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Abstract

We study transport in fractured systems using a stochastic particle tracking approach.
We represent a fractured system as a two-dimensional lattice network system where
the transport velocity in each fracture is a random variable. Our goal is to develop

an exact effective marcroscopic model for the concentration mean and variance from

the microscopic disorder model. Within a Lagrangian transport framework, we derive

effective equations for particle transport by coarse graining and ensemble averaging

of the local scale Langevin equations. The results show that the mean transport can

be captured exactly by an uncoupled continuous time random walk (CTRW) and the

variance of the concentration by a novel two-particle CTRW formulation. Information
about variance of concentration between realizations is important for understanding
predictability. Therefore, ensemble mean together with variance provide critical in-

formation for understanding and predicting transport through the lattice netowrk.
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Chapter 1

Introduction

Networks arise in diverse contexts such as fractured geologic media, transportation

infrastructures, social phenomena, and biological systems. Transport trough these

network systems has been the focus of much interest. The motivation for this work is

to understand flow and transport through fractured porous media. There have been

many approaches to predict transport through fractured media. Some models assume

that the location and the properties of individual fractures are given. In practice, it

is extremely hard to obtain specific properties of fractures and this makes it difficult

to apply this type of explicit fracture models to the real world. Traditional models

do not generally capture anomalous transport, that is, the nonlinear growth of par-

ticle spreading with time. Here, we derive effective equations for particle transport

within a Lagrangian transport framework by coarse graining and ensemble averag-

ing of the local Langevin equations that describe motion of individual particle. Our

model enables predictions of transport through a lattice network system with limited

information. We envision that this first result will lay the foundation for the descrip-

tion of transport in realistic fractured porous media. This approach has the potential

to be applied for urban planning, traffic forecasting and the spread of biological and

mobile viruses as well.



1.1 Transport through Network System

Understanding flow through fractures is essential for improving several societal re-

lated issues, including the risk assessment of nuclear waste disposal [31, 32], the site

selection and assessment of leakage risk in geological CO 2 storage [3], the oil and

gas production from fractured carbonates [5, 6], and the development of enhanced

geothermal systems [2]. Interconnected networks of rock fractures constitute the pri-

mary pathways for flow and transport in these applications. However, there are two

key obstacles to predicting transport through fractured media. The fundamental

challenge is that the location and properties of individual fractures are not identifi-

able. At best, only some representative properties of the network can be inferred from

analogue geologic outcrops or high-resolution seismic interpretation [11, 27]. Second,

it is well known that flow through fractures leads to anomalous transport [9, 10, 30].

Anomalous transport refers to the spreading of a substance or a signal in a way that

deviates from classical diffusion. Due to these reasons, predictive capabilities of flow

and transport in real fractured and heterogeneous media are severely limited.

To model transport through fractured media, we represent fractured porous media

as a lattice network system. A network is a set of entities referred as vertices or

nodes, with connection between them, called edges or links. The nodes represent

the components of a given system, e.g., joints in fractured media; and the links

represent existing interactions among nodes, e.g., physical connection, virtual links.

Network systems arise in a wide variety of fields, such as the Internet, the World

Wide Web, social systems like friendship networks, transportation systems, biological

systems like metabolic networks, among many other examples [1, 28]. Therefore,

modeling transport through a network system is of interest in many different fields

where network system arise.



1.2 Previous Work

Several approaches have been used to model transport through fractured media, in-

cluding dual porosity models (DPM) [4, 19, 33], discrete fracture networks (DFN)

[22, 23, 26], stochastic discrete fracture network [13, 17], and continuous time ran-

dom walks (CTRW) [7, 8, 9, 10, 25].

In DPM, the rock is modeled as two overlapping continua, one continuum rep-

resenting the low-permeability matrix and the second continuum representing high-

permeability fractures. Because of the dual nature of double-porosity reservoirs, DPM

introduces two representative elementary volumes (REV) in describing the system,

one for the fracture system and one for the matrix system. The model allows for mass

transfer between the matrix system and the fracture system through a transfer func-

tion [19]. The fracture system REV is assumed to contain a large number of fractures

as shown in Figure 1-1, so that adding or subtracting a few fractures from the REV

will not substantially alter its hydraulic properties. The matrix system REV will not

be the same as the fracture system REV and will depend upon characteristics of the

matrices. In most DPM models, the matrix and fracture system are assumed to be

homogeneous and isotropic with regard to their hydraulic properties. Consequently,

the REVs will not vary spatially within the reservoir. This is a computationally effi-

cient approach but has limitations. By introducing a REV, the model cannot capture

all scales of heterogeneity such as small scale extreme values. Small scale extreme

values are critical to accurately model transport. Another shortcoming is the diffi-

culty in accurately evaluating the transfer function between the matrix and fractures

[18, 21]. Also, homogeneous and isotropic REV becomes questionable assumption for

a fracture system with small number of large-scale fractures, which may dominate

the flow. In general, the DPM is an appropriate model for transport in highly and

uniformly fractured rock but is inadequate for fracture systems involving moderately

or sparsely fractured rock.

In contrast, DFN models represent fractures individually as shown in Figure 1-2.

These models can be used for the evaluation of transfer functions for dual-porosity
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Figure 1-1: Schematic diagram of a dual porosity model showing a typical represen-
tative elementary volume (REV) for the densely fractured system.

models, and can also be used in combination with the DPM[20]. DFN is an attractive

method because it can consider all levels of heterogeneity by explicitly handing each

fracture. In this approach, the small fractures are represented by their effective

properties, and the large-scale fractures are modeled explicitly. However, the method

requires knowledge of the properties and locations of the individual fractures, which is

impossible in practice with current subsurface imaging technology. To overcome this

crucial shortcoming, stochastic DFN models have been introduced[13]. In stochastic

DFN models, the network geometry is characterized by statistical descriptions of

fracture orientation, location, areal extent, and transmissivity. Given this statistical

description, multiple realizations of the network are generated, and flow equations

are solved to obtain flow characteristics. By repeating this procedure for a large

number of realizations, statistics are accumulated on the expected behavior of the

system. This approach is computationally intensive, and therefore most applications

have been limited to relatively small rock volumes.

Berkowitz and Scher [9, 10] approached the simulation of flow through a fracture

network by means of a continuous time random walk (CTRW) - a mathematical

description specifically designed to capture anomalous transport by considering all

levels of heterogeneity. They generated a number of network realizations using an

assumed probability density function of fracture length and fracture angle. Then they

solved flow on each network by assuming Darcy flow on each fracture and imposing



Physical Domain

Figure 1-2: A 2D example of a discrete fracture network model. A node is associated

with each control volume, and the figure shows that the DFN model can effectively

and accurately capture a fracture system with a few major fractures. Modified from

Karimi-Fard et al. (2004).

mass conservation at fracture intersections and obtained velocity distribution. The

fracture geometry and the velocity distribution are used to map the simulation results

onto a joint probability density of the particle jumping distance (corresponding to a

fracture length) and the particle transition time (the time spent to travel through a

fracture). The procedure to produce the joint probability density function is similar

to stochastic DFN, but CTRW uses the joint probability density function for the

flow simulation and it has analytical solution for the ensemble mean concentration.

Once the joint probability density is known, CTRW is computationally much more

effective than stochastic DFN models. This was the first work which successfully

applied CTRW framework to capture anomalous flow through fractured media. Their

phenomenological approach gave meaningful result and opened new possibility of

CTRW on flow through fractured media, but the fundamental theory behind the

applicability of CTRW framework onto the fracture network is still unexplained.

Therefore, we propose to develop a stochastic framework for anomalous transport

in fractured media which has a firm theoretical background and is computationally

efficient. We start with a simple lattice fracture system and show that the ensemble

concentration mean and the concentration variance between realizations can be de-

scribed within the CTRW framework. Recently, a Lagrangian framework was used to

upscale unidirectional transport of an adsorbed solute in a chemically heterogeneous

Grid Domain



medium [15]. In that work, it was shown that the transport through a porous medium

with constant hydraulic conductivity and spatially uncorrelated heterogeneous retar-

dation factor follows the CTRW framework. We will generalize the coarse graining

and ensemble averaging methodology to the simple 2D fracture network, and develop

the effective macroscopic equation from the local scale transport equation. We can

systematically prove that the transport statistics through the lattice network system

can be effectively captured by CTRW framework. In Chapter 2, we work on mean

concentration within Langrangian framework and develop an analytical model for the

mean concentration using coarse graining and ensemble averaging. In Chapter 3, we

derive governing equation for the concentration variance and show that the variance

can also be captured within the CTRW framework. In Chapter 4, we summarize the

results and give concluding remarks.



Chapter 2

Development of the Analytical

Model for the Mean Concentration

Here, we adopt a Lagrangian viewpoint to develop a macroscopic effective description

of transport in a lattice fracture network model. We show that the transport through

a lattice fracture network can be described, exactly, as a CTRW that is parameterized

by the local scale medium properties and transport characteristics. We will develop an

Eulerian formulation by performing a Kramers-Moyal expansion [29] of the Master

equation and derive effective equations for the ensemble mean transport. We also

work on the moments of the mean concentration and the sensitivity of the plume

shape with respect to the local scale medium properties to better understand the

transport behavior through the system.

2.1 Physical Setting

We consider a lattice fracture network model consisting of two sets of parallel, equidis-

tant, intersecting fractures: one set at an angle +a and the other at an angle -a

with respect to the x-axis, embedded in an impermeable matrix as shown in Fig-

ure 2-1. The network is then viewed as a regular lattice of nodes and links. In our

fracture model, we assume constant aperture for all links, and a spatially distributed

retardation coefficient R for each link. This implies that the flow velocity u through



each link of the network is constant, while the effective solute velocity v, which is

flow velocity divided by retardation factor v = i, is spatially variable. In the case of

mass transport accompanied by linear sorption, the retardation factor R is defined as

R = 1 + k, where k is a dimensionless sorption coefficient. The network is random in

the sense that the retardation coefficient at each link of the network is drawn from a

given statistical distribution. We can think of this procedure as generating a velocity

field using limited information. Numerous studies at various scales and in different

sites have shown that the distribution of many fracture properties often follows a

power law. In nature, the power laws have to be limited by the upper or lower limits

to the scale range over which they are valid [11]. Therefore, we assumed a one-sided

truncated power law distribution for k, PA = Nk-, exp(- ), where N is normal-

ization factor and # is a parameter defining the slope of the power law as shown in

Figure 2-1. We generate multiple fracture networks realizations using the same Pk for

each realization. The set of all realizations generated in this way form a statistical

ensemble that is stationary and ergodic. Our goal is to understand transport behavior

through this ensemble of network systems.

10

102

10

10+I1
10-

10,

10-10,
10-2 100 102 104

k

Figure 2-1: A lattice fracture network with the constant fracture length (1) and
two sets of fracture orientation {-a, +a} with respect to x-axis (left) and the one-
sided truncated power law distribution of a dimensionless sorption coefficient (k) with
# = 1.5 (right).
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2.2 Methodology

We develop an analytical model for the mean concentration as follows. We first

describe the transport through the lattice fracture network using a Lagrangian trans-

port framework. We then perform coarse graining to obtain coarse scale Langevin

equation, and perform ensemble averaging to numerically obtain the ensemble mean

concentration[15]. The concentration is defined as number of particles at each node

divided by the total number of particles and the area represented by the joint. The

concentration is equivalent to particle density distribution. For effective model de-

velopment, we show within the Lagrangian framework that the transport through

our network can be exactly described by CTRW framework. Lastly, we develop an

Eulerian formulation for the ensemble mean concentration by performing a Kramers-

Moyal expansion [29] of the Master equation and solve the equation analytically.

2.2.1 Lagrangian Transport Framework

We first develop a Lagrangian transport framework for transport through the lattice

fracture network. This implies solving the local scale equations of motion of particles

in a given disorder realization.

Solute transport through our lattice fracture system can be described in terms of

Lagrangian equations. Let x(t) = [X(t), y(t)]T be the solute particle position at time

t. Its evolution with time t is given by

dx(t) = v[x(t)] cos{9[x(t)]}, dy(t) v [x(t)] sin{O[x(t)]}, (2.1)
dt dt

where 0 E {-a,+a} is the fracture orientation and v is the particle velocity, which

varies from fracture to fracture. We rewrite this system of Langevin equations using

a time parameterization t(s):

di.s dy(s)(s)= cosd[x(s), = sin{O[x(s)]}, (2.2a)
ds ds



and

dt(s) _ 1
=s , (2.2b)ds v[x(s)]

where the random walk x(t) is parameterized in terms of a continuous variable s,

which has a meaning of operational time: the process s(t) is a continuum analog

of the number of steps n(t). Through the time parameterization, we can split the

time increment and the spatial increment, which enable us to perform coarse graining

with the length of the link. The coarse grained equation can be used to perform a

space-time asynchronous random walk, which implies that the spatial increment and

the time increment are obtained separately.

We develop a coarse-grained Lagrangian formulation of particle motion from Equa-

tion (2.2). The spatial transition length is chosen to be of the order of the fracture

length because each fracture has constant particle transport velocity. The time in-

crement is determined from the particle transport velocity and the spatial transition

length, which makes the time increment spatially variable.

The time evolution of a solute particle takes place on a lattice fracture system

with the constant fracture length I and the fracture orientations {-a, +a}. At each

joint, we assume that the particle can enter either of the two fractures with equal

probability. This is an appropriate assumption because our fracture network has a

constant fracture aperture. Thus, the fine scale Langevin equation (2.2) can be coarse

grained by setting As = 1, which yields the following discrete equations:

Xn+1 = Xin + 1 cos(a), Yn+I = yn + (al sin(a), (2.3a)

and

tn+l = tn + , (2.3b)

where xn is the position of a particle after n jumps, and (n E {-1, +1} represents an



equiprobability random process of choosing a fracture pn = }6(G + 1) + }6(Tn - 1),

assumed to be independent in time and space, where 6 is the Dirac delta function.

To obtain the concentration field of a given realization, we implement this coarse-

grained space-time asynchronous random walk, which is orders of magnitude faster

than the fine scale synchronous random walk. Transport must still be simulated for

many realizations to obtain the concentration statistics because each realization has

a different concentration field. We assume a point source at the origin, that is, all the

particles are released at x = 0, t = 0. The concentration is defined as the number of

particles at each node divided by the total number of particles and the area associated

with each joint. Within a realization, the transition time from node to node depends

on the position of the particle. The concentration field for a fixed realization using

Equation (2.3) is shown in Figure 2-2.

>%0.025

0.02

-00.015

- 0.01

0-0.005

0
0

20

0

y

Figure 2-2: Concentration field obtained from particle tracking simulation using Equa-
tion (2.3). In this simulation 10, 000 particles are injected at x = 0, t = 0 to obtained
the concentration field at the fixed target time t = 50.
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2.2.2 Semi-analytical Solution for a Concentration in One

Realization

We solved the transport problem by numerical random walk simulations using Equa-

tion (2.3), and obtained a concentration for a given realization. To get an accurate

concentration profile for a given realization, we have to inject a large number of parti-

cles, which is numerically inefficient. As we increase the number of particles injected,

the concentration will converge to the true concentration field. To check the conver-

gence behavior of the particle tracking simulation, we develop an algorithm which

calculates the true concentration field.

The key idea is computing all the possible paths for a particle to reach each

joint at the target time, and adding up the corresponding probabilities. For each

jump, a particle chooses going either up or down with equal probability j. For a

fixed realization, if a particle stays at a joint that needs n jumps to be reached, all

the particles taking the same path will stay at the joint at the target time. The

corresponding probability for the path which needs n number of jumps, converges to

(})' as we increase the number of particles injected. To get the full concentration

field, we have to consider all the possible paths and add up the probabilities as shown

in Figure 2-3.

To verify the algorithm, we compare the concentration field obtained from the

developed semi-analytical algorithm with particle tracking simulations. As we in-

crease the number of particles injected, the concentration field converges to the semi-

analytical solution which is obtained using the algorithm. By comparing concentra-

tion field cuts along y = 0, we have verified our algorithm as shown in Figure 2-4.

Therefore, we can now generate an accurate concentration field for a fixed realiza-

tion using the semi-analytical algorithm. This is not only numerically efficient but

also gives analytical solution. Especially, when we run Monte Carlo simulations, this

makes significant difference in numerical efficiency.



Figure 2-3: If the travel time of a particle following the red arrow (t1 + t2 + t3) is
greater than the target time t, all the particles that follow the red path will stay at
the second position (red particle with blue outer line), and the probability is (j)2
(left). To get a full concentration field, we have to consider all the possible paths as
shown in the figure (right).
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Figure 2-4: Concentration field cuts along y = 0 at t = 30 for a fixed realization.
With increasing number of particles injected, the concentration field converges to the
concentration field obtained from the semi-analytical algorithm. With 104 particles
injected, the concentration field is very close to the semi-analytical solution.



2.2.3 Stochastic Modeling and Ensemble Averaging

So far, we have developed an algorithm to obtain the concentration field for one real-

ization. However, the concentration fields for each realization are all different because

each realization has a different velocity field. We simulate transport through different

realizations to check the variability between concentration fields. As expected, the

result of the simulated concentration fields are highly variable from realization to real-

ization due to differences in the particle velocity field, as can be seen in Figure 2-5. As

explained in section 2.1, the velocity fields are generated from a pre-defined one side

truncated probability density function. We will follow a Monte Carlo approach, which

is simulating transport for a many number of realizations, to obtain representative

transport statistics.

We solve the transport problem by numerical random walk simulations using

Equation (2.3) for many realizations. We assume a point source at origin as an intial

condition. In other words, all the particles are released at x = 0, t = 0. By averaging

concentration fields over many realizations, we can obtain a mean concentration field

as shown in Figure 2-6. To generate accurate mean concentration field, we simulated

transport over 104 velocity fields, which is numerically very expensive. Our goal is to

develop an effective model for a mean concentration in a systematic way. We work

on the variability of concetration fields between realizations in Chapter 3.

2.2.4 Derivation of the Average Model

In this section, we develop an effective model for the mean concentration which we

call the average model. Our goal is to derive a Lagrangian system of equations for the

effective mean particle movements. In order to obtain the average particle motion, the

single particle density will be averaged over the noise which models diffusion and over

the configurational disorder [14, 15]. This will lead to an effective Lagrangian formu-

lation of mean particle movements, which maps the disorder statistics of the random

network into random increments in the particles' equations of motion. The developed

effective Langevin equations for the particle motion in space-time will represent the
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Figure 2-5: Concentration fields obtained by numerical random work simulations over
four different velocity fields at t = 50. Each velocity field is generated from the same
probability density distribution and the result shows the large variability between
concentration fields.
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Figure 2-6: Mean concentration field at t = 30 obtained by averaging over 10' con-

centration fields from Monte Carlo simulation. Each velocity field was generated
from the one side truncated probability density distribution, and each velocity field

is stationary and ergodic.

ensemble mean transport behavior.

The particle distribution c(x, t) in a single realization is given by

c(x, t) = (6 {x - x[s(t)]}) , (2.4)

where 6 denotes the Dirac delta distribution, and the angular brackets denote white-

noise average over many solute particles. The ensemble average of the particle distri-

bution over realizations (i.e., the ensemble mean concentration) is given by

c(x, t) = (6 {x - x[s(t)] }), (2.5)

where the overbar denotes the ensemble average over realizations. Using the property

of the delta function, we can rewrite Equation (2.5) as,

c(x, t) = J ds(6(x - x(s))6(s - s(t))), (2.6)



If we perform the ensemble averaging prior to the noise averaging,

c(x, t) =J ds 6(x - x(s))6(s - s(t)) (2.7)

By performing the ensemble averaging first, we can use the stationarity of the ve-

locity field. If we assume point injection as an initial condition, the probability of

a particle being at a certain position after a fixed number of jumps is same for all

realizations because the topology of the fracture network is fixed, and we assumed

equal probability of jumping upward and downward at each joint. Thus, when we

perform the configuration average, we only need to average over 6(s - s(t)), and we

can write Equation (2.7) as,

c(x, t) J ds(3(x - x(s))6(s - s(t))) (2.8)

By coarse-graining Equation (2.8) with the length of a link (1),

c(x, t) = (6(x -xN)N,N) (2.9)
N=O

Where XN is the position of a particle after N jumps, and Nt is the number of jumps

during time t. Note that 6 N,N, is the probability that after N steps the time t is

between tN and tN+1. Therefore, we can rewrite 6 N,N, using indicator function (I) as,

6 N,Nt = I(tN t < tN+1)

= I 0 t - tN< ~-
VN

J dt'3(t' - tN)l ( < t - t' < (2.10)
VN

Since tN and VN are independent from Equation (2.3),

6 N,Nt dt'6(t'- tN)I (0 < t - t' < -1)



Since the velocity fields are generated from a probability density function P(v) which

can be derived from a predefined one side truncated probability density function of

the retardation factor Pk, the velocity fields are statistically stationary. Therefore, we

can write I (0 < t - t' < as,

I 0<tt'<I) j dvP(v)I (0 t-t'<- (2.12)
VN 0

If we say @(T) is a probability density function of a particle jumping time, we can

derive @(T) from P(v) using the relationship T = and the fact that 1 is a constant
V

as following.
1

v =- dv =- -dT (2.13)
T r

@ = dvP(v)6(r' - -)
0 V

= - dTP( )6(T' - T)
~ T2  T

1 1
S P( ) (2.14)

T/
2  T'

Therefore, we can rewrite Equation (2.12) using 'O(T) as,

I 0 <t-t'< =f dr@(T)I(0<t - t'<rT)
N, 0

= j dr@(T) (2.15)
t-t'

From Equation (2.11) and Equation (2.15),

6N,N dt6(t - tN)j dTr4(T) (2.16)
0 t-t'

From Equation (2.9) and Equation (2.16), the ensemble concentration can be written



c(x, t) j 1 dt' E (6(X - XN) 6 (t' - tN)) j dTOb(T)

0 N=0 -

ft t-t'
= 10 dt'R(x, t') 1 - j dT (T) (2.17)

Where R(x, t') is defined as,

00

R(x, t') = (6 (x - XN) 6 (t' - tN))

N=0
00

= PN(X, t) (2.18)
N=O

Using Chapman-Kolmogorov equation, we express PN with a transition probability

and PN-1-

PN(X, t) = (6(X - XN)6(t - tN))

= dx' J dt' K6((x - x') - Ax)6((t - t') - At))) PN1(x', t'(2.19)

Now the only term with ensemble averaging is the time transition probability. Us-

ing the fact that a velocity at each fracture is independent of spatial position and

statistically ergodic after ensemble averaging,

6((- t') - At) =6 (t - t') -
V(xN-1)

= j00 dvP(v)6 (t - t')

0

=O dvP(v) t - 'V t t')

P (t - t' tt - t') (2.20)

Equation (2.20) implies that in configuration average, the time increment is indepen-

dent of spatial position and of the spatial increment as long as the underlying random



field is statistically stationary. From Equation (2.20), we can rewrite the transition

probability as,

K ((x - x') - Ax)6((t - t') + At)) (6((x - x') - Ax)) V@(t - t') (2.21)

Now let's work on the spatial transition probability. Using the fact that a particle

chooses going up or down with an equal probability and it always moves forward,

r/(x - x') (6 ((x - x') - Ax))

(6((x - x') - lcos~o)6((y - y') - lsino))

1
= 6(X - X' - Icos00) [6 (y - y' - lsin0o) + 6 (y - y' + lsin0o){2.22)

2

Therefore, we can rewrite the transition probability as following.

K6(x - (x' + Ax))w(t - (t' + At))) = 7(x - x')/(t - t') (2.23)

Equation (2.23) is our key result: after white noise averaging and ensemble averag-

ing, the spatial transition probability and time transition probability became inde-

pendent, and each term is determined by spatial transition and transition time. The

derived transition probability shows that our lattice fracture model with heteroge-

neous sorption can be represented exactly by uncorrelated Continuous Time Random

Walk (CTRW) model [24, 29]. Using the property of a stationary field, we showed

the spatial transition and transition time are independent after ensemble averaging

which implies that the mean concentration can be effectively captured by CTRW.

The equivalent CTRW model can be defined as following Langevin equations.

XN+1 = XN + lcoS(a)

YN+1 YN + kNsMi(a)

tN+1 tN + -~, (2.24)
VN

where p = 6(G + 1) + 6(G - 1) and VN is sampled independently from P(v).



By performing particle tracking simulation with the average model given in Equa-

tion (2.24), we can obtain the mean concentration. This is equivalent to solving

Equation (2.17). Our CTRW average model can be verfied by comparing with the

result in Section 2.2.3, where the mean concentration was obtained by Monte Carlo

simulation. The contour plot shows that the mean concentration obtained from the

CTRW model and the Monte Carlo simulation are identical as shown in Figure 2-7.

Computing efficiency increased significantly by using the CTRW model. To obtain

the mean concentration, we performed CTRW simulation for 5 x 104 particles, and for

the Monte Carlo simulation, we performed particle tracking simulation for 10' real-

izations with 104 particles for each realization, which means we injected 108 particles

in total.
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Figure 2-7: Comparison of the mean concentration obtained from Monte Carlo sim-
ulation over 104 realizations and uncorrelated CTRW Langevin equation. The two
contour plots are almost identical which verifies that our CTRW model effectively
captures the mean concentration.
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2.2.5 Eulerian Formulation

The effective Langevin equations for the mean concentration describe transport in

a particle level. Here, we derive dynamic Eulerian from of equations for the mean

concentration. Using the developed transition probability in Section 2.2.4, we develop

Eulerian formulation for the mean concentration.

PN(X, ) = (2.25)

Using Equation (2.25), we express R(x, t) with the transition probability as following.

PN(Xt) =
N=1

R(x, t) - Po(x, t) =

R(x, t) = Po(x, t) +

dx' dt'rj(x - x')#(t

dx' dt'77(x - x')((t

Equation (2.17) and Equation (2.26) gives closed form of the mean concentration as

following.

e(x, t) = dt' 1 -

R(x, t) = Po(x, t) +

t-t'

0/
jdx'

dT(T)1 R(x, t')

dt'r(x - x')@0(t - t')R(x', t')

Now let's derive an Eulerian form of the governing equation for the mean concen-

tration using Laplace transform and Taylor expansion. Laplace transform of Equa-

tion (2.17) can be written as,

L(e(x, t)) = c*(x, s) = L dt' f(r)dTR(x, t') = F*(s)R*(x, s)

I dx'
00

X - X)V)(t - t) PN- 1(X,/

N=1

(2.27)

dX' I t(X -- xW(t - t')PN-1 (X/, tf)

-t') R(x', t')

-t') R(x', t') (2.26)



In Equation (2.27) we substituted 171' V)(T)dT to F(t - t').

F*(s) = L {F(t)} = C dr@(T)} = L 1 - jd (T)}

1-

By inserting Equation (2.28) into Equation (2.27), R*(x, s) can be written as follow-

ing.

(2.29)R*(x, s) = se*(x, s)
1 - 7p*(S)

Now let's work on Equation (2.26). For the initial condition Po(x, t), we take a point

source at the origin which can be expressed as Po(x, t) = 6(x - 0)6(t - 0). Laplace

transform of Equation (2.26) using the initial condition can be written as following.

R*(x, s) = 6(x) + j dx'r(x - x') J dt'@(t - t')R(x', t')

= 6(x) + dx'rq(x - x')V*(s)R* (x', s)

= 6(x) + dx' (x')@*(s)R*(x - x', s)

Combing with Equation (2.29),

(2.30)

se*(x, s) = J(x) +
1 - V*(s)

Now let's further develop Equation (2.31).

sc*(x,s) + (S4 =*(x, 6 +
1 - @*(s) = (x)+

dx'T(x')lV)*(s) se*(x - x', s)
f 1 - O*(s)

d'TI ') sv*S) ( XS
1 - *(s)

From Equation (2.32),

dx's(x' )[*( x ((x)- x S)31 - 4*(s) [*x-xs

(2.28)

(2.31)

(2.32)

6*(x, s)] (2.33)se*(x, Is) = 6(x) +



Using Taylor expansion,

(x - x', s) *(x, s) - x'V *(x, s) + -Vx' 9 x'Ve*(x, s) + ---
2

Now let's insert Equation (2.34) into Equation (2.33)

[J dx'71(x')x' dx'x' 0 x'TI(x')]1- v*(X, s)1 - @*(s)

Now we define memory function(M*(s)) with a median transition time ti as,

$*(s)sti
M*(s) = ___

1 i a*(s)

and define i and x2 as,

x = j dx'q(x')x' dx'x' 9 x'(x')

The transition velocity is defined as v =-, and the dispersion tensor is defined as

D = 2. Then we can write Equation (2.35) as,2t1

se*(x, s) = 6(x - 0) - v - [Ve*(x, s)]M*(s) + D : [VVe*(x, s)]M*(s) (2.38)

Now apply inverse Lapace transform to Equation (2.38) and we obtain Eulerian form

of the governing equation for the mean concentration as following.

E(x, t) = -
I t
AJ(t - t') [v -Ve (x, t') - D :VVc(x, t')] dt' (2.39)

We can obtain the analytical solution of the mean concentration by solving Equa-

tion (2.38). To solve Equation (2.38), we need to first calculate 0(t), x and x2 . In

our lattice fracture model, we showed that 7$(t) can be derived from the particle

(2.34)

Vei*(x,

(2.35)
1 - 7*(s)

(2.36)

(2.37)

se*(x, IS) ~ o(x) -



velocity distribution. Now let's calculate k, x 2 for our lattice fracture model.

dx'q(x')x'

J dx1  dx2(X )x'
(lcos s,( 0) (2.40)

Now let's calculate for x2 .

x3= dx'x' @9 x',q(x') = x (2.41)

x 1x 1 = dx1  dx 2x2 6(x1 - lcosOO) 6(X2- lsin0o) + += (lcosOO) 2

(2.42)

If we repeat the above calculation,

(xix1 x1x2  ( (lcosOO) 2  0
X1X1TX2 )2(2.43)

x 2x 1 x 2x 2  0 (lsino)2 /

With I(x'), O(t), R and x 2, we can fully determine coefficients in Equation (2.38)

and can obtain analytical solution of the mean concentration using inverse Laplace.

We use numerical code for the inverse Laplace. We verify our analytical solution by

comparing with the mean concentration obtained from Monte Carlo simulation as

shown in Figure 2-8.

The two contour plots in Figure 2-8 is almost identical, but we can notice slight

difference in the plume front shape. This is caused by the second order approximation

used in Taylor expansion and the numerical noise introduced in Laplace inversion.

However, the difference is small and we can conclude that our effective equation

gives correct solution. The developed CTRW model accurately captured the plume

shape and, most importantly, the evolution are determined only by one parameter

(#) which is the slope of the power law region. As a result, this model is also highly

efficient for the parameter determination using inversion. In the real world, there is
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Figure 2-8: Comparison of the mean concentration from Monte Carlo simulation over
104 realizations and the analytical solution obtained by solving the Eulerian form of
CTRW equation.

limited information and the model which has only one parameter is very attractive.

However, this is only true when the velocity field is stationary and it follows power

law distribution.

2.3 Transport Behavior

We now have an effective model for the mean concentration. Using this model, we

can effectively study the transport behavior. Since the model has only one parameter

which is #, we first check the sensitivity of the mean concentration with respect to

#. Then we characterize the transport behavior with center of mass velocity and

spreading of the mean concentration.

... ...........
.......................



2.3.1 Sensitivity of Mean Concentration with respect to #

The effective macroscopic equation for mean concentration has essentially only one

parameter #, and we check how this # affects the plume shape. 1 + # is the slope

of the power law region of the retardation factor probability density function. As

shown in Figure 2-9, larger # has steeper slope in the power law region. Therefore,

there is less probability of sampling large retardation factors compared to the smaller

#. Inversely, small # indicates that there is relatively large probability of sampling

extreme retardation factors which will cause anomalous transport.

10 - $=0.5

10

10-2 10 =2.5

6U -4
-0 10

10--

10

10-2 10 0 10 2 104

k

Figure 2-9: One-sided truncated power law distributions with four different #s. Large
# indicates the range of sampling values is narrower compared to smaller # which has
wide range of sampling values.

The impact of 3 value on the overall plume shape can be seen in Figure 2-10. It

shows the mean concentration for four different # values at t = 50. The result shows

significantly different plume shapes. For # = .5, most of the particles stay near the

injection point. This is due to high probability of sampling large retardation factor.

As # increases, the plume moves faster and the center of mass of the plume moves

towards the front of the plume. For # = 2.5, there is very little particles that stuck

behind and most of particles travel with similar x-directional velocity. This is due
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to large slope of power law region which cause narrow range of sampled retardation

factor near small values.

2.3.2 Evolution of Spreading of the Mean Concentration

Now we characterize transport behavior with spreading of mean concetration. Fig-

ure 2-11 shows the evolution of spreading with respect to time, where spreading is

defined as j [m2)(t) - m(1)(t)m(1)(t) . m(l(t) is the longitudinal first spatial mo-

ment and ml, (t) is the longitudinal second spatial moment. The slope of the plot is

corresponding to longitudinal dispersion coefficient. We can observe that # = 1,1.5

has a similar trend and / = 0.5, 2.5 has a similar trend. This can explained by the

plume shape in Figure 2-10. For # = 1, 1.5, it has intermediate # value. This inter-

midiate value causes strong tail. The plume center moves relatively fast, but some of

the particles are left behind due to certain probability of sampling large retardation

factor. Because particles are spreaded a lot, they have larger spatial second moment.

For # = 0.5, 2.5, it has very small dispersion coefficient compared to /= 1, 1.5. For

# = 0.5, most of particles stay near the injection point and for / = 2.5, most of

particles moves with similar speed due to narrow sampling interval. Due to limited

spreading, they have small dispersion coefficient. Change in slope or the slope dif-

ferent from 1 indicates that the transport through the lattice network is anomalous.

For # = 2.5, the slope becomes 1, but for # = 1, 1.5, slope is not 1 which indicates

that the transport is anomalous. For /3 = 0.5, we also observe the slope converging

to 1 but this is by coincidence [16].
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Chapter 3

Development of the Analytical

Model for the Concentration

Variance

3.1 Variability of Concentration

Since the derived effective macroscopic equation gives the mean concentration, it is

important to understand the variability of the concentration between realizations. As

shown in Figure 2-5, the concentration field over each realization shows large vari-

ability. Figure 3-1 shows the probability density function of the concentration at

the maximum mean concentration point. It has 104 data from Monte Carlo simula-

tions. We can clearly see that it has large variance with highly skewed shape which

again emphasizes the importance of understanding the variability between realiza-

tions. The standard deviation plot in Figure 3-1 explains variance of concentration

at every node. It shows large variability near the injection point and the variabil-

ity decreases with particle travel distance. This is due to the point injection initial

condition and the power law velocity distribution. If particle transport velocity has

extreme values near the injection point, it greatly impacts the overall plume shape

since most of particle should travel through the fractures near the injection point. As



particles travel and sample enough velocity statistics, the variance decreases. Com-

bining the mean concentration and the variance of concentration, we can predict and

understand transport behavior through the lattice fracture system. However, to ob-

tain the information about the concentration variability, we had to run Monte Carlo

simulation over 104 realizations which is numerically very expensive. Our goal in this

chapter is to systematically and rigorously develop a concentration variance model

which is numerically efficient.
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Figure 3-1: Concentration distribution at the maximum mean concentration point
shows large variability between realizations. If we plot standard deviation at ev-
ery point, we can obtain the figure on the right which shows that the varibaility is
maximum near origin and decreases with travel distance.

3.2 Derivation of the Variance Model

Concentration variance can be written as following.

Var(c) = (c(x, t) - c(x, t)) 2

= c(x, t) 2 - c(x, t) (3.1)

y



Since we have a model for the mean concentration c(x, t), what we need to know is

the second moment of the concentration, c(x, t)2 . We follow similar steps in Chapter

2 to work on the second moment of the concentration.

c(x, t)2  = ( {x -x[S(t)])2

= ds ds'(6(x - x(s))6(s - s(t))) (6(x - x(s'))6(s' - s(t))) (3.2)

We should perform the ensemble averaging prior to the noise averaging in order to

utilize the stationarity of the velocity field. To perform ensemble averaging first, we

have to make two seperate noise average into one. To this purpose, our key idea here

is to think each term as two independent particles.

c(x, t)2  J ds ds' ((x - X(1)(s))s- S(1)(t))6(x - x(2)(S'))(SI _ S(2) (t))

= ds ds' (x - X) (s(S))6(S _ S(1)(t))6(s' - S(2)(t))

6(X - x l)3(x - x2) N, NfN2) (3.3)
N N'

In our lattice fracture model, if the two particles arrived at the same location, N and

N' are same. Otherwise, xM and x(2 cannot be at the same location. Now let's

further develop the time term using an indicator function (I).

N,N() N',N;2) - <t < ( t < +1

= I0 < t - t < t 1 -(t)I(0 < t - t(2 < t(+1) t(2)

= dt' dt"3(t' - t P)o(t" - t () X
JO J0NN

I (0 < t - t' < TN(X, (1))) 1(0 t - t" < TN(X, (2)))

Since tN and TN are independent, we can break the ensemble averaging as following.

SNN1) 6Nt2) =jdt' jdt"6(t' - t4U)6(t" - t (2) X (3.4)(N,N 't -N < ( (

I (0 <- t - P' < rN(X, 1()) (0 < t -t11 < TN(X, g())(3.5)



Now let's work on 1 (0 < t - t' < TN(X, (1))) I (0 < t - t" < TN(X, g(2))).

1) When two particles take the same path: (1) = ((2) -

I (0 < t - t' < rN(X, )) I (0 <t - t" < T-N(XI)

= j dT@(T)I (0 < t - t' < T) I (0 -t-t" < T)

= dT/(r) (3.6)
max(t-t',t-t")

Note that t' and t" are different because they are the arrival times of two independent

particles. When the two independent particles take the same link for the Nth jump

TN is same for the two particles.

2) When two particles take the different path: ((1) # ((2)

1 (0 t - t' < TN(X, ())) 1 (0 < t - t" < TN(X, (2)

=j dTi@(T)I (0 < t - t' < Ti) j dT27(T 2 )I (0 < t - t" < T2)
/o oo

= j dTi@(ri) j dT2V)(T 2 ) (3.7)

Now we insert Equation (3.6) and Equation (3.7) into Equation (3.5).

I t t x .6 NN 1(t)6 NN 2(t) ~dt' fdt6(t - tN)6(t" - tN dT 4(T)6&(1), (2) +
0 J0 max(t-t',t-t")
dt' dt"6(t' - t')6(t" - t2) dTi(Ti) dT2 r2 )Og,- 2 )

0 0 t - t' t-t"



Therefore, the equation for the second moment of the concentration can be written

c(xt)2 = Jtdt' J dt"K 6(x
N

- x )6(x - x jo(t' - t o)6(t" - t()

dT4'(T) (61,&(2) )

+ J dt' Jdt" : K6(X - N
0 fo N

x dTO(T) d7T (-T) ( 601),-(2)).
t-t

- 2)6t _ t(1))6(t"j _- ()

(3.8)

We now define the two-particle density after N steps as

PN(X, ti; y, t2) = K6(x - x .))6(y - X ( (ti - t -)(t2 -

Thus, we can now write the second moment of concentration as,

c(x, t) 2 = (a2 + a2 )I t0

+2a+a_ dt'

t

dt' dt"E(PN(X, ~O
J0 y

t oo

dt" E PN(X, t1; X, t") dT'o (T)
0 N t-' t t"

where a+ is the probability that a particle goes upwards and a_ that it goes down-

wards. We express the two particle density PN(X, ti; y, t2 ) with a transition probabil-

ity and PN-I(X, t 1 ; y, t 2), which is Chapman-Kolmogorov equation.

PN(X, t 1 ; y, t 2 )

t1

= dx' J dt'
0

t2

dy' J
0

dt'PN-l(x - x', ti - t; y - y', t2 - t'

X ((x' - ()6(y' - )[ti - TN(X - X', 1/)] [t' - TN (Y - Y,q72)]>

where the increments ( are defined by

(y = rl sin(a),

(3.9)

(3.10)

dTO (T)

dTb(T)

(3-11)

'omax(t-t',t-t")

)max(t-t',t-t")

(3.12)G2 = l cos(aZ),



The random variable T/ assumes the value 1 with probability a+ and the value -1

with the probability a_.

The two-particle transition length and time distribution is defined by

02(X', t'1; Y', t'2) =

(3.13)K(x' - N( )6(y' - - TN(X - X',-T1 o t2 TN(Y -y , T2

For x / y the time increments are independent and ensemble averaging and subse-

quent noise averaging gives

2 (x', t'1 ; y', t'2 ) = 1(x', t')@1(Y', t2)

where $1 (x, t) is the one particle transition probability given by

4 1(x,t) = 6[xi -I cos(a)] {a+6[X2 - 1sin(a)] + a_5[x2 +I lsin(a)]} .

(3.14)

(3.15)

We are interested in the case that x = y. Let us consider now the ensemble average

- TN (X - X', T/ [t2 - TN (Y - Y , 72) - (3.16)

If T/1 f T/2 (which implies ( # (2) the average can be broken because TN(X - X', T17)

and TN(y - y, T/2) are independent,

6t'1 -- TN(X - X', T11)] -t2 TN (y - y', 2 1 2 -

If T1= T2, which together with x = y implies also that x - x' = y - y', the transition

times are identical and we obtain

6[t' - TN - - X', /) - TN(y - y', 7/1 1 1 - t2).

(3-17)

(3*8



Thus we can write Equation (3.11) for x = y as

PN(X, ti, X, , t2) =

ti

dx' J dt'
0

02

Idy'f dt'FN-1(x -- x', ti -- t I X - y , t2 - t2)
0

X #2(X', t' y' t'2) (3.19)

where the two-particle transition length and time distribution density is now defined

by

I~x' - (1)6(y' - 1(1, ) V 6(t')f(t' - t')

+ K(6x' - ( )6(y (3.20)

Using Equation (3.12) we can evaluate the average to obtain

'02 (x', t'; y', t'2) = g(x', t')6(x' - y')(t' - t'2) + Ou (x', t'i; t2) (X1' - y'1)6(x2 + y')

(3.21)

with

'g(x', t') 6 [x' - 1 cos(0o)] {a2 6[X - 1 sin(Oo)] + a 2[x's + I sin(0o)] } $P(t')

(3.22)

4(x', t'; t') - 1 cos(Oo)]a+a- f 6[x' - 1 sin(Oo)] + 6[x' + 1 sin(Oo)]}

(3.23)x E o(31)( nt2).

Inserting Equation (3.21) into Equation (3.19), we obtain

PN(XtiX,,t2) -

t1

dx'

0
ti

+ I dx' J dt'
0

(3.24)

- 771,)77, @(t1)@(4').

dt'PN-1(X - x', ti - ti; x - x', ti - t' ) XI , tl)

dt'PN-1(X - x', ti - t'; x, - X1, 2 + X2, t2 - t2 1( , i 2-



Equation (3.21) is our key result. It says that the second moment of concentration

can be obtained by two-particle CTRW. This is equivalent to injecting a particle

pair into many realizations. The two particles trasport through the lattice network

independently, as long as they transport through different links. However, if the two

particle happen to travel through same link, they should have identical transition time

since we should think as the two particles are transporting through one realizaiton.

If the two particles happen to arrive at same node at target time, we record it as

success and if the two particle arrive at different positions, we record it as failure.

The total number of injected particle pairs are used as normalization factor. The

Langevin form of two-particle CTRW equation can be written as following.

(N+1) (N) (N+1) (N) ( r 0 N+1) _ (N) (N)xi =x 1  + IlCos (Oo), x2  =x 2  + 711sin(9o), ti t Tr(x2,071)

(3.25)

(N+1) = (N) + l cos(00), y (N+1) =N) +N+1) _N) + N), r/2)

(3.26)

We verify our two-particle CTRW model by comparing with the second moment

obtained from Monte Carlo simulation. For two-particle CTRW simulation, we sim-

ulated until we obtain 105 success particle pairs. Figure 3-2 shows that the result

obtained from Monte Carlo simulation and from two-particle CTRW simulation have

similar shape. We can check that two-particle CTRW successfully captures the two

peak shape. To compare the result more quantitatively, we plot the cut along x-axis.

As we increase the number of success pairs, the cut converges to the result from

Monte-Carlo simulation. Even with 1, 000 success pairs, we can capture the two peak

behavior. Our two-particle CTRW model is numerically much more efficient than

Monte-Carlo simulation.
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3.3 Time Evolution of the Variability

Our variance model provides variability between realizations at fixed time. Another

important information is time evolution of the variability. If variability decreases with

transport time, it indicates that predictability increases with time. Figure 3-4 shows

the time evolution of variability. If we plot time evolution of standard deviation of

particle density at maximum particle density position, we observe power law decrease

of variability. This indicates that the predictability is increasing with time. As

particles travel through the lattice network, each particle sample transition time from

each link. For large time, particles travel through many number of links and sample

sufficient number of transition times. This explains why the variability decrease with

time. At early time, each particles has large difference in sampled transition times,

but the variability decrease as they sample enough transition times at large time.
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Figure 3-4: Time evolution of standard deviation of particle density at maximum
particle density position



Chapter 4

Conclusions

We have developed an analytical model for the concentration mean and variance of

particle transport in a lattice fracture network. The concentration mean was exactly

and effectively captured by uncorrelated CTRW and the concentration variance by

uncorrelated two particle CTRW. We verified our results by comparing the derived

mean and variance behavior with direct numerical simulations of particle transport

in single medium realizations and the corresponding ensemble average.

The significance of this work is that the macroscopic effective transport behavior

has been derived directly from the local scale fracture description. It turns out that

such macroscopic description takes the form of an uncorrelated CTRW. The descrip-

tion relies solely on the particle jumping time distribution, which depends -in our

model- on a single parameter p. However, it is important to note that the CTRW

model provides a description of the ensemble mean concentration, which is not an

exact mean concentration for a specific realization. Therefore, information about

variance between realizations is important for understanding predictability. Ensem-

ble mean together with variance provides the essential information for quantification

of effective transport in fractured media.

Most physical systems require correlated velocity field. In future work, we will

try to generalize our model to incorporate correlated velocity fields. Based on some

earlier work [12], we conjecture that the effective transport model may take the form

of a correlated CTRW if the Lagrangian velocity is a spatial Markov process.
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