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Abstract

Background: In the intensive care unit (ICU), clinical staff must stay vigilant to
promptly detect and treat hypotensive episodes (HEs). Given the stressful context of
busy ICUs, an automated hypotensive risk stratifier can help ICU clinicians focus care
and resources by prospectively identifying patients at increased risk of impending
HEs. The objective of this study was to investigate the possible existence of
discriminatory patterns in hemodynamic data that can be indicative of future
hypotensive risk.

Methods: Given the complexity and heterogeneity of ICU data, a machine learning
approach was used in this study. Time series of minute-by-minute measures of mean
arterial blood pressure, heart rate, pulse pressure, and relative cardiac output from
1,311 records from the MIMIC II Database were used. An HE was defined as a 30-
minute period during which the mean arterial pressure was below 60 mmHg for at
least 90% of the time. Features extracted from the hemodynamic data during an
observation period of either 30 or 60 minutes were analyzed to predict the
occurrence of HEs 1 or 2 hours into the future. Artificial neural networks (ANNs) were
trained for binary classification (normotensive vs. hypotensive) and regression
(estimation of future mean blood pressure).

Results: The ANNs were successfully trained to discriminate patterns in the
multidimensional hemodynamic data that were predictive of future HEs. The best
overall binary classification performance resulted in a mean area under ROC curve of
0.918, a sensitivity of 0.826, and a specificity of 0.859. Predicting further into the
future resulted in poorer performance, whereas observation duration minimally
affected performance. The low prevalence of HEs led to poor positive predictive
values. In regression, the best mean absolute error was 9.67%.

Conclusions: The promising pattern recognition performance demonstrates the
existence of discriminatory patterns in hemodynamic data that can indicate
impending hypotension. The poor PPVs discourage a direct HE predictor, but a
hypotensive risk stratifier based on the pattern recognition algorithms of this study
would be of significant clinical value in busy ICU environments.
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Background
In the intensive care unit (ICU), hypotension is a critical condition that requires

prompt therapeutic intervention. Persisting hypotension can result in dangerously

decreased tissue blood flow with consequent end-organ damage. As a result, ICU clini-

cians must be vigilant to detect and treat hypotensive episodes (HEs) in a timely man-

ner. However, this is challenging to achieve for several reasons. First, the amount of

time that clinical staff can allocate per patient is generally limited, particularly in ICUs

facing staff shortages - a problem that is projected to get worse in the future [1]. Sec-

ond, the amount of physiologic and clinical data that is accumulated per patient is

enormous and growing. The resultant “data overload” has significantly complicated

patient assessment [2]. ICU data is not only massive in size but is also heterogeneous

in nature due to their vastly different sources (multi-channel waveforms, laboratory

results, medication records, nursing notes, etc.) and suboptimal organization. Third,

even with sufficient time, resources, and information, it seems extremely difficult to

estimate the likelihood of an impending HE with bare-eye analysis alone, especially for

HEs that are not preceded by obvious patterns such as a gradual decrease in blood

pressure.

Hence, in the stressful context of busy ICUs, it clearly would be of considerable clini-

cal value to prospectively identify patients who are at risk of developing HEs in the

next one to two hours, since it would facilitate efficient allocation of ICU resources

and minimize the time delay to appropriate therapy. Such prospective hypotensive risk

stratification would not necessarily mandate immediate clinical action, but rather func-

tion as a screening test to identify a subgroup of patients at risk of hypotension so that

clinicians can focus vigilance and care. The resulting preparedness would ensure

prompt therapeutic intervention. The efficacy of prompt initiation of appropriate ther-

apy has been shown with severe sepsis [3], shock [4], and acute coronary syndrome [5].

Hemodynamic instability with the potential to lead to an HE may be detectable by

sophisticated analysis of routinely monitored physiologic data, since they might reflect

the underlying dynamics of the cardiovascular neurohumoral controls reacting to

pathological stress. Continuous and quantitative analysis of complex medical data is a

suitable task for a computer in comparison with a human clinician. In particular,

multi-parameter time series of physiologic variables may contain subtle patterns that

are a signature of impending frank hemodynamic instability, and such patterns are best

identified and characterized by machine learning algorithms. Real-time advance alerts

can change ICU care from “reactive” to “proactive” [6].

There has been limited research at the intersection between pattern recognition and

hypotension analysis. Among the few past research efforts, one approach utilized a

wavelet-based similarity measure and time-series retrieval to yield an area under recei-

ver operating characteristic curve (AUC) of 0.83 in predicting vasopressor onsets [7,8].

The recent PhysioNet Challenge on hypotension prediction was successful in motivat-

ing related research, and the winner scored an accuracy of 93% in a test data set of 40

patients [9]. The importance of automated or semi-automated assistance in analyzing

multimodal ICU data is also increasingly recognized [10].

As a first step toward an automated hypotensive risk stratifier, the main objective of

the current study was to investigate the possible existence of discriminatory patterns in

ICU data that can distinguish impending hypotensive episodes from normotension. To
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conduct the investigation, artificial neural networks were deployed to find the discrimi-

natory patterns, in both binary classification (hypotensive vs. normotensive) and regres-

sion (blood pressure estimation). We anticipate that the results reported in this paper

will be of interest to biomedical engineers interested in developing decision support

systems as well as to ICU clinicians.

Methods
Data compilation

A subset of the Multi-parameter Intelligent Monitoring for Intensive Care (MIMIC) II

database [2] was analyzed in this study. For details about the publicly available MIMIC

II database, please refer to its documentation [11]. The time series data in the MIMIC

II database are organized into records, each of which corresponds to a particular ICU

stay. The records that met the following inclusion criteria comprised the subset:

• The record was from an adult patient.

• Minute-by-minute time series of heart rate (HR) and systolic (SBP), diastolic

(DBP), and mean arterial blood pressure (MAP) computed by bedside monitors

were present.

• Age and medication information, which is part of the clinical data in the MIMIC

II database, was present.

• Hemodynamic time series and clinical data had been matched (i.e., it was certain

that the time series and clinical data had come from the same ICU stay of the

same patient).

From each selected record, one or more examples were compiled, depending on the

compilation mode (see below for more details). Each example consisted of three time

intervals: (1) an observation window of either 30 or 60 minutes; (2) a target window of

30 minutes; and (3) a gap of either 1 or 2 hours separating the observation and target

windows. The information in the observation window served as the basis of the inputs

to the pattern classifiers and a prediction was generated at the end of the observation

window. This setup is graphically illustrated in Figure 1. Different observation window

sizes were analyzed to see if observing the time series for a longer period time would

improve prediction, whereas different gap sizes investigated whether predicting further

into the future corresponds to a more challenging problem.

Each target window was labeled either “control” or “hypotensive”. Although there are

a number of possible definitions of HE, we arbitrarily defined an HE as a 30 minute

period in which MAP was less than 60 mmHg and greater than 10 mmHg for at least

90% of the 30 minute period. Any 30 minute window that did not meet the HE defini-

tion and contained MAP values between 10 and 200 mmHg for more than 90% of the

window was regarded as a control (normotensive) example. The lower and upper

bounds of 10 and 200 mmHg served as a crude filter that eliminated physiologically

unlikely outliers. Examples with target windows that satisfied neither definition were

excluded from the study. For each target window, the corresponding observation win-

dow was also checked for physiologic validity; all of the 4 time series (HR and 3 arter-

ial blood pressure (ABP)) in the observation window must have contained values

between 10 and 200 (in mmHg and bpm for ABP and HR, respectively) for more than
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95% of the window. All examples with observation windows that failed to pass this

validity check were excluded from analysis.

In addition, there were two example compilation modes: single and multiple. In sin-

gle compilation, only one example was obtained from each record. Because there were

far fewer hypotensive than control examples, each record was checked for a hypoten-

sive example first. Control examples were compiled from the records that contained

no hypotensive episode. Since each record almost always contained multiple control or

hypotensive examples, one example was randomly selected, with equal probabilities, to

be included in the data. In multiple compilation, on the other hand, a 30 minute slid-

ing window with no overlap traversed each record, and as many examples as possible

were compiled, provided that the validity checks for the observation and target win-

dows were passed.

Feature extraction

For feature extraction, two additional time series were derived as follows:

• Pulse pressure (PP) was derived using PP = SBP - DBP.

• Relative cardiac output (CO) was estimated using CO = HR × PP according to the

Windkessel model [12]. This estimation differs from the actual cardiac output by a

scalar multiple, equal to arterial compliance, but this relative CO was sufficient for

the purpose of pattern recognition. Sun et al. [13] evaluated this Windkessel esti-

mator against thermodilution CO measurements and reported that its estimation

error was lower than several more advanced CO estimation methods, despite its

crude nature.

Based on all 6 time series (HR, SBP, DBP, MAP, PP, CO) and clinical data, a total of

102 features were extracted from the observation window of each example. The

Figure 1 A graphical illustration of the observation window, gap, and target window with respect
to prediction time.
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strategy was to rely on pattern recognition tools for finding discriminatory information

in the time series without any a priori knowledge. Thus, it was crucial that a wide

selection of features were included to capture various signal aspects and hence to max-

imize the likelihood of finding discriminatory information.

The features were loosely classified into 4 groups: statistical, wavelet, cross-correla-

tion, and clinical features. These feature groups are described in the ensuing sections.

Statistical features

Mean, median, standard deviation, variance, interquartile range, skewness, kurtosis, and

linear regression slope were computed for each of the 6 time series. Mean and median

quantitatively represent the magnitude of each physiologic variable, whereas standard

deviation, variance, and interquartile range describe its variability. Variability may be

indicative of the effort of the cardiovascular system to control blood pressure and of

the related hemodynamic instability [14]. Skewness and kurtosis are the third and

fourth moments of amplitude distribution, respectively, and reflect the shape of the

distribution. Lastly, linear regression slope was calculated using the least-squares criter-

ion and measures the average rate of change in the observation window.

Cross-correlation features

The cross-correlation at zero lag, which is a measure of coupling between two time

series, was computed for all possible time series pairs. If two distinct time series are

denoted as X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, the cross-correlation between

them was computed as follows:
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Wavelet features

To capture relative energies in different spectral bands, a 5-level discrete wavelet

decomposition of each of the 6 time series was conducted with the Meyer wavelet.

Such a wavelet decomposition breaks down the variability of a given time series into

different spectral bands. If the decomposition for a given time series X is denoted as

WX = [a5 d5 d4 ... d1], where a5 is the approximation signal and dk is the kth-level detail

signal, the energy in a5 was computed as follows:
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where ||•|| is the Euclidean norm. Similarly, the energy in the kth-level detail signal

was:
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for k = 1, 2, ..., 5. Finally, the relative energy contribution from each decomposition

level was calculated as follows:
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These wavelet energy features have been frequently applied in a variety of signal pro-

cessing and pattern recognition studies (e.g., [15-17]).

Clinical features

Patient age was utilized as a feature to examine if certain age groups are more likely to

develop HEs. Since the same age was recorded for all examples from the same patient,

it only provided an a priori bias, rather than temporally localized information.

Also, the amounts of hemodynamically active medications, in mcg/kg, delivered to

the patient during the observation window were computed. Such medications influence

blood pressure, and logically, their administration should impact short-term blood

pressure level. Two types of medications were considered as separate features: 1) vaso-

constrictors and positive inotropic drugs which tend to raise blood pressure, and 2)

vasodilators, diuretics, and sedatives which tend to decrease blood pressure. The first

group included the following medications: neosynephrine, norepinephrine, vasopressin,

dopamine, dobutamine, epinephrine, milrinone, and isuprel. The following medications

comprised the second group: nitroglycerine, nitroprusside, diltiazem, esmolol, labetalol,

and lasix.

Dimensionality reduction

Each extracted feature was first normalized to be zero-mean and unit-variance. Subse-

quently, the raw feature dimensionality of 102 was reduced via principal component

analysis (PCA). PCA is a popular, widely-known dimensionality reduction algorithm

that has been employed in previous pattern recognition applications in biomedical

engineering, including prosthetic control based on the myoelectric signal [18] and clas-

sification of gene expression microarray data [19]. In this study, PCA was executed on

training data and retained the principal components with the largest eigenvalues that

captured approximately 90% of the total variance. Both training and test data were pro-

jected onto the same feature space defined by the selected principal components.

Across different training data sets in cross-validation (the details of the cross-validation

are to be discussed in the next section), the reduced dimensionality ranged from 15 to

19. This substantial reduction in dimensionality implies that PCA removed redundancy

among the features. The transformed features in reduced dimensionality served as the

inputs to classification and regression models, which are described next.

Classification

According to the label assigned to each example (control or hypotensive), artificial

neural networks were trained to perform a binary classification. Independent neural

networks were trained for different combinations of gap and observation window sizes,

as well as for different cross-validation folds and compilation modes. In both
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compilation modes, a 5-fold cross-validation was conducted to evaluate classification

performance. However, in order to balance the two groups in training data so that the

classifier is prevented from favoring the majority group, a subset of the majority group

(which was always the control group) was randomly sampled without replacement.

This randomized sub-sampling was repeated 10 times. On the other hand, test data

were left unbalanced. Moreover, the partition between training and test data was con-

ducted with respect to records rather than individual examples. In other words, exam-

ples from the same record belonged exclusively to either training or test data. The

assumption here was that examples from the same record, which could be immediately

next to one another, are likely to contain similar patterns. Then, once trained on sev-

eral examples, other examples from the same record may be easier to classify, which

would lead to over-estimated classification performance.

Feed-forward, 3-layer neural networks with one hidden layer of 20 hidden units were

trained. The neural networks utilized the log-sigmoid activation function in both the

hidden and output layers. Because the log-sigmoid activation function is bounded

between 0 and 1, it is an appropriate choice for outputs in probability, which is the

case in this binary classification. Also, it has been proven that this 3-layer architecture

with sigmoid activation functions can approximately realize any continuous input-out-

put mapping [20]. The threshold on the posterior probability was determined from the

classifier’s receiver operating characteristic (ROC) curve based on training data. The

selection criterion for the optimal threshold was the following:

Th sensitivity Th specificity Ths
Th

= +arg max{ ( ) ( )} (7)

where Ths is the selected threshold and Th is the threshold variable ranging from 0

to 1. A random 20% partition of the training data was utilized for validation. During

training, early stopping based on the validation set was employed for regularization.

For performance evaluation, AUC, accuracy, sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) were calculated.

Regression

To investigate the feasibility of directly estimating the MAP in the target window, a

regression approach was also pursued. The same neural network architecture as that in

classification was employed, except that the activation functions were the hyperbolic

tangent sigmoid and linear function in the hidden and output layers, respectively. This

combination of activation functions ensures a dynamic swing on the output that is

necessary for regression. Since the binary labels are irrelevant to regression, the distinc-

tion between the control and hypotensive groups was eliminated. Instead, the blood

pressure in each target window was represented by the median MAP in the window. A

5-fold cross-validation was employed again; however, due to the large number of

examples in multiple compilation (over 141,000), a subset of 2,500 examples was ran-

domly constructed without replacement as training data. This randomized sub-sam-

pling was repeated 10 times. As in classification, the inclusion of examples from the

same record in both training and test data was prohibited.

Regression performance was evaluated by computing a mean absolute error, MAE,

which was computed as follows:
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where N is the total number of test cases, ŷ i is the ith predicted MAP, and yi is the

corresponding true MAP. Furthermore, a linear regression line was fit to the scatter

plot of true versus predicted MAP with the least-squares criterion. The least squares

were iteratively reweighted with a bisquare weighting function. The slope and intercept

of the regression line were then reported as performance metrics. In perfect regression,

the slope and intercept should be 1 and 0, respectively. Lastly, the Pearson correlation

coefficient between the predicted and true blood pressure was computed.

Results
Data compilation

After applying the inclusion criteria, a total of 1,311 records were compiled from

MIMIC II for analysis. The median duration of the records included in this study was

79.8 hours with an interquartile range of 100.2 hours (Q1 = 41.7 h, Q3 = 141.9 h).

The exact numbers of compiled examples for the control and hypotensive groups

were dependent on gap and observation window sizes as well as compilation mode. In

single compilation, the number of examples ranged from 490 to 542 for the control

group and from 317 to 333 for the hypotensive group. In multiple compilation, it var-

ied from 129,853 to 137,753 and from 3,460 to 3,652 for the control and hypotensive

groups, respectively.

Classification

Tables 1 and 2 tabulate the classification results from the single and multiple compila-

tion modes, respectively. Several observations stand out. First, overall performance is

much superior with multiple compilation. For instance, mean AUCs are roughly 10%

greater in multiple than in single compilation. Second, changes in observation window

size did not result in appreciable differences in performance. Third, the increase in gap

size from 1 to 2 hours caused a decrease in almost every performance measure. This is

an expected result since predicting farther into the future is intuitively a more challen-

ging problem. Fourth, sensitivities and specificities seem fairly balanced, which proves

the efficacy of the balancing via sub-sampling. A balance between sensitivity and speci-

ficity would not naturally be achieved without such a balancing mechanism in strongly

unbalanced data sets like the one from multiple compilation. Fifth, the PPVs in Table

2 are barely over 10%, whereas those in Table 1 are over 60%. This is due to the fact

Table 1 Classification performance with single data compilation (mean ± SD)

Gap = 1 h Gap = 2 h

ObsWin = 0.5 h ObsWin = 1 h ObsWin = 0.5 h ObsWin = 1 h

AUC 0.809 ± 0.042 0.819 ± 0.029 0.786 ± 0.014 0.787 ± 0.047

Accuracy 0.737 ± 0.026 0.758 ± 0.032 0.713 ± 0.007 0.714 ± 0.040

Sensitivity 0.745 ± 0.053 0.748 ± 0.064 0.743 ± 0.041 0.755 ± 0.025

Specificity 0.732 ± 0.036 0.764 ± 0.032 0.694 ± 0.025 0.688 ± 0.051

PPV 0.633 ± 0.030 0.665 ± 0.039 0.614 ± 0.010 0.606 ± 0.050

NPV 0.826 ± 0.031 0.833 ± 0.037 0.810 ± 0.019 0.819 ± 0.024
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that the mismatch between the hypotensive and normotensive classes was much more

prominent in multiple than single compilation.

Regression

Tables 3 and 4 report the regression results from single and multiple compilation,

respectively. Similar to the classification results in Tables 1 and 2, multiple compilation

is associated with better regression performance than single compilation. Also, the

increase in gap size from 1 to 2 hours induced worse performance, whereas observa-

tion window size had minimal impact on performance.

The mean MAEs in Table 4 are roughly 10%, which translates into a deviation from

true MAP by no more than 10 mmHg since MAP is usually below 100 mmHg.

Furthermore, the linear regression slopes and intercepts in Table 4 are quite close to

the ideal values of 1 and 0, respectively, although the moderate correlation coefficients

reveal that there is non-trivial variance in the scatter plot.

Discussion
HE Definition

The HE definition employed in this study is comprised of two parameters: the 60

mmHg threshold and 30 minute duration. However, there are many possibilities for

these parameters, which makes the particular choices arbitrary. Although the threshold

of 60 mmHg is an accepted clinical guideline [21] and has often been used in previous

studies (e.g., [22,23]), other threshold values, usually ranging from 65 to 75 mmHg,

have also been utilized (e.g., [24,25]). Physiologically, thresholds between 60 and 65

mmHg seem to be appropriate since the autoregulation of blood flow to vital organs is

known to cease in that MAP range [26]. Also, while the 30 minute duration has been

used as an HE threshold before (e.g., [27]), durations as short as 1 minute (e.g., [28])

and as long as 1 hour (e.g., [22]) have also been employed. One of the reasons for this

variability is that the two parameters in the definition depend on each other. For

example, a duration of mere 5 minutes would be detrimental when MAP is only 20

mmHg but perhaps not when it is 50 mmHg. In pattern classification paradigms,

Table 2 Classification performance with multiple data compilation (mean ± SD)

Gap = 1 h Gap = 2 h

ObsWin = 0.5 h ObsWin = 1 h ObsWin = 0.5 h ObsWin = 1 h

AUC 0.914 ± 0.018 0.918 ± 0.015 0.890 ± 0.019 0.894 ± 0.019

Accuracy 0.863 ± 0.014 0.858 ± 0.016 0.827 ± 0.021 0.832 ± 0.019

Sensitivity 0.812 ± 0.030 0.826 ± 0.026 0.788 ± 0.044 0.794 ± 0.036

Specificity 0.864 ± 0.014 0.859 ± 0.016 0.828 ± 0.022 0.833 ± 0.019

PPV 0.138 ± 0.012 0.136 ± 0.013 0.111 ± 0.014 0.114 ± 0.009

NPV 0.994 ± 0.002 0.995 ± 0.001 0.993 ± 0.002 0.993 ± 0.002

Table 3 Regression performance with single data compilation (mean ± SD)

Gap = 1 h Gap = 2 h

ObsWin = 0.5 h ObsWin = 1 h ObsWin = 0.5 h ObsWin = 1 h

MAE (%) 16.40 ± 1.62 16.16 ± 1.54 16.67 ± 1.73 17.57 ± 2.76

CorrCoeff 0.628 ± 0.095 0.604 ± 0.075 0.604 ± 0.051 0.574 ± 0.109

LR Slope 0.888 ± 0.219 0.901 ± 0.140 0.859 ± 0.130 0.746 ± 0.171

LR Int (mmHg) 8.11 ± 16.41 5.98 ± 10.37 10.92 ± 9.93 19.55 ± 12.52
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however, a threshold is a necessity because the distinction between hypotensive and

normotensive examples is required for training. Given that it is impossible to find a

perfect HE definition that would make the optimal decision for all cases, the task

became selecting a reasonable definition instead. We believe that the HE definition in

this study is a good compromise among the possible definitions.

Moreover, a related issue is that the binary classification approach required a hard

class membership, and performance evaluation on borderline examples may have been

too strict. For instance, a target window that consistently exhibits MAP between 60

and 65 mmHg would be a control example in this study. If the classifier predicts an

HE for this target window, the validity of counting this as a false positive may be ques-

tionable, especially from a clinical perspective. In fact, the primary purpose of the

regression approach was precisely to circumvent this issue. Regression avoids the bor-

derline problems by dealing with softer targets, namely actual MAP values.

Essentially, this study highlights the merit of the pattern recognition methodology as

a whole in elucidating the existence of discriminatory information in the hemodynamic

time series, rather than that of the trained classifiers as fixed models. When one pre-

fers a different HE definition, data compilation is the only step that needs to be modi-

fied. With a new data set, a new classifier can easily be trained following the same

subsequent steps.

Pattern recognition performance

The classification and regression results in Tables 1, 2, 3, and 4 collectively indicate

that multiple compilation led to more effective training data than single compilation.

This finding implies that examples from the same record are not completely redundant

and can be viewed as independent examples that encapsulate non-overlapping, discri-

minatory information. Given that single compilation can be seen as a random sample

of multiple compilation, it can be inferred that single compilation was similar to using

only a subset of available data for training, which is expected to result in weaker train-

ing. Further, this corroborates the fact that ICU data are generally non-stationary [10].

That is, the physiologic state of a patient varies over time during the same ICU stay,

and hence data from different times in the same record should contain informative

patterns. This kind of multiple compilation has been successfully applied to swallow

segmentation with neural networks [29].

The promising classification and regression results based on multiple compilation

(Tables 2 and 4) indicate that there exist discriminatory patterns in the data. However,

accuracy should be interpreted with caution in such an unbalanced binary classification

because favoring the majority class can easily guarantee a high accuracy. For example,

there were up to 40 times as many control as hypotensive examples in multiple compi-

lation. In this case, a classifier trained to blindly predict “control” all the time would

Table 4 Regression performance with multiple data compilation (mean ± SD)

Gap = 1 h Gap = 2 h

ObsWin = 0.5 h ObsWin = 1 h ObsWin = 0.5 h ObsWin = 1 h

MAE (%) 9.86 ± 0.31 9.67 ± 0.31 11.00 ± 0.27 10.67 ± 0.35

CorrCoeff 0.721 ± 0.026 0.730 ± 0.012 0.660 ± 0.038 0.683 ± 0.030

LR Slope 0.996 ± 0.029 0.985 ± 0.020 0.979 ± 0.025 0.960 ± 0.033

LR Int (mmHg) 0.13 ± 2.47 1.08 ± 1.59 0.97 ± 1.90 2.82 ± 2.34
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achieve an accuracy over 97%. In comparison, AUC could be a more reliable perfor-

mance measure, since it reflects a compromise between sensitivity and false alarm rate.

Hence, the mean AUCs over 90% in Table 2 represent excellent overall classification

performance. Bradley [30] has discussed the desirable properties of AUC as a classifica-

tion performance metric in comparison with the conventional accuracy, stating that

AUC is threshold-independent and invariant to a priori class probabilities.

On the other hand, the PPVs in Table 2 indicate that only about 1 in 8 positives is

expected to be true at best. Since the corresponding sensitivities in Table 2 are reason-

ably high, we infer that the primary cause of the low PPVs is the overwhelming imbal-

ance between the two classes. It should be noted, however, that the prominent class

mismatch from multiple compilation reveals the true prevalence of HEs in real-life

ICUs. Low PPVs originating from low prior probabilities of positive cases are a major

problem in many classification problems, and low PPVs have been related to increased

latency in human response to alerts [31].

Utility as a hypotensive risk stratifier

Due to the low PPVs, the binary classifiers would have little clinical value as a direct

HE predictor or “alarm”. However, the clinical impact of the low PPVs can be greatly

mitigated if the pattern recognition algorithms function as a hypotensive risk stratifier

rather than an HE predictor. As mentioned in the Introduction section, there is con-

siderable clinical value in identifying a subgroup of ICU patients with higher risk of

developing an HE in the near future. The flagged patients would not necessarily need

immediate intervention (such as vasopressor therapy), but rather increased vigilance

would be appropriate. One way to implement such a risk stratifier based on the algo-

rithms developed in this study is to flag a fixed number of patients in the ICU who

exhibit the highest risk of hypotension. A trained pattern recognition algorithm from

this study would continuously monitor each patient independently, but the risk strati-

fier would monitor the ICU as a whole and suggest which patients deserve the closest

attention.

Continuous monitoring

One exciting aspect about the results in Tables 2 and 4 is that they were obtained

from serially compiled examples that comprise records in entirety. This kind of data

preparation simulates real-time continuous monitoring, and it is expected that compar-

able performance can be achieved in a real ICU. Continuous monitoring is often an

integral part of clinical decision making, as has been shown in glucose monitoring [32]

and EEG monitoring in the ICU [33]. In order to visualize how the classification and

regression algorithms of this study performed in continuous monitoring, Figures 2 and

3 were generated as examples. Predictions were made every minute with a 1 hour gap

and a 30 minute observation window. Figure 2 contains HEs, whereas Figure 3 does

not. The periods of no prediction in both figures were caused by missing or out-of-

physiologic-bound input data.

To facilitate comparison, the predicted blood pressures in the top plots of Figures 2

and 3 were shifted by one hour to account for the gap. However, no such temporal

alignment was done in the bottom plots in order to preserve the predictive nature.

Also, the reader is reminded that the predicted MAPs and probabilities of hypotension
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apply to 30 minute target windows, not individual minutes. In particular, the regres-

sion algorithm was trained to forecast the median MAP in the target window, which

caused the smoothing effect on the predicted blood pressures in Figures 2 and 3.

These plots, especially Figure 3, once again support the finding that multiple compi-

lation resulted in better performance than single compilation. In Figure 2, multiple

compilation resulted in lower probabilities of hypotension than single compilation

between 200 and 202 hours, exhibiting a more drastic difference between the normo-

tensive and hypotensive regions. In Figure 3, multiple compilation shows better regres-

sion results and lower probabilities of hypotension than single compilation.

Nonetheless, note that the predictions from multiple compilation are far from perfec-

tion. For instance, in Figure 2, not every 30 minute window in the hypotensive region

roughly after 203 hours is an HE. Also, in both Figures 2 and 3, there are times when

regression results substantially deviate from true MAPs. These observations again cor-

roborate that a direct HE predictor would be disruptive in the ICU.

Figure 2 An example of minute-by-minute continuous prediction with HEs. The gap and observation
window sizes are 1 and 0.5 hour, respectively. The top plot shows the true and predicted (from regression)
MAPs, and the dashed line at 60 mmHg represents the HE threshold. The bottom plot shows the
corresponding posterior probabilities of hypotension from the binary classifier. The results from both single
and multiple compilation are shown. The periods of no prediction are due to inadequate input data. To
facilitate comparison in the top plot, the predicted values were shifted to remove the gap. This implies
that the predictions were actually generated 1 hour in advance. However, the bottom plot was not
temporally aligned to preserve the predictive nature.
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Discriminatory information and physiology

Establishing a connection between the discriminatory features and physiology is a non-

trivial task since machine learning finds discriminatory information from a purely

mathematical perspective. The nonlinearity of the neural network and multi-dimen-

sional feature space make the physiological interpretation even more challenging.

Nevertheless, an essential step in this endeavor would be to scrutinize the PCA results.

Although PCA is optimized to capture variance rather than discrimination, the promis-

ing classification and regression performance in this study implies that PCA success-

fully captured discriminatory information as well. Figures 4 and 5 provide a useful

visualization of the feature contributions to the principal components with the 19 lar-

gest eigenvalues that captured 90% of the total variance in the entire multiple compila-

tion data. Figure 4 shows the statistical and clinical features, whereas Figure 5

illustrates the cross-correlation and wavelet features. The actual PCA loading behind

the results in Tables 1, 2, 3, and 4 were slightly different from Figures 4 and 5 because

PCA was conducted for different training data sets (due to cross-validation and sub-

sampling) to generate those results. The size of each rectangle corresponds to the mag-

nitude of loading, whereas the filled and unfilled rectangles represent positive and

negative loading coefficients, respectively.
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Figure 3 An example of minute-by-minute continuous prediction with no HE. For details, please see
the Figure 2 caption.
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The first two principal components mostly capture variance and magnitude informa-

tion, respectively, suggesting that the dynamics and magnitude of the examined physio-

logic variables in the observation window are effective indicators of impending HEs. In

addition, it is noticeable in the first two principal components that the contribution of

HR is much less than that of the other 5 time series, while the fourth principal compo-

nent mainly captures HR information. This suggests that HR is independent from the

other physiologic variables which are mathematically correlated as a group. It is also

worth noting that age and hemodynamically-active medications accounted for little

variance in the data. Thus, it is inferred that perhaps only two time series, i.e., HR and

one of the remaining 5 time series, might capture most of the non-redundant variance

in the data and lead to comparable pattern recognition performance.

Signal quality

One limitation of this research work is that no metric of signal quality was incorpo-

rated. Although crude upper and lower bounds based on physiologic feasibility were

utilized, they certainly did not completely exclude all examples with artifacts and cor-

ruption. As a result, such unwanted components of the data may have clouded truly

discriminatory information, confusing the neural networks during training. Previous

research efforts have developed quantitative signal quality indices (SQI) for ECG [34]

and ABP [35]. Since the time series utilized in this study were computed based on

ECG and ABP signals, the ECG and ABP SQIs may well be employed as indirect SQIs.

Figure 4 A visual illustration of PCA loading on the first 19 principal components that captured
90% of the total variance in the entire multiple compilation data. Only the statistical and clinical
features are shown; see Figure 5 for the cross-correlation and wavelet features. The principal components
are sorted in decreasing order of eigenvalue, with PC1 associated with the largest eigenvalue. The gap and
observation window were 1 hour and 30 minutes long, respectively. The size of each rectangle is directly
proportional to the magnitude of the loading. Filled and unfilled rectangles correspond to positive and
negative loading coefficients, respectively.
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Conclusions
This work investigated the existence of discriminatory patterns in ICU data that can be

indicative of impending HEs. The search for the discriminatory information was con-

ducted via artificial neural networks. The binary classification (normotensive vs. hypo-

tensive) and regression (prediction of actual MAP) performance confirmed that

discriminatory patterns exist. By utilizing multiple examples from the same record

(multiple compilation), promising predictive performance was achieved 1 hour in

advance by observing the past 30 minute data. Poor PPVs arising from low HE preva-

lence limits the utility of the trained algorithms as direct HE predictors. However, a

hypotensive risk stratifier based on the pattern recognition algorithms stemming from

this study can mitigate adverse effects of the low PPVs. Such risk stratification would

be of significant clinical value in busy ICU environments. The immediate future work

is to implement and evaluate a hypotensive risk stratifier in a real-time clinical trial.
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