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Introduction 
 

Cardiac output (CO) is a cardinal parameter of cardiovascular state, and a 

fundamental determinant of global oxygen delivery.  Historically, clinical measurement 

of CO has been limited to critically-ill patients, using invasive indicator-dilution methods 

such as thermodilution (COTD).  Alternative CO measurement strategies have not been 

widely accepted in critical care, and outside the intensive care unit, rather imprecise 

metrics are frequently used to assess CO and circulatory adequacy (e.g. blood pressure, 

urine output, mental status, etc.).  

 

Throughout the past century (and longer (1)), the premise that relative changes in 

CO could be estimated by analysis of the arterial blood pressure (ABP) waveform has 

captured the attention of many investigators.  Today, peripheral ABP is routinely 

available in ICU patients, and non-invasive devices exist to measure peripheral ABP in 

non-critically-ill populations (2, 3).  Tracking changes in CO continuously and non-

invasively via ABP waveform analysis may be valuable both within and beyond the ICU 

setting:  such a “vital sign” might be a sensitive and specific indicator of circulatory 

pathology and useful in optimizing therapies such as volume resuscitation and 

catecholamine infusions.  Yet CO-from-ABP monitoring has not been widely adopted in 

any clinical setting.  One can speculate that this is in part because of inadequate 

validation.   

 

In this investigation, we established an algorithm-testing dataset -- a subset of the 

Multiparameter Intelligent Monitoring in Intensive Care II (MIMIC II) database (4) -- 

Page 2 of 28Critical Care Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The Cardiac Output from Blood Pressures Trial 
p. 3 

containing radial artery waveform data and contemporaneous reference COTD 

measurements, collected in an ICU patient population during routine clinical operations.  

We used this dataset to evaluate eight previously reported CO-from-ABP algorithms.  

Moreover, we are making this dataset publicly available, establishing a standard for the 

meaningful comparison of different CO-from-ABP algorithms using “real-world” (e.g. 

not artificially pristine) ICU physiologic data.  Vendors and future developers can apply 

their CO-from-ABP algorithms to this public-access dataset and report how they perform 

relative to alternative algorithms.  The MIMIC II COTD/ABP dataset is an analog of the 

public access arrhythmia databases that have played an indispensable role in the 

development, refinement, and – ultimately – widespread acceptance of automated 

algorithms for electrocardiogram analysis (5).   
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Materials and Methods 

 

Database development: Our COTD/ABP dataset was extracted from the MIMIC II 

database (4).  The MIMIC II database includes physiologic and wide-ranging clinical 

data from over 2,500 ICU patients (MICU, CCU, and SICU) hospitalized at the Beth 

Israel Deaconess Medical Center, Boston, USA between 2001 and 2005.  Radial ABP 

waveform data from the M1006B invasive pressure module and COTD data (temporally 

resolved to the nearest minute) were originally sourced from Philips CMS bedside patient 

monitors (Philips Medical Systems, Andover, MA).  Waveforms were sampled at 125 Hz 

with 8 bit resolution.  The patients' gender and age were input by the nursing staff as part 

of routine clinical operations, using the Philips CareVue system, and these archived data 

were another component of the MIMIC II database.  Additional details about the MIMIC 

II database are available in (4).  A software routine developed using Matlab (Mathworks, 

Natick, MA) identified and extracted MIMIC II cases with COTD measurements and 

contemporaneous one-minute-long segments of radial ABP waveform.  All Matlab 

algorithms used in our analyses, and the MIMIC II COTD/ABP dataset, have been 

contributed to PhysioToolkit and PhysioBank, respectively, and are available for review 

and free public use from the PhysioNet website (6).   

 

ABP Signal Processing: Within each minute-long ABP segment, individual heart 

beats were identified using a Matlab implementation of an algorithm by Zong (7).  The 

waveform quality of each ABP pulse was assessed automatically using a signal 
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abnormality index (SAI) algorithm (8).  A set of features from each ABP pulse was 

computed, including the peak (systolic blood pressure, SBP), trough (diastolic blood 

pressure, DBP), MAP, and pulse pressure (SBP minus DBP); see Fig. 1.  Each ABP 

pulse's average of negative slopes was computed, a metric of spiky, non-physiologic 

noise in the ABP pulse waveform.  After computing the preceding features for an ABP 

pulse, the SAI algorithm checks that all were within normal limits (8).  The SAI also 

checks that the features’ variation from one ABP pulse to the next is within normal limits.  

The SAI algorithm reports a binary ‘normal’ or ‘abnormal’ rating for each ABP pulse, 

depending if all the normality criteria were met (8).  Any abnormal beat was excluded 

from further analysis.  If a given minute-long ABP segment contained more than 40% of 

abnormal beats, the entire segment (and its corresponding COTD) was excluded from 

further analysis. 

 

In addition, we estimated the duration of each entire beat and its systolic interval.  

There is no single widely accepted method to identify the systolic interval in a peripheral 

ABP pulse (in contrast to a central ABP pulse, the dicrotic notch in a peripheral ABP 

pulse does not indicate closure of the aortic valve).  Therefore, we chose two alternative 

criteria to identify the end of systole.  First, we computed a heuristic estimate of systolic 

duration, ( periodbeat _3.0 ⋅ ), originally suggested as an approximation of the QT 

interval (9).  Second, we identified the point after SBP with the lowest non-negative 

slope, as in Fig. 1.  In practice, this method located the trough of the dicrotic notch, or 

any relative plateau which persisted for two or more ABP samples. 
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Investigational CO-from-ABP algorithms:

Mean arterial pressure (MAP) is positively but imperfectly correlated with CO.  

Of course, variable degrees of systemic vasoconstriction or dilation (which affect 

peripheral vascular resistance, PVR), as well as variable venous pressure, make MAP an 

unreliable predictor of CO.  ABP waveform analysis assumes that other features in the 

waveform are less affected by confounders such as peripheral vascular resistance and are 

thus more reliable correlates of CO.  MAP serves as our control method against which 

eight investigational CO-from-ABP methods are compared.  The investigational 

algorithms are summarized in Table 1.  Most algorithms predict stroke volume, and CO is 

taken as the product of stroke volume and median heart rate over the one minute window.  

Many of the algorithms were initially intended for a central aortic ABP waveform; in this 

investigation, we explore their application to a peripheral radial ABP. 

 

(A) Pulse Pressure: In 1904, Erlanger and Hooker suggested that the pulse 

pressure is a surrogate of stroke volume (10).  This notion naturally arises from a basic 

Windkessel model of the arterial tree, in which the arterial system is considered a single 

elastic tank, with flow exiting though a distal resistive element.  Assuming that forward 

flow is correlated with pulsatile volume and cardiac ejection is near-instantaneous, then 

the product of pulse pressure and heart rate is a predictor of CO.   
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(B) Liljestrand and Zander: Compliance of an artery varies with blood pressure.  

The Liljestrand algorithm accounts for the dependence of a subject’s compliance on 

arterial pressure by scaling its CO estimate to the reciprocal of MAP (11). 

 

(C) Systolic Area: A number of methods treat an artery as a long viscoelastic 

tube, a “transmission line” model.  Within a transmission line, pressure gradients 

accelerate or decelerate flow.  By assuming that retrograde (reflected) pressure waves are 

negligible during systole, it is possible to estimate the pressure gradient and the forward 

flow from an ABP waveform.  Specifically, flow is proportional to the ABP systolic area 

(the area under the systolic portion of the ABP pulse) (12, 13). 

 

(D) Kouchoukos Correction: A potential source of error is the assumption that 

cardiac ejection is so rapid that no blood flows out of the arterial tree during systole 

(“run-off”).  Kouchoukos proposed a simple correction factor, related to the ratio of 

systolic-to-diastolic duration (14); this was a variation of an earlier method proposed by 

Warner (15). 

 

(E) Diastolic Decay: Bourgeois developed an algorithm to quantify systolic run-

off (16).  This method leads to an estimation of PVR (CO can then computed from MAP / 

PVR, assuming CVP is negligible).  Bourgeois’ method is based on a constant 

compliance Windkessel model.  In such an idealized model, a mono-exponential diastolic 

decay (due to the arterial run-off) is expected in the ABP pulse waveform, and that 

diastolic curve changes solely as a function of PVR (17).  Our diastolic decay method 
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adapts the original Bourgeois method to the radial ABP.  We fit a monoexponential curve 

to just two points of each ABP pulse, taking the peak of systole as the onset of a mono-

exponential decay, and the trough of diastole as its end (18). 

 

(F) Herd: In theory, systolic blood pressure may be prone to amplification due to 

early reflected waves.  Herd proposed another empirical method, the difference between 

mean and diastolic pressure, as a more robust surrogate of stroke volume (19).   

 

(G) Corrected Impedance: Wesseling's Corrected Impedance method provides an 

empiric correction to the systolic area-under-the-ABP curve approach, to account for 

some of the sources of error described above (20).   

 

(H) AC Power: We explored if the stroke volume bore any reliable relationship 

with the ABP waveform root-mean-square. 

 

Modelflow, PiCCO, PulseCO, and FlowTrac: The initial investigational plan was 

to re-implement the best known commercial algorithms, based on publicly-available 

information (21-27).  However, we found that insufficient public information was 

available to effectively replicate these algorithms.  This matter is addressed in detail in 

the Discussion.
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Calibration: We applied the investigational algorithms described above and 

summarized in Table 1 to the data of subjects who have at least two paired measurements 

of COTD and a contemporaneous, minute-long segment of ABP waveform of sufficient 

quality.  Each algorithm was calibrated to each patient, using two different methods.  

First, the “best-possible calibration factor” was computed, C1 (fig. 2).  C1 was selected to 

minimize the root-mean-square of the difference of each pairing of COTD and CO-from-

ABP.  Next, each algorithm was calibrated to each patient using a different methodology, 

C2 (fig. 2).  C2 was established only by the first pairing of the CO estimate and COTD, so 

that COTD-initial = (C2 * CO estimate).  All investigational algorithms were compared 

against MAP as calibrated predictors of CO.  MAP was calibrated exactly like other 

algorithms, i.e. C1 and C2.

Statistical analysis: Each paired CO-from-ABP and COTD had an identifiable 

"error" (their difference).  The distribution of errors for each investigational algorithm 

was computed, for both the C1 and C2 calibration methods.  From these error 

distributions, 95% limits-of-agreement were computed for each CO-from-ABP algorithm, 

per Bland-Altman methodology (28).  We tested if the error distribution for an 

investigational algorithm was statistically different from the error distribution of 

"calibrated MAP" (using the C1 data), using the Kolmogorov-Smirnov test (in Matlab). 

Page 9 of 28 Critical Care Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

The Cardiac Output from Blood Pressures Trial 
p. 10 

 

Results 

 

We excluded 13.7% of the available minute-long ABP data segments (and their 

paired COTD measurements) which did not pass our data quality criteria – those were 

segments that contained more than 40% of abnormal ABP pulses.  Table 2 shows the 

characteristics of the 120 subjects analyzed.  Typical of an ICU population, we studied 

older subjects (age 69 years ± 12 s.d.), 67% male.  The average length of stay in the ICU 

was slightly over 2 days with an average of ten COTD measurements per patient.  On 

average, each subjects’ COTD varied by ±46%, PVR varied by ±50%, and MAP varied by 

±32%.   

 

In Table 3, we tabulate the 95% limits-of-agreement for all investigational 

algorithms using both the C1 and C2 calibration methods.  The Liljestrand algorithm 

performed the best.  Figure 3 plots the differences (“errors”) between the Liljestrand 

method and COTD, and subplots in Figure 3 show error plotted as a function of various 

physiologic parameters.  One notable trend is that the Liljestrand error grows larger as 

peripheral vascular resistance lessens.   

 

The results in Table 3 and Figure 3 are exclusive of the minute-long ABP 

segments with >40% abnormal beats.  After recomputing the Liljestrand 95% limits-of-

agreement for all data-segments (i.e. regardless of data quality) the Liljestrand limits-of-

agreement grew to -1.88 / +1.57  L/min.  By contrast, applying more stringent ABP 

quality criteria (analyzing minute-long ABP waveform segments with no more than 5% 
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of abnormal beats), the limits-of-agreement were reduced to -1.48 / +1.29 L/min, 

although this more stringent ABP quality criteria excluded 40% of the available ABP 

data segments. 

 

Some of the algorithms require determining the end-of-systole in a radial ABP 

pulse.  The results in Table 3 are all based on our heuristic method periodbeat _3.0 ⋅ .

For select algorithms, subscripts in Table 3 report the results for an alternative method of 

identifying the end-of-systole (the “lowest non-negative slope” method), which trended 

towards worse results.   
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Discussion 

A Public Access Database: The ability to monitor CO continuously by analyzing 

the ABP waveform, wrote Wesseling in 1983, could be used to provide “an early warning 

signal if cardiac output would rise or fall suddenly, to adjust drug rates and infusion 

rates…to sense bleeding…to get a true mean cardiac output under arrhythmias, etc. (20)”  

Yet ABP waveform analysis has not been broadly adopted.  Perhaps this is in part 

because these algorithms haven't been convincingly validated (29).  Such validation 

could be enabled by one or more publicly available “standards” databases.  In the 1970's, 

this Laboratory made the BIH-MIT Arrhythmia database publicly available (5).  The 

BIH-MIT Arrhythmia database, together with other public access databases, e.g. the 

European ST-T database, promoted the development of automated ECG interpretation 

algorithms.  30 years later, computerized ECG interpretation has evolved so that it is now 

standard in bedside monitors and even automated defibrillators.   

Academic and commercial developers can freely access and download the 

MIMIC II COTD/ABP dataset (www.physionet.org), apply their algorithms, and report 

their results.  This database contains a large number of radial ABP waveforms and 

contemporaneous measurements of COTD (over 100 subjects and over 1000 paired data 

points), archived during routine clinical operations.  We observe that the typical record 

shows distinct intervals of relative stability and other intervals of dynamic physiologic 

change, as in Fig. 4.  The range of physiologic states is summarized in Table 2.  The data 

quality in this dataset -- motion artifacts, incidence of dampened catheters, etc. -- are 

consistent with routine practice, rather than idealized research conditions.  To our 
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knowledge, there is presently no comparable public database.  The performance of a 

novel algorithm, including break-down conditions or generally unsatisfactory 

performance, can be identified using this testing database.  Moreover, the direct 

comparisons of different algorithms using a standardized testing database may breed 

healthy competition, and promote clear, iterative improvements.  Finally, credible 

validation using a standard database may encourage adoption of innovative methods by 

caregivers, particularly when some methods are proprietary and not fully disclosed to the 

public.  The usefulness of ancillary algorithms for CO estimation (e.g. generalized 

transfer functions to estimate central aortic pressure, or ABP dampening detectors) can 

likewise be tested.   

 

Because this COTD/ABP dataset contains “real-world” ICU data, collected during 

routine operations, the CO reference was a single COTD measurement.  This reflects 

clinical practice, even though it is an imperfect CO reference method (30, 31).  The 

difference between an investigational algorithm and the CO reference will be increased 

by errors in either the CO algorithm or errors in COTD, so the use of single COTD 

measurement as a reference may widen the overall limits-of-agreement (Table 3).  

However, in a dataset this large, it is unlikely that random errors in COTD measurements 

will alter whether an individual algorithm is relatively better at predicting COTD than 

calibrated MAP, and how it compares relative to other algorithms.  Moreover, if and 

when future investigators collect additional datasets (perhaps using alternative CO 

reference methods as in (24), or ABP measured from other anatomic locations such as the 

femoral artery), these datasets can also be freely posted on PhysioNet for public access, 
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permitting further standardized comparisons of different CO estimators.  We suggest that 

it is beneficial to make available the largest volume of data for the widest range of 

populations and physiologic states, rather than idealized, smaller datasets. 

 

Investigational Algorithms: We investigated eight CO-from-ABP algorithms, 

many of which were originally intended for use with a central ABP waveform.  The 

notable finding in this trial is the superiority of the CO-from-ABP algorithm described in 

1928 by Liljestrand and Zander, which performed significantly better than MAP at 

predicting changes in CO, and stood out from the other investigational algorithms.  The 

performance of the Liljestrand method is all the more notable because the ABP data were 

collected during routine ICU clinical operations, during which some degree of motion 

artifact, catheter damping, improperly calibrated transducers, etc. are inevitable.  We 

employed lenient ABP quality criteria (analyzing all data with ≤ 40% abnormal ABP 

pulses), which only excluded 13.7% of the noisiest minute-long ABP waveform 

segments.  To the extent that COTD is a useful parameter to monitor, the Liljestrand 

algorithm may enhance standard vital signs.  An example of CO estimated continuously 

by the Liljestrand algorithm versus episodic COTD is given in Fig. 4.  

 

We found that the 95% limits-of-agreement between the Liljestrand CO estimates 

and COTD are a function of ABP waveform quality:  as the ABP quality criteria are made 

increasingly stringent, the limits-of-agreement grow tighter, although more data are 

excluded.  Note that we did not explicitly exclude dampened ABP waveforms, aside from 

requiring that the pulse pressure was > 20 mmHg.  Waveform damping (due to air 
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bubbles, thrombus, partial meatus occlusion, etc.) can subtly reduce the measured pulse 

pressure and so it is a potentially serious source of error for the Liljestrand algorithm 

which contains pulse pressure in its numerator.  All the same, the Liljestrand algorithm is 

a better predictor of COTD than MAP alone, and appears superior to the other algorithms 

studied here.  If an automated algorithm were able to detect or exclude slightly dampened 

ABP waveforms, or if the clinical staff took special care to avoid dampened intra-arterial 

measurements, it is likely that the Liljestrand method, or any of the investigational 

methods in Table 1, would prove even more accurate. 

 

The modest performance of the other investigational algorithms requires 

discussion.  Factors which may explain these results include:  use of real-world ABP 

waveform data rather than pristine research data (discussed above); use of radial ABP 

waveforms rather than central ABP waveforms; one-time calibration rather than repeated 

recalibration; and inclusion of all subjects regardless of cardiac valve function. 

 

Most of the investigational algorithms were originally intended for use with a 

central ABP waveform, where the systolic interval of the ABP may have relatively fewer 

retrograde components (i.e., reflected waves).  Yet measurement of a radial ABP is a 

standard clinical practice, where antegrade and retrograde waves are superimposed.  

Algorithms which perform suitably using a peripheral ABP may prove more valuable 

because radial ABP is more often available, and because non-invasive devices exist to 

measure peripheral ABP.  Therefore we feel that investigation of these algorithms applied 

to a radial ABP is warranted.  Indeed, we discovered that the Liljestrand method performs 
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well when applied to radial ABP.  There is precedent for applying an algorithm intended 

for a central ABP on a peripheral BP (23, 24). 

Many pulse contour methods prescribe recalibration after each new reference CO 

measurement, though we did not use this methodology in our investigation.  It is intuitive 

that very frequent recalibration leads to more accurate CO estimations, but extremely 

frequent re-measurement of COTD obviates the need for CO-from-ABP algorithms.  

Statistics based on a recalibration every time the patient's state changes don’t reveal much 

about the times when continuous CO-from-ABP algorithms would be most valuable:  

when a patient's state is changing and COTD is not known. Therefore we compared the 

accuracy of each algorithm through each subject's range of ICU physiology, employing 

just a single calibration.  The calibration methods in this study included C1, the “best 

possible calibration” (a retrospective construct, in which one optimal calibration factor 

that minimizes the overall estimation error is employed); and C2, in which only the first 

pairing of CO-from-ABP and COTD are employed for calibration, and subsequent 

pairings are examined for accuracy.  Presumably, real-world performances will lie 

somewhere between the ideal of the C1 calibration method and the imprecision of the C2 

method. 

We did not exclude subjects based on heart valve function.  Rather, we trusted 

that the ICU staff would only measure COTD in appropriate patients (e.g. without 

significant tricuspid regurgitation), and that the ideal CO-from-ABP algorithm would 

tolerate some aortic valve dysfunction.  When we studied the subset of cases with 

documented normal tricuspid and aortic valve function, we did not find improvement in 
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any of the algorithms’ performances.  Echocardiograms were available in 56 subjects, 

and normal cardiac valve function was found in 64% of them (36 subjects).  For all eight 

investigational algorithms, the 95% limits-of-agreement with COTD were no better in this 

subset of 36 subjects with documented normal valve function. 

 

Commercially-available CO-from-ABP algorithms: The best known CO-from-

ABP algorithms are the commercially-available methods, such as PiCCO, ModelFlow, 

and LiDCO (21-27), which are analytically more complicated than our investigational 

algorithms in Table 1.  In fact, our initial investigational plan was to also re-implement 

these commercial algorithms, based on publicly-available information (21-27).  However, 

it became apparent it was not feasible to re-implement these commercial methods.  

Without inspecting the source code of any algorithm, there are many steps (pre-

processing, error and outlier trapping, temporal averaging, and many other specific 

computational steps) that cannot be meaningfully replicated using just the published 

reports. Our initial attempts to re-implement these algorithms relied on our own 

judgments whenever the published sources had ambiguous methodological detail, but 

these implementations did not perform well (18).  Our good-faith efforts to re-implement 

these commercial methods are available for review at www.physionet.org; needless to 

say, they should not be construed as equivalent to what is deployed in the commercial 

products.   

 

Ideally, vendors would make the source code for their methods available for 

public inspection, to bring unreliable methods to light and accelerate acceptance of 
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rigorous algorithms.  However, this is simply not standard practice for commercial 

biomedical algorithms.  Because most commercial algorithms will remain proverbial 

black-boxes to the user community, standard testing databases are all the more essential.  

Indeed, testing proprietary ECG arrhythmia detection algorithms using standard testing 

databases is a mandatory step in obtaining US FDA approval (5).  The MIMIC II 

COTD/ABP dataset is now publicly and freely available.  We invite developers and 

vendors of CO-from-ABP algorithms to test their methods and report their performance 

on this dataset. 

 

Conclusion 

Public-access testing databases are necessary to determine which CO-from-ABP 

algorithms are better than alternatives.  Such databases can catalyze the development of, 

and public acceptance of, increasingly effective algorithms.  Regarding the set of 

algorithms that we applied to this testing database, the Liljestrand method is a better 

predictor of CO than calibrated MAP in an ICU population, using typical ICU radial 

ABP, after filtering out 12% of the noisiest data.  It is even more accurate given the 

cleanest ABP waveforms.  The Liljestrand predictor may be a valuable parameter for 

intelligent monitoring algorithms when a patient's radial ABP is measured.  Future work 

should examine the sensitivity and specificity of alarm algorithms which use this 

predictor, versus those that use conventional clinical parameters, and establish outcomes 

benefits.  The corrected impedance algorithm also surpassed MAP as a predictor of CO 

changes.  Other investigational algorithms failed to surpass calibrated MAP.  
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Fig. 1:  Five examples of ABP waveforms and their key features as identified by our 
automated algorithms.  The horizontal axis is sample number, with 125 samples = one 

second.  Onset point of each beat is indicated by a black asterisk “*”; end of systole,
estimated by periodbeat _3.0 ⋅ , is indicated by “X”; end of systole, estimated by the 
‘lowest non-negative slope’ method, is indicated by a “0”.  The algorithms also identify 
systolic (peak), mean, and diastolic (trough) blood pressures (not illustrated).  A signal 
abnormality index (8) checks that all were within physiologic limits and also checks that 
the features’ variation from one ABP pulse to the next is not excessive. 
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Fig. 2:  Each investigational algorithm required calibration for each subject.  We studied 
two methods of calibrating the algorithms for a subject.  In C1 (see below, black line), the 
“best-possible calibration factor” was computed.  C1 was selected to minimize the root-
mean-square of the difference of each pairing of COTD and the corresponding CO-from-
ABP estimations.  In C2 (see below, grey line), the first pairing of the CO-from-ABP 
estimate and COTD (see below, stem plot) was used to establish the calibration factor, 
which was then used for all subsequent CO estimation.  Note that COTD is only measured 
at discrete intervals, while CO-from-ABP is continuous (assuming ABP is measured 
continuously). 
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Fig. 3:  (a) Bland-Altman plot comparing CO estimated by the algorithm (Liljestrand, 
using the C1 calibration methodology) with COTD. 95% limits-of-agreement for this 
algorithm and the other investigational algorithm are summarized in Table 3.  (b) 
Liljestrand algorithm error as a function of several variables.  Each variable is then put 
into 3 bins of equal quantity.  Rectangular bars represent 95% limits-of-agreement for 
each bin.  For example, as shown, CO estimation error decreases as PVR increases. 
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Fig. 4:  Example of continuous CO-from-ABP estimated by the Liljestrand algorithm (grey line) versus 
episodic thermodilution CO measurements (stem plots) for a subject over a 50 hour time interval, using a 
single calibration (C1, see text for details).  Pulse pressure (PP), mean arterial pressure (MAP) and heart 
rate (HR) through this same temporal window are also shown. 
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Table 1:  Investigational CO-from-ABP algorithms 
( CO = Stroke volume * HR ) 

 

Pulse Pressure (10) Stroke volume =  ( )DBPSBPk −*

Liljestrand (11) Stroke volume =  ( )
( )DBPSBP

DBPSBPk +
−*

Systolic Area (12, 13) Stroke volume = ( )∫Systole
dttABPk *

Systolic Area with
Kouchoukos Correction (14) Stroke volume = ( )dttABP

Duration
Duration

k
Systole

Diastole

Systole ∫







+ *1*

Diastolic Decay
[adopted from (16)]

Solves for beat-to-beat PVR, fitting a monoexponential curve to each ABP 
pulse's  peak of systole and trough of diastole, where: 

PVR
timek

SystoleDiastolic ePP
*−

⋅=

Herd (19) Stroke volume = ( )DBPMAPk −*

Corrected Impedance (20) Stroke volume = ( ) ( )∫⋅−+
Systole

dttABPMAPHRk *48.0163*

AC Power
(Root Mean Square)

Stroke volume = ( )2)()( tMAPtABPk −∗  
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Table 2: Subject and data characteristics 

 
units mean ± sd N 

Study Population 
Age yr 69±12 120 

Stay duration day 2.3±2.2 120 
COTD measurements per patient 10±8 120 

COTD range per patient L/min 2.3±1.2 120 
MAP range per patient mmHg 24±10 120 
PVR range per patient mmHg·s/ml 0.5±0.3 120 

Pooled Data 
COTD L/min 5±2 1164 
MAP mmHg 75±10 1164 

Heart rate bpm 88±17 1164 
PVR mmHg·s/ml 1±0.4 1164 
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Table 3: 95% limits-of-agreement between thermodilution CO and 

investigational CO-from-ABP algorithms 
 

Investigational Predictors of COTD 

"Best Possible Single 
Calibration" (C1)

Lower/Upper Limits  
( ± L / min ) 

KS test 
vs. MAP  

( p-values)

"First Pairing 
Calibration" (C2)

Upper/Lower Limits 
( ± L / min ) 

Liljestrand -1.76  /  +1.41 0.0001* -2.81  /  +2.04 
Corrected Impedance -1.91  /  +1.57 # 0.009 * -3.39  /  +2.28 

Pulse Pressure -2.07  /  +1.73 > 0.05 -3.05  /  +2.76 
Systolic Area -2.07  /  +1.73 > 0.05 -2.85  /  +3.05 

Systolic Area with Kouchoukos 
Correction

-2.08  /  +1.71 > 0.05 -3.20  /  +2.89 

AC Power (RMS) -2.09  /  +1.73    > 0.05 -3.12  /  +2.78    
Diastolic Decay -2.23  /  +1.77    > 0.05 -3.22  /  +2.57   

Mean Arterial Pressure -2.20  /  +1.82    -3.19    +3.42    
Herd -2.66  /  +1.89    > 0.05 -3.65  /  +3.16 

C1 calibration represents a theoretical, retrospective calibration for each algorithm that best matches a 
subject’s set of CO estimates and paired set of thermodilution CO data.  For each investigational 
algorithm, the distribution of errors (estimated CO minus thermodilution CO) was compared with the 
distribution of errors of ‘calibrated MAP’ using the Kolmogorov-Smirnov test.  C2 calibration uses the 
first paired CO estimate and thermodilution CO measurement to calibrate each algorithm to each subject, 
and applies that calibration to all subsequent pairings.    
 
* p less than or equal to 0.05. 
 
# When using the alternative “lowest non-negative slope” method to estimate the systolic interval, the 

lower/upper limits are -1.94 / +1.54 L/min.  Results in Table 3 employ periodbeat _3.0 ⋅ to estimate 
systolic interval. 

## When using the alternative “lowest non-negative slope” method to estimate the systolic interval, the 
lower/upper limits are -2.40 / +1.97 L/min.   
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