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[1] An ensemble data assimilation scheme, Error Subspace Statistical Estimation (ESSE),
is utilized to investigate the seasonal ecosystem dynamics of the Lagoon of Venice and
provide guidance on the monitoring and management of the Lagoon, combining a rich
data set with a physical-biogeochemical numerical estuary-coastal model. Novel stochastic
ecosystem modeling components are developed to represent prior uncertainties in the
Lagoon dynamics model, measurement model, and boundary forcing by rivers, open-sea
inlets, and industrial discharges. The formulation and parameters of these additive and
multiplicative stochastic error models are optimized based on data-model forecast misfits.
The sensitivity to initial and boundary conditions is quantified and analyzed. Half-decay
characteristic times are estimated for key ecosystem variables, and their spatial and
temporal variability are studied. General results of our uncertainty analyses are that
boundary forcing and internal mixing have a significant control on the Lagoon dynamics
and that data assimilation is needed to reduce prior uncertainties. The error models are
used in the ESSE scheme for ensemble uncertainty predictions and data assimilation, and
an optimal ensemble dimension is estimated. Overall, higher prior uncertainties are
predicted in the central and northern regions of the Lagoon. On the basis of the dominant
singular vectors of the ESSE ensemble, the two major northern rivers are the biggest
sources of dissolved inorganic nitrogen (DIN) uncertainty in the Lagoon. Other boundary
sources such as the southern rivers and industrial discharges can dominate uncertainty
modes on certain months. For dissolved inorganic phosphorus (DIP) and phytoplankton,
dominant modes are also linked to external boundaries, but internal dynamics effects
are more significant than those for DIN. Our posterior estimates of the seasonal
biogeochemical fields and of their uncertainties in 2001 cover the whole Lagoon. They
provide the means to describe the ecosystem and guide local environmental policies.
Specifically, our findings and results based on these fields include the temporal and spatial
variability of nutrient and plankton gradients in the Lagoon; dynamical connections among
ecosystem fields and their variability; strengths, gradients and mechanisms of the
plankton blooms in late spring, summer, and fall; reductions of uncertainties by data
assimilation and thus a quantification of data impacts and data needs; and, finally, an
assessment of the water quality in the Lagoon in light of the local environmental legislation.

Citation: Cossarini, G., P. F. J. Lermusiaux, and C. Solidoro (2009), Lagoon of Venice ecosystem: Seasonal dynamics and

environmental guidance with uncertainty analyses and error subspace data assimilation, J. Geophys. Res., 114, C06026,
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1. Introduction

1.1. Motivation

[2] Traditional data-only coastal ocean monitoring pro-
grams give a limited description of a system, since they are

made of a discrete, and usually low, number of stations,
sampled at low frequency. For example, even in regions
where important monitoring programs have been operating,
and relatively ‘‘rich’’ data sets exist, typically, monthly
snapshots of the coastal system are collected, but each
snapshot is made of a small number of observation points
[e.g., Cloern and Dufford, 2005; Testa et al., 2008].
Traditional ways to extend the observations, punctual in
time and space, to the whole monitoring region is through
geostatistic methods, such as gridding, krigging or objective
analysis [Bretherton et al., 1976; Chiles and Delfiner,
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1999]. However, such methods rely on assumptions which
are not often satisfied in the coastal ocean.
[3] A step forward is to use data assimilation (DA)

methods, which quantitatively combine ocean measurements
and prognostic models in optimal ways to estimate the
evolution of the fields and parameters of interest [Bennett,
1992; Wunsch, 1996; Malanotte-Rizzoli, 1996; Robinson et
al., 1998; Robinson and Lermusiaux, 2001; Lermusiaux et
al., 2006a]. DA enables the extrapolation in space and time of
observations while using a priori information about the
system dynamics. This a priori dynamics is summarized
within prognostic models. Commonly, DA estimates are
weighted averages of observed data and model predictions,
in which the weights depend on prior uncertainties of the
data and model. Our work is based on recent progress in
biogeochemical-ecosystem DA (section 1.1). We implement
a DA scheme, Error Subspace Statistical Estimation (ESSE)
[Lermusiaux and Robinson, 1999; Lermusiaux, 1999a,
1999b, 2006, 2007; Lermusiaux et al., 2002, 2006b], to
investigate the seasonal evolution of nutrients, plankton,
oxygen and lower trophic levels in the Lagoon of Venice,
combining a rich data set with a physical-biogeochemical
numerical model (section 2). To predict the largest uncer-

tainties, ESSE evolves an error subspace using a stochastic
ensemble approach (Appendix B). The subspace is of vari-
able size and spans and tracks the scales and processes where
the dominant errors occur. When Lagoon data become
available, they are assimilated in agreement with this error
prediction. Presently, our ESSE estimates of seasonal bio-
geochemical-ecosystem fields, boundary forcing and their
respective uncertainties lead to new descriptive and dynamics
results in the Lagoon and allow us to provide quantitative
guidance on local environmental policies.
[4] The Lagoon of Venice (Northern Adriatic Sea) is

one of the largest lagoons in the Mediterranean Sea (about
390 km2). Its average depth is of about 1 m, but its mor-
phology is characterized by large shallow areas and by a
network of deeper channels (Figure 1) including three
narrow inlets that connect the lagoon to the Adriatic Sea,
with a yearly averaged exchange of ca. 8000 m3/s [Gačić
et al., 2005]. The Lagoon physics is driven by tidal and
turbulent mixing [Dejak et al., 1998] and is strongly influ-
enced by external forcing from ocean inlets, river discharges
and atmospheric forcing [Lasserre and Marzollo, 2000;
Solidoro et al., 2004; Collavini et al., 2005]. Biologically,
the Lagoon is a highly productive system, mainly dominated
by spring and summer blooms of diatoms species [Bandelj et
al., 2008; Facca et al., 2002]. Ecosystem seasonality is
characterized by the increase of autotrophic community
activity in late winter-spring, fuelled by inorganic nutrients
delivered by river runoff and favorable light and temperature
conditions. As the season proceeds, a multivorous food web
develops with heterotrophic components and resuspended
benthic diatoms. The ecosystem productivity reaches its
maximum in summer when concentrations of dissolved
inorganic nutrients are low and production is mainly sus-
tained by recycling [Bandelj et al., 2008]. In autumn, the
productivity is limited by unfavorable light and temperature
conditions and waters rich in inorganic nutrients form due to
external inputs and accumulation after remineralization of
organic material [Solidoro et al., 2004]. High year to year
variability is, however, observed [Facca et al., 2002;
Solidoro et al., 2006] and annual ecosystem productivity
is related to climate conditions [Cossarini et al., 2008].
Seagrass and benthic macroalge, which were dominant
during the early 1980s eutrophication period, are present
now only in marginal areas [Curiel et al., 2004]. Spatially,
inner-outer and north-south gradients of nutrients and chlo-
rophyll and plankton abundance diversity are usually ob-
served [Bandelj et al., 2008] due to the uneven distribution of
nutrient loads from rivers and other discharge points along
the lagoon edge [Solidoro et al., 2004] and the complex
hydrodynamics. Nitrogen and phosphorus loads are in the
order of 4700 tN/a and 250 tP/a (see Appendix A for details).
[5] The Lagoon hosts important aquaculture and fisheries

activities which depend on the quality and productivity of
the system [Suman et al., 2005]. A recent environmental
legislation [Ministero dell’Ambiente, 1999] was introduced
to protect the Lagoon and its environment. In particular, the
legislation sets water quality targets for pollutants and
nutrients concentrations and maximum permissible loads,
underlining the need for an in depth knowledge of the spatial
and temporal variability of the trophic state of the Lagoon and
of the responses of the ecosystem to external pressures. This
was one of the motivations for our field reconstruction via

Figure 1. The Lagoon of Venice (Italy). The main nutrient
discharge points are shown: rivers (arrows), islands of
Venice and Murano, villages of Cavallino and Chioggia, and
Industrial Area of P. Marghera. The Lagoon is connected to
the Adriatic Sea through three inlets (Lido, Malamocco, and
Chioggia). The 30 sampling points (labeled by B, shallow
water sampling points) and C and M (channel sampling
points) of the monitoring network MELa1 are also shown.
Depths are in gray scale: darkest gray indicates a depth of 4 m
and more.
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ESSE which generates quantitative estimates of the Lagoon
state and of its responses and improves upon standard data
interpolation methods which do not account for ecosystem
dynamics.
[6] In this study, new stochastic models for the bio-

geochemical-ecosystem dynamics of the Lagoon are devel-
oped and their parameters optimized. The sensitivity to initial
and boundary conditions is quantified and half-decay char-
acteristic times are estimated. We find that boundary forcing
(rivers, open sea, etc) influence the Lagoon significantly and
that modeling boundary uncertainties is necessary. Focusing
on year 2001, we estimate the spatial and temporal variability
of the trophic state of the Lagoon and of its response to exter-
nal pressures, and provide guidance on monitoring and
management. Findings include: quantitative characteristic
times for phytoplankton and nutrients; relative importance
of diverse natural and anthropogenic loads at the Lagoon
boundaries and the variability of their impacts in the
Lagoon’s interior; dynamical connections among ecosystem
fields and their variations in time and space; uncertainties of
the field predictions and their monthly reductions by DA;
and, an assessment of the water quality in the Lagoon in
relation to local environmental legislation.
[7] In what follows, biogeochemical DA is overviewed

(section 1.1). The data set, the coupled biogeochemical model
and its prediction results are then described (section 2).
Sensitivity analyses on initial conditions and boundary con-
ditions are carried out and their results discussed (section 3).
As a by-product, half-decay characteristic times are estimated
for the Lagoon ecosystem dynamics. In section 4, the novel
stochastic components of the ecosystem model and of its
boundary conditions and the stochastic models of measure-
ment uncertainties are determined. These prior error models
are used in the ESSE scheme for uncertainty prediction and
data assimilation, and an optimal ensemble dimension is
estimated. The results of the assimilation are presented in
section 5. The seasonal evolution of the: (1) principal
eigenvectors of the state error covariance, (2) a posteriori
fields and their dynamical interactions, and (3) prior uncer-
tainty fields and their reduction by data assimilation, are
described and studied. In section 6, the evolution of nutrient
fields is discussed with respect to water quality targets
introduced by the environmental legislation for the Lagoon.
The conclusions and summary are given in section 7. The
model characteristics are outlined in Appendix A, the pre-
diction and assimilation components of ESSE in Appendix B
and the objective analysis scheme in Appendix C.

1.2. Overview of Recent Biogeochemical-Ecosystem
Ocean Data Assimilation

[8] Our research is based on progress made in the
assimilation of biological data in coupled physical-ecosystem
models, e.g., the report Global Ocean Ecosystem Dynamics
(GLOBEC) [2000], comprehensive review by Robinson and
Lermusiaux [2002] and special issue of Gregoire et al.
[2003]. Such assimilation is feasible because of advances in
biogeochemical-ecosystem ocean modeling as reviewed by
Hofmann and Lascara [1998] andHofmann and Friedrichs
[2002]. New ocean observing platforms and sensors can
now be utilized for biological-physical DA [Dickey, 2003].
[9] Since the early 2000s, DA for marine ecosystems has

progressed, mainly in the use of more complete data sets

and more complex models, and in the application of more
advanced DA schemes. Ensemble DA schemes and square
root filters have been utilized in idealized 1D studies [e.g.,
Eknes and Evensen, 2002; Raick et al., 2007]. More realistic
data-assimilative ecosystem simulations with simplified
Kalman filters [Hoteit et al., 2004], quasi-local Kalman
filters [Hoteit et al., 2005] and singular evolutive inter-
polated Kalman filters [Triantafyllou et al., 2003] have
been successful in the Mediterranean. In semienclosed
coastal bays such as Massachusetts Bay, real ocean data
and coupled (sub)mesoscales physical-biogeochemical
models have been combined using optimal interpolation
[Beşiktepe et al., 2003] and ensemble prediction schemes
[Lermusiaux, 2006; Lermusiaux et al., 2006a]. Physical DA
for improved ecosystem dynamics continues to be investi-
gated [e.g., Berline et al., 2007] as well as DAwith complete
biogeochemical models but with simplified 1D physics
[Magri et al., 2005]. Since biological rates and parameters
are not well known in the ocean, parameter estimation
techniques are often applied for marine biological studies
[e.g., Solidoro et al., 2003; Faugeras et al., 2004; Losa et al.,
2003, 2004; Tjiputra et al., 2007].
[10] Intensive data-assimilative ecosystem studies have

been carried out locally within focused biological sampling
programs, e.g., in the central equatorial Pacific [e.g.,Friedrichs,
2001, 2002] and western Atlantic [e.g., Spitz et al., 2001].
Such results have lead to studies on the portability of marine
biogeochemical models [Friedrichs et al., 2007]. A related
concept is that of allowing biological models to adapt and
learn from the new data [Lermusiaux et al., 2004; Tian et al.,
2004; Lermusiaux, 2007]. Because of availability of wide-
coverage remote sensing data, surface ocean color data have
been assimilated at regional, basin and global levels [Garcia-
Gorriz et al., 2003; Hemmings et al., 2003; Natvik and
Evensen, 2003; Triantafyllou et al., 2007]. Global ecosystem
modeling and geochemical DA for the Earth system are also
investigated [e.g., Ridgwell et al., 2007].

2. Data and Physical-Biogeochemical Model

2.1. Data

[11] The measurements utilized and assimilated in this
study are part of experimental observations provided by
the monitoring program MELa1, Monitoring of the Eco-
system of the Lagoon of Venice, promoted and managed
by Consorzio Venezia Nuova on behalf of Venice Local
Authority (Magistrato alle Acque). The program lasted for
three years, from 2001 to 2003, and included almost
monthly sampling campaigns in a network of 30 sampling
points that cover the whole Lagoon (Figure 1). Two of the
30 stations, named M1 and M2 in Figure 1, are located
just outside the Lagoon at the inlets of Lido and Chioggia.
The other 28 stations are named C or B, distinguishing
those located in channels from those located in shallow
water areas. The sampling activities usually took about
8 hours in two consecutive days to cover the network of
sampling points and were programmed to occur during
neap tides to minimize the error due to nonsynopticity of
the sampling [Pastres et al., 2004; Solidoro et al., 2004].
In this work we assimilate the data directly linked to the
biogeochemical dynamics of the Lagoon: concentrations
of Chlorophyll-a, dissolved inorganic nitrogen (DIN; sum
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of ammonia and nitrate) and dissolved inorganic phospho-
rus (DIP). Chlorophyll-a values were determined according
to the standard analytical procedure [Istituto de Ricerca
Sulle Acque (IRSA570.1Q59), 1990], while spectrophotomet-
ric methods of Strickland and Parsons [1972] [IRSA4010A-
Q100, 1994] were used to estimate nutrients concentrations.
Before archiving and dissemination, data were checked for
errors and anomalies, and quality certified [Solidoro et al.,
2004]. Chlorophyll data are transformed into carbon biomass
data according to Cloern et al. [1995].

2.2. Coupled Physical-Biogeochemical Model

[12] The ecosystem of the Lagoon is simulated by cou-
pled physical and biogeochemical models governing the
evolution of 13 state variables in space and time. The
formulation of this Trophic Diffusive Model (TDM) as well
as its energetics, boundary conditions and comparisons to
observations are given in Appendix A. Tidal effects over time
scales larger than days are represented by a nonisotropic and
nonhomogenous turbulent diffusion (Appendix A). The
modeled set of biogeochemical state variables includes
phytoplankton (PHY), zooplankton, nutrients (nitrate, ammonia
and phosphorus), nutrient content in detritus and sediments, and
dissolved oxygen (see Table A1 and FigureA1 inAppendixA).
These variables can mimic essential features of the seasonal
cycles of nitrogen and phosphorus, while limiting complex-
ity. Since the water quality legislation focuses on nitrogen,
our focus here is on DIN even though the model reproduces
nitrate and ammonium dynamics separately as they affect
oxygen dynamics in different processes. The biogeochemical
model is forced by river inflows, meteorological fluxes and
solar irradiance. For numerics, a finite difference scheme
(Euler forward scheme for biogeochemical equations and
9 points Laasonen implicit scheme for transport equations) is
used. The Lagoon is discretized into a regular grid of 300m�
300 m in the horizontal (x, y) and a variable number of 1 m
thick layers in the vertical (z). The integration time step is
1 hour, so that diel processes are resolved.
[13] The model, developed by a number of researchers

working on the Lagoon of Venice in the last 15 years, has
been utilized for several applications and process studies (see

Solidoro et al. [2005b] for a review). It has been calibrated
and evaluated against different data sets and shown to be able
to reproduce the timing and magnitude of the phytoplankton
evolution and the spatial patterns and gradients of nutrients
concentrations [Pastres et al., 2005; Solidoro et al., 2005a;
Cossarini et al., 2008]. Details on model formulation are
summarized in Appendix A.

2.3. Model Hindcasts

[14] The coupled model hindcast estimate for DIN in the
surface (0–1 m) layer (Figure 2a) illustrates the general
spatial patterns of nutrients in the Lagoon at the end of one
month (May 2001) simulation. Highest values of DIN are
estimated to occur: (1) in the northern part of the Lagoon
close to the Dese and Silone rivers; (2) in the central region
which receives inputs from the industrial area of P.Marghera;
and (3), near other significant rivers like Nav.Brenta and
Lusore. Spotty high-nutrient-concentration areas are also
simulated in the southern basin next to the southern tributar-
ies. The lowest concentrations are near the Lagoon inlets, in
response to exchanges with the Adriatic Sea that dilute
nutrients in the Lagoon. While the general spatial patterns
remain similar throughout the whole year in 2001, the
strength of the gradients varies greatly as a function of the
intensity of inputs and biological dynamics. For example, in
July, due to the lower inputs and enhanced phytoplankton
uptakes, the DIN concentrations decrease faster as the dis-
tance from the sources increases (Figure 2b). Phytoplankton,
whose bloom is estimated to last from May to September,
shows spatial pattern well correlated to those of nutrients as
expected for estuarine systems [e.g., Cloern, 2001]. During
July (Figure 2c), the highest levels of phytoplankton are
estimated to occur in the region bounded offshore by Venice
and Murano islands, and inshore by land where both nutrient
concentrations and residence time are high.
[15] The model, which was calibrated for historical 1998

data [Solidoro et al., 2005a] reproduces the main spatial
patterns in the lagoon and is also able to capture several of
the actual observation values (circles overlaid on the maps)
in large parts of the lagoon. However, some discrepancies
occur in specific areas, because of uncertainties in the model

Figure 2. Model forecast of (a) May and (b) July 2001 for DIN and of (c) July 2001 for phytoplankton.
Raw observation data are shown by the overlaid circles.

C06026 COSSARINI ET AL.: LAGOON OF VENICE ECOSYSTEM, ESSE

4 of 29

C06026



formulation but more significantly due to errors in the prior
estimates of the boundary conditions and forcing. For
example, the region that receives inputs from the industrial
area of P.Marghera shows the largest discrepancy (about
50%) between simulated and real DIN data for both months
shown. Data assimilation is intended to solve these discrep-
ancies. The goal is to obtain optimal estimates of nutrient
and plankton fields for the entire Lagoon, correcting the
initial and boundary conditions of the model as well as
reducing effects of model uncertainties.

3. Sensitivity of the Ecosystem to Initial
Conditions and Boundary Forcing Uncertainties

3.1. Initial and Boundary Prior Uncertainties

[16] There are several factors that affect the uncertainty
in coastal predictions. The present ESSE methodology
[Lermusiaux, 2006] aims to identify the dominant ones.
The first factor is the initial uncertainty which is repre-
sented in ESSE by the sum of the dominant initial error
covariance and of random errors. The other factors are:
errors and simplifications in the model formulation itself
and uncertainties in the model parameters and in the
boundary conditions. These other factors contribute to
errors during the time integration of the model. In general,
the relative importance of the initial and of these other
sources of uncertainties is a function of the duration of the
prediction, of the internal dynamics and of the effects of
boundary forcing.
[17] In the MELa1 monitoring program, the nutrient and

phytoplankton data to be assimilated are measured over a
2 day period, once every month. Since this monthly data
interval is not negligible when compared to the seasonal
time scale, the relative importance of initial condition errors
to that of during-the-integration errors is evaluated using
sensitivity studies. Specifically, the questions are: by how
much and for how long is the model output trajectory
affected by the initial state of the system?, or as a corollary,
when do the uncertain model dynamics, parameter and
boundary forcing become predominant? The results are also
useful to asses the expected impact of the assimilation of the
monthly data in the Lagoon system.
[18] The sensitivity study is a numerical ensemble exper-

iment. An ensemble of 100 initial conditions (ICs) is first

derived from a reference spin up solution to which white-in-
space pseudorandom noise are added. This is done using

IC x; y; z; varð Þj¼ IC x; y; z; varð Þ � 1þ wj

� �
for j ¼ 1::100 ð1Þ

where the ICs are 3D fields of the initial state variables, w
is a N(0,0.3) pseudorandom number [Press et al., 1992].
Experimental data on daily variability (not shown) gave a
mean coefficient of variation of 30% which is used as
nondimensional noise standard deviation for the three state
variables. These 100 runs are forced by the same driving
functions and boundary conditions, and the evolution of the
variance of the ensemble is computed for all model grid
points. Twelve ensemble experiments are performed, one of
each month. For each of them, the initial time is at the date
of the MELa1 survey campaigns and the end time, the sub-
sequent survey date. These monthly experiments allow
investigating impacts of initialization uncertainties during
different periods of the year, when different processes and
driving forces are dominant.
[19] The evolution of the ensemble variances for three

characteristic points (B01, B13 and B05 in Figure 1) are
plotted in Figure 3, for phytoplankton, DIN and DIP. The
three points are representative of a point close to the dis-
charges of a river, to a Lagoon inlet and to the middle of the
Lagoon basin, respectively. For each day, the ensemble
variance plotted is relative to the variance at the starting
time, in percentage. The 12 monthly sensitivity experiments
are reported jointly, the vertical dotted lines indicate the start
time of each ensemble run.
[20] From the plots in Figure 3b, the DIN variance

decreased exponentially for all months and for each of the
3 points: after one month, the variance of the ensemble is
about a fourth of its initial value. The same behavior is seen
for DIP (Figure 3c), excepted for September, October and
to a lesser extent also April, where the variance of the
ensemble increases above the starting value before it
decays. During these months and locally, in reduced mixing
areas, the combination of low concentrations and active
internal sources can lead to concentrations that become
relatively much larger than their initial value (hence the
peaks in Figure 3) even though in absolute terms they
remain small.

Figure 3. Evolution of the variance of the ensemble of runs for (a) phytoplankton, (b) DIN, and (c) DIP.
For each month, the variance shown is a percentage relative to the variance of the latest analysis (on the
first of the month, shown by open squares, this percentage is always 100). Each plot reports three curves,
respectively, for three points of the Lagoon, namely the sampling points B01 (P1), B05 (P2), and B13
(P3).
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[21] For phytoplankton (Figure 3a), the analysis can be
separated among the biological active months, from April to
September, and the other months (winter and fall) during
which phytoplankton concentrations are small [Solidoro et
al., 2005a]. During the active months, phytoplankton var-
iances increase in the first few days, and then mostly
decrease exponentially, even though significant fluctuations
occur. For the other months, the variance does not always
decay, but concentrations are not significant.
[22] The evolution of the variance at the three points is

similar but depends on the relative proximity to the bound-

aries. Spatial variability is investigated in Figure 4 which
shows maps of the relative variance of the ensemble after 5,
10, 15 and 20 days since the start of each monthly ensemble
simulations. For practicality, the variance is averaged over
the 12 ensembles, leading to maps of the mean relative evo-
lution for each variable. Effects of the boundaries (Lagoon
inlets and discharge points) are clearly visible: they force the
evolutions of the ensemble members to the fixed values of
the BCs. In fact, the areas close to them are those where the
variance decays the fastest while marginal areas, such as the
marshes in the northern and southwestern regions, are less

Figure 4. Spatial distribution of the relative ensemble variance for (a) phytoplankton, (b) DIN, and
(c) DIP (percentages of the starting variance). The maps are refereed to the 5th, 10th, and 15th day after
each analysis, and the values shown are averages of the 12 monthly maps.
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affected by the constraint of the boundaries. Phytoplankton
variance (Figure 4a) increases at the beginning of the run,
because of the nonlinearity of growth processes, and after-
ward decreases as consequence of the dilution effects by the
boundary constraints, starting from the Chioggia inlet and
progressively from the other two inlets. Areas of low hydro-
dynamic energy, such as the northern basin and western part,
sustain the highest variances in the maps. Note that if we
consider only the April-to-September period when Phyto-
plankton is significant, the relative variance decrease is
almost the same (about 10–15% faster). DIN is the variable
that shows the quickest decay (Figure 4b): after just 10 days,
the variance is half that of its initial value in most of the
Lagoon. The inlets and major discharge points (Silone, Dese,
Nov.Brenta and Nav.Brenta) decrease the initial variance and
thus constrain the model forecast. The DIP variance maps
(Figure 4c) are also constrained by boundaries, but in coastal
areas in the southern basin, the DIP variance increase is large
relatively, again due to low initial concentrations (as for
September and October in Figure 3c).
[23] The results of the analysis suggest that the system on

average forgets about 75% of the initial state variability
after one month. Therefore, after one month of evolution,
the system is significantly controlled by boundary condi-
tions and internal dynamics, e.g., mixing. This is sensible
since the Lagoon has a relatively high surface to volume
ratio, almost 1/3 of the water volume is exchanged at each
tide cycle, and the nutrient discharges from human and
natural sources are dominant [Zonta et al., 2005].
[24] Several DA schemes that forecast error covariances

only perturb the initial state and propagate an ensemble of
trajectories from the ensemble of initial states [Eknes and
Evensen, 2002; Natvik and Evensen, 2003]. The conclusion
of our sensitivity analysis applied to the Venice model is
that stressors limit the influence of the initial state and its
perturbations. Thus accurate models of the uncertainties that
occur during the time integration [Auclair et al., 2003;
Lermusiaux et al., 2006b] are also needed, especially for
the boundary conditions (see section 4).

3.2. Half-Decay Characteristic Times

[25] It is of interest to quantify a time scale by which ICs
are forgotten, i.e., the time by which the system trajectory is
dominated by internal dynamics, driving forces and bound-
ary conditions. This is done by computing the half-decay
time, i.e., the time t (day) by which the variance of the
initial state ensemble is halved, at each grid point. Results
are shown in Figure 5 for phytoplankton (Figure 5a), DIN
(Figure 5b) and DIP (Figure 5c). For phytoplankton and
DIN, inlets and rivers inputs were found to have a strong
influence (Figure 4) and Figures 5a and 5b show that the
half-decay time for these variables is less than 10 days in the
central and southern Lagoon. For DIN (Figure 5b), it is also
less than 8 days in a large zone of the northern subbasin
close to the P.Marghera and to the rivers Silone and Dese. In
that region, phytoplankton (Figure 5a) is less sensitive to
river inputs (nutrient concentrations are quite high and no
limiting effects are thus observed), consequently t is around
14 days. Values of t up to 16 days for DIN and phyto-
plankton are found in marginal areas of the Lagoon (north-
ernmost and westernmost parts) which are characterized by
very low eddy turbulence coefficients and by multiple
islands. Averaging over the whole Lagoon, the mean t is
respectively 13 and 12 days for phytoplankton and DIN.
[26] For DIP, the mean value of t is 17 days (Figure 5c):

DIP in the Lagoon depends on its ICs for a longer duration
than for the other two variables. This is because DIP is less
sensitive to mixing processes and more sensitive to internal
biogeochemical dynamics (as recycling, consumption, as-
similation and releasing) than DIN. On average, t for DIP is
less than 12 days only in the areas close to the inlets and the
P.Marghera and Nav.Brenta rivers. Excluding September and
October from the analysis, the mean value of t decreases to
15 days, confirming that these two months are characterized
by processes of longer time scales.
[27] We find that our fields of coupled physics-biology

half-decay times agree with physical residence times com-
puted by Zirino [2005] and Cucco and Umgiesser [2006].
Many local ecosystem half-decay times are found smaller

Figure 5. (a) PHY, (b) DIN, and (c) DIP. Maps of the time at which the variability of the ensemble is
halved with respect to the starting value at the analysis time (first of each month). The values shown are
averages of the 12 monthly maps.
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than the 1-month interval between two consecutive MELa1
surveys. At those locations, after one month, initial con-
ditions are less important than boundary conditions (open
ocean, rivers and wind forcing) in driving the ecosystem
dynamics. This is found for the whole lagoon, excepted for
its northernmost region which is the furthest from lateral
boundaries and where internal nonlinear biological dynam-
ics are strong. Since boundary conditions are not well
known, after one month the variance of the model solution
due to boundary uncertainties could be significant. Bound-
ary uncertainties have to be accounted for to obtain a proper
forecast of total error statistics. The covariances of these
total uncertainties are the main input to the assimilation step
(Appendix B). They must be accurate enough to allow the
survey data to correct the model solution and its parameters
adequately.

4. Novel Stochastic Ecosystem Model, Boundary
Forcing, and Measurement Model

[28] Our modeling includes the Lagoon-specific stochas-
tic models that represent the dominant prior uncertainties in
the physical/biogeochemical model of the Lagoon and its
external forcing. This novel stochastic formulation of the
ecosystemmodel including stochastic boundary conditions is
presented and discussed next (section 4.1). These uncertainty
models are then utilized in a sensitivity analysis on the
dimension of the ensemble of forecasts required for suffi-
ciently accurate error covariance estimates (section 4.2).
Finally, the results of the formulation and tuning of the
measurement uncertainties are summarized (section 4.3).

4.1. Stochastic Formulation of the Ecosystem Model
and Boundary Forcing

[29] Each member of the ensemble is now generated by
integrating a new stochastic model. The stochastic differen-
tial equations are obtained by forcing the deterministic TDM
model and its boundary conditions (Appendix A1) with
random noise components that represent the expected statis-
tics of these model and boundary errors.

dCi ¼ M C; tð Þ þ dhi ð2Þ

Ci t ¼ 0ð Þ ¼ C0 ð3Þ

Cijx¼inlet ¼ C þ ei ð4Þ

Cijx¼river ¼ FC þ ui ð5Þ

where h, n and e are general colored error noises added to
model and boundary conditions whose probability distribu-
tion is fitted in this section. For the TDM model, an internal
model random noise is added at each time step and each
grid point of the model domain. This error model accounts
for the uncertainty in model equations and prior parameters
(kept fixed at the values used by Solidoro et al. [2005a]).
The boundary conditions are the inputs of nutrients from the
river and urban discharges (equation (5)) and the exchange
fluxes at the Lagoon-Adriatic Sea inlets (equation (4)). For

the exchanges at the Lagoon-Adriatic Sea boundaries (three
inlets), a random noise (e) is added to the reference daily
evolution of concentrations of nutrients, phytoplankton and
zooplankton (Appendix A4 describes the formulation of this
boundary condition and computation of the reference evo-
lution). Then, a random error (u) is added to each reference
evolution of the daily discharges (Fc) of nitrogen and
phosphorus at the rivers or urban discharge points. The
daily discharges are computed from monthly or annual data
(Appendix A4 and Table A2), using a formulation that
depends on the daily rain and typology of the source (see
Appendix A4 for details).
[30] The formulation of prior error models is a critical

step in the assimilation scheme. For example, if the data
uncertainties are small enough, the statistics of the predicted
total uncertainty should be comparable to those of the
model-observation misfits. In general, forecast errors and
observed errors should be compatible. To tune the model
and boundary uncertainty parameters, test simulations were
carried out. Two factors were found to be most important:
the standard deviation (amplitude) of the random noise and
their temporal and spatial correlation. Findings are reported
based on a subset (Table 1) of these tests.
[31] The first two simulation cases (named M30 and M60)

are forced by independent white random noise. Random
forcing is added to the model equations (DIN, DIP, phyto-
plankton, zooplankton and detritus fields) at each time step
and each grid point of the domain, with normal distribution of
zero mean and normalized standard deviations equal to 5%
for M30 and 10% for M60. At each boundary (i.e., inlets and
nutrient discharges), white random noise is also added at each
time step, with standard deviation equal to 30% for the M30
case and 60% for M60. In the next two test cases (M30A and
M60A), the error model for the dynamical TDM is that of the
M30 and M60 settings, but the boundary error model is
different. The random error noise at the boundaries is
assumed to be correlated in time. In practice, for each state
variable and each boundary location, a single perturbation is
added to the whole evolution of the boundary. Finally, the last
two representative test cases, M30B and M60B, differ from
M30A and M60A because the random noise added to the
model fields is correlated in space, taking the form of a
random patchy field. To obtain such a field, a number of
points (30–50 points) of the domain are randomly chosen
using uniform probability at each time step. A patchy error
noise is then added in the surrounding (see Table 1, M30B
and M60B under Internal Modem Error, where dist is the
distance between one of the chosen points and its sur-
rounding (x, y), and d0 is a decay distance in the
horizontal, set to 1 km). The random noise on boundaries
is as in M30A and M60A.
[32] To limit computational costs (an ensemble of 300 runs

of 30 days long lasts about 17 h on a Linux AMD opteron64
(2.0 GhZ)workstation), simulation tests were performed for a
single month. The month of June was chosen because it is
representative of conditions observed for part of the year. The
June nutrient fields show significant gradients due to impor-
tant late-spring input and the phytoplankton field is charac-
terized by the condition of an already started bloom. For each
case, an ensemble of 300 simulations is run from May to the
MELa sampling date of June. The May ICs, common to all
tests, are a spin off solution from the reference hindcast. At
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the date of the MELa sampling, for each test, we compute the
standard deviation of the ensemble of runs and the misfit
between the observations and the mean of the ensemble.
Results are discussed next.
[33] First, we compare in Figure 6 the median of the

model-observation misfit distribution for the 30 MELa1
points (horizontal dashed line in Figure 6) with the distribu-
tion of the standard deviation values of the six representa-
tive cases (box plots in Figure 6). For each of the 30 MELa
points, the misfit is the absolute difference between the
values of observations and the mean of the 300 runs of each
ensemble for PHY, DIN and DIP. Similarly, for each of the
30 data locations, the standard deviation of the 300 runs is
computed and the distribution among the 30 points is
described by the box plots. The first two cases, M30 and
M60, have a model uncertainty too low when compared to
the model-observation misfit. This is because the noise
added to the model fields is uncorrelated in space: they are
quickly smoothed and dissipated by diffusion transport
processes, both in the interior and near boundaries. A
significant increase in uncertainty is obtained by the ‘‘A’’
setting. Introducing a temporal correlation on the bound-
ary random noise causes a larger dispersion of runs within
ensembles. Between the two ‘‘A’’ settings, M60A allows
for a substantial increment of the forecast error: it appears
satisfactory for DIN, but it is still not enough for PHY and
DIP. The use of patchy random perturbations in the B
settings improves the PHY fit (PHY is often observed to
have a patchy variability). Comparing M30B to M60B, the
choice of stM and stdBC equal to 10% and 60% (M60B)
gives the better compatibility between the data-model
misfits and the model and boundary error models, for all
three variables.
[34] When compared to the A cases (noise with no

correlations in space), the patchy perturbation of the B cases
causes larger local divergence of solutions within short times.
Any two simulations in the B ensembles can thus differ
significantly, especially where the eddy diffusivities are small
in the Lagoon. This effect is more evident in the phytoplank-
ton fields than in nutrients since the spatial dynamics of DIP
and DIN are affected more by the uncertainties added to the
discharges.
[35] Secondly, the set of maps in Figure 7 compares the

standard deviations of the ESSE predictions of forecast errors
of DIN for the six error cases of Table 1. The misfits at the
30 MELa data points (solid dots) are also overlaid on each of
the standard deviation maps, to allow direct evaluations. The
central area and the area north of Venice (Figure 7) show the
highest model-observation misfit. These areas are critical for
our uncertainty model (also true for other variables, not
shown). In fact, they exhibit the highest observed variabilities
[Solidoro et al., 2004]. This is because they are influenced by
the strongest input sources with their own intrinsic variabil-
ity, and because they are characterized by low bathymetry
and high residence times [Solidoro et al., 2004; Cucco and
Umgiesser, 2006]. As a result, the variability of the internal
biological dynamics is important and the absolute data-model
misfit is the largest in these areas (note that relative data-
model misfits normalized by the local variability are more
uniform in space). Comparing the maps of the different
test cases confirms that the M60B setting leads to model-
predicted error statistics most compatible with the data-T
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model misfits. They do not match well only in very few
marginal areas close to discharge point sources (e.g., like in
P.Marghera) whose discharges are poorly known.
[36] In conclusion, the case M60B is chosen as best error

model. For verification, it is run for each of the 12 monthly
assimilation periods. For each month, an ensemble of 300
simulations is run for one month, from one sampling date to
the next. At the time of assimilation events we again compare
the model-data misfit (distance between tick black line and
stars in Figure 8), and the model forecast error (length of the
vertical bars in Figure 8). The requirement of strict compat-
ibility between predicted error and data-model misfit is
fulfilled for all variables, but for PHY in August and
September, and DIP in May, November and December,
and to a less extent in April. This condition is sufficient
since for these months, some ensemble members in M60B
have very small data-model misfits.

4.2. Ensemble Size Requirements

[37] Before the assimilation studies, sensitivity analyses
were carried out to determine the mean size of the ensemble
for which the error covariance estimate converges. To do so,

we use the similarity coefficient r ¼
Pminð~p;pÞ

i¼1
si P

1=2ET ~E~P
1=2

� �
Pminð~p;pÞ

i¼1
sið~PÞ

,

see Lermusiaux [1999b] and Appendix B for definitions.
This coefficient assesses when newmembers in the ensemble
do not significantly change the dominant eigendecomposi-
tion of the error covariance. It was found that when r is larger
than about 95–98%, the variance and structure of new
forecast members can be well explained by the eigenvectors
and eigenvalues of the previous ensemble. Results are
reported in Figure 9, where the ticks of the x axis denote
the size of the previous and current error subspace estimates
(see numbers in square brackets beside the plot markers). The
chosen criterion limit of 97% is depicted by the horizontal
dotted line. Convergence of the error subspace is estimated to
occur with 180 runs for DIN for all of the monthly simu-
lations and with 220 runs for DIP and phytoplankton. These
last two variables have spatial dynamics more complex than
that of DIN and a larger number of runs is required to
constrain the error subspace. Further, a slight time variation
in the behavior of the similarity coefficient is noticed for

phytoplankton. In fact, spring bloom months (March, May
and June) converge more slowly than for other seasons,
which is due to the active dynamics during this period. No
temporal pattern is clear for the DIN and DIP similarity
coefficients. In conclusion, since there are no real-time
constraints, a common large dimension of the ensemble is
utilized for all monthly experiments and for all variables:
the assimilation studies are performed using an ensemble of
220 runs.

4.3. Stochastic Formulation of the Measurement Model

[38] A stochastic measurement model is not trivial since
its error models account for several sources of uncertainties,
including: sensor errors, errors y�	 H(x̂(	)) in the measure-
ment model itself (e.g., due to variables conversions), and
errors of representativeness (e.g., inadequacies of the sam-
pling for the processes studied). In our model, standard error
deviations are modeled as the sum of additive and multipli-
cative errors. Specifically, inserting all observations into a
vector yo, the error standard deviation of eachmeasurement is
defined as

eobs ¼ cobs þay
 ð6Þ

where: cobs is a background data error vector of elements set
to 0.025, 0.025 and 0.005 mg/l for phytoplankton, DIN and
DIP, respectively; and, a is a scalar coefficient that multiplies
the data value for modeling proportional data errors. As a
whole, the vector eobs in (7) is the diagonal of the mea-
surement error covariance matrix R (see Appendix B2). The
off-diagonal elements of R are here assumed null.
[39] In many applications, data error is set based on

experience; only a few studies investigated effects of the
data error on the DA results [e.g.,Natvik and Evensen, 2003].
Here, we tested different values of cobs and a for each
observation type and evaluated their effects on a posteriori
fields. Data assimilation tests witha set to 0%, 1%, 5%, 10%,
20% and 50% were carried out for each month (plots not
shown). The results are that for a at 50% or higher, correc-
tions are too small, and that for a at 1% or smaller, they are
too strong and too localized. The magnitude of the state
correction (posterior innovation vector) was then compared
to the forecast error for the M60B case (section 4.1). This
comparison was done for each month, for a set of values for

Figure 6. Median of the model-observation misfit for the 30 MELa points (dashed line) and distribution
of the model prediction of the error in (a) PHY, (b) DIN, and (c) DIP for the six experiments. The box
plots report the median, interquartile range (IRQ), and min-max range of the distribution of the standard
deviation of the six ensemble tests.
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Figure 7. Maps of the ESSE predictions of the forecast error (standard deviation of the ensemble),
overlaid with the misfits (colored solid dots) between the model predictions and the observations at the
30 MELa points, for DIN (mg/l) for the six experiments listed in Table 1. Dots and maps use the same
color scale.
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a and cobs. In order to filter the data noise and errors of
representativeness (e.g., data points that are close but with
significantly different data values), a value of a = 10% and
the above mentioned values of cobs were selected.

5. Ecosystem Fields, Dominant Uncertainty
Decomposition, and Their Seasonal Dynamics

[40] The main results of the 12 assimilation experiments
(one for each of the monthly MELa1 surveys) are presented
next. ESSE provides an optimal estimate of the state variable
fields and covariances (Appendix B) and thus allows the
investigation of the ecosystem dynamics. The results of the
dominant decompositions of covariance matrices are first
shown in section 5.1. These dominant eigenvectors describe
the scales and patterns where dominant uncertain variability
occurs in the system, e.g., the most energetic spatial patterns
of the lagoon ecosystem. In section 5.2, the posterior eco-
system fields, i.e., the optimal combination of the observa-
tions with model fields, are presented and discussed. In
section 5.3, the uncertainty estimates for these fields and
their reduction by data assimilation are examined. Our study
of the seasonal evolution of the dominant modes of variabil-
ity (eigenvectors) and of the posterior ecosystem fields and

their uncertainties leads to new quantitative understanding of
the seasonal evolution of the trophic state of the system.

5.1. Seasonal Evolution of Ecosystem ESSE
Eigenvectors and Their Comparisons to Data

[41] The 12 first eigenvectors of DIN, one for each of the
monthly assimilation events, (Figure 10a) explain more than
30% of the total variance of DIN in all months. The explained
variance is the largest during late winter and spring months
(39.8% in June) and minimum in summer (29.0% in July)
when the variability is spanned in a higher number of
eigenvectors and field gradients are less pronounced (see
section 5.2). The first eigenvectors describe a typical spatial
pattern that is associated with the influence of the discharges
from the Dese and Silone rivers, in all months. These two
rivers accounts for more than 40% of the annual runoff of the
drainage basin [Zuliani et al., 2005] and, since they are
natural systems, they are sensitive to effects of meteoclimatic
variability [Zonta et al., 2005]. As a result, their uncertain
variability has a great influence in the dynamics and vari-
ability of a large part of the northern basin of the lagoon.
[42] The second eigenvectors (Figure 10b) account for

from 12% (in January) to 23% (in December) of the total
variance. They are associated to different areas according to

Figure 8. Comparison between monthly mean evolution of observations (thick black line) and monthly
mean model evolutions (asterisks) for (a) PHY, (b) DIN, and (c) DIP. Vertical lines show the mean model
forecast errors for the M60B setting. Model means are computed at the data points only.

Figure 9. Evolution of the similarity coefficient r for (a) phytoplankton, (b) DIN, and (c) DIP as a
function of the size of the ensemble. Twelve plots, one of each month, are reported together with the
criterion limit of 97% (horizontal dotted line). The pairs beside the markers denote the respective size of
the previous and new estimates.
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local dominant processes at the different months. A common
feature to most second eigenvectors is that the northernmost
part of the lagoon (blue area in the maps) is either decoupled
from or in opposition with the local sources of nutrient. In
fact, nutrient discharges from the rivers Dese and Silone are
mainly driven toward the south by the net effect of channels
that converge into the Lido inlets, leaving the northernmost
part relatively isolated from the variability of those rivers.
Other features of the second eigenvectors identify areas
characterized by high uncertainty located near the discharge
points of other rivers different than the two biggest ones. The

importance of the discharges from the industrial area of Porto
Marghera and Nav.Brenta is shown in the maps of May, June,
August, September and October. The maps of January and
July highlight the relevance of the discharges from the rivers
located in the southern part of the lagoon, while effects of
northern rivers other than Dese and Silone are depicted in the
remaining maps.
[43] An Empirical Orthogonal Function (EOF) analysis

has been applied to DIN data of 2001. It shows that the most
energetic spatial patterns can be described by the first three
eigenvectors (Figure 11) that account together for more than

Figure 10. Maps of the (a) first and (b) second eigenvector for each monthly assimilation event for
DIN. The variance explained by the eigenvector is reported in square brackets.
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of the 70% of the total variance, indicative of a red spectrum
in space. The areas close to the rivers and inlets are those
characterized by the highest variability. In particular, the
patterns shown by eigenvectors identify the areas linked to the
stations located in the central and southern part of the Lagoon
close to Malamocco and Chioggia inlets (1st eigenvector,
which correspond to the mean gradient). The variability from
this mean gradient corresponds to stations near the Dese and
Silone rivers (2nd eigenvector) and to stations located close to
the industrial area of P.Marghera (2nd and 3rd eigenvectors).
This agrees with the ESSE results which identify dominant
variability from the mean gradient and importantly cover
model points everywhere (including near rivers not sampled
in the MELa network in 2001). It is worth noting that the
EOFs also show that the northernmost part of the Lagoon is
essentially decoupled from the patterns linked to the northern
rivers. The results of the ESSE and EOFs analyses onDIP and
phytoplankton (not shown) confirm that most of the variance
of the system is linked to impacts of external boundaries
(inlets, two rivers Dese and Silone, and industrial area of
P.Marghera). However, for DIP and phytoplankton (only for
the active months), internal dynamics is found to be more
significant in the dominant ESSE uncertainty modes and data
EOFs than for DIN.

5.2. Seasonal Evolution of Ecosystem Fields

[44] The results of the DA sequence analysis are showed
in Figures 12, 13 and 14, reporting the ESSE maps of the ‘‘a
posteriori’’ fields for phytoplankton, DIN and DIP, respec-
tively. Each map shows also the observations (overlaid
colored circles) used to correct the ‘‘a priori’’ model
predictions. Since the dynamics and observations have been
quantitatively integrated by the ESSE assimilation scheme,
the sequence of maps allows an optimal study of the evolu-
tion of the trophic state of the ecosystem across the Lagoon
and its seasons. The measured values at data points and the
posterior fields compare well (in part because all errors were
tuned, see sections 3 and 4), but importantly, the field
estimates cover the whole basin which allow dynamical
studies.
5.2.1. Phytoplankton Biomass
[45] The seasonal evolution of phytoplankton (Figure 12)

is forced by the annual cycles of temperature and light
availability. The sequence of maps shows very low concen-
tration during fall and winter and a bloom that starts in May
and lasts until September. As light and temperature condi-

tions become favorable (inMay 2001), the bloom is driven by
the availability of nutrients discharged by rivers: we com-
puted a significant correlation between spring maps of
phytoplankton concentration and DIN (0.788 and 0.853 in
May and June respectively). The spring bloom is found to
start in the central-northern Lagoon and to persist there for the
first 2 months (May/June) with concentrations up to 1 mg/l.
Then, it spreads over the entire Lagoon during July when it
reaches values up to 2 mg/l in the northern region and when
the mean concentration in the Lagoon increases to value
above 0.7 mg/l. The annual maximum concentrations are
observed in August when the bloom covers almost the whole
Lagoon with concentrations between 1.2 mg/l in the central
Lagoon up to 2.0–2.5 mg/l in the northern Lagoon.
[46] The largest correction in the assimilation was pro-

duced for the August map which showed an average a priori
model-observation misfit of about 1.1 mg/l. Several areas of
the lagoon were increased, producing a mean correction of
about 0.8 mg/l. This high a priori misfit is in part due to
uncertainties in river and industrial forcing estimates which
were corrected by ESSE. It is also due to an underestimation
of the maximum growth rate for phytoplankton: this rate
was calibrated based on 1998 data [Solidoro et al., 2005a].
This outlines the feasibility of using a DA method for the
estimation of the system state, even with imperfect param-
eters; ideally, a continuous recalibration [Lermusiaux, 2007]
of the model could be implemented.
[47] The very low concentration of DIN (both predicted

and observed) in August (see Figure 13) suggests the high
capability of the ecosystem, through rapid regeneration
processes, to sustain the phytoplankton bloom up to the
observed levels. In September, the bloom begins to decrease,
and after October the productivity of the system is limited by
light availability and temperature level. It is worth noting that
in February the assimilation scheme corrects the model
forecast for a medium-amplitude bloom in the southern
Lagoon (larger concentrations, but not above 0.6 mg/l). Such
winter blooms can be due to different species than those that
dominate during spring and summer seasons [Facca et al.,
2002]. Since no nutrient limitation is detectable, the assim-
ilation can successfully incorporate local winter blooms to
model predictions, even when the model has been calibrated
to follow the evolution of a phytoplankton specimen pool
characterized by a somewhat different light and temperature
adaptation.

Figure 11. First 3 eigenvectors of an EOF analysis on DIN concentration. Data were detrended. The
first 3 eigenvectors explain 71% of the variance of the data of 2001.
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5.2.2. Nutrients: DIN
[48] The results of the twelve monthly a posteriori maps

of DIN (Figure 13) show that the spatial patterns are char-
acterized by the presence of two gradients, the northern-
center area to center inlets and the southern area to the
southern inlet. Specifically, the first gradient is from the
rivers located in the northern basin (mainly Dese and
Silone) and the area close to P.Marghera toward the inlet
of Lido, the central basin and the Malamocco inlet. The
second gradient is from the southern area close to the Cuore
and Nov.Brenta canals toward the southern Chioggia inlet.
Such spatial features are commonly observed in transitional
ecosystems where intense gradients are generated between
discharge source points and the open ocean [Cloern, 2001],
but the magnitude and shape of the gradients change from

month to month due to the seasonal evolution of the inputs,
in part linked to meteorological forcing. The largest gra-
dients are observed during the winter and fall months when
inputs are the highest, biological activity is at the lowest
level and internal mixing dynamics drives the spatial distri-
bution of DIN. The highest concentrations, up to 1.3 mg/l are
located close to the northern rivers (Dese and Silone) and
southern rivers (Cuore and Nov.Brenta) in January, March,
April, October, November and December. On the other hand,
concentrations lower than 0.4 mg/l are predicted for the same
months in the area most influenced by tidal exchanges with
the Adriatic Sea.
[49] During the spring and summer, DIN concentrations

decrease due to the combined effect of lowering of inputs
from rivers and biological uptake. As a consequence the gra-

Figure 12. Evolution of the a posteriori fields for phytoplankton (mg/l) (maps) and observation
(overlaid colored circles). The color scale is set to 0 to 1.5 mg/l for all months except for August, which
has a color scale set to 0 to 2.5 mg/l.
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dients are less pronounced, even if some high-concentration
spots are still visible near the rivers.
[50] The biggest DA corrections occurred for the area

bordered by Venice, Murano and land, where ESSE ade-
quately lowers the higher concentrations simulated by the
model during the fall and winter months. A possible under-
estimation of the diffusivity tensors can be hypothesized for
this area that is connected to the Lido inlets by quite narrow
but deep and dynamical channels.
5.2.3. Nutrients: DIP
[51] The seasonal evolution of DIP (Figure 14) portrays

the same general features observed for the DIN fields. In
fact, the sequence of maps of DIP shows the presence of
gradients from the input sources (mainly Dese and Silone
rivers and industrial area of P.Marghera) toward the Lagoon
inlets. However, a significant difference of this general

spatial feature is observed in April, and to a lesser extent
in August and May, when a counter gradient, i.e., from the
sea to the interior of the Lagoon, is predicted in the central
and southern subbasins. This pattern highlights that the
Adriatic Sea can be a source of nutrient for some area of
the Lagoon and for short periods of time. This finding is in
agreement with results other studies: Sfriso et al. [1994]
adopted an empirical 1 box model even if their estimations
were referred to different period of time; Bianchi et al.
[2004] used observations of nutrient concentration and flux
values during a restricted number of tidal events.
[52] With respect to time evolutions, no significant dif-

ference of phase between DIP and DIN is found, showing
that both nutrients are mainly driven by the same meteoro-
logical and ocean boundary forcing. For example, for both
nutrients, the highest concentrations are observed during the

Figure 13. Evolution of the a posteriori fields for DIN (mg/l) (maps) and observation (overlaid colored
circles). Color scale is set to 0 to 1 mg/l for all months.
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spring and fall months while the lowest ones are found
during summer months. However, a significant difference
between the two nutrients is related to the summer situation.
At this time, while the DIN maps still show significant
inputs from drainage basin (as in July), the DIP maps report
very low concentrations over the whole lagoon. This
suggests a possible phytoplankton growth limitation exerted
by DIP, and a very fast recycling process for DIP from
detritus or sediments, capable of sustaining the intense
bloom of July and August. During the last three decades,
the concentration of DIP has been showing a negative trend
while DIN has not [Pastres et al., 2004], supporting the
hypothesis that P has become the limiting nutrient in the
Lagoon.
[53] In May, while the observation of DIP in the region of

Dese and Silone are up to 0.07 mg/l, the model predictions

(whose a priori values are low) is not corrected by the
assimilation. The model-predicted error covariance for
this month is low as a consequence of low values and low
variability of the discharge evolutions. Consequently the
updating has been less effective to what one would have
expected. This fact underlines a possible underestimation
of the nutrient discharges and of their variability for this
month.

5.3. Ecosystem Field Uncertainties and Their
Reduction by Data Assimilation

[54] The ESSE error variance forecast, the diagonal of the
a priori covariance matrix, complements the eigendecom-
position results (section 5.1). For example, the maps of
Figure 15 (DIN forecast uncertainties from February to
April) show that the larger uncertainties are near the land
inflow boundaries. The northernmost region and area

Figure 14. Evolution of the a posteriori fields for DIP (mg/l) (maps) and observation (overlaid colored
circles). Color scale is set to 0 to 0.06 mg/l for all months.
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north to Venice also show a higher level of uncertainty.
This uncertainty mostly results from a combination of the
non linear dynamics of the biological model and of the
low intensity of the transport-dispersion processes in these
regions.
[55] The assimilation significantly reduces these a priori

uncertainties. The a posteriori error maps (Figure 16) show
a reduction of more than 50% over the whole Lagoon, with
decreases up to 80% in the areas close the major sources of
uncertainty, e.g., Dese and Silone rivers and P.Marghera
industrial area.
[56] The number of sampling points and their spatial

spread enables a significant reduction of the model forecast
uncertainty for most of the Lagoon. However, there are
some differences among the three variables (Figure 17). The
highest and most uniform reduction is obtained for DIN. On
the other hand, DIP shows an effective reduction only in the
northern basin with very small reduction in the southern

basin, in part due to very low DIP concentrations there. The
error reduction for phytoplankton is quite similar to that of
DIN: both show that only some marginal parts of the
Lagoon are less influenced by the assimilation. One is the
northernmost part of the lagoon, where the distance from
sampling points and the low-intensity hydrodynamics re-
duce the effectiveness of MELa1 data corrections. Another
is the central west Lagoon, because of its small number of
data points and their broad scattering. A final one is at the
inlets proper, for which the forecasts were already relatively
accurate.

6. Assessment of the Water Quality in Relation
to the Environmental Legislation: Comparison
Between Standard OA Fields and ESSE Fields

[57] Since 1999, to implement the European Union (EU)
Directive 96/61 [EU, 1996], the Italian Ministries of the

Figure 15. Forecast uncertainties, i.e., the a priori (forecast) error standard deviation (mgN/l) of the
forecasted DIN fields of (a) February, (b) March, and (c) April.

Figure 16. Analyses uncertainties, i.e., the a posteriori (analyzed) error standard deviation (mgN/l) of
the updated DIN fields of (a) February, (b) March, and (c) April.
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Environment and Public Works issued a new legislation
aimed at the safeguard of the Lagoon of Venice, which
established concentration limits of nutrients, N and P, for the
Lagoon water, water quality target, and relative maximum
permissible loads [Collavini et al., 2005]. The implementa-
tion of this policy is challenging due to the high spatial and
temporal variability of nutrient patterns [Solidoro et al.,
2004] and the difficulty of setting a quantitative relationship
among loads and water concentrations [Pastres et al.,
2003]. A detailed study of the sources and characteristics
of discharged pollutants was recommended [Collavini et
al., 2005]. Investigations were carried out to assess the
contaminant loads delivered to the Lagoon by different
sources, respectively: the industrial area of Porto Marghera
[Magistrato alle Acque di Venezia (MAV), 2000, 2002], the
atmospheric deposition [Guerzoni et al., 2005a, 2005b] and
the drainage basin [Zonta et al., 2005; ARPAV, 2002]. Other
efforts also investigated the spatial and temporal variability
of the Lagoon’s responses to contaminants by means of
statistical analysis of the MELa1 data set [Solidoro et al.,
2004; Pastres et al., 2004].

[58] The present field reconstruction via ESSE generates
a quantitative estimate of the relations between the load
levels and the nutrient concentrations in the Lagoon. This
estimate is optimal since DA fields integrate the data
collected in the Lagoon with the prior knowledge of the
ecosystem dynamics and its boundary interactions. For an
efficient management of the Lagoon, such estimates of
environmental responses to external forcing, as requested
by the legislation, are more and more urgent, especially
considering anthropogenic activities and climate change
[Scavia et al., 2003]. Importantly, ESSE improves stan-
dard spatial interpolation methods which do not account
for full dynamics [e.g., Lermusiaux, 1999a, 1999b, 2001;
Lermusiaux et al., 2000]. To illustrate the effects of these
improvements, the monthly maps of ESSE and of a
standard Objective Analysis (OA) scheme (see Appendix
C) were compared and used to evaluate the extent in time
and space for which the concentrations of DIN and DIP
were above the water quality targets set by the legislation,
respectively 0.35 mg/l for DIN and 0.025 mg/l for DIP
[Ministero dell’Ambiente, 1999].

Figure 17. Map of the percentage reduction of the forecast uncertainties for (a) phytoplankton, (b) DIN,
and (c) DIP. The map is computed as the mean reduction of the 12 monthly experiments. The location of
the sampling station is reported by the white circles.

Figure 18. Monthly evolution of the fraction (normalized to 0–1) of the Lagoon that has concentration
values above the limit of the water quality standard for (a) DIN and (b) DIP.
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[59] The bar plots of Figures 18a and 18b show the
fraction of the surface of the Lagoon for which the DIN
and DIP concentrations are above the targets, for each of the
12 monthly surveys in 2001. Specifically, shown are the
normalized number of times that the 30 observed values
(OBS only, black bars) are above the targets and the normal-
ized number of grid points in the OA (gray bars) and ESSE
fields (white bars) that have values above the targets. For
DIN, the winter, early spring and autumn months exceed the
target in more than 50% of the Lagoon surface, with a
maximum of 90% during April. The ESSE bars for DIN
are often higher than the OBS only and OA ones. This is
because ESSE extends the conditions close to the discharge
points based on the model dynamics and its uncertainties.

During the summer, most of the Lagoon is under the
requested target, and no significant differences are visible
among the three estimations.
[60] For DIP, concentrations are low. Never more than

50% of the Lagoon is above the target. Differences between
ESSE and the other methods are largest for April, May and
October. While in October the difference is due to a few
spotty station values, in April and May the difference seems
due to an underestimation of simulated discharges of DIP
from the northern rivers.
[61] Figures 19a (for DIN) and 19b (for DIP) map the

fraction of the year (calculated on the basis of the 12 monthly
surveys) during which the water quality target is exceeded.
According to the optimal ESSE maps, the areas most subject

Figure 19. Percentage of time of the year during which the Lagoon is above the limit of the water
quality target for (a) DIN and (b) DIP. (left) Data, (middle) OA method, (right) and ESSE method.
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to exceed the DIN limits are close to the: discharge points of
the rivers Dese and Silone in the northern part of the
Lagoon; industrial area of P.Marghera; and, river mouths
of Nov.Brenta and Montalbano in the southern basin.
Almost all of the northern basin (north of Venice island)
and the area in front of P.Marghera exceed the target for
more than 50% of the year, while the central part and the
area near the channels connecting the inlets are beyond the
limit only for a smaller fraction of time. The latter is a result
of the dilution by exchanges with the Adriatic Sea. Differ-
ences between the ESSE map and the standard OA map are
due to strong localized effects that the mosaic of islands,
shallow regions and channel areas have on the mixing
and dilution dynamics. These dynamics are not included
in the simple correlation function used in the standard OA
method.
[62] For DIP (Figure 19b), the ESSE map again shows

that the areas north of Venice and close to the rivers Dese,
Silone and Osellino are the most likely to exceed the water
quality target. The spotty gray area in the southern part of
OA map is due to the isolated values of a single station
(B20) that is located in a very shallow area and close to the
discharge point of river Cuori.

7. Summary and Conclusions

[63] An error subspace and ensemble data assimilation
scheme (ESSE) was implemented and utilized to study the
seasonal ecosystem dynamics of a complex estuary-coastal
region, the Lagoon of Venice. The dynamics, given by a
physical-biogeochemical model (Trophic Diffusive Model,
TDM), was combined with real observations gathered
within the framework of a water quality monitoring
program (MELa). For the full year 2001, nutrients, plank-
ton and other biogeochemical fields and their prior uncer-
tainties were predicted, and the monthly MELa observations
(Chlorophyll-a and dissolved nutrients) assimilated to reduce
these uncertainties and estimate forcing parameters. Using
the estimated fields and their spatial and temporal variability,
the state of the Lagoon was assessed in light of the water
quality targets legislations for nutrient concentrations. To our
knowledge, this is the first time that both ecosystem fields and
their uncertainties were estimated in the Lagoon of Venice
using ensemble data assimilation, that ecosystem stochastic
models were developed and tuned, that the resulting ecosys-
tem field dynamics were described and studied, and that
uncertainties before and after assimilation were computed
and analyzed. Key results and findings are summarized next,
including opportunities for future research.

7.1. Ecosystem Predictions

[64] Model predictions without assimilation illustrated the
main gradients of the ecosystem fields in the Lagoon. Even
though the strength of these gradients varied, larger con-
centrations of nutrients were predicted in the northern part
of the Lagoon close to the Dese and Silone rivers, near the
Nav.Brenta and Lusore rivers, and in the central part near
the industrial area of P.Marghera. The lowest concentrations
were near the Lagoon inlets due to the exchanges with the
Adriatic Sea. The largest discrepancies with data were often
found near the locations of inputs to the ecosystem, e.g.,
near the industrial areas. These inputs were not well known

a priori. Using Lagoon data and dynamics, a goal of the
ESSE assimilation was to correct these external inputs as
well as the initial conditions.

7.2. Sensitivity to Input Uncertainties

[65] Before the full assimilation, several sensitivity stud-
ies on uncertainty factors and formulations were carried out.
First, the sensitivity to the initial uncertainty was quantified.
Ensembles of stochastic initial conditions (ICs) were created
for each month and a deterministic TDM with fixed a priori
forcing was integrated forward to the next month from each
of these ICs. Studying the variance fields of these 12
ensembles showed that: (1) the spatially averaged variance
decayed with time, often exponentially; and, (2) the tem-
porally averaged variance decayed the fastest near the
boundary inputs (inlets and discharges) and the slowest in
the marginal or internally active areas (e.g., northern basin
and western part). DIN variances were found to decay faster
than DIP and phytoplankton variances. On average, about
75% of the initial ecosystem variability was dissipated after
one month. To confirm this, fields of half-decay character-
istic times were computed. They were found to be around
10 to 20 days in several regions, and only reached more
than 20 days in the northernmost region. General results are
that boundary conditions (BCs) and internal mixing have a
significant control on the solution, limiting the influence
of the initial variability, and that the corresponding uncer-
tainties in the BCs and internal model thus need to be
simulated.

7.3. Stochastic Ecosystem Models

[66] To represent uncertainties, a novel stochastic formu-
lation of the ecosystem model including stochastic BCs was
implemented and utilized with ESSE. The stochastic forcing
are additive and multiplicative random fields that are
appended to the original model and its BCs. Several
stochastic formulations were tested and tuned so as to obtain
ESSE uncertainty predictions that are compatible with data-
model misfits. For the internal model errors, correlations are
needed to model uncertainties in the biogeochemical patch-
iness at subgrid scales and in the inhomogeneous and
anisotropic parameterization of tidal effects. It was found
that these internal uncertainties could be modeled by zero-
mean normal processes, with a 10% relative amplitude and
about 1 km patchy spatial scale. For the boundary uncertain-
ties, zero-mean normal processes were also found acceptable
but with a 60% relative amplitude and about 1-month
decorrelation time scale. Ensembles of simulations were
carried out for each of the 12 monthly assimilation periods,
so as to confirm the suitability of these internal and BC
error models. With these error models, the highest uncer-
tainties were predicted in the central and northern regions
of the Lagoon.
[67] The required size of the ESSE ensemble was then

computed based on a convergence criterion. Even though
in real-time this size could have been optimized [e.g.,
Lermusiaux, 1999b, 2001, 2002] for each state variable
and monthly dynamics, in our hindcast studies, the largest
common size needed, 220, was chosen for all variables
and all months.
[68] For the measurement model, several additive and

multiplicative errors were tested and tuned based on a series
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of data assimilation tests. Suitable amplitudes were found to
be a 10% relative error for each measured variable com-
bined with an absolute error of standard deviation of 0.025,
0.025 and 0.005 mg/l for phytoplankton, DIN and DIP,
respectively.

7.4. Dominant Uncertainty Modes

[69] The singular vectors of the ESSE ensemble identified
the patterns where the largest uncertainties occurred in
2001. For DIN, the two major rivers (Dese and Silone in
the northern lagoon) were found to be the largest sources
of uncertainty. In the maps of the second DIN vector, other
sources were identified, corresponding to diverse bound-
ary points from month to month, e.g., the southern rivers
or the industrial discharges. These second vectors were
either decoupled or in opposition of phase with the first
‘‘major rivers’’ mode. The full field model-point results of
the ESSE vectors agreed with data EOFs at data points.
For the other variables (DIP and phytoplankton), the
ESSE and EOFs results also had dominant modes linked
to external boundaries, but their internal dynamics was
more significant than for DIN. Prior and posterior ESSE
uncertainty estimates agreed with these findings.

7.5. Variability of Ecosystem Fields

[70] The quantitative estimates of the ecosystem fields
after ESSE assimilation cover the whole Lagoon and allow
novel descriptions of the ecosystem during 2001. The
Lagoon is characterized by the presence of nutrient and
phytoplankton gradients from its inshore regions toward
the areas influenced by exchanges with the Adriatic Sea.
The mean concentration level, and the intensity and shape
of gradients, varies from month to month according to the
evolutions of boundary and surface forcing, and internal
dynamics. The largest gradients occur during the winter
and fall, when inputs are high, biological dynamics is low
and physical mixing is a main internal driver. Concen-
trations of nutrients (DIN and DIP) are the lowest during
the summer due to the combined effects of lower rivers
discharges and enhanced biological uptake by primary
producers. A late-spring phytoplankton bloom starts in the
northern Lagoon in May (where nutrients are supplied)
and spreads over the whole Lagoon during the summer,
with concentrations up to 2.5 mg/l in August. This August
bloom is found to be sustained through rapid regeneration
and recycling processes from detritus and sediments, with
very low nutrient concentrations, especially for DIP which
is limiting in summer. It is also shown that the Adriatic Sea
can be a source of nutrient for parts of the Lagoon and for
short periods of time, specifically for DIP in April and to a
lesser extent in May and August.

7.6. Uncertainty Reductions and Data Impacts

[71] The largest ESSE correction to the a priori state
occurred in the phytoplankton mean level in August during
the summer bloom and locally in the southern region in
February during a late winter bloom. These corrections
reflect the capacity of ESSE to correct for boundary river
and industrial forcing, but also to remedy for inaccuracies
in parameter values (e.g., maximum growth rate of phyto-

plankton) and simplifications in model formulations (e.g.,
use of a single pool of primary producers instead of
several). The largest corrections to nutrients were found
in marginal areas, where turbulent diffusivity is not well
resolved. Other corrections were estimated in areas close
to specific point sources on a few months. Uncertainties
are estimated to be reduced by data assimilation by about
50 to 80%. Data impacts show that the density of the
MELa1 sampling should be increased in the northernmost
and central west portions of the Lagoon.

7.7. Water Quality

[72] Our field estimation merged data and models to
quantify relations between load levels and nutrient concen-
trations in the Lagoon, as recommended by water quality
target directives. The extent in time and space for which
ESSE fields of DIN and DIP were above these targets was
computed. It was also compared to that obtained using data-
only values and a standard objective analysis (OA) of these
data. Differences are due to the dynamical interpolation of
the data using tuned multivariate ESSE covariances and to
localized dynamics in the complex Lagoon geometry. On
certain months, they are also due to strong data outliers. For
DIN, the winter, early spring and autumn months exceed
the target in more than 50% of the Lagoon, but in summer,
most of the Lagoon is under the target. For the more often
limiting DIP, concentrations are lower and never more than
50% of the Lagoon is above the target.

7.8. Future Research

[73] Research opportunities and applications abound over
a rich spectrum of needs. Future work includes the appli-
cation of ESSE to other years and periods in the Lagoon. A
sustained adaptive recalibration [Lermusiaux, 2007] of the
biogeochemical-ecosystem model parameters and parame-
terizations as well as a study of the corrections to the a priori
boundary forcing by ESSE assimilation could also be
explored. Detailed investigations of the Lagoon’s ecosystem
dynamics such as term-by-term balances and computations
of fluxes, exchanges and transfer rates, should also be carried
out. Other possibilities involve the use of a 4D hydrodynamic
model in the Lagoon, with 2-way nesting within a full
Adriatic model [Pinardi et al., 2002; Oddo et al., 2006]
and barotropic tidal forcing [Logutov and Lermusiaux, 2008].
In the ecosystem model, bacteria, benthic microalgae and
filter feeders could be included and recycling processes better
formulated. Multimodel estimates are also possible [Logutov,
2007; Rixen et al., 2008]. Effects of shorter scales and larger
scales including climate influences [Pinardi et al., 2005;
Cossarini et al., 2008] could also be explored.
[74] Our results suggest that the frequency of monitoring

surveys should be increased. It has in fact already doubled
in spring and summer. In the future, our novel combination
of data and models using ESSE could be used for sustained
management and forecasting of the Lagoon, in accord with
water quality targets. Such societal applications would be
unprecedented and of critical importance to the region and
its multiple industries. Related research areas include opti-
mum combinations of fixed and adaptive sampling of the
ecosystem [Lermusiaux et al., 2007], possibly using auton-
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omous assets [Yilmaz et al., 2008; Wang et al., 2009] and
real-time observation systems [Ciavatta et al., 2004].

Appendix A: Model Formulation

A1. Biological Model

[75] The Trophic Diffusive Model (TDM) describes the
evolution of 13 state variables in space and time in the
3 dimensional domain of the Lagoon of Venice according
to the equation

@Ci

@t
¼ wsi

@Ci

@z
þrHKhrHCi þ

@

@z
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þ RiðC; T ; I ; ::Þ
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where Ci is the concentration or density of a given state
variable in the water column, wsi its sinking velocity, Kh and
Kv the horizontal and vertical eddy diffusion coefficient, Ri

the reaction term and T and I indicate, respectively, water
temperature and Irradiance. The numerical solution of the
governing equation (A1) is computed using a finite dif-
ference approach. The Lagoon spatial domain is subdivided
in a regular grid (horizontal resolution of 300 m � 300 m,
and vertical resolution of 1 m). This leads to a number of
103� 140� 5 discrete model points. Because of the shallow
Lagoon, only 7825 of these discrete points correspond to
active cells, 4369 of which correspond to the first meter. The
integration time step is 1 hour, resolving diel processes.
[76] The set of state variables includes phytoplankton,

zooplankton, nutrients (dissolved inorganic phosphorus,
ammonium and nitrate), nutrient content in detritus (DetC,
DetN, DetP), sediments (SedC, SedN, SedP), dissolved
oxygen and Temperature (Table A1 and Figure A1). The
Ri term in equation (A1) describes the growth and loss terms
of each variable and the main interactions among the
variables. The growth of phytoplankton, that is thought to
have a C:N:P Redfield fixed ratio, is described using a

multiplicative model including a Michaelis-Menten formu-
lation [Michaelis and Menten, 1913] for nutrients, a Steele
formulation [Steele, 1962] for light limitation and a Lassiter
and Kearns formulation [Lassiter and Kearns, 1974] for
temperature limitation. Loss terms of phytoplankton include
extracellular exudation, grazing and mortality. Zooplankton
feeds on phytoplankton, using a Holling III type formula-
tion [Holling, 1965], and channels carbon and nutrients
mainly toward the detritus compartment, through excretion,
mortality and sloppy feeding processes. Detritus and phy-
toplankton sink and eventually enter the surface sediment
state variable. The remineralization rate of the organic
matter, which takes place both in the water column and in
the surface sediments, depends on temperature and dis-
solved oxygen availability. This process involves the con-
sumption of dissolved oxygen and leads to the release of
inorganic nutrients back to the water column. Phytoplank-
ton and zooplankton respirations, photosynthesis and air-sea
exchanges are the other processes involved in the dissolved
oxygen budget. Denitrification and sediment burial are also
taken into account. All details on the model formulations
are provided by Solidoro et al. [2005a].

Figure A1. Scheme of the biogeochemical model and interactions used for the Lagoon of Venice.
Shown are the compartments of the ecosystem description and the exchanges between the system and the
outside environment: sediment, air, drainage basin, and the Adriatic Sea.

Table A1. List of the State Variables

State Variables Unit

Phy Phytoplankton mgC/l
Zoo Zooplankton mgC/l
NH4

+ Ammonia mg/l
NO3

	 Nitrate mg/l
DIP Dissolved inorganic phosphorus mg/l
Oxy Dissolved oxygen mg/l
T Temperature �C
DetC C in detritus mg/l
DetN N in detritus mg/l
DetP P in detritus mg/l
SedC C in sediment mg/m2

SedN N in sediment mg/m2

SedP P in sediment mg/m2
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A2. Transport Model

[77] The transport model describes processes which are
characterized by time scales larger than the tidal period;
averaging over a tidal cycle, the residual currents can then
be considered instead of the actual currents [Sin and Wetzel,
2002]. Since the residual currents are here almost every-
where very small [Dejak et al., 1998], most of their effects
can be neglected. Transport processes are thus described by
means of a turbulent diffusion module and residual advec-
tion is not explicitly taken into account. However, diffusion
processes are no longer isotropic and homogeneous. They
are parameterized at each grid points [Dejak et al., 1998;
Pastres et al., 2001]. The turbulent diffusivity coefficients
Kh in equation (A1) are replaced by a diagonal tensor,
which relates the fluxes of matter F to the gradients of the
concentration along the main direction of dispersion (x0) and
its orthogonal one (y0), as written next in equation (A2a)

Fx0

Fy0

Fz

������
������ ¼

Kx0x0 0 0

0 Ky0y0 0

0 0 Kzz

������
������
@C=@x0

@C=@y0

@C=@z

������
������ ðA2aÞ

[78] The tensor coefficients in (A2a) are estimated once
for all, and for each grid point one at a time, by using a
precomputed total velocity field obtained under nominal
conditions of tidal forcing and wind forcing (cyclic tides, no
winds). Then, since equation (A2a) describes appropriately
the transport processes in the local reference systems x0, y0

relative to each grid point, a proper rotation is applied to
each tensor, in order to describe diffusion from all points in
a common reference system x 	 y [Dejak et al., 1998;
Pastres et al., 2001]. The horizontal and vertical diffusion
have different time and spatial scales and are therefore
treated separately.

Fx

Fy

Fz

������
������ ¼

Kxx Kxy 0

Kyx Kyy 0

0 0 Kzz

������
������
@C=@x
@C=@y
@C=@z

������
������ ðA2bÞ

A3. Energetic Model

[79] The spatial and temporal evolution of the water
temperature is computed by means of an energetic submo-
del [Dejak et al., 1992], while that of light intensity is
computed within the biological module, since light attenu-
ation along the water column is a function of water quality
properties. Data of air temperature, short-wave radiation,
cloud cover, air pressure and air humidity, used in the
energetic submodel were collected by the Marine science
institute ISMAR-CNR (National Research Council) of
Venice, see http://www.istitutoveneto.it/.

A4. Boundary Conditions

[80] Heat discharges from the power plant of P.Marghera
are computed on the basis of the data reported the study of
Socal et al. [1999]. Other inputs of energy or mass, as well
as exchanges through open boundaries are taken into
account by specifying appropriate boundary conditions.
The model uses two types of boundary conditions: Dirichlet
at the three inlets and Neumann at the rivers and discharge
points boundaries.
[81] For the three inlets (Figure A1), a data-based, daily

reference evolution is assigned for the horizontal fluxes of
the state variables. This is done at the grid cells that define
each of the three boundaries between the lagoon and the
Adriatic Sea. Then the exchange fluxes are computed as

Finlet ¼ Kh �
C 	 CðtÞjx¼inlet

� �
Dx

ðA3Þ

where C(t)jx=inlet is a measured reference daily evolution of
the state variable at the boundary, C the concentration of the
state variable in the inner adjacent grid point, and Kh the
horizontal eddy diffusion coefficient at the boundary.
The three different reference evolutions (one for each of
the three inlets) are obtained for phytoplankton, nutrients
and temperature by spline interpolation of the monthly
MELa1 observations at six neighboring stations. These
stations, located near the three inlets, have been showed to
be the most representative of the quality of the marine water
[Solidoro et al., 2004]. The inlet BCs for zooplankton are

Table A2. Nutrient N and P loads and Indication of the Typology of Discharge Sources and Frequency of the Data or Estimations

DIN
(tN/a)

DIP
(tP/a)

Typology Frequency of the Data
or Estimation

Silone 743 19 River Monthly
Dese 636.5 17.4 River Monthly
Osellino 123.4 3.9 River Monthly
Campalto 86.7 15 Sewage treatment plant Yearly
Venezia 405.5 47.4 Urban sewage systems Yearly
Murano 45.9 5.4 Urban sewage systems Yearly
Cavallino 9 1 Urban sewage systems Yearly
Lusore 364.7 7.3 River Monthly
Nav.Brenta 542.8 8.1 River Monthly
P.Marghera 450.7 15 Industrial Area and sewage treatment plant Yearly
Lova 94.2 1.7 River Monthly
Nov.Brenta 378 4.5 River Monthly
Montalbano 36.2 0.9 River Monthly
Cuori 184.9 1.1 River Monthly
Chioggia 55.8 11 Urban sewage systems Yearly
Air deposition 556 48 Diffuse Yearly
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assumed to be equal to 0.1 of the inlet BCs of phyto-
plankton. Dissolved oxygen at the inlet is set to its
saturation level [Melaku Canu et al., 2001] and N and P
contents of detritus are assumed constant [Bergamasco and
Zago, 1999].
[82] The rivers and discharges are mainly in the northern

and western side of the lagoon. There are nine rivers, two
sewage treatment plants and four urban areas and an indus-
trial area (Figure 1) that discharge a considerable amount of
nutrients in the lagoon, respectively 4.7 � 106 Kg/y of
nitrogen and 0.2 � 106 Kg/y of phosphorus. For 2001,
monthly estimations are available for the nine rivers
[ARPAV, 2002] and annual mean values are used for the
sewage systems and urban areas [MAV, 2002; Melaku
Canu et al., 2001; Sezione Antinquinamento del Magistrato
alle Acque (SAMA), 2003]. Table A2 reports the annual
mean load of nitrogen and phosphorous of the 15 discharge
sources among which the rivers Dese, Nav Brenta and
Lusore, and the direct discharges from Venice’s historical
center and industrial area are the most important. Atmo-
spheric deposition is significant too, but it does not play any
important role at local level.
[83] It is necessary to represent the variability with

respect to these mean values (Table A2). This is because
it has been observed that intense rainfall events (that can
exceed 100 mm/d [Zuliani et al., 2005]) are associated with
very large amounts of nutrient transported by the river
discharges into the lagoon [Rinaldo et al., 2006; Botter et
al., 2006]. Further, a significant fraction of the total annual
load can be due to these few flood days [Collavini et al.,
2005]. Therefore we developed a new empirical boundary
formulation that links the k river discharges FC(k) to the
evolution of the daily precipitation

FCðkÞ ¼ FC � fRðkÞ ðA4Þ

where FC is the value of the monthly (or annual) data. The
function fR, whose monthly integral is equal to 1, accounts
for the fact that when it rains there is a significant increase
of the load, while when it does not rain, the discharge is
below the monthly mean. It is defined by

fRðkÞ ¼ 1þ rk	1 	 rkh imonth
max rkf gmonth

� �
	 rkh imonth

� bsource ðA5Þ

where hrkimonth is the mean monthly precipitation and
max({rk}month) is the maximum precipitation during the
month. A lag time of one day between rain and discharge
is used because of the drainage basins are not wide and
runoff of rivers follows quickly the rainfall events [Zuliani et
al., 2005]. The denominator is a normalization factor. The
parameter bsource is equal to 1 for rivers and atmospheric
deposition, and 0.50 for sewage systems and urban areas, and
it accounts for the different response of the given typology of
discharge sources to the rainfall. Finally a random noise is
added to this parameter in order to take into consideration its
uncertainty. These stochastic components of the boundary
conditions are discussed in the text.

A5. Model Evaluation

[84] In the work of Solidoro et al. [2005a], the TDM
model results were compared to three different data sets for
year 1998, and to information concerning flow rates obtained
from the literature. The comparisons showed that the model
reproduced the spatial gradients of nutrients concentration
well and also mimicked reasonably the principal features of
the timing and magnitude of phytoplankton blooms. Overall,
the model results were in general agreement with the exper-
imental findings on nitrogen fluxes collected in the Lagoon of
Venice during the 1990s.

Appendix B: Error Subspace Statistical
Estimation: Ensemble Prediction
and Melding Steps

[85] The main ESSE components are: (1) uncertainty
initialization; (2) deterministic-stochastic ensemble and error
subspace forecasts; (3) adaptive sampling; (4) data processing
and measurement model; (5) data assimilation; (6) adaptive
error learning; and, (7) smoothing. Here, we summarize the
prediction (1, 2) and assimilation (5) steps which are the main
ESSE schemes used in our study. We refer to the work of
Lermusiaux et al. [2002] and Lermusiaux [1999a, 1999b,
2002, 2006, 2007] for more detailed descriptions of all ESSE
components.

B1. Ensemble and Error Subspace Prediction

[86] Presently, an ensemble of stochastic model simula-
tions, initialized based on an estimate of the dominant initial
uncertainties, is used to predict the error subspace of the
model fields. For minimum error variance estimation, the
error subspace is defined by a truncation of the ordered
eigendecomposition of the nondimensionalized multivariate
error covariance matrix. At time tk, the model state analysis
x̂k(+) (the posterior state) is perturbed (B1a) using the
dominant eigenvectors Ek(+) of the posterior error covari-
ance matrix. To do so, random coefficients pk

j (+) function of
the dominant eigenvalues Pk(+) and constrained by dynam-
ics are utilized. Random white noise nk

j is also added to
model the tail of the error spectrum which is truncated by
ESSE. To evolve fields and uncertainties up to tk+1, an
ensemble of j = 1, . . ., q stochastic ocean model integrations
is carried out, see (B1b) where M represents the dynamical
model. This ensemble is started from the q perturbed states
x̂k
j (+). The new stochastic forcing dh that we developed for
the Lagoon’s ecosystem are defined in section 4 of the main
text

x̂
j
kðþÞ ¼ x̂kðþÞ þ EkðþÞpjkðþÞ þ n

j
k j ¼ 1; . . . ; q ðB1aÞ

x̂
j
kþ1ð	Þjdx̂j ¼ Mðx̂j; tÞdt þ dh with IC : x̂

j
k ¼ x̂

j
kðþÞ

ðB1bÞ

Mkþ1ð	Þ ¼ x̂
j
kþ1ð	Þ 	 x̂emkþ1ð	Þ

	 

ðB1cÞ
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X
kþ1

ð	Þ;Ekþ1ð	Þ
n o

j SVDpðMkþ1ð	ÞÞ

¼ Ekþ1ð	Þ
X

kþ1
ð	ÞVT

kþ1ð	Þ ðB1dÞ

r ¼
Pminð~p;pÞ

i¼1 si P1=2ET ~E ~P1=2
� �

Pminð~pÞ
i¼1 sið ~PÞ

� a ðB1eÞ

[87] The error subspace forecast (B1c)–(B1e) is obtained
from this ensemble. First, a matrix Mk+1(	) which contains
the difference between the available q model state realiza-
tions at tk+1 and the corresponding estimate of the condi-
tional mean, x̂k+1

em (	) = Eq{x̂k+1
j (	)}, is computed (B1c):

Mk+1(	) = [x̂k+1
j (	) 	 x̂k+1

em (	)]. It is subsequently normal-
ized and decomposed by singular value decomposition
(B1d) into Pk+1(	) = 1

q
Sk+1

2 (	) and Ek+1(	) of rank p �
q. In (B1d), the operator SVDp (.) selects the rank p SVD.
The ensemble size is subsequently increased and ultimately
controlled by a convergence criterion (B1e) which measures
the similarity between two subspaces of different sizes
[Lermusiaux, 2007]. A ‘‘previous’’ estimate (E, P) of rank

p and ‘‘new’’ estimate (~E, ~P) of rank ~p � p are compared,
using singular values to weight singular vectors. In (B1e), a
is a scalar close to one that is chosen by the user and si(�)
selects the singular value number i. When the scalar r is
close enough to one, the two subspaces are similar in the
variance explained sense. The resulting ~P, ~E is then chosen
as the error subspace forecast for tk+1: Pk+1(	), Ek+1(	).
The dimensions of the ensemble q and subspace p vary with
time, in accord with data and dynamics.

B2. Data Assimilation (Melding)

[88] Once the error subspace forecast (B1e) is available,
the data y� and model estimates x̂(	) can be combined by
minimum error variance estimation. This data assimilation
step (2a–d) is similar to the classic Kalman update, excepted
that the error covariance is replaced by an estimate of its
dominant eigendecomposition.

x̂ðþÞ ¼ x̂ð	Þ þKpðy
 	 Hðx̂ð	ÞÞÞ ðB2aÞ

Kp ¼ E	Pð	ÞET
	H

T H E Pð	ÞET
	H

T þ R
� �	1 ðB2bÞ

L PðþÞLT ¼ Pð	Þ 	Pð	ÞET
	H

T

� H E Pð	ÞET
	H

T þ R
� �	1

H E Pð	Þ ðB2cÞ

Eþ ¼ E	L ðB2dÞ

In (B2a)–(B2d), the subscript k+1 has been omitted, E± =
Ek+1(±) and P± = Pk+1(±). The outputs of (B2a)–(B2d) are
the posterior (filtering) estimates: the fields x̂k+1(+) = x̂(+)
and error subspace covariance Pk+1(+), Ek+1(+). These
estimates can also be obtained from a direct update of the
SVD of the ensemble spread, e.g., Lermusiaux and Robinson
[1999].

Appendix C: Objective Analysis Scheme

[89] DIN, DIP and chlorophyll data of MELa1 data set
are spatially interpolated to the model grid using a classic
mapping scheme [Bretherton et al., 1976], so as to allow
comparisons with the data-dynamics melded estimates of
ESSE (a time-space dynamic extension of the diffusion
scheme of Lynch and McGilicuddy [2001]). Chlorophyll-a
measurements are first converted to phytoplankton biomass
using the formulation proposed by Cloern et al. [1995]. The
spatial interpolation of the measurements is produced by
objective analysis, in accord with the optimal linear Gauss-
Markov theorem. The result is the OA field.

YOA;x ¼
XN
q¼1

Cx;q �
XN
s¼1

CC	1
q;s � ys

 !
ðC1Þ

where Cx,q is the spatial correlation function between grid
point x and measurement location q, CCq,s is the covariance
matrix betweenmeasurement locations, and ys is the anomaly
of the observations from a background (monthly mean of
observations). The background is ultimately added after OA.
The correlation function [Lermusiaux, 1999a] adopted is
isotropic and homogeneous over the domain

Cr ¼ 1	r2 =a2
� �

� e	
r2

2b2 ðC2Þ

where a is the zero-crossing distance and b the spatial decay
scale and r is the Euclidian distance between two point. The
two parameters a and b in (C2) are estimated using the
MELa1 data set; for each of the 3 variables considered,
the correlations between the detrended time series of all the
possible couples of sampling locations are plotted versus
their Euclidean distances, then the two parameter are
computationally estimated in a minimum least square root
sense. The values of the parameters are reported in Table C1
below:
[90] These values meet the condition a > 21/2b to generate a

positive-definite correlation matrix [Artegiani et al., 1997].
The analysis of Table C1 shows that the length-scales are
quite similar, stating that all variables have similar dominant
spatial scales. The zero-crossing parameters of the three
variables differ by only 25% while the spatial decay param-
eters are of the same order, even though the spatial decay for
DIP is double than that of phytoplankton.
[91] The confidence levels of the field estimation are also

estimated. The error variance in yOA,x is

VARðYOA;xÞ ¼ Cx;x 	
XN
q¼1

Cx;q �
XN
s¼1

CC	1
q;s � Cx;s

 !
ðC3Þ

Table C1. Set of Correlation Parameters (Length Scales)

Estimated for the Objective Analysis

Variable
a

(km)
b

(km)

DIN 3 12.5
DIP 4 10.0
Phytoplankton 2 12.5
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where Cx,x is the covariance over the whole domain (natural
variability) and Cx,r and Cx,s are the correlations between
the point x and the sampling locations.
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