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We study an Abelian gauge theory in 2+1 dimensions which has surprising theoretical and phenomenologi-
cal features. The theory has a vanishing coefficient for the square of the electric field ei

2, characteristic of a
quantum critical point with dynamical critical exponent z=2, and a level-k Chern-Simons coupling, which is
marginal at this critical point. For k=0, this theory is dual to a free z=2 scalar field theory describing a
quantum Lifshitz transition, but k�0 renders the scalar description nonlocal. The k�0 theory exhibits prop-
erties intermediate between the �topological� pure Chern-Simons theory and the scalar theory. For instance, the
Chern-Simons term does not make the gauge field massive. Nevertheless, there are chiral edge modes when the
theory is placed on a space with boundary and a nontrivial ground-state degeneracy kg when it is placed on a
finite-size Riemann surface of genus g. The coefficient of ei

2 is the only relevant coupling; it tunes the system
through a quantum phase transition between an isotropic fractional quantum Hall state and an anisotropic
fractional quantum Hall state. We compute zero-temperature transport coefficients in both phases and at the
critical point and comment briefly on the relevance of our results to recent experiments.

DOI: 10.1103/PhysRevB.82.085102 PACS number�s�: 73.43.Cd, 73.43.Nq

I. INTRODUCTION

In 2+1 dimensions, standard arguments of effective-field
theory suggest that in the presence of parity �P� and time-
reversal invariance �T� violations, the infrared dynamics of a
gauge field should be controlled by the Chern-Simons La-
grangian. Even in the Abelian case, this action contains a
great deal of physics.

In the context of the fractional quantum Hall effect on the
plane, where the background magnetic field breaks P and T,
the coefficient of the Chern-Simons action encodes the Hall
conductance, and governs the charge and statistics of the
quasiparticle excitations �see, e.g., Refs. 1 and 2�. Further-
more, when the system is placed on a higher genus Riemann
surface or a surface with boundaries, the existence of degen-
erate ground states �split by exponentially small corrections
in the system size� and gapless boundary excitations follows
directly.3

The argument that the Chern-Simons term is the single
most relevant term involving only a gauge field implicitly
assumes the conventional scaling of the coordinates and
fields �that occurs in, e.g., relativistic systems�. More gener-
ally, one can imagine scale-invariant theories with a dynami-
cal critical exponent z. In such a theory, under a scale trans-
formation controlled by a parameter �,

t → �zt, x → �x �1.1�

with the components of the gauge field scaling as above but
with inverse powers of �. Choosing z=1, which is also con-
sistent with Lorentz invariance, the Chern-Simons term is
marginal and the leading irrelevant operator is the Maxwell
term for the gauge field. The theory flows to pure Chern-
Simons theory in the deep infrared �IR�. However, the
Chern-Simons term itself is topological, and does not give a

preferred choice of scaling; it is marginal for any choice of z.
It is therefore natural to ask how this picture is modified
when general z is allowed—especially in the context of
condensed-matter systems, where Lorentz invariance is not a
fundamental symmetry. Here, we consider Abelian Chern-
Simons theory and focus on the specific case z=2.

A. z=2 Abelian gauge theory of the quantum Lifshitz transition

It is conventional to begin the study of electron systems,
e.g., the Hall system, by assuming the existence of a con-
served �electromagnetic� current. Thus, we study a system
described by a conserved current J. Conservation of the cur-
rent allows one to introduce a gauge field, a�,

J� =
1

2�
������a�. �1.2�

We use the lower case a� to distinguish this gauge field from
the electromagnetic field A�. We will later couple J� to the
electromagnetic field A� in order to compute response func-
tions. Greek indices run over all three coordinates, t signifies
the temporal direction, and Roman indices stand for the two
spatial directions. Since the flux of this gauge field is the
electric charge, J0= 1

2��ij�iaj, the gauge field must be non-
compact. Otherwise, instantons could change the flux of ai
by multiples of 2�, which would violate conservation of
electric charge.

The z=2 effective action we consider has a Chern-Simons
term, as we discuss below. When the Chern-Simons term has
vanishing coefficient, the action is
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S =
1

g2� dtd2x�ei�tai + at�iei − H�e,a�� , �1.3�

where the Hamiltonian H�e ,a� equals

H�e,a� =
�2

2
��iej�2 +

1

2
b2, �1.4�

with a “magnetic field” b given by

b = �ij�iaj . �1.5�

The reason for the quotation marks is that J�= 1
2�������a�

implies that b is actually the charge density. One might have
expected ei�tai+at�iei to have a different coefficient than
b2 /2 but we can rescale ei to make the two coefficients the
same. The action, Eq. �1.3�, is written in first-order phase-
space formalism where the electric field ei and vector field
a� are treated as independent variables. Equation �1.3� is
invariant under the following z=2 scaling of coordinates and
fields:

t → �2t, x → �x, at → �−2at, ai → �−1ai, ei → �−1ei.

�1.6�

Because the action is quadratic, it is possible to integrate out
the electric field and write the action solely in terms of the
gauge field. This gauge field has quadratic dispersion. Equa-
tion �1.3� is called the quantum Lifshitz action and describes
a z=2 gauge field.

The ei
2 operator is relevant—dominating in the IR—and

its coefficient must be fine tuned to zero in order to sit at the
critical point described by Eq. �1.3�. If its coefficient �in the
Hamiltonian� is positive, the ��iej�2 operator can be ignored.
One can then integrate out the electric field, thereby recov-
ering a Maxwell theory with the “speed of light” determined
by the magnitude of the coefficient of the ei

2 term. If the
coefficient of ei

2 is negative �in which case, a higher-order
term such as �ei

2�2 must be present with positive coefficient
to stabilize the theory�, the system is in an anisotropic phase
with spontaneously broken rotational symmetry. We discuss
a few aspects of this phase later in the more general setting in
which the Chern-Simons term has arbitrary coefficient.

The theory also admits the marginal operator �ei
2�2. This

operator violates the shift symmetry e→e+const. �For this
reason, it does not occur in the effective theory of the square
lattice quantum dimer model4 at the Rokhsar-Kivelson
point.5� As noted in the previous paragraph, such a term can
stabilize the theory if the coefficient of ei

2 is negative. If �ei
2�2

is added to the Hamiltonian with a negative coefficient, the
Hamiltonian is unbounded from below and the theory has no
vacuum unless a higher-order term such as �e2�3 term is
present with positive coefficient. If �ei

2�2 is present with a
positive coefficient, it is known to be marginally irrelevant
from computations in Refs. 4 and 6.

In 2+1 dimensions, a gauge field may be dualized into a
scalar field. In the context of z=2 scaling, we introduce a
scalar field by writing J�= ��t� ,�i�

2��. The conservation
equation for J� follows from the � field equation derived
from the Lagrangian,

L =
1

2
� dtd2x���t��2 − �2��2��2� . �1.7�

� has scaling dimension zero and we have introduced the
marginal parameter �2. In this language the part of the rel-
evant e2 deformation is played by the ����2 operator.

The scalar form of the action, Eq. �1.7�, describes a Lif-
shitz scalar. Equation �1.7� has been studied in the context of
phase transitions in both magnetically7 and topologically
ordered8 systems. It has also inspired a generalization of
gauge/gravity duality to systems with dynamical scale
invariance.9 Further, it provides a simple 2+1-dimensional
example of a theory that displays universal subleading terms
in the expression for the entanglement entropy.10 See Ref. 11
for a calculation of universal subleading terms at the free-
field and Wilson-Fisher fixed points of the O�N� model. It
would be interesting to consider the behavior of the entangle-
ment entropy as a function of e2 coefficient in the theory
considered in this paper.

B. Adding the Chern-Simons term

The action, Eq. �1.3�, preserves parity and time-reversal
invariance. The Chern-Simons operator, which explicitly
breaks these symmetries, may be appended to the action

S =� dtd2x� 1

g2 �ei�tai + at�iei − H�e,a�� +
k

4�
����a���a�� .

�1.8�

The Chern-Simons term is marginal under the scaling, Eq.
�1.6�, and therefore competes on equal footing with the Lif-
shitz terms in determining the IR dynamics. This is the first
surprise, and it should be contrasted with the situation in
Maxwell-Chern-Simons theory, where the Chern-Simons
term renders the gauge field massive. To get some intuition
into the effect of the Chern-Simons term on the Lifshitz
theory, it is useful to compute the propagators of this qua-
dratic theory,

�ei�− i	n,− p�ej�i	n,p�	

= −
g2p2

	n
2 + �̃2p4 Pij

T�p� −
g6�2k̃2p2
ij + g4k̃	n�ij

	n
2 + �̃2p4 ,

�ei�− i	n,− p�aj�i	n,p�	 = −
g2	n

	n
2 + �̃2p4 Pij

T�p� −
g4�2k̃pi� jkpk

	n
2 + �̃2p4 ,

�ei�− i	n,− p�at�i	n,p�	

=
− ig2��	n

2 + �2p4�pi − �2g2k̃	n�ijpj�
p2�	n

2 + �̃p4�
,

�ai�− i	n,− p�aj�i	n,p�	 = −
g2�2p2

	n
2 + �̃2p4 Pij

T�p� −
g2

p2
 pipj

p2 � ,

�at�− i	n,− p�ai�i	n,p�	 =
ig2	npi

p4 −
i�4g4k̃�ijpjp

6

p4�	n
2 + �̃2p4�

,

MULLIGAN, NAYAK, AND KACHRU PHYSICAL REVIEW B 82, 085102 �2010�

085102-2



�at�− i	n,− p�at�i	n,p�	 =
g2�	n

4 + ��2 + �̃2�	n
2p4 + �4p8�

p4�	n
2 + �̃2p4�

,

�1.9�

where Pij
T�p�=
ij − pipj / p2 is the transverse projector,

k̃�k /2�, and �̃2=�2�1+�2g4k̃2�. In Eq. �1.9�, we have fixed
the gauge by inserting a delta function 
��iai−	� into the
action and integrating d	 exp�− 1

2�	2�. For simplicity, we
have taken �=1; radiation gauge �iai=0 is �=0. The
Faddeev-Popov ghosts decouple and have been dropped. As
may be seen from Eq. �1.9�, the Chern-Simons term modifies
the propagators from their form in the pure Lifshitz theory,
but does not make them massive.

Besides the ei
2 term, there are no other relevant or mar-

ginal operators consistent with gauge invariance, spatial
SO�2� rotation invariance, and temporal and spatial transla-
tion symmetry. This is true even when parity and time-
reversal invariance are broken. One might worry about the
fate of the marginally irrelevant �e2�2 operator mentioned
above. If we add this term with coefficient � to the Lagrang-
ian then the renormalization group �RG� equation for � is

d�

d�
= −

�2g4

2��̃3
9

2
+ 16g4k̃2�̃2� . �1.10�

Thus, the operator is marginally irrelevant. If a system has
only a discrete rotational symmetry dictated by the underly-
ing lattice, then there will be additional operators which are
marginal at tree level �and run at one loop for k=0 �Refs. 4
and 6��. However, we have in mind systems in which the
lattice plays little role and underlying spatial anisotropies are
very small. Thus, they can be ignored except, perhaps, at
extremely low energies, where even a tiny initial anisotropy
may flow to larger values.

Thus, in this paper, we study the gauge field action

S =� dtd2x� 1

g2�ei�tai + at�iei −
r

2
ei

2

−
�2

2
��iej�2 −

�

4
�ei

2�2 −
1

2
b2� +

k

4�
����a���a�� .

�1.11�

For r�0, we can integrate out ei, thereby obtaining
Maxwell-Chern-Simons theory, which describes a quantum
Hall state. As we will describe in Sec. III, for r0, the
effective action, Eq. �1.11�, describes an anisotropic state.
The nature of this anisotropic state depends on whether or
not the underlying system is invariant under SO�2� rotational
symmetry. If it is, then the state spontaneously breaks the
SO�2� symmetry. It is superconducting in one direction and
insulating in the other. Otherwise, the state is a quantum Hall
state with anisotropic finite-frequency longitudinal conduc-
tivities reflective of the intrinsic anisotropy of the system.
Our main focus is the critical point at r=0 between these two
phases. Here and henceforth, we call this z=2 gauge field
action “Lifshitz-Chern-Simons theory.” We will also analyze
the r0 anisotropic phase in some detail.

We focus on the gauge theory language because there is
no local expression for the Chern-Simons coupling in the
scalar formulation of the theory. We describe how to map the
Abelian Lifshitz-Chern-Simons gauge theory onto a scalar
field theory by a nonlocal change in variables in Sec. II.
There are two perspectives on this Lifshitz-Chern-Simons
theory. From the viewpoint of the undeformed Abelian Lif-
shitz theory, Eq. �1.3�, which preserves parity and time-
reversal invariance, it is interesting to ask how the Chern-
Simons “deformation” affects the gapless z=2 modes. Since
the Chern-Simons coupling must be quantized �as we see
below�, it cannot be viewed as a small deformation, but it is
nevertheless useful to view it as a deformation of the Lifshitz
theory. Alternatively, we may view the action, Eq. �1.3�, as a
deformation of a Maxwell-Chern-Simons theory. Again, this
is not a small deformation but, rather, one which is large
enough to drive the coefficient of the Maxwell term to zero
�while keeping the coefficient of ��iej�2 positive�, thereby
driving the system to a critical point. Passing through this
critical point, the system leaves the topological phase de-
scribed in the IR by pure Chern-Simons theory and goes into
an anisotropic phase.

The structure of this paper is as follows. In Sec. II A, we
canonically quantize the Lifshitz-Chern-Simons theory and
find that the z=2 gapless modes persist. However, these
modes acquire a parity-violating unit of spin. In Sec. II B, we
put the theory on a nontrivial Riemann surface and find that
despite the presence of gapless bulk modes, the nontrivial
ground-state degeneracy �as defined carefully in a finite-size
system� of the model persists. In Sec. II C, we argue that
when the theory is placed on a surface with boundary, we
find gapless chiral edge modes which persist in the presence
of disorder. In Sec. III A, we describe the anisotropic phase
which arises when the ei

2 term appears in the Hamiltonian
with the “wrong sign” in a clean system. In Sec. III B, we
describe this phase in the presence of disorder. Finally, in
Sec. IV, we couple an external gauge field to the Lifshitz-
Chern-Simons theory in order to calculate various response
functions. We describe the phase diagram as a function of the
single relevant e2 perturbation.

II. CRITICAL POINT

A. Canonical quantization of the critical theory

Before studying the Lifshitz-Chern-Simons theory, we re-
call the excitation spectrum for Maxwell-Chern-Simons
theory on R3. In Ref. 12, Deser, Jackiw, and Templeton find
that the Chern-Simons coupling imparts a tree-level mass for
the linearly dispersing gauge-field excitation. This photon
obtains a mass proportional to the Chern-Simons level mul-
tiplied by the ultraviolet �UV� cutoff and carries a unit of
spin, reflecting the violation of parity. Below, we closely
follow the quantization procedure discussed in Ref. 12.

The Lifshitz-Chern-Simons action is

S =� dtd2x� 1

g2�ei�tai + at�iei −
�2

2
��iej�2 −

1

2
b2�

+
k

4�
����a���a�� . �2.1�

The Chern-Simons level k is quantized when one considers
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the theory on nontrivial three manifolds.13 Note that all terms
in this action scale in the same way, in stark contrast with
Maxwell-Chern-Simons theory, where the Chern-Simons
term is more relevant than the Maxwell term and gives the
gauge field a mass. Since the theory is critical, no UV cutoff
is required to make the couplings dimensionless. �In contrast,
a UV cutoff is required in studies of the Maxwell-Chern-
Simons Lagrangian�. However, the natural cutoff for this
theory is the single-electron gap, above which the action, Eq.
�2.1�, is clearly incomplete.

After formally integrating out the electric field �which is
well defined as long as the momenta are nonzero�, we obtain
the Lagrangian

S =
1

2
� dtd2x� 1

g2 ��2��iej�2 − b2� +
k

2�
����a���a�� ,

�2.2�

where

ei = 
 1

�2� �iat − �tai

�2 , b = �xay − �yax. �2.3�

In terms of the canonical momenta �i,

�i =

S


��tai�
=

ei

g2 +
k

4�
�ijaj ,

the Hamiltonian is

H =
1

2
� d2x��2g2
�i� j −

k

4�
� jk�iak�2

+
1

g2b2� . �2.4�

Canonical quantization of this theory is simplest in the
gauge in which we take at=0, restrict to transverse fluctua-
tions of the gauge field �iai=0, and impose the canonical
commutation relations

�ai�x�,� j�y�� = i
ij
�x − y� ,

where we have chosen �i=−i
 /
ai. Gauss’ law, which is
obtained from the at equation of motion

G = �i�i +
k

4�
b = 0

must be imposed as a constraint on physical states G��	=0.
Note that G commutes with the Hamiltonian. Thus, once
imposed on a state, Gauss’ law is satisfied by subsequent
evolution.

A general Schrödinger wave functional ��a� has the form

��a� = e�ik/4��d2xb��kak/�2���aT
2� �2.5�

for some functional ��aT
2� of the transverse field aT because


� j
− i



aj
+

k

4�
b�e�ik/4��d2xb��kak/�2� = 0

and

� j
− i



aj
��aT

2� = − 2i���aT
2�� jaT

j = 0.

The phase prefactor ensures Gauss’ law is satisfied as long as
� is a functional of the transverse gauge field. To find the
spectrum of excitations of �, it is convenient to conjugate
the Hamiltonian by the phase prefactor,

HT = e�−ik/4��d2xb��jaj/�
2�He�ik/4��d2xb��kak/�2�

=
1

2
� d2x��2g2��i�T

j �2 + 
 1

g2 +
�2k2g2

4�
���iaT

j �2� ,

�2.6�

when acting on functionals of the transverse field aT. Note
that the partial derivatives in the Hamiltonian commute with
the unitary transformation H→HT.

Hamilton’s equations are

�taT
i =


HT


�T
i = − �2g2�2�T

i ,

�t�i = −

HT


aT
i = 
 1

g2 +
�2k2g2

4�
��2aT

i . �2.7�

Differentiating the first equation with respect to t and plug-
ging the result into �2 of the second we find

�t
2aT

i + �2
1 +
�2k2g4

4�
���2�2aT

i = 0, �2.8�

which is precisely the equation obeyed by a Lifshitz scalar
field with quadratic dispersion, Eq. �1.7�. The constraint
�iaT

i =0 relates the two spatial components of the gauge field
aT

i to each other, so the Eq. �2.8� governs a single quadrati-
cally dispersing excitation.

In fact, it’s possible to see the relation to a scalar theory
directly, by making the nonlocal change in variables �setting
g=1�

ei = − �ij
� j�t�

�2 −
k

2�
�i� ,

b = �2� �2.9�

resulting in an action of the form �1.7� with the replacement
�2→�2�1+ �2k2g4

4� �= �̃2. In contrast to the Lorentz-invariant
case, where perturbing the Maxwell theory by a Chern-
Simons term results in a massive theory,12 here the Chern-
Simons term does not induce a mass for the photon.

�If we were to consider a compact U�1� gauge theory of
this form, it is conceivable that such a mass could be induced
nonperturbatively. Since our focus is on a noncompact ver-
sion of the theory, we do not discuss monopole events here.
In fact, the shift of �2 by the Chern-Simons coefficient low-
ers the dimension of monopole vertex operators.6,8 See Ref.
14 for an interesting recent study on the effects of instantons
in a related compact U�1� z=2 gauge theory that is the
2+1 dimensional version of the Abelian theory in Ref. 15.�

The breaking of parity and time-reversal invariance by the
Chern-Simons coupling must be reflected in some property
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of the excitations of the Lifshitz-Chern-Simons theory. The
mapping, Eq. �2.9�, seems to contradict this expectation. The
same apparent contradiction occurs in the case of Maxwell-
Chern-Simons theory, where a similar transformation maps
the gauge theory to that of a free massive boson. However,
the excitations described by the boson have a unit of spin
which breaks parity.12 This must occur in the Lifshitz-Chern-
Simons theory as well.

A well-defined notion of spin in 2+1 dimensions requires
the full structure of the non-Abelian Lorentz group SO�2,1�.
In the relativistic Maxwell-Chern-Simons theory, the spin
operator, which naively is just the SO�2� rotation generator,
must be augmented by a new term �only present for nonzero
Chern-Simons level�. This additional term is found by the
requirement that the full Lorentz algebra be conventional;
commutators of boost generators would have been singular
without such a term. The spin operator M in momentum
space takes the form

M =� d2pa†�p�
− i
�

��
�a�p� +

k

�k�� d2pa†�p�a�p� ,

�2.10�

where �=tan−1�py / px�, a�p� �a†�p�� are the lowering �rais-
ing� operators in the mode expansion for the excitations and
the limit for zero Chern-Simons level is taken so that k / �k�
vanishes. It is the second term in Eq. �2.10� that is added to
the usual rotation generator xieib so that the commutators of
boost generators are nonsingular. This second term is ob-
tained by a phase rotation of the raising and lowering
operators.12

Because the Lifshitz-Chern-Simons theory is nonrelativis-
tic, the non-Abelian SO�2,1� structure is not present. So there
is no a priori reason to modify the rotation generator. But
there does exist an RG flow initiated by the e2 operator that
drives the theory into a massive phase described by the
Maxwell-Chern-Simons theory. Therefore, we define spin in
the Lifshitz-Chern-Simons theory by its definition in the
relativistic Maxwell-Chern-Simons theory, i.e., by the end
point of this possible RG trajectory. The precise form of the
spin operator is again given by Eq. �2.10� and it is clear that
the second term measures one unit of spin for any gapless
excitation.

B. Ground-state degeneracy at the critical point

When the Maxwell-Chern-Simons theory is quantized on
R��, where � is a genus g Riemann surface, the presence
of the Chern-Simons term results in degenerate ground
states.16 �There is no loss of generality in considering three
manifolds with the R�� product structure since we may
construct more general three manifolds by gluing together
these basic units with appropriate twists.� The degeneracy
arises by quantizing the moduli space of Wilson lines of the
gauge field around the one cycles of the Riemann surface.
For a genus g Riemann surface, there are 2g one cycles and
the ground-state degeneracy is kg, where k is the Chern-
Simons coupling or level. The kg degeneracy provides an
alternate explanation for the quantization of the Abelian
Chern-Simons level.

This result is obtained as follows.16 If we are interested in
the ground state, then we may restrict to zero-momentum
modes. �This is true assuming that the expansion about zero
momentum is stable, i.e., that the vacuum does not sponta-
neously break translation invariance, which is true for the
Maxwell-Chern-Simons theory. More generally, if this is not
the case, then the theory must be expanded about the vacuum
in which the unstable momentum modes have condensed.�
Restricting to zero momentum turns the quantum-field-
theory problem into one of quantum mechanics. For the
Maxwell-Chern-Simons theory �which applies to the quan-
tum Hall phase on one side of the Lifshitz-Chern-Simons
critical point�, the quantum mechanics problem is that of g
particles moving on a two-dimensional plane in a magnetic
field of strength k. To see this, write ai=ai�t� where we are
working in at=0 gauge, and let us take �=T2, the torus, for
which g=1, with unit length cycles. A momentum-
independent gauge field clearly solves Gauss’ law assuming
there are no local sources. Plugging the ansatz for ai into the
Maxwell-Chern-Simons action we find

S =� dt� 1

2r�
��tai�2 + k�ax�tay − ay�tax�� ,

where � is the UV cutoff and r is the dimensionless Maxwell
coupling constant. This Landau-level problem has a series of
degenerate energy levels of degeneracy k for each particle
with a level separation of kr�. Taking the cutoff � to infinity
decouples the excited states. This excitation gap coincides
with the analysis of Ref. 12.

If the gauge field is coupled to massive matter fields, then
the degeneracy will not be exact in a finite-sized system. If L
is the length of the shortest loop around the torus, then the
degeneracy will be split by �E�e−cmL for some constant c if
m is the mass of the lightest matter field.16 As the mass
becomes large and/or the length L→�, the splitting becomes
exact.

We now turn to the Lifshitz-Chern-Simons theory. Since
the theory is gapless, the ground-state degeneracy must be
defined with care. The most natural way to do this is to
consider the system on a torus of length L. Then, the excita-
tions of the massless gauge field will have a gap �1 /L2 and
any ground-state degeneracy can be cleanly defined and
computed. If we were to couple the gauge field to massive
matter fields, then the degeneracy would not be exact, but
would be split by �E�e−�L for some �. For large L, this
splitting will be much smaller than 1 /L2, so we can still
distinguish degenerate ground states from excitations of the
gauge field.

Using a finite size to separate low-energy excitations from
degenerate ground states is already necessary in the usual
quantum Lifshitz theory without Chern-Simons term,

S =� dtd2x�ei�tai + at�iei −
1

2
��iej�2 −

1

2
b2� . �2.11�

At the critical point described by this action, any constant
electric field is allowed. Thus, there is a moduli space of
vacua parametrized by constant ei. �In the quantum dimer
model, this corresponds to the fact that any integer winding
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number can occur at the Rokhsar-Kivelson point.5� In addi-
tion, there are gapless excitations with 	�k2 dispersion. In a
finite-size system, there is a gap �1 /L2, so these excitations
can be cleanly separated from the degenerate ground states.

We note, however, that if an �ei
2�2 term is included in the

quantum Lifshitz action, Eq. �2.11�, then this degeneracy is
lifted. In the quantum dimer model, such a term is forbidden,
but it is allowed in the present context. This operator will be
important in what follows.

We analyze the Abelian Lifshitz-Chern-Simons theory on
the torus in a similar manner to the above analysis of
Maxwell-Chern-Simons theory

S =� dtd2x�ei�tai + at�iei −
1

2
��iej�2 −

�

4
�ei

2�2 −
1

2
b2

+
k

4�
����a���a�� . �2.12�

For simplicity, we have set the coupling constants g ,�2 in-
troduced earlier to unity. We have also retained the margin-
ally irrelevant operator �ei

2�2 because we will shortly need it
to lift the degeneracy between different constant values of ei.
Focusing again on the zero-momentum modes, we have

S =� dt�ei�tai −
�

4L2 �ei
2�2 +

k

4�
�ay�tax − ax�tay�� .

�2.13�

Here, we have used the Fourier-transform convention ei�x�
= 1

L�pei�p�e−ip·x, as a result of which the second term in Eq.
�2.13� has explicit L dependence. Regardless of the particular
Fourier-transform convention which we use, the ratio of the
second term to the first and third terms will be L dependent
for dimensional reasons because it does not have a time de-
rivative. Using the canonical momenta, Eq. �2.3�, we find the
Hamiltonian for the zero-momentum modes to be

H =
�

4L2�
�i −
k

4�
�ijaj�2�2

. �2.14�

This is just the square of the usual Hamiltonian for a particle
in a magnetic field. Thus, the spectrum is simply a series of
Landau levels but, rather than being evenly spaced,
En� �n+ 1

2 �, they are quadratically spaced, En� �n+ 1
2 �2 /L2.

The key fact for us is that the ground state has degeneracy k
due to the degeneracy of the lowest Landau level. If we had
dropped the �ei

2�2 term, the splitting between Landau levels
would have collapsed and, in addition to the degeneracy
within each Landau level, we would have had an additional
�infinite� degeneracy between all of the Landau levels. How-
ever, for � /L2 finite, these higher Landau levels are separated
from the degenerate ground states in the lowest Landau
level.

Thus, we see that we have a k-fold degenerate ground
state for Lifshitz-Chern-Simons theory on the torus and, by a
straightforward extension of these arguments, a kg-fold de-
generacy on higher-genus surfaces. So long as there is a
finite �ei

2�2 term, there is no further degeneracy beyond this.
There is a gap �1 /L2 to the lowest excited state above this
degenerate ground-state subspace. If matter fields with a

nonzero mass gap are included, we expect an exponentially
small splitting of the degenerate ground states, as in the
Maxwell-Chern-Simons case. This splitting is much smaller
than the finite-size gap �1 /L2.

C. Edge modes at the critical point

Under a gauge transformation a�→a�+���, ei→ei, the
Abelian Lifshitz-Chern-Simons Lagrangian �2.12� is invari-
ant up to a boundary term,


L =
k

4�
� dtd2x����������a�� , �2.15�

which vanishes as long as the gauge curvature
f��=��a�−��a� and gauge variation parameter � asymptote
to zero sufficiently quickly at infinity. When the three mani-
fold has a boundary, this boundary term is no longer neces-
sarily zero. In order for the theory to be well defined, it is
necessary to add chiral edge modes that propagate along the
1+1-dimensional boundary �assuming a spatial boundary�
that soak up any would be gauge anomaly.17–20

When the theory describing the bulk is simply Maxwell-
Chern-Simons theory, it is clear that the chiral edge modes
persist because at low energies the gapped bulk modes de-
couple and cannot cause any backscattering. In the Lifshitz-
Chern-Simons theory, the bulk theory is gapless, so it is natu-
ral to wonder if the edge modes are still stable to
perturbations.

Two simple arguments indicate that the edge modes re-
main protected. The first is a nonperturbative argument. The
existence of the edge modes is tied to the gauge anomaly in
Eq. �2.15�. If interactions between the gapless bulk and the
chiral edge modes somehow lifted the edge degrees of free-
dom, the edge excitations would no longer soak up the
would-be gauge anomaly, and the theory would be ill de-
fined.

The second reason is more constructive. The Lagrangian
that describes the chiral bosonic edge degree of freedom � is
given by

S =
k

4�
� dtdx�x��i�t − �x�� . �2.16�

The global U�1� Kac-Moody symmetry of Eq. �2.16� is iden-
tified with the restriction of the bulk U�1� gauge symmetry.
Gauge-invariant minimal couplings between the edge mode
and the restriction of the bulk gauge field have been sup-
pressed in Eq. �2.16�. The vertex operator ei� creates an edge
excitation of charge 1 /k. Because the quadratically dispers-
ing bulk mode is neutral, we cannot form a gauge-invariant
relevant operator coupling the bulk mode to the chiral edge
mode. Even disorder cannot change this conclusion.21 In
fact, the free chiral conformal field theory, Eq. �2.16�, admits
no relevant perturbations at all.

III. ANISOTROPIC PHASE

A. Clean systems

In the past few sections, we have focused on the critical
point at which the coefficient of the ei

2 term is zero. Suppose
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we move away from the critical point. Then the action takes
the form

S =� dtd2x� 1

g2�ei�tai + at�iei −
r

2
ei

2

−
�2

2
��iej�2 −

�

4
�ei

2�2 −
1

2
b2� +

k

4�
����a���a�� .

�3.1�

As noted previously, for r�0, we can integrate out ei,
thereby obtaining Maxwell-Chern-Simons theory. The Max-
well term is irrelevant, so this theory is dominated in the IR
by the Chern-Simons term. This is just the effective theory of
a quantum Hall state, as we will see in the next section,
where we compute response functions.

For r0, ei develops an expectation value, thereby break-
ing SO�2� rotational symmetry. To see this, note that for
r0, the Hamiltonian

g2H�e,a� = −
�r�
2

ei
2 +

�2

2
��iej�2 +

�

4
�ei

2�2 + b2 �3.2�

is minimized by ei
2= �r�

� , ai=0. Without loss of generality, we
can choose the SO�2� symmetry-breaking vacuum to be
given by ei= ���r� /� ,0�. We expand about this point by writ-
ing ei= ���r� /�+ ẽx ,ey� and substitute this into Eq. �3.2�,
thereby obtaining

H�e,a� = �r�ẽx
2 +

�2

2
��iey�2 + b2 + O�e3� , �3.3�

where we have dropped an unimportant constant and trun-
cated the Hamiltonian to the lowest dimension operators.
Since the symmetry-breaking electric field is constant, we do
not need to worry about derivative terms in the electric field.

The corresponding Lagrangian is then

S =� dtd2x� 1

g2���r�/��tax + ẽx�tax − �r�ẽx
2 − ��yax − �xay�2

+ at�iei + ey�tay −
�2

2
��iey�2� +

k

4�
����a���a�� . �3.4�

The linear term proportional to �tai can be removed by the
shift ay→ay − 4�

k
��r�

� . This theory is gapless since it must
contain the Goldstone boson of broken rotational symmetry;
it is expected to have z=1 since the order parameter is not
conserved.22 We can check that this theory does, indeed
have, z=1 by noting that the terms in the action, Eq. �3.4�,
which dominate at long wavelengths are invariant under the
scaling t→�t, x→�x, provided we scale

ex → �−3/2ex, ey → �−1/2ey ,

ax → �−1/2ax, ay → �−3/2ay, at → �−3/2at �3.5�

�with the noninvariant terms giving irrelevant corrections to
the leading long-wavelength behavior�. This can also be seen
directly from the propagators. For instance,

�ex�− i	n,− p�ex�i	n,p�	 =
g2�py

2 + �2g4k̃2p2�

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

,

�ey�− i	n,− p�ey�i	n,p�	 =
g2�g6k̃2r + px

2�

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

.

�3.6�

Thus, there is a gapless Goldstone mode with

	2 = ��2g6k̃2r�px
2 + �g2r + �2g6k̃2r�py

2 + �2p2px
2. �3.7�

The third term is subleading at low energies. The first two
terms describe a z=1 mode with anisotropic velocities,

vx
2 = �2g6k̃2r, vy

2 = g2r + �2g6k̃2r . �3.8�

In the next section, we will see how this Goldstone mode
contributes to response functions. Note that, for Chern-
Simons level k=0, 	2=g2rpy

2+�2px
4, so px and py scale dif-

ferently; for nonzero k, the velocities are different, but px and
py scale the same way.

It is important to note, however, that rotational symmetry
will not be an exact symmetry of most systems. Disorder will
explicitly violate rotational symmetry, as will the underlying
crystalline lattice. Since the main application which we have
in mind is the quantum Hall effect in semiconductor hetero-
structures or quantum wells, we expect the influence of the
lattice to be very weak. For this reason, we neglected terms
which respect only a discrete rotational symmetry �and
which are important in the quantum dimer model4,6�. Since
such terms, if present, would have very small bare coeffi-
cients, and they are at best marginally relevant �which is the
scaling found at k=0 �Refs. 4 and 6��, they would only grow
logarithmically. Though they might alter the nature of the
transition, possibly even driving it first order, these effects
would only be apparent very close to the transition point. On
the other hand, these SO�2�-violating terms are strongly rel-
evant in the symmetry-broken phase and make an immediate
impact there. Furthermore, lattice effects are simpler to study
than disorder �to which we turn in Sec. III B� and they illus-
trate the important point that the Goldstone boson found
above is not generic.

Therefore, we consider the Hamiltonian

g2H�e,a� = −
�r�
2

�ex
2 + �1 − �2�ey

2� +
�2

2
��iej�2 +

�

4
�ei

2�2 + b2,

�3.9�

where �2 is an anisotropy parameter which vanishes at the
isotropic point and is greater or less than 0 if the stiffness in
the y direction is, respectively, greater or less than that in the
x direction. �In general, the other terms will also be aniso-
tropic, but the leading quadratic term is the most important
term, so for the sake of simplicity, we will consider the case
in which only this term is anisotropic.� Without loss of gen-
erality, let us suppose that �2�0. While this action is no
longer O�2� invariant, it is still D2 invariant, and this sym-
metry is spontaneously broken to Z2 when ex develops an
expectation value. Then we expand the fields about the mini-
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mum of the Hamiltonian ei= ���r� /�+ ẽx ,ey�, which leads to
the Hamiltonian

H�e,a� = �r�ẽx
2 + �r��2ey

2 + b2 + O�e3� . �3.10�

Here, we have kept only the most relevant terms. The fields
ẽx and ey can now be integrated out of the action to give

S =� dtd2x� 1

g2���r�/���tax − �xat� +
1

�r�
��tax − �xat�2

+
1

�r��2 ��tay − �yat�2 − ��yax − �xay�2� +
k

4�
����a���a�� .

�3.11�

Again, the first term can be eliminated by shifting
ay→ay − 4�

k
��r� /�. The resulting action is simply anisotropic

Maxwell-Chern-Simons theory and has a gap. Consequently,
this phase will have protected edge modes and a k-fold
ground-state degeneracy precisely as in the r�0 phase.

Thus, in the absence of a continuous rotational symmetry,
the �discrete� symmetry-breaking phase is also a quantum
Hall state with Hall conductance 1 /k, precisely as it is on the
other side of the transition. However, the irrelevant Maxwell
terms are anisotropic. Thus, we expect finite frequency and,
in the presence of matter fields, finite-temperature transport
to be anisotropic. When the Lagrangian is SO�2� rotation
symmetric, there is, in addition, a Goldstone boson. In the
next section, where we compute the response functions in
both phases and the critical point, we will see how the Gold-
stone mode affects transport properties. First, however, we
consider the effects of disorder.

B. Dirty systems

In any real system, there will be impurities, and they will
have the effect of changing the couplings in the action into
random functions of the spatial position �constrained only by
the symmetries respected by the impurities�. In this section,
we will not try to systematically determine the effect of dis-
order by allowing all possible couplings to be random, which
would be important in order to determine the true ground
state of the system for r0. Instead, we will examine one
particular random coupling in order to see some of the ge-

neric qualitative features of disorder. Let us suppose that the
coefficients of ex

2 and ey
2 are random,

S =� dtd2x� 1

g2�ei�tai + at�iei −
1

2
rei

2 −
1

2
rx�x�ex

2

−
1

2
ry�x�ey

2 + ¯�� . �3.12�

The ¯ are the other terms which are present Eq. �3.1�. Al-
though they, too, can be random, we assume, for illustrative
purposes, that all other couplings in the theory are constant.
Here, we have separated the mean value r of the coefficients
of ex

2 and ey
2 from the random parts, rx�x� and ry�x�, which we

assume to be Gaussian white noise correlated with zero mean
and variance Wx,y,

ri�x� = 0, ri�x�rj�x�� = Wi
ij
�x − x�� . �3.13�

Thus, the system is isotropic on average, but in any given
realization of the disorder, the system is anisotropic. We can
compute disorder-averaged correlation functions by replicat-
ing the theory �i.e., taking n copies of the theory�, integrating
out rx�x� and ry�x�, and taking the replica limit n→0. �The
replica trick ensures that we are computing correlation func-
tions from derivatives of the disorder-averaged free energy
rather than the disorder-averaged partition function.� This
leads to the replicated action

S =� dtd2x� 1

g2�ei
A�tai

A + at
A�iei

A −
1

2
r�ei

A�2 + ¯��
+� dtdt�d2x�−

1

4g4Wx�ex
A�x,t��2�ex

B�x,t���2

−
1

4g4Wy�ey
A�x,t��2�ey

B�x,t���2� . �3.14�

where A=1,2 , . . . ,n is the replica index.
We now expand about a minimum of the potential energy

of the clean part of the action, ei= ���r� /� ,0� by writing
ei= ���r� /�+ ẽx ,ey� and substitute this into Eq. �3.14�, to
obtain

S =� dtd2x� 1

g2���r�/��tax
A + ẽx

A�tax
A − �r��ẽx

A�2 − ��yax
A − �xay

A�2 + at
A�iei

A + ey
A�tay

A −
�2

2
��iey

A�2� +
k

4�
����a�

A��a�
A�

+� dtdt�d2x�−
1

4g4Wx�ex
A�x,t��2�ex

B�x,t���2 −
1

4g4Wy�ey
A�x,t��2�ey

B�x,t���2� . �3.15�

Here, we have allowed Wx and Wy to be different since they
flow differently even if they are the same microscopically:
using the scaling Eq. �3.5�, we see that

Wx → �−2Wx, Wy → �2Wy . �3.16�

Thus, Wx is strongly irrelevant while Wy is strongly relevant.

The relevance of Wy is a symptom of the fact that, in the
presence of disorder, no ordered state is possible. This is
because, according to the Imry-Ma argument,23 a reversed
domain of linear size L will cost energy �Ld−2, assuming
that the system is spatially isotropic on average. On the other
hand, it can lower its energy by Ld/2 by taking advantage of
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local fluctuations of the disorder. Thus, order is impossible in
d4. �However, if the Hamiltonian only has a discrete rota-
tional symmetry on average, then a reversed domain will
cost energy �Ld−1, and an ordered state at r0 is possible in
two spatial dimensions.�

Let us focus on systems which are spatially isotropic on
average. In such systems, there is a length scale, the Larkin
length �L, at which the energy cost for a reversed droplet
��L

d−2 is equal to the energy gain ��L
d/2. At shorter length

scales, the system is aligned in the direction chosen by the
disorder. At longer scales, the system breaks up into different
domains of size �L which are aligned in different directions.

There is a corresponding energy scale, the pinning energy
Ep. At energies higher than Ep, we can compute perturba-
tively in Wy. The lowest-order diagram contributing to the ey
self-energy is in Fig. 1. This diagram arises at second order
in the cubic interaction between ey and ry in Eq. �3.12�. The
dotted line represents the disorder average of ry while the
solid line is the ey propagator. Its value is

��	,k� = Wy� d2p

�2��2

g2�g6k̃2r + px
2�

	2 − g2rpy
2 − �2p2�g6k̃2r + px

2� + i

.

�3.17�

Note that there is no internal frequency integral because the
disorder is time independent and interacts elastically. k de-
pendence would be possible had we chosen a different aver-
aging scheme than Eq. �3.13�. The imaginary part of the
self-energy has a constant 	-independent piece which is

Im��	,k� =
Wyg

8k̃2r

2vxvy
+ ¯ , �3.18�

where vx ,vy are the velocities, Eq. �3.8�. We focus on this
piece of ��	 ,k� since it is qualitatively important for the
transport properties which we compute in the next section.
There is also an 	-dependent term �which will not be impor-
tant for us� and a real part which diverges logarithmically at
small 	 �as expected by applying the Kramers-Kronig rela-
tion to Eq. �3.18��. This log divergence is also expected be-
cause, as we have seen, the coupling to disorder is a
dimension-2 relevant operator, which prevents the existence
of a symmetry-breaking ordered state by the arguments given
above.

IV. RESPONSE FUNCTIONS AT AND NEAR THE
CRITICAL POINT

In this section, we determine how the system responds to
an external gauge field by calculating various response func-
tions at the critical point and in the phases on either side of
it. We will calculate both static and dynamic response func-

tions. Static and dynamic response is distinguished by the
order in which the zero-frequency and zero-momentum lim-
its are taken. For static response the frequency is taken to
zero first and followed by the zero-momentum limit while
this ordering is switched for dynamic response. Such limits
need not commute.

The general outline of the response calculation is the fol-
lowing. First, we minimally couple the external gauge field
A� to the current in Eq. �1.2�,


L =� dtd2xJ�A�. �4.1�

To avoid confusion, we should stress that as is conventional
in the condensed-matter literature, our a� is an “emergent”
gauge field which is not to be confused with the electromag-
netic field, which we represent by A�. We take both the in-
ternal a� and electromagnetic A� gauge fields to be in the
transverse gauge, �iai=0. This constraint fixes time-
independent gauge transformations. Time-dependent gauge
transformations are fixed by either setting at to zero or a
frequency-independent function, depending upon which
choice is most convenient. Because the action is quadratic,
we can integrate out the a� gauge field. In momentum space,
the action for the external gauge field then takes the form

Seff =
1

2�
n
� d2pA��− i	n,− p�K���i	n,p�A��i	n,p�

�4.2�

for some matrix K���i	n ,p�. Re�K��� must be symmetric
while Im�K��� is antisymmetric in the indices ��. Further,
gauge invariance of Eq. �4.2� implies that p�K���i	n ,p� is
zero. These requirements are satisfied by the K�� found in
different regimes below. The conductivity is then obtained
from K�� according to

� jk�	� =
1

i	 + 

Kjk �	 + i
,p = 0� , �4.3�

where 	, p is the frequency and momentum of the external
field. The analytic continuation i	n→	+ i
 prescription en-
sures that the right-hand side is given by the retarded Green’s
function.

Since the current operator is given by J�= 1
2�������a�,

K���i	n , p� is given by

K���i	n,p� = 
 1

2�
�2

��������p�p��a��− i	n,− p�a��i	n,p�	 .

�4.4�

A. Quantum Hall phase at r�0

We begin on familiar ground by computing the response
functions on the isotropic quantum Hall side of the critical
point. As noted earlier, for r�0, ei can be integrated out,

ω, ω, kk pω,

FIG. 1. Lowest-order diagram contributing to the ey

self-energy.
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yielding Maxwell-Chern-Simons theory at low energy.
Therefore, all response functions will be the same as in
Maxwell-Chern-Simons theory, i.e., the system will be in a
fractional quantum Hall phase. However, it is instructive to

compute this in the full action, Eq. �1.11�. The expressions
for the propagators are extremely cumbersome and not par-
ticularly enlightening, so we directly give the response
functions,

Kxx�i	n,p� =
1

8�2

g2�g4r2py
2 + �2p2�	n

2 + �2py
2p2� + g2r�	n

2 + 2�2py
2p2��

g8k̃2r2 + 	n
2 + g2rp2 + 2�2g2k̃2rp2 + �2p4 + �4g4k̃2p4

,

Kxy�i	n,p� =
1

8�2

g2�g2k̃	n − pxpy��g2r + �2p2�2

g8k̃2r2 + 	n
2 + g2rp2 + 2�2g2k̃2rp2 + �2p4 + �4g4k̃2p4

. �4.5�

Thus,

�xx�	� =
i

2�k
·

	/g4k̃r

1 − �	/g4k̃r�2
,

�xy�	� =
1

2�k
·

1

1 − �	/g4k̃r�2
. �4.6�

As expected, at low frequencies, the real part of the longitu-
dinal conductivity vanishes and the Hall conductivity is
equal to 1

2�k . There is a magnetoplasmon at frequency

	mp=g4k̃r. At higher frequencies, the conductivities fall off
as 1 /	 and 1 /	2, respectively. Note that the 	→0 and
r→0 limits do not commute.

The compressibility is obtained from the p→0 limit of
the static response function K00�0,p� and vanishes as p2 in
the r�0 quantum Hall phase. This computation could have
been performed by integrating out ei and expanding the re-
sulting action in powers of momentum. Only the Maxwell-
Chern-Simons terms are necessary for the conductivities, Eq.
�4.6�, but we would have needed to keep higher-order terms
in order to obtain the full finite-frequency momentum ex-
pression �4.5�.

B. Critical point at r=0

Next, we study the critical point described by Lifshitz-
Chern-Simons theory. At the critical point, we have the
propagators, Eq. �1.9�, computed earlier. Substituting the last
three propagators in Eq. �1.9� into Eq. �4.4�, we find

Kxx�i	n,p� =
1

8�2

�2g2p2�	n
2 + �2py

2p2�
	n

2 + �̃2p4 ,

Kxy�i	n,p� =
1

8�2

�4g2p4�g2k̃	n − pxpy�
	n

2 + �̃2p4 . �4.7�

Here, k̃�k /4� and �̃2=�2�1+�2k̃2�. Substituting these into
Eq. �4.3�, we find that since the Kxx, Kxy are proportional to

p2 and p4, respectively, both the real and imaginary parts of
both conductivities vanish at any frequency,

Re �xx�	� = Im �xx�	� = 0,

Re �xy�	� = Im �xy�	� = 0. �4.8�

This is quite remarkable: the critical point is completely
insulating, not merely at zero frequency, but at any fre-
quency. By contrast, in the fractional quantum Hall phase on
one side of the critical point, �xy =1 / �2�k� and �xx� i	 at
low frequencies. Thus, as the gap collapses, the system be-
comes more insulating. The reason is that the critical theory
does not couple to a spatially homogenous electric field, re-
gardless of the frequency �except at frequency precisely
equal to zero�.

The compressibility is obtained from the p→0 limit of
the static response function K00�0,p�. From the propagators
in propagators in Eq. �1.9�, we see that

K00�i	n,p� =
1

8�2

�2g2p4

	n
2 + �̃2p4 . �4.9�

Thus, the compressibility K at the critical point is given by

K =
g2

8�2�1 + �2k̃2�
. �4.10�

The critical point has larger �i.e., nonzero� compressibility
than the quantum Hall phase �where it is zero�.

We could have performed the computations in this section
by integrating out ei. The resulting action would have been
nonlocal because it would have contained inverse powers of
the momentum. However, the resulting singularities at zero
momentum are not problematic because the external electro-
magnetic field does not couple to the zero-momentum
modes.

C. Anisotropic phase at r0

If the system does not have SO�2� rotational invariance
�e.g., only D2 symmetry�, then the low-energy effective
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theory in the anisotropic phase is anisotropic Maxwell-
Chern-Simons theory, Eq. �3.11�. The response functions are
then a slight modification of Eq. �4.5� and the conductivities
are

�xx�	� = �
i

2�k
·

	/g4k̃r�

1 − �	/g4k̃r��2
,

�yy�	� =
1

�
·

i

2�k
·

	/g4k̃r�

1 − �	/g4k̃r��2
,

�xy�	� =
1

2�k
·

1

1 − �	/g4k̃r��2
. �4.11�

At zero frequency, this is simply a quantum Hall state with
Hall conductance �xy =1 /2�k. A similar calculation shows
that the compressibility vanishes as p2 as the momentum
p→0. The anisotropy shows up at finite frequency in the
imaginary part of the longitudinal conductivity.

Now suppose that the system has the full SO�2� rotational
symmetry so that there is a Goldstone boson in the aniso-
tropic phase. Then, we have

Kxx�i	n,p� =
1

8�2

�2g2p2�	n
2 + g2rpy

2�

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

,

Kyy�i	n,p� =
1

8�2

g4r�	n
2 + �2px

2p2�

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

,

Kxy�i	n,p� =
1

8�2

�2g2r�g2k̃	n − pxpy�p2

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

.

�4.12�

Thus, the system is a superconductor in one direction and an
insulator in the other,

�xx�	� = 0,

�yy�	� =
g4r

8�

�	� +

ig4r

8�2	
,

�xy�	� = 0. �4.13�

Meanwhile, the compressibility response function

K00�0,p� =
1

8�2

g2�g2rpy
2 + �2px

2p2�

	n
2 + g2rpy

2 + �2p2�g6k̃2r + px
2�

=
1

8�2

g2py
2

�1 + �2g4k̃2�py
2 + g6k̃2px

2
�4.14�

depends on how the limit p→0 is taken since the result is
zero or nonzero for px / py→� or 0, respectively.

Thus we see that, if the system is SO�2� symmetric and,
therefore, has the corresponding Goldstone boson in the an-
isotropic phase, then it is maximally anisotropic: supercon-

ducting in one direction and insulating in the other. However,
if the system only has the discrete rotational symmetry of an
underlying rectangular lattice, then is weakly anisotropic: a
quantum Hall state with anisotropic finite-frequency dielec-
tric constants �i.e., imaginary part of the conductivity�.

Finally, we consider a dirty system at frequencies above
the pinning energy. Then, computing the propagators with
the self-energy, Eq. �3.18�, we find

�xx�	� =
1

8�2

ig4	

g8k̃2r + i�	��2
,

�yy�	� =
1

8�2

g4r	�2

g8k̃2r + i�	��2
,

�xy�	� =
1

2�k
·

1

1 + i�	��2/g8k̃2r
, �4.15�

where

1

�2 =
Wyg

8k̃2r

2vxvy
. �4.16�

Note the compressibility now vanishes for finite �. At least at
these frequencies, we once again have an anisotropic frac-
tional quantum Hall state. However, unlike in a pure system
with discrete rotational symmetry, there is a finite real part of
the conductivity in both the x and y directions at finite fre-
quency. Note that the frequency dependence differs along the
two directions. The real part of the conductivity vanishes as
	3 along the x direction while it vanishes linearly as 	 along
the y direction.

V. DISCUSSION

In this paper, we have studied a z=2 Abelian gauge theory
with a Chern-Simons term. Previous investigations focused
on either the z=2 theory without Chern-Simons term or on
the Maxwell-Chern-Simons theory �which shares the same
leading IR behavior as the pure Chern-Simons theory�. In
particular, the z=2 Abelian gauge theory, or Abelian Lifshitz
gauge theory, without Chern-Simons term has been previ-
ously studied in the context of the quantum dimer model,
where it describes the Rokhsar-Kivelson point4,6,24 between
columnar and staggered phases of dimers. In that context, the
lattice is extremely important, and the critical point is gener-
ally multicritical. Such a theory also describes a transition
between a uniform superconducting state and a ground state
with nonzero supercurrent, a state in which the phase of the
order parameter varies in the ground state, which is distinct
from the Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state in
which the amplitude of the order parameter is at nonzero
wave vector. Similarly, the Maxwell-Chern-Simons theory
has been extensively studied in the context of the fractional
quantum Hall effect, where it serves as an effective theory
for the gapped states at plateaus.

Remarkably, we find that both the Abelian Lifshitz gauge
theory and the Chern-Simons term are marginal with respect
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to the z=2 scaling. Thus, the theory is gapless. It has the
following general properties. The spectrum consists of a
single quadratically dispersing gapless spin-1 photon. When
the theory is quantized on a nontrivial Riemann surface of
genus g and linear dimension L, there is a gap �1 /L2 sepa-
rating the excited states from the kg-fold degenerate ground
state, where k is the Chern-Simons level. Further, there exist
gapless edge modes that live along any boundaries of the
system. These modes are robust to disorder and do not inter-
act with the gapless z=2 bulk modes.

This theory, which we have dubbed Lifshitz-Chern-
Simons theory, describes a critical point to which we can
tune the system by varying r, the coefficient of the square of
the electric field ei

2. The following phases lie on either side of
this critical point. When r is positive, the theory is described
by Maxwell-Chern-Simons theory in the IR. For negative r,
and in the absence of SO�2� rotational symmetry-violating
terms in the Hamiltonian, the ground state of the system
spontaneously breaks SO�2� and, therefore, there is a Gold-
stone boson. On the other hand, if the system only has a
discrete rotational symmetry, the broken-symmetry state is
gapped. Although, in either case, the broken symmetry state
has a preferred direction, the low-energy theory of fluctua-
tions about this broken-symmetry state is, to leading order,
invariant under a reversal of this direction. Thus, this phase
behaves as if it had nematic symmetry.

If the conserved current in this theory is interpreted as the
electromagnetic current, then this theory describes a transi-
tion between a quantum Hall state �the r�0 phase� and an
anisotropic state �the r0 phase�. Charge transport proper-
ties at the critical point and in the anisotropic phase are
rather unique. For positive r, the transport matches that of
Maxwell-Chern-Simons theory, the effective description of
the Hall effect. When r=0, the system insulates for all fre-
quencies and has a finite nonzero compressibility. When
r0 in a rotationally invariant system, the system insulates
along the ordered direction, while it has a delta function peak
in its longitudinal conductivity, similar to a superconductor,
along the orthogonal direction. If the Hamiltonian of the sys-
tem has lower symmetry, then the system is in a quantum
Hall state with the same Hall conductance as on the other
side of the transition and anisotropic finite-frequency longi-
tudinal conductivity.

The latter state is reminiscent of a recent experiment25 in
which a tilted field drives a transition from an isotropic quan-
tum Hall state in the second Landau level �e.g., �=7 /3� to a
quantum Hall state with anisotropic finite-temperature longi-
tudinal transport. At �=5 /2, in contrast, a tilted field drives a
transition26,27 from a quantum Hall state to a nematic phase

with unquantized �xy and metallic �xx, �yy. �Such nematic
phases have been the subject of considerable theoretical
work; see, for example, Refs. 28 and 29, and references
therein. It is unclear what relation, if any, those theories have
to the anisotropic phase discussed here, which picks a pre-
ferred direction, but has nematic symmetry to leading order
in the interaction strength.� Thus the recent findings come as
a surprise. It is possible that these surprising transport coef-
ficients are the result of inhomogeneity of the two-
dimensional electron system. However, they have a natural
explanation within Lifshitz-Chern-Simons theory without ap-
pealing to inhomogeneity, since in the presence of a crystal-
line lattice and disorder �which are certainly present in this
system�, the r0 phase is an anisotropic fractional quantum
Hall state. This interpretation rests upon the assumption that
the principal effect of the tilted field is the modification of
the electronic wave functions in the direction perpendicular
to the plane which, in the long-wavelength effective theory,
has the result of driving the coupling r negative. In fact, the
in-plane magnetic field which drives the transition not only
drives r negative but also picks a preferred direction in the
plane so that the transition is rounded. However, it may be a
sharp crossover if the in-plane field is effectively a small
symmetry-violating perturbation. Although our analysis, di-
vorced from a microscopic model, cannot show that this is
correct or even a reasonable assumption, there is, at least, a
clear test. If Lifshitz-Chern-Simons theory is applicable to
the transition seen in this experiment, then both the longitu-
dinal and Hall conductivities should be strongly suppressed
at the transition. In fact, in Lifshitz-Chern-Simons theory,
they are strictly zero, but, as a result of the rounding men-
tioned above and, perhaps, the presence of disorder, there
will be small nonzero conductivities at finite temperature at
the critical point. In our simple model, we found anisotropic
behavior in the zero temperature, finite frequency response at
leading order. It would be interesting to analyze an interact-
ing model to see if zero-frequency, finite-temperature trans-
port shares some of the exotic properties found here.
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