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Abstract

With wireless devices becoming ubiquitous, the problem of designing high performance
and reliable wireless networks is of great importance today. Wireless links are characterized
by a rapidly varying channel, requiring transmitters to dynamically adapt their transmit bit
rate. The broadcast nature of radio also necessitates the use of medium access protocols

to arbitrate access among competing transmitters and reduce losses due to interference,
while enabling successful concurrent transmissions. We observe that the problems with
existing bit rate adaptation and medium access protocols stem from insufficient information
about the wireless channel at the link layer. This dissertation makes two contributions:
(i) a redesign of the interface between the physical and link layers in wireless networks to
expose more information about the wireless channel to the link layer, and (ii) the design
and evaluation of new link-layer protocols that improve throughput by using information
about the channel delivered via the new interface.

In today's network architecture, the physical layer (PHY) delivers received frames and
per-frame signal strength measurements to the link layer. This dissertation proposes two
enhancements to this interface: the PHY streams bits to the link layer as soon as they
are decoded and before the entire frame reception completes, and it computes and exports
SoftPHY hints with each decoded bit. The SoftPHY hint of a bit indicates the PHY's confi-
dence that the decoded bit is correct. We show that the SoftPHY hints of a received frame
can be used to estimate the bit error rate (BER) of the wireless channel faster and with
more accuracy than with existing methods. We develop the SoftRate bit rate adaptation
protocol that uses this BER computed from SoftPHY hints to pick transmit bit rates and
improves throughput by 2 x over existing protocols. The streaming PHY interface enables
the link layer to learn about the current transmission on the air by decoding headers before
frame reception completes. The SoftCMAP and CMAP protocols make smart medium ac-
cess decisions using this knowledge of ongoing transmissions along with a distributed map
of conflicting transmissions, and improve aggregate network throughput by up to 50% by
increasing the number of successful concurrent transmissions.
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Chapter 1

Introduction

The technological improvements in the field of wireless communication have made wireless
devices ubiquitous, from handheld computers and laptops with internet access to phones
and other devices with cellular data connectivity. Although the rated wireless link speeds
have been increasing, the end-to-end throughputs in wireless networks are often much
lower than the link speeds, and fall far short of their wired counterparts.

This dissertation presents solutions that improve the throughput of wireless data net-
works. The challenges in wireless networks stem from the fundamental properties of radio
and are markedly different from those in wired networks. The electrical circuitry in the
wired channel adds a small amount of noise to transmissions, barring which the quality of
the channel stays constant and predictable. For instance, a well-engineered 1 Gbps optical
fiber will be able to consistently deliver a throughput close to 1 Gbps across the two ends
of the fiber for a very long time. In contrast, the quality of the wireless channel changes
rapidly with time. Radio is also a shared broadcast medium, unlike most wired channels
that provide an exclusive channel of communication between the two end-points. Even in
cases when the wire is shared (e.g., Ethernet), sharing is usually simpler because, unlike in
wireless channels, all the devices on the cable can hear everyone else and can coordinate to
transmit on the wire one at a time.

The wireless channel is more complicated than a wired channel for many reasons. Mo-
bility of the transmitter or the receiver or scattering from the various objects in the envi-
ronment changes the average signal strength between the sender and receiver. In addition,
multipath fading that occurs due to the combining of multiple copies of the transmitted
signal at the receiver leads to random fluctuations on shorter timescales. As a result, the
strength of the transmitted signal at the receiver, as measured by the Signal to Noise Ra-
tio (SNR), can change by many orders of magnitude within a short period of time. This
change can result in drastic variations in the bit error rate (BER) of transmitted messages.
For example, Figure 1-1 illustrates the variation of SNR and BER over time when a sender
is moving away from the receiver at walking speed. Notice that the average signal quality
gradually reduces from the left to right in the graph due to increasing distance between
the sender and receiver, and multipath propagation causes random fluctuations over shorter
timescales.

The wireless channel is a broadcast shared medium and the simultaneous transmissions
of different senders interfere over the air. Now, some concurrent transmissions result in a
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Figure 1-1: SNR fluctuations across time with pedestrian mobility. One can notice a
gradual decline in the average signal strength (shown in the logarithmic dB scale) over the
10-second window in the topmost panel as the sender moves away from the receiver. If
we zoom in on a 350 ms snapshot in the middle panel, we see variations due to multipath
propagation that last a few tens of milliseconds. Changes in the signal strength also cause
changes in the channel BER (measured at BPSK modulation and a code rate 1/2) by many
orders of magnitude during this period, as shown in the bottom panel. Experimental data in
this graph is obtained using an 802.1 la/g-like software radio prototype (see Section 4.3).

garbled signal at some or all of the corresponding receivers, while some other concurrent
transmissions can proceed successfully. Sharing the wireless medium therefore involves al-
lowing as many concurrent transmissions as possible without causing unacceptable amount
of interference to any of the transmissions. This problem is much harder than its analogue
in wired networks because a receiver's ability to decode a packet successfully depends on
channel conditions near the receiver, while the decision to transmit must be made by the
sender. The receiver and sender are not always close enough that they experience similar
noise and interference conditions. In Figure 1-2, when sender S is transmitting to R, it is
best for the sender CS to not transmit to CR, because the interference from S will garble
the reception at CR. However, sender ES can (or rather, it should, in order to maximize
aggregate network throughput) transmit to ER when S is sending to R because destination
ER is far enough from sender S and is unaffected by S. In fact, ES may be able to transmit
successfully to ER even if ER is within hearing range of S-researchers have observed that
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Figure 1-2: A sample transmission from S to R with three abstract sender cases: a con-

flicting sender CS that suffers interference if it transmits concurrently with S, an exposed
sender ES that can successfully transmit concurrently to ER but is prevented from doing so
by the CSMA MAC protocol, and a hidden sender HS that may not carrier sense sender S
and may end up transmitting concurrently with S resulting in a loss.

receivers can often "capture" packets from a transmission even in the presence of other
weak interfering transmissions [60, 70]. Therefore, the decision of when it is safe for a
node to transmit depends on the other transmitters and the locations of their intended des-
tinations, unlike in wired networks.

Most of the complexity of the wireless channel is managed by the physical (PHY) and
data link layers of the wireless networking stack. The PHY receives frames from the link
layer and transmits the bits over the wireless channel from the transmitter to the specified
receiver using the RF front-end. Among other things, the PHY applies an error-correcting
code to recover bit errors, and modulates the digital data into a form that can be transmitted
as analog waveforms. Depending on the amount of redundancy added as part of the error-
correcting code and the information-packing efficiency of the modulation scheme used,
the PHY can transmit digital information at various bit rates. Transmissions at higher bit
rates have lower redundancy and are more vulnerable to channel noise than transmissions
at lower bit rates.

The PHY by itself does not handle the problems of channel variability and sharing;
these problems are handled by various link-layer protocols. When the link layer hands a
message to the PHY for transmission, it specifies the bit rate at which the message should
be sent. This transmit bit rate is computed by the link layer using a bit rate adaptation pro-
tocol. By selecting bit rates that work best at the current channel quality, bit rate adaptation
keeps the BER of transmitted messages within acceptable limits, hides packet losses due to
channel variability from higher layers, and helps maximize link throughput. The link layer
also decides when a frame should be transmitted using a medium access control (MAC) or
channel access protocol. MAC protocols arbitrate fair access to the medium while trying
to maximize aggregate network throughput by increasing spatial reuse. In today's layered
network architecture, the link layer uses only a small amount of information about the state
of the channel obtained via the PHY interface to make these rate adaptation and channel
access decisions:

1. The link layer knows whether a transmitted frame was received correctly based on
whether it elicited a link-layer ACK.

2. The PHY passes up an indicator of the sender's signal quality at the receiver, like
SNR, along with every decoded frame.
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Figure 1-3: The interface between the physical and link layers in today's wireless network
stack, and our proposed modifications (shown in bold).

3. The link layer can also poll the PHY to learn if the channel is "busy" with another
transmission at a certain time by, say, having the PHY check if the energy of the
received signal is above a certain threshold.

Despite being an active area of research for a long time, existing bit rate adaptation and
MAC protocols still leave room for improvement. This dissertation argues that the common
source of sub-optimality across various link-layer protocols is the lack of sufficient infor-
mation to make intelligent decisions, which is a result of the rather narrow PHY interface
described above. The PHY has a great deal of useful information about the state of the chan-
nel that is not exposed to the link layer, in part because the current link layer-PHY interface
was designed with wired networks in mind. For example, current rate adaptation proto-
cols use as channel quality feedback either frame reception events (which provide only a
very small amount of information per frame about channel quality) or per-frame SNR mea-
surements (which must be mapped to channel BER or link-layer throughput using either
theoretical models of the propagation channel or empirical measurements). However, the
PHY often has more detailed information on how good or bad the reception of individual
bits in a packet was, which can be used to precisely estimate the channel bit error rate
and pick suitable bit rates. The PHY also has useful information for MAC protocols. To-
day's MAC protocols make transmission decisions based on just the carrier sense signal,
which indicates that some transmission is in progress at a node. The carrier sense signal
does not capture information such as who the current sender is, and how much interference
this sender can cause at a particular receiver, leading to sub-optimal performance of MAC
protocols that rely on carrier sense alone. Note that while information about ongoing trans-
missions (embedded in link-layer headers sent at the start of a transmission) is available at
the PHY while a packet is being decoded, the interface does not allow this information to
be passed up to the link layer until after the packet reception completes.

While using additional information from the PHY can better inform link-layer bit rate
and channel access decisions, arbitrarily sharing information between the PHY and the link
layer can violate the modularity that comes with layering and can break the design when
the link layer or PHY evolves. Therefore, care must be taken to expose useful information
between the PHY and the link layer only via well-defined interfaces. This dissertation de-
scribes how one can design architecturally clean yet better-performing link-layer protocols
that are based on a new link layer-PHY interface that is better suited to the challenges of
wireless communication.



1.1 PHY-Aware Link Layer Design

In this dissertation, we propose widening the link layer-PHY interface to export more in-
formation from the PHY to the link layer, enabling the design of better bit rate adaptation
and MAC protocols. We propose two enhancements to the existing PHY interface:

1. SoftPHY Hints. The PHY passes up with each decoded bit an estimate of how con-
fident it is about the bit, i.e., the PHY's estimate of the probability that a decoded bit
is correct. We will refer to these per-bit confidences as SoftPHY hints. The SoftPHY
hints of the bits in a received frame accurately reflect wireless channel quality during
the frame reception, and can be used to directly compute the channel BER at the bit
rate of the received frame. Our method of calculating channel BER works accurately
across operating environments, independent of fading characteristics1 . The channel
BER computed from SoftPHY hints is versatile enough to be used by link-layer pro-
tocols for a variety of purposes like bit rate adaptation and channel access.

2. Streaming PHY. The PHY passes up parts of the decoded frame to the link layer at
the granularity at which they are decoded (e.g., bits, PHY symbols), without waiting
for the entire frame reception to complete. Such an interface allows the link layer to
take decisions based on the current transmission on the air, and enables the design
of better MAC protocols. For example, the link layer can decode the headers of on-
going receptions, identify the sender and receiver of those transmissions, and decide
whether to transmit or not based on the identity of the ongoing transmissions (instead
of using only the "busy" signal that indicates some transmission is in progress).

Figure 1-3 compares the new PHY interface with that in today's wireless network
stacks. In addition to the design and implementation of the new interface, this dissertation
presents the design, implementation, and evaluation of a rate adaptation protocol called
SoftRate and a MAC protocol called SoftCMAP that are both built atop this interface.
These cross-layer protocols achieve significant gains over existing link-layer protocols by
exploiting information that is available via the new interface.

Note that we define channel BER as the probability of error of bits transmitted over
the channel. Therefore, SoftPHY hints can be used to compute the underlying channel
BER even using a frame that was received with no bit errors. This feature is important for
some applications like bit rate adaptation, e.g., channel BER estimates of 10-' and 10- 9

at some bit rate, while both low enough to cause no bit errors in a single frame, would
result in different transmit bit rate choices for the next frame. Also note that the SoftPHY
hints of the received frame are used to directly estimate the underlying channel BER at the
modulation and coding of the received frame. In contrast, channel quality metrics such as
SNR of the received frame can predict the channel BER at any bit rate.

The concept of SoftPHY hints itself is not new; some previous work [26, 27, 33, 72]
computed SoftPHY hints for a specific PHY (Zigbee or 802.15) for the purpose of identi-
fying likely errored bits. Our design of SoftPHY hints improves upon earlier work in many
ways. First, the earlier design of SoftPHY hints can only identify bit errors but cannot be

'Our BER computation assumes that channel noise is Gaussian, a reasonable assumption in practice.



used to compute the probabilistic channel BER (particularly when the BER is low enough
to not cause any bit errors). On the other hand, our method allows the receiver to estimate
the probabilistic channel BER even if the BER was low enough to not cause any bit errors
in that particular received frame. Second, the earlier approach to computing SoftPHY hints
works only for the specific PHY it was designed for. In contrast, our approach of comput-
ing SoftPHY hints relies on extracting and exposing internal state from the decoder of the
error-correcting code in the receiver PHY; as such, our interface is compatible with most
physical layers that use error correction.

1.1.1 Bit Rate Adaptation

This dissertation describes a link-layer protocol called SoftRate that uses the channel BER
computed from SoftPHY hints as the feedback to perform bit rate adaptation. A SoftRate
receiver uses the per-bit SoftPHY hints delivered by the PHY via the SoftPHY interface
to accurately estimate the BER of a received frame. The SoftRate sender then uses the
BER conveyed by the receiver at the current bit rate to predict the channel BER at the other
rates, and before each transmission picks the bit rate that minimizes the air-time required
to deliver the packet to the receiver. SoftRate also uses a heuristic to identify patterns of
SoftPHY hints that correspond to transient interference, and eliminates the effect of such
interference in computing the BER feedback.

Most bit rate adaptation protocols in use today [31, 37, 34, 47, 71, 11] rely on the feed-
back of the loss rate of link-layer frames (computed by observing which frames received a
link-layer ACK and which did not) to estimate the channel quality at various bit rates, and
pick a suitable rate for transmission. However, it takes multiple frame transmissions to ar-
rive at a statistically significant estimate of the frame loss rate, which is too slow for mobile
channels that change every few frames. Our evaluation of SoftRate using a combination
of live experiments and trace-driven simulations shows that TCP flows achieve up to 2 x
higher throughput when running over SoftRate as compared to when using these protocols
that rely on frame reception events alone. This improvement is due to SoftRate's ability to
adapt transmit bit rate at the timescale of individual frames, making it highly responsive to
rapid channel variations due to mobility. SoftRate is also more robust to interference losses
than frame-based rate adaptation protocols.

Other rate adaptation protocols [23, 54, 13, 29, 51] measure the SNR of the received
signal using various heuristics, map the measured SNR to the channel BER at different bit
rates, and then compute the optimal transmit bit rate. These protocols determine the channel
BER from the measured SNR for specific modulation and coding schemes, using a channel
propagation model that captures how the SNR varies with time. Therefore, the mapping
between the measured SNR and the best transmit bit rate may change with the channel
propagation characteristics, especially in channels with high variability that occur at ve-
hicular speeds. The mapping from measured SNR to the optimal bit rate may also depend
on the hardware being used [74], due to minor differences in the PHY implementations
that result in different channel error rates for the same SNR. Therefore, bit rate adaptation
protocols that use SNR must be carefully calibrated for each environment or else suffer a
loss in throughput. On the other hand, the channel BER computed from SoftPHY hints ac-
curately reflects the channel quality across all operating environments, because the channel



characteristics are implicitly captured by the SoftPHY hints. Because of SoftRate's use of

this BER as the feedback for rate adaptation, SoftRate achieves between 35% to 2 x higher
throughput than SNR-based protocols in the absence of any environment-specific calibra-

tion. SoftRate also does not incur the overhead of pilot frequencies or known symbols that

are required to estimate the SNR over a packet.

1.1.2 Channel Access

This dissertation presents a MAC protocol that improves link-layer throughput by cleverly

exploiting the additional information available via the streaming PHY interface. In the pop-

ular carrier sense multiple access (CSMA) protocol, a node that has a packet to transmit

first checks the carrier sense signal from the PHY and transmits only if no nearby node is

transmitting. In effect, CSMA tries to ensure that only one node is transmitting at any point
of time in a radio neighborhood and avoids all concurrent transmissions. In the example in

Figure 1-2, CSMA correctly prevents CS from transmitting when S is transmitting, avoid-

ing a transmission that would have resulted in a loss. However, it also prevents ES from

transmitting successfully to ER when S is transmitting. This is called the exposed terminal

problem', because ES and S are "exposed" to each and cannot transmit concurrently. The

exposed terminal problem arises because the busy signal from the PHY only tells the link

layer that someone is transmitting, not who the transmitter is or what impact that transmitter

has on a particular receiver. Now, a streaming PHY delivers bits to the link layer as soon as

they are decoded at the PHY, with the result that the link layer can decode the frame header

and identify the sender and receiver of a transmission before the transmission completes.

To enable concurrent transmissions between exposed terminals alone, nodes maintain a
"map" of conflicting transmissions (e.g., S to R and CS to CR in Figure 1-2) and use this

conflict map for channel access decisions. By listening to ongoing transmissions on the

shared medium to identify the current transmitter, and consulting the conflict map just be-

fore it intends to transmit, each node determines whether to transmit data immediately and

concurrently with an ongoing transmission, or defer till the conflicting transmission com-

pletes. Therefore, using conflict maps along with a streaming PHY improves link-layer

throughput by increasing the number of successful concurrent transmissions.
To construct the conflict map, nodes optimistically assume that concurrent transmis-

sions will succeed, and carry them out in parallel. Then, in response to the observed fate
of the concurrent transmissions, they discover which concurrent transmissions are likely

to work, and which aren't, dynamically building up a distributed data structure of con-

flicting transmissions. We show that nodes can build and maintain the conflict map in a

distributed fashion by overhearing ongoing transmissions and exchanging lightweight in-

formation with their one-hop neighbors. Our protocol assumes that nodes try to perform

only two concurrent transmissions at a time for two reasons-it greatly simplifies the de-

sign of the protocol, and successful concurrency between more than two nodes in a single

radio neighborhood is very rarely observed in practice.

'Note that the exposed terminal problem should not be confused with the hidden terminal problem that
also affects CSMA-senders S and HS in Figure 1-2 simultaneously send to R because they are far away from
each other and therefore cannot carrier sense and avoid each other.



The streaming PHY also enables the link layer to perform a jointly-optimal bit rate
adaptation and channel access decision. Observe that the exposed terminal problem be-
comes more complicated when we consider the presence of heterogeneous bit rates at the
various senders. In the example in Figure 1-2, suppose senders S and ES transmit at the
24 Mbps bit rate to their respective receivers when sending one at a time, as indicated by
some rate adaptation protocol. It is possible that the throughput at this best transmit bit
rate drops for each sender when the other node starts simultaneous transmission, due to
the added noise from the concurrent transmission. However, it is also possible that when
both nodes send concurrently at a rate lower than the optimal, say, 18 Mbps, the additional
"slack" to tolerate noise available at the lower bit rate enables them to perform concurrent
transmissions successfully. In this case, it is better for the nodes to transmit concurrently at
18 Mbps, rather than share the channel at 24 Mbps and achieve an effective throughput of
only 12 Mbps. To harness the throughput gains from such "partially exposed" terminals,
one must perform a joint channel access and transmit bit rate decision. That is, for best
system performance in this example, S should transmit to R at 18 Mbps when ES is trans-
mitting, and at 24 Mbps otherwise. The streaming PHY lets a sender perform joint MAC
and bit rate decisions, possibly picking different bit rates based on who else is transmitting
concurrently.

We present two variations of a MAC protocol based on the idea of conflict maps. The
protocols differ in how the map is computed and in the feasibility of deployment on to-
day's commodity hardware. The first protocol, SoftCMAP, uses SoftPHY hints from the
PHY to estimate the BER at the receiver during a concurrent transmission. Based on this
BER feedback, the sender decides whether to transmit concurrently again with the ongoing
transmission. Nodes also run a bit rate selection protocol similar to SoftRate, conditioned
on various concurrent senders, to determine what bit rate to transmit at for concurrent trans-
missions. However, SoftCMAP does not lend itself to implementation on existing 802.11
commodity hardware that does not stream SoftPHY hints. The second protocol, CMAP, is
an approximation to SoftCMAP that uses frame loss rates when transmitting concurrently
to infer conflicting transmissions. The two protocols complement each other-while Soft-
CMAP demonstrates the full potential of the ideas in this dissertation, CMAP enables us
to obtain a realistic evaluation on today's commodity hardware. We evaluate SoftCMAP
using a combination of live experiments and trace-driven simulations on software radios,
and CMAP using a real implementation and deployment on commercial 802.11 hardware.
Our evaluation shows that identifying and exploiting exposed terminals leads to a near dou-
bling of throughput for the exposed senders, and improvements of up to 50% in aggregate
network throughput in some common topologies.

1.2 Contributions and Roadmap

This dissertation makes the following contributions.

1. New link layer-PHY interface. We observe that many problems with today's link-
layer protocols can be attributed to insufficient information about the wireless chan-
nel at the link layer. With the unique challenges of wireless communication in mind,



we augment the link layer-PHY interface in today's wireless network architecture
with two new mechanisms: the PHY exports SoftPHY hints or per-bit confidences
with each decoded bit, and the PHY streams received bits to the link layer as soon
as they are decoded and before the entire frame reception completes. The SoftPHY
hints of a received frame can be used to estimate the channel BER during the frame
reception without making any assumptions on the channel propagation characteris-

tics. The channel BER computed from SoftPHY hints is accurate and can be used

by link-layer protocols to make better transmit bit rate and channel access decisions.
The streaming interface between the link layer and the PHY enables the link layer

to learn about the current transmission on the air and make smarter channel access

and transmit bit rate decisions based on the knowledge of ongoing transmissions.
Our design of these interfaces is general enough to be applicable to a wide class of
physical layers.

2. PHY-aware protocols for bit rate adaptation and channel access. We show how
one can design better link-layer protocols by using the additional information avail-
able via the streaming SoftPHY interface. The SoftRate protocol performs fast and
accurate transmit bit rate adaptation using the channel BER estimated from SoftPHY
hints as the feedback from the receiver to the sender. It achieves between 35% to

2 x higher throughput than existing rate adaptation protocols. The SoftCMAP and
CMAP protocols are MAC protocols built atop the streaming PHY interface. These
protocols use a map of conflicting transmissions and make transmit decisions based
on which transmissions are ongoing, instead of using the carrier sense signal from the

PHY. Our evaluation of these protocols show that they improve aggregate network
throughout by up to 50% in common network topologies by increasing the number
of successful concurrent transmissions.

The rest of the dissertation is organized as follows. Chapter 2 explains the basics of

wireless communication and provides an overview of the PHY and link layers in today's

network architecture. Chapter 3 describes our design and implementation of the SoftPHY
interface. Chapter 4 describes the design, implementation, and evaluation of the SoftRate
protocol. Chapter 5 describes the SoftCMAP and CMAP protocols. Chapter 6 concludes
the dissertation.



Chapter 2

Background

In this chapter, we describe some basic concepts of wireless communication systems that
are useful in understanding the rest of the dissertation. We first describe the character-
istics of the wireless channel that make link-layer protocol design challenging. We then
describe the PHY and link layers in current communication systems in order to understand
the context for the new cross-layer protocols proposed in this dissertation.

2.1 The Wireless Channel

The wireless channel propagates electromagnetic waves at the carrier frequency of the com-
munication system from the transmitter to the receiver. Along the path, the wave experi-
ences channel-induced effects that distort the signal in many ways. Understanding these
changes is important for protocol designers, because higher-layer protocols (bit rate adap-
tation protocols in particular) often need to account for them in the design decisions. The
wireless signal suffers four types of changes during propagation: attenuation, shadowing,
fading, and interference. Suppose s(t) denotes the transmitted signal. Then the received
signal r(t) can be expressed as:

r(t) = h(t)s(t) + n(t) (2.1)

where h(t) is the channel gain at time t (determined by attenuation, shadowing, fading, and
interference) and n(t) is the random noise added by the channel. The channel noise is often
approximated as a zero-mean Gaussian random variable. The noise is also considered to
be "white", i.e., it has a flat spectrum and is similar across all frequencies. A channel with
constant gain can be approximated as an Additive White Gaussian Noise (AWGN) channel.

Attenuation and shadowing. Every electromagnetic wave suffers a loss in power ac-
cording to the inverse square law as it travels in free space. A similar effect applies to
electromagnetic waves carrying data-signal powers decays at the rate r, where r is the
distance from the source and a is the path loss exponent. Unlike propagation in free space,
the path loss exponent, a, is often greater than 2 in real-life environments. Signals also
suffer loss in power due to obstacles along the way, an effect called shadowing. Attenu-
ation and shadowing are slow-changing effects, and do not cause much variability in the



signal unless the distance between the sender and the receiver or the placement of obstacles
change. Therefore, the variability caused by these effects is somewhat easier to handle at
the receiver. For example, bit rate adaptation protocols only need to adapt the rate at a
coarse timescale (say, every few seconds) in order to handle changes due to attenuation or
shadowing.

Fading. When a signal is transmitted, multiple copies of it propagate via different paths
to the receiver and therefore suffer different channel-induced changes. These copies of the
signal, which differ slightly from each other in amplitude, phase, and frequency, can com-
bine constructively or destructively at the receiver and cause an apparent variation in the
transmitted signal. This variation in the signal caused due to multipath propagation effects
is commonly referred to as multipath fading. The fading loss of the signal is superimposed
over other channel losses due to attenuation and shadowing. We will now describe the
nature of fading-induced channel variations and its implications for bit rate adaptation.

The multiple copies of the signal that interact at the receiver can differ from each other
in two ways:

" In a rich scattering environment, the copies of the signal can be spread out in time
due to different copies of the signal traveling along paths of slightly different lengths
and arriving at different times at the receiver. The maximum duration between the
time of arrival of the first and last copies of the signal is called the delay spread TD

of the signal.

" When the sender, receiver, or any of the scattering objects in the environment are
moving, the copies of the signal suffer varying amounts of Doppler shift in their
frequency due to the Doppler effect. This spread in the frequency among the copies
of the signal is called the Doppler spread, fD, of the signal. The Doppler spread
depends on the speed of movement, v, the carrier frequency, f, and the speed of
light, c, as follows:

fD v f (2.2)
c

When multiple copies of the signal that are spread out in time interact, the effect is an
apparent variation of the channel gain across the frequency band of the signal. The theory
behind this phenomenon is beyond the scope of this dissertation, and we refer the interested
reader to [50]. The larger the delay spread of the signal, the smaller the frequency over
which the channel stays the same. The coherence bandwidth, Bc, is defined as the width
of the frequency band across which the channel fading effects remain the same, and is
inversely related to the delay spread:

1
Bcc (2.3)

TD

If the coherence bandwidth of a system is smaller than the width of the transmission
band, then the different frequencies in the transmitted signal suffer different amounts of
channel losses. Such a system is said to have frequency-selective fading, which is a hard
problem to tackle in communication systems-the receiver must separately estimate the
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Figure 2-1: Channel losses during slow fading: a 100 ms snapshot of the fading losses in
simulated fading channels with coherence time (a) 10 ms, and (b) 1 ms.

channel gains at the various frequencies and compensate for it. Frequency-selective fad-
ing can be tackled by modulating different frequencies at different bit rates [51], i.e., by
dividing a channel into several subcarriers and sending data at different bit rates on each
subcarrier. While the bit rate adaptation protocol in this dissertation adapts bit rate with
time, our ideas are applicable to the problem of rate adaptation across frequency as well.

On the other hand, when multiple copies of the signal that are spread out in frequency
interact, the effect is of apparent variation of the channel gain across time. The coherence
time of the channel, Tc, is defined as the period of time over which the channel effects
can be assumed to be correlated. That is, two signals separated in time by more than Tc
will suffer uncorrelated fading losses. The coherence time of the channel is related to the
Doppler spread in frequency as follows [50]:

0.4
Tc ~ 0(2.4)

fD

That is, the faster the speed of movement, the greater the temporal variation of the
signal, and the lower the coherence time. Note that Equation 2.4 is only a theoretical
approximation, and the actual coherence time of any given channel can only be obtained
by real-world measurements.

For pedestrian mobility, the Doppler spread in frequency is typically tens of Hz, and the
coherence time is roughly hundreds of milliseconds. For example, a walking speed of 0.5
m/s (1.8 mph) on a 2.4 GHz carrier (the ISM band used by 802.1 1g/n) results in a Doppler
spread of 4 Hz and a coherence time of 100 ms. Note that typical packet transmission times
in today's wireless data networks are up to a few milliseconds. As a result, the channel stays
the same for many packet durations at walking speeds. This scenario is often referred to as
slow fading. In slow fading channels, the receiver can estimate the channel quality at the
beginning of a packet and assume it stays the same for the next few packets.

For vehicular mobility, the Doppler spread is tens to hundreds of Hz, and the channel
coherence time is few tens of milliseconds, i.e., a few packet durations. The fading losses
generated by a simulated fading channel model over a 100 ms snapshot for channel coher-
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Figure 2-2: Channel losses during fast fading: fading losses in a simulated fading channel
with coherence time of 100 ps at timescales of (a) multiple packet durations, and (b) single
packet duration.

ence times of 10 ms and 1 ms are shown in Figure 2-11. One can see that a fading channel
goes into a deep fade, or a period of heavy fading loss and high error rate, every once in
a while. The frequency of these fades depends on the coherence time of the channel. One
can also see from the figure that multipath fading requires bit rate adaptation protocols to
react very quickly to channel changes. For example, when the sender or the receiver is in
or near a moving vehicle, the rate adaptation protocols may have to pick a new transmit bit
rate once every ten or twenty milliseconds, i.e., once every few packets.

For very fast mobility like train speeds, the Doppler spread is a few tens of KHz, result-
ing in coherence times smaller than a packet duration, usually few hundreds of microsec-
onds. As a result, the channel changes widely even within a single packet duration. Such
channels are calledfastfading channels. Fast fading channels with coherence time as small
as 300 p-s have also been observed in urban environments with fast moving vehicles [13].
Figure 2-2 shows the channel losses for a simulated fading channel at train speed mobility
at two different timescales corresponding to multiple packet durations and a single packet
duration. Tracking the channel quality of a fast fading channel for rate adaptation is a
very hard problem, because one must sample the channel quality very frequently and many
times within a single packet.

Interference. Because the wireless channel is a shared medium, multiple sources trans-
mitting signals at the same time can result in the signals being corrupted and undecodable
at the corresponding receivers. This phenomenon is called interference. Interference is
generally handled by channel access protocols at the link layer. A good channel access
protocol will try to ensure that interference does not occur by enabling concurrent trans-
missions only when such transmissions are likely to succeed. When packets are lost due

1Because fading occurs due to the interaction of a large number of copies of a signal that cannot each be
precisely measured, the fading effects are not deterministic (unlike attenuation) and are randomly distributed
with some statistical properties. For scattering environments that do not have a line-of-sight propagation, the
Rayleigh distribution approximately models the fading loss [50]. We use a simulated Rayleigh fading channel
model to generate Figures 2-1 and 2-2.



to a collision, channel access protocols take appropriate measures (like sender backoff) to
ensure the interference does not persist.

Wireless channel capacity. The wireless signal from a source to the destination suffers
from the channel induced losses of attenuation, shadowing, fading, and interference as
described above, leading to the receiver incorrectly decoding parts of the signal. As a
result, the message recovered at the receiver has bit errors and is different from the message
transmitted. However, one can use a variety of techniques like error correction to make the
signal robust to distortion, thereby making the communication more reliable, though less
efficient in terms of the rate of transmission of information.

The signal to noise ratio (SNR) is a measure of how strong the sender's signal is at
the receiver compared to the ambient noise on the channel, i.e., from Equation 2.1, the
SNR at time t is the ratio of h(t)s(t) to n(t). The higher the SNR of the received signal,
the easier it is to separate the signal from the background noise, and the lower is the bit
error rate (BER) of the decoded message at the receiver. Losses due to channel effects
such as attenuation and fading decrease the channel gain h(t) and hence the SNR of the
transmitted signal, causing bit errors. Shannon's work on information theory provides a
way to bound the rate of communication of a wireless channel given two parameters: the
SNR of the source at the destination, and the bandwidth of the channel B available for the
communication. The capacity of the channel, defined as the maximum achievable rate of
reliable communication, is given by:

C = Blog 2 (1 + SNR) (2.5)

Note that Shannon's equation only specifies what the maximum achievable rate of trans-
mission of information is, but does not specify how to achieve that rate. Communication
systems try to achieve communication at Shannon's capacity using various techniques that
improve the reliability of the transmission.

2.2 The Physical Layer

The physical layer is concerned with the transmission and reception of digital information
across the wireless channel via an RF front-end. Figure 2-3 shows a simplified transmitter
and receiver pipeline in the 802.11 a/g PHY, the PHY used in the various prototype imple-
mentations in this dissertation.

The transmitter first scrambles a message, by multiplying it with a pseudo-random bit
sequence, in order to eliminate unwanted regularity in the message that may confuse some
PHY algorithms. Next, the transmitter adds some form of forward error correction (FEC)
to the message bits in order to protect against channel-induced distortions. To make FEC
more effective, a transmitter optionally interleaves the coded bits, so that adjacent coded
bits during decoding would have been temporally non-adjacent and therefore unlikely to be
in error all at once due to the burst errors causes by a deep channel fade. The transmitter
then modulates the bits. The modulator or mapper takes groups of bits (coded bits when
FEC is used) and maps them into complex baseband symbols for transmission by the RF
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Figure 2-3: Simple transmitter and receiver pipelines for 802.11 a/g-like physical layers.

front-end. The complex symbols produced by the modulator correspond to the amplitude
and phase of the sinusoid of a particular frequency. However, transmission hardware op-
erates only on time samples. The transmitter therefore converts the symbols produced by
the modulator into time-domain samples using the inverse Fast Fourier Transform (iFFT)
operation. The output of the iFFT is complex time-domain samples with real (I) and imag-
inary (Q) components. The I and Q components represent the two orthogonal dimensions
along which information can be transmitted using electromagnetic waves. The transmitter
then appends a known symbol pattern to the beginning of the frame, called the preamble,
to enable detection of the start of the transmission at the receiver. The preamble is followed
by a PHY header, often sent at the lowest base bit rate, that tells the receiver what coding
rate and modulation to use for the rest of the frame. These baseband I and Q samples are

then upconverted into the desired transmission frequency and transmitted as analog waves
by the RF front-end.

The receiver PHY undoes the various operations of the transmitter. The receiver con-
stantly looks for the known preamble in the RF samples streaming in. When it synchronizes
with a preamble, it estimates the effects of channel-induced changes (like the channel gain)
and other RF-induced changes (like the frequency offset between the two RF front-ends)
on the signal using the known preamble, and corrects for them in the rest of the signal. The
receiver then reverses the transmission process: it performs an FFT to convert the time-
domain I and Q samples into frequency-domain symbols, demodulates them into coded
bits, deinterleaves and decodes the bits, and finally descrambles the output of the decoder
to recover the original message.

The modulation and coding schemes used together determine the bit rate of the PHY
transmission. Different modulation schemes differ in the number of bits in one symbol,
and in the set of valid symbols available for transmission. For example, in the Binary
Phase Shift Keying (BPSK) scheme, the bits "0" and "1" map to +1 and -1 on the real
line respectively and the imaginary component is not used. For the Quadrature Phase Shift
Keying (QPSK), the bits "00", "01, "10", and "1 1" could map to the symbols +

-7+ /j, V2- j, and - -7j on the unit circle. Another example of a popular
modulation scheme is the Quadrature Amplitude Modulation (QAM) with 16, 64, or 256
valid symbols in a unit square. A diagram showing all the valid symbols in a modulation
scheme is called the constellation diagram. Figure 2-4 shows the constellation diagrams of
various modulation schemes used in 802.11 a/g/n. Note that we show the constellations as

lying within a unit circle or square only as a way of normalization; the signal is scaled by
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Figure 2-4: Constellation diagrams for the BPSK, QPSK, QAM16, and QAM64 modula-
tion schemes that are used in 802. 11 a/gn.

the square root of the transmit power before transmission.
The bit rate also depends on the FEC used. The rate of an FEC code is the rate at

which original information is transmitted via the coded bits. If a code takes rn bits of the
original message and transmits them as n > rn coded bits, then the rate of the code is rn.
There are two main types of FEC codes: block codes and convolutional codes. Block
codes operate on fixed-size chunks of the original message and convert them into coded
chunks with more bits. A rate rn block code takes a chunk of m bits in the original
message and maps them into an n-bit codeword for transmission. The decoder maps each
received codeword to the "closest" (as measured by Hamming distance) valid codeword
and recovers the original transmitted bits. Convolutional codes, on the other hand, operate
on streams of bits of arbitrary length. A convolutional code has an additional parameter, its
constraint length, L, that denotes how many past information bits are used to produce the
current coded bit. A rate s/n convolutional encoder takes in m input bits and produces 
coded bits which depend on the input bits of the last L stages. The most common decoder
used to decode convolutional codes is the Viterbi decoder [66, 28]. The Viterbi decoder
examines the entire stream of received coded bits, and recovers the most likely sequence of
inputs that could have generated the coded output bits.



Our PHY prototypes in this dissertation implement the Orthogonal Frequency Divi-
sion Multiplexing (OFDM) PHY, commonly used in high throughput physical layers like
802.11 a/g/n, WiMAX, and LTE. In OFDM, the available frequency is divided into multiple
sub-channels or subcarriers, and each is used to independently transmit a stream of modu-
lated I and Q samples. There are many advantages to using OFDM over transmitting data

over a single frequency band, including lesser susceptibility to frequency-selective fading

and simpler algorithms for equalization.

Link layer interface. The interface between the PHY and the link layer in today's net-
work stack is at the frame granularity, mostly because it was adapted from its wired coun-

terpart. Even though the PHY operation is pipelined in hardware implementations and the
bits are decoded as they are received, the PHY waits for the frame reception to complete
before passing them up to the link layer. In addition to received frames, the PHY exports
to the link layer an estimate of SNR of the reception. The SNR is typically estimated from
measuring the distortion to known symbols in a packet. For example, one can use the dis-
tortion to the preamble at the start of the packet, or to the pilot symbols sent in a separate
pilot channel throughout the packet. The PHY also performs carrier sense or clear channel

assessment (CCA): the carrier is considered busy if the energy on the channel exceeds a
threshold or if a preamble has been detected recently.

This dissertation proposes widening the interface to the link layer to export additional
information that can improve the performance of link-layer protocols. With the new inter-
face, PHY streams bits to the link layer as soon as they are produced by the pipeline. As
we describe in Section 3.2, the decoders contain information about how close the received
signal was to the transmitted signal. This information can be used to compute the probabil-

ities that the decoded bits are correct, which are then exported to the link layer as SoftPHY
hints. These SoftPHY hints are subsequently used by link-layer protocols to make transmit
bit rate or channel access decisions.

2.3 The Link Layer

The link layer at the transmitter receives frames from the network layer. It adds link layer-
specific header information, decides what bit rate to send the frame at (bit rate adaptation),
decides what the right time to make the transmission is (channel access), and passes the
frame to the PHY for transmission. The receiver link layer receives the frame from the
PHY and checks if the frame has an any errors, and arranges for retransmission from the
transmitter in case of errors (error recovery). While link layers in different communication
systems differ on the exact details, the broad functions of the wireless link layer remain the

same: error recovery, channel access, and bit rate adaptation.

Error recovery. The PHY uses FEC to recover from bit errors, but may not succeed

in doing so always. As a result, the frame delivered to the link layer may still contain
errors. In order to improve the reliability of communication, the link layer also attempts
to recover errors before passing the frame to the higher layers. The most common type

of error recovery is frame retransmissions, as used in the 802.11 protocol. The link layer



Modulation [Code Rate [802.11 Throughput
BPSK 1/2 6 Mbps
BPSK 3/4 9 Mbps
QPSK 1/2 12 Mbps
QPSK 3/4 18 Mbps

QAM16 1/2 24 Mbps
QAM16 3/4 36 Mbps
QAM64 1/2 48 Mbps
QAM64 2/3 54 Mbps

Table 2.1: Combinations of modulations and coding rates used in 802.11 a/g OFDM, and
the raw throughput achieved over a 20 MHz channel.

embeds a CRC over the contents of the frame, and checks the CRC on receiving a frame
from the PHY If the CRC matches, the link layer sends an ACK to the transmitter. In the
absence of an ACK, the transmitter retransmits the frame till it receives an ACK or for a
fixed maximum number of times before giving up.

However, note that most frames that are in error typically have a small number of bits
in error, and retransmitting the entire frame is a waste of channel capacity. As a result,
smarter error recovery schemes, called "Hybrid ARQ", have been proposed in the research
literature. In general, the term Hybrid ARQ refers to any scheme that combines forward
error correction (FEC) and automatic repeat request (ARQ). Systems such as WiMax [25],
certain satellite channels [39], cellular high-speed packet access (HSPA), cellular LTE, and
more recent proposals such as ZipTx [38] use a form of hybrid ARQ called incremental
redundancy [41, 43]. Incremental redundancy forgoes aggressive FEC on the first trans-
mission of a packet, requesting subsequent transmissions of parity bits with ARQ only if
needed.

All the above error recovery protocols rely on the PHY passing up received frames
alone. Recent research has explored cross-layer approaches to error recovery, where the
PHY passes up additional information about received frames to the link layer. Partial packet
recovery (PPR) [27] is an error recovery scheme that uses SoftPHY hints exported from
the PHY to retransmit (mostly) only those bits believed to be in error. While we share the
notion of per-bit confidences with this earlier work, the SoftPHY hints proposed by the
authors are different from and less general than the SoftPHY hints in this dissertation.

Bit rate adaptation. Communication systems often have the capability to transmit data at
multiple bit rates, where each bit rate achieves a certain rate of transmission of information
by using a particular choice of modulation and coding rate. For example, the 802.11 a/g
OFDM system can transmit data at the rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbps using
different combinations of modulation and coding rates, as shown in Table 2.1. Higher bit
rates can be used on links with higher SNR and vice versa. However, the maximum rate
that can be used is limited by Shannon's capacity of the channel at that SNR. The SNR
of a link and hence the suitable bit rate change with time in a time-varying channel. As a
result, the link layer must make the decision of what bit rate to use dynamically based on



its estimate of the current channel quality, in order to pick the bit rate that is closest to what
the channel can sustain at that quality.

Note that the problems of error recovery and bit rate adaptation are orthogonal to each
other. While error recovery schemes improve capacity in a time-varying wireless chan-

nel, their performance is still contingent on choosing appropriate bit rates for individual
transmissions. In other words, while error recovery chooses which data to transmit, rate
adaptation chooses which bit rate to transmit the data at.

The link layer requires information about current channel quality to perform bit rate
adaptation. There are two ways of estimating channel quality using the information de-
livered via the current PHY interface: estimating the frame loss rate at each bit rate from
the fraction of frames that elicit a link-layer ACK, or estimating channel BER at various
bit rates from the SNR estimate provided by the PHY. Section 4.1 surveys the existing rate
adaptation protocols that use one of the above two types of channel quality feedback, and
identifies their shortcomings. This dissertation uses a novel feedback for rate adaptation,
the BER computed from SoftPHY hints, to perform better rate adaptation.

Channel access. A good MAC protocol fairly arbitrates access to the shared medium
among the competing transmitters without causing too much interference to any transmis-
sion, while utilizing the capacity of the channel as efficiently as possible. Channel access

protocols arbitrate access in the time as well as frequency domains, i.e., they specify what
time transmissions must start at and what frequency sub-channels should be used for the
transmission.

Arbitrating access to the medium does not necessarily mean allowing only one trans-
mission to proceed at a time, because the channel conditions may be such that more than
one transmission can be sustained without causing interference to any of the transmissions.
For example, the set of available bit rates in a system may be such that the most suitable bit
rate is actually lower than the channel capacity, while the immediately higher rate is higher
than the channel capacity and hence unsustainable. That is, the best transmit bit rate has
enough "slack" in its signal to tolerate additional noise or interference without suffering bit
errors. In such cases, the channel access scheme may decide to have an additional transmis-
sion that adds a small amount of interference but does not impact the quality of the original
link in a significant way. A good channel protocol schedules one or more transmissions
along the time and frequency dimensions, with the goal of maximizing aggregate network
throughput.

MAC protocols are of two types: contention-based and non contention-based. In non
contention-based schemes, a centralized scheduler decides which transmissions must pro-
ceed when. Two popular examples are the Time Division Multiple Access (TDMA) and
Frequency Division Multiple Access (FDMA) schemes, where the scheduler allocates times-
lots or frequency subcarriers respectively to various competing transmitters with the goal

of maximizing system throughput. Non contention-based protocols are often used in cel-
lular systems, where the flows are usually constant bit-rate with stringent Quality of Ser-
vice (QoS) requirements. However, such schemes are sub-optimal for data-based networks

where the service is best effort, and the traffic pattern is unknown apriori and bursty by na-
ture. Data networks mostly use contention-based channel access schemes, where transmit-



ters compete and figure out who should transmit in a distributed fashion. The contention-
based schemes have the advantage that only a subset of all transmitters that have data to
send can compete at any time and utilize the channel efficiently. However, it is also harder
to coordinate between senders and schedule concurrent transmissions due to the absence of
a centralized scheduler.

The most popular contention-based channel access protocol used in data networks to-
day is Carrier Sense Multiple Access (CSMA). With CSMA, transmitters use the carrier
sense information available via the PHY interface to transmit only when the carrier is idle.
CSMA suffers from the exposed and hidden terminal problems as illustrated in Figure 1-2.
Most modifications to improve CSMA add extra signaling frames that reserve the medium
before a transmission (e.g., RTS and CTS frames [32]), allowing nodes to virtually carrier
sense the medium and coordinate transmissions using information from the reservations.
Section 5.6 surveys such mechanisms in more detail. However, such approaches increase
the control overhead and lower link-layer throughput. Other solutions to the hidden ter-
minal problem involve using PHY techniques to simultaneously decode both the frames
in collisions resulting from imperfect carrier sense [19]. This dissertation proposes new
channel access protocols that address the exposed terminal problem of CSMA and increase
the number of successful concurrent transmissions in the network. Our protocols coordi-
nate concurrent transmissions between senders without adding additional control overhead
or introducing new signaling frames. Instead, the streaming PHY interface makes infor-
mation about ongoing transmissions available at the link layer faster, allowing nodes to
coordinate and transmit concurrently with exposed senders.



Chapter 3

Estimating Wireless Channel BER Using
SoftPHY Hints

Estimating the quality of the wireless channel quickly and accurately is useful for a num-
ber of link and higher layer functions that depend on the instantaneous channel quality. For
example, bit rate adaptation [31, 37, 34, 47, 71, 11, 23, 54, 13, 29] or transmit power adap-
tation protocols [59, 69, 6, 62] pick the transmit bit rate or power level based on how good
the channel conditions to a destination are. Some link-layer protocols [51, 15, 20] also
allocate transmit frequencies based on the channel quality of various users across different
frequencies. Researchers have also proposed scheduling packets for transmission from the
link-layer queue based on the channel quality to various destinations, picking the transmis-
sion that is most likely to succeed [9]. Some protocols [68, 33] also perform channel access
decisions based on the quality of various links in the presence of concurrent transmissions.

The most fundamental measure of wireless channel quality is the channel bit error rate
(BER), because the BER determines the frame loss rate or throughput or any of the other
higher-layer metrics of interest. The channel BER is the probability of a bit error in trans-
missions over the channel. For a long stream of bits, assuming unchanged statistics, the
channel BER is also the fraction of bits that are in error. The information delivered via the
PHY interface today cannot be used to measure BER directly. Instead, protocols at the link
and higher layers use a variety of other metrics to estimate channel quality.

Some link-layer protocols measure channel quality using purely link-layer information.
For example, most bit rate adaptation protocols measure the loss rate of link-layer frames
(computed as the fraction of frames that fail to elicit an ACK frame from the receiver), and
use this as a proxy for channel quality. Some link-layer error recovery schemes [38] stuff
pilots bits into the link-layer frame, and count how many of them were received incorrectly
to estimate channel BER. We note that all these methods are somewhat cumbersome and
inefficient in estimating channel quality. Frame loss rate is a very coarse grained metric
because one requires many frame transmissions to converge to a meaningful estimate. The
technique of stuffing pilot bits does not calculate the true channel BER on every frame;
for example, if the channel BER is low and and none of the 100 pilot bits in a frame is in
error, then one does not know if the channel BER is 10-3 (i.e., the pilot bits barely made
it through) or 10-' (i.e., the channel quality is really good). For these reasons, using just
link-layer information is not very effective in estimating the BER of wireless channels that



vary quickly with time.
Most protocols today use the signal-to-noise ratio (SNR) of the received signal as a

measure of channel quality. The average SNR of the received signal is approximately esti-
mated using the distortion to known symbols in the packet (Section 3.1.1), and then mapped
to the expected channel BER using analytical expressions or empirical measurements. The
SNR of a received packet can be used not only to estimate the channel BER at the bit rate
of the received packet, but also to predict the channel BER at other bit rates. However,
in time-varying channels where the SNR is not constant during a packet, the average SNR
alone is not sufficient to characterize how the SNR varies over the entire packet. In other
words, one needs a model of the propagation channel in order to determine the BER at vari-
ous bit rates from the measured average SNR (Section 3.1.2). As such, link-layer protocols
using SNR information must be trained for a particular operating environment.

In contrast to existing approaches, this dissertation proposes a method to estimate the
channel BER directly from SoftPHY hints, without requiring a knowledge of the channel
fading characteristics. Our method uses just one frame reception to estimate the channel
BER at the bit rate of the received frame, making it suitable for link-layer protocols that
need accurate and responsive channel estimation. SoftPHY hints can estimate the underly-
ing probabilistic channel BER even using a frame that has no bit errors. Our method relies
on using information that is easily available at the physical layer: soft output decoders for
error correcting codes also compute the log-likelihood ratios for each decoded bit. These
ratios, which the PHY exports as SoftPHY hints, indicate how likely it is that an output bit
is correct. Therefore, they implicitly capture the quality of the time-varying channel and
can be used to compute the expected probability of bit error on the channel. We describe
our design of SoftPHY hints and how they are used to compute channel BER in Section 3.2.
Our approach works for any PHY that uses a linear block or convolutional code, and hence
is general enough to be applicable to a wide range of physical layers (Section 3.2.2).

We observe that the channel BER computed from SoftPHY hints is a less general metric
of channel quality than SNR, because it characterizes the channel only at the particular
modulation and coding of the received frame. However, it is a more useful feedback metric
for link-layer protocols, because one can easily determine the channel BER and link-layer
throughput without any additional knowledge of the environment (Section 3.2.1).

Note that the Hamming distance between the received codewords and the closest valid
codewords has also been suggested as a candidate for SoftPHY hints for PHYs using block
codes in previous work in the context of error recovery [26, 27, 33, 72]. While these
SoftPHY hints based on Hamming distance are quite useful to identify bit errors without
knowing the actual payload, they do not correspond to the probabilistic channel BER in
any meaningful way and are orthogonal to the BER estimation problem being considered
in this chapter (Section 3.2.3).

We implement a PHY capable of exporting SoftPHY hints both using software radios
and an FPGA-based hardware platform (Section 3.3). We show that computing SoftPHY
hints adds only a small overhead in terms of implementation complexity and processing
latency. We collect packet traces with SoftPHY hints using our prototypes and show that
the channel BER estimated from SoftPHY hints is accurate across a wide range of wire-
less propagation environments (Section 3.4). The subsequent chapters in this dissertation
present two link-layer protocols, SoftRate and SoftCMAP, that use this BER estimate from



SoftPHY hints to perform rate adaptation and channel access.

3.1 Related Work

SNR is the most common metric of channel quality in a number of wireless protocols. The
SNR of a received signal measures the strength of the sender's signal at the receiver relative
to the background noise on the channel. This section describes some common methods of
estimating the SNR of the received signal, and ways to map this SNR to the channel BER.

3.1.1 Measuring SNR

Measuring SNR once per frame. In slow fading channels that do not vary much over
the duration of a single frame, the SNR can be measured once per frame using a variety of
methods. A common approach is to estimate the SNR from the distortion of the received
preamble as compared to the expected preamble at the start of the packet [56]. Clearly, the
lower the SNR, the greater the distortion in the received preamble. Another approach is to
estimate SNR using the change in the AGC (Automatic Gain Control) when a packet re-
ception begins, because the AGC adjustment depends on the signal strength of the received
signal. Such methods of estimating SNR incur very little overhead, and are commonly used
in existing commodity WLAN hardware.

Computing average SNR from pilot subcarriers. Measuring SNR once per frame will
be inaccurate in fast fading channels, because the SNR is not constant for the duration of
the frame (see Figure 2-2). In such channels, one must measure the SNR continuously to
compute an average SNR over the entire frame. One way to track the SNR continuously
over a frame is to send known symbols or pilots simultaneously over a separate channel, and
use the distortions of the pilots to estimate SNR. SNR estimation using pilots is commonly
used in cellular PHYs. We now describe a specific example of such an SNR computation
in the context of an OFDM PHY [51]. This technique places known pilot symbols over a
subset of OFDM subcarriers (called pilot subcarriers), and uses the reception of these pilots
to track the SNR throughout the packet.

The SNR -y can be written in terms of the received power R and noise power No as
follows.

- -1 (3.1)
No No

Now, the received signal r, channel gain h, transmitted signal s, and the channel noise
n on a particular symbol are related by the following equation:

r = hs + n (3.2)

For each received pilot symbol, one can obtain an estimate for the noise as follows:

n = r - hs (3.3)



Note that r, h, and s are known at the receiver's demodulator. Now, we can compute
the value of n for each of the pilot tones over the entire packet, and use these values to
compute the average noise power.

No = E(n 2 ) (3.4)

We can also compute the average received power from the received symbols.

R = E(r2 ) (3.5)

Now from equations 3.1, 3.4, and 3.5, we can compute the average SNR during the
packet reception. If the number of OFDM symbols in a packet is N, the number of pi-
lot subcarriers per OFDM symbol is T, and the total number of subcarriers in an OFDM
symbol is C, then we average the noise power over N -T samples to compute No, and the
received power over N - C samples to compute R. One can also compute the SNR over
chunks of the packet by averaging the signal and noise from pilots in that chunk alone.

Estimating average SNR in this manner incurs the additional overhead of transmitting
and receiving pilots when compared to the method of estimating SNR using the pream-
ble. The estimation error may also be high if the number of pilots is small. However, this
method is more accurate in capturing channel quality when the channel changes signifi-
cantly during a frame transmission duration.

3.1.2 Mapping SNR to BER

We describe how one can use an SNR measurement to estimate the channel BER in dif-
ferent channels. We will first consider simple uncoded AWGN channels, and then extend
the approach to cover fading and channel coding. Our discussion below explains why BER
estimation from measured SNR depends on the channel propagation characteristics in real-
istic coded fading channels.

Uncoded AWGN channels. Let Eb denote the transmission energy per data bit on the
channel, and No denote the noise power in the channel. Then the SNR per bit -yb of the
transmitted signal is given by:

Eb
No (3.6)

Protocols using SNR to estimate link-layer performance rely on estimating the trans-
mission SNR, and then mapping the SNR to the expected channel BER using an SNR-BER
curve. That is, protocols use a function for the probability of bit error Pe given the mea-
sured SNR per bit 7yb. The SNR-BER curve depends on the modulation and coding schemes
being used-schemes that pack more redundancy into the signal to make it robust to noise
achieve a lower BER for the same SNR. We now describe the computation of the SNR-BER
curves for the BPSK and QPSK modulations in transmissions over the AWGN channel with
no channel coding.

The BPSK modulation transmits one of two information symbols to represent the bits
"0" and "1" (see Figure 2-4). Let us denote the possible transmission symbols as si and s2.
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Figure 3-1: Theoretical relationships between channel BER and SNR per bit of the trans-
mitted signal, for BPSK and QPSK modulations in AWGN and Rayleigh fading channels.

The functions plotted are shown in equations 3.10, 3.11, 3.14 and 3.15.

Recall that Eb denotes the transmission energy per bit and that the amplitude of the trans-

mitted signal is proportional to the square root of the energy. Therefore, the transmitted
symbols are at + Eb and - Eb. Suppose the transmitted symbol is s C {si, s2}. Then

the received symbol r is given by

r = hs + n (3.7)
2 1

where h is the channel gain and n is Gaussian white noise with variance o =No. Note

the j term because noise is over I and Q samples, whereas we are considering only the real
samples in BPSK.

In an AWGN channel that does not add any gain, the channel gain h = 1 always. Now
r is Gaussian distributed with mean equal to s and variance !No. Therefore, the probability
that a symbol r is received given that s = si is transmitted is given by.

1 ( ,,/~)2

P(rls1) = e No (3.8)

Assume that the demodulation decision is to pick si if r > 0 and s2 otherwise. Let us
now calculate the probability of error when symbol si is transmitted, that is, probability

that si is sent but is mistaken to be s2 at the receiver. To compute this probability, we

integrate P(rls1) from Equation 3.8 for values of r that lead to an incorrect demodulation

decision, i.e., r < 0.
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where Q is the Gaussian error function.
Thus the probability of error of BPSK in an AWGN channel is given by:

PBPSK Q (3.10)

Note that if the modulation in use were to be QPSK that uses both the I and Q chan-
nels, the distance between adjacent constellation symbols reduces by a factor of v/2. So
probability of error for the same SNR Yb is now given by

P QPSK Q(Vy) (3.11)

That is, the probability of error falls almost exponentially with increasing SNR in an
AWGN channel for the common modulation schemes.

Uncoded fading channels. Now, in the case of fading channels, the channel response is
not constant and varies with time. For example, in the case of Rayleigh fading, the channel
gain h is Rayleigh distributed. For a given fixed h, probability of error P(e Is1) for a BPSK
transmission at a channel gain h (written as Ph for brevity) is as computed before:

Ph = Q( V2|h|2 7b) (3.12)

We get the overall probability of error during a transmission by averaging over all pos-
sible values of h. In the case of a fast fading channel, the channel response h can potentially
vary over the entire distribution during the packet transmission. Therefore, we obtain the
probability of error by integrating Ph in Equation 3.12 over all values of h in a Rayleigh
distribution.

P j Php(h)dh (3.13)

where p(h) is the density function of the Rayleigh distribution.



The probability of error after integration can be approximated as follows [50]:

PBPSK - 1 (3.14)
4 Yb

For the QPSK modulation, the equations simplify to:

PQPSK - (3.15)

The functions in equations 3.10, 3.11, 3.14 and 3.15, plotted in Figure 3-1, capture the
relationship between the expected channel BER and the SNR per bit of the transmitted
signal. Observe that the mapping changes substantially depending on whether the channel
changes a lot (i.e., fast fading) or remains the same (i.e., AWGN channel) during the packet
transmission. In other words, the mapping between the transmitted SNR per bit and the
expected channel BER depends on the coherence time of the channel.

How do practical protocols estimate channel BER in uncoded fading channels? If
the SNR is measured once per packet (say, using the preamble), then one must use an
environment-specific SNR-BER mapping to obtain the BER from the measured SNR. In
the absence of an accurate model of the channel, estimating the SNR once per frame will
lead to incorrect estimates of the channel BER in time-varying mobile channels. However,
tracking the channel continuously with pilots can give us a better estimate of the channel
BER without requiring environment-specific training. For example, let yi, i = 1 ... N, de-

note the SNRs over each of the OFDM symbols in a packet, measured using pilot OFDM
subcarriers as described in Section 3.1.1. Assuming the channel is invariant over the dura-
tion of an OFDM symbol (4 ps in 802.11), we can compute the channel BER bi for bits in
symbol i using the SNR-BER mappings of the particular modulation scheme in the AWGN
channel. Assuming each symbol contains the same number of data bits, the average BER
over the packet is given by b = j K bi. Therefore, one can compute the channel BER
from fine-grained SNR measurements in uncoded fading channels, even without knowing
the exact fading characteristics of the channel.

Coded channels. The problem of BER estimation from SNR is much harder in fading
channels with channel coding, even when tracking the channel continuously with pilots,
because coding introduces a correlation in the probability of error across the decoded bits.
That is, we can no longer compute the probability of error of the bits in symbol i as a
function of their SNR 7y alone. Moreover, because the relationship between the SNR and
BER is not linear, the average SNR across all the symbols in a frame (computed as y =

y 1 'y) does not accurately capture the average BER over the frame (b = > bi). To
see why, let SNR(b) denote the SNR corresponding to a BER of b on the SNR-BER curve.

Because the SNR-BER curve is concave, SNR(b) > -. That is, the average SNR computed
using pilots underestimates the quality of the channel during the transmission; as a result,
the BER predicted by this method would be higher than the actual BER of the channel.
The error is more prominent if the values of bi are very different from each other, i.e., in a
fast fading channel. That is, the mapping from the average SNR over the entire frame to
the average BER also depends on the characteristics of the coded fading channel (like the
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Figure 3-2: An illustration of hard output (e.g., Viterbi) and soft output (e.g., SOVA or
BCJR) decoders.

channel coherence time), though to a lesser extent than when measuring the SNR once per
frame.

Theoretically, one can still estimate the channel BER from SNR without requiring a
channel model: one could simulate the decoder's performance over per-symbol SNR mea-
surements of each frame to measure the bit error rate. For example, recent research on rate
adaptation [57] proposes measuring the dispersions of symbols throughput the packet and
simulating the performance of decoders at various coding rates within the PHY to estimate
the channel quality. However, such a method incurs a high per-packet processing overhead
and is impractical to implement in high-speed systems.

As an aside, the relationship between SNR and BER depends on a variety of factors
besides the time-variability of the channel, for example, on the interleaving schemes used,
the frequency selectivity of the channel, hardware variations, channel estimation errors,
and so on [74, 55, 61, 24]. Therefore, any protocol that uses an SNR-BER curve to lookup
the channel BER corresponding to a given SNR must recalibrate the curves with changes
in the above environmental factors.

3.2 Channel BER Estimation Using SoftPHY Hints

This section describes a method to directly measure channel BER, in a manner that does
not depend on the operating environment. We observe that the PHY has more detailed
information about wireless channel quality than what is captured by a per-frame SNR. We
propose extracting new PHY-layer information about the probability of bit error for each
received bit, and use these probabilities to accurately estimate the channel BER.

Recall the receiver tool chain shown in Figure 2-3. The demodulator at the receiver
converts the received symbols into bits by mapping the received symbol to the closest valid
symbol in the constellation and then to the set of bits that correspond to that valid symbol.
Demodulators are of two types. Hard decision demodulators produce only the bits that
correspond to each received symbol, while soft decision demodulators produce the error
vectors corresponding to the demodulation decision as well. Error vectors are simply vec-
tors representing the distance between the received symbol and the various constellation



symbols. FEC decoders then use the information in these error vectors to guide the decod-
ing process. In finding the most probable input sequence that generated the output sequence
of coded bits, input sequences that correspond to output sequences with high error vectors
are considered less likely than those with lower error vectors. Soft decision FEC decoding
using error vectors from demodulators is more accurate than hard decision decoding and is
the default choice in today's wireless systems.

The output of the demodulator is consumed by the FEC decoder to produce the actual
message bits. PHYs today use hard output decoders, like the popular Viterbi decoder, to
recover only the original message bits from the coded bits. Hard output decoders produce
only Os and Is as their output. Now, a decoder has complete information on which of the
decoded bits were received with high error vectors and which weren't, and therefore can
estimate how likely it is that a particular output bit is in error. In fact, there exist soft output
decoders such as the Soft Output Viterbi Algorithm (SOVA) [21] and the BCJR decoder [7]
that produce some additional information (e.g., the likelihood of a zero being a zero or a one
being a one) in addition to the message bits. In other words, hard output decoders quantize
their output into one bit of information while soft output decoders produce a multi-bit
output based on the information in the error vectors of coded bits. Soft output decoders
are not used in most communication systems because the added hardware complexity to
generate soft output is not justified when the fine-grained soft output is not used by the
higher layers. However, we observe that by exporting this soft output to higher layers as
SoftPHY hints, one can estimate the wireless channel very accurately at the link layer,
leading to the design of better link-layer protocols. This improved wireless performance
justifies the added hardware complexity of a soft output decoder.

More formally, suppose Xk, k = 1. . . N, are the input bits to the encoder at the sender,
denoted by the N-dimensional vector x. At the receiver, the demodulator passes up the
demodulated bits along with the corresponding error vectors to the error correcting decoder,
which then recovers the original message bits from the received coded bits. Let r denote
the received signal input (e.g., demodulated bits and error vectors) to the decoder. Let Yk,
k = 1... N, or vector y denote the output from the decoder at the receiver. Hard output
decoders like the Viterbi decoder take some form of the received signal r as input and
produces the vector y as output, as shown in Figure 3-2. On the other hand, soft output
decoders compute the log-likelihood ratios (LLRs) for each bit1 . The LLR of bit k is:

P(xk - 1|r)
LLR(k) = log P(Xk O1r) (3.16)

P(xk = 0|r)

The LLR of a decoded bit indicates whether it is more likely to be a zero or a one.
Therefore, to obtain the output bits Yk from LLR(k), the receiver simply checks if the LLR
is greater than zero (indicating the bit is more likely to be 1) or not. This operation is
usually referred to as "slicing". A soft output decoder followed by a slicer can recover the
decoded bits Yk, as shown in Figure 3-2.

{1 : LLR(k) 0 (3.17)
0 :LLR(k) < 0

'For the LLRs to be accurate, the channel noise must be Gaussian, a reasonable assumption in practice.



Because LLRs are related to the probability of bit error and indicate the health of the
decoding process, we propose using the absolute value of LLRs as SoftPHY hints and
exporting them to higher layers. We define 8 k, the SoftPHY hint for bit k, as

Sk = ILLR(k)| (3.18)

We will now see the rationale behind this choice of SoftPHY hints. Define the proba-
bility of bit error as

Pk = P(xk $ Ykjr) (3.19)

Then the SoftPHY hint Sk and Pk are related as follows:

Sk =I LLR(k)|

log P(xk=0lr) A =I
log P(x=1|r) Yk 0

P(xk=ykr)
= log (3.20)

P(xk ykjr)

= log I-k(3.20)
Pk

Solving for Pk,

1
Pk + esk (3.21)

The average of Pk over all bits k in a frame gives us the average BER of the frame, and
hence the BER of the channel during the transmission of the frame. Note that the BER
computed in this manner will reflect the true channel BER even if the frame is received
without any bit errors. Also note that the above technique captures the channel BER ac-
curately irrespective of the channel coherence time, because the SoftPHY hints implicitly
track the channel quality continuously, and capture the impact of channel variations due to
fading over the entire packet.

Choice of soft output decoders. Soft output decoders have been extensively studied by
the research community, and any soft output decoder that computes LLRs can be used by
our approach. Note that the two popular soft output decoders, SOVA and BCJR, are ac-
tually quite different in their internal operation. The popular Viterbi decoder, and its soft
output counterpart SOVA, are examples of maximum likelihood (ML) decoders. That is,
the decoder finds the decoded sequence y that maximizes the probability of the observed
signal data, i.e., it finds y that maximizes P(ry). On the other hand, the BCJR decoder is
a maximum aposteriori probability (MAP) decoder which maximizes the aposteriori prob-
ability of each decoded bit, i.e., it maximizes P(yklr) for each of the decoded bits Yk. To
better understand the difference between MAP and ML decoders, consider the following
conditional probability relationship based on the Bayes equation.



P(ylr) = F(rly) F(y) (3.22)
P(r)

MAP decoders find input sequences y that maximize the LHS of Equation 3.22, whereas

ML decoders find sequences that maximize the numerator of the RHS. Now, as long as in-

put bits "0" and "1" are equally likely, the term P(y) is going to be the same in both

algorithms, and so both algorithms make the same decoding decisions and recover the
same message. However, MAP decoders such as BCJR explicitly compute and maximize
aposteriori probabilities. As a result, LLRs are natural byproducts of a MAP decoder.

ML decoders such as SOVA do not explicitly compute aposteriori probabilities; the LLRs

produced by these algorithms are only approximations that are derived from the state main-

tained during ML decoding. However, our experimental results using software radios show
that the difference in LLRs computed by the BCJR and SOVA decoders is too small to
observe in practice and either decoder would work fine to compute SoftPHY hints.

3.2.1 Comparison with SNR

We observe that the error vectors that are inputs to the soft output decoder capture the dis-

tortion to the received symbols due to channel noise, and are related to the SNR of the chan-
nel. Therefore, our technique of estimating BER from SoftPHY hints amounts to tracking
the channel SNR continuously, factoring in the impact of channel coding, and computing
the channel BER after FEC decoding. However, there is one significant difference. As

we explain in Section 3.1.2, coding introduces a correlation in the error probabilities of
decoded bits. Therefore, one requires a knowledge of some propagation channel charac-
teristics (like channel coherence time) to estimate the BER of coded fast-fading channels
using SNR measurements. Unlike BER estimation using SNR, SoftPHY hints can be used

to estimate the channel BER from the received symbols without requiring a knowledge of
the channel fading characteristics.

Note that SNR characterizes the channel quality independent of modulation and cod-
ing, while SoftPHY hints capture the probability of error after FEC decoding. Therefore,
the SNR of a channel conveys more information about the channel than SoftPHY hints:
SNR measurements can be used to predict the channel BER at any modulation and coding,
while SoftPHY hints can compute the channel BER only at the modulation and coding of
the received frame. However, when the end-goal is measuring higher-layer throughput, it is
more convenient to export SoftPHY hints from the PHY instead of SNR measurements, be-
cause higher-layer protocols running atop the SoftPHY interface can compute application
throughput using the BER estimate from SoftPHY hints across all operating environments.

Another tradeoff between SNR and SoftPHY hints is one of overhead. SoftPHY hints

do not incur the additional communication overhead of pilot symbols to track the channel,

and can work with just the received payload to estimate channel BER. However, SoftPHY
hints do incur a higher overhead in terms of hardware for computation, because soft output

decoders consume more hardware resources than hard output decoders. In comparison,
estimating SNR does not require adding new modules to existing PHY designs, and adds

very little overhead in terms of computational complexity.



3.2.2 Applicability

While commonly used to decode convolutional codes, the SOVA and BCJR algorithms can
be extended to decode any linear convolutional or block error correcting code. As such,
our method of computing BER can be used in any communication system that uses such
codes, examples of which include the popular 802.11 a/b/g and Zigbee.

Our method also applies to recent OFDM physical layers such as 802.1 In that are based
on the new Multiple Input Multiple Output (MIMO) technology. MIMO systems have
multiple transmit and receive antennas, which provide multiple paths with different chan-
nel losses between the transmitter and receiver. These multiple transmission paths provide
spatial diversity between the transmitter and receiver. The PHY in a MIMO system can
use the multiple antennas in two ways: it can transmit multiple independent data streams
through the different antennas and scale the throughput in proportion to the number of an-
tennas, or can harness spatial diversity by transmitting the same data stream along different
antennas and recovering the data more reliably. Note that the presence of MIMO does not
impact the SoftPHY hint computation because the complexity in MIMO arises in manip-
ulating and combining the analog signal from multiple antennas, while the FEC decoder
down the pipeline that operates on the coded bit streams does not have to be concerned
with these complications.

Our method can also be extended to advanced communication systems such as WiMax,
Digital TV, satellite communications, and cellular LTE, that use concatenated codes for
error correction. Concatenated codes involve using two block or convolutional codes either
in parallel or serially to perform two stages of error correction, examples of which include
the popular Turbo codes [8]. Such codes have been shown to achieve performances close
to Shannon's channel capacity. Concatenated codes use two separate decoders for the inner
and outer codes. In current PHYs, the inner decoder is usually a soft output decoder because
the LLRs from the inner code serve as soft inputs to the outer decoder and improve its
performance. However, the outer decoders typically produce hard decisions. By using
soft output decoders to decode the outer code as well, one can obtain LLRs and compute
SoftPHY hints in such physical layers.

3.2.3 Previous Work on SoftPHY Hints

Earlier research [26, 27] proposed using a different design of SoftPHY hints to identify
likely errored bits in a packet reception, in order to selectively retransmit only those bits.
These SoftPHY hints were developed in the context of the Zigbee communication scheme
that uses a block error correcting code. Recall that decoding block codes involves match-
ing a received codeword to the closest valid codeword. The authors propose deriving the
SoftPHY hints from the Hamming distance between the received codeword and the closest
valid codeword, with the intuition that the higher this distance, the lower the confidence
that this codeword was decoded correctly. One can then guess that all symbols with a
Hamming distance above a certain threshold likely have bit errors. While these SoftPHY
hints are suitable if the primary aim is to identify likely errored bits, they do not map in any
easy way to the underlying channel BER. If applications such as bit rate adaptation wish to
know the channel BER in a probabilistic sense even if the received packet has no bit errors,



Modulation Code Rate 802.11 Rate [ Implemented?
BPSK 1/2 6 Mbps Yes
BPSK 3/4 9 Mbps Yes
QPSK 1/2 12 Mbps Yes
QPSK 3/4 18 Mbps Yes

QAM16 1/2 24 Mbps Yes

QAM16 3/4 36 Mbps Yes
QAM64 1/2 48 Mbps No
QAM64 2/3 54 Mbps No

Table 3.1: Combinations of modulations and coding rates used in 802.11, the raw through-
put achieved over a 20 MHz channel, and their implementation status in our prototype.

then hints that just identify likely errored bits are not quite useful. Moreover, the Hamming

distance approach to computing SoftPHY hints does not generalize to communication sys-

tems that do not use a block code. We show in our evaluation that the LLR-based SoftPHY

hints that we propose are useful both to estimate the probabilistic channel BER as well as

identify likely errored bits in a packet. As a result, our scheme of computing SoftPHY hints

completely supersedes the earlier approach.

3.3 Implementation

In this section, we describe two prototype implementations of a physical layer that com-

putes per-bit SoftPHY hints, one built on software radios and the other on an FPGA plat-

form. While our software implementation enables us to perform a wide range of exper-

iments with easily available software radios, our FPGA implementation proves that the

computation of SoftPHY hints is feasible in real hardware.
In both implementations, the PHY exports the log-likelihood ratios and not the prob-

ability of bit error directly. While both choices would have worked fine in a software
implementation, exporting LLRs is easier in a hardware implementation with fixed point
arithmetic. This is because LLRs are logarithmic and therefore have a smaller range of

variation than BERs.

3.3.1 Computing SoftPHY Hints in Software

We built a SoftPHY prototype by modifying an 802.11 alg-like PHY running on the pop-

ular GNURadio codebase [2] with the USRP RF front-end. The GNURadio software was

based off the OFDM codebase developed by Anastasopoulos and Tom Rondeau. It was

subsequently modified by Kyle Jamieson to use a soft output decoder, and later refined by
us to compute the SoftPHY hints described in this dissertation.

Our prototype closely follows the basic PHY dataflow illustrated in Figure 2-3. At the

transmitter, incoming data passes through a standard rate-1/2 convolutional encoder, after

which it is punctured to produce coded bit streams at varying rates. The punctured bits



are then mapped to OFDM subcarriers, using either BPSK, QPSK, QAM16, or QAM64
modulations. The combinations of modulations and coding rates used in 802.11 a/g, the
corresponding raw 802.11 throughput on a 20 MHz channel, and the implementation status
in our prototype are shown in Table 3.1. The link-layer header is always transmitted at
the lowest base rate, unlike 802.11. The decoding process at the receiver first demodulates
the received data, and then decodes the error correcting code using the Viterbi decoder to
produce output bits.

In order to compute SoftPHY hints, we replace the Viterbi decoder with a SOVA or
BCJR decoder. The decoders take as input from the demodulator the Euclidean distance
between the received symbols and the valid constellation symbols. We found that replacing
the Viterbi decoder by a soft output decoder adds negligible overhead in terms of both
receiver complexity and per-packet processing cost in our software implementation. We
also found that both the SOVA decoder and the BCJR decoder computed identical LLRs in
our experiments (Section 3.4).

SNR computation. Our prototype also computes an SNR estimate from the packet pream-
ble at the start of each received frame using the popular Schmidl-Cox method [56], and an
average SNR over the entire packet using pilot subcarriers, as described in Section 3.1.1.
Our experiments evaluate the accuracy of BER estimation from these two types of SNR
estimates, in addition to the accuracy from SoftPHY hints.

Fading channel simulator. We implement a Rayleigh fading channel simulator in GNU-
Radio using a Jakes simulator model [75]. We use the channel simulator to connect the
software radio sender and receiver blocks in a local loopback configuration. The simulator
takes, among other things, the coherence time of the channel as a parameter, and simulates
channel fades in accordance with the specified coherence time. Therefore we use the sim-
ulator to test our implementation in a variety of channel conditions like fast fading due to
train-speed mobility that are hard to achieve in the lab environment.

3.3.2 Computing SoftPHY Hints in Hardware

We implemented a SoftPHY-capable PHY using Airblue, an FPGA-based platform for
developing cross-layer wireless protocols. Airblue is implemented on a custom hardware
platform built around an Altera Cyclone III FPGA, shown in Figure 3-3. The FPGA is
connected to a 2.4 GHz Radio Frequency (RF) front-end capable of 20 MHz and 40 MHz
baseband modulation. The FPGA communicates with a host computer via a high-speed
USB interface. The FPGA software consists of an 802.1 la/g-like OFDM baseband PHY
as shown in Figure 3-4 and a simple contention MAC, written in the Bluespec [1] hardware
programming language and compiled to run on the FPGA. Most of the baseband PHY
processes OFDM symbols at a clock speed of 25 MHz, except for the Viterbi decoder that
is more computationally intensive and therefore needs to run at a higher clock speed of
40 MHz.

To obtain SoftPHY hints for every bit, we replaced the Viterbi decoder in the receiver
pipeline with the BCJR soft output decoder, as shown in Figure 3-4. We use the BCJR



Figure 3-3: The hardware used in Airblue, an FPGA-based platform used to develop a
SoftPHY-capable PHY.

Basban Prcesor TX Pipeline 0 RX PipelineBaseband Processor "

S BCJR instead of Viterb

Figure 3-4: OFDM baseband data flow in our FPGA-based PHY on the Airblue platform,
and modifications to the pipeline to implement SoftPHY hints.

algorithm instead of the SOVA decoder because the BCJR decoder is commonly used in the
hardware community (in the design of decoders for concatenated codes) and has a readily
available pipelined design. On the other hand, it was much harder to achieve pipeline
parallelism with SOVA, as a result of which our SOVA decoder did not meet the required
timing constraints.

It has been shown that the complexity of the BCJR algorithm is at least three times that
of the (hard output) Viterbi decoder [53]. As a result, the BCJR decoder requires more
clock cycles to compute each output bit when compared to the Viterbi decoder. We define
the receiver pipeline processing latency as the time between when the transmitter PHY

sends out a PHY symbol over the air and the receiver PHY decodes the last bit of that
symbol and passes it to the link layer. A dominant part of this latency is the time taken to
decode a symbol at the receiver, because air propagation delays are usually negligible at
short distances. While our original PHY with the Viterbi decoder had a processing latency
of 9.72 ps, the new SoftPHY-capable PHY with the BCJR decoder has a processing latency
of 15.52 ps. That is, each bit requires an additional 5.8 ps to be decoded with SoftPHY

. ...........



Mode Bandwidth Tones Pilot Tones OFDM Symbol Time
Long range 500 KHz 1024 16 2.6 ms
Short range 4 MHz 512 16 160 ps
Simulation 20 MHz 128 8 8 ps

Table 3.2: Modes of operation of our software radio OFDM prototype. Also shown are the
RF bandwidth sampled, number of subcarriers in each OFDM symbol, the number of pilot
tones in each OFDM symbol, and OFDM symbol time in each mode. The cyclic prefix
length is one-fourth the OFDM subcarrier length in all the modes.

hints.
However, this increase in processing latency does not effect the throughput or the feasi-

bility of our prototype due to the pipelining of the various PHY operations. The pipelined
PHY implementation can still decode one PHY symbol every 3.2 Ps (the 802.11 OFDM
standard specifies that one symbol must be transmitted and received every 4 ps). Therefore,
the increased processing latency only increases the time taken to decode the last symbol by
5.8 ps, and reduces the slack time available to transmit a link-layer ACK frame immedi-
ately after the transmission. We will now show that our implementation can meet 802.11
timing requirements for sending the link-layer ACK.

If a frame is received correctly, the 802.11 standard specifies that the receiver must
wait for a duration equal to the Short Inter Frame Spacing (SIFS) after the completion of
a transmission, and then send the ACK frame. A receiver requires one CSMA slot time to
detect that the medium has become idle and the transmission has ended. For the 802.1 la
PHY, the slot time is 9 ps and the SIFS interval is 16 ps. Therefore, the receiver PHY must
be able to transmit an ACK within 9 + 16 = 25 ps after the completion of a transmission.
Now, the PHY finishes decoding the packet 15.52 ps after the transmission completes (as
mentioned earlier). The module that checks the CRC of the frame requires an additional
1.32 ps to check if the frame was received correctly or not. The link layer requires under
a microsecond to initiate an ACK transmission to the PHY. Thus, in the case of a correct
reception, the link layer is ready to issue an ACK frame in 15.52 + 1.32 = 16.84 Ps, well
within the 25 ps timeout interval. Even if the exact numbers of the SIFS duration and
slot time are different across different standards, one can see that even our unoptimized
implementation of a SoftPHY-capable PHY can comfortably meet timing requirements.
Moreover, because the decoded bits and SoftPHY hints are available at the link layer well
in advance before an ACK frame transmission begins, one can embed the BER feedback
computed from SoftPHY hints into the ACK frame comfortably. This BER feedback can
then be used by link-layer protocols that require feedback on channel quality. The next two
chapters of this dissertation present two such protocols, SoftRate and SoftCMAP, that rely
on this feedback to perform bit rate adaptation and channel access respectively.

To export the SoftPHY hints along with the data in the hardware implementation, we
extend the data types of the interfaces between the modules downstream to the decoder
(the Header Decoder and Descrambler modules, as shown in Figure 3-4) to hold a 9-bit
SoftPHY hint in addition to the data bit. Exporting the hints to the link layer did not further
change the processing latency of the receiver pipeline.



Table 3.3: A summary
ate SoftPHY hints.

of the experiments with the software radio prototype used to evalu-

3.4 Evaluation

In this section, we analyze packet traces from experiments and simulations on a SoftPHY-
capable PHY to measure the accuracy of BER estimation using SoftPHY hints. Our main
findings are summarized below.

1. SoftPHY hints can accurately estimate channel BER across a wide variety of wireless
propagation channels, and in the presence and absence of interference.

2. BER estimation with SoftPHY hints has a lower variance when compared to existing
ways of estimating BER from measured SNR.

3. SoftPHY hints can not only estimate the probabilistic channel BER but can also
identify the locations of the bit errors.

3.4.1 Method

We use a combination of live experiments and controlled simulations using our software ra-

dio and hardware OFDM prototypes to collect extensive packet traces with SoftPHY hints.

In addition to raw packets, the traces also record the SoftPHY hints and SNR measurements

of received frames.

Experiment Used Method
in

Static §3.4.2 Six static sender-receiver pairs operating in the long range mode were used.
Each sender transmitted 100 960-byte packets each at 20 different sender

transmit powers and 6 different bit rates.
Walking §3.4.3, One sender transmitting in short range mode was moved at walking speed

§4.4.3 away from the receiver in 10 experimental runs of 10 seconds each. A total
of 4,000 packets per bit rate were transmitted.

Simulation §3.4.3, A sender and receiver were connected by our GNU Radio fading channel

§4.4.4 simulator. The Doppler spread of the channel was varied from 40 Hz to
4 KHz. One hundred packets each were transmitted at 20 different transmit
powers of the sender at each of the Doppler spread values.

Static (in- §3.4.4, A sender and interferer transmitted packets simultaneously to a receiver in

terference) §4.4.2 the long range mode. A random jitter of around one packet-time was added
between both transmissions. One hundred packets each were transmitted at
20 different sender transmit powers, five different interferer transmit powers

and six different bit rates.
Static §4.4.5 Single static sender transmitted packets in short range mode in 10 experi-

(short range) mental runs of 10 seconds each. A total of 4,000 packets were transmitted
at each of the bit rates across all the runs.



Figure 3-5: Evaluation testbed of software radio nodes: light (red) shaded nodes are
senders; black nodes are receivers. The thick dashed line shows the approximate path
of the sender in mobility experiments.

Trace collection with the software radio prototype. We run our software radio experi-
ments in two modes. In the long range mode, the USRP samples a smaller RF bandwidth
in the 2.4 GHz band than in the short range mode. Because of sampling error, the latter
results in signals of lower fidelity from the USRP, resulting in it being unusable over a few
links in our testbed. However, a smaller RF bandwidth in the long range mode also leads
to typical frame durations of tens of milliseconds. As a result, only experiments in static
topologies that see little variation at that timescale were run in the long range mode. In
contrast, the short range mode results in frames that last less than a millisecond, making it
suitable to run mobility experiments in fading channels that change on shorter timescales.
Experiments using our fading channel simulator (instead of the real RF channel) were not
limited by the RF front-end; such experiments were run over the normal 20 MHz band with
802.11-like frame durations. We summarize these modes of operation in Table 3.2. Note
that all the modes use more subcarriers than used in commodity 802.11 cards today (i.e.,
48) because a higher number of subcarriers enables better physical layer synchronization
and channel estimation.

We run a variety of live experiments in static and mobile configurations on the testbed
shown in Figure 3-5 by varying the locations of the senders and receivers, and the transmit
power and bit rate. We also run controlled simulation experiments with our fading channel
simulator by varying the Doppler spread parameter of the fading channel from 40 Hz to
4 KHz. Recall from Chapter 2 that if the Doppler spread in frequency due to mobility
is f, then the coherence time of the channel is roughly 2y [65]. Therefore our channel
simulator traces correspond to channel coherence times between 10 ms and 100 Ps, and
capture a variety of channel conditions ranging from movement at walking speed in indoor
environments (coherence time close to 30 ms) to movement at train speeds (coherence time
close to 100 [ps). Table 3.3 elaborates on the various experiments and traces used in the
evaluation. These packet traces are also used in subsequent chapters for evaluation of other
protocols based on SoftPHY hints.
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Figure 3-6: Per-frame average BER estimated by SoftPHY hints vs. the actual BER of the
frame from experiments in a static channel.

Trace collection with Airblue prototype. While the easy availability of the mature
GNURadio-based software radios enables us to run a large number of live experiments
involving multiple radios, the RF front-end in the Airblue platform is still being debugged
and is not suitable for running over-the-air experiments. Instead, we run a cycle-accurate
hardware simulation of the hardware transmitter and receiver that are connected over a sim-
ulated AWGN channel. We transmit 1000 4000-byte packets between a transmitter and a
receiver, with different noise conditions being simulated in the AWGN channel simulator,
and collect the packet traces and SoftPHY hints from the hardware simulation. While not
extensive, these traces demonstrate the feasibility of our hardware implementation.

3.4.2 BER Estimation in Static Channels

We first analyze data from the static experiment described in Table 3.3. For each frame in
the trace, we compute the probability of error Pk for each bit k from the SoftPHY hint sk
using Equation 3.21. Then we average Pk over the frame to compute a per-frame average
BER. Separately, we determine the frame's ground truth BER by checking the received
bits against the known payload. We aggregate the results across different transmit powers,
sender-receiver pairs, and bit rates in the trace. We bin the BER estimate data in fixed-sized
bins of 0.1 units in the SoftPHY metric (roughly logarithmically-sized bins of the estimated
BER). Figure 3-6 plots the true BER of the frame against the BER estimated from SoftPHY
hints; error bars in this and subsequent figures indicate one standard deviation about the
mean. We see from the figure that the SoftPHY-based BER is an good estimator of true
BER.

The preceding experiment tests BER estimation frame by frame. But it is hard to re-
liably observe BERs below 10-- in one 960-byte frame. We therefore aggregate all the
frames associated with a SoftPHY-based BER estimation bin in the above experiment, and
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Figure 3-7: Average BER estimated by SoftPHY hints vs. the actual average BER over
aggregated bits binned by the estimated BER from experiments in a static channel.
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Figure 3-8: SNR of a frame computed from the preamble vs. the actual BER of the frame
for the QPSK 3/4 and QAM16 1/2 bit rates from experiments in a static channel.

compute the average BER over the aggregated bits (Figure 3-7). We see that SoftPHY hints
accurately estimate ground truth BER all the way down to 10-7; the aggregate bits in the
graph bins were not sufficient to measure lower BERs.

To analyze SNR-based BER predictions, we separate the trace data by bit rate, because
the SNR-BER relationship changes for different modulation and coding schemes (unlike in
the case of the SoftPHY-BER relationship). Figure 3-8 shows the ground truth BER plotted
against the SNR estimate of the frame computed from the preamble for two bit rates, with
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Figure 3-9: Average SNR of a frame computed from pilots vs. the actual BER of the frame
for the QPSK 3/4 and QAM16 1/2 bit rates from experiments in a static channel.

the data binned as described earlier. Figure 3-9 shows the ground truth BER plotted against
the average SNR over the entire frame computed using pilots. We see that the error bars
are larger with SNR-based BER estimates.

We now quantify and compare the accuracy of BER estimation using SoftPHY hints
and SNR. Let i = 1 ... n denote the various bins on the x-axis in the above figures. For
each bin i, let mi denote the mean ground truth BER plotted on the y-axis and let di denote
the standard deviation of the BER plotted on the y-axis. We define a metric called the
normalized deviation 6 as the average ratio of the deviation to the mean across all the bins:

6 = - -d- (3.23)
n mi

We normalize the deviation by the mean value of the BER because a higher value of
the deviation, say 0.1, is less significant for BERs around 0.1, but very significant for BER
around 10-. Because the BER varies by many orders of magnitude on the y-axis in the
above figures, we normalize the deviation by the mean value of the bin.

The normalized deviation 6 for BER estimation from SoftPHY hints (Figure 3-6) is
0.33. The 6 for the QPSK 3/4 and QAM16 1/2 bit rates is 0.91 and 0.98 respectively when
using SNR from preamble (Figure 3-8), and 1.20 and 1.34 respectively when using SNR
from pilots (Figure 3-9). These numbers show us that BER estimation from SoftPHY hints
has three times less error than some common ways of estimating BER from SNR values.
Also, SNR estimation from pilots, though more convenient in fast varying mobile channels,
has a higher margin of error than SNR estimation from the preamble. The likely cause of
this observation is that SNR estimation from pilots uses only a handful of sample points
per symbol to estimate the SNR as opposed to SNR from the preamble that is computed
across all subcarriers in a symbol. To confirm this hypothesis, we conducted an experiment
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Figure 3-10: Per-frame average BER estimated by SoftPHY hints vs. the actual BER of
the frame from simulations with our hardware prototype.
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Figure 3-11: Per-frame average BER estimated by SoftPHY hints vs. the actual BER of
the frame from experiments (points) and simulations (curves) in a mobile channel.

where a known payload was transmitted and all the data bits were used as pilots to compute
the SNR. The normalized deviation for the two bit rates in the experiment was found to be
0.73 and 0.75 respectively.

Figure 3-10 plots the ground truth BER of the frame against the BER estimated from
SoftPHY hints for the traces collected from simulations with our hardware prototype. We
see from the figure that the SoftPHY-capable PHY implemented in hardware performs
similar to the one in software radios, and can accurately estimate channel BER.
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Figure 3-12: SNR of a frame computed from the preamble vs. the actual BER of the frame
for the QAM 16 1/2 bit rate from experiments (points) and simulations (curves) in a mobile
channel.
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Figure 3-13: Average SNR of a frame computed from pilots

frame for the QAM 16 1/2 bit rate from simulations in a mobile

3.4.3 BER Estimation in Mobile Channels

We now show that SoftPHY hints reliably estimate BER even in mobile fading channels
with widely varying channel coherence times. This section uses data from the walking and
simulation traces of Table 3.3. For each dataset, we bin the data by SoftPHY-estimated
BER, and compute the mean ground truth BER in each bin. Figure 3-11 shows the results,
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Figure 3-14: Per-frame average BER estimated by SoftPHY hints vs. the actual BER of
the frame from experiments with two concurrent transmissions.

with the two curves corresponding to simulation traces at walking (Doppler spread 40 Hz)
and vehicular speeds (Doppler spread 400 Hz), and the points in the figure corresponding
to experimental data from the walking traces. The corresponding SNR-BER curves at
the QAM16 1/2 rate are shown in Figure 3-12 for SNR computed from the preamble. The
SNR-BER curves when the average SNR is measured from pilots for walking and vehicular
speeds are shown in Figure 3-13.

From the figures, we see that the SoftPHY-based BER estimate is not sensitive to mo-
bility speed. SoftPHY hints reflect the increasing number of deep fades in the body of the
frame as channel coherence time decreases, and therefore estimate BER across all wireless
propagation environments accurately. In the case of SNR measured from the preamble, the
SNR measured at the start of the frame does not capture the variation of SNR that happens
over the body of the frame in fading channels. As a result, for the same measured SNR in
the preamble, a higher BER is observed in channels that vary more. The fact that the SNR-
BER relationship changes with channel coherence time is well-known [50] and has also
been observed experimentally by Camp and Knightly [13]. The SNR-BER curve obtained
by using the average SNR from pilots is much less sensitive to the environment than that
obtained using the SNR from the preamble. We find that averaging the SNR using pilots
slightly underestimates the actual SNR (for reasons described in Section 3.1.2), causing the
SNR-BER curve to shift lower by a small amount.

3.4.4 BER Estimation with Concurrent Transmissions

Certain protocols (see Chapter 5) require estimating the channel BER not just during a
single transmission but also in the presence of multiple concurrent transmissions. Consider
a transmission from a sender to the receiver, during which another transmission from an
interferer starts. The problem now is to estimate the BER over the entire frame, so as to
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Figure 3-15: Average SNR of a frame computed from pilots vs. the actual BER of the
frame for the QPSK 3/4 and QAM16 1/2 bit rates from experiments with two concurrent
transmissions.

factor in the effect of the interference. Clearly, predicting BER from the SNR measured at
the start of the packet does not reflect the effect of the interference that starts later. On the
other hand, BER computed from SoftPHY hints or average SNR over a frame reflects the
effect of the concurrent transmission.

We analyze packets in the static interference trace of Table 3.3. We analyzed all the
packets detected at the receiver and estimated per-frame BER using SoftPHY hints. Fig-
ure 3-14 shows the per-frame BER estimated from SoftPHY hints plotted against the actual
BER of the frame. On the other hand, Figure 3-15 shows the average frame SNR computed
from pilots plotted against the actual frame BER. We see from the figure that SoftPHY
hints can be used to accurately measure the channel BER in the presence of multiple trans-
missions. We also see that BER estimation from SNR has a higher variance than that using
SoftPHY hints, as we observed in the previous experiments.

3.4.5 Identifying Bit Errors with SoftPHY Hints

In addition to being useful in estimating the channel BER in a probabilistic sense, SoftPHY
hints can also be used to identify the exact bits in a received frame that are likely to be in
error, for applications like error recovery [27] and symbol-level opportunistic routing [33].
We separate out the correct and incorrect bits from all the packets in the static trace of
Table 3.3 and sort them by their SoftPHY hints. Figure 3-16 shows the CDF of SoftPHY
hints of correct and incorrect bits. From the graph, one can easily see a clear separation
in the values of the confidences for correct and incorrect bits. Therefore, one could use a
threshold on the SoftPHY hints and guess that all the bits with hints below the threshold
are incorrect. Of course, this process inevitably leads to some false positives (mislabeling
correct bits as bit errors) and false negatives (failing to identify actual bit errors). The
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Figure 3-16: CDF of the SoftPHY hints of bits decoded correctly and incorrectly.

choice of the threshold often depends on the requirements of the higher-layer protocol with
respect to false positives and false negatives. For example, if we choose a SoftPHY value of
5.5 as the threshold for identifying bit errors, then we see from the figure that we mislabel
about 1% of incorrect bits as correct (false negatives) and 0.5% of correct bits as incorrect
(false positives). If we use a threshold of 9.9, we identify all incorrect bits, and only label
3% of correct bits as incorrect.

3.5 Chapter Summary

Estimating channel BER is a useful primitive for many link-layer protocols, and is the
first step in estimating higher-layer throughput. Link-layer protocols today rely on proxies
for channel BER such as SNR measurements and frame loss rates. While frame loss rate
measurements require multiple frame transmissions to converge to a meaningful estimate,
one requires a model of the propagation channel to accurately compute channel BER from
SNR measurements. This chapter proposes a new method for directly estimating wireless
channel BER using the per-bit confidences or SoftPHY hints exported by the physical layer.
We propose using the log-likelihood ratios produced by soft output decoders in the PHY as
SoftPHY hints; this design works for any PHY that uses error correction. These SoftPHY
hints can then be used to estimate the channel BER using a single frame reception and
without knowing the transmitted payload. This estimation of BER from SoftPHY hints
works across all modulation and coding schemes, and does not depend on the channel
coherence time and other fading characteristics. We implement SoftPHY-capable PHY
prototypes using GNURadio-based software radios and an FPGA-based hardware platform.
Our experiments with these prototypes show that SoftPHY hints can accurately estimate
channel BER across a wide range of channel conditions.



Chapter 4

Bit Rate Adaptation Using SoftPHY
Hints

This chapter describes the design, implementation, and evaluation of the SoftRate bit rate
adaptation protocol. Recall that to improve wireless throughput in a time-varying channel,
a wireless transmitter must dynamically adapt its modulation and coding by picking a suit-
able bit rate to suit channel conditions. The bit rate adaptation protocol makes this choice.
To do so, it must address two important questions:

1. What signal (information) should the sender use to select the right bit rate?

2. Over what timescale should this signal be observed?

Let us examine the prior work on bit rate adaptation (Section 4.1) using these two
criteria. All prior work broadly uses one of two information signals: frame receptions
or signal-to-noise ratio (SNR). Frame-based protocols make decisions at the timescale of

hundreds of milliseconds and turn out to be too slow to work well in a fast changing mobile
channel. On the other hand, SNR-based protocols can make transmit bit rate decisions
every one or few frames, but SNR is not a good information signal because the mapping
between the SNR and channel BER at a given bit rate may depend on the characteristics of
the propagation channel.

Moreover, the information signal used by rate adaptation protocols must also be robust
to interference. A bit rate adaptation protocol must not reduce bit rate in response to colli-
sions, because doing so increases the transmit duration of frames and conflicts with other
mechanisms (like exponential backoff) that the channel access protocol employs to avoid a
collision on the next retry. A frame reception is an example of an information signal that is
not robust to interference [71, 52].

The SoftRate bit rate adaptation protocol (Section 4.2) addresses all the above pitfalls

of existing protocols. SoftRate uses the interference-free BER estimated from SoftPHY
hints at the receiver as its feedback signal, using a heuristic to identify and eliminate the

impact of interference on the measured channel BER. By sending this BER estimate in a
small feedback frame to the sender, SoftRate adapts the transmit bit rate at the granularity
of individual frames, and is highly responsive to rapid channel variations due to mobility.



To evaluate SoftRate, we use traces collected using the SoftPHY-capable physical layer
implemented using the GNURadio codebase (see Section 3.3). Because the communication
latency from the PHY to the link layer in software radios does not allow for a viable imple-
mentation of SoftRate on this software radio platform, we use the PHY-level packet traces
collected using our SoftPHY-capable GNURadio prototype and run a trace-driven simula-
tion of the link layer and higher layers using the ns-3 simulator [3]. We implement SoftRate
and other rate adaptation protocols in the link layer of ns3 (Section 4.3) and compare their
performance in terms of the throughput of a TCP application at the higher layer. Our trace-
driven evaluation of TCP over SoftRate (Section 4.4) shows that SoftRate achieves gains
of around 20% over SNR-based protocols trained on the operating environment, from 35%
to 4 x higher throughput than untrained SNR-based protocols, and 2-4 x more throughput
than state-of-the-art frame-based protocols in mobile fading and interference-dominated
channels. Performance gains in our experiments stem from SoftRate's ability to quickly
react to rapid channel variations before TCP's end-to-end congestion control mechanism
reacts to burst losses, and its resilience to collision-induced losses.

4.1 Related Work

4.1.1 Frame-based Bit Rate Adaptation

Many frame-based rate adaptation schemes have been proposed [31, 37, 34, 47], the most
recent ones being RRAA [71] and SampleRate [11]. Frame-based schemes are, by design,
less responsive to channel variations than SoftRate because one requires multiple frame
receptions to accurately estimate channel state at any bit rate.

Auto Rate Fallback (ARF) [31] is an older bit rate selection protocol used by Lucent
WaveLAN-II 802.11 cards. ARF increases the bit rate on ten consecutive successful trans-
missions at a bit rate and reduces the bit rate on even a single loss. At any bit rate, it uses
some fixed number of successful transmissions before attempting the next-higher bit rate.
Adaptive ARF (AARF) [37] adapts this parameter by doubling it every time the packet
following a rate increase fails. CARA [34] is a variant of ARF that enables RTS/CTS on
a frame loss and disables RTS/CTS on a frame success. It incurs significant overhead, and
may not converge in the presence of hidden terminals. ONOE [47], a prior bit rate adap-
tation protocol used in the Atheros driver, uses a credit-based scheme to monitor loss rates
at each bit rate, attempting to choose the highest bit rate with less than 50% frame loss
rate. These four protocols above have been shown to perform worse than SampleRate [11]
because the heuristics used for rate increase and decrease lead to incorrect rate choices in
practice.

SampleRate is currently (as of May 2010) used in the Linux 802.11 device driver for
Atheros cards. SampleRate maintains a ten-second history of the average time it has taken
to transmit a packet at different bit rates, updated every time a packet transmission succeeds
or fails (after reaching the maximum retry limit). The time taken to transmit a packet
includes the transmission time over the air, the time taken for retransmissions, and the
time spent backing off between retransmissions. When a node has a packet to send, the
sender picks the bit rate that has the lowest average transmission time. SampleRate also



periodically samples from bit rates other than the current best in order to adapt to changing
channel conditions. Every ten packets, SampleRate picks a random bit rate from the rates
that have not failed four successive times (to exclude rates with very bad performance) and

that have a minimum packet transmission time (i.e., transmission time over the air, without
retransmissions or backoff) lower than the current rate's average transmission time.

Robust Rate Adaptation Algorithm (RRAA) uses frame loss information gathered over
a short-term estimation window and adapts bit rate more opportunistically than SampleR-
ate. RRAA picks the bit rate that maximizes the rate of delivery of frames based on the
frame loss rate computations at various bit rates. Each rate in RRAA is associated with
a maximum tolerable loss rate threshold, computed as the loss rate at which the expected
throughput of that bit rate equals the expected throughput of the next lower rate. If the
frame loss rate at a bit rate, computed over the estimation window, exceeds this threshold,
RRAA reduces the bit rate. RRAA also uses a threshold for rate increase, opportunistically
increasing the bit rate if the frame loss rate falls below that threshold. The size of the es-
timation window over which the loss rates are calculated is chosen to be at a granularity
finer than the thresholds; this value is typically a few tens of frames in 802.11. RRAA
also compares the frame loss statistics both with and without RTS/CTS in order to guess
whether each loss is caused by a collision or fading on the channel. It then adaptively
enables RTS/CTS more frequently as collision losses increase.

COLLIE [52] makes the observation that collision losses adversely impact the perfor-
mance of rate adaptation protocols. To address this problem, the COLLIE receiver echoes
received frames to the sender. The COLLIE sender analyzes the patterns of bit errors in re-
ceptions in order to infer whether an error was due to a collision or a channel loss. COLLIE
modifies the ARF frame-based rate adaptation protocol to adapt bit rate on channel losses
alone. The COLLIE sender analyzes the PHY's reported received signal strength, the bit
error rate, the symbol error rate (based on knowledge of the granularity at which the 802.11
OFDM PHY maps bits to symbols), and errors per symbol (the average number of bits in
error among all errored symbols) of the echoed frames. Based on some post-processing
of the above metrics, the sender is able to separate collisions from interference with an
accuracy of between 60%-95%, resulting in throughput improvements of 20%-60% over
the unmodified ARF protocol. However, COLLIE incurs significant overheads due to the
feedback of entire received frames from the receiver to the sender. The performance gains
of COLLIE over the unmodified ARF protocol, which reduces the bit rate even on a single
loss, are unlikely to hold in the case of a smarter rate adaptation protocol.

Finally, other protocols [5, 10] use timing information from the physical layer (such as
"channel busy" time from Madwifi or packet interarrival times) to infer and separate out
interference losses, but are susceptible to the same inefficiencies as frame-based protocols
in general.

4.1.2 SNR-based Bit Rate Adaptation

Because the mapping between SNR and channel BER is easy to obtain in static and slow

fading channels, it is conceivable that SNR estimates of received frames can be used to
pick the best transmit bit rate that maximizes throughput. RBAR [23] uses the RTS/CTS

exchange at the beginning of a packet to estimate and obtain the SNR at the receiver, and



picks the transmit bit rate accordingly. OAR [54] builds on RBAR, opportunistically trans-
mitting back-to-back frames when the channel quality is good. However, in later work [13],
the authors show that OAR's assumption of coherence time greater than a packet time does
not hold in an outdoor urban environment. CHARM [29] leverages the reciprocity of the
wireless channel' to estimate average SNR at the receiver using packets overheard from the
receiver at the sender, thereby avoiding the overhead of RTS/CTS and enabling implemen-
tation on commodity cards. CHARM uses an exponential weighted moving average of the
SNR over the past few frames to get an estimate of the channel SNR.

The problem of rate adaptation using SNR becomes more complicated in fast fading
channels that occur in outdoor environments with vehicular mobility. Camp and Knightly
[13] evaluate a number of SNR-based rate adaptation protocols in outdoor vehicular chan-
nels, where the SNR is measured once per frame using the AGC gain at the start of the
packet transmission. The authors find that because the SNR-BER relationships change
with varying degrees of mobility, SNR-based protocols require in-situ training to perform
efficiently across different propagation environments. Our evaluation in Section 4.4.4 con-
firms this result. While CHARM [29] proposes a mechanism to calibrate its protocol on
a slower timescale to handle heterogeneous hardware, their mechanism is not effective
against changes in the propagation environment that occur on a faster timescale, say, due
to changes in mobility.

The rate adaptation mechanisms in IS-856 CDMA cellular data (lx EVDO) and High
Speed Downlink Packet Access (HSDPA) use pilots to track the average SNR over the
entire duration of the packet in fast fading channels, reducing the impact of the propaga-
tion environment on the SNR estimate. Some researchers have also proposed using pilot
subcarriers to measure SNR across different subbands of the transmission frequency band,
to adapt bit rate across frequency in frequency-selective channels [16, 51]. In addition to
incurring the overhead of pilots, such an SNR estimate is also not robust to interference, as
it is not possible to distinguish the reduction in SNR due to interference from that due to a
weak signal.

Finally, researchers have observed that it is difficult to accurately measure SNR in cur-
rent commodity 802.11 systems due to hardware calibration issues and interfering trans-
missions [74].

4.2 Design

Like most other link-layer bit rate adaptation protocols, SoftRate aims to maximize link-
layer throughput. The link-layer throughput achieved at a certain channel BER and bit
rate depends on the error recovery mechanism used (e.g., does the link layer retransmit
entire frames, or only the bits in error?). Therefore, SoftRate's use of BER as the bit rate
adaptation signal has two benefits:

1. BER is an accurate predictor of performance. It is a sufficient statistic that predicts
the throughput of various error recovery protocols; as a result, SoftRate cleanly inte-

'Channel reciprocity states that the propagation characteristics of the wireless channel between the trans-
mitter and receiver are symmetrical.
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Figure 4-1: A high-level view of the SoftRate system.

grates with many error recovery schemes, as we show later.

2. BER is responsive. It can be calculated over short timescales on the order of indi-
vidual frame transmissions, which allows SoftRate to respond to rapid changes in
channel conditions.

The SoftRate protocol works as follows. Receivers in SoftRate use a PHY that is capa-
ble of exporting SoftPHY hints. We use the log-likelihood ratios (LLRs) of bits exported
by soft output decoders as the SoftPHY hints, as described in Section 3.2. The SoftRate re-
ceiver uses these SoftPHY hints to compute the average interference-free BER for each re-
ceived frame, employing a heuristic to detect and excise those portions of the frame subject
to strong interference (Section 4.2.1). The SoftRate receiver then sends the interference-
free BER estimate to the sender in a link-layer feedback frame. At the sender's link layer,
the SoftRate rate selection algorithm (Section 4.2.2) uses the per-frame BER feedback to
pick the best transmit bit rate for the next frame. The algorithm works seamlessly across a
wide range of wireless channels (Section 4.2.3).

To ensure reliable delivery of feedback, SoftRate always sends its link-layer feedback
frame at the lowest available bit rate in a "reserved" time slot, much like 802.11 link-layer
ACKs. The receiver sends feedback whether or not the frame was in error, as long as the
frame's preamble and header were decoded correctly. To correctly determine the identities
of the sender and receiver even when the frame has an error, link-layer headers are protected
with a separate CRC. If the frame has no errors, then the BER feedback is one component of
the link-layer ACK. Thus the SoftRate protocol incurs very little extra overhead compared
to existing protocols-a CRC in the link-layer header, and a BER measurement in the link-
layer ACK. If the sender does not receive any feedback for a frame, the most likely cause is
a noisy channel preventing the receiver from even detecting the frame. Therefore SoftRate
moves to a lower bit rate if it does not receive feedback for a few consecutive frames.

Figure 4-1 shows the architecture of the SoftRate system. SoftRate operates using
only information provided via the layered SoftPHY interface and can inter-operate with
any PHY that exports SoftPHY hints; as explained in Section 3.2.2, most existing PHYs
qualify.
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Figure 4-2: Patterns of SoftPHY hints for a frame lost due to a collision (upper) and due
to channel fading (lower). A circle over a bit-position at the top of the graph indicates a bit
error.

4.2.1 Interference Detection

A bit rate adaptation protocol that reduces the transmit bit rate in response to interference
losses increases the contention on the channel and exacerbates the interference. However,
a responsive rate adaptation protocol that reacts to short-term frame loss rate or BER faces
the danger of reacting aggressively to interference. To avoid this problem, SoftRate uses
a heuristic to identify and separate bit errors caused by interference, adapting the bit rate
only in response to the interference-free BER of a frame.

If the interferer's signal starts after the receiver synchronizes with the sender's frame,
then the interference will manifest itself as a sudden spike in the BER estimated from
SoftPHY hints. (If the interferer's signal is much stronger than the sender's, some PHYs
will even resynchronize with the interferer and abort the sender's frame, which can also be
used as a sign of interference.) Assuming that the PHY does not lose synchronization, a
sudden change in BER by orders of magnitude within a small number of bits can be used
as a sign of interference because such a change cannot be explained by stochastic channel

fading in real-life environments, whose physics are more gradual. For example, Figure 4-2
contrasts the patterns of SoftPHY hints for a frame that was in error due to a collision and

a frame that had bit errors resulting from fading in a mobile channel.
We will now describe the heuristic more formally in the context of our SoftPHY-capable

OFDM PHY prototype described in Section 3.3. While mapping coded data onto subcar-
riers in one OFDM symbol, the OFDM transmitter interleaves the data onto non-adjacent
(in frequency) OFDM subcarriers. This frequency-domain interleaving mitigates bit errors

from frequency-selective fading, which causes adjacent subcarriers to fade simultaneously.
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Frame size of S1  Frame size of S2 f1 f2

1400 bytes 1400 bytes 12% 12%
100 bytes 1400 bytes 14% 1%

Table 4.1: Fraction of frames fi and f2 at the two hidden terminal senders S1 and S2 for
which both the preamble and postamble are lost due to interference and are undetected

at the receiver. The two senders are continuously transmitting UDP packets and perform
exponential backoff on a collision.

A collision, however, still causes interference on all subcarriers. We therefore detect colli-

sions in such a PHY as sudden jumps in BER between adjoining OFDM symbols. Suppose
we receive a frame of S OFDM symbols, each symbol containing Nbp, bits, for a total of

N = Nb,, - S bits, with corresponding SoftPHY hints Sk, k = 1 ... N. First, we compute

Pk from each Sk using Equation 3.21. Then, we average Pk, Nbp, bits at a time, to obtain S
average BERs Pi, one for each OFDM symbol j:

Nbps

P Nb Pi+(-1)-Nbps

Finally, our collision detection algorithm is a simple threshold on the difference d=

pj - Pj_11. A SoftRate receiver uses this heuristic to test every received frame for the

presence of interference, and computes the BER of the frame over the interference-free
portions alone.

If the PHY uses time interleaving of bits in a frame, then the bit errors that occur due to

interference will be dispersed all over the frame. In such cases, interference detection must

be performed before deinterleaving to capture the temporal patterns of bit confidences. If
the deinterleaving occurs before decoding (i.e., before SoftPHY hints are generated), then

the interference detection algorithm can work on the inputs to the decoder as well. We note
that if the PHY uses some form of interference cancellation [22, 19], then the interference
detection strategy remains the same, though the fraction of time interference-related losses

occur may be lower.
Note that this heuristic only detects interference that starts after the receiver has syn-

chronized with the signal of interest from a sender. On the other hand, if the sender's signal
starts after the receiver synchronizes with the interferer's frame, then the receiver will nei-
ther detect the sender's frame nor send the BER feedback to the sender. We call such losses
silent losses. The sender, on not receiving any feedback from the receiver, does not know
if the loss is due to weak signal at the receiver that prevented the sender's frame from even

being detected or due to a collision. To avoid this confusion, one can add a synchronization
"postamble" to the end of every frame (an idea used in previous work, e.g., [27]) which

enables the receiver to detect with high probability the portion of the sender's frame that

lasts after the interference has ended. When postambles are used, the SoftRate sender can

assume that consecutive silent losses indicate a weak signal at the receiver and reduce the

transmit bit rate.
The perceptive reader may note that in the cases when the frame durations of the inter-

ferer and sender are different (as is likely in multi-rate settings), the sender's frame may
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Figure 4-3: Complementary CDF of run length of consecutive frames whose preamble
and postamble are undetected at the corresponding receiver in an experiment with a pair of
hidden terminal senders.

fully overlap with the interferer's, resulting in a loss of both the preamble and the postam-
ble. However, we observe that such a situation is unlikely to repeat on a retry of both the
frames, because channel access protocols typically implement a backoff mechanism on a
frame loss, which changes the relative alignment between the frames on the retry.

To measure the frequency of silent losses due to interference, we use the ns-3 network
simulator to simulate collisions between two nodes that cannot carrier sense each other.
We modify the ns-3 802.11 protocol to append and detect postambles at the end of frames.
In our simulation, the two senders Si and S2 transmit UDP packets as fast as possible,
picking a random transmit bit rate on each packet. The physical layer parameters of the
simulation are set such that only collisions result in frame losses, i.e., there are no noise
losses. For each sender Si, we measure the fraction of frames sent, fi, for which neither the
preamble nor postamble is interference-free (and hence not decodable) at the corresponding
receiver. Table 4.1 shows the fractions fi for simulations with different frame sizes of the
two senders; we find that this fraction is under 15% always. For this small fraction of
frames that did lose both the preamble and postamble, Figure 4-3 shows the complementary
CDF of the run length of consecutive losses at the receivers. We infer from the figure that
long runs of losses (say, of length 3 or more) are very uncommon due to interference alone.
Therefore, a SoftRate sender assumes that three consecutive silent losses indicate a weak
signal at the receiver and lowers the transmit bit rate.

4.2.2 Rate Selection Algorithm

On receiving the feedback of the interference-free channel BER from the receiver in the
ACK frame, the SoftRate sender runs a rate selection algorithm to pick the best transmit
bit rate for the next packet. A strawman description of the algorithm is as follows. Using
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the BER estimate at one bit rate, the sender guesses the BER at all the other available bit

rates. Given the channel BER at a bit rate and a knowledge of what the error recovery

scheme does, the sender can compute the link-layer throughput at each of the bit rates, and

then proceed to pick the rate with the highest throughput. Of course, we use some approx-

imations to the above description to make the algorithm practical. Below we describe the

actual algorithm in its full detail.
The following are the three key mechanisms in the SoftRate rate selection algorithm.

" BER prediction heuristic. The channel BER from SoftPHY hints characterizes the

channel only at the current bit rate, but rate adaptation requires knowing the channel

BER at other bit rates as well. Therefore, a SoftRate sender first uses a heuristic to

predict channel BER at a few other bit rates using the BER estimate at one bit rate.

" Optimal threshold computation. Using the above BER prediction heuristic, the

sender pre-computes optimal thresholds ai and /i for each rate Ri such that, when

the BER at rate Ri is in the range (oi, Oi), then R, is the optimal transmit bit rate. That

is, rate R, provides the maximum link-layer throughput based on the predicted BERs

at the various rates. Of course, the computation of the thresholds depends on the

error recovery mechanism employed by the link layer because the mapping between

BER and throughput is determined by the error recovery scheme. Pre-computing the

optimal thresholds avoids repeating the throughput calculations at each bit rate for

every packet.

* Bit rate adjustment. Given the interference-free BER estimate from the receiver
and optimal thresholds at each bit rate, the SoftRate sender adjusts its bit rate in the

direction of the optimal rate.



Note that SoftRate works when conditions experienced on the upcoming transmission
are similar to those on the previous transmission. A wide variety of situations satisfy this
criterion, as we discuss later in Section 4.2.3.

We will now describe the above three mechanisms in more detail.

BER prediction heuristic. If one knew the detailed relationship between the BER and
SNR for each bit rate, then the problem of predicting BER at multiple bit rates using the
BER at the current rate would be an easy one. One could simply look up the SNR corre-
sponding to the BER for the current bit rate, and then consult the various SNR-BER curves
to determine the BER at each of the other rates. Unfortunately, because the SNR-BER
curves depend on the characteristics of the propagation channel, this method is unlikely to
work robustly across different environments.

Instead of relying on SNR-BER relationships, SoftRate uses the two observations below
to predict BER.

1. At any SNR, the BER is a monotonically increasing function of the bit rate.

2. There exists a number A such that, within the BER range that a bit rate is usable (i.e.,
BER below 10-2), its BER at a given SNR is at least a factor of A higher than that
of the next lower bit rate.

We will show that the approximate BER prediction using the above two observations is
sufficient for SoftRate's operation, obviating the difficult problem of estimating the SNR-
BER relationships.

Let us first see why the above two observations are true. The first observation is well-
known and is used by many other rate adaptation protocols. In cases when this assumption
does not hold for a communication system, one can come up with orderings of bit rates by
the channel BER under various channel quality regimes, and pick the appropriate ordering
based on the feedback BER estimate.

The second observation is general enough to hold in practice, independent of radio and
environment characteristics. To see why, note that system designers avoid redundancy in
bit rates and offer a set of rates that have a considerable difference in error performance
at a given SNR. Even if a few adjacent bit rates are similar enough that the channel BER
at those rates is almost always the same, the rate adaptation algorithm can always pick a
subset of rates with different BERs and use those rates alone for rate adaptation.

Now, how does one determine the value of A for a communication system? One can
compute A theoretically or using empirical data. For example, one can plot the theoretical
SNR-BER curves for the various bit rates under a variety of channel conditions (like Fig-
ure 3-1) and measure the minimum BER separation between adjacent bit rates across all
the graphs. Because the computation of the minimum is done across all wireless channels,
the value of A will not be sensitive to the propagation environment. Alternately, one can
also use empirical data. For example, Figure 4-4 shows a plot of the BER computed from
SoftPHY hints at the QPSK 3/4 bit rate, plotted against the BER at two of the higher and
two of the lower bit rates. The data for this graph is obtained using our 802.11 a/g prototype
(Section 3.3) from the static and walking experimental traces described in Table 3.3. One



can see from the graph that when the current best rate is QPSK 3/4 (i.e., the BER at this
rate is not as high as, say, 10-2), the BER at the next higher rate is at least a factor of 10
higher, and the BER at the next lower rate is at least a factor of 10 lower. Therefore, a value
of A = 10 works for the 802.1 la/g-like PHY we implemented.

Once the value of A is known for a communication system, the BER prediction heuris-
tic is quite simple. If the BER at the current best rate Ri is bi, then we presume that the
BER at the next higher rate Ri+1 is at least A - bi and the BER at the next lower rate Ri+1
is at most i.

Computing optimal thresholds. SoftRate uses the BER prediction method described
above to compute optimal thresholds for each bit rate. For each available rate Ri, Soft-
Rate computes a and #i such that, if the BER at Ri is in the range (ai, #J) then Ri is the
optimal bit rate. Computation of these thresholds depends on the link layer's error recov-
ery mechanism; we will illustrate how to compute thresholds for two such error recovery
mechanisms.

Consider the computation of optimal thresholds for the 802.1 la/g 18 Mbps bit rate with
frame-level ARQ. If the next lower bit rate is 12 Mbps, then until the BER gets to the point
where the frame loss rate is 1/3, the sender should remain at 18 Mbps. For a packet size of
10000 bits, that BER would be of the order 10-. (Note that the BER b and frame loss rate
f are related by the equation f = 1- (1- b)s, where s is the frame size in bits and assuming
independent bit losses in a frame. The assumption of independent bit losses is valid even
though channel fading tends to cause burst errors because wireless systems often use some
form of interleaving that makes burst losses appear as independent losses.) Now, if the BER
at 18 Mbps is lower than, say, 10-7, then the next higher rate of 24 Mbps is likely to have
a low enough BER to see no frame losses and hence have a higher throughput. Therefore,
the optimal thresholds for the 18 Mbps rate would be (10-7, 10-1).

In contrast, for some smarter ARQ scheme that can recover from a few bit errors easily
by retransmitting a small number of parity bits, the throughput at 18 Mbps may be higher
than that at 12 Mbps for up to a much higher BER, say, 10-3. The optimal thresholds for
such a link layer would be set to (10-1, 10-3).

The use of BER as the information signal helps SoftRate integrate cleanly with many
different kinds of error recovery protocols, only requiring a recomputing of thresholds to
work with a different error recovery scheme. Frame-based protocols lack this modular-
ity because they consider the frame loss rate in making their decisions, tacitly assuming
that entire frame retransmissions are used to recover lost frames. As a result, the bit rate
adaptation mechanism itself would have to change if the error recovery protocol changed.
Architecturally, our proposal decouples rate adaptation from error recovery and separates
the two distinct concerns.

Bit rate adjustment. Given the optimal thresholds, SoftRate's rate adjustment algorithm
is as follows. Let the current transmit bit rate at a sender be Ri, and let bi be the most recent
interference-free BER estimate at Ri obtained from the receiver. By the design of optimal
thresholds, if bi < a-j, then the throughput at the next higher bit rate Ri 1 will exceed the
throughput at rate Ri. Conversely, when bi > 3, the throughput at rate Ri_ 1 will exceed



that at rate Ri. Therefore, the sender increases bit rate if bi < ai, lowers bit rate if bi > #i,
and does nothing if bi c [ai , #i].

If bi is far from the range [oi, #5], then we can do better by jumping multiple levels to
a better bit rate. In the example above, if the BER at 18 Mbps is above 10-2, then one
can jump two rates lower to find a bit rate that has a BER under 10', as exemplified in
Figure 4-4. In general, one can find n levels of rate increase and decrease thresholds az and

ig for every rate i, using which the algorithm jumps n bit rates at a time in the direction of
the best bit rate. Our implementation does up to two rate jumps at a time.

4.2.3 Behavior Over Time-Varying Channels

We now discuss why the algorithm described above works well across a wide range of
wireless propagation environments. Recall that there are two main sources of variation in
the sender's signal at the receiver:

1. Changes in the attenuation or shadowing of the signal, often due to changes in dis-
tance between the sender and receiver.

2. Multipath fading, the result of the combining of multiple copies of a signal differing
in phase or frequency due to mobility of the transmitter or receiver or objects in the
environment.

As explained in Chapter 2, the coherence time of the channel is approximately the
duration of time over which multipath fading effects are expected to stay the same. In a
slow fading channel, which occurs at walking speeds (or even when the nodes are static,
but objects in the environment aren't), coherence times are tens of milliseconds long. In
such a channel, the sender's signal fades sharply once every 10-100 milliseconds, typically
resulting in a burst of frame losses at higher bit rates, as we saw in Figure 2-1. That is,
fading and attenuation happen at a timescale corresponding to multiple frame transmissions
at the bit rates and frame sizes in 802.11-like networks. In response to channel changes
due to fading and attenuation, SoftRate lowers the bit rate quickly; it also adapts upwards
quickly, soon after conditions become better.

Fast fading channels occur at vehicular speeds, where the channel coherence time is
between a few tens to a few hundred microseconds, as we saw in Figure 2-2. This duration
is shorter than the transmission time of a frame. However, even in this environment, the
BER measured by SoftPHY hints accurately reflects the true BER of the channel, as we saw
in Section 3.4.3. As a result, SoftRate converges to the best transmit bit rate that maximizes
throughput in the presence of the fast fading-induced bit errors over a frame, and adapts
this best bit rate in response to changes in attenuation.

Bit rate adaptation is a very hard problem when the coherence time of the channel is
in between the two extremes of fast and slow fading, say, equal to two or three frame
durations [65]. The way to adapt bit rate in such cases using SoftRate is to increase the
packet size to turn it into the fast fading case, or decrease the packet size to turn it into the
slow fading case (provided that the packet size is big enough to make this feasible).



4.3 Implementation

Implementing SoftRate requires changes to two layers in the networking stack-the PHY
has to change in order to compute and export SoftPHY hints to the link layer, and the actual
SoftRate protocol (i.e., the functions of BER estimation, interference detection, sending
and receiving the BER feedback, and selecting the best transmit bit rate using the feed-

back) is implemented in the link layer. We use the implementation of the SoftPHY-enabled
OFDM transceiver on software radios (Section 3.3) as the PHY in SoftRate.

However, the high latency (tens to hundreds of microseconds) incurred in both procur-
ing RF samples from the GNURadio front-end and sending link-layer BER feedback makes

it impractical to implement and evaluate SoftRate entirely using this platform. We therefore

simulate SoftRate and other rate adaptation algorithms in the link layer of the ns-3 network
simulator. However, to keep the simulations realistic and to obtain SoftPHY information
on receptions, we replace the ns-3 physical layer models with packet traces collected from

our live software radio experiments described in Table 3.3.
For each wireless link being simulated, we seed the simulator with a set of traces, one

per bit rate, that completely specify the channel characteristics of the link (like, whether a
frame sent is correctly received, and what its SNR and SoftPHY hints would be) for each

point in time during the simulation. When the PHY in the simulator receives a frame at

a certain bit rate, the fate of the frame is determined by looking up the appropriate trace.
The bit rate adaptation protocol at the link layer receives and reacts to the feedback from

the PHY (frame reception events, SNR estimates, or SoftPHY hints, as the case may be)

and sets a suitable bit rate for the next frame. We make no assumptions on the symmetry
of links, and use different traces for each of the two uni-directional links between every
sender and receiver.

When collecting traces to use in simulations, we ensure that the channel conditions
are consistent across the various bit rates at any point of time. For traces collected using

the channel simulator, we simulate the same fading process across experiments at different

bit rates. We run live experiments in the short range mode (see Section 3.4.1) with small
frames sent at each of the bit rates in a round robin manner, running through all the bit

rates once in under 5 milliseconds. We find that the BER across the various bit rates is
monotonic in 96% of such 5 ms cycles, indicating that the channel is indeed fairly invariant
across all the bit rates in a 5 ms snapshot.

All traces are collected with one sender transmitting at a time. In simulations with more
than one sender, these traces collected without interference accurately model frame recep-
tions when there are no concurrent transmissions. In case more than two senders transmit
simultaneously (e.g., experiments in interference-dominated channels in Section 4.4.5), we
assume both colliding frames are lost.

We modify the ns-3 802.11 acknowledgment frame structure to include a 32-bit esti-

mate of the received frame's interference-free bit error rate. We also simulate postamble

detection; when this option is enabled, the receiver sends an acknowledgment even if the

preamble is not detected but the postamble is interference-free.
The implementation of a SoftPHY-capable PHY in hardware convinces us that the de-

sign of SoftRate is practical enough to be implemented in real systems. Recall from the

discussion in Section 3.3.2 that the hardware PHY can pass up SoftPHY hints about 8 ps
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Figure 4-5: Topology used for the ns-3 evaluation of SoftRate.

before the link-layer ACK corresponding to a received frame needs to be transmitted. This
slack is more than sufficient for the link layer to embed the BER estimate in the link-layer
ACK. We defer a complete real-time hardware implementation of SoftRate to future work.

4.4 Evaluation

This section presents the evaluation of the accuracy of the interference detection heuristic of
SoftRate and the trace-driven simulations of SoftRate on ns-3, as described in Section 4.3.
In the evaluation of SoftRate, we quantify the performance gains for end-to-end TCP trans-
fers when running SoftRate at the link layer in slow fading mobile channels, simulated fast
fading channels, and interference-dominated channels. Our main findings are summarized
below.

1. In experiments with slow fading channels that occur at pedestrian mobility, SoftRate
achieves 20% more throughput than SNR-based protocols trained for the operating
environment, and 2x -4x more throughput than frame-based protocols.

2. In simulated fast fading channels that occur at vehicular mobility, SoftRate achieves
from 35% to 4 x higher throughput than SNR-based protocols that are not trained for
the operating environment.

3. SoftRate's interference detection algorithm identifies collisions with an accuracy of
over 80%, because of which the performance of SoftRate stays close to optimal even
in the presence of losses due to interference.

4.4.1 Method

We use TCP throughput as the metric to evaluate SoftRate against other rate adaptation pro-
tocols because applications like TCP and VOIP are more sensitive to losses, and therefore
require responsive and accurate rate adaptation protocols to function well. While previous



work mostly uses UDP throughput as a measure of performance, we believe that gains ob-
tained on UDP transfers without congestion control are hard to realize in most practical
applications.

Simulation topology. The topology used in our simulations is shown in Figure 4-5. N
clients connect to an access point (AP) that supports the 802.11 a/g bit rates from 6 Mbps
to 36 Mbps. The AP is connected to a LAN gateway node by a point-to-point link of

bandwidth 50 Mbps and one-way delay of 10 ms. In each experiment, N TCP flows are set

up to transfer 1400 byte data frames in either direction between the 802.11 clients and the
corresponding wired LAN nodes. Each node's link-layer queue length slightly exceeds the
bandwidth-delay product of the bottleneck wireless link.

Protocols evaluated. We compare the performance of SoftRate against the following rate
adaptation protocols.

1. Two SNR-based protocols that pick bit rates based on the SNR measured at the start

of the transmission using the preamble: (i) RBAR, a protocol that uses SNR feed-
back sent via the link-layer ACK to pick the transmit bit rate, without the RTS/CTS
overhead as proposed in the original paper [23], and (ii) CHARM, a protocol that
uses the average SNR over multiple frames [29]. Our simulation does not rely on the
channel reciprocity assumptions used in the original protocol because we can afford
to change the 802.11 link-layer ACK in the simulator to piggyback SNR information,
while CHARM aims to work with existing 802.11 cards.

2. SNR-Pilot, an SNR-based protocol that uses the average SNR over the entire frame

computed using pilots, as described in Section 3.1.1.

3. Two frame-based schemes: (i) RRAA, and (ii) SampleRate. The various parameters
in these protocols are set as described in the corresponding references, except for the
interval over which transmission time averages are computed in SampleRate, for

which a value of one second gave a better performance than the ten second value
suggested in [11].

4. An omniscient protocol that always picks the highest rate guaranteed to succeed,
which the simulator with a priori knowledge of channel characteristics computes
from the traces.

The SNR-based protocols in each simulation were calibrated using the SNR values
and the corresponding channel error rates in the PHY traces of the simulation, as is the

common practice. Calibration of the protocols involves computing a mapping from the

measured SNR to the throughput at each SNR, and eventually to the best transmit bit rate

that maximizes throughput. The calibration process can possibly be improved by using

traces with "ideal" SNR estimates (for example, SNR measured using a large number of

pilot symbols), in order to reduce the impact of noisy SNR estimates on the calibration

process; we defer such an evaluation to future work.
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Figure 4-6: Interference detection accuracy as a function of varying interferer power.

4.4.2 Interference Detection Accuracy

We first evaluate the accuracy of our SoftPHY-based interference detection algorithm. We
use the SoftPHY hints from various packet traces and run the interference detection algo-
rithm offline. We then compare the result of the algorithm from the ground truth about the
presence or absence of collisions in the trace.

False positives. To measure the false positive rate (i.e., the rate at which the fading effects
of the wireless channel are falsely identified as collisions), we collect the static and walking
traces from Table 3.3 in a quiet frequency band without any other 802.11 a/g transmissions.
Out of the resulting frames lost, our collision detection algorithm identified less than 1%
of them as collisions. This shows that our algorithm rarely mistakes fading losses for
interference.

Interference detection accuracy. We use the traces from the static interference exper-
iment described in Table 3.3 to measure the accuracy of our interference detection algo-
rithm. We pick one sender transmit power in the trace corresponding to the sender-receiver
link delivering 100% of its frames correctly in the absence of interference. In the presence
of interference, one of three things can happen to a frame. First, the frame can be silently
lost if the interferer transmits before the sender, either because the receiver has locked on to
the interferer's frame, or because the sender's preamble is corrupted by the interferer's sig-
nal. Second, the frame can be received, but with errors. Finally, the frame can be correctly
received. In the case of frames received with bit errors, we run our interference detection
algorithm on the SoftPHY hint traces of the frame to see what fraction of these losses our
algorithm identifies as collisions.

We slice the interference detection accuracy results by the different transmit power
levels of the interferer and the transmit bit rate of the sender. Figure 4-6 shows the fraction
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of frames that fall into each of the cases described above versus the relative interferer

strength (in dB). Also shown on the graph is the interference detection accuracy of our

algorithm, which is computed as the fraction of frames received with bit errors (i.e., the
frames corresponding to "collision" and "noise" in the figure) that our algorithm correctly
identifies as collisions. Figure 4-7 shows the same data, but broken down by the sender's

bit rate. We omit here results for QAM16 3/4 rate, because our current implementation of

that bit rate is untuned. We find that our algorithm can always identify more than 80% of

frames received in error as collisions. Because the colliding packets are of the same size in

this experiment, we will be able to detect most of the silent losses as collisions as well by
adding postambles.

4.4.3 Slow Fading Mobile Channels

In this section, we evaluate how well SoftRate can adapt to channel variations that occur
at walking speeds in a slow fading channel. We simulate N = 1, . . . 5 TCP flows from the

802.11 clients to the corresponding wired LAN nodes. We use the ten walking traces (Ta-

ble 3.3) to model the ten uni-directional links. We assume perfect carrier sense among all
senders.

Figure 4-8 shows the aggregate TCP throughput obtained by the various rate adaptation

protocols as a function of the number of flows. We find that SoftRate outperforms all

other protocols, and comes closest to the omniscient protocol. SoftRate gets up to 20%

higher throughput than both the SNR-based protocols (RBAR and CHARM) trained over

the traces because the BER prediction from SNR of a single packet has a higher variance

than that using SoftPHY hints. We also found that using averaged SNR information in

CHARM leads to lower responsiveness to short-term SNR variations and hence a slightly
worse performance than using just the instantaneous SNR value. The performance of the

SNR-Pilot protocol was slightly worse than that of RBAR in the slow fading channel, and
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is not shown in the figure.
In comparison with frame-based protocols, SoftRate achieves up to 2 x higher through-

put than RRAA and almost 4x higher throughput than SampleRate because frame-based
protocols cannot adapt fast enough to channel fades that are caused due to mobility, with
the result that TCP ends up loosing multiple packets in a window and reduces its offered
load. We find that the loss rate experienced by TCP is an order of magnitude higher with
frame-based protocols than it is with SoftRate. We repeat the simulations with clients
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receiving TCP traffic as opposed to uploading TCP traffic; results are similar to those de-
scribed above. The results for the simulations where the clients send UDP traffic via the
access point are shown in Figure 4-9; we notice that the performance trends of the vari-
ous protocols are similar as before, though the gains due to SoftRate are less pronounced
because UDP traffic is less responsive to packet losses.

We now measure the rate selection accuracy of the various protocols. For the simulation
with one TCP flow, Figure 4-10 shows how the bit rates picked by the various protocols on
every transmitted frame compared against the highest bit rate that would have gotten the
frame through at that time. We find that SoftRate chooses the correct bit rate over 80% of
the time and has at least 30% higher accuracy than the other protocols.

To better understand the performance of frame-based protocols, we simulate RRAA and
SampleRate using a synthetic trace, where the channel alternates between a "good" state
(best transmit bit rate is QAM16 3/4) and a "bad" state (best transmit bit rate is QAM16 1/2)
every 1 second. Frame trace data for the good and bad states are taken from appropriate
snapshots in the walking trace described in Table 3.3. Figure 4-11 shows the bit rates
picked by RRAA and SampleRate as a function of time, where the best transmit bit rate
moves from the higher rate to the lower rate in the top panel, and back to higher rate in
the bottom panel. The convergence times of RRAA and SampleRate are 15 ms and 600 ms
respectively in the first case, and 85 ms and 650 ms in the second. These convergence times
explain why the frame-based protocols frequently overselect and underselect compared to
the optimal in Figure 4-10. One other interesting point to note is the instability of RRAA's
rate choice (see the top panel of Figure 4-11), highlighting another short-coming of frame-
based protocols. When the frame loss rate at a bit rate is zero, frame-based protocols have
no way of knowing if the frames are barely making it through (i.e., the next rate will not
work) or if they are getting through very comfortably (i.e., next rate may work). SoftRate
knows what the BER at the current rate is and hence can predict whether the next rate will
work or not, obviating the need to unnecessarily probe higher rates.

In summary, we note that failing to adapt the transmit bit rate quickly to channel fades
that occur with mobility can lead to burst losses that reduce TCP throughput. As a result,
a responsive bit rate adaptation protocol like SoftRate offers huge gains for TCP in mobile
channels, compared to less responsive frame-based protocols.

4.4.4 Simulated Fast Fading Channels

In this section, we evaluate the performance of SoftRate in fast fading channels that occur
at vehicular mobility speeds. We simulate one 802.11 client transferring TCP data to a
wired LAN node via the AP. We use the channel simulation traces from Table 3.3 to model
the links.

We present the throughput of the various protocols normalized by the throughput of
the omniscient protocol because the best transmit bit rate (and hence the absolute through-
put achieved) decreases with channel coherence time. Figure 4-12 shows the normalized
throughput of the TCP flow with various rate adaptation protocols as a function of vary-
ing channel coherence time. Let us first compare SoftRate with the SNR-based protocol
RBAR. In this simulation, the SNR-BER relationships used by this protocol are the same
as those obtained from traces collected at walking speed in Section 4.4.3. Recall that the
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Figure 4-12: Normalized TCP throughput as a function of the channel coherence time in a
simulated fast fading channel.

SNR estimate in RBAR is measured at the start of the frame. Therefore, as channel coher-
ence time reduces, the channel BER at any given bit rate increases for the same measured
SNR at the start of the frame. As a result, RBAR underestimates the frame BER at lower
coherence times and ends up selecting bit rates that are above optimal. Because SoftPHY
hints measure the average BER over the entire frame, SoftRate correctly picks the bit rate
that codes for the average channel BER in fast fading channels and its performance stays
the same across various coherence times even without retraining. We see from the figure
that SoftRate achieves a performance gain of about 4 x over untrained RBAR at a channel
coherence time of 100 ps. Gains over CHARM were similar, as we did not use CHARM's
retraining mechanism that adjusts SNR thresholds every few seconds, in order to isolate the
impact of training on the performance of SNR-based protocols. Also, such mechanisms are
meant to handle calibration issues across different hardware and are ineffective if the co-
herence time of the channel changes on a short timescale, for example, when a train passes
by a stationary user.

On the other hand, the performance of the SNR-Pilot protocol does not deteriorate as
the channel coherence time decreases because the SNR-BER curves generated using the
average SNR from pilots are not as sensitive to the channel coherence time (Section 3.4.3).
However, BER prediction using SNR estimates computed from pilots has a high variance
(Section 3.4.2), because of which SoftRate outperforms the SNR-Pilot protocol by 20%-
35% at various channel coherence times. SoftRate also outperforms the frame-based pro-
tocols because it reacts faster to channel changes.

4.4.5 Interference-Dominated Channels

In this section, we evaluate the impact of interference losses on the performance of Soft-
Rate. The simulation consists of five 802.11 clients uploading TCP data via the AP to the
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Figure 4-14: Rate selection accuracy with the carrier sense probability between the senders
set to 0.8.

wired LAN nodes. We use the static short range traces described in Table 3.3 to model
each of the uni-directional links; using a static channel helps us isolate the benefits due to
interference detection from those due to better adaptation in mobile channels. We simulate
imperfect carrier sense between the various senders in the simulation to generate collisions.
We vary the carrier sense probability between the senders from 0 (i.e., all senders are per-
fect hidden terminals) to 1 (i.e., perfect carrier sense and hence no interference losses).
We simulate two versions of SoftRate-a present version where interference detection suc-



ceeds 80% of the time and there is no postamble detection, and a yet-to-be-implemented
"ideal" version with postambles and perfect interference detection. When the SoftRate re-
ceiver identifies a frame loss as interference, the feedback BER from the receiver is simply
the interference-free BER measured in the trace. Otherwise, the feedback is a very high
BER indicating a noise loss.

Figure 4-13 shows the performance of the various protocols as a function of carrier
sense probability. RRAA, because it reacts to short-term frame loss rate, reduces its bit
rate in response to interference and sees a much lower throughput than the other protocols.
We found RRAA's Adaptive RTS/CTS scheme to be ineffective in preventing collisions,
because interference was unpredictable and resulted in RTS/CTS being constantly turned
on and off without any real benefits. SampleRate, on the other hand, is resilient to in-
terference losses because it computes the average transmission time at each bit rate over
slower timescales; interference affects the transmission time at all bit rates uniformly at
such timescales. The performance of the omniscient protocol is very similar to that of
the ideal SoftRate and is not shown. Figure 4-14 shows the rates picked by the various
protocols on every transmitted frame, compared against the optimal bit rate choice. As
expected, RRAA frequently underselects. The performance of the SNR-based protocols is
not considered in these graphs because in the case of RBAR and CHARM, the SNR was
estimated using the preamble before interference started and therefore was not sensitive to
interference.

In summary, protocols that react to short-term channel variations entail the danger
of lowering bit rate on interference losses. SoftRate's interference detection mechanism
avoids this penalty.

4.5 Chapter Summary

This chapter presented SoftRate, a cross-layer wireless bit rate adaptation protocol that
achieves throughput gains of up to 2 x over frame-based protocols such as SampleRate and
RRAA, 20% over SNR-based protocols trained on the operating environment, and from
35% to 4x over untrained SNR-based protocols. The key idea in SoftRate is to use the
channel BER computed from SoftPHY hints as feedback to pick transmit bit rates. Soft-
Rate reacts to channel changes faster than frame-based rate adaptation protocols because
it can estimate the channel BER using just one frame reception. SoftRate does not require
any environment-specific calibration, because the BER computed from SoftPHY hints is
accurate irrespective of the wireless channel characteristics. The performance of SoftRate
does not degrade in interference-dominated channels because patterns of SoftPHY hints
can be used to identify and eliminate the effects of strong interference on channel BER
estimates. SoftRate highlights the benefits of using fine-grained PHY information to bet-
ter estimate the wireless channel for rate adaptation, and has inspired recent research on
cross-layer rate adaptation protocols [57].



Chapter 5

Harnessing Exposed Terminals Using
Conflict Maps

It is well-known that maximizing the number of successful concurrent transmissions is a
good way to maximize the aggregate throughput in a wireless network. However, current
contention-based channel access protocols like CSMA generally attempt to minimize the
number of packet collisions, allowing concurrent transmissions only when the nodes deter-
mine that they are unlikely to result in a collision. This is because the MAC layer relies
on very little input from the PHY layer to make channel access decisions-information
on whether there is some other ongoing transmission near the sender-and conservatively
decides to defer without knowing if the concurrent transmission can succeed or not.

In this chapter, we present a new approach to MAC protocol design using information
available via the new streaming SoftPHY interface. There are two components to our
solution. First, the streaming PHY interface, where the PHY streams received bits to the
MAC as soon as they are decoded, enables the MAC to identify the senders and receivers
of ongoing transmissions and make smarter channel access decisions based on who else
is transmitting. Second, senders use a conflict map, a data structure that indicates which
transmissions can proceed in parallel and which cannot, to make channel access decisions.

We describe two protocols based on the idea of conflict maps-SoftCMAP and CMAP.
These protocols nearly double the throughput of exposed terminals and increase the num-
ber of successful concurrent transmissions in the network. Both protocols are completely
distributed and do not rely on a centralized scheduler or controller for their operation.
We begin the chapter with experiments that evaluate the potential improvements possible
by exploiting concurrency in data networks (Section 5.1). We then describe a high-level
overview of the conflict map idea (Section 5.2) and then describe each protocol in more
detail (Sections 5.3 and 5.4). We evaluate the conflict map protocols in Section 5.5. We
also compare our channel access schemes with related work in Section 5.6.

5.1 Motivation

We describe two experiments to understand the opportunities for concurrent transmissions
in data networks, and the gains that can be had by cleverly exploiting such opportunities.
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Figure 5-1: Aggregate throughput of two receivers in an experiment with two 802.1 la
senders transmitting at 6 Mbps, repeated with carrier sense turned on and carrier sense
turned off. The CDF is plotted over 50 experiments with different sets of nodes.

The first experiment is performed on an indoor 802.11 a testbed, and tests the prevalence
of exposed terminals in a real network setting. The second experiment considers sets of

exposed terminals and measures the maximum throughput gain possible by enabling con-
current transmission between the two senders.

Prevalence of exposed terminals. We perform the first experiment on a 50-node indoor
802.11 a testbed described in Section 5.5.1. We consider 50 random sets of four nodes each
from the testbed, forming two sender-receiver pairs. The sender-receiver pairs are picked
as described in Section 5.5.2. The senders are within hearing range of each other, and the
senders have a good transmission link that can deliver over 90% of the transmitted packets
to their respective receivers. In each of the 50 experiments, the two senders continuously
transmit 1400-byte UDP packets to their receivers at the 6 Mbps rate of 802.11 a. The
throughput at each receiver is calculated based on the number of packets from its sender
that were correctly received. We perform the experiment first with carrier sense turned on
between the senders, and then repeat the experiment with carrier sense turned off. When
carrier sense is turned off, both senders end up transmitting all the time and their transmis-
sions overlap in time. On the other hand, when CS is on, the senders defer to each other
when in carrier sense range of each other.

Figure 5-1 shows the CDF of the aggregate throughput at the two receivers with CS
on and off, over 50 experiments with two transmissions each. With CSMA, we find that

most experimental runs achieve an aggregate throughput of around 5 Mbps (which is close
to the maximum rate achievable by the 6 Mbps bit rate after discounting for MAC-layer
overheads). This is because CSMA allows only one of the two senders to transmit at

any given time. For a small portion of senders at the right end of the CSMA curve, the



0.8

0.6

0.4

0.2

CSMA "-
0 ~~CS off ---.....

0
0 10 20 30 40 50 60

Aggregate Throughput (Mbps)

Figure 5-2: Aggregate throughput of two receivers in an experiment with two exposed
terminals transmitting at optimal bit rates between 6 and 36 Mbps, repeated with carrier
sense turned on and carrier sense turned off. The CDF is plotted over 50 experiments with
different sets of nodes.

aggregate throughput is more than 6 Mbps. In such cases, the senders would have been far
enough from each other that they are out of each other's carrier sense range, and end up
transmitting simultaneously with CSMA. A small fraction of senders at the left end of the
CSMA curve see an aggregate throughput below 5 Mbps; these pairs of senders are likely
hidden terminals and see huge loss rates due to the carrier sense mechanism not functioning
properly. Now consider the curve that corresponds to carrier sense turned off. We find
that for about 40% of the sender pairs, the throughput with CS off is much worse than the
throughput with CS on, suggesting that these pairs of transmissions conflict with each other
and must be performed one at a time. For the remaining pairs however, the throughput with
CS off is higher than that with CS on, suggesting that these pairs of senders are exposed
terminals. Such pairs of transmissions suffer an unnecessary reduction in throughput when
CSMA is used as the channel access scheme.

This experiment shows us that a random pair of transmissions chosen in our testbed
has a non-negligible probability of being exposed. Other researchers have also observed
that exposed terminals occur frequently in busy access point-based wireless networks [30].
While the exact proportion of exposed senders may vary with the topology of the network,
our results show that the proportion may be significant enough to impact overall network
throughput if harnessed properly.

Performance gains from exploiting concurrency with rate adaptation. We now inves-
tigate the performance gains possible by harnessing exposed terminals, in the presence of
heterogeneous bit rates and smart rate adaptation. In particular, we want to answer the fol-
lowing question: do exposed terminals exist only at lower bit rates where there is sufficient



"slack" in the transmitted signal to accommodate interference, or can one gain performance
benefits from concurrency even when senders can transmit at higher bit rates?

We perform this experiment with 50 sets two sender-receiver pairs, where the two
senders in each set are exposed terminals at the lowest bit rate of 6 Mbps, i.e., the ag-
gregate throughput of the pair of transmissions doubles when carrier sense is turned off.
We run this experiment on a testbed of GNURadio-based 802.11 a/g-like software radio
nodes (described in Section 3.3). Our prototype is capable of running at modulations and
coding rates corresponding to the 802.11 a/g rates of 6, 9, 12, 18, 24, and 36 Mbps. We
could not run this experiment on commodity wireless cards unlike the previous experiment
because very few commodity cards allow turning carrier sense off, and the cards that did
permit it were not capable of transmitting at bit rates above 18 Mbps robustly.

We run the experiment by making the two senders transmit 1400-byte packets with
both carrier sense being turned on and off. Note that because carrier sense cannot be imple-
mented on software radios, we make the two senders transmit one after the other to simulate
CSMA. To simulate carrier sense turned off, the senders simply transmit continuously. Be-
cause software radios run on a lower bandwidth than commercial devices (our prototype
runs on a 500 kHz channel, as opposed to the 20 MHz channel of 802.11), we computed
the throughput numbers in this experiment by extrapolating the observed frame loss rate
to a 20 Mhz channel. Our software radio prototype does not implement a MAC protocol.
Therefore we compute the throughput numbers by accounting for MAC-layer overheads
such as inter-frame spacing, MAC header, and link-layer ACKs, using the timing numbers
from the 802.11 a specification. We repeat each experiment for all possible combinations of
bit rates at the two senders, and compute the aggregate throughput of the pair of transmis-
sions as the maximum aggregate throughput achieved across all bit rate combinations. One
can assume than an intelligent bit rate adaptation protocol at each sender will converge to
this choice.

Figure 5-2 plots the CDF of this maximum aggregate throughput achieved across the 50
pairs of exposed terminals, for experiments with simulated carrier sense turned on and off.
The figure shows that some pairs of exposed senders do not see a full 2 x improvement on
turning off carrier sense when multiple bit rate choices are present. This is because some
senders may not be able to transmit at their optimal bit rate when there is added interference
from another concurrent transmission. In such cases, the maximum aggregate throughput
when carrier sense is disabled will be achieved with one or both of the senders transmitting
at a less-than-optimal bit rate. For example, in one experiment with carrier sense disabled,
one pair of senders achieved the maximum aggregate throughput when each sender was
transmitting at 18 Mbps, whereas each sender was able to send at 24 Mbps with CSMA.
However, the aggregate throughput of the pair of transmissions is 36 Mbps when transmit-
ting concurrently, and is still higher than the 24 Mbps with CSMA. Therefore, even though
the improvement in throughput on turning off carrier sense is less than 2 x (it is in fact
36 Mbps vs. 24 Mbps, i.e., 50%), we find that turning off carrier sense is the wiser choice
for this pair of senders. We see from the figure that about 20% of the exposed terminals are
"partially exposed" in this manner. The remaining 80% of the exposed sender pairs remain
exposed terminals even in the presence of higher bit rates. This experiment shows us that
there are huge throughput gains to be had by a smart channel access scheme that cleverly
exploits concurrency with some senders selectively, and jointly performs channel access



Figure 5-3: An example of a defer table entry at node u indicating that u must not transmit
to v when x -- y is in progress.

and bit rate decisions.

5.2 Design of Conflict Map-Based Protocols

This section provides an abstract description of the two conflict map protocols, SoftCMAP
and CMAP. We describe how nodes build the conflict map and use it along with the stream-
ing PHY interface to increase the number of successful concurrent transmissions in the
network. The subsequent sections will describe the implementation details specific to each
protocol. We use the notation u -+ v to denote a transmission from u to v and u - * to
denote a transmission from u to any node.

5.2.1 Conflict Map Data Structures

We begin with the definition of a conflict. Note that the conflict map protocols seek to
promote concurrency between pairs of senders. Therefore, we define conflicts also between
pairs of transmissions. Consider the example of two transmissions u -> v and x -* y.
Nodes u and v consider that x -> y conflicts with their transmission if they notice that
the throughput of u -+ v when transmitting concurrently with x -> y is lower than the
throughput of u when u and x share the medium by taking turns to transmit one after the
other. Note that the conflict relation need not be symmetric. For example, x's transmission
may interfere with v's reception during the concurrent transmission, while y may be able
to receive perfectly during that time.

Note that if nodes use omni-directional antennas and transmit at the same power no
matter who the receiver is, then it is sufficient to infer conflicts as a relation between a
transmission u -+ v and an interferer x-that the receiver is y is irrelevant, as it does not
determine the extent of x's interference at v. Transmit power control or directional antennas
are almost never used in 802.11-based data networks today, and we will proceed under this
assumption. Our protocol can be easily extended to work correctly if these assumptions do
not hold.

We now describe the two main conflict map data structures-the defer table and the rate
table. Each node stores a list of transmissions that conflict with its intended transmissions
in its defer table and uses it to make channel access decisions. For example, if the defer
table at u has an entry of the form (v : x -> y), then u must not transmit to v when x - y
is in progress, as shown in Figure 5-3. The union of all the defer tables at all the nodes
in the system completely captures all the conflict information in the entire network. This



union is referred to as the conflict map. In other words, the conflict map is a distributed data
structure, with each node locally storing a slice of information relevant to its transmission
decisions in its defer table. The defer table is populated using feedback from the receivers
about the fate of concurrent transmissions, as we will see in Section 5.2.2.

Every sender also maintains a rate table that specifies the transmit bit rate that the node

must use when the channel access scheme allows a transmission. The rate table has two

types of entries. Node a maintains an entry (v, ri) for each of its destinations v, specifying
the bit rate r1 to use when transmitting without interference to that destination. It also has an
entry (v, x, r2 ) for every pair of intended destination v and interfering sender x, specifying
the rate r2 that u must use in transmissions to v when there is a concurrent transmission
from x. Note that for any destination v, the rate r1 is necessarily higher than or equal to

rate r2 because the added interference from x never increases the optimal bit rate.
Note that at a node u, for every pair of destination v and interferer x, there must either

exist a conflict entry in the defer table (if the transmissions cannot proceed concurrently)

or a transmit bit rate entry in the rate table (if the transmissions can proceed concurrently).
The defer table and the rate table can be implemented as hash tables keyed by the identity
of the destination and interferer. A typical radio neighborhood will not have more than a
few tens of active senders and flows at any time. Therefore the sizes of these data structures

are likely to be small and manageable in hardware or software.

5.2.2 Building the Conflict Map

We will now describe how the defer tables are populated. Initially, the defer table at each
node is empty, and nodes transmit whenever they have data to send. Nodes then infer

conflicts based on the fate of concurrent transmissions as observed at the receivers. This
conflict information is subsequently used to populate the defer tables.

To infer a conflict from an interfering sender, the receiver needs two pieces of informa-
tion: the degradation in channel quality at the receiver due to the concurrent transmission,
and the identity of the interfering sender. The channel quality is measured using frame loss
rates in the CMAP protocol, and using the BER from SoftPHY hints in the SoftCMAP
protocol. Alternately, one can also use other measures of channel quality such as the SNR
information to infer conflicts [33]. The mechanism of obtaining the second piece of in-
formation, the identity of the interfering sender, is different for the two protocols and will
be described in the context of the individual protocols. For now, we assume that when a
concurrent transmission happens, either the sender or the receiver can infer the identity of
the interfering sender.

An interferer list at a node consists of entries of the form (u - v, x) indicating that
x interferes with transmissions from u at node v. The interferer list is constructed using

receiver feedback about channel quality during a concurrent transmission. Conflict map

receivers send feedback about channel quality in a feedback frame like the link-layer ACK,

similar to how the BER feedback is sent in SoftRate. If the receiver can infer the identity
of the interferer as well, then the receiver feedback is the interferer list itself. If not, then

the receiver feedback is some channel quality measure that enables the construction of such
a list by the sender. Upon constructing interferer lists in this manner, nodes periodically

broadcast their interferer lists to all one-hop neighbors, either as standalone packets or by
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Figure 5-4: Examples illustrating the rules that populate the conflict map data structure.

piggy-backing the interferer lists with routing beacons or other control messages.
We will now see how the feedback in the interferer list is used to populate the defer

tables at the various nodes. When a node p receives an interferer list I, it updates its defer
table using the following two local rules at p:

Update rule 1: Vq, r (p - r, q) E I add (r q -+ *) to the defer table.

Update rule 2: Vq, r (q -> r, p) e I, add (* q -+ r) to the defer table.

Update rule 1 states that when q interferes with p -> r, then node p must not send to
r whenever q is transmitting the next time to any node. Update rule 2 states that when p
interferes with q -+ r, then p must not transmit to any other node the next time it sees
q -> r in progress.

To see why these rules make sense, consider the example in Figure 5-4. When u re-
ceives feedback from v corresponding to the interferer list entry (u --+ v, x), it adds the
entry (v : -+ *) to its defer table by Rule 1, because u now knows that its transmit-
ting packets to v while x is transmitting to any node is likely to degrade the throughput of
u. Note that u need not defer while transmitting to all destinations, e.g., it may be able
to transmit successfully to some other node z while x -+ * is in progress. Accordingly,
Rule 2 does not apply at u. On the other hand, when x receives the above interferer list, it
adds an entry (* : u - v) to its defer table by Rule 2. Note that x cannot transmit to any
destination (not just y) while u -+ v is in progress, because its transmission to any node
will cause interference at v. On the other hand, x can transmit freely when u is transmitting
to a node other than v (say, z) as long as it knows it doesn't cause interference at that node.
Accordingly, Rule 1 does not apply at x.

In general, it suffices to broadcast the interferer list to just the one-hop neighbors, be-
cause a node does not hear headers from interferers that are more than a hop away and hence
does not know about them. However, in networks with asymmetric links (e.g., the receiver



can hear the interferer's headers but the interferer cannot hear the receiver's interferer list
updates), it may help to propagate the interferer list over two hops. Nodes periodically
time out the entries in their interferer lists and defer tables in order to accommodate chang-
ing channel conditions and interference patterns. However, the most suitable deployment
scenario for the conflict map protocols would be an infrastructure or mesh network with
little or no mobility, where the somewhat expensive process of discovering conflicts can be
performed at a coarse granularity of every few minutes.

5.2.3 Checking For Conflicts

Suppose node u wants to send a packet to destination v. We now describe how u checks if
its proposed transmission conflicts with another transmission x -+ y. First, u checks that v
is neither sending nor receiving packets at that moment, i.e., v is neither x nor y. Next, u
checks its defer table to see whether one of its entries matches the following patterns that
indicate a conflict between the two transmissions:

Defer pattern 1: (* : x - y)

Defer pattern 2: (v : x -*)

If no match exists in the defer table, then u -* v and x -* y do not conflict and can
proceed concurrently. If an entry matches, then the two transmissions conflict and must
happen at different times.

5.2.4 PHY Interface

The idea of conflict maps relies on extending the MAC-PHY interface to provide more
information about ongoing transmissions so that the MAC can make smarter channel access
decisions. In particular, the conflict map protocols make channel access decisions based on
who is transmitting to whom, i.e., based on the MAC-layer identifiers of the sender and the
receiver that are typically embedded in the MAC header. There are two uses of knowing
this information: (a) a node that just finished a failed concurrent transmission can know
who else was transmitting and thereby infer conflicts, and (b) a node that is about to start
a transmission can know if any other potentially conflicting transmission is ongoing. By
using a streaming PHY, where the PHY passes up bits to the MAC as they are decoded, the
MAC layer decodes the header and identifies the sender and receiver of the transmission
soon after the transmission starts.

Decoding the MAC header before packet reception completes poses a problem of error
detection in the header for current 802.11 packets, because the entire packet (including the

MAC header and the payload) is protected by one CRC at the end of the packet. Therefore
the link layer cannot perform error detection and use the information in the MAC header

even if it is streamed up early. To avoid this problem, we protect the node identifiers in the
MAC header with a separate CRC in the conflict map protocols, to ensure their verification
before using them for channel access decisions.

A streaming PHY alone is not enough to provide all the information a MAC needs in the
conflict map protocols. For example, a node that just finished transmitting a packet would
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Figure 5-5: In the collision between u -* v and x -- y, the trailer from x is interference-
free and can be decoded, showing that one of the header or trailer from the interfering
sender survives a collision with high probability.

have missed the headers of the packets that started during its transmission and cannot know
the current transmission on the air. To address this problem, we propose appending a MAC
trailer that can be decoded independently from the header at the end of the packet. The
trailer contains the sender and receiver MAC identities and other useful information from
the MAC header, and is protected by a separate CRC as well. Nodes that were unable to
decode the header at the start of the packet will be able to attempt to decode the trailer and
learn about the transmission that ended. We will describe the specific implementation and
uses of the trailer in the context of the two protocols separately.

5.3 The CMAP Protocol

The CMAP protocol is a MAC protocol based on the idea of conflict maps described in
the previous section. We design CMAP with the goal of implementing and deploying a
prototype using commodity 802.11 hardware. The commodity 802.11 wireless cards today
come with the 802.11 MAC protocol built into the firmware, and any changes to the MAC
can be made only by controlling the software driver. Many of the design decisions in
CMAP reflect this constraint. Later, we describe the SoftCMAP protocol, which takes a
clean-slate approach to MAC protocol design, and is unencumbered by the constraints of
today's 802.11 hardware.

5.3.1 Design

Packet format and PHY interface. The current 802.11 hardware does not provide a
streaming PHY abstraction: it delivers headers of a frame along with the complete frame
only after frame reception has completed. CMAP proposes to approximate the streaming
PHY abstraction by sending the header and trailer information in separate frames imme-
diately before and after a "payload" frame respectively. Besides the identity of the sender
and receiver, the header and trailer frames contain a sequence number counting the num-
ber of frames between that sender and the receiver, and an estimate of the duration of the
transmission. The sequence number and duration are used by receivers to infer conflicts.



Building the conflict map using frame loss rates. CMAP uses empirical feedback from
receivers about frame loss rates in the presence and absence of interference to infer con-

flicts. Note that using frame loss rates to measure channel quality has a few disadvantages.
First, it takes many measurements to discover conflicts, leading to transient packet losses

till the discovery is completed. Second, it takes many more measurements to measure the
frame loss rates at different combinations of bit rates of the two senders, in order to popu-
late the rate table entries corresponding to the optimal bit rate for concurrent transmissions.

Therefore, we assume that all nodes use the same bit rate in CMAP, making the rate table

data structure defunct. When all nodes use the same bit rate and perform frame-level error

recovery, the throughput at a node is directly proportional to the frame delivery rate.
As described in Section 5.2.2, identifying a conflict requires knowing two pieces of

information: the identity of the interfering sender and the degradation in channel quality
caused by the concurrent transmission. We now describe how one obtains this information

in CMAP. During the concurrent transmission between u -* v and x -* y, either the header
or the trailer from x will be recovered at node v with a high probability. To see why, if the
transmission x - y starts before u -* v, then v would have decoded the header from x

with high probability. If u -+ v starts first, then v would have decoded the interference-free
trailer from x, as shown in Figure 5-5. Because nodes embed the transmission duration in
headers and trailers, node v can detect that there was a concurrent transmission from node
x by checking for overlapping transmissions from the headers and trailers received around

the time a frame from a is received. Note that the transmission duration helps identify
overlapping transmissions even when the headers and trailers are sent as separate frames

and are delivered with a lag by the hardware. Also note that if v can never decode x's
header, the conflict remains undetected. However, our evaluation in Section 5.5.4 shows
that such cases are rare.

To measure the change in channel quality due to a concurrent transmission, node v

computes the frame loss rate from u using the sequence number embedded in the headers
and trailers. Node v keeps two different estimates of the frame loss rate-one when it
thinks node u sent a frame in the absence of any interference (i.e., it did not detect any

headers or trailers from any other node), and one for when it thinks there was a concurrent

transmission with sender x. (Node v maintains an estimate not just for interfering sender
x but every other concurrent sender it hears.) To first approximation, node u gets twice
as many transmission opportunities by transmitting concurrently with x -+ y as compared
to deferring to x -* y. Therefore, as long as the frame delivery rate of u -> v when
transmitting concurrently with x -+ y is at least half of that when u transmits by deferring
to x, the throughput of u -+ v is higher when transmitting concurrently. By the definition
of a conflict in Section 5.2.1, node v adds the entry (u -> v, x) to its interferer list when
it finds that the frame delivery rate of u -> v in the presence of x -> y is less than half of

the frame delivery rate of u -> v. This interferer list is later broadcast by v and is used to

populate the defer tables at nodes u and x.

Transmit decision. Every node in CMAP maintains a list of ongoing transmissions by
decoding headers when it is idle. When a node receives a packet to transmit from the higher

layers, the sender checks if the proposed transmission conflicts with any of the ongoing



transmissions using the transmit decision algorithm as described in Section 5.2.3. If there is
no conflict, the node transmits the packet. If the conflict map does not allow a transmission,
the node waits for a small duration tdferait after the end of the current transmission and
checks the list of ongoing transmissions for conflicts again. The transmission duration
embedded in headers and trailers indicates how long a deferring node should wait.

Windowed ACKs. When exposed terminals transmit concurrently, the ACKs from the
two receivers may interfere at the senders. The sender may then mistake the absence of
an ACK for the loss of a frame and retransmit, losing out on the benefits of concurrency.
Therefore, the CMAP retransmission protocol uses a window, unlike current wireless LAN
link layers that use a stop-and-wait retransmission protocol (i.e., a window size of 1). The
ACKs sent by receivers are cumulative and contain a bitmap indicating which frames in
the window have been received. The main benefit of the window mechanism is to avoid
spurious retransmissions when only the ACK (and not the data frame) gets lost, thereby
making the retransmission protocol resilient to ACK losses.

After transmitting a packet, a sender waits for an ACK from the receiver for up to a du-
ration tackwait. If the ACK does not arrive in this duration, the sender does not immediately
retransmit the packet. It instead transmits a send window of up to Nwind unacknowledged
packets. We use Nwindow= 8 packets to tolerate a significantly higher loss rate on ACKs
than on the data packets.

When the number of unacknowledged packets at a sender reaches the maximum Nwindow,
the sender times out for a random time chosen between the minimum timeout Tmin and
maximum timeout Tmax before retransmitting each unacknowledged packet in its window
in sequence. Because the absence of an ACK for the entire window may indicate extreme
interference at either the sender or the receiver, Tmax should be at least as long as the time
taken to transmit an entire window's worth of packets in order to allow the interfering trans-
mission at the destination to complete. We pick Tmax = Nim o (bits) and Tmin - T.

link speed (bits/s)2

Backoff policy. CMAP, like most contention-based MAC protocols, uses a backoff al-
gorithm to space out transmissions in response to contention on the channel. Every node
maintains a contention window CW, and waits for a random duration in (0, CW) at the
end of a transmission before transmitting the next packet. Because CMAP uses cumulative
ACKs, senders in CMAP, unlike 802.11 senders, do not update CW every time a transmis-
sion fails to elicit an ACK. Instead, senders compute the loss rate over a window of frames
using the cumulative ACKs, and back off when this loss rate exceeds a threshold. CMAP
senders update their contention backoff window CW upon receiving an ACK as follows.
If the loss rate computed is below a threshold (0.5 in our implementation; we found in our
evaluation that CMAP's performance was not sensitive to the choice of the threshold), the
sender resets its CW to CWmin. If the loss rate is above the threshold, the sender doubles
CW, up to a maximum CWmax. Note that the conflict map protocol may not work when
the conflicting senders cannot hear each other (the hidden terminal problem) or when the
receiver is not in the hearing range of, but experiences interference from, a far-away inter-
ferer. Nodes also experience transient losses before the feedback from receivers propagates
to the defer tables of the senders. The backoff algorithm helps to slow down the senders
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Figure 5-6: Architecture of the CMAP prototype on commodity 802.11 hardware.
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Figure 5-7: The concept of a "virtual packet" in the CMAP implementation comprising of
"header" and "trailer" frames before and after a train of data frames.

and limit losses in such cases.

5.3.2 Implementation

We have implemented CMAP using the Click [36] router kernel module on Linux, and

commodity 802.11 hardware driven by MadWifi [40], as shown in Figure 5-6. To control

channel access and retransmissions from the CMAP kernel module, we disabled carrier

sense, link-layer ACKs, retransmissions, and 802.11 backoff in the wireless card. All the

nodes run in the promiscuous ("monitor") mode of the MadWifi driver. Our CMAP MAC
implementation includes the logic to perform concurrent transmissions using the conflict
map, as well as mechanisms to build and maintain the defer tables. We also implement

a "shim" layer that transmits separate header and trailer frames immediately before and

after a data transmission respectively. We will refer to the header, data, and trailer frames
together as a "virtual packet". The shim is implemented in Click and is located between

the CMAP MAC and physical layers.
Despite a kernel-level implementation, the communication latency between the CMAP

code and the 802.11 PHY is significant in our implementation. For example, in a typical

experiment, this latency was observed to be between 0.5 and 2 milliseconds for about 90%
of the data packets, and between 2 and 5 milliseconds for the rest. In comparison, it takes

only about 2 ms to transmit a 1400-byte packet at the lowest data rate of 6 Mbps in 802.1 la.

This communication latency poses two challenges. First, the gap between the end of a data

transmission and arrival of the corresponding ACK is high in our implementation, leading

unnecessary time wasted waiting for an ACK. Second, the delay may prevent senders from
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Figure 5-8: Format of a transmission frame in SoftCMAP. A PHY synchronization
postamble and a trailer are appended to the end of the data payload. The MAC header
and trailer are protected by a separate CRC.

processing the received headers of conflicting transmissions before transmitting data.
To overcome these limitations, our implementation sends Np~kt data frames destined to

the same node between a header and trailer in one virtual packet, as shown in Figure 5-
7. This approach effectively amortizes the cost of waiting for an ACK over multiple data
frames, and allows senders to react in a timely manner to concurrent transmissions. In
this implementation, defer and backoff decisions are made once per virtual packet; once a
decision to transmit a virtual packet is made, the header, trailer, and all the data frames are
sent without any gap in between. The receiver sends an ACK after receiving the trailer of
a virtual packet; the bitmap contained in the ACK acknowledges the receipt of individual
data frames within a virtual packet.

We now discuss the implementation choices for the various design parameters of CMAP
Our implementation uses tdeferwait = tackwait = 5 ms to accommodate the propagation de-
lay between the MAC and physical layers. We use Nepkt = 32 in our implementation
because such a CMAP implementation has comparable performance to the commodity
802.11 protocol-the single link throughput of CMAP at 6 Mbps is 5.04 Mbps while that
of 802.11 with link-layer ACKs is 5.07 Mbps-enabling a fair comparison of CMAP and
802.11. The send window of unacknowledged packets is set to Nwino = 8 virtual packets,
or 256 data frames. The contention window parameters CWmin and CWma, are set to the
corresponding 802.11 values scaled by Np~t-5 ms and 320 ms respectively.

5.4 The SoftCMAP Protocol

The CMAP protocol described above has a few shortcomings arising from constraining the
design to run on commodity 802.11 hardware. Because CMAP uses frame loss rates to
infer conflicts, the conflict map requires many frame transmissions to converge and nodes
require an infeasibly large number of measurements to populate the rate table. CMAP em-
ulates the streaming PHY by replicating the header and trailer in separate frames, adding
additional overhead to the data transmission. This section describes the SoftCMAP proto-
col, a clean-slate design of a conflict map-based MAC protocol that is unconstrained by the
capabilities of today's commodity hardware. SoftCMAP inter-operates with CSMA and
improves the number of successful concurrent transmissions in the network using the two
complementary ideas of conflict maps and the streaming SoftPHY interface.
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Figure 5-9: Two ways of performing concurrent transmissions in conflict map protocols:
(a) unaligned transmissions where the start of the transmission is dictated by when the MAC
backoff timer expires, and (b) aligned concurrent transmission where a non-conflicting
transmission triggers a concurrent transmission.

5.4.1 Design Overview

PHY interface. SoftCMAP runs on the streaming PHY interface. The packet payload is
followed by a synchronization "postamble" and PHY header, followed by a MAC "trailer"
containing the sender and receiver MAC identities at the end of the packet. Our proposed
packet format is shown in Figure 5-8. By synchronizing with the postamble and decoding

the trailer, nodes know what transmission just finished even if they missed the header of

the corresponding transmission. Adding the postamble and trailer does not change the de-

sign of the receiver dataflow in any significant manner. A receiver synchronizes with the

postamble and decodes the trailer as if it were decoding the preamble and MAC header at
the start of the transmission. The receiver prepares to decode the payload after decoding
a header; it simply resets the receiver pipeline and waits for a new packet on decoding a
trailer. Because the conflict map mechanisms depend on the correct reception of headers

and trailers even in the presence of interference, the MAC headers and trailers are always

sent at the lowest bit rate. While this design choice increases the relative overhead of the
header, especially when the payload is sent at a high bit rate, we believe that the perfor-

mance gains of SoftCMAP justify this small overhead.
Note that our postamble synchronization is different from the more complicated scheme

proposed in [26]. The earlier work proposed adding a trailer followed by the synchroniza-
tion postamble at the end of the packet. With this design, receivers maintain a buffer of
received samples always. When a receiver synchronizes with a postamble, it runs the
buffered samples backwards through the receiver toolchain to decode the trailer and as
much of the packet as it can. This way, a receiver that missed the preamble of a packet
can still decode parts of the packet using the postamble. While the receiver is decoding
the buffered samples this way, it must also detect and decode preambles of new transmis-

sions. Therefore, such receivers must be capable of decoding two transmissions in parallel.

As such, the receiver PHY architecture to implement such postamble synchronization is

more complicated and requires significant changes to existing PHY designs. While the

goal of the earlier postamble design was to enable decoding of the entire packet, our goal is

more modest-to just recover header information from the completed transmission-and

requires fewer changes to existing receiver PHY architectures.
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Mechanism of concurrent transmissions. Recall that the time at which a packet is
handed off to the PHY hardware for transmission in CMAP is decided by the time of arrival
of the packet into the queue and the backoff timer at the MAC layer. Senders wait for the
backoff timer on a packet to expire, then check what other transmissions are ongoing at the
time the packet is ready for transmission, and decide to transmit if there are no conflicting
transmissions. However, the benefits of concurrency are not fully exploited in this scheme
because the non-conflicting transmissions start at different times and overlap over the air
only for a fraction of their airtime. SoftCMAP adopts a different approach that increases
throughput by maximizing the overlap of the two non-conflicting transmissions. When a
SoftCMAP node decodes the header over the air and realizes that the transmission does not
conflict with its next transmission at the head of the queue, the node preempts its backoff
timers and opportunistically transmits a packet immediately so that the two non-conflicting
transmissions align completely. That is, the first non-conflicting transmission triggers the
second transmission. The SoftCMAP protocol performs such aligned concurrent transmis-
sions, whereas the CMAP protocol performs unaligned transmissions. The two types of
concurrent transmissions are illustrated in Figure 5-9.

A key challenge in implementing these aligned concurrent transmissions is the turnaround
time in the PHY from decoding a header to switching the hardware to transmit mode and
sending a packet. We will later show that rapidly switching from receive mode to transmit
mode can be accomplished in a hardware MAC implementation. Another challenge that
must be overcome is that multiple senders can decode a non-conflicting sender's header and
decide to transmit at the same time, leading to more than two concurrent transmissions and
potential losses. One of the main functions of MAC backoff timers is to jitter the start times
of transmissions so that nodes have enough time to sense each other and make informed
channel access decisions. However, by transmitting opportunistically before the backoff
timers expire, nodes lose this benefit of the backoff mechanism.

To avoid this problem, we propose that a sender that sends a packet must explicitly
designate a non-conflicting sender for a concurrent transmission. Consider a pair of non-
conflicting transmissions u - v and x - y. Suppose both u and x have packets to
transmit and are aware that the other exposed sender has packets to send to a non-conflicting
destination (we will soon describe how the nodes can learn of this information). Now
suppose u's MAC timer expires and it gets ready to send a packet. We will call u the
primary sender. Node u now designates node x to be its secondary sender in its MAC
header. Now when node x decodes u's header, it alone starts a concurrent transmission
with u, thereby gaining the benefit of increased concurrency while avoiding the risk of
multiple senders starting opportunistic transmissions.

Let us examine the detailed timeline of this aligned concurrent transmission, as shown
in Figure 5-10. Let Th be the time taken by node u to transmit the PHY synchronization
preamble, PHY header and the MAC header over the air, measured from when node u
starts transmission. Let TA be the time between u's header being sent over the air and node
x initiating its concurrent transmission. This delay includes the (negligible) propagation
delay over the air between u and x, the delay in decoding the MAC header at x and the
time needed by the PHY at x to switch from receive to transmit mode. The two concurrent
transmissions are now jittered by a duration of Th + TA. Assuming equal transmission
times for both the packets, the secondary transmission from node x finishes Th + TN after
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Figure 5-10: Timeline of the data and ACK transmissions in an aligned concurrent trans-
mission, where a primary transmission triggers the second concurrent transmission.

the primary transmission. The primary sender and receiver try to decode the trailer from
the secondary transmission when possible.

Note that even through u and x are exposed terminals, the ACKs from v and y can
still collide at both the senders because v and y may not be exposed senders. Therefore,
the ACKs from the two transmissions must also be jittered slightly in order not to collide
at the senders. Suppose the receiver normally starts the transmission of an ACK after a
duration Tackwait after the medium becomes free, and the transmit duration of the ACK is
TACK. Then the primary receiver v should wait for Th + TA + Tackwait to start the ACK
transmission, in order to allow for node x's transmission to finish. Node y should wait
for a duration 2 Tackwait + TACK to begin its ACK transmission, to allow for the primary
ACK to be received successfully. Note that the values of all the timing parameters except
TA (i.e., the values of Th, Tackwait, and TACK) are fixed by the specifications of the MAC
and the PHY For example, the wait time before sending the ACK is 16 ps in 802.11 a.
Only TA depends on the specific implementation of SoftCMAP. We will measure TA for
an FPGA-based implementation in Section 5.4.3.

Identifying backlogged flows. We define a flow at the MAC as a set of MAC frames
between the same sender and receiver. We define backlogged flows as the set of flows that
are awaiting a transmission opportunity at any instant. If nodes use per-destination MAC
queues, backlogged flows include all flows with packets outstanding in the MAC queues.
If the MAC uses only a single FIFO queue for all destinations and transmits packets only
from the head of the queue, then only the flows at the heads of the MAC queues will be
considered backlogged. The number of MAC-layer flows is often much smaller than the
number of TCP or UDP flows, and depends on the routing topology of the network.

Let us revisit the above example where node u designates node x to be its secondary
sender. Assuming realistic traffic patterns where flows are not always backlogged, how
does u know that x has packets from a non-conflicting flow in its queue just when it is
about to send a packet? We solve this problem by requiring that SoftCMAP nodes include
the MAC queue length of a backlogged flow in the headers and trailers of the packets of
that flow, so as to signal their intention of transmitting concurrently with other exposed
senders. In fact, it is sufficient for nodes to signal if they have any outstanding packets in
a flow besides the packet being transmitted, and the exact queue length does not matter.

11(1 1,1111hlc &
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Every node decodes headers and trailers on the air when it is idle, and updates a list of
backlogged flows. Because a typical radio neighborhood may not have more than a few
tens of outstanding flows at any time, a linked list is a suitable data structure to store this
information.

Normalizing packet transmission time. To maximize the extent of overlap of non-
conflicting transmissions, the packets from both the senders must have approximately equal
transmission durations. However, even if all senders use the same frame size, the transmis-
sion durations can be widely different at different bit rates. A more serious problem with
senders having different transmission durations at different bit rates is that frames sent at
lower bit rates take up more time on the medium, crowding out frames at higher bit rates
and lowering the aggregate throughput of the system. To address this inefficiency, the MAC
should normalize the packet transmission times of the contending senders at all bit rates and
provide all the contenders with equal airtime [63]. This notion of fairness is called time-
based fairness, and can be achieved by either combining or fragmenting individual frames
of a flow based on the current bit rate, such that all frames have approximately the same
transmission duration at all bit rates.

Senders in SoftCMAP repacketize MAC frames to normalize the transmission duration
to a network-wide constant whenever possible. This mechanism increases throughput for
two reasons. First, it increases the amount of data sent at higher bit rates when compared
to using just equal packet sizes at all the nodes. Second, it increases the overlap duration of
aligned concurrent transmissions, irrespective of the transmit bit rates of the two concurrent
senders.

Building the conflict map and rate tables. SoftCMAP nodes use the channel BER com-
puted from SoftPHY hints during a transmission to infer conflicts, as well as pick appro-
priate bit rates for all the transmissions. In the case of aligned concurrent transmissions,
this BER can be approximately computed by each receiver as the channel BER over the
entire received frame, because most part of the frame is a concurrent transmission. Let
us revisit the example of node u transmitting to v in the presence of x -+ y. Let the rate
table entry at u corresponding to transmitting to v without interference be ri, and the entry
corresponding to transmitting concurrently with x be r2. Initially, r 2 is set equal to ri, and
the interferer lists and defer tables at the nodes do not indicate a conflict between the two
transmissions.

Soon, node u and x will update their list of backlogged flows and transmit concurrently
with each other. Node v computes the BER during one such concurrent transmission with
x -+ y and sends the BER feedback to node u. Node u then uses this feedback to update
the rate table entry r 2 corresponding to destination v and concurrent sender x as per the
SoftRate protocol. Now, node u gets about twice the airtime by sending concurrently with
node x, because u gets to transmit every time either u or x wins the contention on the chan-
nel. So, as long as r2 ;> 1, node u gets a higher throughput by transmitting concurrently.
But if r 2 < L, the transmissions u -> v and x -+ y conflict, at which point node u removes
the entry (v, x, r 2) from the rate table and adds the entry (U -> v, x) to its interferer list.
This interferer list is then distributed to all nodes in periodic updates from node u, and is
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used to subsequently update the defer tables at node u itself and at the interfering node x,
as described in Section 5.2.2.

Note that the BER from SoftPHY hints is a particularly good feedback in SoftCMAP,
because nodes require only a small number of concurrent transmissions to populate the

conflict map.

Inter-operation with CSMA. Note that one sees throughput gains with SoftCMAP only

for long flows, because the overhead of discovering the conflict map is amortized over

many concurrent transmissions. The idea of overlapping aligned transmissions is also not
useful for flows with small packets because the overhead of waiting for a duration Th +

TA before starting a concurrent transmission is justified only if the packet transmission
time is much greater than Th + TA. Therefore, the SoftCMAP protocol inter-operates
with CSMA. Nodes that do not wish to participate in the SoftCMAP protocol simply set
a queue length of zero in their headers, signaling to other nodes that they do not wish to
be part of any concurrent transmissions. Nodes that opt in can gain throughput benefits
by opportunistically transmitting with other senders. Using only long flows also ensures

that the MAC has enough packets in each flow to repacketize frames and normalize the
transmission durations.

5.4.2 Design Details

We now describe the packet format and the sender and receiver algorithms in SoftCMAP.

Packet format. SoftCMAP adds the following additional fields to the 802.11 MAC header.

Headers and trailers are in the same format.

1. A 1-bit flag to indicate if it is the header or the trailer. Headers and trailers are
identical but for this one bit.

2. A 1-bit flag indicating if a transmission is the primary or secondary transmission in
a primary-secondary pair.

3. A 48-bit MAC identifier of the other sender in case the transmission is part of a
primary-secondary pair. That is, the primary sender uses this field to place the sec-
ondary sender's identifier and vice versa. If a transmission is not part of a primary-
secondary pair, then this field is zeroed out.

4. A 1-bit flag indicating if the node has outstanding packets corresponding to that flow

in its MAC queue. To avoid triggering concurrent transmissions if a node has just

one or two packets of that flow, a node can set the outstanding packets flag only if

the number of packets in its queue exceeds a certain threshold, say, 5. Nodes can set

this flag to indicate no outstanding packets if they want to opt out of the SoftCMAP

protocol and follow plain CSMA.

5. A 32-bit CRC covering the information in the header or the trailer to enable error

detection on the header information before frame reception completes.
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Therefore, SoftCMAP adds 12 extra bytes to the MAC header: 6 bytes to transmit the
identity of the secondary or primary sender, 4 bytes for a separate CRC over the MAC
header, and 2 extra bytes for other information such as the flag to distinguish headers and
trailers, the flag to identify the primary and secondary transmissions, and the flag to indi-
cate a backlogged flow. The payload of every data packet is followed by a synchronization
postamble and a trailer. A data transmission is always followed by a link-layer feedback
frame. The feedback frame is the link-layer ACK in case of a successful packet transmis-
sion. Otherwise, the feedback frame is the same as the ACK, except for a different frame
type in the header indicating that the packet reception failed. We add one additional field
to the frame: a 4-byte feedback of channel BER. Note that we will use the term ACK and
feedback frame interchangeably in the rest of the discussion.

Data structures at every node. Every node maintains a list of backlogged flows, popu-
lated from overhearing headers and trailers when idle. Every node periodically (say, every
few seconds) sends and receives special control packets containing its current interferer
list. Every node that receives an interferer list from another node updates its defer tables to
reflect the latest conflict information.

At the sender. When a sender's backoff timer expires and it has to send a packet, the
node checks if the carrier is idle. If the medium is idle, the node checks the list of back-
logged flows and the conflict map to find a non-conflicting backlogged sender. That is,
the node runs the checks described in Section 5.2.3 for every sender-receiver pair in the
list of backlogged flows. If the node can find a non-conflicting sender s, the node sets its
primary flag in the header, designates sender s as its secondary, and transmits the packet.
The transmit bit rate is picked from the rate table assuming the node will be transmitting
concurrently with the secondary sender s. Note that this bit rate may be different from the
rate the sender would have used had it not designated any node as its secondary. When
a node starts transmission as a secondary sender, the node sets the secondary flag in its
header, places the identity of the primary sender in its header, chooses an appropriate rate
for the concurrent transmission, and proceeds to transmit.

At the end of the transmission, the primary sender switches its radio to receive mode,
waits for the end of the secondary transmission by carrier sensing the medium, and tries
to decode the trailer of the secondary transmission if possible. Decoding the secondary
sender's trailer lets the primary update its list of backlogged flows. For example, if the
secondary sender s no longer has any outstanding packets in the flow, the primary sender
can update this information and not pick node s as its secondary the next time it makes
a transmission. If the primary senses the medium to be idle after its transmission, it may
assume that the secondary node did not transmit either because it did not have any packets
or because the defer tables were inconsistent at both the nodes, and removes the secondary
node from its list of backlogged nodes until it receives further headers or trailers from that
node. If the primary could not decode the secondary's trailer due to poor signal quality,
the nodes lose out on potential opportunities for successful concurrent transmissions with
each other; the correctness of the protocol is not affected. The primary may not see the
secondary's trailer if the secondary transmission is much shorter than the primary trans-
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mission; normalizing frame transmission durations avoids this possibility.
Every sender implements an exponential backoff algorithm, much like CSMA. Nodes

maintain a contention backoff window CW. When there is a packet to send, nodes wait
for a random backoff duration in (0, CW) before attempting to transmit the packet. CW
is set to an initial value of CWmin at the start of time. Upon a packet loss, the value of
CW is doubled up to a maximum CWmax. Upon a successful transmission, CW is reset
to CWmin. CWmin and CWmax are chosen to mirror the corresponding 802.11 values. The
retransmission policy is also similar to 802.11. After transmitting a packet, a sender waits
for an ACK from the receiver (for up to a duration that depends on whether the sender is
the primary or secondary sender). If the sender does not receive a feedback frame, or if
the feedback frame does not indicate a successful reception, then the sender retransmits the
packet for a fixed number of times. That said, SoftCMAP can use any other link-layer error
recovery mechanism as well.

At the receiver. Receivers always look to decode headers and trailers of all transmissions
over the air. One of three things can happen when a node decodes a header:

1. When a node decodes the header of a transmission where it is the receiver, it pro-
ceeds to decode the rest of the packet. At the end of receiving a packet, the node
begins to carrier sense the medium until it becomes free (possibly from a concurrent
transmission). During this time, the receiver tries to decode any new headers or trail-
ers as usual. After the medium becomes free, the receiver turns around to send an
ACK after waiting for an interval of time Tackwait or TACK + 2 Tackwait depending
on whether the reception was the primary transmission or the secondary. The ACK
contains the channel BER estimated from SoftPHY hints during the transmission.

2. If the node is not the receiver, then the MAC instructs the PHY to abort the reception,
i.e., to flush the state of all the modules in the receiver pipeline of the PHY and start
looking for new preambles. This abort mechanism is needed because a concurrent
transmission might start later on for which the receiver is the intended destination,
and the receiver would not want to miss that preamble.

3. If the receiver is not the intended destination in the header just decoded, but is desig-
nated as the secondary sender, then the receiver aborts the reception and switches to
transmit mode in order to transmit as a secondary sender.

5.4.3 Implementation

We evaluate the steady state throughput of SoftCMAP using trace-driven simulations with
SoftPHY-capable GNURadio prototypes (Section 3.3). We evaluate the conflict map mech-
anisms that are common to both protocols using the CMAP prototype alone, because the
CMAP prototype on commodity hardware runs at a much higher and more realistic band-
width than software radios. We now describe how we compute the aggregate throughput
of a set of four nodes (two sender-receiver pairs) performing aligned concurrent transmis-
sions with SoftCMAP, given the channel error rate observed by the two senders during a
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concurrent transmission. This computation will be used in the trace-driven simulations of
SoftCMAP in Section 5.5.

Consider a sender (primary or secondary) performing an aligned concurrent transmis-
sion. Recall that SoftCMAP equalizes the transmission time of frames at all bit rates by
repacketizing data. Assume that payload frames are packetized to fit in transmission slots
of size Tayload = 1867 ps, which is the time taken to send a 1400-byte packet at 6 Mbps.
For example, the MAC combines two 1400-byte frames when transmitting at 12 Mbps and
so on. Let the total transmission time of a payload frame with the overhead of the head-
ers, trailers, and other SoftCMAP mechanisms be Ttotai. The transmit time Ttotai has the
following components, as shown in Figure 5-10.

1. Time taken to transmit the header, MAC payload, and the trailer of a frame. If Th is
the time taken to transmit the PHY synchronization preamble (or postamble) and the
MAC header (or trailer), then the time taken to transmit a frame is 2Th + Tayload.

2. The jitter between the transmissions Th + TA. Both the primary and secondary trans-
missions incur this delay: the secondary sender stays idle for this duration before its
transmission begins, and the primary waits for this duration after its transmission for
the medium to become idle.

3. The time spent waiting for an ACK. Each sender spends a time 2 Tackwait + 2 TACK
for both the ACK transmissions to complete.

Adding up the above numbers, the total time taken to send a data frame is given by:

Ttotal = 2Th + Tayload + Th + TA + 2 Tackwait + 2 TACK (5.1)

If the loss rate of the sender in the presence of the concurrent transmission is 1, then
the expected time to send a frame assuming frame-level retransmissions is Toa. (We are
ignoring the impact of backoff wait time.) If the bit rate of the transmission is R, then
the sender effectively transfers RTayoad units of data in this time. Therefore the effective
throughput of the sender is:

SoftCMAP throughput = R~payload(1 - 1) (5.2)
Total

The throughput of the second concurrent sender can also be computed similarly, using
its value of the perceived loss rate and its transmit bit rate. The aggregate throughput of the
two transmissions is obtained by adding the throughput of the two concurrent senders.

All the timing parameters except TA in Equation 5.1 are fixed by the specification. In
our simulation of SoftCMAP, we use 802.1 la-like values for the timing parameters:

1. The preamble is 16 pus long and the PHY header is one OFDM symbol or 4 ps.
The 802.11 MAC header is 24 bytes long, and the SoftCMAP protocol requires an
additional 12 bytes in the header (Section 5.4.2). At the base rate of 6 Mbps, the
36-byte MAC header transmission takes 48 ps. Therefore, the total time taken to
transmit the preamble and MAC header is Th = 68 ps.
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2. Tackuait is the SIFS interval (16 ps).

3. The size of the ACK frame is 14 bytes in 802.11a. With 4 bytes of BER feedback,
the ACK frame is 18 bytes long in SoftCMAP. At the lowest rate of 6 Mbps, the ACK
transmission takes 44 p- 20 ps for the preamble and PHY header, and 24 ts for the

actual ACK frame.

Below we describe how we estimate the value of TA using an FPGA-based implementa-
tion of the mechanism of concurrent transmissions. Once the value of TA is known, we can
compute the transmission time of any frame given its payload size using Equation 5.1, and
compute the aggregate steady state throughput of SoftCMAP with concurrent transmissions
using Equation 5.2.

Measuring TA. We see from Figure 5-10 that TA is the time from when the header of

the primary transmission is sent over the air to when the secondary transmission starts. To

measure TA, we start with the Airblue 802.11 PHY implementation that was modified to

provide SoftPHY hints (Section 3.3.2). The PHY in Airblue passes up decoded data and
SoftPHY hints to the MAC at the granularity of bytes in the same clock cycle that they are
decoded, conveniently realizing our streaming PHY abstraction. We then modify the MAC
to start a concurrent transmission after receiving the primary sender's header, and measure
the value of TA in the FPGA implementation.

The delay TA has two components. First, the secondary sender's PHY must finish de-

coding the bits corresponding to the MAC header and stream them to the MAC. Second, the

secondary sender's MAC must start a concurrent transmission in response to the primary's

MAC header. We describe each step in more detail.

1. Decoding the MAC header We modify the Airblue MAC and PHY to transmit the
MAC header and trailer at the base rate of 6 Mbps, unlike in 802.11 where it is

transmitted at the bit rate of the payload. The receiver PHY starts decoding the PHY
symbols corresponding to the MAC header as soon as they are received from the RF
front-end, and exports the bits coming out of the pipeline to the MAC. We saw in
Section 3.3.2 that the processing latency of the receiver PHY pipeline in Airblue is
15.52 p-s when computing SoftPHY hints. Therefore, the last bit of the MAC header
reaches the receiver MAC 15.52 pis after it is transmitted over the air.

We found that besides improving the reliability of the control information, transmit-
ting the header at the lowest bit rate allows the PHY to pass the header up to the MAC
sooner. When the 802.11 MAC header is transmitted at the payload of the packet, the

802.11 receiver PHY must first decode the PHY header that specifies the bit rate of

the MAC header, and then reconfigure the pipeline to operate at the (possibly differ-
ent) bit rate of the MAC header. This reconfiguration of the PHY adds a delay before

the PHY symbols corresponding to the MAC header can be decoded and streamed
up to the MAC, unlike in SoftCMAP.

2. Initiating a concurrent transmission. When a node receives the MAC header corre-

sponding to a primary transmission from the PHY, it checks if it is the designated
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secondary secondary. If it is, the node picks a frame from a non-conflicting flow
to transmit, and readies the PHY for a transmission. Note that the PHY of the sec-
ondary sender would have been receiving the primary transmission at this point, and
the various PHY modules will have state from that reception. If the secondary sender
simply transmits without clearing this state, it may lead to a corruption of subsequent
packet receptions. Therefore, the secondary sender's MAC first issues a request to
abort the reception of the primary transmission and clear all state from the receiver's
pipeline. The MAC sends an abort request to the head of the receiver pipeline (RX
Controller in Figure 3-4). The RX controller then inserts a special "abort token"
through the pipeline and stops forwarding data along the pipeline. The abort token in
our case is simply a new zero-length packet header. Every module that receives the
token prepares for receiving a zero-length packet, and flushes the state of the packet it
was receiving before. When the abort token reaches the end of the pipeline, the PHY
sends a response to the MAC to indicate the completion of the abort. The secondary
sender's MAC then initiates the secondary transmission. In our implementation, the
time delay between the secondary sender's MAC receiving the MAC header of the
primary transmission and the secondary sender starting a concurrent transmission
was found to be 8.4 ps, dominated by the time taken to flush the state of the primary
reception.

Therefore, a secondary sender can initiate a secondary transmission with a delay of TA
= 15.52 + 8.4 ~ 24 Ps after the transmission of the primary transmission's MAC header.
Observe that the lower the value of TA, the higher the throughput gains of SoftCMAP.
The delay of 24 ps we observe in our implementation is small enough compared to typical
packet transmission times (hundreds to thousands of microseconds) and does not impose a
significant overhead on SoftCMAP throughput. Also, a more optimized implementation of
the SoftCMAP mechanisms in hardware can shrink this delay even further.

5.5 Evaluation

In this section, we describe the evaluation of the two conflict map-based protocols, Soft-
CMAP and CMAP. Because of our implementation of CMAP over commodity hardware,
we are able to evaluate CMAP in live experiments. We evaluate SoftCMAP by performing
trace-driven simulation using traces from software radio experiments. Below are the main
findings of our experiments.

1. In experiments with pairs of transmissions, the conflict map mechanism can accu-
rately identify the conflicting transmissions from the exposed terminal cases, and
selectively enables concurrent transmissions in the exposed terminal cases alone.

2. Our experiments with pairs of exposed terminals show that the protocols achieve a
median 1.7x gain over CSMA, even with the overheads of the various conflict map
mechanisms.
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Figure 5-11: A map of our 50-node indoor 802.11 a testbed for the evaluation of CMAP.

3. Experiments in larger topologies with more than two transmissions show that har-

nessing exposed terminals can lead to up to a 50% improvement in throughput in

common network topologies.

5.5.1 Method

Evaluation of CMAP. We evaluate CMAP over a 50-node indoor 802.11 testbed. Our

802.11 testbed consists of Soekris net4526 computers with a 133 MHz 486 processor run-

ning the 2.4.26 Linux kernel. The nodes are equipped with an 802.11 a/b/g mini-PCI card

based on the Atheros AR5212 chipset. The testbed nodes are located in one large floor of

an office building as shown in Figure 5-11. Of the 2162 node pairs that have any connec-
tivity whatsoever, approximately 68% links have a packet reception rate (PRR) less than
0.1, 12% have a PRR greater than 0.1 and less than 1, and 20% have a PRR of 1. Consid-
ering just the latter two types of links, the nodes in our testbed have a mean degree of 15.2
and a median degree of 17. We perform all our experiments in the 5 GHz 802.11 a band

which had negligible background traffic. Unless mentioned otherwise, all senders transmit
1400-byte data packets at the 6 Mbps bit-rate of 802.1 la as fast as they can. Each run of an

experiment lasts for 100 seconds and the aggregate throughput achieved is measured as the

total number of non-duplicate data packets received per second at the designated receivers,
computed over the last 60 seconds of the experiment.

We pick sender-receiver pairs in each experiment based on measurements of PRR and

average signal strength between pairs of nodes at 6 Mbps and in the absence of any other

concurrent transmission, obtained shortly before running the corresponding experiment.
In all experiments below, we define two nodes a and b to be "in range" of each other if

both the links a -* b and b -* a have a PRR above 0.2 and signal strength above the 10th
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Figure 5-12: Constraints on topologies in CMAP experiments with (a) pairs of random
senders (Section 5.5.2), (b) pairs of exposed terminals (Section 5.5.3), (c) pairs of hidden
terminals (Section 5.5.4), and (c) a tree-based mesh network (Section 5.5.5). All links that
are not annotated in the figure are unconstrained.

percentile of the signal strength of all links network-wide. We call a link a -+ b a "potential
transmission link" if both the links a -* b and b -+ a have a PRR above 0.9 and signal
strength above the 10th percentile of the signal strength of all links network-wide; we pick
only such links to send data in our experiments because any routing protocol running on
this testbed typically selects such links. Note that while the PRR of a link alone could serve
as a good metric to decide whether the link is a potential transmission link or not, we also
use a low signal strength threshold to eliminate very weak links whose performance would
degrade precipitously in the presence of other transmissions in the network. Figure 5-12
summarizes how we pick topologies for the various CMAP experiments in this section; the
details will be described in the context of the individual experiments.

In our experiments, we compare CMAP to two flavors of 802.11: with carrier sense
turned on and off. The 802.11 throughput is obtained by running the UDP flows on the
wireless devices without using the CMAP mechanisms.

Evaluation of SoftCMAP. We evaluate SoftCMAP using trace-driven simulations, with
traces collected from our SoftPHY-capable software radio prototype (Section 3.3.2). We
collect packet traces and SoftPHY hints from experiments with four nodes configured as
two sender-receiver pairs. Each pair of senders transmits packets at every combination
of the 6 available bit rates (corresponding to the 802.11 a rates of 6, 9, 12, 18, 24, and
36 Mbps), both one at a time and concurrently. The data in these traces was used to generate
Figure 5-2 in Section 5.1. The information collected from the traces includes the frame loss
rates of the senders for every possible combination of bit rates and concurrency, and the
average channel BER computed from SoftPHY hints in each case.

In each experiment, we compute the optimal combination of bit rates of the two senders
during concurrent transmissions using the rate selection algorithm of the SoftRate protocol.
Figure 5-13 shows the per-frame average BER computed from SoftPHY hints (from frames
in the traces that have overlapping concurrent transmissions) plotted against the actual BER
of the frame. We see from the figure that SoftPHY hints can be used to estimate channel
BER accurately during the concurrent transmissions, and therefore can be used to pick the
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Figure 5-13: Per-frame average BER estimated by SoftPHY hints vs. the actual BER of

the frame from experiments with concurrent transmissions using two software radio senders

configured as exposed terminals.

best transmit bit rate combination of the two senders. We then use the experimental traces

of concurrent transmissions at the optimal bit rates of the two senders, and compute the

steady state throughput of SoftCMAP using the computation described in Section 5.4.3.

We compare SoftCMAP against 802.11 with CSMA for each pair of senders. The

throughput of a transmission with CSMA is computed using the frame loss rates over 1400-

byte frames, and adjusting it for 802.11 MAC timing overheads. For each sender-receiver

pair, we use the maximum throughput achieved across all bit rates as the link throughput,
because we assume that CSMA is running with a smart rate adaptation protocol that can

converge to the best possible transmit bit rate for a single link. Given a pair of senders

with single link throughputs of R1 and R2 , we compute the aggregate throughput of the

two transmissions with CSMA as the harmonic mean of the two throughputs ( RiR), be-
cause CSMA gives equal transmission opportunities to each sender, resulting in packets
at lower rates taking up more airtime. Because SoftCMAP repacketizes frames to give

equal airtime to senders at different bit rates, we also simulate a flavor of CSMA with such
time-based fairness to enable a fair comparison with SoftCMAP. We assume that CSMA
with time-based fairness uses the same data frame sizes as SoftCMAP. If two senders have
link throughputs R1 and R2, then the aggregate throughput under this variant of CSMA is
R1+R2

2

5.5.2 Identifying Exposed Terminals

We first run CMAP over 50 pairs of senders, chosen randomly from the testbed nodes, and

verify if we can selectively enable concurrent transmissions between exposed terminals

using the conflict map mechanism. In this experiment, we choose two sender-receiver pairs

as shown in Figure 5-12(b): the two senders are in range of each other, and each sender-
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Figure 5-14: Aggregate throughput of two transmissions in an experiment with two senders
in range of each other, comparing the performance of CMAP, CSMA, and CS off. The CDF
is plotted over 50 experiments with different sets of nodes.

receiver pair is a potential transmission link. We impose no additional constraints on the
signal strengths of the links. Note that some pairs of links could well be exposed terminals,
and some interfering. The data from this experiment was used to generate Figure 5-1 in
Section 5.1.

Figure 5-14 presents the distribution of throughput across all the pairs. On about 40%
of the link pairs, simultaneous transfers were deleterious, evidenced by the worse perfor-
mance of 802.11 with carrier sense disabled compared to 802.11 with carrier sense enabled.
For these link pairs, CMAP correctly directs that each transmission defer to the other and
tracks the performance of 802.11 with carrier sense on (5 Mbps). However, the link pairs
on the right-hand side of the CDF are better off transmitting concurrently, because 802.11
with carrier sense and link-layer ACKs disabled offers a throughput improvement up to
2x. For these link pairs, CMAP correctly directs transmissions to occur simultaneously,
and thus achieves roughly the same throughput improvements as 802.11 with carrier sense
disabled. Note that we disabled link-layer ACKs as well along with carrier sense in or-
der to generate the "CS off" curve above. Therefore the performance of the carrier sense
disabled experiment does not reflect the ACK loss problem in exposed terminals, and is an
upper bound on CMAP's performance. This experiment convinces us that our defer scheme
correctly discriminates between interfering and non-interfering concurrent transmissions.

5.5.3 Performance Gains with Exposed Terminals

Having shown that the conflict map mechanism can correctly identify exposed terminals
from conflicting transmissions, we now focus solely on exposed terminals to understand
the performance benefits of using the conflict map mechanism. We present results with
CMAP and SoftCMAP over exposed terminal configurations.
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Figure 5-15: Aggregate throughput of two transmissions in an experiment with exposed
terminals, comparing CMAP, CMAP without windowed ACKS, CS on and CS off. The
CDF is plotted over 50 experiments with different sets of nodes.

Gains with CMAP. We first perform an experiment with pairs of exposed senders run-
ning the CMAP protocol. This experiment only measures the gains at the fixed bit rate
of 6 Mbps because the CMAP protocol does not handle heterogeneous bit rates. We pick
pairs of links from our 50-node testbed, as shown in Figure 5-12(a), such that: (i) the two
senders are in range of each other, (ii) each sender-receiver pair is a potential transmission
link (as per the definitions above), (iii) the signal strength from a sender to its correspond-
ing receiver is strong (in the 90th percentile of signal strength of all links network-wide),
and (iv) the signal strength between all other pairs of nodes is somewhat weak (below the
90th percentile threshold). The last two constraints ensure that the two transmissions do
not interfere very much, most likely resulting in an exposed terminal situation.

Figure 5-15 presents the distribution of throughput across 50 exposed terminal config-
urations chosen at random from all possible configurations. With carrier sense enabled,
we see that most link pairs achieve little more than the single-link rate of 5 Mbps, since
most of the time, each sender defers its transmission to the other. With carrier sense and
link-layer ACKs disabled (in order to avoid the penalty from ACK collisions), we see that
15% of the pairs at the bottom left of the graph are not in fact exposed terminals in the
sense that the two transmissions do not simultaneously achieve their maximum throughput.
Of the remaining 85% of pairs in this experiment, CMAP permits the two transmissions
to proceed concurrently 7 = 82% of the time, resulting in a throughput improvement
of approximately 2 x over 802.11 with carrier sense enabled. By carefully scrutinizing the
experiment logs, we verified that the remaining 18% of pairs experienced many spurious
retransmissions due to very high ACK loss rates that our windowed ACK scheme could not
completely eliminate.

To quantify the benefits of our windowed retransmission protocol, we repeated the
CMAP experiments with a window size of one virtual packet. We found that the me-
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Figure 5-16: Aggregate throughput of two transmissions in trace-driven simulations with
exposed terminals, comparing SoftCMAP, CSMA, and CS off. The CDF is plotted over 50
experiments with different sets of nodes.
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Figure 5-17: Aggregate throughput of two transmissions in trace-driven simulations with
exposed terminals, comparing SoftCMAP, CS on, and CS off. The CS on and CS off 802.11
protocols are modified to implement time-based fairness (marked as TBF in the graph). The
CDF is plotted over 50 experiments with different sets of nodes.

dian throughput improvement in this case was just 1.5 x, significantly lower than CMAP
with a window of eight virtual packets, because ACKs collided frequently at the senders
and caused the senders to timeout and perform spurious retransmissions.
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Figure 5-18: Per-sender throughput computed over the periods that the node is actively
transmitting in trace-driven simulations of exposed terminals, comparing SoftCMAP and
CSMA with time-based fairness. The CDF is plotted over 50 experiments with different
sets of nodes.

Gains with SoftCMAP. We now investigate the impact of the conflict map mechanism
on exposed terminals when each sender is capable of performing bit rate adaptation along
with concurrent transmissions using the SoftCMAP protocol. We simulate the performance
of 802.11 (with carrier sense turned on and off) and SoftCMAP on traces from experiments
with pairs of exposed senders running at bit rates corresponding to the 802.11 a rates of
6-36 Mbps. We run such experiments for 50 sets of nodes (16 unique sets of four nodes
each, transmitting at 4 or 5 different transmit power levels). The exposed senders were
chosen such that they were able to transmit concurrently with virtually no packet losses at
the lowest bit rate of 6 Mbps, but may not be perfectly exposed in this manner at higher bit
rates.

Figure 5-16 shows the CDF of the aggregate throughput of SoftCMAP, CSMA, and CS
off over the 50 pairs of exposed senders. We see from the figure that the median improve-
ment in throughput from SoftCMAP is close to 2 x. However, some gains of SoftCMAP
could simply be an artifact of SoftCMAP giving equal airtime to senders contending at
different bit rates, resulting in senders at higher bit rates getting more airtime than with
CSMA. We therefore compare SoftCMAP to flavors of 802.11 that implement time-based
fairness, by letting contending senders repacketize data in frames with equal transmission
times at all bit rates. We use the same transmission slot size in all protocols. Figure 5-17
compares the throughput of SoftCMAP against CSMA and CS off with this modification
in place. We find that exploiting exposed terminals in SoftCMAP leads to a 1.7x median
improvement even over CSMA that implements time-based fairness, showing that these
gains are purely from exploiting concurrency. We find that the performance of SoftCMAP
is lower than that of carrier sense turned off because of necessary overheads such as waiting
to decode the header before starting concurrent transmissions. In that sense, while the per-
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formance of the CS off curve may not be achieved by any practical protocol, it serves as an

upper bound on the possible improvement in performance and shows that the performance

of SoftCMAP is not far away from optimal.
Figure 5-18 shows a CDF of the average throughput of the individual senders in the

exposed terminal pair from the previous experiment, computed only over the periods that

the node is actually transmitting. We see from the figure that this per-sender throughput

is typically lower with SoftCMAP than with CSMA, because senders see a higher loss

rate, or have to choose a lower bit rate, when transmitting with the added interference

of a concurrent transmission in SoftCMAP. However, the average link throughput of the

transmission is still higher with SoftCMAP than with CSMA because the exposed senders

get many more transmission opportunities by transmitting concurrently with each other.

5.5.4 Performance Gains with Hidden Terminals

The conflict map mechanisms in CMAP will fail to detect a conflict when either (a) the

receiver is unable to receive at least some headers and trailers from an interferer in order

to populate its interferer list, and thereby the conflict map, or (b) a potential sender cannot

hear the interferer's transmission headers in order to defer to it (the hidden terminal prob-

lem). As a result, an interferer that is out of communication range of either the receiver

or the sender of a transmission (a "hidden interferer") can degrade the throughput of that

transmission. This section investigates the impact of hidden interferers on the throughput

of CMAP.
To identify the frequency of hidden interferers, we quantify the relationship between

an interferer I's effect on the throughput of a transmission S -* R and the probability that

S and R can hear I. Our goal is to see how often it is that I effects the throughput of

S --+ R but is not within hearing range of either. We randomly choose 500 802.11 sender-

receiver pairs (S, R) with a potential transmission link between them, and for each pair,
we pick an interferer I at random from all the nodes in the testbed. We first measure the

throughput of the link S -* R and the frame delivery rates of the links I -* R and I -> S

in the absence of any other interference. S and I then transmit 802.11 packets continuously

and simultaneously with carrier sense and link-layer ACKs disabled, and we measure the

throughput of S -- R in the presence of I's transmissions. We disable link-layer ACKs

to avoid the senders backing off in response to packet losses. From the resulting data, we

find that the fraction of cases where I reduces the throughput of S - R by more than

50%, but has a link with frame delivery rate less than 0.5 to either S or R is only 8%.

This observation convinces us that hidden interferers do not occur very frequently in our

experiments.
We now estimate the magnitude of impact a hidden interferer has on CMAP throughput

as follows. Let p, and p, denote the packet reception rates of the links I -- R and I -+ S

respectively. Then the probability that both S and R hear I is at least p = max(pr + ps -

1, 0). Let T denote the normalized throughput of S -* R in the presence of I. Now, had the

experiment been run with CMAP, the conflict detection mechanism would have avoided a

throughput degradation (i.e., resulted in a normalized throughput of 1) with a probability

p, and resulted in a lower throughput of T with a probability 1 - p. Hence, the expected

throughput of S -* R with CMAP can be computed as p - 1 + (1 - p) - T. A sum of the
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Figure 5-19: Aggregate throughput of two transmissions in an experiment with two senders
out of each other's transmission range, comparing CMAP, CSMA, and CS off. The CDF is
plotted over 50 experiments with different sets of nodes.

above expression over all data points works out to be 0.896. Thus, the expected damage
to a CMAP pair's throughput due to a hidden interferer is only around 10%. In practice,
however, the degradation will be even smaller (as we will see next) because CMAP senders
back off in response to losses, unlike the senders in the above experiment which were made
to transmit continuously.

We now evaluate how well CMAP's backoff protocol prevents performance degradation
when the defer mechanism fails in an experiment with pairs of hidden terminals. We choose
pairs of links for this experiment as shown in Figure 5-12(c): each receiver has a potential
transmission link to both senders, ensuring that the two transmissions will almost always
interfere with each other at the receivers. The senders are not in range of each other with
the result that they cannot defer to each other's transmissions. Figure 5-19 presents the
distribution of throughput across 50 randomly chosen link pairs. We see that CMAP and
802.11 (with both carrier sense enabled and disabled) perform comparably. Also note that
there is very little weight on the right-hand side of the CDF that represents throughputs
greater than the single pair throughput. This is because the best we can hope for in such
topologies, with current 802.11 hardware, is transmissions interleaved with each other to
achieve the throughput of a single sender-receiver pair. Therefore, while the conflict map
mechanism does not explicitly solve the hidden terminal problem, it does not lead to a
degradation of throughput compared to CSMA either.

We also use the above experiment to validate our design decision of transmitting both
headers and trailers (as opposed to only headers) on packets. For each experiment in Fig-
ures 5-14 and 5-19, we compute the fraction of virtual packets transmitted by a sender for
which either the header or the trailer was successfully received by the receiver. We com-
pare this fraction against the fraction of virtual packets for which the header was received.
We plot a CDF of these fractions across all sender-receiver pairs in each experiment in Fig-
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Figure 5-20: A CDF of the probabilities of reception of either header or trailer and header

alone for each transmitted virtual packet, computed from the experiments with two pairs of

senders in range (Figure 5-14) and out of range (Figure 5-19).
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Figure 5-21: Mean throughput in the experiment with N APs and N clients, comparing

CMAP, CSMA, and CS off.

ure 5-20. We see that the probability of reception of a header or trailer is higher than the

probability of reception of a header alone in both the experiments; the benefit of using trail-

ers is more pronounced when the senders were out of each other's range and persistently

collided at the receivers. We also observe that the probability that either a header or trailer

is received is almost 1 in the experiment where the senders are in range of each other and

transmit equal-sized packets.
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Figure 5-22: A CDF of the per-sender throughput in experiments with N APs and N
clients, comparing CMAP, CSMA, and CS off.

5.5.5 Multi-node Topologies

In this section, we evaluate CMAP in topologies with more than two senders.

Access point network. We first pick topologies that resemble wireless local area net-
works (WLANs) with multiple access points (APs) and clients that span a geographical
area several radio-ranges in diameter. We divide the testbed (see Figure 5-11) into six "re-
gions" and designate one node in each region as an AP, such that each AP is out of the
communication range of every other AP. We choose clients of an AP from the set of nodes
in that region that have a potential transmission link to that AP, and randomly designate
one of the client or AP as the sender of packets. We then perform experiments by varying
the number of APs (N) from three through six, always choosing APs from adjacent regions
when there are fewer than six APs in an experiment. Note that in each experiment, some of
the N concurrent senders will be in hearing range of a receiver (thereby interfering directly
with the receiver's reception) while some simply increase the perceived background noise.
For each value of N, we perform 10 experiments, choosing different clients for APs each
time.

Figure 5-21 shows the average aggregate throughput of CMAP and 802.11 (with both
carrier sense enabled and disabled) as a function of the number of concurrent senders N in
the experiment. Note that increasing the number of senders does not mean nodes perform
more than two concurrent transmissions at a time. As we vary N, we find that CMAP
improves aggregate throughput by between 21% (when N = 3) and 47% (when N =
4). CMAP sees this improvement because pairs of senders in adjacent cells were often
exposed terminals. Figure 5-22 shows a CDF of the per-sender throughput for all senders
across all experiments. From the figure we find that CMAP improves the median per-sender
throughput by 1.8 x as compared to CSMA.
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Figure 5-23: Mean and median probabilities of reception of either header or trailer of

a virtual packet at a receiver, as a function of the number of concurrent senders in the

experiment with N APs and clients. The boxed error bars represent the 25th and 75th

percentiles, and the thin error bars show the 10th and 90th percentile values.

We next study how the header or trailer reception probabilities at a node are affected

by the number of concurrent transmissions in the network. Figure 5-23 shows the mean,

median, and various percentile values of the probability of reception of either a header or

trailer of a virtual packet at each receiver, as a function of the number of concurrent trans-

missions in the network. We find from the graph that the median header or trailer reception

probability is practically unaffected by the number of concurrent transmissions. However,
the 10th percentile value drops sharply, indicating that a small fraction of receivers cannot

implement the conflict map mechanisms effectively in the presence of many concurrent

transmissions. This is because concurrent transmissions in CMAP are unaligned and of-

ten corrupt the headers and trailers of receptions. On the other hand, with the fine-grained

timing control and the aligned concurrent transmissions of SoftCMAP, the concurrent trans-

missions do not overlap over the headers and trailers. This is one of the shortcomings of

the CMAP protocol as compared to SoftCMAP.

Mesh network. In this section, we present an evaluation of CMAP over a two-hop con-

tent dissemination mesh network shown in Figure 5-12(d). The source S first broadcasts a

batch of packets to its one-hop neighbors A1 , A 2, and A3. The Ais then transmit the packets

to the corresponding Bis. We compute the throughput at each Bi as the minimum of the

throughputs along the corresponding S -* Ai and Ai -* Bi paths. We measured the aggre-

gate throughput at all the Bis over 10 different topologies. We found that CMAP achieves

a 52% higher average throughput than 802.11 with carrier sense enabled. The reason for

this improvement was that, frequently, one or more of the Ais were exposed terminals dur-

ing the Ai - Bi transfers. While the above experiment may not be representative of the
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performance of CMAP over arbitrary mesh networks, it convinces us that multi-hop mesh
networks can benefit from a MAC that exploits concurrent transmission opportunities. In
fact, given MACs like SoftCMAP or CMAP that increase concurrency, routing protocols
can be redesigned to generate topologies that increase concurrent transmission opportuni-
ties.

5.6 Related Work

There has been a lot of prior work on exploiting concurrency to improve performance of

wireless networks. We classify the work into: (a) research that is directly related to ours,

i.e., solves the exposed terminal problem using techniques different from ours, (b) research
that is complementary to ours and can work synergetically with our approach, and (c) other
work broadly related to ours.

The exposed terminal problem. Spatial reuse is a well-known concept in wireless com-

munications networks of many different types. MACA [32] makes the observation that car-
rier sense cannot make correct transmission decisions because it does not consider channel
conditions at the receiver, resulting in problems like exposed and hidden terminals. The
paper proposes the RTS/CTS virtual carrier sensing protocol to solve the hidden terminal
problem. However, this mechanism does not solve the exposed terminal problem.

There have been a few previous proposals to increase concurrency in wireless net-
works [4, 44, 58, 14]. As we explain below, however, our protocols differ from all these
schemes in the method of identifying and exploiting the identified concurrent transmission
opportunities. Also, none of these schemes considers heterogeneous bit rates or performs
joint channel access and rate adaptation, a problem solved by SoftCMAP. Finally, these pre-
vious proposals build upon the rarely used RTS/CTS mechanism and evaluate their ideas
in simulation alone. We will now describe these related schemes in more detail. Like the
conflict map protocols, the "adaptive learning" extension of MACA-P [4] builds a data
structure containing potentially non-interfering but nearby nodes. Unlike our work, how-
ever, MACA-P is based on the RTS/CTS exchange, extended in time to include a control
gap, which results in a significant protocol overhead. RTSS/CTSS [44] uses an offline
training phase to determine which nodes may transmit concurrently. This approach, how-
ever, is not applicable when the channel varies, as is the case in practice. It also does not
have any mechanisms to deal with the ACK loss problem in exposed terminals. Shukla et
al. [58] propose identifying exposed terminals performing an RTS/CTS exchange on the
basis of overhearing an RTS without overhearing a CTS. This method does not identify all
exposed terminal opportunities-it misses exposed terminals where a sender can hear an-
other receiver's CTS, but is far enough from the receiver that it can transmit concurrently.
In the Interference Aware (IA) MAC protocol [14], nodes make transmission decisions us-

ing the SINR estimates at receivers that are embedded in CTS messages. However, the IA
MAC misses exposed terminals where one of the exposed senders does not hear the CTS
from the other receiver.

Padhye et al. [48] propose a set of metrics that estimate link interference in static multi-

hop wireless networks. They suggest an offline process of pairwise link measurements
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to identify conflicting transmissions. Similarly, the interference map [46] builds up packet
success information about CSMA transmissions in an offline training phase, for the purpose
of network planning. Our work, in contrast, obtains interference information online and
uses it in a live protocol.

Complementary techniques. Researchers have observed that concurrent transmissions
do not always result in both the colliding packets being lost [60, 70]. This phenomenon, in
which a receiver can correctly decode it's sender's packet even in the presence of other con-
current transmissions, is sometimes referred to as the "capture" effect. Our work increases
the opportunities for and exploits packet capture by increasing the number of concurrent
transmissions.

On older wireless hardware, a concurrent transmission may not be successful between
exposed terminals if both the receivers synchronize with the transmission that starts first
and ignore the preamble of the subsequent transmission. Whitehouse et al. [70] and Priyan-
tha [49] propose mechanisms to boost the chances of packet capture in such cases by mak-
ing receivers acquire packet preambles throughout the duration of ongoing packet recep-
tions in addition to when no packet is being received. That is, receivers can capture stronger
transmissions that start during the reception of weaker transmissions. With this capability
of the PHY (that is common in newer hardware), other researchers have proposed that
one can order concurrent transmissions carefully to boost the probability of successfully
decoding both the transmissions at the corresponding receivers [42]. Deploying such a
mechanism with conflict maps increases the number of exposed terminal opportunities
available to exploit. Our CMAP prototype built on commodity wireless hardware does
not resynchronize during a reception, while our software radio prototype used to evaluate
SoftCMAP was programmed to do so.

Successive interference cancellation [22, 19] performs concurrent transmissions that
interfere with each other, but can be jointly decoded using physical layer techniques.
Techniques that use multiple antennas in MIMO systems to decode concurrent transmis-
sions [64] also use physical layer techniques to decode transmissions that would normally
interfere. The conflict map mechanism can be used along with such techniques to help them
schedule concurrent transmissions that can be successfully decoded at the physical layer.
That is, the streaming PHY abstraction can be used to perform concurrent transmissions
not only in the case of exposed terminals, but also in the case of other types of concurrent
transmissions that can succeed in parallel.

Other related work. In a busy access point WiFi network, Judd [30] observes that many
clients connected to different access points are in fact exposed terminals with respect to
each other. In fact, two randomly-chosen clients are as likely to be exposed terminals
with respect to each other as they are to connect to the same access point. This result sug-
gests that the use of conflict maps could significantly improve performance in infrastructure
wireless LANs.

Recent research [12] has claimed that the added benefits of exploiting exposed termi-
nals when using a smart rate adaptation protocol are negligible in practice because senders
are often not exposed terminals when transmitting close to their channel capacity. Our
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experiments with SoftCMAP, however, convince us that smart rate adaptation does not pre-
clude the possibility of throughput gains from exploiting exposed terminals. The difference
in conclusions can possibly be explained by the different hardware the experiments were
run on. Our software radio receivers used to perform concurrent transmissions in the evalu-

ation of SoftCMAP are capable of resynchronizing to a stronger preamble while decoding a
transmission. Older commodity hardware generally does not have this capability, as a result
of which the incidence and impact of the exposed terminal problem may appear lower.

Algorithms to tune the carrier sense threshold or power level alone [73, 76, 45, 59, 69,
6, 62] and algorithms that tune both carrier sense threshold and transmit power [35] build
on the basic carrier sense mechanism. Thus, these algorithms make a fundamental trade-
off between preventing hidden-terminal collisions and permitting exposed-terminal spatial
reuse, and don't fully take advantage of the many exposed terminal opportunities present in
real networks. Our work explicitly discriminates between conflicting and non-conflicting
transmissions, avoiding this tradeoff.

There have also been proposals to use receiver-based feedback of channel conditions
in making transmission decisions to improve the performance of CSMA. E-CSMA [17]
uses observed channel conditions at the transmitter (RSSI, for example), and receiver-based
packet success feedback to build a per-receiver probability distribution of transmission suc-
cess conditioned on the channel conditions at the sender at the time of transmission. Then
a node makes a transmit/defer decision based on transmitter channel conditions just before
sending a packet. The distinguishing feature of our work from E-CSMA is that we explic-
itly takes the identity of current senders and whom they're sending to into account while
making channel access decisions, instead of implicitly capturing them using signal strength
estimates, and hence can better predict which transmissions are likely to succeed and which
not.

5.7 Chapter Summary

This chapter described two channel access protocols, SoftCMAP and CMAP, that aim to
improve MAC-layer throughput by increasing the number of successful concurrent trans-
missions. The protocols are based on the idea of conflict maps, where nodes base their
channel access decisions on empirical measurements of which transmissions conflict and
which do not, and exploit all possible concurrent transmission opportunities. The key en-
hancement to the MAC-PHY interface that permits the implementation of these protocols
is the notion of a streaming PHY, where nodes can learn of the identities of the senders
and receivers of ongoing transmissions and make channel access decisions based on who is
transmitting and not on whether anyone is transmitting. The empirical measurements used
to build the conflict map are frame loss rates in the case of CMAP and channel BERs from

SoftPHY hints in the case of SoftCMAP. SoftCMAP also performs a joint channel access
and bit rate decision using a rate adaptation protocol similar to SoftRate-a sender picks
the transmit bit rate based on whether there is another concurrent transmission or not. Our
evaluation of the two protocols shows that one can obtain close to 50% increase in aggre-
gate network throughput by exploiting concurrent transmission opportunities in wireless
networks.
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Chapter 6

Conclusion

We conclude the dissertation with a summary of our contributions and a discussion of
directions for future research.

6.1 Summary

We presented a cross-layer approach to link-layer protocol design in wireless networks.
The wireless channel is a time-varying broadcast medium, and the wireless link layer ab-
stracts most of this complexity from higher layers. In today's network architecture, link-
layer protocols glean only a small amount of information about channel quality (like frame
receptions and per-frame SNR measurements) from the PHY. We showed that this infor-
mation sometimes turns out to be insufficient in capturing the channel correctly, leading to
incorrect transmit bit rate and channel access decisions.

This dissertation proposed a new interface between the physical and link layers in the
wireless networking stack to export more information about the wireless channel to the link
layer. With our interface, the PHY streams decoded bits along with per-bit confidences
called SoftPHY hints to the link layer. The SoftPHY hints of the bits in a frame can be
used to accurately compute the underlying wireless channel BER, a fundamental metric of
interest for bit rate adaptation protocols. The streaming interface enables the link layer to
learn about ongoing transmissions in a timely manner and make appropriate channel access
and transmit bit rate decisions. Our design of the new interface works across a wide class
of physical layer architectures.

We also described new bit rate adaptation and MAC protocols that use the information
available through this interface to improve performance. The SoftRate bit rate adaptation
protocol uses the channel BER computed from SoftPHY hints as the feedback signal to
pick suitable transmit bit rates. SoftRate also uses patterns of SoftPHY hints to identify
and eliminate the effects of transient interference on its channel quality estimate. SoftRate
improves application-layer throughput by 35% to 2 x over existing rate adaptation protocols
because of its ability to estimate the wireless channel quickly and accurately across many
different operating environments. SoftRate is particularly useful in fast-varying channels
(e.g., when the sender or receiver or both are in a moving vehicle) or channels that experi-
ence interference losses (e.g., crowded conference rooms).
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With the SoftCMAP MAC protocol, senders use the streaming PHY to decode head-
ers of ongoing transmissions and transmit concurrently with exposed terminals, increasing
the number of successful concurrent transmissions. Senders identify other exposed senders
using the conflict map, a distributed map of conflicting transmissions constructed using
feedback from receivers. Senders also use a rate adaptation protocol like SoftRate to pick
suitable transmit bit rates for concurrent transmissions. In other words, the SoftCMAP
protocol allows senders to make a jointly-optimal transmit bit rate and channel access deci-
sion. We also developed the CMAP protocol, an approximation of SoftCMAP that runs on
commodity hardware. These protocols based on conflict maps increase spatial reuse and
improve aggregate throughput by up to 50% in typical networks.

6.2 Future Work

Real-world deployment. The dissertation opens up many avenues for future research.
Foremost among them is validating the ideas presented here in bigger networks and real-
world deployments. The experiments in this dissertation, as is the case with most cross-
layer protocol evaluations, were predominantly carried out with software radios that work
at link-speeds that are lesser than those seen in real networks. An interesting research
question is to verify whether these gains hold at link speeds of many hundreds of megabits
per second. Such an evaluation requires an end-to-end implementation of the link-layer
protocols in hardware, using a high-speed wireless networking platform running on FPGAs
or ASICs. A hardware implementation with a compact form factor will also enable testing
the protocols in large deployments with real traffic, possibly using vehicular testbeds [18]
that encounter a highly time-varying wireless channel.

Other uses of SoftPHY hints. SoftPHY hints estimate the quality of a frame reception,
and can be quite useful to higher-layer functions besides bit rate adaptation. One possible
application is in Hybrid ARQ (HARQ) error recovery schemes. In HARQ with incremental
redundancy, the sender first transmits only a subset of the parity bits in a coded bit stream,
and transmits the other parity bits only if the initial transmission fails. Receivers jointly de-
code all the transmissions of a frame, and request retransmissions till the frame is correctly
decoded. Current HARQ schemes have no easy way to estimate how bad the initial trans-
mission was and how many parity bits the receiver needs to be able to decode it correctly.
With the SoftPHY interface, the receiver's link layer can use SoftPHY hints to estimate
how many bits are likely to be in error and request an appropriate size of retransmission of
parity bits to enable correct decoding. SoftPHY hints can also identify specific portions of
the packet with low confidences, and the receiver can possibly request different number of
parity bits over different portions of the packet.

Other uses of the streaming PHY. Recall that in the exposed terminal problem, the PHY
can decode a transmission in the presence of another concurrent transmission because the
concurrent transmission adds only a negligible amount of interference at the receivers of the
exposed senders. However, by using advanced signal processing techniques, some mod-
em PHYs today can decode concurrent transmissions even when both the transmissions
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interfere with each other. For example, with Successive Interference Cancellation (SIC), a
receiver first decodes the stronger of the two transmissions in a pair of concurrent transmis-
sions, subtracts the effect of the decoded transmission from the signal, and then decodes

the second transmission. Another example is multi-user MIMO, where a receiver (say, an

access point) uses multiple antennas to communicate with multiple senders simultaneously.

Using joint decoding algorithms, a receiver can decode as many concurrent data streams
as the number of antennas it has. All these PHY techniques require a MAC protocol that

enables the senders to transmit concurrently and reap the benefits of the advanced PHY at

the receiver. But because these techniques have been developed in the context of cellular

communication systems, the only MAC protocols that work with such PHYs today are cen-
tralized protocols with a controller scheduling concurrent transmissions. In order to apply

these PHY techniques in the context of a data network with bursty traffic, one needs to

come up with a distributed contention-based MAC protocol that enables senders to trans-

mit concurrently with selected senders. The ideas in SoftCMAP can be used to address this

problem. For example, a conflict is redefined as a pair of concurrent transmissions where
SIC will not work at either receiver. Nodes then use the streaming PHY and the conflict
map to transmit concurrently with transmissions for which SIC is likely to work at the re-

ceivers, picking appropriate bit rates based on the channel access decision. One can see

that the streaming PHY has applications beyond just the exposed terminal problem, and
can be used to develop link-layer protocols that treat concurrent transmissions as first-class
citizens.

In summary, this dissertation demonstrated the power of cross-layer techniques in the de-
sign of wireless bit rate adaptation and channel access protocols. By exposing fine-grained
information about the dynamic wireless channel via well-defined interfaces, one can greatly

improve throughput in wireless networks. Looking ahead, the philosophy of this disserta-
tion can be extended to develop cross-layer solutions to other open problems in the link and
higher layers in wireless networks.
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