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Abstract

This paper describes Meep, a popular free implementatidheofinite-diference time-domain
(FDTD) method for simulating electromagnetism. In partcuwe focus on aspects of imple-
menting a full-featured FDTD package that go beyond stahtiaxtbook descriptions of the
algorithm, or ways in which Meep filers from typical FDTD implementations. These include
pervasive interpolation and accurate modeling of subgeaires, advanced signal processing,
support for nonlinear materials via Padé approximanis fléxible scripting capabilities.

PACS: 02.70.Bf; 82.20.Wt; 03.50.De; 87.64.Aa.

Key words: computational electromagnetism; FDTD; Maxwell solver.

Program Summary
Program title: Meep
Program summary URLhttp://ab-initio.mit.edu/meep
Licensing provisionsGNU GPL
No. of lines in distributed program, including test data;:88000
No. of bytes in distributed program, including test data, 834K
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software packages: GNU Guile [1], libctl interface librdg}, HDF5 [3], MPI message-passing interface
[4], and Harminv filter-diagonalization [5]. Developed o8 ZHz Intel Core 2 Duo.
Operating systemany Unix-like system; developed under Debian Ghidux 5.0.2
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Classification:10 Electrostatics and Electromagnetics
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External routinegibraries: optionally exploits additional free software packages: Buile [1], libctl
interface library [2], HDF5 [3], MPI message-passing ifdaee [4], and Harminv filter-diagonalization [5]
(which requires LAPACK and BLAS linear-algebra softwarg) [6

Nature of problemclassical electrodynamics

Solution methodfinite-difference time-domain (FDTD) method

Running timejproblem dependent (typically about 10 ns per pixel per ttay®s
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1. Introduction

One of the most common computational tools in classicalteletagnetism is the finite-
difference time-domain (FDTD) algorithm, which divides spaue time into a regular grid and
simulates the time evolution of Maxwell's equations [1, 24,35]. This paper describes our free,
open-source implementation of the FDTD algorithiieep(an acronym foMIT Electromag-
netic Equation Propagation available online ahttp://ab-initio.mit.edu/meep. Meep
is full-featured, including, for example: arbitrary artisipic, nonlinear, and dispersive elec-
tric and magnetic media; a variety of boundary conditiortduiding symmetries and perfectly
matched layers (PML); distributed-memory parallelismrt€sian (1#2d/3d) and cylindrical co-
ordinates; and flexible output and field computations. It afeludes some unusual features,
such as advanced signal processing to analyze resonanspambeirate subpixel averaging, a
frequency-domain solver that exploits the time-domainegatbmplete scriptability, and inte-
grated optimization facilities. Here, rather than reviéw tvell-known FDTD algorithm itself
(which is thoroughly covered elsewhere), we focus on théqdar design decisions that went
into the development of Meep whose motivation may not be egrpdrom textbook FDTD de-
scriptions, the tension between abstraction and perfocmamFDTD implementations, and the
unigue or unusual features of our software.

Why implement yet another FDTD program? Literally dozensa@ihmercial FDTD soft-
ware packages are available for purchase, but the needseazfroh often demand the flexibility
provided by access to the source code (and relaxed licensimgjraints to speed porting to new
clusters and supercomputers). Our interactions with gbhetonics researchers suggest that
many groups end up developing their own FDTD code to senieribeds (our own groups have
used at least three distinct in-house FDTD implementatioesthe past5 years), a duplication
of effort that seems wasteful. Most of these are not released tpubléc, and the handful of
other free-software FDTD programs that could be downloadeeh Meep was first released in
2006 were not nearly full-featured enough for our purposes. &then, Meep has been cited
in over 100 journal publications and has been downloaded awewoo times, re#firming the
demand for such a package.

FDTD algorithms are, of course, only one of many numericaldghat have been devel-
oped in computational electromagnetism, and may perhags peimitive in light of other so-
phisticated techniques, such as finite-element methodgl$frith high-order accuracy ayut
adaptive unstructured meshes [6, 7, 8], or even radicaflgréint approaches such as boundary-
element methods (BEMSs) that discretize only interfaces/beh homogeneous materials rather
than volumes [9, 10, 11, 12]. Each tool, of course, has iengths and weaknesses, and we
do not believe that any single one is a panacea. The nonomifiostructured grids of FEMs,
for example, have compelling advantages for metallic stines where micrometer wavelengths
may be paired with nanometer skin depths. On the other hhisd]éxibility comes at a price of
substantial software complexity, which may not be wortHe/for dielectric devices at infrared
wavelengths (such as in integrated optics or fibers) wheragdfractive index (and hence the
typical resolution required) varies by less than a factofoof between materials, while small
features such as surface roughness can be accurately thdnydpeerturbative techniques [13].
BEMSs, based on integral-equation formulations of elecagnetism, are especially powerful
for scattering problems involving small objects in a largdume, since the volume need not
be discretized and no artificial “absorbing boundaries”razeded. On the other hand, BEMs
have a number of limitations: they may still require artdichbsorbers for interfaces extending
to infinity (such as inpybutput waveguides) [14]; any change to the Green'’s fundsoich as
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introduction of anisotropic materials, imposition of getic or symmetry boundary conditions,
or a switch from three to two dimensions) requires re-imm@atation of large portions of the
software (e.g. singular panel integrations and fast seju&ther than purely local changes as
in FDTD or FEM; continuously varying (as opposed to pieceagsnstant) materials are in-
efficient; and solution in the time domain (rather than freqyesmmain, which is inadequate
for nonlinear or active systems in which frequency is notsawsned) with BEM requires an ex-
pensive solver that is nonlocal in time as well as in spacg [Ahd then, of course, there are
specialized tools that solve only a particular type of et@otagnetic problem, such as our own
MPB software that only computes eigenmodes (e.g. waveguoates) [15], which are powerful
and robust within their domain but are not a substitute foeaegal-purpose Maxwell simula-
tion. FDTD has the advantages of simplicity, generality] ewbustness: it is straightforward to
implement the full time-dependent Maxwell equations foamearbitrary materials (including
nonlinear, anisotropic, dispersive, and time-varyingemats) and a wide variety of boundary
conditions, one can quickly experiment with new physicspted to Maxwell’s equations (such
as populations of excited atoms for lasing [16, 17, 18, 19),2ihd the algorithm is easily
parallelized to run on clusters or supercomputers. Thipkiity is especially attractive to re-
searchers whose primary concern is investigating newdatemns of physical processes, and for
whom programmer time and the training of new students is farenexpensive than computer
time.

The starting point for any FDTD solver is the time-derivatparts of Maxwell's equations,
which in their simplest form can be written:

oB
E:—VXE—JB 1)
%—?=+V><H—J, (2)

where (respectivelyit andH are the macroscopic electric and magnetic fiellandB are the
electric displacement and magnetic induction fields [213,the electric-charge current density,
and Jg is a fictitious magnetic-charge current density (sometic@ms/enient in calculations,
e.g. for magnetic-dipole sources). In time-domain calioites, one typically solves the initial-
value problem where the fields and currents are zerb<4od, and then nonzero values evolve in
response to some curreid(&, t) andor Jg(x, t). (In contrast, drequency-domaisolver assumes
a time dependence ef'! for all currents and fields, and solves the resulting linepragions
for the steady-state response or eigenmodes [22, app. B]préfer to use dimensionless units
g = up = ¢ = 1. From our perspective, this choice emphasizes both the svariance
of Maxwell's equations [22, chap. 2] and also the fact that thost meaningful quantities to
calculate are almost always dimensionless ratios (suatedtesed power over incident power, or
wavelength over some characteristic lengthscale). Theaasepick any desired unit of distance
a (either an Sl unit such & = 1 um or some typical lengthscale of a given problem), and all
distances are given in units af all times in units ofa/c, and all frequencies in units afa. In
a linear dispersionless medium, the constituent relattwa® = ¢E andB = uH, wheree and
w are the relative permittivity and permeability (possildysors); the case of nonlinear #od
dispersive media (including conductivities) is discuskether in Sec. 4.

The remaining paper is organized as follows. In Sec. 2, weudisthe discretization and
coordinate system; in addition to the standard Yee disgtitin [1], this raises the question of
how exactly the grid is described and divided into “chuni®”parallelization, PML, and other
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purposes. Section 3 describes a central principle of Matgsgyn pervasive interpolatiomro-
viding (as much as possible) the illusion of continuity il #pecification of sources, materials,
outputs, and so on. This led to the development of severhhtques unique to Meep, such
as a scheme for subpixel material averaging designed tanaiethe first-order error usually
associated with averaging techniques or stairsteppingteffaces. In Sec. 4, we describe and
motivate our techniques for implementing nonlinear angelisive materials, including a slightly
unusual method to implement nonlinear materials using @ Bagroximant that eliminates the
need to solve cubic equations for every pixel. Section 5 rifese how typical computations
are performed in Meep, such as memofiyegent transmission spectra or sophisticated analysis
of resonant modes via harmonic inversion. This section@saribes how we have adapted the
time-domain code, almost without modification, to solvejtrency-domain problems with much
faster convergence to the steady-state response thanyrtiereistepping. The user interface of
Meep is discussed in Sec. 6, explaining the consideratimatsiéd us to a scripting interface
(rather than a GUI or CAD interface). Section 7 describesesofithe tradefiis between perfor-
mance and generality in this type of code and the specific comiges chosen in Meep. Finally,
we make some concluding remarks in Sec. 8.

2. Grids and Boundary Conditions

The starting point for the FDTD algorithm is the discretieatof space and time into a
grid. In particular, Meep uses the stand¥ek griddiscretization which staggers the electric
and magnetic fields in time and in space, with each field corapbsampled at ¢ierent spa-
tial locations dfset by half a pixel, allowing the time and space derivatieelsd formulated as
center-diference approximations [23]. This much is common to nearyye#DTD implemen-
tation and is described in detail elsewhere [1]. In orderamapelize Meep, &iciently support
simulations with symmetries, and téfieiently store auxiliary fields only in certain regions (for
PML absorbing layers), Meep further divides the grid iobmnkshat are joined together into an
arbitrary topology via boundary conditions. (In the futudé@ferent chunks may haveftiérent
resolutions to implement a nonuniform grid [24, 25, 26, 2R)rthermore, we distinguish two
coordinate systems: one consisting of integer coordirmatéle Yee grid, and one of continuous
coordinates in “physical” space that are interpolated assgary onto the grid (see Sec. 3). This
section describes those concepts as they are implemenrtsbip, as they form a foundation for
the remaining sections and the overall design of the Medacd.

2.1. Coordinates and grids

The two spatial coordinate systems in Meep are describetidyetc, a continuous vector
in RY (in d dimensions), and thevec, an integer-valued vector %Y describing locations on
the Yee grid. Ifn is anivec, the correspondingec is given by 05Axn, whereAx is the spatial
resolution (the same along y, andz)—that is, the integer coordinates in amec correspond
to half-pixels, as shown in the right panel of Fig. 1. This is to repre locations on the spatial
Yee grid, which dfsets diferent field components in space by half a pixel as shown (iim2the
right panel of Fig. 1. In 3d, th&, andDy components are samplediatecs (2 + 1,2m, 2n),
Ey andDy are sampled atvecs (2, 2m+ 1, 2n), and so onHy and By are sampled atvecs
(2¢,2m+1,2n + 1), Hy andBy are sampled atvecs (2 + 1,2m, 2n+ 1), and so on. In addition
to these grids for the fferent field components, we also occasionally refer tacctheredgrid,
at oddivecs (2 + 1,2m+ 1, 2n+ 1) corresponding to the “center” of each pixel. (The origfin o
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Figure 1: The computational cell is divided into chunkstfléfiat have a one-pixel overlap (gray regions). Each chunk
(right) represents a portion of the Yee grid, partitionetb iownedpoints (chunk interior) andot-ownedpoints (gray
regions around the chunk edges) that are determined froen ottunks anr via boundary conditions. Every point in
the interior of the computational cell is owned by exactlg @hunk, the chunk responsible for timestepping that point.

the coordinate systems is an arbitramec that can be set by the user, but is typically the center
of the computational volume.) The philosophy of Meep, asdisd in Sec. 3, is that as much
as possible the user should be concerned only with contspbysical coordinatesécs), and

the interpolatioydiscretization ontdvecs occurs internally as transparently as possible.

2.2. Grid chunks and owned points

An FDTD simulation must occur within a finite volume of spatiee computational cell
terminated with some boundary conditions and possibly lspdiing PML regions as described
below. This (rectilinear) computational cell, howeverfusther subdivided into convex recti-
linearchunks On a parallel computer, for exampleffdrent chunks may be stored affdrent
processors. In order to simplify the calculations for edebrk, we employ the common tech-
nigue of padding each chunk with extra “boundary” pixeld tstare the boundary values [28]
(shown as gray regions in Fig. 1)—this means that the churgs\varlappingin the interior of
the computational cell, where the overlaps require comuoatiun to synchronize the values.

More precisely, the grid points in each chunk are partittbimgo ownedand not-owned
points. Thenot-ownedpoints are determined by communication with other chunidaarby
boundary conditions. Thewnedpoints are time-stepped within the chunk, independently of
the other chunks (and possibly in parallel), awry grid point inside the computational cell is
owned by exactly one chunk

The question then arises: how do we decide which points mitheé chunk are owned? In
order for a grid point to be owned, the chunk must containkadl information necessary for
timestepping that point (once the not-owned points have beenmunicated). For example, for
aDy point (2, 2m+ 1, 2n) to be owned, théd, points at (Z + 1, 2m + 1, 2n) must both be in the
chunk in order to compute x H for timesteppind at that point. This means that tlg points
along the left (minimumx) edge of the chunk (as shown in the right panel of Figcdnnotbe
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owned: there is n¢; point to the left of it. An additional dependency is imposegdtihe case
of anisotropic media: if there is asy coupling Ey to Dy, then updatind=y at (2 + 1, 2m, 2n)
requires the fouby values at (2+ 1+ 1, 2m= 1, 2n) (these are the surroundiily values, as seen
in the right panel of Fig. 1). This means that tBe(andDy) points along theight (maximumx)
edge of the chunk (as shown in the right panel of Fig. 1) cahaaiwned either: there is i,
point to the right of it. Similarly foiv x D and anisotropig.

All of these considerations result in the shaded-gray regfd-ig. 1(right) being not-owned.
That is, if the chunk intersecks+ 1 pixels along a given direction starting at &wec coordinate
of 0 (e.g.k = 5in Fig. 1), the endpointvec coordinates 0 andk2+ 1 are not-owned and the
interior coordinates from 1 tokXinclusive) are owned.

2.3. Boundary conditions and symmetries

All of the not-owned points in a chunk must be determined byristary conditions of some
sort. The simplest boundary conditions are when the notedwpoints are owned by some
other chunk, in which case the values are simply copied fioat ¢hunk (possibly requiring
communication on a multiprocessor system) each time theyipdated. In order to minimize
communications overhead, all communications between twmks are batched into a single
message (by copying the relevant not-owned pointisaiom a contiguous hiier) rather than
sending one message per point to be copied.

At the edges of the computational cell, some user-seleaaddary condition must be im-
posed. For example, one can use perfect electric or magrmtituctors where the relevant
electrigmagnetic-field components are set to zero at the boundd®ies.can also use Bloch-
periodic boundary conditions, where the fields on one sidé®tomputational cell are copied
from the other side of the computational cell, optionallyltiplied by a complex phase factor
gkir where k is the propagation constant in tHedirection, and\; is the length of the computa-
tional cell in the same direction. Meep doestimplement any absorbing boundary conditions—
absorbing boundaries are, instead, handled by an artifitédérial, perfectly matched layers
(PML), placed adjacent to the boundaries [1].

Bloch-periodic boundary conditions are useful in periaglistems [22], but this is only one
example of a useful symmetry that may be exploited via bogndanditions. One may also
have mirror and rotational symmetries. For example, if ttegamals and the field sources have
a mirror symmetry, one can cut the computational costs intiwstoring chunks only in half
the computational cell and applying mirror boundary candg to obtain the not-owned pixels
adjacent to the mirror plane. As a more unusual example j@denan S-shaped structure as in
Fig. 2, which has no mirror symmetry but is symmetric unde®-ti@gree rotation, calle@,
symmetry [29]. Meep can exploit this case as well (assuntiegctirrent sources have the same
symmetry), storing only half of the computational cell ag-ig. 2 and inferring the not-owned
values along the dashed line by a 180-degree rotation. €lsithple case where the stored region
is a single chunk, this means that the not-owned points asgrdaed by owned points in the
same chunk, requiring copies, possibly with sign flips.) &weting on the sources, of course,
the fields can be even or odd under mirror flipggrrotations [22], so the user can specify an
additional sign flip for the transformation of the vectordieand pseudovectét andB fields,
which incur an additional sign flip under mirror reflectio®4 [ 22]). Meep also supports fourfold
rotation symmetryQ,), where the field can be multiplied by factors ofi 11, or—i under each
90-degree rotation [29]. (Other rotations, such as thitdefosixfold, are not supported because
they do not preserve the Cartesian Yee grid.) In 2dxthplane is itself a mirror plane (unless
in the presence of anisotropic materials) and the symmetrguples TE modes (with fieldsE
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not stored

Figure 2: Meep can exploit mirror and rotational symmetrgasch as the 180-degre€,) rotational symmetry of the
S-shaped structure in this schematic example. AlthoughpMeaintains the illusion that the entire structure is stored
and simulated, internally only half of the structure is stbfas shown at right), and the other half is inferred by imnat
The rotation gives a boundary condition for the not-owned goints along the dashed line.

Ey, and H) from TM modes (H, Hy, and E) [22]; in this case Meep only allocates those fields
for which the corresponding sources are present.

A central principle of Meep is that symmetry optimizatiorestbansparent to the user once
the desired symmetries are specified. Meep maintains treah that the entire computational
cell is computed—for example, the fields in the entire corapanal cell can still be queried
or exported to a file, flux planes and similar computations stlhextend anywhere within
the computational cell, and so on. The fields in the non-dtoegions are simply computed
behind the scenes (without ever allocating memory for theyrtyansforming the stored chunks
as needed. A key enabling factor for maintaining this itmséficiently is theloop-in-chunks
abstraction employed by the Meep code, described in Sec. 7.

Meep also supports continuous rotational symmetry arowgidem axis, where the structure
is invariant under rotations and the fields transforne'®é for somem [22], but this is imple-
mented separately by providing the option to simulate Mdbsvequations in ther( z) plane
with cylindrical coordinates, for which operators likex change form.

3. Interpolation and the illusion of continuity

A core design philosophy of Meep is to provide the illusioncofitinuous space and time,
masking the underlying discretization from the user as magpossible. There are two com-
ponents to this approach: the input and the outputs. Comiisly varying inputs, such as the
geometry, materials, and the source currents, lead toraanisly varying outputs, as in the ex-
ample of Fig. 3. Similarly, the value of any field (or any funct of the fields) can be output
at any point in space or integrated over any region. Furtbegnthe &ects of these inputs and
the resulting outputs must converge as quickly as possittteet exact solution as the resolution
increases. In this section, we discuss how this illusionaftiouity is implemented for field
outputs, current inputs, and geometnaterials.

Any field component (or any combinations such as flux, enengg,user-defined functions)
can be evaluated at any point in space. In general, thisnesjinterpolation from the Yee grid.
Since the underlying FDTD centerftéirence algorithm has second-order accuracy, we linearly
interpolate fields as needed (which also has second-orderaary for smooth functions). Sim-
ilarly, we provide an interface to integrate any functiorthu fields over any convex rectilinear
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Figure 3: A key principle of Meep is that continuously vaiyinputs yield continuously varying outputs. Here, an eigen
frequency of a photonic crystal varies continuously with #tcentricity of a dielectric rod, accomplished by subpixe
smoothing of the material parameters, whereas the nonbemoesult is “stairstepped.” Specifically, the plot shows a
TE eigenfrequency of 2d square lattice (per@df dielectric ellipses £=12) in air versus one semi-axis diameter of
the ellipse (in gradations of@05a) for no smoothing (red squares, resolution of 20 pj@lssubpixel smoothing (blue
circles, resolution of 20 pixela) and “exact” results (black line, no smoothing at resolutid 200 pixelga)

region (boxes, planes, or lines), and the integral is coetphy integrating the linear interpola-
tion of the fields within the integration region. This is sfaforward, but there are two subtleties
due to the staggered Yee grid. First, computation of quastike E x H that mix diferent field
componentsrequires an additional interpolation: firg fields are interpolated onto the centered
grid (Sec. 2), then the integrand is computed, and then tigadliinterpolation of the integrand
is integrated over the specified region. Second, the coripataf quantities likeE x H mixes
two fields that are stored atftérenttimes H is stored at timesn(— 0.5)At, while E is stored

at timesnAt [1]. Simply using these timeftset fields together is only first-order accurate. If
second-order accuracy is desired, Meep provides the oftimmporarily synchronize the elec-
tric and magnetic fields: the magnetic fields are saved to kpearray, stepped bAt, and they
are averaged with the backup array to obtain the magnetasfatinAt with O(At?) accuracy.
(The fields are restored from backup before resuming timestg.) This restores second-order
accuracy at the expense of an extra half a timestep’s couigrutavhich is usually negligible
because such field computations are rarely required at éweggtep of a simulation—see Sec. 5
for how Meep performs typical transmission simulations atieer calculationsféciently.

The conceptually reversed process is required for spagfgources: the current density is
specified at some point (for dipole sources) or in some reffmmdistributed current sources)
in continuous space, and then mustrbstrictedto a corresponding current source on the Yee
grid. Meep performs this restriction using exactly the saimée (the loop-in-chunks abstrac-
tion of Sec. 7) and the same weights as the interpolationggioe above. Mathematically, we
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Figure 4: Left: a bilinear interpolation of valuds, 34 on the grid (red) to the valué at an arbitrary point. Right: the
reverse process testriction, taking a value] at an arbitrary point (e.g. a current source) and conveititgvalues on
the grid. Restriction can be viewed as the transpose ofjolation and uses the same fiagents.

are exploiting a well-known concept (originating in muitdymethods) that restriction can be
defined as th&ransposeof interpolation [30]. This is illustrated by a 2d exampleHig. 4. Sup-
pose that the bilinear interpolation(blue) of four grid points (red) i = 0.32f; + 0.48f, +
0.08f3 + 0.12f4, which can be viewed as multiplying a vector of those fieldsh®/row-vector
[0.32,0.48,0.08,0.12]. Conversely, if we place a point-dipole current soudcéblue) at the
same point, it is restricted on the grid (red) to valdgs= 0.32J, J, = 0.48J, J; = 0.08],
and J; = 0.12J as shown in Fig. 4, corresponding to multiplyidgby the column vector
[0.32,0.48,0.08,0.12]".1 Such a restriction has the property of preserving the sutedial)
of the currents, and typically leads to second-order c@yemre of the resulting fields as the
resolution increases (see below). An example of the utilitthis continuous restriction process
is shown in Fig. 5 via the phenomenon of Cerenkov radiatidij: [ point charge moving at

a constant velocity with a magnitude D5c/n exceeding the phase velocityn in the medium
emits a shockwave-like radiation pattern, and this can bectly modelled in Meep by a con-
tinuously moving current sourckE= —vgs(x — vt) [32]. In contrast, pixelizing the motion into
discrete jumps to the nearest grid point leads to visible emizal artifacts in the radiation, as
seen in the right panel of Fig. 5.

All of the second-order accuracy of FDTD and the above irtljions is generally spoiled to
only first-order, however, if one directly discretizes actistinuous material boundary [33, 35].
Moreover, directly discretizing a discontinuity ior u leads to “stairstepped” interfaces that
can only be varied in discrete jumps of one pixel at a time.hBdtthese problems are solved
in Meep by using an appropriate subpixel smoothing ahdu: before discretizing, discontinu-
ities are smoothed into continuous transitions over a wigtaf one pixeAx, using a carefully
designed averaging procedure. Any subpixel smoothingiigale will achieve the goal of con-
tinuously varying results as the geometry is continuousisied. In the case of Meep this is
illustrated by Fig. 3: in a 2d photonic crystal (square tattof dielectric rods), the lowest TE-
polarization eigenfrequency (computed as in Sec. 5) vaeginuously with the eccentricity
of the elliptical rods for subpixel averaging, whereas tbaaveraged discontinuous discretiza-
tion produces a stairstepped discontinuous eigenfrequedo the other hand, most subpixel

1Technically, for a dipole-current source given by a deltacfion with amplitudd, the corresponding current density
is J = 1/Ax4 in d dimensions.
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smooth motion pixelized motion

v=1.05c/n (0.35 pixelsht)

Figure 5: Cerenkov radiation emitted by a point charge npeina speed = 1.05c/n exceeding the phase velocity of
light in a homogeneous medium of index1.5. Thanks to Meep’s interpolation (or technicalgstriction), the smooth
motion of the source current (left panel) can be expressedrasmuously varying currents on the grid, whereas the non-
smooth pixelized motion (no interpolation) (right panelyeals high-frequency numerical artifacts of the diszagibn
(counter-propagating wavefronts behind the moving charge

smoothing techniques will not increase the accuracy of FBID the contrary, smoothing dis-
continuous interfaces changes the structure, and gepanaibducesadditional error into the
simulation [33]. In order to design an accurate smoothighné&ue, we exploited recent results
in perturbation theory that show how a particular subpirebsthing can be chosen to yield zero
first-order error [13, 33, 34, 36]. The results are shown o Biand Fig. 7: for both computa-
tion of the eigenfrequencies (of an anisotropic photonystal) in Fig. 6 and the scattering loss
from a bump on a strip waveguide in Fig. 7, the errors in Meegsllts decrease quadratically
[O(AX?)], whereas doing no averaging leads to erratic linear cgareee D(AX)]. Furthermore,
Fig. 6 compares to other subpixel-averaging schemes,dmgjithe obvious strategy of simply
averaging: within each pixel [37], and shows that they lead to first-omtvergence no better
than no averaging at all.

The subpixel averaging is discussed in more detail elseai3&; 34, 36], so we only briefly
summarize it here. In order for the smoothing to yield zestfirder perturbation, the smooth-
ing scheme must be anisotropic. Even if the initial inteefacbetween isotropic materials, one
obtains a tensos (or u) which uses the measfor fields parallel to the interface and the har-
monic mean (inverse of mean gf?) for fields perpendicular to the interface—this was inigial
proposed heuristically [38] and later shown to be justifiedperturbation theory [13, 33]. (If the
initial materials are anisotropic, a more complicated folans needed [34, 36].) The key point
is that, even if the physical structure consists entireligofropic materials, the discretized struc-
ture will use anisotropic materials. Stable simulation oisatropic media requires an FDTD
variant recently proposed in Ref. 39.

There are a few limitations to this subpixel averaging. tFifse case of perfect metals re-
quires a diferent approach [40, 41] that is not yet implemented in Meedthogh Meep does
not yet implement subpixel averaging for dispersive matsyithere is numerical evidence that
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Figure 6: Appropriate subpixel averaging cacreasethe accuracy of FDTD with discontinuous materials [33, 34].
Here, relative erroAw/w (comparing to the “exactivg from a planewave calculation [15]) for an eigenmode catata
(as in Sec. 5) for a cubic lattice (peri@jl of 3d anisotropice ellipsoids (right inset) versus spatial resolution (uits
pixels per vacuum wavelengtt), for a variety of subpixel smoothing techniques. Straigtes for perfect linear (black
dashed) and perfect quadratic (black solid) convergerestawn for reference. Most curves are for the first eigesvalu
band (left inset showg&y in xy cross-section of unit cell), with vacuum wavelength= 5.15a. Hollow squares show
Meep’s method for band 13 (middle inset), with= 2.52a. Meep’s method for bands 1 and 13 is shown for resolutions
up to 100 pixelg.

similar accuracy improvements are obtained in that casééysame technique [42], and we
suspect that a similar derivation can be applied (using tieenjugated form of perturbation the-
ory for the complex-symmetric Maxwell equations in recipabmedia with losses [43]). Second,
once the smoothing eliminates the first-order error, thegee of sharp corners (associated with
field singularities) introduce an error intermediate betwérst- and second-order [33], which
we hope to address in future work. Third, the fields direotifhe interface are still at best first-
order accurate even with subpixel smoothing—howevergthmsalized errors are equivalent to
currents that radiate zero power to first order [36, 44]. Thproved accuracy from smoothing
is therefore obtained for fields evaluateftl of the interface as in scattered flux integrated over
a surface away from the interface (Fig. 7), for nonlocal ertips like resonant frequencies and
eigenfrequencies (Fig. 6), and for overall integrals ofifsednd energies [to which the interface
contributes onlyO(AX) of the integration domain and hence first-order errors enititerface
have a second-ordeftect].
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relative error in scattered power

resolution (units of pixels/a)

Figure 7: The relative error in the scattered power from allsseanicircular bump in a dielectric waveguide £ 12),
excited by a point-dipole source in the waveguide (geomag fields shown in inset), as a function of the computa-
tional resolution. Appropriate subpixel smoothing of thelectric interfaces leads to roughly second-ord2¢Ax?)]
convergence (red squares), whereas the unsmoothed strhesionly first-order convergence (blue circles).

4. Materials

Time-dependent methods for electromagnetism, given texierality, allow for the simu-
lation of a broad range of material systems. Certain clagbesaterials, particularly active
and nonlinear materials which do not conserve frequeneyjd®ally suited for modeling by
such methods. Materials are represented in Maxwell's éguai(1) and (2) via the relative
permittivity (x) and permeability:(x) which in general depend on position, frequency (ma-
terial dispersion) and the fields themselves (nonlinessjti Meep currently supports arbitrary
anisotropic material tensors, anisotropic dispersiveenigs (Lorentz—Drude models and con-
ductivities, both magnetic and electric), and nonlineatarials (both second- and third-order
nonlinearities), which taken together permit investigas of a wide range of physical phenom-
ena. The implementation of these materials in Meep is mbsthed on standard techniques [1],
so we will focus here on two places where Meefiats from the usual approach. For nonlin-
earities, we use a Padé approximant to avoid solving culpi@tons at each step. For PML
absorbing media in cylindrical coordinates, we only use @a8-PML" [46] based on a Carte-
sian PML, but explain why its performance is comparable toua PML while requiring less
computational fort.

4.1. Nonlinear materials

Optical nonlinearities arise when large field intensitigduice changes in the locabr u to
produce a number of interestinffects: temporal and spatial soliton propagation, opticstbbi
bility, self-focusing of optical beams, second- and tHi@monic generation, and many other
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Figure 8: The performance of a quasi-PML in the radial dioec(cylindrical co-oridnates, left panel) at a resolution
20 pixelg 1 is nearly equivalent to that of a true PML (in Cartesian cawtes, right panel). The plot shows thé&eience

in the electric fieldg; (insets) from a point source between simulations with PMtkiessL andL + 1, which is a simple
proxy for the PML reflections [45]. The filerent curves are for PML conductivities that turn onxg4 J¢ ford = 1,2,3

in the PML, leading to dferent rates of convergence of the reflection [45].

effects [47, 48]. Such materials are usually described by a psanes expansion @ in terms

of E and various susceptibilities. In many common materialsyloen considering phenomena
in a sdficiently narrow bandwidth (such as the resonantly enhanoatinear éfects [49] well-
suited to FDTD calculations), these nonlinear suscefitésican be accurately approximated via
nondispersive (instantaneoudjexts [50]. Meep supports instantaneous isotropic (or diabo
anisotropic) nonlinearféects of the form:

Di - P = eVE; + xVE? + xJ|EPE, (3)

wheres® represents all the linear nondispersive terms Bni$ a dispersive polarizatioR =
Xéligpersivéa))E from dispersive materials such as Lorentz media [1]. (A simgquation relates
B andH.) Implementing this equation directly, however, would uig one to solve a cubic
equation at each time step [1, sec. 9.6], siBds updated fronV x H before updatinde from
D.

However, eq. (3) is merely a power series approximationtferttue material response, valid
for suficiently small field intensities, so it is not necessary tasinthat it be solved exactly.

Instead, we approximate the solution of eq. (3) by a Padeoappant [51], which matches the
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“exact” cubic solution to high-order accuracy by the ratibfunction:

(2 =~ ® o~
L+ (o B) + 2( eplIBIR)

2 = @) &
1+ 2(grpDi) + 3(oplDIR)

[P

[«V] ' B, @

whereD; = D; — P;. For the case of isotropi™ andy@ = 0, so that we have a purely Kerr
(x®) material, this matches the “exact” cutlido O(D?) error. Withy® % 0, the error iO(D?).

For more complicated dispersive nonlinear media or fortaaty anisotropy in® or y©,
one approach that Meep may implement in the future is to pm@te the nonlinear terms in the
auxiliary differential equations for a Lorentz medium [1].

4.2. Absorbing boundary layers: PML, pseudo-PML, and crirddl

A perfectly matched layer (PML) is an artificial absorbingdiuen that is commonly used to
truncate computational grids for simulating wave equati@@g. Maxwell’'s equations), and is
designed to have the property that interfaces between thedpld adjacent media are reflection-
less in the exact wave equation [1]. There are various ihtargeable formulations of PML for
FDTD methods [1], which are all equivalent to a coordinatetshing of Maxwell’s equations
into complex spatial coordinates; Meep implements a varsfdhe uniaxial PML (UPML), ex-
pressing the PML as arffective dispersive anisotropicandu [1]. Meep provides support for
arbitrary user-specified PML absorption profiles (whichdan important influence on reflec-
tions due to discretization error and othéeets) for a given round-trip reflection (describing the
strength of the PML in terms of the amplitude of light passingugh the PML, reflectingf®
the edge of the computational cell, and propagating back) [Bor the case of periodic media
such as photonic crystals, the medium is not analytic angtbmise of PML'’s reflectionless
property is violated; in this case, a “PML” material overpal with the photonic crystal is only a
“pseudo-PML" that is reflectionless only in the limit of afBaiently thick and gradual absorber,
and control over the absorption profile is important [45].

For the radial direction in cylindrical coordinates, a tRiL can be derived by coordinate-
stretching, but it requires more storage and computatieffi@ait than the Cartesian UPML [52,
53], as well as increasing code complexity. Instead, we €bosmplement quasi-PML[46],
which simply consists of using the Cartesian UPML mater@a&lsan approximation for the true
radial PML. This approximation becomes more and more atewrs the outer radius of the
computational cell increases, because the implicit cureadf the PML region decreases with
radius and approaches the Cartesian case. Furthermorenusterecall thatveryPML has
reflections once space is discretized [1], which can be atiig) by gradually turning on the
PML absorption over a finite-thickness PML layer. The quRl8IL approximation is likewise
mitigated by the same gradual absorption profile, and thg guéstion is that of the constant
factor in the reflection convergence: how thick does the igBH. need to be to achieve low
reflections, compared to a true PML? Figure 8 shows that, fgpigal calculation, the perfor-
mance of the quasi-PML in cylindrical coordinates (leftc@mmparable to that of a true PML
in Cartesian coordinates (right). Here, we plot a measutbefeflection from the PML as a
function of the PML absorber length for a fixed round-trip reflection [45], using as a measure
of the reflection the “field convergence” factor: thefeience between the field at a given
point for simulations with PML absorber lengthsandL + 1. The PML conductivityr(X) is
turned on gradually asx(L)¢ for d = 1,2,3, and it can be shown that this leads to reflections
that decrease ag/1?9+2 and field-convergence factors that decrease/a&'1* [45]. Precisely
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these decay rates are observed in Fig. 8, with similar cohstaficients. As the resolution is
increased (approaching the exact wave equations), théscdre®eficient in the Cartesian PML
plot will decrease (approaching zero reflection), whiledqeasi-PML's constant cdiécient will
saturate at some minimum (corresponding to its finite refliégin the exact wave equation for
a fixedL). This diference seems of little practical concern, however, bedaeseflection from
a one-wavelength thick quasi-PML at a moderate resolug0mpixeld 1) is already so low.

5. Enabling typical computations

Simulating Maxwell’'s equations in the time domain enables investigation of problems
inherently involving multiple frequencies, such as noeérities and active media. However, it
is also well adapted to solving frequency domain problemsesit can solve large bandwidths
at once, for example analyzing resonant modes or computamgimissiofreflection spectra.
In this section, we describe techniques Meep usesfittiently compute scattering spectra and
resonant modes in the time domain. Furthermore, we dedoolyehe time domain method can
be adapted to a purely frequency domain solver while shaifimgst all of the underlying code.

5.1. Computing flux spectra

A principle task of computational time-domain tools areeistigations of transmission or
scattering spectra from arbitrary structures, where ongsw@ compute the transmitted or scat-
tered power in a particular direction as a function of thefiency of incident light. One can
solve for the power at many frequencies in a single time-dorsinulation by Fourier trans-
forming the response to a short pulse. Specifically, for amaurfaces, one wishes to compute
the integral of the Poynting flux:

P(w) = R 56@ E. (X)* x H,, () dA, (5)

whereE,, andH,, are the fields produced by a source at frequen@ndR denotes the real part
of the expression. The basic idea, in time-domain, is to &®wa-pulse source (covering a wide
bandwidth including all frequencies of interest), and comajc,, andH,, from the Fourier trans-
forms of E(t) andH(t). There are several fligrent ways to compute these Fourier transforms.
For example, one could store the electric and magnetic fiatdsighoutS over all times and at
the end of the simulation perform a discrete-time Fourimgform (DTFT) of the fields:

E, = ) “™EnADAL, (6)

n

for all frequencies) of interest, possibly exploiting a fast Fourier transfdiffirT) algorithm.
Such an approach has the following computational cost: fsimalation havingl timesteps,
F < T frequencies to computdys fields in the flux region andN pixels in the entire com-
putational cell this approach requir@$N + NsT) storage an®(NT + T logT) time (using a
FFT-based chirg-algorithm [54])? The dificulty with this approach is that if a long simulation
(largeT) is required to obtain a high frequency resolution by thealisacertainty relation [56],
then the®(NsT) storage requirements for the fieltt) and H(t) at each point irS become

2Here,® has the usual meaning of an asymptotic tight bound [55].
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Figure 9: Relative error in the quality fact@for a photonic-crystal resonant cavity (inset, peravith Q ~ 1P, versus
simulation time in units of optical periods of the resonanBé&ue circles: filter-diagonalization method. Red squares
least-squares fit of energy in cavity to a decaying expoakrfilter-diagonalization requires many fewer opticalipegs
than the decay tim®, whereas curve fitting requires a simulation long enoughHeffields to decay significantly.

excessive. Instead, Meep accumulates the DTFT summatithre dields at every point i§ as
the simulation progresses; once the time stepping hasrtated, eq. (5) can be evaluated using
these Fourier-transformed fieldsSThe computational cost of this approact®gN + NsF) stor-
age [much less tha®(NsT) if F < T]and®(NT+NsFT) time. Although our current approach
works well, another possible approach that we have beendmrimgy is to use Padé approxima-
tion: one stores the fields at every timestepSoibut instead of using the DTFT one constructs
a Padé approximant to extrapolate the infinite-time DTBRTa short time series [57]. This re-
quires®(N + NsT) storage (buT is potentially much smaller) an@(NT + T log? T) time [58].

5.2. Analyzing resonant modes

Another major goal of time-domain simulations is analydisesonant phenomena, specif-
ically by determining the resonant frequengy and the quality factor® (i.e., the number of
optical cycles 2/wy for the field to decay bg?*) of one or more resonant modes. One straight-
forward and common approach to computgand Q is by computing the DTFT of the field
at some point in the cavity in response to a short pulse dib]is then the center of a peak in
the DTFT and 1Q is the fractional width of the peak at half maximum. The pevblwith this
approach is that the Fourier uncertainty relation (eqeity, spectral leakage from the finite

31t is tempting to instead accumulate the Fourier transfofthe Poynting flux at each time, but this is not correct
since the flux is not a linear function of the fields.
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time window [56]) means that resolving the peak in this wayuiees a simulation much longer
thanQ/wy (problematic for structures that may have very hi@gheven 18 or higher [59]). Al-
ternatively, one can perform a least squares fit of the fietetseries within the cavity to an
exponentially decaying sinusoid, but this leads to analditioned, non-convex, nonlinear fit-
ting problem (and is especiallyfiicult if more than one resonant mode may be present). If only
a single resonant mode is present, one can perform a leastesfit of the energy in the cavity
to a decaying exponential in order to determi@ebut a long simulation is still required to ac-
curately resolve a larg® (as shown below). A more accurate arficient approach, requiring
only a short simulation even for very larggvalues, is the technique difter diagonalization
originally developed for NMR spectroscopy, which trangfisrthe time-series data into a small
eigenproblem that is solved for all resonant frequencidsarality factors at once (even for mul-
tiple overlapping resonances) [60]. Chapter 16 of Ref. 1gamad the DFT peak-finding method
with filter-diagonalization by attempting to resolve twaan&legenerate modes in a microcavity,
and demonstrated the latter’s ability to accurately resalosely-spaced peaks with as much
as a factor of five times fewer timesteps. In our own work, weehased filter diagonalization
to compute quality factors of £0r more using simulations only a few hundred optical cycles
in length [59]. We quantify the ability of filter diagonalizan to resolve a larg® ~ 1 in

Fig. 9, comparing the relative error i@ versus simulation time for filter diagonalization and
the least-squares energy-fit method above. (The specifityéaformed by a missing rod in

a two-dimensional photonic crystal consisting of a squattick of dielectric rods in air with
perioda, radius 02a, ande = 12 [22].) Figure 9 demonstrates that filter diagonalizatsoable

to identify the quality factor using almost an order of magde fewer time steps than the curve
fitting method. (Another possible technique to identifyaesnt modes uses Padé approximants,
which can also achieve high accuracy from a short simuld&@n61].)

5.3. Frequency-domain solver

A common electromagnetic problem is to find the fields thatpmogluced in a geometry in
response to a source at a single frequancyn principle, the solution of such problems need
not involve time at all, but involve solving a linear equatjourely in the frequency domain [22,
appendix DJ; this can be achieved by many methods, such as-&@ment methods [6, 7, 8],
boundary-element methods [9, 10, 11, 12], or finitfestence frequency-domain methods [62].
However, if one already has a full-featured parallel FDTIven it is attractive to exploit that
solver for frequency-domain problems when they arise. Thstratraightforward approach is
to simply run a simulation with a constant-frequency sourafter a long time, when all tran-
sient dfects from the source turn-on have disappeared, the resiut desired frequency-domain
response. The fliculty with this approach is that a very long simulation mayréguired, es-
pecially if long-lived resonant modes are present at nefmdgyuencies (in which case a time
> Q/w is required to reach steady state). Instead, we show howDh®Rime-step can be used
to directly plug a frequency-domain problem into an iteratinear solver, finding the frequency-
domain response in the equivalent of many fewer timestepke wkploiting the FDTD code
almost without modification.

The central component of any FDTD algorithm is the time stpoperation that advances
the field byAt in time. In order to extract a frequency-domain problem fithis operation, we
first express the timestep as an abstract linear operatibhrépresents all of the fields (electric
and magnetic) at time stap then (in a linear time-invariant structure) the time stgemtion
can be expressed in the form:

£ = Tof" + &, 7)
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Figure 10: Root-mean-square error in fields in response tonatant-frequency point source in vacuum (inset), for
frequency-domain solver (red squares, adapted from Meap-dtepping code) vs. time-domain method (blue circles,
running until transients decay away).

whereT is the timestep operator with no sources ghare the source terms (currents) from that
time step. Now, suppose that one has a time-harmonic sgurce“"ts and wish to solve for
the resulting time-harmonic (steady state) fidlls e ", Substituting these into eq. (7), we
obtain the following linear equation for the field amplitsde

(-’I;O _ e—iwAt)f _— (8)

This can then be solved by an iterative method, and the keyifabat iterative methods for
Ax = bonly require one to supply a function that multiplies thekn operatoA by a vector [63].
Here,Ais represented by, — e “At and hence one can simply use a standard iterative method by
calling the unmodified timestep function from FDTD to prowithe linear operator. To obtain the
proper right-hand sidg one merely needs to execute a single timestep (7), wittcesustarting
from zero fieldf = 0. Since in general this linear operator is not Hermitiampéeglly in the
presence of PML absorbing regions), we employ the BiCGSTA&gorithm (a generalization
of the stabilized biconjugate gradient algorithm, wheéasing the integer parametetrades
off increased storage for faster convergence) [64, 65].

This technique means that all of the features implementediintime-domain solver (not
only arbitrary materials, subpixel averaging, and otheysidal features, but also paralleliza-
tion, visualization, and user-interface features) are @diately available as a frequency-domain
solver. To demonstrate the performance of this frequereyadn solver over the straightforward
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Figure 11: Root-mean-square error in fields in response tnatant-frequency point source exciting one of several
resonant modes of a dielectric ring resonator (inset,11.56), for frequency-domain solver (red squares, adapted fro
Meep time-stepping code) vs. time-domain method (mageisagles, running until transients decay away). Green
diamonds show frequency-domain BiCGSTABsolver for five times more storage, accelerating convemgeriue
circles show time-domain method for a more gradual turnfosoarce, which avoids exciting long-lived resonances at
other frequencies.

approach of simply running a long simulation until transsdmave disappeared, we computed the
root-mean-square error in the field as a function of the nurobime steps (or evaluations of
To by BICGSTAB-L) for two typical simulations. The first simulation, shownFiy. 10, con-
sists of a point source in vacuum surrounded by PML (insdtg ffequency-domain solver (red
squares) shows rapid, near-exponential convergencee iglerror in the time-domain method
(blue circles) decreases far more gradually (in fact, omlymomially). A much more chal-
lenging problem is to obtain the frequency-domain respaise cavity (ring resonator) with
multiple long-lived resonant modes: in the time domainséhenodes require a long simula-
tion (~ Q) to reach steady state, whereas in the frequency domairsogances correspond to
poles (near-zero eigenvalues A that increase the condition number and hence slow conver-
gence [63]. Figure 11 shows the results for a ring resonaatycwith multiple closely-spaced
resonant modes, excited at one of the resonant frequereget)—although both frequency-
and time-domain methods take longer to converge than fondheresonant case of Fig. 10, the
advantage of the frequency-domain’s exponential convexges even more clear. The conver-
gence is accelerated in frequency domain by usirg 10 (green diamonds) rather than= 2

(at the expense of more storage). In time domain, the coanergis limited by the decay of
high-Q modes at other frequencies, and the impact of these moddeeaaaduced by turning on
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the constant-frequency source more gradually (magematagies, hyperbolic-tangent turn-on of
the source over 175 optical periods).

This is by no means the most sophisticated possible frequéoimain solver. For example,
we currently do not use any preconditioner for the iteratigbeme [63]. In two dimensions,
a sparse-direct solver may be far moféoient than an iterative scheme [63]. The key point,
however, is that programmer time is much more expensivegdbaputer time, and this technique
allows us to obtain substantial improvements in solvingjdiency-domain problems with only
minimal changes to an existing FDTD program.

6. User interface and scripting

In designing the style of user interaction in Meep, we werelgd by two principles. First,
in research or design one hardly ever needsquastsimulation—one almost always performs a
whole series of simulations for a class of related problemxgloring the parameter dependencies
of the results, optimizing some output as a function of thmutrparameters, or looking at the
same geometry under a sequence difedént stimuli. Second, there is the Unix philosophy:
“Write programs that do one thing and do it well” [66]—Meepsitd perform electromagnetic
simulations, while for additional functionality it shoule combined with other programs and
libraries via standard interfaces like files and scripts.

Both of these principles argue against the graphical CAfleshterface common in com-
mercial FDTD software. First, while graphical interfacesyde a quick and attractive route
to setting up a single simulation, they are not so converi@rd series of related simulations.
One commonly encounters problems where the/gstion of certain objects is determined by
the sizéposition of other objects, where the number of objects fits parameter (such as a
photonic-crystal cavity surrounded by a variable numbgresfods [22]), where the length of the
simulation is controlled by a complicated function of thdd& where one output is optimized
as a function of some parameter, and many other situati@sttome increasingly cumber-
some to express via a set of graphical tools and dialog bdesond, we donwantto write
a mediocre CAD program—if we wanted to use a CAD program, welevase a professional-
quality one, export the design to a standard interchangeafrand write a conversion program
to turn this format into what Meep expects. The most flexilild aelf-contained interface is,
instead, to allow the user to control the simulation via dviteary program. Meep allows this
style of interaction at two levels: via a low-levek& interface, and via a standard high-level
scripting language (Scheme) implemented by an externariifd GNU Guile). The potential
slowness of the scripting language is irrelevant becaus# tle expensive parts of the FDTD
calculation are implemented iyC+-+.

The high-level scripting interface to Meep is documentedetail, with several tutorials, on
the Meep web pagéttp://ab-initio.mit.edu/meep), SO We restrict ourselves to a single
short example in order to convey the basic flavor. This examniplFig. 12, computes the (2d)
fields in response to a point source located within a digleetaveguide. We first set the size
of the computational cell to 18 8 (via geometry-lattice, so-called because it determines
the lattice vectors in the periodic case)—recall that therpretation of the unit of distance is
arbitrary and up to the user (it could be A& x 8um, in which case the frequency units are
¢/um, or 16 mmx 8 mm with frequency units af/mm, or any other convenient distance unit).
Let us call this arbitrary unit of distan@ Then we specify the geometry within the cell as a
list of geometric objects like blocks, cylinders, etcetein this case by a single block defining
the waveguide witle = 12—or optionally by an arbitrary user-defined functie(x,y) (and
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(set! geonetry-lattice (nake lattice (size 16 8 no-size)))
(set! geonetry (list
(make bl ock (center 0 0) (size infinity 1)
(material (nake dielectric (epsilon 12))))))
(set! pml-layers (list (nake pm (thickness 1.0))))

RII IR TR CRIIIN

(set! sources (list
(make source
(src (make continuous-src (frequency 0.15)))
(conponent Ez)
(center -7 0))))

computational cel
& materials

current
source

oa‘S(se“ resol ution 10) ]
=2 (run-until 200 HDFS5 file —
33 (at - begi nni ng out put - epsi | on) plotting program

(at-end output-efield-z))

Figure 12: A simple Meep example showing tBgfield in a dielectric waveguides(= 12) from a point source at a
given frequency. A plot of the resulting field (bjwénite/red = positivgzergnegative) is in the background, and in the
foreground is the input file in the high-level scripting irieee (the Scheme language).

u, etcetera). A layer of PML is then specified around the botiadawith thickness 1; this
layer liesinsidethe computational cell and overlaps the waveguide, whictetessary in order
to absorb waveguide modes when they reach the edge of theWelladd a point source, in
this case an electric-current sourtén the z direction (sources of arbitrary spatial profile can
also be specified). The time-dependence of the source isrp &ha-on to a continuous-wave
source cosft) at the beginning of the simulation; gradual turn-ons, Gaurspulses, or arbitrary
user-specified functions of time can also be specified. Téguincy is A5 in units ofc/a,
corresponding to a vacuum wavelength= a/0.15 (e.g. 4 = 6.67um if a = 1um). We set
the resolution to 10 pixels per unit distance (10 pis@lsso that the entire computational cell is
160x 80 pixels, and then run for 200 time units (unitsag€), corresponding to 209 0.15 = 30
optical periods. We output the dielectric function at thgibhaing, and thes; field at the end.

In keeping with the Unix philosophy, Meep is not a plottinggram; instead, it outputs fields
and related data to the standard HDF5 format for scientifiasgds [67], which can be read by
many other programs and visualized in various ways. (We piewide a way to fectively
“pipe” the HDF5 output to an external program within Meepr éaample, to output the HDF5
file, convert it immediately to an image with a plotting pragr, and then delete the HDF5 file;
this is especially useful for producing animations comsisbf hundreds of frames.)

Another important technique to maintain flexibility is thaft higher-order functions [68]:
wherever it is practical, our functions take functions aguanents instead of (or in addition to)
numbers. Thus, for example, instead of specifying spenjaliticodes for all possible source
distributions in space and time, we simply allow a user-a@efifunction to be used. More
subtly, the argumentsutput-epsilon andoutput-efield-z to therun-until function in
Fig. 12 are actually functions themselves: we allow the ts@ass arbitrary “step functions” to
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run-until that are called after every FDTD timestep and which can perfarbitrary compu-
tations on the fields as desired (or halt the computation ésirdd condition is reached). The
output-efield-z is simply a predefined step function that outpHts These step-functions
can be modified by transformation functions like-end, which take step functions as argu-
ments and return a new step function that only calls the maigitep functions at specified times
(at the end of the simulation, or the beginning, or at ceritatiervals, for example). In this way,
great flexibility in the output and computations is achiev@de can, for example, output a given
field component only at certain time intervals after a giveret and only within a certain sub-
volume or slice of the computational cell, simply by compagsseveral of these transformations.
One can even output an arbitrary user-defined function ofithés instead of predetermined
components.

There is an additional subtlety when it comes to field outpatause of the Yee lattice in
which different field components are stored dfatient points; presented in this way to the user,
it would be dificult to perform post-processing involving multiple fieldneponents, or even
to compare plots of dierent field components. As mentioned in Sec. 3 and again in7S2c
therefore, the field components are automatically inteteol from the Yee grid onto a fixed
“centered” grid in each pixel when exported to a file.

Although at a simplistic level the input format can just basidered as a file format with
a lot of parentheses, because Scheme is a full-fledged pnogray language one can control
the simulation in essentially arbitrary ways. Not only care avrite loops and use arithmetic to
define the geometry and the relationships between the stjegierform parameter sweeps, but
we also expose external libraries for multivariable optiation, integration, root-finding, and
other tasks in order that they can be coupled with simulation

Parallelism is completely transparent to the user: exdla#lysame input script is fed to the
parallel version of Meep (written with the MPI message-pagstandard for distributed-memory
parallelism [69]) as to the serial version, and the distidouof the data across processors and
the collection of results is handled automatically.

7. Abstraction versus performance

In an FDTD simulation, essentially just one thing has to s feaner loops over all the grid
points or some large fraction thereof. Everything else gligiéle in terms of computation time
(but not programmer time!), so it can use high-level absivas without penalty—for example,
the use of a Scheme interpreter as the user interface hasrfosnpance consequences for a
typical computation, because the inner loops are not wrritisSchemé. For these inner loops,
however, there is a distinct tension between abstractipsifaplicity) and performance, and in
this section we discuss some of the traffiethat result from this tension and the choices that
have been made in Meep.

The primacy of inner loops means that some popular pringipfeabstraction must be dis-
carded. A few years ago, a colleague of ours attempted te wriew FDTD program in textbook
object-oriented €+ style: every pixel in the grid would be an object, and evepetpf material

4The exception to this rule is when the user supplies a Schanién and asks that it be evaluated for every grid
point, for example to integrate some function of the fieldshik is done frequently during the simulation, it is slow; i
these circumstances, however, the user can replace then&dhaction with one written in ++ if needed. This is
rare because most such functions that might be used frdguiening a simulation, such as energy or flux, are already
supplied in @C++ within Meep.
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would be a subclass overriding the necessary timesteppihfield-access operations. Timestep-
ping would consist of looping over the grid, calling somesfst method of each object, so that
objects of diferent materials (magnetic, dielectric, nonlinear etegteould dynamically apply
the corresponding field-update procedures. The resultihibble experiment was a working
program but a performance failure, many times slower tharatfing Fortran software it was
intended to replace: the performance overhead of objeefel@ncing, virtual method dispatch,
and function calls in the inner loop overwhelmed all othemsiderations. In Meep, each field’s
components are stored as simple linear arrays of floatimgt-pambers in row-major (C) or-
der (parallel-array data structures worthy of Fortran @8)] there are separate inner loops for
each type of material (more on this below). In a simple experit on a 2.8 GHz Intel Core 2
CPU, merely moving theaf statements for the fierent material types into these inner loops
decreased Meep’s performance by a factor of two in a typidale8culation and and by a factor
of six in 2d (where the calculations are simpler and henceotfeghead of the conditionals is
more significant). The cost of the conditionals, includihg tost of mispredicted branches and
subsequent pipeline stalls [70] along with the frustratiboompiler unrolling and vectorization,
easily overwhelmed the small cost of computing, &Vgx,H at a single point.

7.1. Timestepping and cache tragfso

One of the dominant factors in performance on modern compgystems is not arithmetic,
but memory: random memory access is far slower than arifbnagtd the organization of mem-
ory into a hierarchy of caches is designed to favor localftaeress [70]. That is, one should
organize the computation so that as much work as possibtmis @ith a given datum once it is
fetched (temporal locality) and so that subsequent datatkaead or written are located nearby
in memory (spatial locality). The optimal strategies to lexpboth kinds of locality, however,
appear to lead to sacrifices of abstraction and code sirypboi severe that we have chosen
instead to sacrifice some potential performance in the ndsienplicity.

As it is typically described, the FDTD algorithm has verylditemporal locality: the field at
each point is advanced in time By, and then is not modified again undill the fields aevery
other point in the computational cell have been advancedrder to gain temporal locality,
one must emplowasynchronous timesteppingssentially, points in small regions of space are
advanced several steps in time before advancing pointsviay,aince over a short time interval
the dfects of far-away points cannot cannot be felt. A detailedyasof the characteristics
of this problem, as well as a beautiful “cache-obliviougj@ithm that automatically exploits a
cache of any size for grids of any dimensionality, is desain Ref. 71. On the other hand,
an important part of Meep’s usability is the abstractiort tha user can perform arbitrary com-
putations or output using the fields in any spatial regiomattane, which seems incompatible
with the fields at dierent points in space being out-of-sync until a predeteechiend of the
computation. The bookkeepingdficulty of reconciling these two viewpoints led us to rejed th
asynchronous approach, despite its potential benefits.

However, there may appear to be at least a small amount ofai@injocality in the syn-
chronous FDTD algorithm: firdB is advanced fronV x E, thenH is computed fronB andg,
thenD is advanced fronV x H, thenE is computed fronD ande. Since most fields are used at
least once after they are advanced, surely the updates diffaeent fields can be merged into a
single loop, for example advancifyat a point and then immediately computiBgt the same
point—theD field need not even be stored. Furthermore, since by mergmgpdates one is
accessing several fields around the same point at the saragp@rhaps one can gaspatial
locality by interleaving the data, say by storing an arraffgH, ¢, i) tuples instead of separate
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arrays. Meep does not do either of these things, howevetwimreasons, the first of which is
more fundamental. As is well-known, one cannot easily méngd3 andH updates with the
D andE updates at the same point, because the discrelizedperation is nonlocal (involves
multiple grid points)—this is why one normally updatésverywhere in space before updating
D from V x H, because in computing x H one uses the values bff at different grid points and
all of them must be in sync. A similar reasoning, however ligggo updatinge from D and

H from B, once the possibility of anisotropic materials is inclugddaecause the Yee grid stores
different field components atftirent locations, any accurate handling fdiagonal suscepti-
bilities must also inevitably involve fields at multiple pts (as in Ref. 39). To handle thib,
must be stored explicitly and the updatetofrom D must take place aftdd has been updated
everywhere, in a separate loop. And since each field is ugdate separate loop, the spatial-
locality motivation to merge the field data structures rathan using parallel arrays is largely
removed.

Of course, not all simulations involve anisotropic matisriaalthough they appear even in
many simulations with nominally isotropic materials than& the subpixel averaging discussed
in Sec. 3—but this leads to the second practical problem mighging theE andD (or H and
B) update loops: the combinatorial explosion of the possildgerial cases. The update Df
from V x H must handle 16 possible cases, each of which is a separgt¢dee above for the
cost of putting conditionals inside the loops): with or with PML (4 cases, depending upon
the number of PML conductivities and their orientation tigato the field), with or without
conductivity, and with the derivative of twid components (3d) or only orid component (2d
TE polarization). The update & from D involves 12 cases: with or without PML (2 cases,
distinct from those in th® update), the number offiediagonals~! components (3 cases: 0, 1,
or 2), and with or without nonlinearity (2 cases). If we atf#ed to join these into a single loop,
we would have 1& 12 = 192 cases, a code-maintenance headache. (Note that thglicitytof
PML cases comes from the fact that, including the cornere®@tbmputational cell, we might
have 0 to 3 directions of PML, and the orientation of the PMiediions relative to a given field
component matters greatly.)

The performance penalty of separ&endD (or H andB) updates appears to be modest.
Even if, by somehow merging the loops, one assumes thatrtteetti comput& = D could
becomezerg benchmarking the relative time spent in this operationcaigs that a typical 3d
transmission calculation would be accelerated by onlymd@0% (and less in 2d).

7.2. The loop-in-chunks abstraction

Finally, let us briefly mention a central abstraction thdijlernot directly visible to end-users
of Meep, is key to theficiency and maintainability of large portions of the softeéfield output,
current sources, flygnergy computations and other field integrals, and so onk phrpose
of this abstraction is to mask the complexity of the pamtitiqy of the computational cell into
overlapping chunks connected by symmetries, communitasind other boundary conditions
as described in Sec. 2.

Consider the output of the fields at a given timestep to an Hiéafile. Meep provides
a routineget-field-pt that, given a point in space, interpolates it onto the Yed grid re-
turns a desired field component at that point. In additiomterpolation, this routine must also
transform the point onto a chunk that is actually storedn@isotations, periodicity, etcetera) and
communicate the data from another processor if necessang point is on a boundary between
two chunks, the interpolation process may involve multghenks, multiple rotations etcetera,
and communications from multiple processors. Becaus@tbisess involves only a single point,
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it is not easily parallelizable. Now, to output the fields mwehere in some region to a file, one
approach is to simply caffet-field-pt for every point in a grid for that region and output
the results, but this turns out to be tremendously slow texafithe repeated transformations
and communications for every single point. We nevertheles# to interpolate fields for out-
put rather than dumping the raw Yee grid, because it is muskeefor post-processing if the
different field components are interpolated onto the same dsidl; ® maintain transparency of
features like symmetry one would like to be able to outputwhele computational cell (or an
arbitrary subset) even if only a part of it is stored. Almasa&ly the same problems arise for
integrating things like fluxe x H or energy or user-defined functions of the fields (noting that
functions combining multiple field components require ipt#ation), and also for implement-
ing volume (or line, or surface) sources which must be pteptonto the grid in some arbitrary
volume.

One key to solving this diiculty is to realize that, when the field in some voluvds
needed (for output, integration, and so on), the rotaticosymunications, etcetera for points
in V are identical for all the points in the intersection \éfwith some chunk (or one of its
rotationgtranslations). The second is to realize that, when intatjol is needed, there is a
particular grid for which interpolation is easy: fownedpoints of thecenteredgrid (Sec. 2)
lying at the center of each pixel, it is always possible teipblate from fields on any Yee grid
without any inter-chunk communication and by a simple equeight averaging of at most'2
points ind dimensions.

The combination of these two observations leads tddbp-in-chunksbstraction. Given a
(convex rectilinear) volum& and a given grid (either centered, or one of the Yee-fieldsyrid
it computes the intersection of all the chunks and theirtimtig/translations withv. For each
intersection it invokes a caller-specified function, pagdhe portion of the chunk, the neces-
sary rotations (etc.) of the fields, and interpolation we&sdfif needed, for the boundary o).
That function then processes the specified portion of thaklfior example, outputting it to the
corresponding portion of a file, or integrating the desirettlf). All of this can proceed in par-
allel (with each processor considering only those chundk®dtlocally). This is (relatively) fast
because the rotations, interpolations, and so on are cemmuly once per chunk intersection,
while the inner loop over all grid points in each chunk can bdight as necessary. Moreover,
all of the rather complicated and error-prone logic invalwe computingV’s intersection with
the chunks (e.g., special care is required to ensure thateaaweptual grid point is processed
exactly once despite chunk overlaps and symmetries) idizechto one place in the source
code; field output, integration, sources, and other funetiof the fields are isolated from this
complexity.

8. Concluding remarks

We have reviewed in this paper a number of the unusual impieatien details of Meep
that distinguish our software package from standard tekie>TD methods. Beginning with
a discussion of the fundamental structural unit of chunle$ tonstitute the Yee grid and en-
able parallelization: we provided an overview of Meep’secdesign philosophy of creating an
illusion of continuous space and time for inputs and outpwis explained and motivated the
somewhat unusual design intricacies of nonlinear mateaiatl PMLs; we discussed important
aspects of Meep’s computational methods for flux spectraesahant modes; we demonstrated
the formulation of a frequency-domain solver requiringyominimal modifications to the un-
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derlying time-stepping algorithm. In addition to the inmearkings of Meep’s internal structure,
we reviewed how such features are accessible to users videmnal scripting interface.

We believe that a fr¢epen-source, full-featured FDTD package like Meep can plaital
role in enabling new research in electromagnetic phenoniéotzonly does it provide a low bar-
rier to entry for standard FDTD simulations, but the simipfiof the FDTD algorithm combined
with access to the source codéars an easy route to investigate new physical phenomena cou-
pled with electromagnetism. For example, we have colleagueking on coupling multi-level
atoms to electromagnetism within Meep for modeling lasingd saturable absorption, adapting
published techniques from our and other groups [16, 17, 2820Q], but also including new
physics such as flusion of excited gases. Other colleagues have modified Maapddeling
gyromagnetic media in order to design new classes of “ong-waveguides [72]. Meep is even
being used to simulate the quantum phenomena of Casimiedqfrom quantum vacuum fluc-
tuations, which can be computed from classical Green'stions) [73, 74]—in fact, this was
possible without any modifications of the Meep code due tdlthebility of Meep’s scripting
interface. We hope that other researchers, with the helpeafihderstanding of Meep'’s architec-
ture that this paper provides, will be able to adapt Meep toreuphenomena that we have not
yet envisioned.
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