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A popular theory of self-organized criticality predicts that the stationary density of the Abelian sandpile
model equals the threshold density of the corresponding fixed-energy sandpile. We recently announced that this
“density conjecture” is false when the underlying graph is any of Z2, the complete graph Kn, the Cayley tree,
the ladder graph, the bracelet graph, or the flower graph. In this paper, we substantiate this claim by rigorous
proof and extensive simulations. We show that driven-dissipative sandpiles continue to evolve even after a
constant fraction of the sand has been lost at the sink. Nevertheless, we do find �and prove� a relationship
between the two models: the threshold density of the fixed-energy sandpile is the point at which the driven-
dissipative sandpile begins to lose a macroscopic amount of sand to the sink.

DOI: 10.1103/PhysRevE.82.031121 PACS number�s�: 64.60.av, 45.70.Cc

I. INTRODUCTION

In this paper, we expand on our results announced in �1�
critiquing the theory of self-organized criticality developed
by Dickman, Muñoz, Vespignani, and Zapperi �DMVZ� in a
series of widely cited papers �2–6�. The DMVZ theory pre-
dicts a certain relationship between systems that are driven
from the outside and closed systems with an absorbing state.
We refute this prediction for the Abelian sandpile model of
Bak, Tang, and Wiesenfeld �7� and its fixed-energy counter-
part. In particular, we focus on the prediction that the station-
ary density �s of the driven-dissipative sandpile model equals
the threshold density �c of the fixed-energy sandpile model
�FES�.

For several families of graphs, we have found precise
values for both these densities, which are clearly not equal.
We presented these values �1�; for completeness, we repro-
duce the table here �Table I�. In this paper, we present our
evidence for these values, which consists either of rigorous
proof or extensive simulations. Our rigorous results �see
Theorems 4 and 14� point to a somewhat different relation-
ship than that posited in the DMVZ series of papers: the
driven system exhibits a second-order phase transition at the
threshold density of the closed system.

One hope of the DMVZ paradigm was that critical fea-
tures of the driven-dissipative model, such as the exponents
governing the distribution of avalanche sizes and decay of
correlations, might be more easily studied in FES by exam-
ining the scaling behavior of these observables as �↑�c.
However, several findings including ours suggest that these
two models may not share the same critical features. Among
these we note the discrepancies reported by Grassberger and
Manna �8�; the discovery by De Menech, Stella, and Tebaldi
that many observables of the driven-dissipative model do not
show simple power-law scaling �9�; the finding of Bagnoli et
al. �10� of nonergodicity in the FES; and the work of Peters
and Pruessner �11,12�, who numerically find different critical
properties for driven and fixed-energy versions of the Ising
model and the Oslo model. Our main findings—the inequal-
ity of �s and �c, and the continued change in density of

driven-dissipative sandpiles beyond �c—constitute further
evidence that driven-dissipative and fixed-energy sandpile
models may not share the same critical features.

This paper is organized as follows: in Sec. II we define
the two sandpile models, with the square grid graph Z2 as
example. We present simulation results supplementing those
in �1�. In the remaining sections, we discuss the other graph
families. In Secs. III �bracelet graph�, IV �complete graph�,
and V �flower graph�, we give rigorous proofs for the exact
values of the two densities. Moreover, in Sec. III we give the
proof of Theorem 1 of �1�, and in Sec. V of a similar theo-
rem, both illustrated graphically in Fig. 2 of �1�. In Secs. VI
�regular trees� and VII �ladder graph�, we find the threshold
densities by simulation. For the exact values of the stationary
densities, we refer to the work of Jeng, Piroux, and Ruelle
�13�, Dhar and Majumdar �14�, and Járai and Lyons �15�.

II. SANDPILES ON THE SQUARE GRID Z2

In this section we give precise definitions of the stationary
and threshold densities, and present the results of large-scale
simulations on Z2. The definitions in this section apply to
general graphs, but we defer the discussion of results about
other graphs to subsequent sections.

TABLE I. Stationary and threshold densities for different
graphs. Exact values are in bold.

Graph �s �c

Z 1 1

Z2 17 /8=2.125 2.125288. . .

Bracelet 5 /2=2.5 2 .496608. . .

Flower graph 5 /3=1.666667. . . 1 .668898. . .

Ladder graph 7
4 −

�3
12 =1.605662. . . 1.6082. . .

Complete graph n /2+O��n� n−O��n log n�
3-regular tree 3/2 1.50000. . .

4-regular tree 2 2.00041. . .

5-regular tree 5/2 2.51167. . .
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A. Driven-dissipative sandpiles and the stationary density �s

Let Ĝ= �V ,E� be a finite graph, which may have loops and
multiple edges. Let S�V be a nonempty set of vertices,
which we will call sinks. The presence of sinks distinguishes
the driven-dissipative sandpile from its fixed-energy counter-
part. To highlight this distinction, throughout the paper,

graphs denoted with a “hat” as in Ĝ have sinks, and those
without a hat as in G do not.

For vertices v ,w�V, write av,w=aw,v for the number of
edges connecting v and w, and

dv = �
w�V

av,w.

for the number of edges incident to v. A sandpile �or “con-

figuration”� � on Ĝ is a map

�:V → Z�0.

We interpret ��v� as the number of sand particles at the
vertex v; we will sometimes call this number the height of v
in �.

A vertex v�S is called unstable if ��v��dv. An unstable
vertex can topple by sending one particle along each edge
incident to v. Thus, toppling v results in a new sandpile ��
given by

�� = � + �v,

where

�v�w� = �av,w, v � w

av,v − dv, v = w .
�

Sinks by definition are always stable, and never topple. If all
vertices are stable, we say that � is stable.

Note that toppling a vertex may cause some of its neigh-
bors to become unstable. The stabilization �� of � is a sand-
pile resulting from toppling unstable vertices in sequence,
until all vertices are stable. By the Abelian property �16�, the
stabilization is unique: it does not depend on the toppling
sequence. Moreover, the number of times a given vertex
topples does not depend on the toppling sequence.

The most commonly studied example is the n�n square
grid graph, with the boundary sites serving as sinks �Fig. 1�.
The driven-dissipative sandpile model is a continuous time
Markov chain ��t�t�0 whose state space is the set of stable

sandpiles on Ĝ. Let V�=V \S be the set of vertices that are
not sinks. At each site v�V�, particles are added at rate 1.
When a particle is added, topplings occur instantaneously to
stabilize the sandpile. Writing �t�v� for the total number of
particles added at v before time t, we have by the Abelian
property

�t = ��t��.

Note that for fixed t, the random variables �t�v� for v�V�
are independent and have the Poisson distribution with mean
t.

The model just described is most commonly known as the
Abelian sandpile model �ASM�, but we prefer the term
“driven dissipative” to distinguish it from the fixed-energy

sandpile described below, which is also a form of ASM.
“Driven” refers to the addition of particles, and “dissipative”
to the loss of particles absorbed by the sinks.

Dhar �16� developed the burning algorithm to character-
ize the recurrent sandpile states, that is, those sandpiles � for
which, regardless of the initial state,

Prob��t = � for some t� = 1.

Lemma 1 �Burning Algorithm �16��. A sandpile � is re-
current if and only if every nonsink vertex topples exactly
once during the stabilization of �+�s�S�s, where the sum is
over sink vertices S.

The recurrent states form an Abelian group under the op-
eration of addition followed by stabilization. In particular,
the stationary distribution of the Markov chain �t is uniform
on the set of recurrent states.

The combination of driving and dissipation organizes the
system into a critical state. To measure the density of par-

ticles in this state, we define the stationary density �s�Ĝ� as

�s�Ĝ� = E�	 1


V�
 �
v�V�

��v�� ,

where V�=V \S, and � is the uniform measure on recurrent

sandpiles on Ĝ. The stationary density has another expres-
sion in terms of the Tutte polynomial of the graph obtained

from Ĝ by collapsing the set S of sinks to a single vertex; see
Sec. IV.

Most of the graphs we will study arise naturally as finite
subsets of infinite graphs. Let � be a countably infinite graph

in which every vertex has finite degree. Let Ĝn for n�1 be a

nested family of finite induced subgraphs with �Ĝn=�. As

sinks in Ĝn we take the set of boundary vertices

Sn = Ĝn − Ĝn−1.

In cases where the free and wired limits are different, such as

on regular trees, we will choose a sequence Ĝn correspond-
ing to the wired limit. We denote by �n the uniform measure

on recurrent configurations on Ĝn.

FIG. 1. The square grid Z2.
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We are interested in the stationary density

�s��� ª lim
n→	

�s�Ĝn� .

When �=Zd, it is known that the infinite-volume limit of
measures �=limn→	 �n exists and is translation-invariant
�17�. In this case it follows that the limit defining �s��� exists
and equals

�s = E����0�� ,

where 0�Zd is the origin. For other families of graphs we
consider, we will show that the limit defining �s��� exists.

Much is known about the limiting measure � in the case
�=Z2. The following expressions have been obtained for �s

and the single site height probabilities. The symbol =
?

denotes
expressions that are rigorous up to a conjecture �13� that a
certain integral, numerically evaluated as 0.5
10−12, is ex-
actly 1/2.

�s�Z2�=
?

17/8 �Ref. �13�� ,

����x� = 0 =
2

�2 −
4

�3 �Ref. �18�� ,

����x� = 1=
? 1

4
−

1

2�
−

2

�2 +
12

�3 �Refs. �13,19�� ,

����x� = 2=
? 3

8
+

1

�
−

12

�3 �Ref. �13��, and

����x� = 3=
? 3

8
−

1

2�
+

1

�2 +
4

�3 �Ref. �13�� .

The equality �s�Z2�=
?

17 /8 was first conjectured by Grass-
berger.

B. Fixed-energy sandpiles and the threshold density �c

Next we describe the fixed-energy sandpile model, in
which the driving and dissipation are absent, and the total
number of particles is conserved. In the mathematical and
computer science literature, this model goes by the name
parallel chip-firing �20–22�. As before, let G be a finite
graph, possibly with loops and multiple edges. Unlike the
driven-dissipative model, we do not single out any vertices
as sinks. The fixed-energy sandpile evolves in discrete time:
at each time step, all unstable vertices topple once in parallel.
Thus the configuration � j+1 at time j+1 is given by

� j+1 = � j + �
v�Uj

�v,

where

Uj = �v � V:� j�v� � dv

is the set of vertices that are unstable at time j. We say that
�0 stabilizes if toppling eventually stops, i.e., Uj =� for all
sufficiently large j.

If �0 stabilizes, then there is some site that never topples
�23� �see also ��24�, Theorem 2.8, item 4� and ��25�, Lemma
2.2� for the case when G is infinite�. Otherwise, for each site
x, let j�x� be the last time x topples. Choose a site x mini-
mizing j�x�. Then each neighbor y of x has j�y�� j�x�, so y
topples at least once at or after time j�x�. Thus x receives at
least dx additional particles and must topple again after time
j�x�, a contradiction. Note that this argument uses in a crucial
way the deterministic nature of the toppling rule. It gives a
criterion that is very useful in simulations: as soon as every
site has toppled at least once, we know that the system will
not stabilize.

Let ����v����0 be a collection of independent Poisson
point processes of intensity 1, indexed by the vertices of G.
So each ���v� has the Poisson distribution with mean �. We
define the threshold density of G as

�c�G� = Ec,

where

c = sup��:�� stabilizes .

We expect that c is tightly concentrated around its mean
when G is large. Indeed, if � is an infinite vertex-transitive
graph, then the event that �� stabilizes on � is translation-
invariant. By the ergodicity of the Poisson product measure,
this event has probability 0 or 1. Since this probability is
monotone in �, there is a �deterministic� threshold density
�c���, such that

Prob��� stabilizes on �� = �1, � � �c���
0, � � �c��� .

�
We expect the threshold densities on natural families of finite
graphs to satisfy a law of large numbers such as the follow-
ing.

Conjecture 2. With probability 1,

c�Zn
2� → �c�Z2� as n → 	 .

DMVZ believed that the combination of driving and dis-
sipation in the classical Abelian sandpile model should push
it toward the critical density �c of the fixed-energy sandpile.
This leads to a specific testable prediction, which we call the
Density Conjecture.

Conjecture 3 �Density Conjecture�.

�c = �s.

In the case of the square grid, the conjecture �c=17 /8 can
be found in �5�. Likewise, in �6�, it is asserted that “FES are
found to be critical only for a particular value �=�c �which as
we will show turns out to be identical to the stationary en-
ergy density of its driven-dissipative counterpart�.”

Previous simulations �n=160 �2�; n=1280 �3�� to estimate
the threshold density �c�Z2� found a value of 2.125, in agree-

ment with the stationary density �s�Z2�=
?

17 /8. By performing
larger-scale simulations, however, we find that �c exceeds �s.

Table II summarizes the results of our simulations refut-
ing the density conjecture on Z2. We find that �c�Z2� equals
2.125 288 to six decimal places, whereas �s�Z2� is known to
be 2.125 000 000 000 to 12 decimal places. In each random
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trial, we add particles one at a time at uniformly random sites
of the n�n torus. After each addition, we perform topplings
until either all sites are stable, or every site has toppled at
least once since the last addition. In the latter case, the sand-
pile does not stabilize. We record m /n2 as an empirical esti-
mate of the threshold density, where m is the maximum num-
ber of particles for which the configuration stabilizes. We
then average these empirical estimates over many indepen-
dent trials. The one-site marginals we report are obtained
from the stable configuration just before the �m+1�st particle
was added, and the number of topplings reported is the total
number of topplings required to stabilize the first m particles.

We used a random number generator based on the Ad-
vanced Encryption Standard �AES-256�, which has been
found to exhibit good statistical properties. Our simulations
were conducted on a high performance computing �HPC�
cluster of computers.

III. SANDPILES ON THE BRACELET

Next we examine a family of graphs for which we can
determine �c and �s exactly and prove that they are not equal.
Despite this inequality, we show that an interesting connec-
tion remains between the driven-dissipative and conservative
dynamics: the threshold density of the conservative model is
the point at which the driven-dissipative model begins to lose
a macroscopic amount of sand to the sink.

The bracelet graph Bn �Fig. 2� is a multigraph with vertex
set Zn �the n-cycle� with the usual edge set ��i , i
+1 mod n� :0� i�n doubled. Thus all vertices have degree

4. The graph B̂n is the same, except that vertex 0 is distin-
guished as a sink from which particles disappear from the
system. We denote by B	 the infinite path Z with doubled
edges.

For ��0, let �� be the configuration with Poisson���
particles independently on each site of B̂n. Let ��= ����� be
the stabilization of ��, and let

�n��� =
1

n − 1�
x=1

n−1

���x�

be the final density. The following theorem gives the thresh-
old and stationary densities of the infinite bracelet graph B	,
and identifies the n→	 limit of the final density �n��� as a
function of the initial density �.

Theorem 4. For the bracelet graph,
�1� The threshold density �c�B	� is the unique positive

root of �= 5
2 − 1

2e−2� �numerically, �c=2.496 608�.
�2� The stationary density �s�B	� is 5/2.
�3� �n���→���� in probability as n→	, where

���� = min��,
5 − e−2�

2
� = �� , � � �c

5 − e−2�

2
, � � �c.�

Part 3 of this theorem shows that the final density under-
goes a second-order phase transition at �c: the derivative of

TABLE II. Fixed-energy sandpile simulations on n�n tori Zn
2. The third column gives our empirical

estimate of the threshold density �c�Zn
2�. The next four columns give the empirical distribution of the height

of a fixed vertex in the stabilization �����, for � just below c. Each estimate of the expectation �c�Zn
2� and

of the marginals Prob�h= i� has standard deviation less than 4�10−7. The total number of topplings needed
to stabilize �� appears to scale as n3.

Grid size
�n2� No. samples �c�Zn

2�

Distribution of height h of sand

�No. topplings�/n3Prob�h=0� Prob�h=1� Prob�h=2� Prob�h=3�

642 268435456 2.124956 0.073555 0.173966 0.306447 0.446032 0.197110

1282 67108864 2.125185 0.073505 0.173866 0.306567 0.446062 0.197808

2562 16777216 2.125257 0.073488 0.173835 0.306609 0.446068 0.198789

5122 4194304 2.125279 0.073481 0.173826 0.306626 0.446067 0.200162

10242 1048576 2.125285 0.073479 0.173822 0.306633 0.446066 0.201745

20482 262144 2.125288 0.073478 0.173821 0.306635 0.446065 0.203378

40962 65536 2.125288 0.073477 0.173821 0.306637 0.446064 0.205323

81922 16384 2.125288 0.073477 0.173821 0.306638 0.446064 0.206475

163842 4096 2.125288 0.073478 0.173821 0.306638 0.446064 0.208079

Z2 �stationary� 2.125000 0.073636 0.173900 0.306291 0.446172

FIG. 2. The bracelet graph B20.
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���� is discontinuous at �=�c �Fig. 3�. Thus in spite of the
fact that �s��c, there remains a connection between the con-
servative dynamics used to define �c and the driven-
dissipative dynamics used to define �s. For ���c, very little
dissipation takes place, so the final density equals the initial
density �; for ���c a substantial amount of dissipation takes
place, many particles are lost to the sink, and the final den-
sity is strictly less than the initial density. The sandpile con-
tinues to evolve as � increases beyond �c; in particular its
density keeps changing.

We believe that this phenomenon is widespread. As evi-
dence, in Sec. V we introduce the “flower graph,” which
looks very different from the bracelet, and prove �in Theo-
rem 14� that a similar phase transition takes place there.

For the proof of Theorem 4, we compare the dynamics of
pairs of particles on the bracelet graph to single particles on
Z. At each vertex x of the bracelet, we group the particles
starting at x into pairs, with one “passive” particle left over if
���x� is odd. Since all edges in the bracelet are doubled, we
can ensure that in each toppling the two particles comprising
a pair always move to the same neighbor, and that the pas-
sive particles never move. The toppling dynamics of the
pairs are equivalent to the usual Abelian sandpile dynamics
on Z.

We recall the relevant facts about one-dimensional sand-
pile dynamics:

�i� In any recurrent configuration on a finite interval of Z,
every site has height 1, except for at most one site of height
0. Therefore, �s=1 �26�.

�ii� On Z, an initial configuration distributed according to
a nontrivial product measure with mean � stabilizes almost
surely �every site topples only finitely many times� if ��1,
while it almost surely does not stabilize �every site topples
infinitely often� if ��1 �24�. Thus, �c=1.

Proof of Theorem 4 parts 1 and 2. Given ��0, let �� be
the pair density E����x� /2�, and let

podd��� = e−� �
m�0

�2m+1

�2m + 1�!
=

1

2
�1 − e−2�� .

be the probability that a Poisson��� random variable is odd.
Then � and �� are related by

� = 2�� + podd��� . �1�

The configuration �� stabilizes on B	 if and only if the pair
configuration ��

� stabilizes on Z. Thus �c�B	��=�c�Z�. Setting
�=�c�B	� in Eq. �1�, using the fact that �c�Z�=1, and that ��

is an increasing function of ��0, we conclude that �c�B	� is
the unique positive root of

� = 2 + podd��� ,

or �= 5
2 − 1

2e−2�. This proves part 1.
For part 2, by the burning algorithm, a configuration � on

B̂n is recurrent if and only if it has at most one site with
fewer than two particles. Thus, in the uniform measure on

recurrent configurations on B̂n,

Prob���x� = 2� = Prob���x� = 3� =
1

2
−

1

2n
,

Prob���x� = 0� = Prob���x� = 1� =
1

2n
.

We conclude that �s�B̂n�=E��x�= 5
2 − 2

n → 5
2 as n→	.

To prove part 3 of Theorem 4, we use the following
lemma, whose proof is deferred to the end of this section. Let

Ẑn be the n-cycle with vertex 0 distinguished as a sink. Let

��� be a sandpile on Ẑn distributed according to a product
measure �not necessarily Poisson� of mean �. Let ��� be the
stabilization of ���, and let �n����= 1

n−1�x=1
n−1����x� be the final

density after stabilization.

Lemma 5. On Ẑn, we have �n����→min�� ,1� in probabil-
ity.

Proof of Theorem 4, part 3. Let �� be the stabilization of

�� on B̂n, and let ��
� be the stabilization of ��

� = ��� /2� on Ẑn.
Then

���x� = 2��
��x� + ���x� , �2�

where ���x�=���x�−2��
��x� is 1 or 0 accordingly as ���x� is

odd or even. Let

�n
���� =

1

n − 1�
x=1

n−1

��
��x�

be the final density after stabilization of ��
� on Ẑn. Then

�n��� = 2�n
���� +

1

n − 1�
x=1

n−1

���x� .

By the weak law of large numbers, 1
n−1�x=1

n−1���x�→podd���
in probability as n→	. If ���c, then ���1, so by Lemma
5, �n

����→�� in probability, and hence

�n��� → 2�� + podd��� = �

in probability. If ���c, then ���1, so by Lemma 5, �n
����

→1 in probability, hence

�n��� → 2 + podd��� =
5 − e−2�

2

in probability. This proves part 3. �

0 1 2 3

1

2

2.4 2.62.5
2.48

2.49

2.5

ρρ

λλ

ζc

ζcζc

ζs = 5/2

ζs = 5/2

5−e−2λ

2

5−e−2λ

2

FIG. 3. Density ���� of the final stable configuration as a func-
tion of initial density �, for the driven sandpile on the bracelet

graph B̂n as n→	. A second-order phase transition occurs at �
=�c. Beyond this transition, the density of the driven sandpile con-
tinues to increase, approaching the stationary density �s from below.
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Proof of Lemma 5. We may view Ẑn as the path in Z from
an=−�n /2� to bn= �n /2�, with both endpoints serving as sinks.

For x� Ẑn, let un�x� be the number of times that x topples

during stabilization of the configuration ��� on Ẑn. Let u	�x�
be the number of times x topples during stabilization of ���
on Z. The procedure of “toppling in nested volumes” �24�
shows that un�x�↑u	�x� as n→	.

We consider first ��1. In this case u	�x� is finite almost
surely �a.s.�. The total number of particles lost to the sinks on

Ẑn is un�an+1�+un�bn−1�, so the final density is given by

�n���� =
1

n − 1	 �
x=an+1

bn−1

���x� − un�an + 1� − un�bn − 1�� .

By the law of large numbers, 1
n−1����x�→� in probability as

n→	. Since u	�x� is a.s. finite, we have
un�an+1�+un�bn−1�

n−1 →0
in probability, so �n����→� in probability.

Next we consider ��1. In this case we have
un�x�↑u	�x�=	, a.s. Let p�n ,x�=Prob�un�x�=0� be the prob-

ability that x� Ẑn does not topple. By the Abelian property,
adding sinks cannot increase the number of topplings, so

p�n,x� � p�m,0� ,

where m=min�x−an ,bn−x�. Let

Yn = �
x=an+1

bn−1

1�un�x�=0

be the number of sites in Ẑn that do not topple. Since
un�0�↑	 a.s., we have p�n ,0�↓0, hence

E
Yn

n
=

1

n
�

x=an+1

bn−1

p�n,x� �
2

n
�
m=1

n/2

p�m,0� → 0

as n→	. Since Yn�0 it follows that Yn /n→0 in probabil-
ity.

In an interval where every site toppled, there can be at
most one empty site. We have Yn+1 such intervals. There-
fore, the number of empty sites is at most 2Yn+1. Hence

n − 2Yn − 2

n − 1
� �n���� � 1.

The left side tends to 1 in probability, which completes the
proof.

IV. SANDPILES ON THE COMPLETE GRAPH

Let Kn be the complete graph on n vertices: every pair of

distinct vertices is connected by an edge. In K̂n, one vertex is
distinguished as the sink. The maximal stable configuration

on K̂n has density n−2, while the minimal recurrent configu-
rations have exactly one vertex of each height 0 ,1 , . . . ,n
−2, hence density n−2

2 . The following result shows that the
stationary and threshold densities are quite far apart: �s is
close to the minimal recurrent density, while �c is close to the
maximal stable density.

Theorem 6.

�s�K̂n� =
n

2
+ O��n� ,

�c�Kn� � n − O��n log n� .

The proof uses an expression for the stationary density �s
in terms of the Tutte polynomial, due to Merino López �27�.
Our application will be to the complete graph, but we state
Merino López’ theorem in full generality. Let G= �V ,E� be a
connected undirected graph with n vertices and m edges. Let

v be any vertex of G, and write Ĝ for the graph G with v
distinguished as a sink. Let d be the degree of v.

Recall that the Tutte polynomial TG�x ,y� is defined by

TG�x,y� = �
A�E

�x − 1�c�A�−c�E��y − 1�c�A�+
A
−
V
,

where c�A� denotes the number of connected components of
the spanning subgraph �V ,A�.

Theorem 7 ��27��. The Tutte polynomial TG�x ,y� evalu-
ated at x=1 is given by

TG�1,y� = yd−m�
�

y
�


where the sum is over all recurrent sandpile configurations �

on Ĝ, and 
�
 denotes the number of particles in �.
Differentiating and evaluating at y=1, we obtain

� d

dy
TG�1,y��

y=1
= �

�

�d − m + 
�
� . �3�

Referring to the definition of the Tutte polynomial, we see
that TG�1,1� is the number of spanning trees of G, and that
the left side of Eq. �3� is the number of spanning unicyclic
subgraphs of G. �In evaluating TG at x=y=1, we interpret 00

as 1.� The number of recurrent configurations equals the
number of spanning trees of G, so the stationary density �s
may be expressed as

�s�Ĝ� =
1

nTG�1,1���


�
 .

Combining these expressions yields the following:
Corollary 8.

�s�Ĝ� =
1

n
�m − d +

u�G�
��G�

� ,

where ��G� is the number of spanning trees of G, and u�G�
is the number of spanning unicyclic subgraphs of G.

Note that m−d is the minimum number of particles in a
recurrent configuration, so the ratio u�G� /��G� can be inter-
preted as the average number of excess particles in a recur-
rent configuration.

Everything so far applies to general connected graphs G.
The following is specific for the complete graph.

Theorem 9 �Wright �28��. The number of spanning unicy-
clic subgraphs of Kn is
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u�Kn� = ���

8
+ o�1��nn−1/2.

Proof of Theorem 6. For K̂n we have

m − d =
n�n − 1�

2
− �n − 1� =

�n − 2��n − 1�
2

.

From Corollary 8, Theorem 9, and Cayley’s formula ��Kn�
=nn−2, we obtain

�s�K̂n� =
1

n
� �n − 2��n − 1�

2
+

u�Kn�
��Kn�

� =
n

2
+ ���

8
+ o�1���n .

On the other hand, if we let

� = n − 2�n log n

and start with ��v��Poisson��� particles at each vertex v of
Kn, then for all v

Prob���v� � n� �
1

n2 .

So

Prob���v� � n for some v� �
1

n
;

in other words, with high probability no topplings occur at
all. Thus

Prob�c�Kn� � n − 2�n log n� � 1 −
1

n

which completes the proof.
One might guess that the large gap between �s and �c is

related to the small diameter of K̂n: since the sink is adjacent
to every vertex, its effect is felt with each and every toppling.
This intuition is misleading, however, as shown by the lolli-

pop graph L̂n consisting of Kn connected to a path of length
n, with the sink at the far end of the path. Since Ln has the
same number of spanning trees and unicyclic subgraphs as
Kn, we have by Corollary 8

�s�L̂n� =
1

2n
�n�n − 1�

2
+ n

m

− 1 +
u�Ln�
��Ln�

� =
n

4
+ O��n� .

On the other hand, by first stabilizing the vertices on the
path, close to half of which end up in the sink without reach-
ing the Kn, it is easy to see that with high probability

c�Ln� �
2n

3
− O��n log n� .

V. SANDPILES ON THE FLOWER GRAPH

An interesting feature of parallel chip-firing is that further
phase transitions appear above the threshold density �c. On a
finite graph G= �V ,E�, since the time evolution is determin-
istic, the system will eventually reach a periodic orbit: for

some positive integer m, we have �t+m=�t for all sufficiently
large t. The activity density, �a, measures the proportion of
vertices that topple in an average time step,

�a��� = E� lim
t→	

1

t �s=0

t−1
1


V
 �x�V

1��s�x��dx.

The expectation E� refers to the initial state �0, which we
take to be distributed according to the Poisson product mea-
sure with mean �. Note that the limit in the definition of �a
can also be expressed as a finite average, due to the eventual
periodicity of the dynamics.

Bagnoli et al. �10� observed that �a tends to increase with
� in a sequence of flat steps punctuated by sudden jumps.
This “devil’s staircase” phenomenon is so far explained only
on the complete graph �20�: the number of flat stairs in-
creases with n, and in the n→	 limit there is a stair at each
rational number height �a= p /q.

On the cycle Zn �29� there are just two jumps: at �=1, the
activity density jumps from 0 to 1/2, and at �=2, from 1/2 to
1. For the n�n torus, simulations �10� indicate a devil’s
staircase, which is still not completely understood despite
much effort �30�.

In this section we study the “flower” graph, which was
designed with parallel chip-firing in mind: the idea is that a
graph with only short cycles should give rise to short period
orbits under the parallel chip-firing dynamics. We find that
there are four activity density jumps �Theorem 13�. In addi-
tion, we determine the stationary and threshold densities of
the flower graph, and find a second-order phase transition at
�c �Theorem 14�.

The flower graph Fn consists of a central site together
with n�1 petals �Fig. 4�. Each petal consists of two sites
connected by an edge, each connected to the central site by
an edge. Thus the central site has degree 2n, and all other
sites have degree 2. The number of sites is 2n+1. The graph

F̂n is the same, except one petal serves as sink.
Recall that we defined the density of a configuration as

the total number of particles, divided by the total number of
sites. Since the flower graph is not regular, the central site
has a different expected number of particles than the petal
sites.

Proposition 10. For parallel chip-firing on the flower

FIG. 4. The flower graph F20.
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graph Fn, every configuration has eventual period at most 3.
The proof uses the following two lemmas. First recall that

a directed graph is called Eulerian if each vertex has its in-
degree equal to its out-degree. In particular, undirected
graphs are Eulerian.

Lemma 11 ��31� Lemma 2.5�. For parallel chip firing on
an Eulerian directed graph, if the eventual period is not 1,
then after some finite time, every site x has height at most
2dx−1.

We also use an observation from �10� �see also �31�
Proposition 6.2�; it was stated and proved there for Z2, but
the same proof works for general Eulerian graphs.

Lemma 12 ��10,31��. For an Eulerian directed graph, let
two height configurations � and � be “mirror images” of
each other, that is, ��x�=2dx−1−��x� for all x. Then after
performing a parallel chip-firing update on each, the two
configurations are again mirror images of each other.

Proof of Proposition 10. Suppose at time t the model has
settled into periodic orbit, and the period is not 1. Then by
Lemma 11, at time t every petal site has height at most 3.
Say that a petal is in state ij if it has i particles at one site and
j particles at the other site �we do not distinguish between
the states ij and ji�. A priori there are ten possible petal
states, listed in Table III, where each one has two possible
successor states, depending on whether or not the central site
is stable. If a petal is in state ij, then by S�ij� we denote the
state that it is in after one time step in which the central site
does not topple, and likewise by U�ij� after one time step in
which the central site topples.

From this we see that a petal will be in state 00 only if the
central site is always stable, and consequently each site is
always stable, in which case the period is 1. Similarly, petal
state 33 only occurs if the central site is unstable each step,
in which case each site must be unstable each step, and the
period is again 1. State 03 is not a successor of any state of
these states, so it will not be a periodic petal state either.
Thus the set of allowed periodic petal states is �01, 02, 11,
12, 13, 22, 23.

If the central site is stable every other time step, then the
possible petal states are 12→02→12, 22→11→22, and
13→12→13, each of which has period 2. Then the period of

the entire configuration is 2. Thus if the period is larger than
2, the central site must be stable for at least two consecutive
time steps, or else unstable for at least two consecutive time
steps. We will label a time step S if the central site is stable
in that time step, otherwise we label it U. So, if the period is
larger than 2 we will see SS or UU in the time evolution. In
the latter case, we can study the mirror image, which will
have the same period, and for which we will see SS.

Eventually the central site must be unstable again, since
otherwise the period would be 1. Therefore, we can examine
three time steps labeled SSU. Examining the evolution of the
central site together with the petals, we see

S S U
01, 02 01 01 12

12 02 01 12

11, 22 11 11 22

13, 23 12 02 12
Whenever we have SSU, during the second and third time

steps each petal contributes at most two particles to the cen-
tral site, while the central site topples, so the central site must
again be stable. Thus SSUU cannot occur, and we see SSUS.

There are two cases for what the central site does next.
Let us first consider SSUSU.

S S U S U
01, 02 01 01 12 02 12

12 02 01 12 02 12

11, 22 11 11 22 11 22

13, 23 12 02 12 02 12
During the last two time steps, each petal contributes ex-

actly 2 particles to the central site, and the central site topples
once. Thus after two time steps not only the petals, but also
the central site is in the same state. Therefore, the period
becomes 2.

Next we consider SSUSS. At this stage each petal is in
state 01 or 11, so if there were yet another S, the sandpile
would be periodic with period 1. So we see SSUSSU, and
because SSUU is forbidden, we conclude that we see
SSUSSUS.

S S U S S U S
01, 02 01 01 12 02 01 12

12 02 01 12 02 01 12

11, 22 11 11 22 11 11 22

13, 23 12 02 12 02 01 12

At the time of the third S, each petal is in state 12 or 22.
Between the third S and the fifth S, each petal contributes
exactly two particles to the central site and returns to the
same state, while the central site topples once. Thus the con-
figuration is periodic with period 3.

We conclude from the above case analysis that the activity
�a is always one of 0, 1/3, 1/2, 2/3, or 1. Table IV summa-
rizes the behavior of the periodic sandpile states for different
values of �a.

The following theorem shows that parallel chip-firing on
the flower graph exhibits four distinct phase transitions
where the activity �a jumps in value: for each �

TABLE III. There are ten possible petal states, and each has two
possible successor states depending on whether the central site was
stable �S� or unstable �U�.

State S�state� U�state�

00 00 11

01 01 12

02 01 12

03 11 22

11 11 22

12 02 13

13 12 23

22 11 22

23 12 23

33 22 33
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� �0, 1
3 , 1

2 , 2
3 ,1, there is a nonvanishing interval of initial

densities � where �a=� asymptotically almost surely.
Theorem 13. Let �c be the unique root of 5

3 + 1
3e−3�=�, and

let �c� be the unique positive root of 10
3 − 1

3e−3�=�. �Numeri-
cally, �c=1.668 897 6. . . and �c�=3.333 318 2. . ..� With prob-
ability tending to 1 as n→	, the activity density �a of par-
allel chip-firing on the flower graph Fn is given by

�a =�
0, if 0 � � � �c

1/3, if �c � � � 2

1/2, if 2 � � � 3

2/3, if 3 � � � �c�

1 if �c� � � .
�

Proof. In a given petal, let X denote the difference modulo 3
of the number of particles on the two sites of the petal. Ob-
serve that X is unaffected by toppling. Let Z denote the num-
ber of petals for which X=0, and R denote the total number
of particles, in a given initial configuration. Using Table IV,
we can relate Z, R, and the activity �a.

When �a=0, we have less than 2n particles at the central
site, at most two particles for the Z petals of type X=0, and
exactly one particle for the other n−Z petals, so 0�R�2n
+2Z+ �n−Z�=3n+Z.

When �a=1 /3, by considering the U time step, we have
R�2n+2Z+ �n−Z�=3n+Z. By considering the preceding S
time step, we have R�2n+2Z+2�n−Z�=4n. When �a
=1 /2, by considering the U time step, we have R�4n, and
by considering the S time step, we get R�2n+4Z+4�n
−Z�=6n.

When �a=2 /3, by considering the second U step, we have
R�2n+4Z+4�n−Z�=6n. By considering the S time step,
we have R�2n+4Z+5�n−Z�=7n−Z.

When �a=1, we have R�2n+4Z+5�n−Z�=7n−Z. Since
for given n and Z, these intervals on the values of R are
disjoint, we see that the converse statements hold as well: the
values of R and Z determine the activity �a. We summarize
these bounds:

�a =�
0 if and only if 0 � R � 3n + Z

1/3 if and only if 3n + Z � R � 4n

1/2 if and only if 4n � R � 6n

2/3 if and only if 6n � R � 7n − Z

1 if and only if 7n − Z � R .
�

Everything so far holds deterministically; next we use
probability to estimate R and Z. By the weak law of large
numbers, R /n→2� and Z /n→Prob�X=0� in probability.
Thus, to complete the proof it suffices to show

Prob�X = 0� =
1

3
�1 + 2e−3�� . �4�

We can think of building the initial configuration �� by start-
ing with the empty configuration and adding particles in con-
tinuous time. Then the value of X for a single petal as par-
ticles are added is a continuous time Markov chain on the
state space �0, 
1 with transitions 0→ 
1 at rate 2, and

1→0 and 
1→ 
1 each at rate 1. Starting in state 0, after
running this chain for time � we obtain

�Prob�X = 0�,Prob�X � 0�� = �1,0�exp��	− 2 2

1 − 1
�� .

The eigenvalues of the above matrix are 0 and −3, with
corresponding left eigenvectors v1= �1,2� and v2= �1,−1�.
Since �1,0�= 1

3v1+ 2
3v2, we obtain Eq. �4�.

The following theorem describes a phase transition in the
driven sandpile dynamics on the flower graph analogous to
Theorem 4 for the bracelet graph. We remark on one inter-
esting difference between the two transitions: for ���c, the
final density ���� is increasing in � for the bracelet, and
decreasing in � for the flower graph �Fig. 5�.

For ��0, let �� be the configuration with Poisson���
particles independently on each site of F̂n. Let ��= ����� be
the stabilization of ��, and let

�n��� =
1

n − 1�
x=1

n−1

���x�

be the final density.
Theorem 14. For the flower graph with n petals, in the

limit n→	 we have
�1� The threshold density �c is the unique positive root of

�= 5
3 + 1

3e−3�.
�2� The stationary density �s is 5/3.
�3� �n���→���� in probability, where

TABLE IV. Behavior of the central site and petals as a function
of the activity �a.

Periodic sandpile states

Activity �a 0 1/3 1/2 2/3 1

Central site S S S U S U S U U U

petals 01 12 02 01 12 02 23 12 13 �22

11 22 11 11 22 11 22 11 22

00 13 12

0 1 2 3

1

2

1.6 1.7 1.8
1.65

1.66

1.67

ρρ

λλ

ζc

ζcζc

ζs = 5/3ζs = 5/3

5+e−3λ

35+e−3λ

3

FIG. 5. Density ���� of the final stable configuration as a func-

tion of initial density � on the flower graph F̂n for large n. A second-
order phase transition occurs at �=�c. Beyond this transition, the
density of the driven sandpile decreases with �. �In �1�, the curve in
this figure was correctly graphed, but mislabeled as �5+e−�� /3.�
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���� = min��,
5

3
+

1

3
e−3�� = �� , � � �c

5

3
+

1

3
e−3�, � � �c.�

Proof. Part 1 follows from Theorem 13.
For Part 2, we use the burning algorithm. In all recurrent

configurations on F̂n, the central site has either 2n−1 or 2n
−2 particles. All other sites have at most one particle, and in
each petal �except the sink� there is at least one particle. For
each petal that is not the sink, there are two possible con-
figurations with 1 particle, and one with 2 particles. Each of
these occurs with equal probability in the stationary state, so
the expected number of particles in the petals is �n−1�� 2

3 ·1
+ 1

3 ·2�= 4n
3 +O�1� as n→	. Therefore, the total density is

�s=limn→	
2n+4n/3

2n−1 +o�1�=5 /3.
For part 3, for the driven-dissipative sandpile on F̂n, we

first stabilize all the petals, then topple the center site if it is
unstable, then stabilize all the petals, and so on. For each
toppling of the center site, the sandpile loses O�1� particles
to the sink. If the center topples at least once, then each petal
will be in one of the states 11, 01, or 10, after which the
number of particles at the center site is R−n−Z+O�1�. Re-
call from the proof of Theorem 13 that R /n→2� and Z /n
→ 1

3 �1+2e−3�� in probability. Thus if ���c, then R−n+1−Z
2n

→�− 2
3 + 1

3e−3��1 in probability, so the sandpile does not
lose a macroscopic amount of sand, and �n���→� in prob-
ability.

If ���c, then the number of particles that remain after
stabilization is 2n+n+Z+O�1�. In this case, we have �n���
= 3n+Z

2n+1 +o�1�→ 5
3 + 1

3e−3� in probability.

VI. SANDPILES ON THE CAYLEY TREE

Dhar and Majumdar �14� studied the Abelian sandpile
model on the Cayley tree �also called the Bethe lattice� with

branching factor q, which has degree q+1 �Fig. 6�. Implicit
in their formulation is that they used wired boundary condi-
tions, i.e., where all the vertices of the tree at a certain large
distance from a central vertex are glued together and become
the sink. �The other common boundary condition is free
boundary conditions, where all the vertices at a certain dis-
tance from the central vertex become leaves, and one of them
becomes the sink. The issue of boundary conditions becomes
important for trees, because in any finite subgraph, a constant
fraction of vertices are on the boundary. This is in contrast to
Z2, where free and wired boundary conditions lead to the
same infinite-volume limit. See �32�.�

The finite regular wired tree Tq,n is the ball of radius n in
the infinite �q+1�-regular tree, with all leaves collapsed to a

single vertex s. In T̂q,n the vertex s serves as the sink. Maes,
Redig, and Saada �33� show that the stationary measure on

recurrent sandpiles on T̂q,n has an infinite-volume limit,
which is a measure on sandpiles on the infinite tree. Denot-
ing this measure by Probq, if h denotes the number of par-
ticles at a single site far from the boundary, then we have
�14�

Probq�h = i� =
1

�q2 − 1�qq �
m=0

i �q + 1

m
��q − 1�q+1−m.

From this formula we see that the stationary density is

�s = Eq�h� =
q + 1

2
.

For 3-regular, 4-regular, and 5-regular trees, these values are
summarized in Table V.

TABLE V. Stationary distribution of the sandpile height at a vertex of the Bethe lattice �Cayley tree�, from
Dhar and Majumdar’s formula �14�.

Tree

Eq�h�

Distribution of height h of sand

q Degree Probq�h=0� Probq�h=1� Probq�h=2� Probq�h=3� Probq�h=4�

2 3 3/2 1/12 4/12 7/12

3 4 2 2/27 2/9 1/3 10/27

4 5 5/2 81/1280 27/160 153/640 21/80 341/1280

FIG. 6. The Cayley trees �Bethe lattices� of degree d=3,4 ,5.

FEY, LEVINE, AND WILSON PHYSICAL REVIEW E 82, 031121 �2010�

031121-10



Large-scale simulations on Tq,n are rather impractical be-
cause the vast majority of vertices are near the boundary.
Consequently, each simulation run produces only a small
amount of usable data from vertices near the center.

To experimentally measure �c for the Cayley trees, we
generated large random regular graphs Gq,n, and used these
as finite approximations of the infinite Cayley tree. We used
the following procedure to generate random connected bipar-
tite multigraphs of degree q+1 on n vertices �n even�. Let
M0 be the set of edges �i , i+1� for i=1,3 ,5 , . . . ,n−1. Then
take the union of M0 with q additional i.i.d. perfect match-
ings M1 , . . . ,Mq between odd and even vertices. Each Mj is
chosen uniformly among all odd-even perfect matchings
whose union with M0 is an n-cycle.

Most vertices of Gn will not be contained in any cycle
smaller than logq n+O�1� �see e.g., �34��, so these graphs are
locally treelike. For this reason, we believe that as n→	 the
threshold density c�Gn� will be concentrated at the thresh-
old density of the infinite tree.

Since the choice of multigraph affects the estimate of �c,
we generated a new independent random multigraph for each
trial. The results for random regular graphs of degree 3, 4
and 5 are summarized in Tables VI–VIII. We find that for the
5-regular tree, the threshold density is about 2.511 rather
than 2.5, for the 4-regular tree the threshold density is very
close to but decidedly larger than 2, while for the 3-regular
tree the threshold density is extremely close to 1.5, with a
discrepancy that we were unable to measure. However, for

TABLE VI. Data for the fixed-energy sandpile on a pseudorandom 3-regular graph on n nodes. Each
estimate of E�h� has standard deviation less than 7�10−8, and each estimate of the marginals Prob�h= i� has
standard deviation less than 3�10−7. The data for E�h� appears to fit 3 /2+const /�n very well, and extrapo-
lating to n→	 it appears that E�h�→1.500 000 to six decimal places. However, apparently Prob�h=0�
→0.083 331�1 /12.

n No. samples E�h�

Distribution of height h of sand

�No. topplings�/�n log1/2 n�Prob�h=0� Prob�h=1� Prob�h=2�

1048576 2097152 1.5004315 0.0833326 0.332903 0.583764 1.263145

2097152 1048576 1.5003054 0.0833321 0.333031 0.583637 1.258046

4194304 524288 1.5002161 0.0833314 0.333121 0.583548 1.253092

8388608 262144 1.5001528 0.0833311 0.333185 0.583484 1.247642

16777216 131072 1.5001081 0.0833311 0.333230 0.583439 1.242359

33554432 65536 1.5000765 0.0833307 0.333262 0.583407 1.237317

67108864 32768 1.5000540 0.0833307 0.333285 0.583385 1.232398

134217728 16384 1.5000382 0.0833307 0.333300 0.583369 1.227548

268435456 8192 1.5000269 0.0833308 0.333311 0.583358 1.222371

536870912 4096 1.5000191 0.0833308 0.333319 0.583350 1.214431

1073741824 2048 1.5000136 0.0833307 0.333325 0.583344 1.212751

	 �stationary� 1.5 0.0833333 0.333333 0.583333

TABLE VII. Data for the fixed-energy sandpile on a pseudorandom 4-regular graph on n nodes. Each estimate of E�h� and of the
marginals Prob�h= i� has standard deviation less than 3�10−7.

n No. samples E�h�

Distribution of height h of sand

�No. topplings�/�n log1/2 n�Prob�h=0� Prob�h=1� Prob�h=2� Prob�h=3�

1048576 2097152 2.001109 0.073884 0.221887 0.333466 0.370763 0.623322

2097152 1048576 2.000853 0.073881 0.221978 0.333547 0.370593 0.618848

4194304 524288 2.000688 0.073880 0.222037 0.333599 0.370484 0.620894

8388608 262144 2.000584 0.073878 0.222075 0.333631 0.370416 0.631324

16777216 131072 2.000518 0.073877 0.222100 0.333651 0.370372 0.649328

33554432 65536 2.000477 0.073877 0.222114 0.333664 0.370345 0.670838

67108864 32768 2.000451 0.073877 0.222123 0.333673 0.370328 0.691040

134217728 16384 2.000434 0.073876 0.222130 0.333678 0.370316 0.699706

268435456 8192 2.000424 0.073876 0.222134 0.333681 0.370310 0.695065

536870912 4096 2.000417 0.073876 0.222136 0.333683 0.370305 0.684507

1073741824 2048 2.000413 0.073876 0.222138 0.333684 0.370303 0.673061

	 �stationary� 2 0.074074 0.222222 0.333333 0.370370
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the 3-regular tree there is a measurable discrepancy �about
2�10−6� in the probability that a site has no particles.

VII. SANDPILES ON THE LADDER GRAPH

The examples in previous sections suggest that the density
conjecture can fail for �at least� two distinct reasons: local
toppling invariants, and boundary effects. A toppling invari-
ant for a graph G is a function f defined on sandpile con-
figurations on G which is unchanged by performing top-
plings; that is

f��� = f�� + �x�

for any sandpile � and any column vector �x of the Laplac-
ian of G. Examples we have seen are

f��� = ��x�mod 2

where x is any vertex of the bracelet graph Bn; and

f��� = ��x1� − ��x2�mod 3,

where x1 ,x2 are the two vertices comprising any petal on the
flower graph Fn. Both of these toppling invariants are local
in the sense that they depend only on a bounded number of
vertices as n→	.

The Cayley tree has no local toppling invariants, but the
large number of sinks, comparable to the total number of
vertices, produce a large boundary effect. The density con-
jecture fails even more dramatically on the complete graph
�Theorem 6�. One might guess that this is due to the high
degree of interconnectedness, which causes boundary effects
from the sink to persist as n→	. A good candidate for a
graph G satisfying the density conjecture, then, should have

�i� no local toppling invariants,
�ii� most vertices far from the sink.
The best candidate graphs G should be essentially one-

dimensional, so that the sink is well insulated from the bulk
of the graph, keeping boundary effects to a minimum. In-

deed, the only graph known to satisfy the density conjecture
is the infinite path Z.

Járai and Lyons �15� study sandpiles on graphs of the
form G� Pn, where G is a finite connected graph and Pn is
the path of length n, with the end points serving as sinks. The
simplest such graphs that are not paths are obtained when
G= P1 has two vertices and one edge �Fig. 7�. These graphs
are a good candidate for �c=�s, for the reasons described
above. Nevertheless, we find that while �c and �s are very
close, they appear to be different.

First we calculate �s. Jarai and Lyons ��15�, Sec. 5� define
recurrent configurations as Markov chains on the state space

X = ��3,3�,�3,2�,�2,3�,�3,1�,�1,3�,�3,2�,�2,3�

describing the possible transitions from one rung of the lad-
der to the next. States �i , j� and �i , j� both represent rungs
whose left vertex has i−1 particles and whose right vertex
has j−1 particles. The distinction between states �3,2� and
�3,2� lies only in which transitions are allowed. The adja-
cency matrix describing the allowable transitions is given by

A =�
1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 0 0 0 0 1 0

1 0 0 0 0 0 1

1 0 0 0 0 1 0

1 0 0 0 0 0 1

� .

Its largest eigenvalue is 2+�3, and the corresponding left
and right eigenvectors are

u = �1 + �3,1 + �3,1 + �3,1,1,1,1� ,

TABLE VIII. Data for the fixed-energy sandpile on a pseudorandom 5-regular graph on n nodes. Each estimate of E�h� and of the
marginals Prob�h= i� has standard deviation less than 2�10−6.

n No. samples E�h�

Distribution of height h of sand

�No. topplings�/nProb�h=0� Prob�h=1� Prob�h=2� Prob�h=3� Prob�h=4�

1048576 1048576 2.512106 0.062271 0.166547 0.237230 0.264711 0.269242 1.666086

2097152 524288 2.511947 0.062269 0.166579 0.237256 0.264727 0.269169 1.666244

4194304 262144 2.511847 0.062268 0.166599 0.237272 0.264737 0.269123 1.666404

8388608 131072 2.511781 0.062267 0.166613 0.237283 0.264743 0.269093 1.666589

16777216 65536 2.511743 0.062267 0.166621 0.237289 0.264748 0.269075 1.667322

33554432 65536 2.511716 0.062267 0.166627 0.237293 0.264750 0.269063 1.668196

67108864 32768 2.511700 0.062267 0.166630 0.237296 0.264752 0.269056 1.669392

134217728 16384 2.511689 0.062267 0.166632 0.237297 0.264755 0.269050 1.671613

268435456 8192 2.511683 0.062266 0.166634 0.237299 0.264753 0.269048 1.675479

536870912 4096 2.511680 0.062267 0.166633 0.237300 0.264755 0.269045 1.677092

1073741824 2048 2.511677 0.062266 0.166634 0.237300 0.264755 0.269044 1.688093

	 �stationary� 2.5 0.063281 0.168750 0.239063 0.262500 0.266406

FIG. 7. The ladder graph.
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v = �3 + �3,1 + �3,1 + �3,1 + �3,1 + �3,1,1�T.

By the Parry formula �35�, the stationary probabilities are
given by p�i�=uivi /Z, where Z is a normalizing constant. So

p�3,3� = �1 + �3��3 + �3�/Z ,

p�2,3� = p�3,2� = �1 + �3�2/Z ,

p�1,3� = p�3,1� = �1 + �3�/Z ,

p�2,3� = p�3,2� = 1/Z ,

where

Z = �1 + �3��3 + �3� + 2�1 + �3�2 + 2�1 + �3� + 2.

Thus we find that for the ladder graph in stationarity, the
number h of particles at a site satisfies

Prob�h = 0� = − 1
2 +

�3
3 = 0.0773503 . . . ,

Prob�h = 1� = 5
4 − 7�3

12 = 0.2396370 . . . ,

Prob�h = 2� = 1
4 +

�3
4 = 0.6830127 . . . ,

�s = E�h� = 7
4 −

�3
12 = 1.60566243 . . . .

In contrast, the threshold density for ladders appears to be
about 1.6082. Table IX summarizes simulation data on finite
2�n ladders.

VIII. CONCLUSIONS

We have rigorously demonstrated that Conjecture 3 does
not hold for the Abelian sandpile model, so that the conclu-

sions of �6�, “FES are shown to exhibit an absorbing state
transition with critical properties coinciding with those of the
corresponding sandpile model,” deserve to be re-evaluated.

In some recent papers such as �36�, the DMVZ paradigm
is explicitly restricted to stochastic models. In other recent
papers �37,38� it is claimed to apply both to stochastic and
deterministic sandpiles, although these papers focus on sto-
chastic sandpiles, for the reason that deterministic sandpiles
are said to belong to a different universality class. While our
results refute the density conjecture for deterministic sand-
piles, the validity of the density conjecture for stochastic
sandpiles remains an intriguing open questio�n.

An interesting possibility for further research is to exam-
ine initial conditions other than a Poisson��� number of par-
ticles independently at each site. As Grassberger and Manna
observed �8�, the value of the FES threshold density depends
on the choice of initial condition. One might consider a more
general version of FES, namely adding independent
Poisson���−�0�� numbers of particles to a “background” con-
figuration � of density �0 already present. For example, tak-
ing � to be the deterministic configuration on Zd of 2d−2
particles everywhere, by ��25�, Prop 1.4� we obtain a thresh-
old density of �c=2d−2. Many interesting questions present
themselves: for instance, for which background does �c take
the smallest value, and for which backgrounds do we obtain
�c=�s? It would also be interesting to replicate the phase
transition for driven sandpiles �see Theorems 4 and 14� for
different backgrounds.
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TABLE IX. Data for the fixed-energy sandpile on 2�n ladder graphs. Each estimate of E�h� and of the
marginals Prob�h= i� has a standard deviation smaller than 10−5. To four decimal places, the threshold density
�c equals 1.6082, which exceeds the stationary density �s=7 /4−�3 /12=1.6057. The total number of top-
plings appears to scale as n5/2.

n No. samples E�h�

Distribution of height h of sand

�No. topplings�/n5/2Prob�h=0� Prob�h=1� Prob�h=2�

256 4194304 1.60567 0.07695 0.24043 0.68262 0.094773

512 2097152 1.60693 0.07656 0.23996 0.68349 0.095366

1024 1048576 1.60757 0.07636 0.23970 0.68393 0.095864

2048 524288 1.60788 0.07626 0.23960 0.68414 0.096316

4096 262144 1.60805 0.07621 0.23952 0.68426 0.096545

8192 131072 1.60814 0.07618 0.23950 0.68432 0.096753

16384 65536 1.60816 0.07618 0.23949 0.68434 0.097113

32768 32768 1.60818 0.07617 0.23948 0.68435 0.096944

65536 16384 1.60820 0.07616 0.23948 0.68436 0.097342

131072 8192 1.60820 0.07617 0.23946 0.68437 0.097648

262144 4096 1.60821 0.07615 0.23949 0.68436 0.096158

	 �stationary� 1.60566 0.07735 0.23964 0.68301
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