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Abstract

This thesis compares alternative and proposes new candidate algorithms for the on-
line calibration of Dynamic Traffic Assignment (DTA).

The thesis presents two formulations to on-line calibration: 1) The classical state-
space formulation and 2) The direct optimization formulation. Extended Kalman
Filter (EKF) is presented and validated under the state-space formulation. Pattern
Search (PS), Conjugate Gradient Method (CG) and Gradient Descent (GD) are pre-
sented and validated under the direct optimization formulation. The feasibility of the
approach is demonstrated by showing superior accuracy performance over alternative
DTA model with limited calibration capabilities.

Although numerically promising, the computational complexity of these base-line
algorithms remain high and their application to large networks is still questionable.
To address the issue of scalability, this thesis proposes novel extensions of the afore-
mentioned GD and EKF algorithms. On the side of algorithmic advancement, the
Partitioned Simultaneous Perturbation (PSP) method is proposed to overcome the
computational burden associated with the Jacobian approximation within GD and
EKF algorithms. PSP-GD and PSP-EKF prove to be capable of producing predic-
tion results that are comparable to that of the GD and EKF, despite achieving speed
performance that are orders of magnitude faster. On the side of algorithmic imple-
mentation, the computational burden of EKF and GD are distributed onto multiple
processors. The feasibility and effectiveness of the Para-GD and Para-EKF algorithms
are demonstrated and it is concluded that that distributed computing significantly
increases the overall calibration speed.

Thesis Supervisor: Moshe E. Ben-Akiva
Title: Edmund K. Turner Professor of Civil and Environmental Engineering
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1.1 Thesis Motivation and Problem Statement

Traffic congestion is an important topic in today's society. Not only does it impact the

environment, road safety and urban development, it significantly affects the economy.

[FHWA, 2001] reported that approximately 30% of daily trips in major US cities

occurred within a congested environment in 1997. The economic impact totals $72

billion, which is approximately a 300% increase over 1982. In 2005, travel on U.S.

highways amounted to nearly three trillion miles, which is 27.4 billion miles more

than in 2004 and almost 25% more than in 1995 [FHWA, 2005].

While travel demand expands steadily, road network capacity has remained largely

unchanged. Between 1980 and 1999, the total length of highways was only increased

by 1.5 percent. The total vehicle-miles travel during the same period increased by 76

percent [FHWA, 2007]. Although the building of new road infrastructure and service

networks proves to be an effective way of mitigating congestion, the cost is too high.

To that end, much of the present research in transportation science has focused on

the better management of existing road capacities.

Intelligent Transportation Systems (ITS) through surveillance systems, commu-

nications, and computing technologies, have the potential of facilitating effective

management of transportation systems. Centralized among the many research di-

rections under ITS is the development of high-fidelity Dynamic Traffic Assignment

(DTA) models [Ben-Akiva et al., 1991][Ben-Akiva. et al., 2002]. These simulation-

based DTA models are capable of replicating traffic network conditions and provid-

ing accurate forecasts as well as travel guidance. They benefit travelers through the

avoidance of traffic congestion and the better planning of travel routes and departure

time.

One of the key enabling factors for the deployment of such DTA system is the

availability of an array of sensors that provides timely, accurate and reliable traffic

information. Recent advancements of sensor technologies and their applications in

surveillance systems have not only pioneered new methods of collecting and commu-

nicating network information, but also revolutionized the way traffic information is



utilized within modern DTA systems for enhanced accuracy and effectiveness. With

advancements in technologies, information collected from network sensors can now

be gathered in a timely manner for the calibration of DTA systems at their opera-

tional time, resulting in significantly improved modeling accuracy and reliability. This

process of using available sensory information to adjust DTA models in real-time is

known as DTA model on-line calibration.

The topic of DTA on-line calibration using real-time surveillance information has

been widely discussed in literature. While accuracy and robustness are important as-

pects of DTA on-line calibration, the issue of scalability has received limited attention.

For very large networks, the running time of these algorithms is a key determining

factor for the successful deployment of these systems. This is because the on-line

calibration of DTA systems has much more stringent operational constraints - the

calibration procedure has to be completed within limited time intervals. As such,

solution approaches that are not scalable for large networks tend to carry little value.

While searching for fast candidate algorithms that are applicable for large networks

is a top priority, accuracy and robustness cannot be neglected. However, in most

cases, as speed improves, accuracy and performance deteriorate. The key is to strike

a balance amongst the different objectives, developing accurate, robust and efficient

candidate algorithms for the on-line calibration of DTA models.

This thesis explores algorithmic and implementation aspects of the established

DTA on-line calibration framework from [Antoniou, 20041. The algorithmic aspect

of the on-line calibration entails the exploration of advancements in candidate al-

gorithms - all else being equal, how one algorithm outperforms another in terms of

accuracy and speed. The answer is not always clear-cut if only one or two methods

are addressed. Often an examination of a spectrum of candidates is needed. Apart

from algorithmic advancement, this thesis will also address efficient algorithm imple-

mentations. Good algorithmic implementations are just as important as the necessity

for algorithmic accuracy and effectiveness. For example, a sequential algorithm may

have its parallel equivalent implemented, should hardware resources permit. Although

identical algorithms are operated, the parallel version of the algorithm may poten-



tially provide faster solutions. The two aspects are essentially complementary with

each other, and when combined, have the potential to improve the performance of

the existing DTA on-line calibration framework.

Before presenting the formulation, two important functional blocks within the

DTA on-line calibration framework are first introduced. They are 1) Sensory Data

and 2) DTA System.

1.2 Sensory Technology State-Of-The-Art

The important role of sensor technologies in on-line DTA calibration cannot be over-

stated. Given the objective of developing fast and effective approaches of on-line

calibration algorithms, an abstraction of traffic sensor network that is based on their

spatial characteristics and the attributes of the traffic data collected is necessary. In

this section, a comprehensive overview of sensor technologies for traffic engineering is

provided.

There are currently several technologies for traffic data collection. Each of these

technologies has different technical characteristics and principles of operation, includ-

ing types of data collected, accuracy of measurements, levels of maturity, feasibil-

ity and cost, and network coverage. [Antoniou et al., 2008] categorized sensor types

based on functionality as point, point-to-point, and area wide:

Point sensors: This is the most basic type and the most widely used type of sensor

used in traffic engineering. Examples of point sensors are inductive loop detectors and

loop detector arrays [Oh et al., 2002]. With recent sensor technology advancements,

new point sensors such as radar [Nooralahiyan et al., 1998], infrared and point video

sensors [Pack et al., 2003] are being developed and deployed.

Point-to-point sensors: Point-to-point sensors can recognize vehicles at multi-

ple points in a network. Some point-to-point sensors provide complete traversal

of the travel path while others recognize vehicles at lesser locations. This type

of sensor usually provides point-to-point travel time, count, aiding in route choice

analysis and OD estimations. Typical sensors in this category are: Automated



Vehicle Identification (AVI) systems [Antoniou et al., 2004], Global Positioning Sys-

tem (GPS) [Quiroga et al., 2002], Cell-Phone tracking [Laborczi et al., 2002], License

Plate recognition using Dedicated Short Range Communication (DSRC).

Area-wide technologies: These advanced technologies are still under heavy re-

search. One example of area-wide traffic sensor is the unmanned helicopter. This

helicopter is autonomous and is able to fly from its base to the investigated area.

The helicopter can transmit back traffic information in the format of photogrammet-

ric, video, sound recording, hazard detection etc. to the Traffic Management Center

(TMC) [Srinivasan et al., 2004].

Table 1.1 classifies the various traffic data collection technologies by their spatial

and vehicle coverage. Based on their coverage of the network, data collection systems

can be organized by whether they can track vehicles throughout the entire network

(e.g. GPS systems or cell phone tracking systems) or whether they are limited in

identifying vehicles in particular locations of the network (e.g. tag identification

sensors, or license plate recognition systems).

Spatial coverage
Area-wide Short-Range

Coverage All vehi- Airborne sensors Loop detectors
cles Radar/infrared/acoustic sen-

sors
CCTV (incl. license plate
recognition)

Equipped GPS-based Cell Transponder detection
vehicles phone tracking

Table 1.1: Classification of indicative traffic data collection technologies by scope.
Source: [Antoniou et al., 2008]

Table 1.2 summarizes the data collection capabilities of each sensor technology.

A crucial conclusion, based on these two tables, is that no data collection technol-

ogy is clearly superior, instead, their functionalities, in terms of data collected are

complementary.



Data collection technologies
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Table 1.2: Main types of data collected by each sensor type. * Data limited by

network design. (1) This technology could be used to collect practically any type
of information collected by the vehicle (including speed profiles, origin, destination,
and path). In this table, only the information that can be collected by "dumb"
transponders, that simply report a unique vehicle signature, is reported. (2) Possible
if a dense network of detectors was available. Source: [Antoniou et al., 2008



1.3 Dynamic Traffic Assignment Framework

Dynamic Traffic Assignment (DTA) [Ben-Akiva. et al., 2002] systems combine so-

phisticated driver behavior modeling and traffic network simulation into a unified

model. The system comes in two versions: 1) an off-line version of the system is used

to evaluate various traffic management strategies such as lane management, incident

management, capacity management as well as evacuation and rescue plans; 2) an

on-line version of the system is usually used as a short-horizon prediction tool. The

applications of the on-line DTA system include but are not limited to: real-time in-

cident management, traffic control, emergency vehicle routing and traffic congestion

forecasts etc.

For the purposes of this thesis, the real-time DTA system is of particular interest.

The general structure of the model is given in figure 1-1.

Surveillance A-priori Network representation
information prameter Historical data

I Ivalues

Demand Supply
simulator simulator

State estimation

Demand Supply
simulator simulator

State prediction

Network
performance

Figure 1-1: The overall structure of the real-time Dynamic Traffic Assignment sys-
tem. It performs state estimation and state prediction. This involves a number of
interactions of demand and supply simulation. Source [Antoniou, 2004]

The inputs of the system are sensory data from surveillance systems, a priori val-



ues of the unknown parameters in the DTA model, as well as historical data, such

as time dependent OD flow matrices and the network representation. At the core of

the system is an iterative process of state estimation and prediction. The purpose of

state estimation is to ensure that the internal model's state is consistent with reality.

Once state estimation is complete, state prediction is performed. Within state pre-

diction, future network conditions are anticipated through Monte-Carlo simulations

of drivers' behavior and traffic network. The outputs of the overall system are con-

sistent forecasts of network conditions, including link density, flow, speed, as well as

travelers' characteristics including their travel time, route choice and departure time.

The anticipated information is used to generate guidance and will be incorporated

into the next round of calculations [Bottom, 20001.

As can be seen, the most important component of the DTA system is the state

estimation and prediction module. This module has two sub-components: 1) Demand

simulation and 2) Supply simulation. A detailed description of the interactions of the

demand and supply simulator can be found in [Ben-Akiva. et al., 20021.

The traditional approach to demand simulation is to perform real-time Origin-

Destination demand estimation and prediction [Ashok and Ben-Akiva, 1993]. OD

estimation combines historical and real-time information to obtain the best time-

dependent OD matrices. OD prediction uses the current estimation of demand pat-

terns and calculates short-term evolution of future demands [Antoniou, 1997].

The supply model is usually a meso-scopic traffic simulator. The choice of meso-

scopic simulator is based on the trade-off between simulation detail and model running

speed. Meso-scopic simulators allow relatively high resolution of network traffic mod-

eling at low cost of computational burden. They consist of the following six major

components. 1) Network representation; which represents both static (nodes, links

etc.) and dynamic (free flow speed, max and min densities etc.) entities on the net-

work. 2) Link output and acceptance capacity model; which simulates movement of

vehicles on the boundary between two connecting links/roads. 3) Spill-back model;

which models vehicle dynamics during congestion as well as the build up of queues.

4) Speed/density model; which models aggregated vehicle forward speed using road



segment's density information 5) Vehicle movement model; which considers the for-

ward movement of vehicles on a link as well as their lateral selections of lanes. 6)

Deterministic Queuing model; which models builds up and dissemination of queues,

as well as vehicles' delay at intersections.

Figure 1.3 on the next page is a detailed schema of the demand and supply inter-

action and information dissemination for DynaMIT, a state-of-the-art DTA system.
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1.4 Literature Review

The calibration problem in the domain of DTAs has been widely discussed in the

literature of computational transportation science. From the operational point of

view, existing literatures on DTA calibration can be grouped into two categories:

off-line operation and on-line operation.

This section presents an overview of the calibration methodologies applied to the

DTA framework. The first section presents the literature related to DTA off-line cal-

ibration with sensory information. The second section focuses on the methodologies

for the on-line calibration approaches.

1.4.1 Calibration for off-line applications

[Balakrishna, 2002 studies the problem of off-line calibration using DTA models. In

the study, multiple types of sensory data are used to calibrate the DTA model to

produce accurate OD estimation and prediction. The objective is to minimize the

simulated and observed quantities from the sensor data:

ming3_,,PIIMsi"' - Mobs I1)

where 3 represents the behavior choice parameters, y represents the supply simu-

lation parameters and X, are the OD flows departing from time interval p. Mob' are

the sensor observations and M8'm are their corresponding simulated counter-parts.

The objective function minimizes the discrepancy between simulated and observed

sensory information from various types of sensors. These sensor types include: traffic

flows, link speed and densities.

Xh = argmirnI Ni (Xh, x N2 (y " , Yh) (

The OD estimation is conducted using equation 1.2. Function N1 measures the

discrepancy, in Euclidean distance, between the estimated Xh and their a priori values

xa. N2 measures the discrepancy between the observed vehicle count from loop detec-



tor sensors yA and their simulated counterpart yhm. The calculation of this quantity

is:

h
-m =p (1.3)

p=h-p'

where p' is the degree of autoregressive process and ap is an assignment matrix

that maps OD flows at time interval h to links on the physical network. A rigorous

treatment of assignment matrix can be found in [Ashok and Ben-Akiva, 1993].

The approach is later extended to calibrate both the OD flows as well as travelers'

driving behavior parameters [Balakrishna, 2002]. In the study, sensor data are fused

within a DTA model to calibrate time dependent OD flow matrices, the variance-

covariance error matrix for measurement error, autoregressive parameters as well

as driving behavior parameters. An iterative approach that jointly calibrates these

parameters is proposed.

[Toledo et al., 2003] conducted off-line calibrations of OD flows and travel behav-

ior parameters using microscopic simulations. In the study, aggregated sensor sources

are used as inputs. GLS-based OD estimation is conducted to produce explicit con-

straints, and bi-level heuristic solution algorithms are used to conduct the overall

estimation of OD and behavior parameters.

[van der Zijpp, 1987] combined volume counts with trajectory information ob-

tained from automated license-plate surveys for the estimation of OD flows. A mea-

surement equation for the trajectory counts is specified and split probabilities are

estimated from combined link volume counts and trajectory counts.

[Balakrishna, 2006] proposed an innovative framework that jointly calibrates both

demand simulation (OD flows, behavior parameters) and supply simulation (speed-

density relationship, link capacities etc.) DynaMIT, a state-of-the-art DTA system is

used to jointly calibrate these parameters in a case study. The study shows promis-

ing results in the estimating of unknown parameters from both demand and supply

simulation components.

In contrast to equation 1.2 , the formulation jointly minimizes, with different



weights, three components:

argmin,3 Ni(M, M) + N 2 (X, Xa) + N 3 (, 3a) (1.4)

Where M is the observed sensor observation vector, M is their simulated counter-

part from DynaMIT with M = f(x, 3). x are the estimated OD flows and Xa is

their a priori values. 13 is the vector of DTA model parameters including behaviors

and supply parameters and #a is the corresponding vector of their a priori values.

N1, N2, NA3 are distance functions with adjustable weights.

The Simultaneous Perturbation and Stochastic Approximation (SPSA) [Spall, 1992]

[Spall, 1994b] [Spall, 1994a] [Spall, 1998b] [Spall, 1998a] [Spall, 1999] method is found

to be the most promising algorithm.

[Vaze et al., 2009] applied the SPSA method to address the off-line DTA cali-

bration problem. In their study, sensor data involving vehicle count and Advanced

Vehicle Identification (AVI) information are fused within the DTA framework. The

formulation is similar to that of [Balakrishna, 2006]. DynaMIT is used as their can-

didate simulation software. The study found that calibration using AVI significantly

increased the accuracy of the network traffic prediction.

1.4.2 Calibration for on-line applications

[Ashok and Ben-Akiva, 1993] [Ashok and Ben-Akiva, 2000] formulated the real-time

OD estimation and prediction problem as a state-space model and solved it using a

Kalman Filtering algorithm. The authors' use of deviations of OD flows from their his-

torical values provides an elegant framework for incorporating structural OD informa-

tion (generated during off-line calibration) into the on-line process [Antoniou, 1997].

[Ben-Akiva. et al., 2002] implemented this approach in the DynaMIT DTA system.

[Bierlaire and Crittin, 2004] outlined an efficient solution algorithm for the OD

estimation problem. The method used is a generalization of the secant method, which

uses several past iterations to produce linear approximation of the original non-linear

form. The method is very efficient in that it is matrix free and derivative free.



[Antoniou et al., 2004] presented a methodology for the incorporation of AVI infor-

mation into the OD estimation and prediction framework, which was later extended

by [Antoniou et al., 2006] to allow for the consideration of any types of available

surveillance data.

[Zhou and Mahamassani, 2006] developed a non-linear ordinary least-squares cal-

ibration model to combine and fuse AVI counts, link counts and historical demand

information and solved this as an optimization problem.

[Antoniou, 2004] developed an approach that formulates the on-line calibration

problem as a state-space model, comprised of transition and measurement equations.

A priori values provide direct measurements of the unknown parameters (such as

origin-destination flows, segment capacities and traffic dynamics model parameters),

while surveillance information (for example, link counts, speeds and densities) is

incorporated through indirect measurement equations. The state vector is defined

in terms of deviations from the calibration parameters and inputs from available

estimates.

[Antoniou et al., 2005] formulated the problem of on-line calibration of the speed-

density relationship as a flexible state-space model and presented applicable solution

approaches. Three of the solution approaches [Extended Kalman Filter (EKF), Iter-

ated EKF, and Unscented Kalman Filter (UKF)] are implemented and applications

of the methodology, using freeway sensor data from two networks in Europe and the

U.S., are presented. The EKF provides the most straightforward solution to this

problem, and achieves considerable improvements in estimation and prediction accu-

racy. The benefits obtained from the more computationally expensive Iterated EKF

algorithm were shown. Applicable solution algorithms are presented and compared

in [Antoniou et al., 2007a].

The most computational burdensome part of the EKF method is the calculation

of Jacobian Matrix at each simulation interval. [Antoniou, 2004] further tested the

Limiting Kalman Filtering algorithm in the context of on-line model calibration and

sensor data fusion. The algorithm is able to achieve comparable performance as that

of the EKF during relatively stable network conditions. The idea is to compute an



array of Kalman Gain matrix off-line, and select the most appropriate one. This

approach saves a significant amount of computational time.

[Wang and Papageorgiou, 2005] presented a general approach to the real-time es-

timation of the complete traffic condition in freeway stretches. They used a stochastic

macroscopic traffic flow model together a state-space formulation, which they solved

using an Extended Kalman Filter. The formulation allows for the dynamic tracking of

time-varying model parameters by including them as state variables to be estimated.

Random walk is used as transition equations for the model parameters. A detailed

case study of this methodology is presented in [Wang et al., 2007]. The approach is

further validated in [Wang et al., 2008], where the joint estimation of supply parame-

ters and traffic flow variables is shown to lead to significant advantages: 1) Avoidance

of prior model calibration, 2) adaptation of traffic conditions and 3) enabling of inci-

dent alarms.

1.5 Thesis Contributions

This thesis makes several concrete contributions to the state-of-the-art, specifically,

1. The feasibility and effectiveness of the on-line calibration framework in a real-

world application using both state-space and direct optimization formulations

are demonstrated.

" The framework is tested and successfully verified on a medium network

with state variables exceeding 600. Previous on-line calibration studies

used state size around 100.

" Multiple sensory technologies are used in the tests, including Via-Verde

and automatic Toll Gate Counter technologies. This demonstrates the

flexibility of the framework that it does not impose any constraints on the

types of sensors that it can handle.

2. A scalable framework design with a single processor: the PSP-EKF and PSP-

GD algorithms are presented. The algorithms achieve high degree of accuracy



while maintaining low computational complexity.

3. A scalable framework design with multiple processors: Complete C++ imple-

mentation of the distributed version of the EKF (Para-EKF) and GD (Para-GD)

algorithms within DynaMIT-R. A detailed computational performance analysis

is presented along with the Brisa case study.

1.6 Thesis Outline

In the next chapter, we outline the formulations of the on-line calibration problem.

The third chapter presents the algorithm selection criteria and illustrates four can-

didate algorithms - PS, CG, EKF and GD. Their characteristics and suitability for

real-time DTA calibration are also discussed. Chapter four presents practical con-

siderations aimed at framework scalability. Efficient variants of the EKF and GD

algorithms are presented. In addition, distributed computing techniques are used

in implementing the Para-EKF and Para-GD algorithms. Chapter five is a real-

world case study that demonstrates the feasibility of the framework. The base-line

algorithms and their scalable extensions are compared and analyzed for accuracy,

robustness as well as efficiency. Chapter six concludes this thesis and presents brief

future perspectives.
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2.1 Overview of Framework

We start by presenting an overview of the general concepts of the on-line calibration

framework. The goal is to gather some insights on the intuitions of the methodologies

behind the framework. The concept of direct and in-direct measurement is introduced

and the inputs and outputs of the on-line calibration framework are summarized.

2.1.1 In-direct Measurement

Sensory information is an important ingredient of the on-line calibration framework

- they inform the model about the observed network conditions. The information

provided could include link speed, link density, OD travel time etc. Without loss of

generality, the sensory data could come from off-line sources as well as on-line sources.

In addition, they need not be from the same types of sensors.

On the other hand, simulation-based DTA models are designed to vividly repro-

duce network traffic conditions with high-fidelity. These DTA models are capable

of producing their simulated sensory value, such as simulated loop detector counts,

simulated link travel time, simulated segment speed, etc. Let Mh" be the sensory

observation and Mfhm be the simulated sensory value, the in-direct measurement

equation is:

Mos = Msi"' + eos(.1hb h h (2.1)

The DTA models often comprise of a large number of parameters and inputs for

adjustment. Depending on the values of these inputs and parameters, they produce

predicted network conditions that vary in accuracy. Calibration is used to describe

the process of adjusting the model's parameters so that it best reflects reality. In

other words, the sensor data described above are used to correct simulated sensory

values computed by the DTA simulators. The corrections take place when there are

inconsistencies between the observed sensor values and their simulated counter-parts.

Examples of such observed inconsistencies are:



. observed sensor link speed and simulated link speed

* observed sensor point to point travel time and simulated point-to-point travel

time

* observed sensor vehicle counts and simulated vehicle counts at specific locations

in a network

Such inconsistencies are resulted from a number of errors in the model. Two of

the most common types of errors are: 1) Errors between the true model parameters

and the existing model parameters, such as true link free flow speeds and the model's

existing link free flow speeds. 2) Errors between true model input value and the

actual value used, such as the true OD demand level and the actual demand level

applied to the model.

In minimizing these errors, we are effectively adjusting the model parameters and

OD demand levels so that the simulated sensory information of DTA models can be

more consistent with observed real sensory data. Specifically, for each time interval

h at operational time, we have:

minrhMhm - Mob"|| (2.2)

where 7r represents model parameters and the OD flows being calibrated. Mho"b

are the sensor observations and Mhm are their corresponding simulated counter-part.

The objective function minimizes the discrepancy between simulated and observed

sensory information from various types of sensors. These sensor types include: traffic

flows, link speed and densities.

To construct the correction procedure, DTA models first need to be modified

such that each sensor source has its simulated counter-part. This is done by first

examining the sensors that are already deployed within a network, and then adding

implementations of virtual sensors that are functionally identical to the deployed

sensors. For example, if there is a sensor on a network that reports point vehicle

counts, a virtual sensor at the corresponding location in the DTA model that reports



point vehicle counts, should be implemented.

2.1.2 Direct Measurement

In addition to in-direct measurement equations that bridge model parameters with

observed sensory values, one can easily construct the so-called direct measurement

equations, which describe references of the model parameters themselves. For exam-

ple, let lr be the model parameters and OD flows at time interval h, all the following

may serve as its direct measurement, which we denote as rg [Ashok, 1996],

7ra = ir" H(2.3)

= frh-1 (2.4)

h-1

= S Feit (2.5)
p=h-q

h-1

=7th+ F (r 7r (26)
p=h-q

The first and second forms of the a priori are the simplest. They represent the

historical and the estimated values from the last time interval, respectively. The third

form implies that the model parameters follow an autoregressive process of order q.

With M model parameters, FhP is an M by M matrix of effects of irp on 7rh. The fourth

form models the temporal relationship among the deviations in the model parameters

by an autoregressive process of order q. The matrix F/ is an M by M matrix of effects

of 7r, -7r, on 7rh - 7rh. It captures correlation over time among deviations which arise

from unobserved factors that are correlated over time. Examples of these factors may

include weather conditions, special events, construction or incidents.

2.1.3 System Inputs and Outputs

To summarize, the DTA online calibration framework requires several input compo-

nents. First it needs sensory data. This includes data from different sensors that are

located at different network locations. Second, the framework needs a high-fidelity
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Figure 2-1: The view of the real-time calibration framework from the input/output
perspective. Source: [Antoniou, 2004]

DTA model. The model needs to have the corresponding physical sensors imple-

mented and be able to generate simulated sensor data. Third, the framework requires

a set of a priori parameter values and a priori OD-flow matrices. Finally, the frame-

work requires all other necessary information that is needed to operate the model,

such as network representations.

The direct outputs of the system are the optimized model parameters (speed-

density relationship, route choice, behavior choice etc.) and model inputs (OD de-

mand matrices) 1. These parameters and inputs are highly consistent with sensory

observations and thus are used to generate anticipated network forecasts through us-

ing the model. In this way, the framework combines low-level sensor data and fuse

them into a pool of consistent information for the network. The schema of the on-line

calibration framework from the perspective of inputs and outputs is shown at figure

2-1. The framework takes a priori parameter values, historical data on OD flows, and

real-time surveillance information and mingles them together using DTA to produce

a set of consistent, realistic model parameters. The updated model parameters are

then used to generate complete network traffic conditions through simulation.

'Existing on-line calibration studies usually include a subset of the model parameters and input
variables.



Next, we will specify the core of on-line calibration - how it transforms the inputs

and produces outputs. This may be accomplished via a number of approaches. For the

purposes of this thesis, two different formulation strategies are presented. We present

the classic state-space formulation as well as a direct optimization formulation.

2.2 Problem Formulation

In this section, the on-line calibration problem is formulated mathematically. The

state-space formulation is identical to that of [Antoniou, 20041.

2.2.1 Notation

By dividing time period T into time interval 1, 2, 3, ..., N of size t, the network is

represented as a directed graph with a set of links and nodes. Each link is composed

of a set of segments. The network contains nL links, nG segments and nOD OD pairs.

Furthermore, each segment can be equipped multiple types of sensors. For example,

nCount segments are equipped with count sensors and nSeed segments are equipped

with speed sensors.

Let 7rh denote the vector of OD flows and model parameters subject to on-line

calibration at time interval h. (lrh = {Xh, Yh, Xh is the OD flows at time h and Xh

is the model parameters at time h). Let S denote a DTA simulator and Mh"8 denote

a vector of observed traffic conditions for time interval h (For example, travel time,

segment flow counts). Let M"' denote a vector of corresponding simulated traffic

conditions from S.

2.2.2 Measurement Equations

Two types of information is used: 1) A priori values of the unknown parameter vector

are used for the direct measurement and 2) Sensory observations of the network

conditions are used for the indirect measurement.



Direct Measurement

The a priori values provide direct measurements of the unknown parameters. The

off-line estimates 7,a are commonly used as the a priori estimates.

7rh 7rh + E (.7

Indirect Measurement

The indirect measurement is established through the measurement equation:

Mh m  S(rh, 7h-1, ... ,7rh_) = S(Hh) (2.8)

Note that this formulation is flexible and poses no constraint on the types of

sensory measurements it can handle. The formulation is general and it assumes that

modeled trips can last for longer than one time interval and up to a maximum of

p time interval length (Since model parameters for all p intervals may affect the

simulated traffic condition). Uh denotes the augmented parameter vector such that

Hh = 7h, rh-1, ... , 7rh_. The relationship between the observed network condition and

their simulated counter-part is:

Mho" = Mhi m + ,obs (2.9)

where 6hs can be decomposed into three components: 1) ef 2) e' 3) ie and ebs

Ef + 6, + C'. ef captures the structural errors resulting from the inexactness of the

simulation model. d captures the numerical simulation errors, and E' captures the

measurement errors. Since it is usually impossible to separate the three components,

they are treated together.

2.2.3 State-Space Formulation

The classical approach to model dynamic systems is to use the state-space formu-

lation. The state-space model consists of a transition equation and measurement



equations. The first step in defining the state-space formulation is the definition of

state. For the on-line calibration of DTA systems, a state consists of model parameters

and OD flows. Explicitly, let 7rh denote the state for time interval h, so that:

7Th = [Xh, 7h] (2.10)

The transition equation captures the evolution of the state vector over time. The

general formulation is that: lrh+1 = T(7rh, 7rh-1, -, rh-p) + e+uto, where r is a function

that describes the dependence of 7 h+1 in its previous p states. eat~o is a vector of

random errors. In this context, an autoregressive function for T is used. The transition

equation is:

h
7 h+1 = Fh+rq + eato (2.11)

q=h-p

The measurement equations are in two parts. The direct measurement equations

capture the error between the state vector and its a priori values. That is:

7r" = h ± eh (2.12)

The indirect measurement equation links the state vector with the sensory obser-

vations, explicitly, so that:

Mbs = S(7h) + ebs (2.13)

The state-space model is now complete. [Ashok and Ben-Akiva, 1993] proposed

to write the state-space model in its deviation form from its historical. The rec-

ommendation stems from two main reasons. Firstly, the deviation form implicitly

incorporates the wealth of information contained from the offline calibrated param-

eters and OD flows. Secondly, the deviation form allows the normality assumption

to hold for the error terms in the model. Without using the deviation form the state

variables, such as the OD flows, will have a skewed distribution. Normality assump-

tion is useful in the application of Kalman Filtering techniques. For the reasons,



[Ashok and Ben-Akiva, 1993] and [Antoniou, 2004) write: Arh = 7r - 7rH, and our

final state-space model in the deviation form is:

A7r = Air + eh (2.14)

AM = S(7r/ + Alrh) - M// + e" (2.15)

h

Arh+1 = Fh+l1Ar q e*u* (2.16)
q=h-p

2.2.4 Direct Optimization Formulation

A state-space equivalent formulation is the so-called direct optimization formulation.

[Ashok, 1996] discussed the connection between the state-space and the Generalized

Least Square (GLS) direct minimization formulations in general, and, Kalman Filter

and least square estimation as their respective solutions in specific. It was argued

that the application of the results obtained by the classical GLS to discrete stochastic

linear processes leads to precisely the Kalman Filter. Therefore an alternative way of

formulating the on-line calibration framework is to adopt the GLS direct optimization.

In the direct optimization formulation, we jointly minimize the three errors from the

three state-space equations: e', eo"b and eUtu". Because the historicals cancel out

when we subtract each equations for the error terms, the direct optimization can be

formulated as:

= argmin[N1 (ea) + N2 (e0s") + N 3 (ea"to)] (2.17)

h-1

- argmin[N1(rh - rr) + N 2 (Mir" - Mhb") + N3 (7rh - F +1wq)] (2.18)
q=h-p-1

If we assume that ea, eobs and e'uto are normally distributed and uncorrelated,

and, Ni signifies squared distance, the above can be translated into the following



generalized least square (GLS) formulation:

7r = argmin[(7rh - 7r)'V-1 (7rh - 7h -

(M" - M m ) (2.19)
h-1 h-1

(rh - S F 1q 'Z 1(xh - Fq)
q=h-p-1 q=h-p-1

Where, V, W and Z are the variance-covariance matrix of ea, eobs and e at re-

spectively.

2.3 Characteristics

Before presenting the choice of solution algorithms, this section provides a glance

of the key characteristics of the on-line calibration approach 1) The sensory types

that it handles, 2) The speed complexity of single evaluations of the loss function, 3)

Stochasticity, 4) High non-linearity within the DTA model.

2.3.1 Sensor Type

The formulation of on-line calibration in the state estimation is general and flexi-

ble. It does not impose any restrictions on the types of sensors that it can handle.

This is one of the primary advantages of simulation-based DTA systems. Equation

2.8 calculates the simulated counter-parts of the corresponding sensor values in the

simulated network. The formulation has no requirements on the specifications of the

surveillance systems. To construct the correction procedure, DTA models first need

to be modified such that each sensor source has its simulated counter-part. This

is done by first examining the sensors that are already deployed within a network,

and then adding implementations of virtual sensors that are functionally identical to

these deployed sensors within the DTA model. These virtual sensors are capable of

reporting identical quantities in the simulated network. For example, if there is a

sensor on a network that logs point vehicle counts, one shall add an implementation



of a virtual sensor at the corresponding location in the DTA model that reports point

vehicle counts.

2.3.2 Highly Non-linear

The second characteristic of the approach is the highly non-linear relationship between

the state variables and surveillance information. This can be demonstrated through

the speed-density relationship model. The model calculates link speed (A common

form of surveillance data) from simulated link density. The following equation is used:

V': = vmax (k -kmin ) 3 )" (2.20)

Where the parameters subject to real-time calibration are 1) vmax: the maximal

link speed, 2) kmin: the minimal link density, 3) kjam: the maximal link density at

jam condition, 4) a and /: the segment-specific coefficients.

The inherent non-linearity within the DTA model that the loss function contains

complicates the solving of the problem. [Balakrishna, 2006] summarized the compli-

cations: 1) The loss function might have several local minimal rather than a unique

minima, and searching for the global minima is often very difficult 2) Studying the

true shape of the loss function becomes impractical, because of the relationships be-

tween observations and the large number of model parameters. 3) The interactions

of various models further complicate the feasibility of applications of analytical rep-

resentations.

2.3.3 Stochasticity

The DTA system is also stochastic. The system simulates a large set of vehicles and

drivers' behaviors. Thus a certain level of stochasticity is necessary to reflect real

world decision making. For example, the pre-trip behavior model applies probabilis-

tic modeling of driver's choice of departure time and routes. The supply simulator

processes vehicles in the network in a certain randomized order at each simulation

interval. This helps to replicate real-world network dynamics.



The stochasticity in the underlying DTA model produces noise in the simulated

traffic conditions. This might impact the quality of the function and derivative evalu-

ations. Empirical analysis has shown small degrees of its affect on simulation perfor-

mance. The two most successful calibration algorithms in literature, SPSA for off-line

calibration and EKF for on-line calibration, both calculate numerical derivatives in

the stochastic setting [Balakrishna, 2006][Antoniou, 2004].

2.3.4 High Cost Function Evaluation

Finally, the computational complexity of the DTA simulation model is high - a single

evaluation of the loss function entails exactly one running cycle of the DTA simulator

for the designated time interval. The running time of the DTA simulation model

mainly depends on the driver populations in the model and the network complexity.

[Wen, 2009] reported that the overall complexity of the DynaMIT supply simulator for

a time interval is O(Q x t), where Q is the average number of vehicles in the network

and t is the length of the time interval. As the cost of single function evaluation is

high, algorithms that perform less evaluations of the loss function are preferred.

2.4 Summary

In this section, the DTA model on-line calibration framework is introduced and dis-

cussed in detail. The general approach is laid. That is, with the use of a simulation-

based DTA system, the framework seeks to minimize 1) The difference between the

model parameters and their a priori values and 2) The difference between observed

sensory data vector and its simulated counter-part. The inputs of the framework

are various surveillance data, a priori time-dependent OD demand as well as a priori

model parameters. The outputs of the framework are consistent demand and sup-

ply parameter estimates, which the DTA model translates to high-level knowledge

of network conditions and traveler benchmarks. The a priori of the OD and model

parameters are used to provide direct measurements of the estimates, while the sensor

data received in real-time provides in-direct measurements through the DTA model.



The transition equation on the variable state is specified using an autoregressive pro-

cess.

The overall approach is mathematically formulated. The state-space formulation

models the problem as a dynamic system that evolves over time. It consists of a

transition equation, a direct measurement equation and an in-direct measurement

equation. Another approach is to formulate the problem as a direct optimization

problem. The loss function is composed of the sum of three components corresponding

to the three equations in the state-space model: 1) discrepancy between observed and

simulated sensor values, 2) discrepancy between model inputs and parameters and

their a prior values, 3) discrepancy between model inputs and parameters and their

projected estimates from the autoregrssive process. The variables in the scope are

time dependent OD levels and appropriate set of model parameters. All elements are

constrained within their feasible regions.

With high-fidelity DTA models, the framework is flexible enough to handle various

types of surveillance systems. However, complex DTA models are inherently non-

linear, making it difficult to come up with a precise image of the loss function. In

addition, the solution to the minimization is not unique, since there might be many

local minimal. Finally, the level of simulation details dictates longer model running

time, making evaluations of the loss function costly.
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3.1 Introduction

In the previous section, the DTA on-line calibration problem is formulated. A loss

function for minimization is defined. The elements subject to adjustment are set

of time dependent OD demand matrices and DTA model parameters. The charac-

teristics associated with the minimization problem are also discussed - non-linearity,

stochasticity and costly function evaluations. With the discussion of calibration for-

mulations, their characteristics as well as the DTA models, we are able to introduce

the base-line solution algorithms that one can apply to the on-line DTA model cali-

bration problems.

First the selection criteria for candidate algorithms are presented. Next we present

a number of solution algorithms that correspond to the two formulations from the pre-

vious chapter. With the state-space formulation, we present the classical approach,

Extended Kalman Filter. Since there lacks literature on the direct optimization for-

mulation, we present three direct optimization algorithms with each representing

a distinct categorization in function minimization. The direct minimization algo-

rithms we present are: Pattern Search algorithm, Conjugate Gradient algorithm and

Gradient Descent algorithm. Their suitabilities for on-line calibration are discussed,

especially from the speed complexity perspective.

3.2 Algorithm Selection Criteria

DTA on-line calibration dictates accurate, robust and efficient candidate algo-

rithms. Accuracy is the most important factor. Accuracy entails the capability of

taking an array of sensory data to generate highly consistent predictions of future

network condition and traveler statistics. With the mathematical formulation, this

translates to achieving loss function with values that are as low as possible. However,

low value of the loss function value for a particular time interval is not sufficient to

justify the algorithm's accuracy. The set of optimized OD level and model parameters

need to be verified through their effectiveness on prediction. Hence the requirement



of high degree accuracy must not only be satisfied at state estimation but also in state

predictions.

A number of performance indicators are being developed. [Toledo et al., 2003]

uses the Normalized Root Mean Square Error (RMSN).

N N ysim - Yobs

RMSN = Yns (3.1)
n=1 n b

Where N is the number of observations during an experiment. Yobs is the nth obser-

vation value and Ysi" is the nth simulated value.

[Pindyck and Rubinfeld, 1997] uses a number of other performance measures -

RMSPE, RMSE and MPE.

N -yobs _ ysim- 2

RMSPE= -± n s m (3.2)
n=1 n

RMSE =Yobs -Ysim (3.3)

N [yobs _ ysim~
MPE = N Yobs n (3.4)

Besides accuracy, the solution algorithms need also be robust. Robustness refers

to the ability of maintaining high degree of accuracy over a range of different network

conditions (quickly changing set of sensory data). Robustness is important because

algorithms that achieve low loss function values under some network conditions but

not others are not suitable candidates for real-world deployment. The testing of the

algorithms' stable performance is discussed and presented in the case study.

Finally, the candidate algorithms need to be efficient. The on-line nature dictates

that the proposed framework runs faster than real-time and still leave some time for

prediction and route guidance generation. Algorithms that run at a very slow pace,

e.g. in the order of hours, have no value for on-line deployment. The requirement



on speed is especially critical given that a single evaluation of the loss function is

expensive, which is a common situation when simulating sufficiently large networks.

The preferred candidate algorithms would thus require as little function evaluations as

possible. A rough measure of algorithmic efficiency is the average function evaluations

required for one state variable. This ratio is defined as:

ratio - #Func (3.5)
N

Where #Funcs refers to the Total number of functional evaluations for one interval

and N refers to the Total number of model parameters to calibrate. The ratio should

be as low as possible.

One limitation of using a single ratio like the aforementioned one is due to the

structural difference among candidate algorithms (e.g. some methods require a single

iteration and others require many iterations of its main procedure). For example, an

algorithm that decays fast but has long running time tail tend to give a higher ratio

compared to algorithms that decay slow and use less time, and one need to draw the

complete decay diagrams when comparing alternatives. In this study, we will take a

simplified approach. The running time of candidate algorithms will be limited to a

fixed portion of the DTA system's operation interval (e.g. if DTA runs on a 10min

interval, candidate algorithms can be limited to complete to 5min). We will then use

this ratio to evaluate efficiency with this timing constraint enforced. The ratio thus

gives a general flavor of candidates' running speed as well as their accuracy-speed

trade-offs.

3.3 State-Space Formulation

3.3.1 Extended Kalman Filter Algorithm

The Extended Kalman Filter has been proposed as the base-line solution to the on-

line calibration problem [Antoniou, 2004]. The Extended Kalman Filter recursively



solves the following state-space model:

Xh+1 = FhXh + Wh

Yh = Hh(Xh) + uh

(3.6)

(3.7)

where Wh and Uh are assumed to be white. Equation 3.6 is referred to as the

prediction step of the state vector Xh through function Fh, and 3.7 relates observation

Yh to state vector Xh through measurement function Hh.

Algorithm 1 The Extended Kalman Filter Algorithm
Initialization

Xoio = Xo

Polo = Po

for h = 1 to N do
Time update

Xhhl_1 = FhlXhlh1

(3.8)

(3.9)

(3.10)

(3.11)Phjh-1 = Fh_1Phlh_1Fh_1 + Qh

Taking partial derivative

Of(X*)

Mearemnt X*=Xid_1

Measurement update

(3.12)

Gh - Phl-1H' ( HhPhl1H' + Rh) (3.13)

(3.14)

(3.15)

Xhlh = Xhlh_1 + Gh [Yh - h(Xhhl_1)1

Phl -- Phlh-1 - GhHhPhlh_1

End for loop

The EKF algorithm starts by initializing state vector X and the variance-covariance



matrix P. This is followed by a loop indexed on the time interval h during the DTA

model simulation.

At each iteration, a number of tasks are performed in sequence. The time update

models the transition process of the state vector, as in 3.10 and the variance-covariance

matrix, as in equation 3.11. This is followed by the numerical approximation of the

Jacobian Matrix for time interval h, computed in equation 3.12. Then the Kalman

Gain G is calculated in equation 3.13. The state vector, as computed in equation

3.14, is thus the sum of two components - the vector output from time update (its

time evolution) and the difference between sensory observation Yh and its simulated

counter-part h(Xhih- 1), but magnified by the quantity of the Kalman Gain. Finally,

the variance-covariance matrix is updated as in equation 3.15.

Notes

The EKF algorithm is very efficient in terms of numbers of function evaluations. The

computational burden of EKF comes in two folds: 1) The evaluation of the Jacobian

at 3.12 and a matrix inversion at 3.13. With state vector of N unknowns, 3.12 requires

at least N+1 function evaluations. With a moderate N, cost of 3.13 is small. The

algorithm requires storage of the state vector and variance-covariance matrix P. 2)

Matrix inversion.

3.4 Direct Optimization Formulation

In the followings, we present candidate algorithms to solve the direct optimization

formulation of the on-line calibration problem. We will state our motivation for the

candidacy selection first, since there are a large numbers of minimization algorithms

that can be potentially tested.

3.4.1 Categorization on Minimization Algorithm

The direct optimization formulation allows us to cast of the DTA on-line calibration

as a stochastic minimization problem (at equation 2.17). With the statement of the



normality and uncorrelated assumption, we can solve it by minimizing function 2.19.

Function minimization is associated with a large area of numerical research. Over the

years, many established algorithms have been invented. The algorithms have different

characteristics in speed and memory complexity and impose different requirements

on the loss function. For example, some algorithms require the derivative calculation

while others only requires explicit function evaluations. Moreover, algorithms expose

structural difference. The plain EKF algorithm is a direct method, meaning that

it requires a fixed, finite number of operations to solve the problem. In contrast,

many minimization algorithms are iterative, opposite to direct, meaning they attempt

to minimize the loss function through successive iterations starting from the initial

guess. The algorithm may be stopped prematurely and would still be able to report

a complete solution.

The solution algorithms under the direct optimization formulation would thus be

selected to represent these categories: 1) Derivative vs Derivative-free; and 2) Direct

vs Iterative. Before presenting the algorithms, we first show how these categorizations

impose implications on the performance of the corresponding solution algorithms.

Derivative vs Derivative-free

Not all minimization algorithms require explicit computation of derivatives of the

loss function. However, algorithms that require derivatives tend to be more powerful,

but sometimes are not powerful enough to justify the cost of additional effort in

calculating the derivatives [Press et al., 2007]. Sometimes an analytical expression

exists for the first derivative of the loss function. Sometimes such an analytical

expression does not exist because of the complexity of the function shape. When

no analytical formula exist and it is still necessary to use derivative minimization

algorithms, numerical approximations of the derivative may be used [Antoniou, 2004].

The EKF, GD and CG are all derivative method. That is, their routines involve the

derivative calculations. The PS algorithm, on the other hand, is entirely derivative-

free. The drawback of the derivative method in the context of DTA on-line calibration

is its intensive computational complexity. Without analytical formulation of the



derivative, the numerical derivative approximation itself demands many numbers of

function evaluations.

Direct Method vs Iterative Method

The EKF and GD(O) 1 algorithms are direct methods. They use a finite number of

steps to perform the minimization task and there will be no intermediate results made

available unless the algorithms come to their completions. On the other hand, the

CG and PS typically require many iterations of their main routines. They usually

come to completion when the objective function converges or the step progress drops

below a pre-specified threshold.

As CG and PS are iterative, they tend to be more computationally intensive,

for many function evaluations are required. However, iterative methods hold an

important advantage - they can return the best result found at any given point during

the iteration. On the other hand, the EKF and GD cannot produce any results unless

a full run of the algorithms are completed.

To illustrate the categorization of the candidate algorithms, we tabulate the four

candidate algorithms in table 3.1.

EKF GD CG PS
State-Space Model A

Direct Optimization Model A A A
Use Derivative A A A
Derivative Free A

Iterative Method 'A A
Non-iterative Method A A

Table 3.1: Classification of the four base-line candidate algorithms (EKF, GD, CG
and PS) from framework design, use of derivative and iterative/direct

In the next, we shall present the PS, CG and GD algorithms in detail.

'GD algorithm that evaluates gradient only once then performs a single line search and return.
In this thesis GD refers to GD(O).



3.4.2 Hooke-Jeeves Pattern Search Algorithm

The Hooke-Jeeves pattern search method, [Hooke and Jeeves, 19611 only requires

function evaluations and requires no derivatives. The method is composed of a se-

quence of exploration moves and pattern moves. The goal of exploration move is

to find the next lowest point at the vicinity of the current point. In doing so, the

method perturbs each variable in turn. The perturbation that results in the lowest

function value is recorded and used in the pattern move phase. During pattern move,

the current point is moved towards the point outputted by the exploration step until

further sliding along the direction does not reduce the function value anymore. In

that case, the perturbation magnitude is reduced and the process starts again. The

algorithm is given below:

Exploration Move

The exploration move takes an input point as the start and perturbation factor and

outputs the point with the lowest loss function value at the locality of the initial

point.

Pattern Search Algorithm

At each step, the Hooke-Jeeves method works as follows: First the method searches

for the best point in the locality of the present point Pase. If no better point is

found then the perturbation step size is reduced according to a. If the step sizes

are sufficiently small, then the algorithm quits and returns the present point. If

an improved point is found, denoting that exploration point as Pe", then pattern

movement is performed. Denoting the resulting point PP"e" from this movement,

an additional exploration search is conducted. The pattern moves continues until no

more improvements can be made. In that case it reduces the perturbation factor and

starts a new iteration of exploration move with the reduced perturbation factor.



Algorithm 2 The Exploration Move Algorithm
Inputs
Initial point P of dimension N
Perturbation Matrix A

A 1  0 --- 0
0 A 2 ... 0

AN,N~ . .. .

0 0 --- ANJ

for i = 1 to N do
Perturb

PlO=P-A[i]

phigh P -+ A['] (3.16)
Phigh

Ph"* (Pa***) -- mini Pomal a**L (3.17 )

End for loop
Return pbest

Notes

The search algorithm is extremely simple and intuitive. It has the nice property of

extremely low memory requirement. At any time only a constant number of points

need to be stored. The biggest drawback of this algorithm is its running speed with

larger number of variables to minimize. The exploration algorithm requires exactly

O(2N) times evaluations of the loss function to recommend a new point to the pattern

search phase. In addition, perturbations along every dimension are repeated at each

iteration of the algorithm that no knowledge of the perturbations from previous is

re-used. These two observations, especially the exhaustive search in a point's vicinity

makes Hooke-Jeeves pattern search less attractive for on-line calibration applications

with large amount of DTA model parameters and OD pairs. Despite the disadvantages

on the speed, the method is usually very reliable. This will be discussed again in the

experiment chapter.



Algorithm 3 The Hooke-Jeeves Pattern Search Algorithm
Initialization

Initial point pbase of dimension N
Perturbation Matrix A
Perturbation reduction factor a

1: while 1 do
2: P"'P - exploration-move(Pbase, A)

3: if entries in A sufficiently small then
4: return pbase

5: else if PexP - Pbase then

6: A=aA

7: continue
8: else
9: loop

10: ppattern pexp + (pex _ pbase)

11: ppatternB = explorationmove(ppattern, A)
12: if Ppattern - ppxtternB then

13: A = aA

14: break
15: else
16: pbase _ pexp

17: PexP - ppatternB

18: end if
19: end loop
20: end if
21: end while

3.4.3 Conjugate Gradient Algorithm

Background

The Conjugate Gradient method is the most prominent method for solving sparse

systems of linear equations. Extension of the method can be made to solve non-

linear optimization problems. The Conjugate Gradient method first minimize along

the direction of the gradient around initial guess point. Subsequent minimization

directions are carefully chosen so that they are as close to the direction of the greatest

descent (negative local gradient) as possible, but observing the direction conjugacy

property. That is, subsequent search is strictly orthogonal to any previous search



directions. The main routine of the conjugate gradient algorithm is presented at

algorithm 4.

Non-Linear Conjugate Gradient with Polak-Ribiere

Algorithm 4 Non-Linear Conjugate Gradient Algorithm with Polak-Ribiere
1: Initialization:
2:

3: go- af(X*)
X*=XO

4: Ao = argmin(f (Xo + Ago))
5: X 1 = Xo + Ago
6: i = 1
7: while 1 do
8:

gi - f(X*) (3.18)
0*X -=Xi

gi-i gi-i

hi = g, + -yhi (3.20)

A = argmin(f(Xi + Aihi)) (3.21)

9: if Ai < Epsilon then
10: Return Xi
11: end if

zi+1 = xi + Aihi (3.22)

12: end while

Alternative -y Formulation

The formula of 'y presented is the original Fletcher-Reeves version. Two other ver-

sions are:

Polak-Ribiere:

(Yi+1 - 92)9i+1

gigi
(3.23)



Hestenes-Stiefel:

(9i+1 - gi)9i+i (3.24)
g(gi+1 - gi)

These formulations can be easily incorporated into the main algorithm by imple-

menting them into 3.19.

Notes

In an N unknown minimization problem, N conjugated search directions are needed

for exploration. This amounts to O(N) iterations of the procedures in the while loop.

Within each iteration numerical approximation of the Jacobian is performed as in

line 3.18, and exactly one line search is performed as in line 3.21. The draw-back of

CG is that the derivative calculation at line 3.18 is as expensive as normal function

evaluations. It requires numerical approximation such as finite differential method.

With N unknowns, this amounts to at least N+1 function evaluations. Although

the while loop is executed for, at most, N times, derivative evaluation embedded

within each iteration is computationaly costly. These observations make the CG less

attractive for very large traffic networks.

3.4.4 Gradient Descent Algorithm

Gradient Descent (GD) is a collection of simple yet elegant ideas. The GD algorithm

is also O(N) in speed complexity. However, GD is matrix free - no matrix inversion

is performed. Thus it significantly outperforms EKF in memory complexity. GD

requires slightly more function evaluations in its line search routine. This incremental

cost is largely constant irrespective of the size of the state variables. The main routine

of the algorithm is presented in algorithm 5.

Notes

The computational burden of GD comes from 3.25 - the derivative calculations. Sim-

ilar to that of EKF, this procedure requires N+1 function evaluation for a vector of N



Algorithm 5 The Gradient Descent Algorithm
Initialization

Let Po be the starting point in the minimization routine
for time interval h = 0 to Infinity do

Direction Search
G = - v f(Xlhi1) (3.25)

Step Size Search
(A) = argmin((Xhjh_1 + AG)) (3.26)

Update
Xhjh = Xhlh-1 + AG (3.27)

End for loop

unknowns. Instrumental in the process is the determination of the optimal step size

A, which requires additional line search routines. Next, two line search algorithms

are presented. They are the Bracketing Search method and the Brent's method.

Bracketing Search in One Dimension

The bracketing search method [Kiefer, 1953] does not require knowledge of the deriva-

tives. It uses a three probe points to bracket the minimum loss function value. Sup-

pose the loss function is bracketed by three points a, b and c, such that f(a) < f(b) <

f (c). Bracketing search introduces an additional probe point X, either between a and

b, or between b and c. Without lose of generality, if a probe point X is chosen between

b and c and f(X) > f(b), then the new bracketing triplet is (a,b,x). If f(X) < f(b),

then the new bracketing triplet is (b,x,c). The algorithm reduces the range of the

triplet and quits when they are sufficiently close to one another. The bracketing logic

is given below in algorithm 6.

Brent's Parabolic Interpolation in One Dimension

The Brent method [Brent, 1973] [Atkinson, 1989] also uses a three point triplet to

bracket the minimal. However, rather than using probe points on either the left or

right half of the bracket, the method fits an inverse parabola through the three points



Algorithm 6 The Bracketing Search Algorithm
Initialization

Let PO, Pob, P be the initial
for h = 0 to Infinity do

If P- P < E Break

Probe X

bracketing triplet

P'' - Ph'
Xright = 2

XetPh' - Ph
2

if Xright < Xleft

else

X = Xright

X = Xlegt

Update Bracket

If f(X) > f(Ph)

P+= 1 P

Ph'+1 = Ph'

Else

Ph+1 X

P c+1 =Ph

End for loop

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



in the current bracket. [Press et al., 2007] presents the formula of calculating the

minimal of a parabola. Given three point a, b and c, the minimum point X on the

parabola that fits through the three points is:

X b -1 (b - a)2 [f(b) - f(c)] - (b - c) 2 [f(b) - f(c)] (334)
2 (b - a)[f(b) - f(c)] - (b - c)[f(b) - f(c)]

The parabola's minimal is then used as the probe point. The method is more

efficient than that of the bracketing algorithm. The argument is that when the loss

function is sufficiently smooth near minimal, one of pass of the parabolic interpolation

puts the probe point close to the minimum. The Brent's method is also derivative

knowledge free.

Algorithm 7 The Brent's Parabolic Interpolation Algorithm
Initialization

Let Po, Pb, PJ be the initial bracketing triplet
for h = 0 to Infinity do

Calculate Probe X

pb P 1 (P -
2 fP - _ - _ -

2 [P - f(P] (3.35)h 2 (Pb - P b)[f(Phb) - f(Pc) - (Pb - Pcb)[f(Ph) _ f(Pc)

If P- X < e Break

Update Bracket
If f(X) > f(Ph)

Ph+1 = P

P = P (3.36)

Ph+ =X

Else

PhI = Ph

Ph+I = X (3.37)

Ph1 = Ph

End for loop



3.5 Summary

In this section, we presented the algorithm selection criteria - accuracy, robustness

and efficiency. Accuracy is the most important requirement. In addition, candidate

algorithms need to be robust and reliable. Finally, the candidate algorithms need

to be efficient. Algorithms that are accurate and robust but slow are less attractive

for real-time deployment of the on-line calibration framework. A balance among the

criteria is needed.

The second part of the section presented four candidate algorithms to solve the

state estimation problem - PS, CG, EKF and GD. The EKF belongs to the state-

space formulation and the other three algorithms belong to the direct optimization

formulation. The PS is an iterative, derivative free method that consists of exploration

moves and pattern moves. The CG method is an iterative and derivative-based line-

search method. At each iteration, a new search direction is obtained. This direction

is "non-spoiling" to previous all search directions and also as close to the gradient

direction as possible.

The PS is simple to implement and requires little memory. However, a large

number of function evaluations is required. The CG method on the other hand,

requires as few as N iterations to solve an N unknown minimization problem. However

its derivative is too costly to calculate in the context of DTA model on-line calibration.

Both algorithms are iterative, meaning they can be terminated when their execution

time goes beyond the maximum time limits. For problems with large traffic networks

(therefore slower for single function evaluation and a larger number of unknowns),

the full versions of both algorithms may be too slow for real-time deployment.

Contrary to the PS and CG methods, which require many iterations, EKF and

GD methods are direct methods, perform derivative approximations only once plus

some extra finite overhead in the remaining of their routines. Consequencely, EKF

and GD tend to be much faster than the full version of PS and CG, considering the

expensive cost of function evaluation in this context.

In the interests of efficiency, the differences between the EKF and GD algorithms



are discussed. Both algorithms require partial derivative estimation exactly once.

After the derivative estimation, EKF and GD employ different approaches. The over-

heads for EKF, post derivatives, are in general, dense matrix-matrix multiplications

and matrix inversions. The overheads for GD post derivatives is additional function

evaluations in its line search routine. Also the overheads for EKF is a function of

the size of these matrices. It is sensitive to the size of the problem. On the other

hand, the overhead for GD is largely constant. Furthermore, from the structural

perspective, GD is considered more attractive because its line-search routine uses an

iterative method, while the matrix manipulations within EKF are strictly procedural,

meaning it cannot output intermedium results. Last but not least, GD is inherently

simpler than EKF. It is matrix-free and requires much less memory.

When it comes to comparing the speed of the two algorithms for practical appli-

cations, one needs to carefully weigh the overheads discussed above. Is the additional

matrix manipulation considered more overheads than additional couple of function

evaluations, or vice versa. The key is to bridge the complexity of DTA system and

linear algebra operations. [Wen, 2009] argues that the complexity of the DTA system

is O(V) for each estimation interval time step, where V is the number of vehicles in the

network. Therefore, as the number of vehicles increase linearly, the overheads within

the GD algorithm increase linearly. On the other hand, the relationship between

the number of the vehicles and speed complexity of the overheads in EKF (primarily

related to the state size) is not always so clear-cut. In practice, we would recommend

both the EKF and the GD methods. We will reserve the choice to further empirical

works.
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4.1 Overview

Efficiency requirement of the on-line calibration approach entails system scalability.

The framework must be able to operate in real-time when dealing with sufficiently

complex networks. While the base-line algorithms in the previous sections may be

sufficient for smaller problems, they are hardly scalable. The PS and CG requires

many iterations in their main routines and each of the main iterations requires 2N

number of function evaluations. On average, PS and CG demand more than one

function evaluation per state variable. The EKF and GD are superior. They only

require N+1 function evaluations, given an N dimensional problem. Although this

amounts to approximately one function evaluation per state variable, they are still

considered slow when dealing with large networks where a single evaluation takes a

long time. In this section, we explore framework scalability along two orthogonal

directions: Algorithmic advancement and implementation advancement. Both aim to

enhance the speed performance of the proposed on-line calibration framework.

" On the algorithmic side, we develop extensions of the GD and EKF algorithms

using the idea of Simultaneous Perturbation. We show this modification results

into much lower function evaluation to variable ratio.

" On the implementation side, we show that distributed computation can be

applied to facilitate the Jacobian calculation and thereby reduce the running

time of the GD and EKF algorithms.

4.2 Scalable Algorithm on Single Processor

The application of the idea of Simultaneous Perturbation to the on-line calibration

problem was first explored in [Antoniou et al., 2007b]. The algorithm only uses 2

function evaluations and has been shown to produce effective results. This is a re-

markable advancement since the original EKF requires N+1 function evaluations with

N state variables.



4.2.1 The Idea of Simultaneous Perturbation

The idea of simultaneous perturbation originates from the Simultaneous Perturbation

and Stochastic Approximation (SPSA) method, a highly efficient gradient approxi-

mation and stochastic optimization algorithm that has been applied mostly in the

area of off-line DTA model calibration. The key advantage of SPSA is that, instead

of perturbing each N variable individually, it performs simultaneous perturbations to

calculate function gradients. The concept of simultaneous perturbation (SP) leads to

order of magnitude of savings in computation time.

In the case of both GD and EKF, gradient approximation is the leading com-

putational burden. The classical approach has been to apply numerical differential

on each of the state variables independently. This amounts to 2N (at least N+1 if

forward differential) function evaluations for a state vector of size N. We show that,

application of the Simultaneous Perturbation (SP) can also lead to potentially orders

of magnitude of saving in computation time in the case of on-line calibration using

GD and EKF. The gist of the idea can be summarized in the following lines.

At each time interval h, the Jacobian estimation H in the standard EKF algorithm

is performed according to:

8f(X*) x (.1
Ha af

8X*) a.
ax* X*=Xhlh-1

With central stochastic differential, this requires N function evaluations. For

i =1, 2, ..., N we perform:

Of_ f (Xh cP) - f(Xh - cP) (4.2)= lim(42
OXA c->O 2c

Where f reflects the DTA simulator and Xh is the initial state vector for time interval

h. c represents a small scalar and P is a padding vector with all entries zero except

one for the ith one.



During SP, the padding vector P is randomly initialized with +1 and -1 variables.

Instead of perturbing each individual variable, the entire padding vector P is used.

The stochastic differential can then be computed in one step with only 2 function

evaluations:

Dh f(Xh + cP) -f(Xh - cP) (4.3)

DhL

2cPo

H- 2cP 1  (44)

Dh

2cPN-1

Notice in the SP gradient approximation, equation 4.3 incurs only 2 function eval-

uations. Equation 4.4 is trivial to compute. In addition, the gradient approximated

in this way is a biased estimator of the true gradient. The bias is proportional to c2

[Spall, 1992] and [Spall, 1994b] provide detailed descriptions.

4.2.2 The PSP-EKF Algorithm

Although the SP gradient approximation has prominent speed complexity, the per-

formance of Jacobian approximation in 4.3, 4.4 is often poor and may need to be

further enhanced. The drawback stems from the fact that the state variables that

are perturbed together may have common affects on some sensor values, thus impos-

ing common affects on the in-direct measurement portion of the objective function.

A simple example illustrates the idea. Imagine a network that consists of only one

segment and has only one flow sensor on the segment. The state variables consist of

only 2 OD flows that share this common segment. A simultaneous perturbation of

(positive, positive) or (negative, negative) gives overestimated partial derivatives for

the two variables. A simultaneous perturbation of (negative, positive) or (positive,

negative) gives at least one underestimated partial derivative. When two state vari-

ables both affect a sensor value, we say they are co-reactive and recommend that they

be perturbed in separate runs, for the sake of retaining the accuracy of the Jacobian

approximation. On the other hand, when two variables do not have common affects



on any sensors in the network, we say they are mutually conjugate. When the

property holds for arbitrary pairs of variables in a set, we say the set is a conjugate

set.

The PSP-EKF stands for Partitioned SP-EKF algorithm. The idea is to strike

a balance between efficiency and accuracy. We still want as few perturbations as

possible, however, we enforce optimal utilization of each perturbation by including

only conjugate state variables. An example of a conjugate set is to include OD

flows that cover different areas of the network, and parameters of segments that

are geographically far apart from one another. Perturbing these variables together

would be identical to perturbing individual variables and combining the results. To

achieve this goal, the state variables are partitioned into disjoint conjugate sets. We

then simultaneously perturb variables from each of the sets. This can be made more

explicit as follows:

The Jacobian matrix obtained from the original EKF provides useful heuristics

for partitioning. With a network of N sensors and M state variables, the Jacobian

matrix, which we shall call the reactiveness matrix R, is of size N rows by M columns.

The non-zero entries in each column signify the reactiveness of that variable on these

sensors. The magnitudes of these entries reflect the degree of effectiveness of the

variable to those sensors. We define small scalar Ek for k = 0, ..., N - 1 for each sensor

k as a threshold for the degree of effectiveness and we say sensor k is affected by

variable i if R(k, i) > Ek. We say two variable i and j are conjugate if R(k, i) < Ek or

R(k, j) < ek.

The partition process divides M variables into conjugate sets. Because the vari-

ables might not be strictly non-co-reactive within a set (due to the threshold), we

also prefer the sets to be of similar cardinality in order to minimize the number of

variables to be perturbed in a single set. A randomized greedy algorithm can be used

to solve this task. We maintain a list of previously created non-empty sets. At each

iteration, we randomly shuffle the order of the list. The next variable X is added to

the first set that has no variables in conflict with X. In case no such sets exist, a new

set is created to hold a single element of X.



At on-line, we perturb all variables from one set at a time. By the property of

conjugacy, the resulting sensor value at index k after perturbation is only due to the

change in variable i which affects it in the set and not due to any other variables j in

the set. Thus, the approximated Jacobian H(k, i) is calculated according to 4.3 and

4.4 and Vj $ iH(k, j) = 0. In this way, we are able to compute partial derivatives for

many multiple state variables from just two model evaluations.

4.2.3 The PSP-GD Algorithm

The application of simultaneous perturbation can also be applied to the direction

optimization algorithms. For example, the most computationally expensive step of

the GD method - the gradient approximation, may be calculated using simultaneous

perturbation. In the case where only two functional evaluations are used, this is a

variant of the SPSA algorithm.1 Next, we describe a more general schema for the

idea of simultaneous perturbation in the context of direct optimization frameworks -

the Partitioned Simultaneous Perturbation GD (PSP-GD) algorithm.

Let H be size N vector (N sensors) of partial derivatives for all the variables at time

interval h (We will drop subscript h from this point on for simplicity). Let the in-direct

measurement part of the objective function be the sum of the Euclidean Distance

squared between each observed and estimated sensor value. The routine calculation of

H follows equation 4.1, which amounts to at least N+1 function evaluations. Suppose

the state variables have been partitioned into conjugate sets, we want to show that it is

possible to only use P+1 function evaluations to complete derivative approximations

instead of M+1, where P is the number of conjugate sets and M is the size of the

state variable vector. That is, we apply only one function evaluation for each of the

conjugate sets, instead of for each of the state variables.

Let X = {v 1, v2 , ... , vj} be a conjugate set that holds j state variables. By conju-

iThe objective function within the direct optimization framework is composed of three parts.
The derivative of state vector with respect to X is thus the sum of the derivative with respect to X
from each of the components. As the derivative calculation with respect to the direct measurement
portion is straightforward to compute, we will focus our description of the application of SP to the
in-direct measurement part of the objective function.



gacy, change of any simulated sensory value is because of the change from one and only

one of the set variables. At operation, simultaneous perturbation of all j variables is

performed. Again, let P be a padding vector randomly initialized with +1 and -1 for

all the variables. Let f be a DTA simulator and let S+ = {S+, S2+,..., S} be the vec-

tor of the resulting upward perturbed simulated sensory value for f(vi + cP1), f(v 1 +

cP2), ,f(v 1 +cP) and let S~ = {S1, S , ... , S } be the vector of the resulting down-

ward perturbed simulated sensory value for f(vi - cP1), f(vi - cP 2 ), ..., f(vi - cP).

Also assume that the reactiveness matrix R is given, and R(i, j) = 1 signifies sensor

i is affected by variable j and 0 otherwise. The weights associated with each sensor

observation is captured by the vector of W. Equation 4.1 will then be replaced by the

following:

f . N W S-)2R(j, i)
= hm 3 J(4.5)

aXi c->0 2cP
j=1

Notice that only 2 function evaluations are sufficient for the partial derivative for

all variables in one set. The matrix R(j, i) behaves as a mask that filters out simulated

sensor values that are changed by perturbations of other irrelevant variables. This

is a remarkable improvement from the speed performance on the direct optimization

algorithm. Similar to the PSP-EKF, by controlling the threshold, we can vary our

preference on the speed vs accuracy. When the threshold is very low, this produces

high number of partitions so that the algorithm will behave like the original GD. On

the other hand, if the threshold is high, the algorithm will produce very low number

of partitions. In its extreme, all variables are within a single partition and we now

have the SPSA algorithm.

Note that to achieve the efficiency close to that of the SPSA algorithm, one would

need a relatively high threshold. This is because each additional variable of a set must

be checked with every other variable that is already in a set. (Recall that within a

conjugate set, any two variables are conjugate.) In general, small thresholds signalize

emphasis on accuracy and a bigger threshold signalizes emphasis on algorithm running

speed.



4.3 Scalable Algorithm on Multiple Processors

We come back to the baseline GD and EKF algorithms. As discussed in the last

chapter, different candidate algorithms have different characteristics in terms of speed

complexity. While the design of efficient candidate algorithms reflects our vision of

pursuing superior computational performance, the implementations of these methods

are equally important. In this chapter, we explore the possibility of implementing

the two most promising algorithms (EKF and GD) in the context of distributed

computing.

Distributed computing refers to algorithms running on a set of machines connected

by a network [Pereira et al., 2009]. In the context of this chapter, the objective is to

implement the EKF and GD algorithms in this fashion across multiple machines,

when these hardware resources are available.

4.3.1 Background

The most computationally burdensome part of the EKF and the GD algorithms lie

in their derivative approximations. In the case of EKF, the burden lies in equation

3.12. In the case of GD, the overheads come from equation 3.25. With state vector of

size n and assuming forward finite differential approximation, both equations require

exactly n +1 function evaluations. (Each function evaluation incurs a full DTA model

operation) As n grows, the total overheads are extremely significant.

However, the n + 1 evaluations can be distributed to multiple processors and

thereby reduce the overal computation time in real-time operations. We notice the

following characteristics of the derivative approximation routines, which corresponds

to those identified in [Antoniou, 2004] :

. Independence - The n+1 function evaluations are strictly independent from one

another. In addition, the order in which the evaluations are performed does not

matter. The 1'h evaluation may be performed before or after the Jth evaluation

and vice versa.



" Similar Processing Time per Evaluation - The time required to perform one

function evaluation is largely identical. Small fluctuations on the running time

may exist due to the perturbation of the state vector in the finite differential

approximation. This property is attractive since it allows for the design of much

simpler load balancing schemes. Because each evaluation takes roughly the same

amount of time, the load level can be simply determined by the processing speed

of each processor. This idea will come back in the case study.

" Minimal Inter-Processor Communication (IPC) - The required communications

between processors are low. Depending on the design of the scheme, IPC may

occur at the end of the EKF algorithm to synchronize the state vector X and

variance-covariance matrix P. The situation is even simpler for the GD algo-

rithm. IPC may occur at the end of the GD algorithm to synchronize the state

vector X. The amount of data transferred over the IPC is relatively moderate.

With a state vector's size of N and the above scheme in operation, the amount

of data transferred (payload) for the EKF algorithm would include 4N bytes

for state vector X and 4N 2 bytes for the variance-covariance matrix P (Using

double precision. Lower precision maybe used for the scalability requirement).

This amounts to approximately 4MBs of data with N = 1000. With 100Mbs

LAN connection, this is not a significant overhead. If the synchronization occur

at the Jacobian step in equation 3.12, the amounts of data reduces to 4NNob

bytes, where Nob is the number of surveillance sensors in the system (Usually

N > Nob). The case for the GD algorithm is similar to the analysis above. In

general, with any moderate size of N, this process is entirely a trivial exercise. 2

In the next section, we will describe the architecture of the distributed computing

in detail. The implementation details will follow and a summary will be given at the

last part of this section.

2[Wen, 2009] described the techniques of IPC reductions in details.



4.3.2 Architecture

While there are many schemes for distributed computing, this thesis employs the

most fundamental one - the Server-Client scheme (or sometimes called Master-Slave

scheme). In this scheme, one machine takes the role of "Server" and is responsible for

1) Coordinating clients for their derivative computations 2) completing the rest of the

algorithm routines before and after the computation of derivatives and 3) Initializing

synchronization with clients at the appropriate point in time. The exact internal

state for both Server and Clients are controlled by a finite state automaton.

The general architecture of the implementation is give below:

Sync Message

Figure 4-1: The generic server-client implementation of the Para-EKF and Para-GD
algorithms

The master is responsible for distributing clients' work load, receiving derivative

portions from clients, centralized processing on the remaining routines, and synchro-

nizing clients at the end of each time interval.

At the beginning of a new time interval, the server first performs iteration/loop

initializations. The derivative is then calculated in the distributed fashion. The server



allocates portions of the derivative calculations to every client. The derivative will

be estimated using the finite differential method stated above. The server first cal-

culates H(X). Clients then calculate -, ,... af , respectively. The complete

partial derivative can then be formed from derivative portions that are computed

from individual clients.

Finally, the server completes the remaining part of the algorithm routines. At the

end of the algorithm before proceeding to the next calibration time interval, it sends

synchronization messages to each of the clients to align its internal state. In the case

of EKF, the synchronization message contains the state vector X and the variance-

covariance matrix P. In the case of GD, the synchronization message contains only

the state vector X.

4.3.3 Definition

In this section, we present the distributed implementation of the two algorithms. We

assume the state vector Xh for time interval h of size N. There are n processors/clients

for distributed computing. The load balancing is archived by a prior definition of the

boundary vector L which is composed of N 2-tuples of (ProcessorID, ParameterID).

L = {(0, 0), (0, 1), ... , (0, si), ..., (nserver, N - 3), (nserver, N - 2), ... , (nServer, N - 1)}

Processor #(0) will be responsible for (, ,., f. Likewise, processor #(n-1)

will be responsible for af , f Of
KN 3'XN-2 tesXNp1

The Para-EKF is presented in table 4.1. The Para-GD) is presented in table 4.2.



4.3.4 The Para-EKF Algorithm

Client J Side
1: Time update

XhIh_1 FhlXhl1_

Phh-1 = Fh_1Ph-1|h-1F7j1 + Qh
4: Taking partial derivative
5: for i = 1 to N-i do

6: H = f(X)= Clients [L[i][0].H[L[i][1]]

7: end for
8: Measurement update

Gh = Phhl_1H (HhPhlh_1H + R

XhIh = Xhli_1 + Gh [Yh - h(Xhlh-1)]

PhIh Phh-1 - GhHhPhlh_1

12: Synchronization

1: Time update

Xhlh-1 = Fh_1Xh_1|h_1

Phh-1 = Fh-1P_ 1|h_1Fh_1 + Qh
4: Taking partial
5: for j = Sj-1+ 1

derivative
to Sj do
6: Hj = -2L

h -X3

7: end for

Table 4.1: Distributed Extended Kalman Filter Algorithm - Para-EKF

Server Side

Vi:[1..n] Clients[i).Xhlh = Xhjh
Vi:[l.. Clients[i].Plh Phjh



4.3.5 The Para-GD Algorithm

Client J Side

XhIh1 Xh + AXh-l1h-1

3: Direction Search
4: for i = 1 to N-i do

5: H = f(X)= Clients [L[i][0]].H[L[i][1]]

6: end for
7: Step Size Search

(A) = argmin((Xhl-1 + AH))

9: Update

XhIh = Xhlhl + AH
AXhjh = XhIh Xh

12: Synchronization

Vi:[..n] Clients[i].Xlh = XhIh

1: State Prediction

XhIh_1 = Xha + AXh_11a_1

3: Direction Search
4: for j = Sj-1 + 1 to Sj do

5: H3 =h axe
h

6: end for

Table 4.2: Distributed Gradient Descent Algorithm - Para-GD

Server Side
1: State Prediction



Distributed implementation helps to reduce the amount of time spent on the

derivative estimation. However, other parts of the algorithms (those that serialize

in procedures), still need to be processed locally on the server. For EKF, the major

overheads are the matrix inversion and multiplications. For GD, additional function

evaluations are performed post-derivative estimation. Assuming that the processors

are of equal speed and derivative calculation dominates speed complexity, with n

processors, it is expected that the distributed implementation is approximately n

times faster than the single-processor configuration.

4.4 Summary

In this section, practical considerations are given to target the scalability of the on-

line calibration framework. This chapter proposes two strategies. On the algorithmic

side, we propose the idea of SP for optimal algorithm scalability. This is later ex-

tended by more generalized methods: the PSP-EKF and PSP-GD algorithms for

enhanced speed performance while retaining a high degree of accuracy. On the im-

plementation side, distributed computing helps leverage the overheads in the EKF

and GD algorithms. We provide implementations for both Para-EKF and Para-GD

algorithms. The implementations are based on the master-client model. The master

processor is responsible for running the overall algorithms, allocate jobs and receive

results to/from clients, as well as synchronization between the server and clients. We

conclude that the two strategies are orthogonal and complementary. It is possible to

combine the techniques to form the hybrid Para-PSP-EKF/Para-PSP-GD algorithms

- the PSP-EKF/PSP-GD that runs individual partitions on separate processors.
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5.1 Objectives

The objective of the case study is to demonstrate the feasibility of the proposed on-

line calibration approach. In particular, accuracy, robustness and speed of the

proposed candidate algorithms are discussed.

Accuracy refers to the ability of taking an array of sensor data to generate highly

consistent network estimations and predictions. This translates directly to achiev-

ing low values for the performance indicators on current as well as predicted future

network conditions.

However, being able to achieve good accuracy on non-fluctuating network scenarios

is not sufficient. The ability to consistently achieve good accuracy across a number of

different scenarios is desired. Robustness of the candidate algorithms will therefore

be experimented and discussed.

Finally, the candidate algorithms need to be efficient. The real-time nature dic-

tates that the proposed framework runs as fast as possible. Candidate algorithms

with slow speeds (e.g. operate in the order of hours) have no practical value for

on-line deployment.

5.2 Experiment Setup

In this section, the case study experiments are discussed in detail. The layout of the

section is as follows. First the network and deployment of sensors are presented. We

then describe the DTA system used in the experiments and the model variables for

optimization. Finally, a description for each of the experiments is presented. The

experiments are designed specifically to target the objectives described above.

5.2.1 Network and Sensors

The network used in this analysis is the Brisa A5 motorway. (A5 - Auto-estrada

da Costa do Estoril) It is a 25-km inter-urban expressway section between Lisbon

and Cascais. The motorway consists of 85 road segments (mostly highway segments)



and 56 nodes representing significant points in the network. The layout of the study

network is given in figure 5-1. The A5 motorway is located in western Portugal. It

links Cascais with Lisbon along a number of major destinations in the region.

Figure 5-1: The study network - Brisa A5. Source: Google Map 2009

The motorway is primarily equipped with toll collection systems, surveillance

camera counters and inductive loop detectors. All these sensors provide time de-

pendent vehicle counts at specific parts of the network.1 The network also deploys

point-to-point sensors such as the Via-verde sensor. The sequential identification of

vehicles between consecutive toll plazas using Via-verde offers measurements of aver-

age segment speeds in real-time.2 The point-to-point sensors cover segments between

5 pairs of check stations: Pair 1: Estoril to Carcavelos; Pair 2: Carcavelos to Service

Area; Pair 3: Service Area to Estadio; Pair 4: Estadio to Linda Velha, Pair 5: Linda

Velha to Lisbon. The deployment schema of the fixed sensors and point-to-point

Via-verde stations in the network are given in figure 5-2. Four types of fixed sensors

are deployed: 1) Loop detectors 2)Toll Plaza Counter 3)Video Camera Counter 4)

Point-to-point Sensor. The network management system also provides incident data,

including type and location [Huang et al., 2009].

'The camera counters are still under development, thus they are omitted from the observations.
21t is a dedicated short range communication technology used to identify vehicles at toll plazas.

When vehicles pass a pair of toll gates, their travel times are logged and average segment speeds can
be estimated.



Figure 5-2: The sensor deployments on the Brisa A5 study network

5.2.2 DynaMIT-R

DynaMIT-R (stands for DynaMIT Real-time) is chosen as the candidate DTA system

in the experiment. DynaMIT-R is a state-of-the-art DTA system for traffic network

estimation and prediction developed by the MIT Intelligent Transportation Systems

Laboratory. The system is composed of two components 1) Demand simulation and

2) Supply simulation. The demand simulation conducts pre-trip behavior modeling

using historical OD demand matrix. This includes a simulation of the choice of

departure time, routes and whether the trip is canceled, while considering the latest

guidance information. The supply simulation takes the listed drivers with choices from

the demand simulator, and conducts meso-scopic traffic simulation. While traveling,

drivers' behaviors are constantly updated in response to the latest guidance. The

outputs of DynaMIT-R are network characteristics such as link speed, average travel

time, densities as well as drivers' benchmarks such as trip travel time, trip length,

fuel consumption, etc.

5.2.3 Parameters and variables

The parameters in DynaMIT-R that are subject to scenario-to-scenario calibrations

can be loosely grouped into three categories: 1) Parameters related to driver behaviors



2) Supply simulator parameters related to road segments and 3) Time dependent OD

flow matrices and auto-regressive parameters.

The first group consists of parameters within the behavior choice models. These

parameters, which generally reflect drivers' long-term decision-making philosophies,

are for the purposes of this case study, assumed to be constant in the real-time calibra-

tion framework that deals with a much shortened time horizon. To that end, these pa-

rameters in the behavior choice model are usually estimated during the off-line process

and are assumed to be constant in the on-line stage. [Antoniou et al., 1997] presents

a complete list of the behavior parameters and their descriptions in DynaMIT-R.

The second group is composed of parameters that describe the characteristics

of the network supply dynamics. These parameters are exemplified by the speed-

density relationship model in DynaMIT-R's supply simulator. They consist of the

maximum and minimum speeds and densities and, two model parameters a and 3.

These parameters will be included in the optimization framework. These parameters

capture the short-term changes in network conditions.

The last group is composed of time dependent OD matrices. The OD flows are

included in the optimization framework to account for short-term fluctuations in

traffic demand. This is because the actual demand on the day of operation might be

higher or lower than the historical value. Unlike the behavior parameters, deviations

in demand level are likely to be significant between days. Proper adjustments of the

demand levels are therefore, critical in reproducing consistent network conditions.

There are a total of 43 OD flow pairs specified, and 85 segments. The segments can

be grouped into homogeneous groups and their supply parameters can be calibrated

at the grouping level. The grouping of the segments' supply parameters is a common

approach for reducing the dimension of the state vector [Aerde and Rakha, 1995].

5.2.4 Experiment Design

The experiment consists of two types of scenarios - the model is first calibrated off-line

for the duration of a normal week day. The off-line calibrated model is then validated

with data from a different week covers the same time period. The candidate algo-



rithms are tested during the validation experiment. The validation experiment tests

the algorithms' accuracy (during the estimation and prediction stages), robustness

(each experiment is repeated multiple times with different initial random seeds) as

well as efficiency (algorithm running time). We use DynaMIT-R with one iteration of

OD estimation as the base algorithm for comparison. During validation, we compare

four candidate algorithms: PS, CG, GD and EKF with the base algorithm. Scalabil-

ity is also investigated. Different sized state vector are used during validation. The

initial comparison is carried out on a relatively small state vector (with the supply

parameter combined into homogeneous groups). Later on, we will test scalable algo-

rithms: PSP-GD, PSP-EKF, Para-GD and Para-EKF on the full state vector without

groupings. The results and discussions are presented in the next section.

5.3 Results

5.3.1 Offline Calibration

The DynaMIT-R model is calibrated off-line for the day of 10-December-2009. OD

flow levels, speed-density relationships and auto-regressive parameters are calibrated

using an iterative Pattern Search methods. To facilitate the speedy comparison of

large sets of candidate algorithms, the experiment period is selected to be 10 min

intervals between 3:10pm-5:10pm, and during which 1) temporal traffic fluctuations

exist and 2) traffic intensity is relatively mild so that comparisons among multiple al-

gorithms can be made in shorter time duration. The count and speed estimates from

the DynaMIT-R model after off-line calibration are closely aligned with the obser-

vations. The off-line calibrated RMSN for count is 0.087, and the off-line calibrated

RMSN for speed is 0.109, during the experiment period. The off-line calibration result

can best be presented using the 45 degree plot in figure 5-3 and 5-4.

The X axis represents the model's estimated speeds (mph) or counts (# vehicles)

3The calibrated set of ODs and model parameters from previous iterations is used as the start-
ing values for their calibration in the next iteration. [Balakrishna, 2006] discussed off-line DTA
calibration in detail.
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Figure 5-3: A 45 degree plot of estimated sensor counts against observed sensor counts
during off-line calibration

Figure 5-4: A 45 degree plot of estimated sensor speeds against observed sensor speeds
during off-line calibration
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and the Y axis represents the observed speeds (mph) or counts (# vehicles). A linear

regression is run on the resulting data pair. The slopes of the lines for both counts

and speeds are very close to 1.

Although the off-line calibrated model is capable of reproducing count and speed

estimates that matche closely to sensory observations, off-line calibrated models with-

out functionality of real-time adjustments cannot overcome traffic condition shifts

between days. The shifts between two days may be due to weather conditions, inci-

dents, special events, or simply the stochasticity of the traffic flows. For example, the

difference between traffic sensory observation on 11-Jan-2010 (one month after 10-

Dec-2009) and that of 10-Dec-2009 is significant. The fluctuation of counts across the

two days are presented in figure 5-5. The systematic reduction of traffic volume may

be caused by the demand sensitivity at this point in time in a year. The fluctuation

of speeds across the two days are presented in figure 5-6. It is evident that significant

changes in traffic patterns exist - while the off-line calibrated model is trained to cope

with one scenario, it might not perform well for another scenario where unforeseen

traffic patterns are present.

5.3.2 Base-line Algorithms Online Validation

The 11-Jan-2010 (Monday) data is used for on-line algorithm validations. Data is

collected for the same period of time as that of the off-line calibration conducted for

10-Dec-2009 (Thursday). Four candidate algorithms are compared - PS, CG, EKF

and GD. The base algorithm corresponds to DynaMIT-R running OD estimation

for one iteration.4 The parameters subject to optimization consist of all OD flows

and supply parameters that are grouped into 24 portions. For each segment group

we calibrate 6 parameters in real-time: Capacity, Max Speed, Min Density, Max

Density, Alpha and Beta as defined by 2.20. This makes the state vector of length of

4The intuition of a base reference is to compare alternative on-line algorithms with an algorithm
that has limited calibration capability. The emphasis is among candidate algorithms and between
them as a group and the base. Although the base conducts only one iteration of OD, additional
iterations maybe performed and the enhancement is only expected to contribute to the variability
to the OD flows.
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43 + 24 x 6 = 187

The PS and GD algorithms are expected to be slow, thus operational constraints

are specified instead of running the full versions till their convergence. The PS and

GD are limited to run the outer loops only twice. This limits the running time of the

algorithms to less than 5 mins during a 10 mins calibration interval. The implementa-

tion of PS is based on [Deb, 2005]. The implementations of CG and Brent's in GD are

based on [Press et al., 2007]. The linear algebra library used in the implementations

is the C++ Boost library with Atlas Numerical Bindings. The matrix inversion is

implemented using the LU decomposition techniques. Benchmarking shows that our

implementation of matrix inversion for a dense matrix initialized with random entries

of size 500 x 500 takes sub-second, and less than 40 seconds for size of 5000 x 5000.5

All comparisons are performed 5 times. For comparison purposes, identical sets of 5

random seeds are used across the algorithms. Average RMSNs are reported for all

algorithms. GNU gprofiler is used for speed benchmarking. All algorithms are tested

on the same Linux machine running Ubuntu 9.04 with a CPU configuration identical

to that of the matrix inversion test. DynaMIT-R is compiled using G++-4.2 with

-03 flagged, debugging disabled and terminal/disk I/O suppressed.

The performance of estimation as well as 3-step predictions for both counts and

speeds are tabulated below:

Table 5.1: RMSN for the online validation for counts for the four candidate algorithms
as well as improvement over the base algorithm

Estimation 1-Step 2-Step 3-Step
Base 0.174 0.174 0.175 0.175
CG 0.142 (18.4%) 0.156 (10.3%) 0.165 (5.71%) 0.167 (4.57%)
PS 0.122 (30.0%) 0.154 (11.5%) 0.164 (6.30%) 0.168 (4.00%)

GD 0.143 (17.8%) 0.160 (8.05%) 0.165 (5.71%) 0.167 (4.57%)
EKF 0.118 (32.2%) 0.150 (13.8%) 0.161 (8.00%) 0.164 (6.29%)

As it can be seen, all four candidate algorithms significantly outperform the base

algorithm. The improvements over the base peaks for the estimation state and grad-

50n Intel(R) Core(TM)2 Quad CPU Q6600 A 2.40GHz



Figure 5-7: Comparison of traffic count RMSN among base-line algorithms
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Figure 5-8: Comparison of segment speed RMSN among base-line algorithms

ually decrease as more prediction steps are taken. In particular, the PS and EKF

are superior to the CG and GD algorithms under both the estimation and prediction

stages.

Table 5.2: RMSN for the online validation for speeds for the four candidate algorithms
as well as their improvment over the base algorithm

Estimation 1-Step 2-Step 3-Step
Base 0.154 0.163 0.167 0.171

CG 0.142 (7.79%) 0.152 (6.75%) 0.157 (5.99%) 0.163 (9.53%)
PS 0.124 (19.5%) 0.143 (12.3%) 0.146 (12.6%) 0.157 (8.19%)
GD 0.143 (7.14%) 0.152 (6.75%) 0.157 (5.99%) 0.164 (4.09%)

EKF 0.134 (13.0%) 0.146 (10.4%) 0.150 (10.2%) 0.159 (7.02%)

In the above, we compared the four candidate algorithms' accuracy performance

Count RMSNComparisons of Base-line Algorithms
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and we have demonstrated the feasibility of our framework using the state-space and

the direct optimization frameworks. We notice that the base algorithm performed

less well compare to the off-line testing case. This is expected as the matching of the

traffic pattern and surveillance data are inexact between the two dates. As a result of

the miss-matching, the real-time model calibration approach is needed. Although nu-

merically promising, it can be shown that none of these algorithms are sufficiently fast

for large networks - they all require many number of function evaluations. Among the

four algorithms, CG and PS have much higher computational complexity, therefore

they more function evaluations than that of EKF and GD.

Table 5.3: Algorithm running speed comparison for CG, PS, EKF and GD

CG PS EKF GD

Trial 1 137.51 6371 219.28 9855 37.89 1728 40.33 1895
Trial 2 115.07 5131 178.91 8032 36.66 1728 40.38 1877
Trial 3 156.51 6801 180.24 7997 36.38 1728 40.51 1908

Trial 4 155.38 6801 189.55 8378 36.66 1728 39.05 1902

Trial 5 157.00 6586 192.81 8691 35.55 1728 42.15 1914
Average 144.29 6338 192.16 8590 36.6 1728 42.48 1899

The computational performance of the validation experiment is presented in ta-

ble 5.3. Both total wall clock running time and number of function evaluations per

estimation interval is presented. The PS requires the most number of function eval-

uations. This is followed by CG, requiring, on average, 3.20 function evaluations per

unknown. The most efficient algorithm is EKF. The GD requires a small overhead



in its line search routine, thus requires on average 1.12 function evaluations per un-

known. Both EKF and GD employ O(N) speed complexity with respect to state

vector of N unknowns. Notice that the overall running time for GD is still superior

to EKF. This is due to the simplicity of the GD algorithm - no dense linear algebras.

Although PS achieved good accuracy as measured by its RMSN statistics, its

running speed is the worst among all candidates. The running time for CG is slightly

better than that of PS. The total number of function evaluations CG spent is about 3.5

times that of the EKF and GD. Although PS and CG methods are highly accurate

and robust, they nevertheless do not meet the efficiency requirement. Their high

speed complexities make them inappropriate for large network deployments.

On the other hands, EKF and GD achieved orders of magnitude lower running

time. The benchmark showed average total experiment running time of 36.6 seconds

for the EKF and 42.5 seconds for the GD. In addition, the number of function evalu-

ations per state variable for EKF is 1.0 and 1.1 for GD. These results show that EKF

outperformed GD in terms of running speed on this validation experiment. The fact

that GD spent, on average, more function evaluations is because of its overheads in its

line search routine. Although this speed advancement is quite remarkable, compared

to PS and CG, their workability when challenged with large and complex networks,

is still questionable. Next, we present the validation for the scalable algorithms.

5.3.3 Scalable Design Validation: PSP-GD and PSP-EKF

For the same validation data set, we extend the state size. The state now includes 43

OD flows as well as parameters for all mainline segments in the network. There are 85

mainline segments. The segment parameters now include the 7 th parameter - minimal

segment speed. This, therefore, amounts to a total of 43 + 85 x 7 = 638 unknowns

for on-line calibration. Since the base-line algorithms are to slow, they are left out

of the comparison. Thus, this validation experiment will focus on the performance of

the scalable solution approaches. In particular, we will focus on the single processor

configuration algorithms: the PSP-GD and PSP-EKF algorithms. The objective is

to showcase their workability when dealing with large state size and demonstrate: 1)



Significant improvement over the base (preferably as close to their non-SP counter-

part as possible) and 2) Significant improvement on algorithm efficiency (ratio of

function evaluations over state size) over their non-SP counter-part.

Table 5.4: Count RMSN Performance of PSP-GD and PSP-EKF algorithm with
extended state unknowns

Estimation 1-Step 2-Step 3-Step # F
Base 0.174 0.174 0.175 0.175 -

PSP-GD 0.162 (6.6%) 0.161 (7.3%) 0.168 (4.1%) 0.168 (3.7%) 4 46
PSP-EKF 0.142 (18.4%) 0.160 (7.8%) 0.165 (5.8%) 0.167 (4.7%) 44 7

Table 5.5: Speed RMSN Performance of PSP-GD and PSP-EKF algorithm with
extended state unknowns

Estimation 1-Step 2-Step 3-Step # F
Base 0.154 0.163 0.167 0.171 -

PSP-GD 0.148 (4.1%) 0.158 (3.2%) 0.161 (3.4%) 0.167 (2.4%) 44 6

PSP-EKF 0.131 (15.3%) 0.150 (7.4%) 0.151 (9.7%) 0.162 (4.9%) 44 7

In this experiment, PSP-GD, PSP-EKF are implemented and tested against the

large state data set. The partition of the state variables is done off-line. 43 partitions

of the entire state spaces are made based on the heuristics from an EKF Jacobian

matrix. This amounts to a total of 44 function evaluations for the entire Jacobian ap-

proximation while on-line. The line search after gradient approximation is limited to

10 function evaluations. If we ignore the constant portions of algorithmic procedures

in PSP-GD (in its line searches) and PSP-EKF (due to the matrix manipulations),

this partition schema will translates to function evaluation to state size ratio of 0.069,

approximately 15 times faster than the ordinary GD and EKF algorithms used in the

previous validation experiment. Both PSP-GD and PSP-EKF are implemented based

on the same partition schema. The comparison result for both counts, speeds as well

as number of function evaluations are presented in tables 5.4 and 5.5

6This excludes function evalutions in the line search process.
7Additional calculations are required for matrix manipulations.
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The key observation here is the significant improvement on the number of func-

tion evaluations for PSP-GD and PSP-EKF. While we maintain 638 variables, the

computational complexity for PSP-GD and PSP-EKF are orders of magnitude bet-

ter than the base line algorithms. Besides, the accuracy performance, signified by

their RMSNs matches the performance of their base-line family members, GD and

EKF, respectively. This maybe best revealed by examining figures 5-9 and 5-10. In

the plots, we compare the base algorithm, GD and PSP-GD, as well as EKF and

PSP-EKF.
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Figure 5-11: Comparison of algorithms' scalability using the average number of func-
tion evaluations per state variable per estimation interval

Finally, we summarize the speed performance for the single processor on-line cal-

ibration algorithms. We plot the function evaluation to state size ratio for all four

base-line algorithms as well as the PSP-EKF and PSP-GD. The repeated findings of

search directions in both PS and CG have resulted in a large degree of inefficiencies.

The EKF and GD have improved speed performance. Both algorithms required ap-

proximately N function evaluations with N state unknowns. This is further improved

by a fold of 10 by the application of the idea of Partitioned Simultaneous Pertur-

bation. On average, the PSP-GD and PSP-EKF only require approximately 0.07

function evaluations per state variable. In addition, it has been shown that PSP-

GD and PSP-EKF achieved a high level of efficiency while maintaining prediction
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accuracy that is comparable to that of GD and EKF.

We also plot a speed/accuracy compensation diagram. The average number of

function evaluations required per state variable for each algorithm is ploted against

its prediction RMSN accuracy.
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Figure 5-12: Comparison of algorithms' trade off of scalability against accu-
racy. X-axis: algorithm's prediction RMSN (calculated roughly as }RMSNpd +

RMSNeot), Y-axis: algorithm's average function evaluations per state variable

The optimal algorithm in the plot would position itself as close to the (0,0) as

possible. As one can see, the most accurate and the most efficient algorithms are the

EKF and the PSP-EKF respectively. As we move away from the original point, we

encounter different trade-offs among candidates. For example, the PS is accurate but

very slow. The PSP-GD is faster compared to the rest of the candidates, but it is

less accurate.

The trade-off between the accuracy, as reflected by the prediction RMSN and

algorithm running speed, as reflected by the average number of function evaluations

required per state variable, is important from a practical point of view. Algorithms



that require many function evaluations tend to be more accurate. On the other hand,

algorithms that are faster, due to the application of PSP, tend to be less accurate.

The balance between the two factors needs to be achieved and we shall reserve the

choice of the most appropriate algorithm to case-by-case empirical analysis.

5.3.4 Scalable Design Validation: Para-GD and Para-EKF

We present the validation experiment for the multi-processor scalable design - dis-

tributed implementations. We come back to the base-line GD and EKF algorithm

with their speed performance presented in table 5.3. As the validation state size

increased from 187 to 638, the corresponding average running time of the two algo-

rithms also increased. The total running times for EKF and GD for the large state

experiment are 151.52 and 131.82 seconds. Although the increase on the overhead is

almost linear, it can become intractable as the state size becomes large enough. One

important observation is that the calculation of one variable's partial derivative is

strictly independent of one another and there is no reason one needs to serialize the

procedure. Another important observation is that the distributed approach is lossless

- that it produces identical results compared to the serialized approach.

This section tests the distributed implementation of the two algorithms, aiming at

verifying the feasibility of the approach. As the distributed computation is lossless,

we will focus our analysis on the running speed aspects. In this experiment, four

processors are connected via wired Internet and one processor is connected through

wireless. Internet Communication Engine (ICE) is used to provide communication

between processors via Internet access. ICE is a modern object-oriented middle-ware

with support for many languages including C++. We ran the distributed implemen-

tations of the two algorithms with configurations of 2 processors, 3 processors and 5

processors and we logged the speed performance of the master processor. For the pur-

poses of this experiment, identical random seeds are seeded at initialization among

the processors. For each configuration, we repeat 5 times for both algorithms. In

table 5.6, we summarize total running time, total function evaluation time, average

time spent per single function evaluation and total time spent on internal function



evaluations for the server processor.

The statistics suggest effective reduction of the operational time spent in the func-

tion evaluation, and as a result, reduction on the overall algorithm running time. The

total running time for EKF dropped from 151.5 seconds to 55.5 seconds. The total

running time for GD dropped from 131.8 seconds to 34.8 seconds. As expected, the

time incurred from the serial part for both algorithms remained largely constant. The

time spent on algorithm internals for EKF and GD are 27.2 seconds and 0.1 seconds

for the single processor configuration. This did not change significantly for the 5

processor configurations. As the "fixed cost" for GD is much lower than EKF, the

distributed computing strategy tends to be more effective for GD than for EKF. The

overall running time reduction is 73.6% for GD and 63.4% for EKF. In addition, GD

outperforms EKF in terms of computational performance in every trial. The com-

parisons can be further comprehended from figure 5-13. The empirical data supports

our theoretical expectations. Although the Para-EKF and Para-GD are still very

slow under the 5 processor configuration, it nevertheless tells us that distribution of

the Jacobian computation is a viable approach. Last but not least, the finding might

also help to further improve the PSP-GD and PSP-EKF, resulting in their respective

parallel versions.



Extended Kalman Filter (EKF) Stochastic Gradient Descent (GD)
A B C D A B C D

Trial 1 149.21 5751 2.595x 10-2 87.05 126.42 5961 2.121x10- 2  91.11
Trial 2 149.73 5751 2.604x 10-2 88.58 131.34 5946 2.209 x 10-2 93.83

1 CPU Trial 3 152.49 5751 2.651x 10-2 89.72 132.90 5935 2.235x 10-2 95.67
Trial 4 151.95 5751 2.642x10- 2  90.42 131.10 5970 2.196x10~2 94.23
Trial 5 152.38 5751 2.650x 10-2 90.47 137.33 5966 2.302x 10-2 94.55
Mean 151.52 5751 2.628x10- 2 89.25 131.82 5956 2.213x10- 2  93.88
Trial 1 86.58 2817 3.073x 10-2 44.66 60.93 2822 2.159 x 10-2 44.00
Trial 2 83.93 2817 2.979 x 10-2 43.71 61.57 2841 2.167x 10-2 44.82

2 CPU Trial 3 85.81 2817 3.046 x 10-2 44.26 60.86 2839 2.144x 10-2 45.29
Trial 4 86.05 2817 3.055x 10- 2  44.34 59.72 2828 2.111x10- 2  43.12
Trial 5 85.14 2817 3.022x 10-2 44.19 68.51 2834 2.417x 10-2 49.39
Mean 85.5 2817 3.035x10- 2 44.23 69.32 2832 2.200x10- 2  45.32
Trial 1 65.59 1962 3.343x 10-2 29.71 46.08 2147 2.146 x 10-2 32.88
Trial 2 66.85 1962 3.407x 10- 2  30.09 47.17 2166 2.178 x 10- 2  34.39

3 CPU Trial 3 66.85 1962 3.407x 10-2 30.53 47.15 2164 2.179x 10-2 34.26
Trial 4 67.64 1962 3.448 x 10-2 31.36 45.28 2153 2.103x10- 2  32.32
Trial 5 65.71 1962 3.349 x 10-2 29.79 51.42 2159 2.382x 10-2 37.80
Mean 66.53 1962 3.391x10-2 30.30 47.42 2157 2.198x10- 2  34.33

Trial 1 55.63 1377 4.040 x 10-2 20.89 33.70 1562 2.157x 10-2 24.01
Trial 2 55.31 1377 4.017x10- 2  20.56 34.73 1581 2.197x10- 2  24.29

5 CPU Trial 3 54.15 1377 3.932x10- 2  20.85 34.04 1579 2.156x 10-2 24.64
Trial 4 56.80 1377 4.125x 10-2 22.24 33.33 1568 2.126 x 10-2 23.49
Trial 5 55.76 1377 4.049 x 10-2 21.66 37.98 1574 2.413x 10-2 27.55
Mean 55.53 1377 4.033x10- 2 21.24 34.76 1572 2.210x10- 2  24.80

Table 5.6: Computational statistics for distributed implementations of EKF and GD algorithms. Processor configurations of 2,
3 and 5 are compared each is repeated for 5 random seeds. Category A: Total experiment running time (sec); B: Total number
of function evaluations; C: Running time per single function evaluation (sec); D: Total time of function evaluations (sec)



Figure 5-13: The speed performance comparison between EKF and GD in their distributed implementations



5.4 Summary

This section presented a real-world case study that exemplifies the effectiveness of

the proposed on-line calibration framework and characteristics among different can-

didate algorithms and their implementations. We show that off-line calibration is not

sensitive to traffic pattern fluctuations and may perform poorly without adequate

real-time adjustments. The framework is verified on the Brisa A5 motorway in West-

ern Portugal. Four candidate algorithms are tested in the validation experiment. The

PS and EKF show most promising numerical results. The other algorithms obtained

comparable performance on both counts and speeds. We show that PS and CG re-

quire many function evaluations and run much slower than EKF and GD, therefore

they are not suitable for framework deployment on large-scale networks. The recom-

mendations for the most promising algorithm on a single processor using sequential

gradient approximation, are the GD and EKF algorithms.

The next part of the case study demonstrates the effectiveness of the proposed

scalable framework design. We then extended our parameter state size from 187

to 638. We showed that we are able to achieve improvements over the base case

using much fewer function evaluations with the application of PSP. Using PSP-EKF

and PSP-GD, we are able to achieve function evaluation to number of state variable

ratio of as low as 0.07. We show that the resulting prediction performance is largely

comparable to that of the original EKF and GD algorithms.

On the side of distributed implementations of EKF and GD, 2, 3 and 5 CPU

configurations were tested with multiple random seeds. We show that with distributed

computing, we are able to reduce the variable cost for both algorithms considerably.

However, both algorithms incur their own fixed cost portion that are relatively stable

across different configurations. For this particular case study, we show that the GD

is superior than EKF in terms computational performance. In the case of EKF, the

computational burden in its matrix manipulation is still high. On the other hand,

the fixed cost portion for GD is more than 200 times smaller. Although GD requires

additional number of function evaluations, the advantage from their small algorithm
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internal cost is so huge that the losts of its incremental function evaluations are almost

negligible.
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6.1 Summary and Findings

In this thesis, algorithmic and implementation aspects of the DTA model on-line

calibration are addressed.

The on-line calibration of DTA systems is formulated under the state-space as

well as the direction optimization framework. Using simulation-based DTA models,

the frameworks seek to minimize 1) derivations of unknown parameters from their a

priori and 2) inconsistencies between sensory observations and their DTA-simulated

counter-parts. The framework is flexible. It does not impose any restrictions on

specific DTA models nor the types of sensory networks.

We outline four base-line solution algorithms aimed at verifying the feasibility of

the on-line calibration framework. The state-space formulation is realized through

the application of the EKF algorithm. The direct optimization formulation is realized

through the application of the PS, CG and GD algorithms. Although numerically

promising, we find that PS and CG are computationally burdensome. Although on

average, EKF and GD requires only one function evaluation per one state variable,

they become intractable when dealing with sufficiently large network, for which, one

function evaluation is already very costly.

We propose two orthogonal and complementary strategies to speed up the oper-

ations of the framework. We take the two most promising candidates, the EKF and

GD from the base-line algorithms, and we present their extensions to address the

issue of scalability.

On a single processor, we propose the PSP-GD and PSP-EKF algorithms. The

algorithms are capable of producing accurate predictions that are comparable to

their base-line counter-parts: GD and EKF. However, their running time is orders of

magnitude lower.

With multiple processors, we propose the Para-GD and Para-EKF algorithms.

We show, empirically, that distributed computation considerably reduces the compu-

tational time compared to that of the single-processor configuration for both EKF

and GD algorithms. We conclude that distributed implementation effectively reduces
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the computational time for large-scale network deployment.

6.2 Thesis Contribution

This thesis makes several concrete contributions to the state-of-the-art, specifically,

1. The feasibility and effectiveness of the on-line calibration framework in a real-

world application using both state-space and direct optimization formulations

are demonstrated.

e The framework is tested and successfully verified on a medium network

with state variables exceeding 600. Previous on-line calibration studies

used state size around 100.

o Multiple sensory technologies are used in the testing, including Via-Verde

and automatic Toll Gate Counter technologies. This demonstrates the

flexibility of the framework. It does not impose any constraints on the

types of sensors that it handles.

2. A scalable framework design with single processor: the PSP-EKF and PSP-GD

algorithms are presented. The algorithms achieve a high degree of accuracy

while maintaining low computational complexity.

3. A scalable framework design with multiple processors: Complete C++ imple-

mentation of the distributed version of the EKF (Para-EKF) and GD (Para-GD)

algorithms within DynaMIT-R. A detailed computational performance analysis

is presented along with the Brisa case study.

6.3 Future Research

The limitations of this study are discussed and algorithmic and application-related

considerations for future research are presented in this section.
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" Additional Model Parameters: In this thesis, the parameters for on-line

calibration only includes a subset of all the parameters from a DTA model. In

particular, the behavioral model parameters are left out of the on-line calibra-

tion framework. The assumption is that for real-time applications, the under-

lying behavior model parameters do not fluctuate rapidly within a small time

period. However, this may not always be the case. [Antoniou, 2004 argued

that variations in the effective behavioral parameters can be observed because

of other reasons such as variations in the traffic mix. One of the examples given

in [Antoniou, 2004) is the situation during major special events such as sporting

events or a concert, where large amounts of traffic arrive and depart from the

same location at the same time. Future research may investigate and study the

flexibility of including behavior model parameters into the online calibration

framework.

" Further Experimental Analysis: The framework is demonstrated on a non-

trivial but relatively small real-world network. Further verification of the effec-

tiveness and computational performance may need to be performed on larger

networks. Moreover, the case study is conducted during non-peak hours. Ad-

ditional analysis during peak traffic hours will further add credibility to this

work.

" Accurate and Robust Algorithms: Real-time workability of the framework

dictates accurate and robust algorithms. We show that accuracy and robustness

are the fundamental requirements in selecting candidate algorithms. Future

research will continue the selection of the most promising algorithms that are

able to produce accurate and robust performance. We used the ratio between

the number of function evaluations and the total number of unknown variables

as an indicator for the algorithmic speed. As discussed in chapter 3, this is a

very simplified approach and further analysis can adopt a comprehensive set of

performance descriptors.

" Parallelization: While accuracy and robustness are important, the efficiency
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of the framework is the key to framework scalability. When the problem is

sufficiently small, we have shown that the base-line candidate algorithms are

able to solve it well in a moderate amount of time. However, this may not be the

case as the program grows larger. Here we differentiate two parallel schemes: 1)

Parallel implementation of calibration algorithms and 2) Parallel computation

within the DTA model itself [Wen, 20091. This thesis investigates the design

and realization of the former. However, a combination of the two approaches

could potentially lead to extended scalable solutions. Future research might

study these strategies.

9 Hybrid Parallelization and PSP: As the state becomes large, there might

be potentially many conjugate sets generated by the off-line partition process.

When the number of sets becomes large, one might use parallelization tech-

niques to process them from multiple processors and thereby reduce the total

computation time required.
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