
MIT Open Access Articles

The hydrodynamics of water-walking arthropods

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Hu, David L., and John W. M. Bush. “The hydrodynamics of water-walking arthropods.” 
Journal of Fluid Mechanics 644 (2010): 5. © Cambridge University Press 2010

As Published: http://dx.doi.org/10.1017/S0022112009992205

Publisher: Cambridge University Press

Persistent URL: http://hdl.handle.net/1721.1/60962

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/60962


J. Fluid Mech. (2010), vol. 644, pp. 5–33. c© Cambridge University Press 2010

doi:10.1017/S0022112009992205

5

The hydrodynamics of water-walking arthropods

DAVID L. HU† AND JOHN W. M. BUSH‡
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

(Received 24 May 2008; revised 9 September 2009; accepted 11 September 2009)

We present the results of a combined experimental and theoretical investigation of
the dynamics of water-walking insects and spiders. Using high-speed videography,
we describe their numerous gaits, some analogous to those of their terrestrial
counterparts, others specialized for life at the interface. The critical role of the rough
surface of these water walkers in both floatation and propulsion is demonstrated.
Their waxy, hairy surface ensures that their legs remain in a water-repellent state,
that the bulk of their leg is not wetted, but rather contact with the water arises
exclusively through individual hairs. Maintaining this water-repellent state requires
that the speed of their driving legs does not exceed a critical wetting speed. Flow
visualization reveals that the wakes of most water walkers are characterized by
a series of coherent subsurface vortices shed by the driving stroke. A theoretical
framework is developed in order to describe the propulsion in terms of the transfer
of forces and momentum between the creature and its environment. The application
of the conservation of momentum to biolocomotion at the interface confirms that
the propulsion of water walkers may be rationalized in terms of the subsurface flows
generated by their driving stroke. The two principal modes of propulsion available
to small water walkers are elucidated. At driving leg speeds in excess of the capillary
wave speed, macroscopic curvature forces are generated by deforming the meniscus,
and the surface behaves effectively as a trampoline. For slower speeds, the driving
legs need not substantially deform the surface but may instead simply brush it: the
resulting contact or viscous forces acting on the leg hairs crossing the interface serve
to propel the creature forward.

1. Introduction
We present here the results of an extensive series of experiments aimed at elucidating

the propulsion mechanisms of water-walking arthropods. Our study is motivated
principally by fundamental interest, specifically a desire to rationalize a number of
nature’s designs. Nevertheless, owing to the scales involved, this class of problems
may serve to inspire and inform the biomimetic design of microfluidic devices.
For example, the dynamic interaction between water-repellent solids and fluids is a
problem of considerable interest in a number of engineering applications, for example
the design of self-cleaning and drag-reducing surfaces (Bush, Hu & Prakash 2008;
Quéré 2008).

There has been considerable work reported in the biology literature on water-
walking insects, beginning with that of Aldrovandi (1618) and Ray (1710). The
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introduction of the concept of surface tension (Plateau 1873) provided the physical
basis for understanding the weight support of small water-walking insects (Brocher
1910; Baudoin 1955), and the static equilibria of water-walking insects is now well
understood (Mansfield, Sepangi & Eastwood 1997; Keller 1998). The dynamics of
water-walking arthropods is subtler and requires consideration of both the surface
chemistry and the texture responsible for the creature’s water repellency (Bush et al.
2008) and the interfacial fluid dynamics generated by its leg stroke (Bush & Hu 2006).

The form and function of the surface layer (or ‘integument’) of water-walking
creatures has been reviewed in Bush et al. (2008), and the dynamical significance of
the hair geometry has been demonstrated in Prakash & Bush (submitted). Water-
walking arthropods are water repellent by virtue of their waxy surface coating that
increases the contact angle beyond π/2 (Holdgate 1955), and a surface roughness
that consists of a dense array of hairs (Andersen 1977; Gao & Jiang 2004; Stratton,
Suter & Miller 2004b). When adjoining the free surface, these hairs trap air pockets,
preclude bulk wetting of the leg and so maintain the leg’s water repellency. When
the leg is moving, however, the manner in which water repellency is maintained and
force is transferred from the fluid to the driving legs is not immediately clear. We
here demonstrate the means by which propulsive forces are generated by the driving
stroke of water-repellent water-walking arthropods.

It has long been known that surface tension plays a critical propulsive role for
most water-walking creatures (Dufour 1833; Brocher 1910; Baudoin 1955). With
the invention of the high-speed camera in 1942, great strides were made towards
describing their motion on the water surface. It became clear that water walkers
possess a variety of gaits (Andersen 1976; Suter et al. 1997) that include walking,
rowing and galloping. Locomotion by water walkers such as Microvelia, Mesovelia and
Hydrometra is characterized by an alternating tripod gait analogous to that employed
on land by cockroaches and other terrestrial hexapods (Altendorfer et al. 2001). The
most efficient water walkers, such as water striders and fisher spiders, row using
their middle pair of legs (Andersen 1976; Suter, Stratton & Miller 2003; Stratton,
Suter & Miller 2004a). Bowdan (1978) noted that water striders revert to a walking
gait on a fluid of higher viscosity. Fisher spiders switch from rowing to galloping in
order to achieve their peak speed (Suter & Wildman 1999). Certain water walkers
can climb static menisci simply by deforming the free surface quasi-statically, thereby
generating lateral capillary forces (Baudoin 1955; Miyamoto 1955; Hu & Bush 2005).
Finally, Microvelia and certain shore-dwelling creatures possess an emergency form
of propulsion: by excreting surfactant, they generate surface-tension gradients that
propel them short distances along the water surface (Linsenmair & Jander 1976;
Schildknecht 1976).

Darnhofer-Demar (1969) showed experimentally that water striders generate
millimetre-scale indentations by striking the free surface and surmised that it was
the associated curvature forces that provide the strider’s thrust. He emphasized the
presence of waves in the wake, and this fuelled work supporting the idea that wave
drag on the driving leg plays a critical propulsive role (Andersen 1976; Denny 1993;
Sun & Keller 2001). This inference concerning the critical role of wave drag led to
Denny’s paradox (Suter et al. 1997), the proposal that infant water striders unable
to generate waves should be incapable of self-propulsion (Denny 1993, 2004). Suter
et al. (1997) performed a series of experiments in which the steady-state forces were
measured on a spider leg suspended in a rotating flume. The authors estimated
the relative magnitudes of forces on the leg owing to wave drag, fluid inertia and
curvature forces; by demonstrating the persistence of the inertial forces even in the
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absence of waves, the authors effectively resolved Denny’s paradox. Hu, Chan &
Bush (2003) argued that the propulsion of these creatures is most easily understood
and the paradox most easily resolved by considering momentum transfer in their
wake, an argument to be supported by the theoretical developments of § 5.2. Hu
et al. (2003) showed experimentally that the most common water-walking insect, the
water strider, transfers momentum principally through subsurface vortices. In our
experimental study reported in § 4, we demonstrate that the generation of vortices
by water walkers has a broad generality; moreover, we demonstrate that even in the
absence of the generation of pronounced waves or vortices, water-walking insects are
able to propel themselves by virtue of the microscale interaction between their rough
integument and the water surface.

In § 5, we develop a theoretical framework that may be used to integrate
and rationalize our experimental observations of water-walking arthropods.
Biolocomotion is generally rationalized in terms of the transfer of force and
momentum between the creature and the surrounding fluid (Childress 1981).
Conservation of momentum allows one to rationalize the high-Reynolds-number
propulsion of fish (Wilga & Lauder 2002) and birds (Spedding, Rosén & Hedenstrom
2003) by considering the momentum transfer in their wakes, an approach of particular
value when these wakes are characterized by coherent vortical structures. The motion
of water walkers is complicated by the presence of the free surface. Implicit in the
analysis of Hu et al. (2003) and Bühler (2007) for the water strider and in that
of Hsieh (2004) for the basilisk lizard is that momentum is similarly conserved for
propulsion at a free surface, a result to be proven in § 5.2.

In this paper, we report micro- and macroscale observations of the different
locomotory styles of water-walking arthropods. In § 2, we describe our experimental
techniques. In § 3, we consider the state of wetting of the water walker’s leg in
both static and dynamic states. In § 4, we characterize the leg stroke and the
resulting dynamics of the underlying water. We proceed in § 5 by considering
the hydrodynamics of water-walking arthropods from a theoretical perspective,
characterizing the hydrodynamic force and momentum transfer between the insect,
the fluid and the free surface. Lastly, in § 6 we discuss the implications of our work
and suggest directions for future research.

2. Experimental techniques
Six water-walking and 20 terrestrial insects and spiders, common to our area,

exhibited a range of water-walking techniques (figure 1). Freshwater walkers were
gathered from Fresh Pond, Massachusetts; marine water walkers from the coast
at Rockport, Massachusetts; and terrestrial insects from Cambridge, Massachusetts.
These creatures were raised in captivity in aquaria, sustained on a diet of ground-
dwelling insects.

Insect leg widths were measured using several light microscopes (SKope 3000100
by Boreal, LSM Pascal confocal microscope by Zeiss and stereo microscope STEMI
2000 by Zeiss); their microscale hair coverings were examined with a scanning
electron microscope (XL30 ESEM by FEI). We filmed the insects using a digital
still camera (Sony DSC-F707), a digital video camera (Sony DCR-TRV950) and a
high-speed digital video camera (Redlake Motionscope PCI 8000). High-speed films
were digitized using Midas motion analysis software. Insects were filmed at 1/1000 s
exposure time at 30–500 f.p.s. Plan views of their locomotion were filmed in a shallow
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(a)

(d) (e) (f)

(b) (c)

Figure 1. The water-walking arthropods examined in our experimental study, ordered by
size: (a) the broad-shouldered water strider Microvelia, (b) the water treader Mesovelia, (c)
the springtail Anurida maritima, (d ) the water measurer Hydrometra stagnorum, (e) the water
strider Gerris, (f ) the fisher spider Dolomedes triton. Scale bars, 1 mm.

Water + NaOH

Light

Thymol
blue

Camera

Insect

Wake

Figure 2. The experimental apparatus used for flow visualization. A mildly basic solution is
illuminated from below and viewed from above. The motion of an opaque tracer, Thymol
Blue dye, is used to track the motion of the flows generated by water-walking insects.

tank (15 cm × 15 cm × 4 cm) and side views in a slender tank (3 cm × 20 cm × 20 cm)
that constrained the path of the insect so that it remained in focus.

Flow visualization was accomplished in a series of particle tracking and dye
studies using the apparatus illustrated in figure 2. Particle tracking was performed
by lighting the subject from above, placing a dark background beneath the tank
and seeding the fluid with either Kalliroscope AQ-1000 or Pliolite particles (S-6B,
Goodyear Chemicals), ground to a grain size of 50–100 μm. A Thymol Blue technique
(Voropayev & Afanasyev 1994) was used to visualize subsurface flows. The shallow
tank was lit from below using a light table (LightTracer, Artograph) and filled to a
depth of 0.5–1 cm with a weak dilution of sodium hydroxide (pH 9.2). Thymol Blue
powder was sprinkled on the surface in the path of the insect; the insect propelled
itself through the dye field as the dye sank to the bottom of the tank. The Thymol
Blue prompted Marangoni convection rolls of width comparable to the depth of the
dye layer (Scriven & Sternling 1970). The graininess of these convection rolls could
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Figure 3. Scanning electron microscope images of the hair layer on the driving legs of
Mesovelia (a, scale bar 20 μm) and the water strider (b, scale bar 20 μm; c, scale bar 5 μm).
The leg is a hairy brush whose hairs are tilted at 30◦ to the leg surface. Hairs are typically
30 μm long, 1–3 μm thick at the base and tapered; their density is 12 000–16 000 hairsmm−2.
(c) A closer view of the hairs shows that their tips are bent inward towards the legs; moreover,
each hair is patterned with grooves of characteristic width 400 nm that run its length. Images
courtesy of Manu Prakash.

be reduced by stirring the fluid. Stirring also allowed the dye-based mixture to be
used repeatedly.

We also observed the deflection of the free surface by the insect leg. The leg was
never observed to penetrate the free surface. Instead, a water-repellent state was
maintained: a thin air layer remained trapped in its integument (Bush et al. 2008).
Some insects are also able to pull up on the free surface by virtue of their hydrophilic
claws (Baudoin 1955; Noble-Nesbitt 1963; Andersen 1976), an important adaptation
for meniscus climbing (Hu & Bush 2005). The sign of the surface deflection was
determined using a lighting technique adopted from Baudoin (1955). By lighting
directly from above the insect, the surface deflection could be inferred qualitatively
from the manner in which light was focused onto the tank bottom. Depressions of
the free surface defracted light radially outward and were marked by dark spots on
the tank bottom; conversely, peaks in the free surface were marked by bright spots
(figures 11, 14 and 16).

The insects were encouraged to move using a variety of techniques. When the
room was dark, a beam of light produced by a flashlight would attract the insects.
Prodding with a wire, shaking the tank or blowing on the insect were also effective
in encouraging it to move in a preferred direction or, in the case of Microvelia, to
secrete surfactant.

3. Microscale considerations
The macroscopic flows generated by the driving stroke of water-walking insects

will be considered in §§ 4 and 5. We first consider the microscopic interaction between
the arthropod cuticle and the interface, specifically its role in water repellency (§ 3.1)
and propulsion (§ 3.2).

3.1. Water repellency

Water-walking arthropods are covered with a dense hair mat that renders them
water-repellent (Figure 3; Bush et al. 2008). The bodies of water walkers have two
distinct hair layers, namely the macrotrichia for waterproofing the insect on the water
surface and the shorter microtrichia for trapping air should the insect be submerged
by raindrops or a crashing wave (Thorpe & Crisp 1947; Hinton 1976). We note
that in the case of submergence, the air trapped in the microtrichia serves both as a
buoy and an external gill that for certain arthropods enables underwater breathing
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Figure 4. The roughness Weber number Weδ = ρU 2δ/σ and Bond number Boδ = ρgδ2/σ
characterizing the water repellency of the hair layers of five species of water-walking insects
and spiders. Here U represents the peak leg speed and δ the inter-hair spacing. All water
walkers are characterized by low Weber number, indicating that their driving legs remain in a
Cassie state as they propel themselves on the water surface. Moreover, the low Bond number
indicates that the air layers between the hairs remain intact in the face of hydrostatic pressures
generated by the driving stroke. (a) A cross-sectional view of an array of hairs with spacing δ
lying tangent to the free surface. (b) Shows an oblique view of a single hair of length L, width
d and angle φ piercing the free surface.

(Flynn & Bush, 2008). We proceed by investigating the characteristics of the hairs on
the driving legs.

The surface of the water-walking arthropod leg consists of a mat of macrotrichia
tilted towards the leg tips; the tilt angle φ and spacing δ vary among species
(figure 4a). The leg hairs of Microvelia are shown in figure 3(a) and schematically
in figure 5. The hairs generally have a length L of 20–60 μm and a diameter d

of 1–2 μm at the base and taper to a point at their tip. Inter-species variation in
the hair tilt and spacing are shown in table 1. Figure 6(a) shows that the leg of
Mesovelia resembles a hairy brush. A view from below (figure 7) shows that the
arthropod leg traps air within its integument, thus maintaining a water-repellent
state. These air pockets can be seen as a silvery envelope around the legs when
they strike the water surface as is the case for the fisher spider (figure 8). We
proceed by rationalizing the maintenance of this air layer in both static and dynamic
settings.

The waxy material covering the integument of water-walking arthropods has a
chemical contact angle of θe = 105◦ (Holdgate 1955) and so is hydrophobic. Because
θe > π/2, the addition of surface roughness increases the energetic cost of wetting and
so discourages wetting (Dussan 1979; de Gennes, Brochard-Wyart & Quéré 2003).
The form of contact between a rough, hydrophobic solid and water depends explicitly
on the form of the roughness and the fluid pressure. With moderate roughness, the
water entirely wets the substrate, yielding a Wenzel state (Figure 9c; Wenzel 1936).
When the roughness is increased sufficiently, it is energetically favourable for air
inclusions to be trapped within the rough surface, so that the solid is wetted only at
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Gait Species n (hairs cm−2) L (μm) d (μm) φ (deg.) δ (μm)
Hair density Length Width Tilt angle Spacing

Rowing Strider 1.2–1.6 × 106 20–40 1.5–2 30–50 7
Velia 1 × 106 30–40 1–2 50–60 –
Halobates 0.8–1.2 × 106 20–30 1 20–40 –
Fisher spider 2.5–3.6 × 105 – 6 – 13

Walking Mesovelia 4 × 105 30–60 2–3 50 10
Hydrometra 2–3 × 105 15 5 90 15

Table 1. Tarsal hair properties of water-walking insects and spiders. Leg hairs of length L,
width d and angle φ with respect to the leg surface are arranged with density n and spacing
δ. Data reprinted from Andersen (1976, 1977); spider data from Stratton et al. (2004b).

(a)

b

(c)

(e) ( f)

(d)

(b)

c, d

e

f

Figure 5. The contact between the water treader Mesovelia and the free surface. (a) Mesovelia
supports its weight by deforming the surface. Scale bar, 1 mm. (b) A schematic of a section
of a hairy leg. Scale bar, 100 μm. (c, d ) Further schematics of individual hairs penetrating the
surface. Scale bar, 1 μm. (e) A single hair penetrating the free surface. Scale bar, 1 μm. (f ) The
hairs are covered in nanogrooves that trap air when the hair is submerged. Scale bar, 0.1 μm.

the extremities of its roughness elements. The apparent contact angle θ∗ of a drop in
the resulting water-repellent or ‘Cassie’ state is given by the Cassie–Baxter relation
(Cassie & Baxter 1944)

cos θ∗ = fs − 1 + fs cos θ, (3.1)
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(a) (b)

Figure 6. The hairy legs of (a) Mesovelia and (b) the fisher spider. As is evident in the inset
of (b), the hairs maintain an array of air pockets when pressed against the water surface. Scale
bars: (a) 100 μm, (b) 0.15 cm.

(a) (b)

Figure 7. Brightfield images of water-walking arthropods in a Cassie state, as seen from
below through an inverted microscope. (a) A live Microvelia standing on the water surface
grooming its water-repellent legs. Scale bar 400 μm. A closer look at the supporting foot (the
hatched box in a, magnified in b and its inset) shows individual hair pinholes corresponding
to the contact lines between the cuticle and the water surface. Scale bars, 100 μm. Images
courtesy of Manu Prakash.

where fs is the exposed area fraction of the solid substrate (e.g. the ratio of the area
of the pillar tops to total base area in figure 9d ). For sufficiently small fs , the effect of
the texture is to increase the contact angle dramatically from θ to θ∗ and so qualify the
integument as being superhydrophobic (θ∗ > 150◦). Gao & Jiang (2004) measured the
contact angles of water strider integument to be 168◦ and rationalized this high value
by virtue of the nanogrooves on the hairs. Stratton et al. (2004b) reported values of
152◦ for fisher spiders. Contact angles for a variety of water-walking arthropods are
reported in Bush et al. (2008).

We note that a consequence of the hydrophobicity via texturing of the integument
of water-walking arthropods is that if the leg is immersed in a fluid with which it
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(a) (b)

Figure 8. High-speed images of the fisher spider (a) galloping and (b) leaping by driving its
legs against the free surface. In (a), its leg penetrates the free surface, as shown in the close-up
view in the inset, but maintains a Cassie state. Scale bars, 7 mm.

(a)

θe

θ*

θ* θ*

(b)

(c) (d)

Figure 9. Roughening a surface will amplify its wetting tendencies: (a) θe defines the
equilibrium or chemical contact angle on a flat surace. (b) On a rough surface, the microscopic
contact angle remains θe , but the observed contact angle on the macroscopic scale, θ∗, depends
explicitly on the surface roughness. The two generic states of wetting, the Wenzel and Cassie
states, are shown schematically in (c) and (d ). In the Wenzel state, the pores are impregnated
by fluid, increasing the fluid–solid contact. In the Cassie state, air pockets are trapped by the
overlying fluid, reducing the fluid–solid contact.

has a low contact angle (θ < 90◦), such as soapy water, the hairy leg becomes super-
hydrophilic and so imbibes water. The sensitivity of water-walking arthropods to
surfactant was simply observed: the addition of detergent to the water surface caused
water striders to sink through the interface. Note that the sinking is not simply due to
the loss of static weight support by lowering of surface tension, since water walkers
have a high margin of safety (Hu et al. 2003; Bush et al. 2008). Instead, the sinking is
caused by the surfactant eliminating the water repellency of the integument, altering
it from a non-wetting Cassie state to a wetting Wenzel state.

The maintenance of a Cassie state on the hairs is a fundamental constraint on
water-walking arthropods; otherwise, they sink through the interface. The criterion for
wetting is that the ambient pressure should be less than the Laplace pressure generated
by this intrusion of water into the cuticle. Specifically, the dynamic pressure ρU 2

generated by a leg stroke at speed U and the hydrostatic pressure ρgL associated with
submergence to a depth L must be less than �P = σ/δ, where δ is the characteristic
lateral scale of the cuticle roughness (or �P = σh/δ2 if the roughness amplitude h < δ)
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Figure 10. Contact angle hysteresis. (a) A drop sitting on a surface may exhibit a range of
static contact angles between the receding and advancing values, respectively θR and θA. (b)
Similarly, if a small spherical body is dragged through a fluid, the maximum steady surface
tension force resisting the motion will scale with σ (cos θA − cos θR). Cylindrical bodies will also
be subject to contact forces, but their magnitudes necessarily depend on their orientation with
respect to the surface. (c) If the cylinder is vertical, the horizontal component of the contact
force scales as the contact perimeter, w. (d ) If the cylinder is horizontal, the contact force will
depend on the direction of motion, scaling as w in the axial direction and L in the transverse.

(Bartolo et al. 2006; Reyssat et al. 2006). The relative magnitudes of these dynamic,
hydrostatic and curvature pressures are prescribed by the roughness Weber and
Bond numbers, namely Weδ = ρU 2δ/σ and Boδ = ρgLδ/σ , where L now represents a
characteristic leg length. The values of Weδ and Boδ for the water walkers considered
in our study are given in figure 4. Note that none of these creatures is at risk of wetting
under the influence of either dynamic or hydrostatic pressures. For a hair separation
distance of 10 μm, the impregnation pressure for water striders is nearly 0.06 atm,
indicating that dive depths of 70 cm are possible before the air layer trapped by their
integument collapses. We note that insects specialized for subsurface breathing can
typically ascend to greater depths (Vogel 2006; Flynn & Bush, 2008). The wetting
speed for the water strider is given by Uw ∼ 300 cm s−1, approximately three times
the peak speed of its driving leg. In terms of wetting, the greatest danger posed to
water-walking arthropods is thus raindrops, whose impact speed may be as high as
1000 cm s−1 (Spilhaus 1948). We noted that when water striders did become wetted,
they would seek out dry land, where their integument would dry through evaporation
after a time of approximately 1 min.

3.2. Force transmission

In § 5, we shall characterize the hydrodynamic force generated by the leg of a
water walker striking the free surface and so shall provide a macroscopic description
of propulsion at the interface. Here, we consider the microscale interaction of the
integument with the free surface. Specifically, we consider the relative magnitudes
of the components of the hydrodynamic force on the individual hairs via scaling.
An important contributor to the force generated by the leg stroke are the contact
forces resulting from contact angle hysteresis (figure 10; de Gennes et al. 2003). When
a fluid drop wets a solid, the static contact angle is bound above and below by,
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respectively, the advancing and retreating angles θa and θr . As a drop of radius R

rolls along a solid substrate, its leading edge advances at θa and its trailing edge
retreats at θr < θa; consequently, its motion is resisted by a contact force proportional
to 2πR(cos θa − cos θr ) = 2πR� cos θ (figure 10a; Dussan & Chow 1983). Similarly,
when a solid brushes across a free surface, differences in contact angles on its leading
and trailing edges will generally result in its motion being resisted by a contact
force whose magnitude depends on both the body geometry and the contact angle
hysteresis (figure 10b–d ).

Consider a cylindrical leg hair with diameter d ≈ 1 μm, wetted length L ≈ 10 μm
and speed U ∼ 30 cm s−1 either puncturing the interface (figure 10c) or brushing it
(figure 10d ). Characteristic magnitudes of the various hydrodynamic forces may be
written as

F ⊥
contact ∼ σd� cos θ, F

‖
contact ∼ σL� cos θ, Fbuoyancy ∼ ρgLd2,

Fviscous ∼ μU

d
dL, Finertia ∼ ρU 2dL.

⎫⎪⎬
⎪⎭ (3.2)

The contact forces depend explicitly on the orientation of the hair relative to the
interface: hairs intruding normal and lying tangent to the interface will experience

respective forces F ⊥
contact and F

‖
contact . Note that the contact forces in general depend on

the magnitude of the contact angle hysteresis through � cos θ = cos θA − cos θR;
however, for the sake of simplicity, we consider this quantity to be O(1) and
proceed with our scaling. The relative magnitudes of the various components of the
hydrodynamic force acting on individual hairs can be written in terms of standard
dimensionless groups, whose characteristic magnitudes are assessed by choosing
U = 10 cm s−1, d =10−4 cm and L =30d:

Rehair =
Ud

ν
∼ 0.1, Bohair =

ρgdL

σ
∼ 10−5,

Wehair =
ρU 2d

σ
∼ 10−4, Ca‖ =

μU

σ
∼ 10−2, Ca⊥ =

μUL

σd
∼ 1.

⎫⎪⎬
⎪⎭ (3.3)

At speeds typical of water-walking insects, forces associated with the fluid inertia and
buoyancy are dominated by contact and viscous forces, the relative magnitudes of
which depend on the hair orientation.

The leg hairs on most arthropods are tilted (table 1). The most specialized water
walkers, such as the water strider, have hair tips that curve to lie tangent to the
water surface (figure 3). This tilting contributes positively to the water repellency of
the integument (Thorpe & Crisp 1947; Bush et al. 2008); moreover, as is evident in
(3.3), it renders contact forces dominant relative to viscous forces. For such highly
specialized water walkers, the microscopic interaction of their cuticle and the interface
generates propulsive forces in the form of contact forces acting on individual hairs.
Less specialized water walkers with integument that pierces rather than lies tangent
to the interface can still generate thrust through some combination of contact and
viscous forces.

By measuring the dyne-scale forces acting on a drop being dragged along the
surface of a water strider’s leg, Prakash & Bush (submitted) demonstrated that the
contact forces are anisotropic because of the tilted hair geometry, with contact forces
being largest for motion perpendicular to the leg. This anisotropy may be rationalized
with the above scaling (3.3) and yields insight into the orientation of the leg during
the driving stroke and gliding phase. In particular, the leg strike perpendicular to
the direction of motion typical of rowers maximizes thrust via contact forces. Their
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study also made clear that the water strider’s cuticle is unidirectional by virtue of the
flexibility of the individual hairs: contact forces are least for motion in the direction
of hair tilt. Therefore, aligning their legs with the direction of motion reduces contact
forces during the gliding phase (Bush et al. 2008).

An estimate for the total viscous stress resulting from the leg hairs poking through
the interface is simply given by the product of the viscous force acting on an individual
hair and the hair density n: τviscous = nμUL. The viscous force generated by a leg with
contact area A brushing the free surface is thus given by F

μ

brush = nμULwA, where
Lw denotes the length of wetted hair. The analogous stress generated by contact
forces during a brushing stroke is F σ

brush = nσ� cos θLwA for hairs lying tangent to
the interface. We note that these viscous and contact forces are available to all
water-walking arthropods, independent of their ability to substantially deflect the free
surface on a macroscopic scale. This discussion of force transmission on the microscale
will inform our experimental observations, as well as our analysis of the macroscopic
fluid dynamics presented in § 5.

4. Modes of locomotion
The physical variables characterizing the driving leg geometry and locomotion of

the water walkers examined are reported in table 2. The associated dimensionless
groups are defined in table 2, and their characteristic values are listed. The peak
driving leg speeds U indicate that all water walkers move at a high Reynolds number.
Moreover, with the exception of the thick-legged fisher spider, for which We ∼ 1,
the Weber numbers are generally small, indicating that curvature forces represent
the principle propulsive force for water-walking arthropods. We note that these
dimensionless variables are all based on the macroscopic properties of the driving leg.
In § 5, our assessment of the dominance of curvature forces in the propulsion will be
reconsidered in light of the microscopic picture considered in § 3.2.

A similar walking gait is used by Mesovelia, Microvelia and Hydrometra for
propulsion on both land and water. The insects support their weight on a tripod
of legs, as can be seen by the associated menisci in figure 11. During the driving
stroke, the meniscus under each leg enlarges as it is driven backward, indicating that
the insect is pushing both downward and backward. Flow visualization shows that the
walking gaits of Hydrometra and Mesovelia generate two rows of dipolar vortices (e.g.
figure 12c). We note that terrestrial insects such as ants, which use the alternating
tripod gait, are generally poor water walkers owing to their sparse hair covering,
which allows them to be wetted by the water and therefore entangled at the interface.

An inhabitant of shoreside rocks, Anurida maritima also uses an alternating tripod
walking gait. Like the freshwater walkers, this marine insect is hexapedal and water
repellent. However, it walks on the ends of its relatively smooth unguis or claws
that provide very little traction; they present a small surface area, two thirds of
which is hydrophobic (Janssens 2005). Compared with water walkers that contact
the interface through their rough integument, its propulsion is remarkably inefficient
(table 2). Flow visualization shows that the leg motion generates a distinctly different
form of flow than that of other water walkers: rather than each leg strike generating
a vortex, its collective leg motions generate a single jet that ultimately wraps up into
a vortex (figure 11d ).

The water strider rows at the free surface, its driving stroke propelling it forward
either along or above the water surface. During the driving stroke of approximate
duration 0.01 s, the middle legs are driven back in a sweeping motion along the
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Infant Adult Fisher spider Fisher spider

strider strider (rowing) (gallop) Microvelia Mesovelia Hydrometra Anurida Ant

I M mass (mg) 1 ± 0.3 5 ± 1 300 ± 50 0.1 ± 0.05 3 ± 1 2 ± 0.5 10 ± 0.2 70 ± 10

Geometric w leg width (μm) 60 ± 10 100 ± 10 1500 ± 100 30 ± 5 50 ± 10 90 ± 10 40 ± 5 200 ± 20

parameters L rowing leg length

(cm)

0.1 ± 0.03 1.5 ± 0.2 0.5 ± 0.1 0.1 ± 0.05 0.6 ± 0.1 0.8 ± 0.1 0.1 ± 0.05 0.5 ± 0.1

P leg contact

perimeter (cm)

1.2 ± 0.3 18 ± 2 8 ± 1 1 ± 0.3 7 ± 1 10 ± 1 1 ± 0.2 6 ± 1

δ hair spacing (μm) 7 ± 1 7 ± 1 13 ± 2 14 ± 2 10 ± 1 15 ± 2 NA NA

II U leg speed (cm/s) 60 ± 10 70 ± 10 20 ± 5 40 ± 5 30 ± 5 15 ± 5 10 ± 2 10 ± 2 70 ± 10

Dynamic V body speed (cm/s) 30 ± 5 60 ± 10 15 ± 3 35 ± 5 15 ± 3 10 ± 3 5 ± 1 1 ± 0.2 20 ± 5

parameters A stroke amplitude

(cm)

0.5 ± 0.1 1 ± 0.2 1 ± 0.2 1 ± 0.2 0.15 ± 0.05 0.2 ± 0.05 0.5 ± 0.1 0.1 ± 0.05 1 ± 0.2

t stroke duration (s) 0.006 ± 0.001 0.014–0.096 0.03 ± 0.005 0.03 ± 0.01 0.005 ± 0.001 0.01 ± 0.002 0.15 ± 0.03 0.1 ± 0.02 0.02 ± 0.01

f stroke frequency

(1/s)

50 ± 10 50 ± 10 5 ± 1 15 ± 2 50 ± 10 50 ± 10 10 ± 2 30 ± 10 10 ± 2

III λ leg length/leg 17 150 3 3 33 120 89 25 25

Dimension- width

less groups Reω = Uw/ν Reynolds 36 70 300 600 9 8 9 4 140

Bow = ρgw2/σ Bond 0.0005 0.001 0.3 0.3 0.0001 0.0003 0.001 0.0002 0.005

Weω = ρU2w/σ Weber 0.3 0.7 0.8 3 0.04 0.02 0.01 0.01 1.4

Ba = Mg/(σP) Baudoin 0.01 0.004 0.5 0.5 0.001 0.01 0.003 0.1 0.2

Vda∗/(U2w2) Added mass NA 0.01 0.04 0.04 0.07 0.03 0.03 0.07 NA

St = f A/V Strouhal 0.8 0.02 0.3 0.4 0.5 0.9 1.1 3 0.5

U/V 2 1.2 1.3 1.1 2 1.5 2 10 3.5

U/Ucm 3 3 1 1.7 1.3 0.7 0.4 0.4 3

U/Uwet 0.2 0.2 0.1 0.2 0.1 0.1 0.04 NA NA

Table 2. Geometric, dynamic and dimensionless parameters describing the locomotion of water-walking arthropods. Average values are listed
along with their standard deviation. Geometric parameters (Part I) include their mass M and measurements describing their contact with the
water surface, such as leg width w, leg contact length L, total contact perimeter P and hair spacing δ. Dynamic parameters (Part II) include the
body speed V as well as parameters describing the leg stroke, such as leg speed U , stroke amplitude A, stroke frequency f and stroke duration τ .
Dimensionless groups (Part III) describe the relative magnitudes of the hydrodynamic forces involved. The magnitudes of these groups indicate
that curvature forces dominate over viscous, buoyancy, added mass and gravitational forces. The leg speeds are generally greater than Ucm, the
speed at which capillary waves are generated, and generally less than Uwet , the speed at which water will penetrate the spacings between the hairs.
The Strouhal numbers indicate that fastest water walkers (striders and spiders) move in the same Strouhal number range (0.2–0.4) as birds and
fish, which is suggestive of the high efficiency of their motion.
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(a) (b) (c) (d)

Figure 11. The alternating tripod gait of (a) Microvelia, (b) Mesovelia, (c) Hydrometra and (d )
Anurida. The insects support their weight on a tripod of legs and move forward by sweeping
them backward. The time between the photos is �t = 0.01 s. In (d ), a single dipolar vortex is
generated in the wake of Anurida, as visualized using Thymol Blue. White arrows indicate the
direction of the leg motion and black arrows the direction of the flow. Scale bars, 2 mm.

(a) (c)(b) (d)

Figure 12. Vortices in the wake of water walkers, as visualized by Thymol Blue: (a) the infant
water strider, (b) the adult water strider, (c) Hydrometra, (d ) the fisher spider. Each leg stroke
generates a vortex. Scale bars, 1 cm.

free surface (figure 13a, b), generating macroscopic curvature forces and microscopic
contact and viscous forces. It is noteworthy that the infant water strider generates
almost no surface deflection but instead appears to brush the free surface (figure 14a).
Flow visualization of the strider wake reveals two salient flow structures, namely
capillary waves and vortices (figures 12a, b and 13–15; Hu et al. 2003). These flow
structures exist for striders of all sizes, including the infant water strider. The plan
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(a)

(b)

(c)

Time

Figure 13. The rowing stroke of the adult water strider. Capillary waves are generated by
each driving leg and can be seen in magnified view in the inset in (c). The depth by which
the free surface is deformed, approximately 2 mm, is evident in (c). Time between frames,
�t = 0.01 s. Scale bars, 1 cm

(a)

(b)

Figure 14. (a) An infant water strider propelling itself by brushing the free surface. Very
little surface deformation is apparent. As water striders mature and grow, they are capable of
higher leg speeds. In (b), an adolescent water strider propels itself with a driving stroke that
generates substantial deformation of the free surface. The free surface is lit from above; so the
deformation casts a shadow. Time between frames: (a) 1/500 s, (b) 3/500 s. Scale bars, 1 mm.

view in figure 14(b) shows the rearward propagation of a wave generated by the
rowing stroke. In plan view, capillary waves are marked by dark and light regions
on the bottom of the tank associated with the diffraction of light by the crests and
troughs of the wave, respectively.

The generation of subsurface vortices is shown in figure 15, in which a water strider
rows across a dyed front of Thymol Blue. The water strider begins at rest on the
free surface, with the surface deforming to a depth of order h ∼ 0.1 cm (Matsuda,
Watanabe & Eiju 1985). The water strider swings its driving legs in an arc over a
duration of 0.01 s. With this leg stroke, it generates a jet that entrains dyed fluid
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(a) (b)

(c) (d)

Figure 15. Vortex generation by the water strider. The strider rows its legs across a section of
dyed fluid. The rowing stroke generates a pair of jets that roll up into a pair of dyed dipolar
vortices. Time sequence of frames: [0, 0.03, 0.2, 0.8 s]. Scale bar, 1 cm. Seconds after their
production, the hemispherical vortices are slowed to a halt by viscous forces.

and rolls up into a vortex that translates backward at a characteristic initial speed of
4 cm s−1 before spinning down. Figure 12(a, b) illustrates the vortical wakes of adult
and infant water striders.

Another creature that uses the rowing gait is the fisher spider Dolomedes that
rows with its front-most three pairs of legs. The spider supports its weight using its
remaining legs and underbelly (figure 16a, b). Side views of the rowing stroke indicate
that, as with the water strider, the leg is swept downward and backward, generating
a meniscus approximately 2 mm in depth. Unlike the water strider, the fisher spider
is rarely airborne after rowing. The flow visualization in figure 12(d ) shows that the
spider generates a dipolar vortex with each leg stroke. We note that the vortices
interfere, obscuring their form.

To achieve the peak speeds needed to escape predators, fisher spiders transition
from rowing to galloping (Suter et al. 1997; Suter & Wildman 1999). While the spider
rows with straight legs, it gallops by bending its legs and striking them downward
vertically (figure 16c, d ). Side views of the leg stroke (figure 16c) indicate that the
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(b)

(c)

(d)

(a)

Figure 16. (a, b) Rowing and (c, d ) galloping by the fisher spider. At body speeds less than
20 cm s−1, it rows by driving its legs horizontally along the water surface (Suter et al. 1997). In
order to achieve higher speeds, the spider drives its legs vertically to gallop across the water
surface. (b, d ) The deformation of the free surface is reflected in the shadows cast by the
menisci. The insets provide magnified views of the driving legs. For side views, �t = 1/200 s;
for plan views, �t = 3/200 s. Scale bars, 7 mm.

legs generate a meniscus nearly 4 mm in depth. The advantage of striking the leg
vertically is that the spider increases the time during which it is airborne, thereby
decreasing the drag experienced in gliding along the interface. Note that while the
leg tips penetrate the free surface, their silvery sheen indicates that they maintain a
thin air layer trapped within their integument. They thus retain a Cassie state and so
easily withdraw their legs following the driving stroke.

Table 2 lists the Strouhal number St = f A/V , where f and A are the frequency and
amplitude of the driving stroke and V is the body speed. We note that rowers (spiders
and striders) have the lowest Strouhal numbers (St ∼ 0.1–0.4), while creatures that
use an alternating tripod gait have the highest values (St ∼ 0.5–1.1). We further note
that Strouhal numbers are also correlated with hair anisotropy (angle of inclination
φ, as listed in table 1): insects that employ the alternating tripod gait typically
have an isotropic, or non-tilted, integument (φ ∼ 50◦–90◦), while rowers such as the
water strider have an anisotropic hair layer (φ ∼ 20◦–50◦). The correlation between
anisotropic integument and propulsive efficiency is suggestive of a higher degree of
specialization for rowers.
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(a)

(b)

Figure 17. The leap of the water strider. (a) Superimposed video frames show the trajectory
of the leap. Take-off is accomplished by the strider driving its middle legs vertically against
the free surface. (b) Front view of the fluid disturbance generated by the leap, visualized using
Kalliroscope. Time between video frames �t = 0.004 s. Scale bars, 1 cm.

A number of water-walking arthropods, including water striders, spiders and
Collembola, can leap off the free surface using a variety of techniques (Suter &
Gruenwald 2000; Suter 2003). The strider can row so vigorously that it rockets into
the air and lands more than 10 body lengths away (figure 13c). To leap, the strider
simply modifies the impact angle of its driving stroke (figure 17). After leaping, the
striders land with splayed legs, presumably in order to distribute the force of impact
over a larger perimeter. On landing, the striders may penetrate the free surface with
their front legs, as shown in figure 17(a), but are not wetted by virtue of their
integument. During the driving stroke, the meniscus is deformed to a depth of 0.3 cm
(figure 17b). It is noteworthy that their peak leap height on land is comparable to
that on water. Fisher spiders can also leap to heights of several body lengths. The
spider leaps by driving its eight legs downward simultaneously (figure 18), deforming
the free surface to depths of 0.3 cm (see the inset in figure 18). The spider lands on
its underbelly and splayed legs.
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(a) (b)

(c) (d)

Figure 18. The leap of the fisher spider. Take-off follows the spider driving its legs downward.
At the apex of its leap, the spider splays its legs outward in preparation for landing. Time
between frames, �t = 0.0125 s. Scale bars, 7 mm.

5. Theoretical developments
We proceed by developing a theoretical description of the interaction of a water-

walking arthropod with the interface and underlying fluid. The force balance in static
and dynamic states is considered in § 5.1, and the momentum transfer across the
interface is characterized in § 5.2.

5.1. Force balance

We model an object of mass M and speed U with contact line C and a wetted contact
area Sb (figure 19). The fluid of density ρ and viscosity μ is characterized by a stress
tensor T = −pI + 2μE, where p is the fluid pressure, I the identity matrix and E the
rate of strain tensor. The air–water interface has a tension σ . The rate of change of
the momentum of a body is determined by the net force acting on it:

MU̇(t) =

∫
Sb

T · n dS +

∫
C

σ t d� + M g. (5.1)

The pressure can be written as the sum of dynamic and hydrostatic pressures: p = pd+
ρgz, where z is the height below the undisturbed water surface. Our experiments
indicate that the Reynolds number Re =(Uw)/ν based on the leg width w and
the peak leg speed U characterizing virtually all water walkers is large, and so the
pressure may be expressed to leading order by the time-dependent Bernoulli equation
(∂φ/∂t)+(1/2)|u|2+(p + ρgz)/ρ = c, where φ is the velocity potential and c a constant.
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Figure 19. (a) A schematic illustration of the driving leg of a water-walking creature. An
object of characteristic size w strikes the free surface at speed U . The surface is characterized
by a surface tension σ and its shape by the unit normal n. The object’s motion will be resisted
by some combination of the forces enumerated in (5.4). A small water walker has two means
of propulsion available to it, depending on the speed of its driving legs. If the insect drives its
leg at a rate faster than the minimum capillary wave speed cm, the free surface will deform
asymmetrically around it, as shown in (a, b), generating lateral curvature forces that may be
exploited for propulsion. (c) Conversely, if the leg is driven at a rate substantially less than
cm, the free surface remains quasi-static and so fore–aft symmetric. Propulsion at these speeds
relies on the contact or viscous forces generated as the leg brushes the free surface.

Substituting p into the stress tensor T in (5.1) yields

MU̇ = Mg+ρ

∫
Sb

∂φ

∂t
n dS+

∫
Sb

1

2
ρu2 n dS+

∫
Sb

ρgzn dS+2μ

∫
Sb

E · n dS+

∫
C

σ t d�. (5.2)

While the viscous flow term (second to last) is negligible when the bulk Reynolds
number is large, we include it here in light of our discussion in § 3.2 of the
microhydrodynamics. The above equation shows that the hydrodynamic force may
be decomposed into components associated with added mass, form drag, hydrostatic
pressure, viscous stress and the surface tension force. We introduce dimensionless
variables

u′ ∼ u

U
, a′ =

a

a∗
, x ′ =

x

w
, z′ =

z

h
, φ′ =

φ

wU
, (5.3)

where U is the characteristic leg speed, a∗ the leg acceleration, w the leg width and
h the mean leg depth. Dividing both sides by σw and dropping the primes yields a
dimensionless expression for the total force on the object:

MU̇/σw = −Baẑ + We

⎛
⎝Ad

∫
S

∂φ

∂t
ndS +

∫
Sb

u2

2
ndS +

1

Re

∫
Sb

n · E dS

⎞
⎠

+ Bo

∫
Sb

zn dS +

∫
C

t d�, (5.4)

where the dimensionless groups are the Baudoin number Ba = (Mg)/(σw),
Weber number We = (ρU 2w)/σ , Reynolds number Re = (wU )/ν, Bond number
Bo = (ρghw)/σ and added mass number Ad = (Vda∗)/(U

2w2); Vd is the volume of
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fluid displaced by the driving leg, specifically the volume of the meniscus depression
for small water walkers.

Equation (5.4) gives the various components of the hydrodynamic force acting on
a water walker’s leg. Assessment of the magnitudes of these dimensionless groups in
tables 1 and 2 indicates that the great majority of water-walking arthropods depend
principally on some combination of curvature forces and form drag for their forward
propulsion. However, we have seen in § 3.2 that even in the absence of the strength
to distort the interface sufficiently to generate substantial curvature forces, all water
walkers have contact and viscous forces available to them for propulsion.

5.1.1. Weight support

We proceed by examining the vertical force balance on a water walker. The vertical
component of the force balance is given by the dot product of ẑ and (5.4). Dividing
by the Baudoin number yields

U̇ · ẑ
g

+ ẑ = Mc

⎛
⎝Ad

∫
S

∂φ

∂t
n · ẑdS +

∫
Sb

u2

2
n · ẑdS +

1

Re

∫
Sb

n · E · ẑ dS

⎞
⎠

+
Bo

Ba

∫
Sb

zn · ẑdS +
1

Ba

∫
C

t · ẑ d�, (5.5)

where we have introduced the McMahon number Mc =(ρU 2w2)/(Mg). An object
with zero initial vertical speed can be supported at the interface if the time average
of U̇ · ẑ is zero. We consider creatures in steady-state locomotion, for which this latter
condition automatically holds.

First, (5.5) indicates that small creatures (Ba = (Mg)/(σw) < 1) may reside at rest
(Mc =0) at the free surface. For creatures too massive to rely on surface tension
for weight support (Ba 
 1), (5.5) indicates two means of walking on water. If the
creature has a mean density less than that of water, as is the case for many aquatic
fowl such as ducks, its weight may be supported by flotation. However most creatures
have a density slightly in excess of that of water. Such heavy creatures can support
their weight in a dynamic state if Mc > 1, as is the case for basilisk lizards (Glasheen
& McMahon 1996a ,b).

In a static situation (Mc = 0), (5.5) yields a generalized form of the Archimedes
principle. The force on a static floating body is equal to the weight of the fluid
displaced:

M g · ẑ = Fb · ẑ + Fc · ẑ =

∫
Sb

ρgzn · ẑds + σ

∫
C

t · ẑ d� = ρgVb + ρgVm. (5.6)

Mansfield et al. (1997) and Keller (1998) showed that the magnitudes of the buoyancy
and curvature forces on a floating body are equal to the weights of the fluid displaced
by the meniscus, respectively, inside and outside the line of tangency C (respectively
Vb and Vm in figure 20b). For long thin bodies such as water-walking insect legs,
the ratio of buoyancy to curvature forces is thus given by the ratio of the leg radius
w to the capillary length �c =

√
σ/(ρg) or, equivalently, the square root of the Bond

number:
Fb

Fc

∼ Vb

Vm

∼ w

�c

∼
√

Bo. (5.7)
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Figure 20. The static weight support of the water strider. (a) The weight of water-walking
arthropods is supported by curvature forces associated with deformations of the free surface.
The leg of width w intersects the free surface at a contact line C. The initial angle of tangency
between the free surface and the horizontal is θ : the resulting meniscus decays over the capillary
length �c . (b) The leg in cross-section; Vb and Vm denote the volume of fluid displaced inside
and outside the contact line, respectively. As shown, the hairiness of the leg effectively increases
its volume without substantially increasing its mass, thus contributing to its buoyancy.

The characteristic Bond numbers of the water-walking insects considered in our
study are listed in table 2. Water striders (with typical weight 3–10 dynes and leg
width 20–80 μm) have 10−4 < Bo < 10−2 and are thus supported almost exclusively
by surface tension. The relatively stocky fisher spider (weight 102–103 dynes and leg
width up to 0.17 cm) has 10−3 <Bo < 10−1 and so may have up to one third of its
weight supported by buoyancy. Finally we note that an insect augments its buoyancy
with the air layer trapped in its integument, which may increase the volume of fluid
displaced by 20–30 % (Bush et al. 2008).

5.1.2. Lateral propulsion

The horizontal component of the force balance on a water walker is given by the
x̂ component of (5.4):

MU̇ · x̂/(σw) = We

⎛
⎝Ad

∫
Sb

∂φ

∂t
n · x̂dS +

∫
Sb

n · x̂dS

⎞
⎠ + Bo

∫
Sb

zn · x̂dS +

∫
C

t · x̂ d�.

(5.8)

For large creatures (We 
 1 and Bo 
 1), surface tension is negligible, and (5.8)
shows that such water-walking creatures may propel themselves using inertial and
hydrostatic pressures. We note that the hydrostatic pressures can only produce a
lateral force on a body with a cavity that is not fore–aft symmetric. For example,
the basilisk lizard generates thrust using hydrostatic pressure by generating an air
cavity with its feet and pressing against the cavity’s back wall (Glasheen & McMahon
1996a).

In the parameter regime of most water-walking arthropods, (We, Bo) � 1, surface
tension dominates both inertial and hydrostatic forces, so that

MU̇ · x̂/(σw) =

∫
C

t · x̂ d�. (5.9)

The dominant lateral propulsive force comes from the curvature force that may be
generated by the driving leg. The interface thus responds roughly like a trampoline.
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The curvature pressure generated by the stroke of a leg of width w is σ/w; therefore,
the net curvature force acting on the driving legs is Fσ = Aσ/w, where A is the area
of the driving leg adjoining the distorted interface. We note that such a force can only
be effectively generated if the speed of the leg strike exceeds the capillary wave speed;
otherwise, the interface will respond in a quasi-static manner, assuming a fore–aft
symmetric form incapable of propelling the creature forward with curvature forces.
At such low speeds, the creature must rely on the brushing technique, in which the
propulsive force has its origins in the microscopic contact forces or viscous stresses
acting on the wetted hair tips on the driving leg.

By considering the leg strike on a macroscopic scale, we have deduced an estimate
for the curvature force Fσ generated by the driving stroke. In (3.2), we deduced an

estimate for the brushing force Fbrush = nAF
‖
contact associated with the microstructure

on the driving legs. The relative magnitudes of these two forces acting on a leg area
with hair density n and width w are given by

Fbrush

Fσ

=
nσLA� cos θ

Aσ/w
= nwL� cos θ. (5.10)

The magnitude of this ratio depends on the magnitude of the contact angle hysteresis,
but it is noteworthy that the brushing force resulting from the microscale interaction
between integument and interface may be comparable to the curvature forces. For
the physical variables listed in table 2, this ratio assumes values between 0.1 and 1,
suggesting the dominance of macroscopic curvature pressures in the propulsive force.
However, situations arise in which water-walking arthropods are too small, slow and
weak to generate substantial surface distortions and propulsive curvature forces. In
such situations, the creatures are still able to move by brushing the free surface.

We proceed by considering the hypothetical case of a creature jumping on a soap
film. Note that this is but a theoretical abstraction owing to the fact that soap destroys
the water repellency of insect legs, causing them to puncture and break the film. In
the relevant (We, Bo � 1) limit, the force balance on the creature, (5.1), assumes the
form

MU̇ · ẑ =

∫
C

σ t · ẑd� + Mg. (5.11)

The only forces acting on the creature are those that are due to surface tension and
gravity. The creature is static (U̇ = 0) when its weight is balanced by the curvature
force associated with deformation of the free surface. A lateral propulsive force is
possible only if the meniscus is distorted asymmetrically; however, such a distortion
requires that the leg strikes the film at a speed exceeding the capillary wave speed. On
a soap film of thickness h ∼ 4 μm, this wave speed is approximately

√
2σ/ρh ∼ 5 m s−1,

well beyond the peak leg speed of any water walker. Consequently, water-walking
arthropods could not propel themselves via curvature forces on a soap film: the
absence of inertia of the underlying fluid precludes their principle mode of propulsion.
We note that brushing forces might yet allow motion on a soap film, as they do for
slow water walkers at the water surface. While this is but a theoretical abstraction, it
underscores the subtle interplay of wetting properties, waves and momentum transfer
that lies at the heart of this style of biolocomotion.

5.2. Momentum transfer

Having considered the hydrodynamic force on an object striking the free surface, we
here consider the transfer of momentum by the object into the control volume
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Figure 21. A body striking the free surface. The control volume V is bounded outside by S
and inside by the body surface Sb . The body intersects the free surface at a contact line C ;
n denotes the outward unit normal to the fluid bound by Sb .

illustrated in figure 21. Our analysis builds upon the framework developed by
Childress (1981) to describe swimmers and fliers to incorporate the influence of
the interface on propulsion. From first principles, we may write the conservation of
momentum in the fluid as

∂

∂t

∫
V

ρudV = −
∫
S

(ρuu · n + pn)dS +

∫
Sb

tappdS +

∫
V

ρgdV, (5.12)

where tapp is the local stress applied by the object to the fluid and Sb is the wetted
body surface. Newton’s third law requires that

−
∫
Sb

tappdS =

∫
Sb

T · n dS +

∫
C

σ t d�. (5.13)

The sum of (5.1), (5.12) and (5.13) yields

MU̇ +
∂

∂t

∫
V

ρudV = −
∫
S

(ρuu · n + pn)dS + Mgẑ − ρg(Vm + Vb)ẑ, (5.14)

where Vm + Vb is the net fluid volume displaced by the object (figure 20). We note
that this reduces to the generalized form of the Archimedes principle (5.6) in the
static case. It also indicates that creatures too heavy to float at the surface can only
remain there by generating a vertical flux of fluid. One may thus rationalize the
vertical component of the vortices shed by the driving stroke of the basilisk lizard
(Hsieh 2003, 2004). Conversely, water-walking arthropods rely on surface tension for
weight support but require the horizontal transfer of momentum for their lateral
propulsion.

Equation (5.14) is the statement of conservation of momentum for an object at a
free surface: the creation of horizontal momentum in the fluid by the driving stroke
of a water walker indicates a lateral force on the creature. Note that surface tension
does not arise in (5.14): while it contributes a force to both the body and the control
volume, these contributions are equal and opposite. Of course, the absence of surface
tension in the momentum balance may also be simply understood on the grounds that
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the interface carries no mass. As for swimming fish (Wilga & Lauder 2002) and flying
birds (Spedding et al. 2003), one may rationalize the propulsion of water-walking
creatures by considering the momentum transferred in their wake (Dickinson 2003;
Dabiri 2005).

6. Discussion
The dynamics of water-walking arthropods was previously described (Denny 1993;

Vogel 1994) by treating their legs as smooth cylinders: macroscopic curvature forces
were generated as the interface responded as a trampoline to the driving stroke. We
have demonstrated here that propulsion at the interface is instead a rich, multiscale
problem in which the micron-scale roughness of the integument plays a critical
role. Over the range of hydrostatic and dynamic pressures experienced by water
walkers, their integument maintains a Cassie state. The integument couples with the
underlying fluid on the microscale through combined viscous and contact forces, the
relative magnitudes of which depend on the geometry of the integument. The notion
of contact forces is useful for rationalizing several previously enigmatic behaviours of
water walkers. Larger water walkers can strike the surface at a speed exceeding the
capillary wave speed, thus generating an asymmetric meniscus and the concomitant
macroscopic curvature forces. Conversely, smaller, weaker water walkers generate
negligible surface deformation during their stroke and so rely principally on microscale
contact and viscous forces generated by the leg brushing the free surface.

We have demonstrated the utility of the Strouhal number, a common measure of
dynamic efficiency in other modes of biolocomotion, for characterizing propulsion on
the water surface. The Strouhal number is the ratio of a creature’s peak appendage
speed to its body speed. By virtue of their solid contact with the ground, terrestrial
creatures have Strouhal numbers near 1. Efficient swimmers and fliers tend to have
Strouhal numbers of 0.2–0.4, as shown in the studies of Taylor, Nudds & Thomas
(2003) and Alexander (2003). For water walkers, for which 0.1 <St < 0.4, thrust is
generated by driving against water, while drag is experienced in air, at least during
their airborne phase. Thus, from a Strouhal number perspective, rowing on water is
of comparable efficiency to swimming and flying.

In our experimental investigation, we have reported the prevalence of coherent
vortices in the wake of water-walking arthropods. The propulsion mechanism of
water-walking insects thus has features in common with swimmers and fliers in that
each driving stroke generates a vortex. We developed a theoretical framework that
describes the transfer of force and momentum between the water walker and its
environment on both the microscopic and the macroscopic scale. Our developments
make it clear that momentum is conserved between the fluid and the creature across
the interface, an assumption made implicitly by Hu et al. (2003) and Bühler (2007)
in their studies of the water strider and by Hsieh (2004) in her study of the basilisk
lizard. The vortical wakes reported by Hu et al. (2003) and Hsieh (2004) and more
comprehensively here may thus be used to simply rationalize the propulsion of
water-walking creatures. Our formulation provides an integrative view of all forms of
walking on water, including both the inertia-based propulsion of large water walkers
and the surface-tension-based propulsion of water-walking arthropods. Moreover, our
study informs the resolution of Denny’s paradox (Suter et al. 1997).

Denny’s paradox (Denny 1993, 2004) was generalized by Suter et al. (1997) to
the following form: ‘small or slow-moving surface dwelling arthropods should not
be able to propel themselves horizontally’. We now see that the paradox rested on
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two flawed assumptions. First, water strider’s motion was assumed to rely on the
generation of capillary waves, since the propulsive force was thought to be that
associated with wave drag on the driving leg. Second, in order to generate capillary
waves, it was assumed that the strider leg speed must exceed the minimum wave
speed, cm = (4gσ/ρ)1/2 ≈ 23 cm s−1. We note that this second assumption is strictly
true only for steady motions (Lighthill 1978) and so is not strictly applicable to the
propulsive driving stroke of the water strider; indeed, bodies moving at unsteady
speeds u<cmin = 23 cm s−1 can produce waves (Dias & Kharif 1999; Milewski &
Vanden-Broeck 1999; Chepelianskii, Chevy & Raphäel 2008); bodies moving at steady
speeds u < cmin can produce a solitary wave packet with decaying tails (Vanden-Broeck
& Dias 1992; Dias, Menasce & Vanden-Broeck 1996); and floating bodies oscillating
with a vertical speed Ucosωt with U < cm may create a wave field (Taneda 1991).

Consideration of the microscale forces acting on the integument of the driving
legs makes it clear that water-walking arthropods needn’t rely on wave drag, inertial
forces or macroscopic curvature forces: contact and viscous forces arising from the
interaction of the cuticle and the interface are available for propulsion at any leg
speed. Denny’s paradox can alternatively be resolved by noting that water-walking
creatures transfer momentum to the underlying fluid (Hu et al. 2003). The precise
partitioning of momentum between waves and vortices following the impulsive stroke
was considered experimentally by Hu et al. (2003) and theoretically by Bühler (2007).
Hu et al. (2003) made a rough estimate that the momentum partition between waves
and vortices was approximately 1–10. Bühler (2007) deduced that an impulsive forcing
at a free surface generates momentum in waves and vortices of relative magnitudes 1/3
and 2/3 respectively. Hsieh (2003, 2004) showed that water-running basilisk lizards
also generate waves and vortices. The precise partitioning of momentum transfer in
waves and vortices in the wake of various water walkers is left as a subject for future
consideration.

We have demonstrated that most water-walking arthropods have at their disposal
two propulsive forces. If they strike the surface at a speed in excess of the capillary
wave speed, 23 cm s−1, they can produce a meniscus whose fore–aft asymmetry results
in a curvature force that propels them forward. Such is the case for most adult
water-walking arthropods, for which the interface serves effectively as a trampoline.
Conversely, if the peak speed of the driving leg is substantially less than 23 cm s−1, the
interface responds quasi-statically; consequently, its fore–aft symmetry is maintained,
and no lateral propulsive force results. A number of small and infant water walkers
thus use a technique that has not previously been discussed: by brushing their legs
across a relatively unperturbed surface, they generate a combination of viscous stresses
and contact forces on their wetted integument that serve to propel them forward. We
note that the latter brushing technique, inefficient though it is when compared with
propulsion via curvature forces, operates at all leg speeds.

Finally, it is noteworthy that we have assumed throughout this study that the insect
integument is effectively rigid. An interesting avenue for future research is the role of
the integument’s elasticity on the water repellency and the dynamics of this class of
creatures. Prakash & Bush (submitted) have demonstrated that the cuticle of water
strider’s integument is unidirectional by virtue of its elasticity: contact forces acting
on moving droplets are greatest for motion perpendicular to the leg and smallest for
motion towards the leg tip. This observation raises a number of interesting dynamical
questions, including the role of the integument in detaching from the free surface.
This class of problems is currently under consideration and is likely to inform the
design of biomimetic water-walking devices (Hu et al. 2003, 2007; Suhr et al. 2005;
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Floyd et al. 2006; Song, Suhr & Sitti 2006; Yu et al. 2007) and synthetic unidirectional
superhydrophobic surfaces (Prakash & Bush, submitted).

Video images of many of our experiments can be found at http://www.me.
gatech.edu/hu/ or on the Multimedia Fluid Mechanics CD-ROM (Bush & Hu
2004).
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Moléculaires . Gauthier-Villars.

Prakash, M. & Bush, J. W. M. Interfacial propulsion by directional adhesion. Nat. Materials
(submitted).
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