ° completions,
We now turn to the main theorem of § 5.

Theorem 5.3: There is a strict Boolean algebra B (See II)

whose field, relation and operations are Hw—recursive such
that B isn't isomorphic to any Boolean algebra whose field,
relation and operations are arithmetic.

Proof:  Recall 4.10', for the case where X = H. Let

Ay = le(k(1), o(1), L(i))aw‘. It is not difficult to see that
there is a number ¥ such that l({g}(nffwl = Ay + M. Let

£ = ‘(?(g))am', and let £ =8 + 1. § 4is isomorphic to an

Hm—recursive linear ordering. Let B = D£. By an argument
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very similar to that given in the example at the end of

84, we can show that

(31)(/\1 - w[fD(i)+L(i)+l]) > K(l) e HI];IU(Ji).

Therefore by claim (iv),

H o
(1)(K(1) « HL(z)i) «—>B k @(“’(l)”’(l))) :

H
Thus H&w is 1-1 reducible to the truth set of B#. Thus,

by III-5.1, B 1is not isomorphic to a Boolean algebra whose
field, relation and operations are arithmetic. By II-l.2',
the field, relation and operations of B are H -recursive. 1

Theorem 5.3': Let X < N. There is a strict Boolean algebra,

B, whose relation, field and operations are Hg-recursive such
that B 1s not isomorphic to a strict Boolean algebra whose

operations, field, and relation are arithmetic in X.
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CHAPTER IV

Analysis of 3 by Means of the Analytic Hierarchy
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§1. Preliminaries

The following facts will be needed in §2 wherein
the main results of this Chapter are discussed. We give the
preliminaries all at once in order to facilitate the
exposition in §2.
Lemma 1.1: Any infinite recursively enumerable relation
6ﬂ(x,y) is isomorphic to an r.e. relation whose field is
total.

Proof: Let f be the recursive function such that

(x) (Y)(@\(X:Y) <—> J(X,y} ¢ Range ).

We define % as follows. ¥(0) = J(0,1) if K(£(0)) # L(£(0)).
2(0) = 7(0,0), ir K(£(0)) = L(£(0)). Suppose that £(0),...,f(n)
have been defined. If K(f(n+l)) = K(f(i)), for some 0<ic<n,
then let K(T(n+l)) = K(¥(i)). If K(f(n+l)) = L(£(i)), for

some O < i < n, then let K(f(nt+l)) = L(T(1)). Otherwise,

let K(f(n+l)) Dbe the least number x such that, for any
O<i<mn, x#KTML)), x#LFT@H)). If L(f(n+l)) = K(f(n+1)),
then let L(f(ntl)) = K(F(n+l)). If, for some i, K(f(n+l))

is equal to K(f(i)) or L(f(i)), then let L(T(i)) be

K(T(1)) or L(¥(i)) respectively. Otherwise, let L(f(n+1))

be the least number x such that, for any 1 < i < n,

x # k(F(1)), x# L(3(1)), x# k(T(n+1)).
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~

¥ is recursive. Range f = N, and the relation
"J(x,y¥) ¢ Range ™" 1is isomorphic to é%.’

Lemma 1.1': Let ‘X_g N. Any X-r.e. relation isomorphic to an

X-r.e. relation whose field is total.

Corollary 1.2: Any hyperarithmetic relation is isomorphic

to a hyperarithmetic relation whose field is total.
Lemma 1.3: Let {Bi}ieN be a sequence of ordinals., If BiT a,
then:
Bi o
(1) o T w H

B
(1) o = T o * .
ieN
Proof: (i) Follows from the definition of w .

(ii) By I-1.9, o > Y oo > w ) for every n. ||
i<n

Lemma 1.4: Let O be the standard 117 ..t or notation for

the recursive ordinals (See Kleene [13, pp. 51-52]. There is
a partial recursive function, f, such that if e ¢ O and

[e] 1is the ordinal named by e, then |[f(e)]| = w[e]. (See
III-%.1).

Proof: We use effective transfinite induction. We seek a

partial recursive function such that:
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f(1) = d where ]dl| = w;

l)
f(ge) _ x(dg(b)): where dz(b) is the Gbdel
number of the constant function which assigns
f(b) to every integer. (See III-4.4);
£(3.57) = g(d3(b)), where d3(b) is the G8del

number of the recursive function f({y}(n)).

We see by the Rogers' recursion lemma that such a
partial recursive function exists (See Rogers [14, p.849].
Using IV-1.3 we prove by induction on <5 that f has
the desired properties. ||

Corollary L 5:

(1) If « is a recursive ordinal, then so is o .
(i1) o = .

(iii) o < W, <> 3(98) < W -
Proof: (i) Immediate from 1.4

(ii) Any finite sum of recursive ordinals must clearly
be recursive. Thus, by I-2,9, ) = wa, for some «, IFf

x < Wy s then o is recursive. Contradiction * Thus o = wl.

1
iii) If © < w, then by I-1.8, there is a B < w
1

such that © < mB < w;. Thus, 3(8) <P < w Conversely, if

1 1°

6 > wy, then 3) > ;- I
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Lemma 1.6: If ¢ is isomorphic to a zi( TT% ) linear
ordering, then so is 1 + £ + 1,

Proof: Let § = (L,~<} where L and -< are 2% ( TT% )
Define x <<y as follows: X <<y <—>x=0yy=11Y

X+ 2=<y + 2.
£ = [Q(x:O V x=1 y x=2 + 2 where zel), <<}

§ is 2% ( TT% ) and £ is isomorphic to 1 + £ + 1. I



§2. Analysis of 3 by means of the analytic hierarchy

Definition 2.1: (Spector [18]) A set S of natural numbers)

is said to be "inductively defined with respect to a predicate
Q' iff, for each ordinal =7, S§_-= Q((:Qv)(v <T & Q(x,sv)))
where (T) ¢ Ty, & Q(x,T)) —> Q(x,T,), and S=15_, ¢

being the least ordinal such that Sc = Sc+l'
Theorem 2.1: (Spector [1%]) The ordinal c¢ of a set

inductively defined with respect to a 'TT% predicate is < w,.
Theorem 2.3: If £ = {L,<} is a A% linear ordering, then

3(£) < wq-
Proof: By IV-1l.1, we may assume that the field of § is total
Let s = (J(xy)|x =¥ y). By Iv-2.2, it will suffice, for

the proof of the theorem, to show that S is inductively

3(E)
defined with respect to a A% predicate. (See I-1.1). Let

Q(x,T) Dbe the following predicate:

Qx,T) <—> x = J(y,y) Vx eT VY (Is)(seq(s) &
(z) (K(x) =< z=~< L(x) Y L(x)~< z < K(x)) —> (A1)(0 < i < £(s) &

J(z, s(i)) e T).

Q(x,T) is 8] , and, by I-1.1, S,(g) 1S defined inductively

with respect to Q. Therefore A(£) = ¢ < w;. |l

Corollary 2.4: If £ 1is a A% scattered linear ordering, then

(L) < W, -
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Proof: Since £ 1is a Ai scattered linear ordering, soO

is (£+@) + 1. If 3(£) = oy, then, by I-1.7, 3((Sw) + 1)

>23(£) = w;. Contradiction. ||

Lemma 2.5: If B 1is a strict Boolean algebra with a scattered
base and the operations and relations of B are hyperarithmetic,

then;
(1) &(B) < W, 5

(11) B ~ Dy where 0 < w;;

(iii) B = B' where B' is strict and the operations
and relations of B' are recursive.

Proof: By II-1.5, B ~ Ds, where £ 1s hyperarithmetic. By

I-2.12, & 1is scattered. By I-2.10, and IV-2.4, §(B) < Wy

By L-2.14 and IV-1.5, B~ Dy, where ¢ <a,. (iii) holds

by II-1.2. ||

We now wish to prove that if § is Si » then 3(£) < .

If we try to apply IV-2.2 directly, we run into the following

difficulty: If § isa vy

Sa(s), defined in the proof of IV-2.3, need not necessarily Dbe

linear ordering, then the set

defined with respect to a TT% predicate., This 1s so because

the equivalence relations, EE i range over the field of ¢,

and, if £ is 2%, then its field need not be TT% . (In fact,
1
1)
Therefore, we take the following indirect approach. Let "Scat"

if £ 1is zi and not A7, then its field can't be TT% .)

be



{' ele is the GBdel number of a scattered j}
Lemma 2.6: (i) Scat e TT% .

1
lo

recursive linear ordering

(ii) Scat 4 =

Proof':

(i) "e e Scat" «<—>e ¢ Li & (£)[(Fx)(Dy)(lel(f(x),£(y)) = ©

(z) ~(le}(f(x),2) = 0 & {e}(z,f(y)) = O) 1.

Since Li is arithmetic, "Scat" is TT%.
1

'ii) Suppose "Scat" e Zi. Scat ¢ 2% n TT% = 8] . We are going to

use the hyperarithmetic predicate, "e ¢ Scat", to take a hyper-

arithmetic sum of all scattered recursive linear orderings.

Let p, be the (n + 1)th prime. Let g(m) Dbe the

mth member of Scat. If Scat is A%,

arithmetic function. ILet L = {p‘;l‘} . We define a

then g 1is a hyper-

linear ordering, =<, on & as follows:

m m' '
x<y<—>x=py & y=pp & (n<n'y

(n=n' & (g(n)}(mm') = 0).

Let £ = (L,~<]}. §& 1is a scattered, A% linear
ordering, and every scattered recursive linear ordering is

isomorphic to a segment of §. Therefore, for any « < w5
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@ 1is isomorphic to a segment of £. Thus, 3(£) > =,

for any « < w,, and, therefore, 3(f) > w This

1’ 1’

contradicts Corollary 2.4. ||

Lemma 2.7: If B 1is a strict Boolean algebra with a scattered

basis and the field, relations, and operations of B are 2%,

then:
(1) 5(B) < w1,
o’ for some ordinal © < w, .
Proof: (i) Suppose that B satisfies the hypothesis of

R

(ii) B =D
IV-2.7, and §(B) >wy. If e e Li, let Ilell = (N, <},

where (x)(y)(x~<y <—> (e}(x,y) = 0). We give the following

1

1 definition of Scat:

P
n 1 (l) .
e ¢ Scat" <—-> (e e L & (Eif)(f'Dl+!|e||+1'—“—> B &

f 1is a Boolean monomorphism, )

First of all, we claim that (1) is, in fact, a definition

of "scat.". If such a monomorphism f, exists, then, by I-2.13,
1+ |lel] + 1 is scattered, and, hence, ||e|| is scattered.
Conversely, suppose ||e]| 1is scattered.

Then 1 + ||le|| + 1 1is scattered and recursive. By

Iv-2.4, a(l + ||eH + 1) < (J.)l. By Iv-2.5, Dl“"”&”'*‘l zDg'

where ©' < W, - By I-2.14, I-2.,10, and IV-1l.5, B = DQ R

where © > W, . By I-2.13, there is a monomorphism, ?:D@' - Dg'
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We define f by means of the following diagram:

o' )

Thus, it suffices, for the proof of 1IV-2.7, to show

that (1) is ok

1 To do this, we just write it out. (See

I1-1.3)
Let 6 be the zero element of B.

te ¢ Scat’ «—> (M (e e 11 & () (x)(¥)(2) (lg)(e)}(x)

—>x ¢ B) & ({g(e)}(x,y) =0 —>x<y) &

({g3(e)}(x,y,z) =0 —>xUy=2) &
((gu(e)}(x,y,Z) =0 —>xNYy-= Z) &
(leg(e)}(xy) = 0 —>x=7) &

~
6)""“">X=O/

d

I

((Lg,(e))(x) = 0 & f£(x)
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Noting that "x ¢ B", "x <y", "x ny = 2",
"xXUy=2", "x=Yy" ‘are Zi , and brihging the function
quantifiers of (1) to the front of (1), we see that (1) is
. 1
in z7 . }

(ii) This follows directly from (i). ||

Lemma 2.8: If § 1is a scattered, 2% linear ordering, then
3(£) < wy.
Proof: Follows directly from II-1.2, and IV-2,7. ||

Theorem 2.9: If & = {L, <]} 1is a E% linear ordering then

3(8) < .

Proof: By I-1.11, &£ = ¥, Sr where each sr is scattered,
re’

and where 3(f) = f.u.b. {a(sr)lreﬁ}. If 3(g) > w,, then

there is some & _ such that a(£~) > ®,. There must be two
T T

elements a, b ¢ £ such that aZi b. Let <£[[a,b)=(f,<<].
id 1

By I-1.1, 3(£fla,b)) > w,. However, £ila,b) 1is scattered

and Z%; i.e. X <«<CKy<—>a<x<b & a<y<b & x=<1y.

Contradiction. ||

Theorem 2.10: If B 1s a strict Boolean algebra whose field,

relation and operations are Zi » then §(B) < W, .

Proof: Suppose B satisfies the hypothesis of 1IV-2.10, and

§(B) > w By 1II-1.1, and I-2.7, there is an isomorphism

l-
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f:B —> D, where 3(f) >w As in the proof of 1IV-2.9,

g 1’
there are two elements a, b ¢ £ such that £[[a,b) is
scattered and a(sr[a,b)) >w,. Let g = f'l([a,b)). We
define the following Boolean algebra ﬁ.

(1) The field of B is R(x ¢ B & x < ).
(i1) For every X, ¥y, z ¢ 8, (x 0 V=2<—>xUy=2)
2

and (x Ay=z<—>xny=2) and (x=% iff x = £ n Z).

ﬁ =~ Dxr[a,b] . é is strict and scattered and its

field, operations and relations are easily seen to be xi .

since 2(sf[a,0)) > @, 8(8) > ;. This contradicts Iv-2.8. |
Example: Let & = {L,~<]} be the Gandy ordering [14] with
TT% initial segment O1 of order type w, . § 1s recursive

and 3(f) = o et f = Q(x elL & xe0)). Let x <<y

1°
mean x ¢ L and Yy e £ and x=< y, and let 8- {ﬁ, <<},
8 is a TT% linear ordering of order type . 8.2 is a

2.3(82) > w

TT% linear ordering of order type W 1
By II-1.2, D is a strict Boolean algebra

8.0 g.2

whose relation and operations are 'TTi. By III-2.5, D

§(D ) > w

10

8.2

can't be isomorphic to any strict Boolean algebra whose
operations)field and relations are ?% .

Corollary 2.11: There is a strict Boolean algebra B with a
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scattered basis such that the operations, field and relation
of B are T[] and B isn't isomorphic to eny strict Boolean
algebra whose field, operations and relations are zi é

Now we turn to an interesting parallel between strict
Boolean algebras whose field, operations, and relations are
2% and Lindenbaum algebras of TT% - axiomatizable theories.
This parallel is expressed in the following theorem. (See
Chapter II, pp. 24~ 1% ).
Theorem 2.12: If B is the Lindenbaum algebra of a TT% -

axiomatizable theory, T, then &(B) < ;.
Proof: Let (E; be the language of T. If « 1s a sentence
of C‘;, and I c B is an ideal, let !c:lI be the equivalence
class of « in B/I. If C c B, let I(C) be the ideal
generated by C. Let A c B be the TT% set of axioms.
Claim: The following predicates are TT% in «, B and C:
(1) =< B;
(ii) e« < x Au = ;
(ii1) ‘K'I(c) = |B!I(c) ;
(1) l=lp(ey < 05
(v) '“lI(c) is an atom;

(vi) ‘“'I(c) is a finite union of atoms.

Proof of claim: (i) « < p iffe +AB‘ The only occurrence of

the predicate "teA" in the proof theoretic definition Y“«}-Aﬁ" 1S
of
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ponthe . (i1) Special case of (i)s(iii) ‘“'I(c) < ’B]I(C)
<——> "There is a sequence r,,...,7  of elements of C
such tk:at BN~e<T VooV 1 " () loc\I(c)lis an atom
A
<——> (r)(1 1is a sentence of (5 ) —> (|7 A “!I(c) =0 V
/s . .
1«!1(0) < !T‘I(c)))’ (y1) Follows directly from (v). |]

We define Q(«,C) as follows:
Q(a,C) <> !G'I(C) = 0 v ”‘“!I(C) is a

finite union of atoms "y || = O.

IE(B) (see I-2.3) 1is inductively defined with respect

to Q@ and Q 1is TT%. Therefore, by 1IV-2.2, §(B) < w,.
Example: Let & = {L,~<]} Dbe the Gandy ordering. We can
assume without loss of generality that L = N. Let Pl’P
be a countable set of propositional letters. Let G;. be the
set of all Boolean combinations of {Pn}. Let A ~ E;:be the

following set of axioms.

{~p pn,]n <n' VY (n' <n & n'£O0))].

n

A is a Zi set. Let T be the theory whose axioms are A,

and let B Dbe the Lindenbaum algebra of

f?

{pn}neN is an
ordered basis for B. The order type of [pn}neN is o, + L.
Thus 6(B) > w,. I
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Remark: To justify IV-2.12 which might, at first glance
seem somewhat artificial, we make the following observations.
In order for the proof of IV-2.11 to go through it suffice$
that B be a Boolean algebra such that "<" is TTl, and
that there exist hyp. functions f,(x,y), £, (%,5), fB(X)

such that for every x, y e B:

(1) £,(0y) =x Uy
(ii) fg(x:y) E XNy
(iii) f3(x) = X,

However B 1is isomorphic to an algebra which satisfies
these conditions iff B 1is isomorphic to the Lindenbaum
algebra of a TT} axiomatizable theory. If B is the Linden-

baum algebra of some TTi-axiomatizable theory then < 1is

14 1

TT% and fl,fg,f3 are the propositional connectives sAym
On the other hand, if B satisfies the conditions mentioned
above, then we can use the standard proof that every Boolean
algebra is isomorphic to the quotient of a free algebra and a
filter, to show that B 1is isomorphic to the Lindenbaum

algebra of a TT%—axiomatizable theory. ||
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