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Abstract-We present a systematic network coding strategy for
cooperative communication, in which some nodes may replicate
and-forward packets in addition to sending random linear
combinations of the packets. We argue that if this strategy
is used only at certain nodes in the network, the throughput
will not be reduced relative to random linear network coding.
Furthermore, if packets can traverse the entire network in their
systematic (uncoded) form, per-packet delay can be reduced,
decoding complexity can be reduced, and the potential to recover
packets from incomplete coded blocks will be improved. We
describe this approach and provide an analysis of the packet
loss rate for fixed-rate coding on a multihop path.

I. INTRODUCTION

Network coding, first introduced in [1], is a useful technique
for cooperative communication in multihop networks. In this
approach, in order to deliver packets from a source to one
or more destinations via multihopping, the source and inter
mediate nodes, rather than applying a replicate-and-forward
strategy to the packets, will send some function (preferably a
linear function) of the packets to downstream nodes toward
the destination(s). By diffusing or mixing the packets in this
way, unique information can be carried on multiple paths
for delivery to the destination(s). Previous work in [2], [3]
proposes a practical approach for carrying this out: nodes
in the network can send random linear combinations of the
packets and append the coefficients of the linear combination
(which are chosen from a large finite field) to the header
of the packet to allow for decoding at the destination(s).
Although random linear network coding can provide improved
throughput [2], [3] and allows for distributed implementation,
it can have drawbacks. Consider random linear coding over a
fixed-size group or generation of K packets. The destination(s)
will need to receive at least K random linear combinations
before any of the packets can be decoded, inducing a reception
delay on a per-packet basis and a likelihood that none of
the K packets can be recovered if fewer than K random
linear combinations are received. Additionally, the source node
may need to wait for K packets to arrive before it can send
anything, which will also induce delay. A solution to the
latter drawback is explored in [3] by beginning encoding and
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transmission on a partial block and adding packets to the
generation as they arrive.

In order to address these drawbacks, in this work we explore
the use of a technique in which the source and intermediate
nodes can replicate-and-forward packets in addition to sending
random linear combinations. We refer to this technique as
systematic network coding in that the packets transmitted by a
node consist of the packets received by that node in addition
to random linear combinations of the packets received by the
node. This form of network coding differs from techniques
considered in previous work [2], [3], where all packets trans
mitted by a node are linear combinations of the packets it has
received. There are multiple potential benefits of systematic
network coding. First, it can reduce the computations involved
in the finite field arithmetic needed to construct random linear
combinations and to decode packets. Furthermore, if packets
can traverse the entire network in their systematic (uncoded)
form, per-packet delay can be reduced, decoding complexity
can be reduced, and the potential to recover packets from
incomplete coded blocks will be improved.

Systematic network coding is best applied only at certain
nodes in a network. Specifically, if systematic network coding
is used at nodes on multiple diverse paths, then it can inhibit
the ability of network coding to exploit path diversity. In the
following section we argue that if a node has the property
of being a cut-node, then systematic network coding at that
will not reduce the rank of the encoding vectors of packets
sent toward the destination(s). The source node of any flow is
always a cut-node, and additionally, any node that connects
disjoint sets of nodes in the network is a cut-node. Thus
systematic coding is applicable to hierarchical networks in
which one node serves as a bridge between different parts
of the network. Furthermore, we argue that systematic coding
can be used at nodes on one of multiple diverse paths without
increasing the chance that nodes send redundant information.
Systematic coding within a network has been explored in
previous work. In [4], rateless systematic coding is applied
to a tandem network and performance tradeoffs in terms of
complexity, delay, and memory requirements are presented.
In [5], the source node in a single-hop multicast flow makes
use of systematic coding and this approach is shown to be
beneficial in terms of delay performance. Systematic network
coding is used in mobile devices in [6] and is shown to
provide improved throughput over a traditional network coding



the links to downstream nodes. The coding performed at node
v is given by the local code generator matrix L; where

Any set of packets traversing the network can also be written
in terms of a global code generator matrix denoted by G,
whose columns are the encoding vectors of the packets. For
instance, we can write

For a unicast flow, ITI = 1, a cut-node as defined above
is equivalent to an articulation point of a graph [7]. The set
of cut-nodes includes the source node S as well as nodes that
serve as gateways between disjoint parts of a network. The
following proposition states that the use of systematic coding
at a cut-node is sufficient to propagate information through
the network without loss of rank in the global code generator
matrix.

(1)

(2)

where Gv is formed by the product of the local code generator
matrices for the nodes on the path(s) between sand v. The
random linear network coding technique introduced in [2], [3]
corresponds to a local code generator matrix L; in which all
elements of the matrix are chosen randomly and uniformly
from IFq • In contrast, systematic network coding corresponds to
a local code generator matrix given by the following structure.

{

[Ikxk PkxCn-k)] , k < n
L~s) - [Inxn] k > (3)

0Ck-n)xn ' - n,

where I i x i is the i x i identity matrix, OiXj is a i x j matrix of
zeros, and Pi Xj is a i x j matrix of elements chosen uniformly
from IFq • The identity matrix contained in L~s) means that
min(n, k) packets are simply forwarded rather than coded at
node v. We note that rank(L~s)) = min(n, k).

B. Sufficiency

The benefit of network coding for cooperative communica
tion is that packets are mixed as they traverse the network and
that packets traversing disparate paths will, with high proba
bility, consist of independent sets of information. As such, the
systematic coding technique described in (3) could potentially
inhibit the cooperative capabilities of network coding in that
it simply forwards some packets - this can result in a loss in
throughput from the random linear network coding strategy in
[2], [3]. We consider use of the local code generator matrix in
(3) at nodes that do not contribute to path diversity. Nodes at
which we are interested in applying systematic network coding
are defined as follows.

Definition 1. A node v is a cut-node for the S - T flow if
the removal of v causes all of v's downstream destinations
Tv, where Tv ~ T, to become disconnected from the source
s. Conversely, if there is a forward path from v to ti, for any
ti E Tv, where the removal of v does not disconnect ti from
s, then v is not a cut-node.

II. SYSTEMATIC NETWORK CODING

A. Description

We first describe the approach using notation similar to that
in [3]. The network is modeled by a directed acyclic graph 9 =
(V, £) where V is the set of nodes and E the set of directed
links between nodes. The links in the network may correspond
to lossless links or they may correspond to erasure links, where
packets are dropped with some probability. Consider a group
of K packets originating at a source node S E V and destined
for a set of nodes T ~ V. Unicast transmission corresponds
to ITI = 1 and multicast transmission corresponds to ITI > 1.
We denote the source packets as s = [Sl, ... , SK] and each
packet s, is a vector of symbols over a finite field IFq, where
q is a power of two. Nodes in the network will cooperate to
deliver the K source packets to all nodes in T. We assume
that at least one path in 9 exists between S and each node
t E T. Packets sent for the S - T flow can traverse multiple
paths; those paths may coincide at some links and they may be
disjoint at other links. In this work we consider the situation
in which there is only one session or flow that is active in
the network and intra-session coding can be carried out by
coding among the K packets within the S - T flow. Our results
can also be applied to networks serving multiple flows and
performing intra-session coding among those flows.

Consider the coding and transmission of packets at a node
v E V. With random linear network coding, packets traversing
the network will be linear combinations of the source packets
s; the vector of K coefficients used in forming a random
linear combination is referred to as the encoding vector for
that packet and is assumed to be appended to the packet as
in [2], [3]. Let x., = [Xl, ... ,Xk] denote a set of k packets
that are received at node v. We assume that nodes can monitor
their incoming packets and will discard packets that are not
innovative (Le., a packet will be discarded if its encoding
vector is not linearly independent of the encoding vectors of
packets that v has already received); as such, k ::; K and the
encoding vectors of packets in x., are all linearly independent.
Node v can perform coding on the packets x., and will transmit
a set of n packets, which we denote Yv = [Yl, , Yn]. In
general we do not assume that the n packets Yl, , Yn are
linearly independent; node v may wish to send n > k packets
with redundant information in order to overcome erasures on

approach. Our work differs from these previous works in that:
(i) we present general conditions on node connectivity for
applying systematic coding and these conditions are suited
to our interest in hierarchical networks, and (ii) we analyze
performance benefits for fixed (possibly adaptive) rate coding
rather than rateless coding due to our interest in satellite
networks with large propagation delays.

In Section II we formally describe the systematic network
coding approach and provide conditions under which it can
be applied. In Sections III and IV we explore the performance
benefits offered by systematic coding in terms of packet loss
rate and per-packet delay.
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(a) Tandem network. (b) Multicast on a tree network.
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Fig. 1. Example networks. Destination nodes are shaded black. Cut nodes are shaded gray. Note that in l(c) , one of the horizontal-striped nodes and one
of the vertical-striped nodes can perform systematic coding.

Proposition 1. For a cut-node v E V, use of the local
code generator matrix L~s) does not reduce the dimension
of the space spanned by the encoding vectors of the packets
propagated to the downstream neighbors ofv.

Proof Let G~ denote the K x k global code generator
matrix corresponding to the k packets received at node v
from its upstream neighbors. The dimension of the space
spanned by the encoding vectors of the packets received at v is
rank(G~) = k. By the definition ofa cut-node, the information
propagated to the downstream neighbors of v is given entirely
by Yv = sG~Lv. In general, for an m x k matrix A and a
k x l matrix B, it holds that [8],

rank(A)+rank(B)-k::;rank(AB)::; min (rank(A) , rank(B)) .
(4)

Let A = G~ and B = Lv. For L ; = L~s) as in (3), the left
and right hand sides of (4) are both equal to minCk, n) and
the upper bound holds with equality. •

Proposition I implies that in comparison to the schemes
in [2], [3] where the local code generator matrix consists of
all elements chosen uniformly from IFq, the use of systematic
network coding at cut-nodes will not reduce the number of
packets decoded at the destination(s). In addition to cut-nodes,
systematic network coding can be applied at other nodes in the
network. Let C denote the set of all possible encoding vectors
for generations of size K over IFq, i.e., the set of all K -length
vectors with elements from IFq. As a general rule, encoding
vectors are chosen independently and uniformly from the set
C; however, nodes on one path can deviate from this rule and
employ systematic network coding.

Proposition 2. Let Vs denote a set ofnodes on the s - T path
that share one or more successor nodes. The use ofsystematic
network coding at one of the nodes in Vs does not increase
the probability that the nodes send redundant information to
their successors.

Proof The probability that nodes send redundant infor
mation is the probability that they choose linearly dependent
encoding vectors. Let A denote the encoding vector chosen at
a node v E Vs and B denote the encoding vector chosen at
any node in Vs \ v. Assume that B is chosen independently

and uniformly over C. The probability that the two nodes send
redundant information is Pr(B = cA), where c is a non-zero
constant from IFq • Then Pr(B = cA) = Pr(B = cAIA = a)
regardless of whether A is chosen uniformly over C or A is
chosen deterministically as in systematic network coding. •

From Propositions I and 2, we state the following suf
ficiency condition. Systematic network coding at nodes that
meet this condition is sufficient to achieve the throughput of
random linear network coding as in [2], [3].

Sufficiency condition for systematic network coding: Any
successor node along the forward s - T path can have at
most one predecessor using systematic network coding without
decreasing the rank ofthe encoding vectors ofpackets received
at the destinationts), Thus any node v can use systematic
network coding if it holds true that it is the only predecessor
using systematic network coding for all of its successors.

It is clear that cut-nodes satisfy this sufficiency condition
for systematic network coding. In Fig. 1 we show example
networks and the cut nodes for those networks are identified.
Figures lea) and l(b) show examples in which all transmitting
nodes are cut nodes. Figure 1(c) shows a network in which
only two nodes are cut nodes; this example demonstrates the
possibility of employing systematic coding at nodes other than
cut-nodes . For instance, it may be beneficial to employ a
technique in which every node on one path between s and t
performs systematic coding (this path may be chosen as e.g.,
the path with the lowest aggregate loss rate or the path with the
smallest delay) and cooperating nodes on other paths employ
non-systematic coding. Note that not all nodes on the chosen
path may meet the sufficiency condition. In this case, two
possibilities are that (i) systematic network coding is employed
only at nodes on the chosen path that meet the sufficiency
condition, or (ii) systematic network coding is employed at
all nodes on the chosen path, though this may result in an
excess of non-innovative packets. Also note that this does not
necessarily require central control, as non-cut-nodes can be
chosen or elected to use systematic codes by only coordinating
with their one-hop neighbors .



III. PERFORMANCE ON A SINGLE HOP vectors) or K. The distribution of z(ns) is found as

Then

where Pr( N = n) is given by the binomial distribution. The
loss rate, which we denote ,\ (ns), has expected value

Pr(Z(s)=x) = Pr(U=x)

x (I-Pr(a random (K-x)xC matrix has rank K-x))

For systematic coding, the source will send K uncoded
packets followed by E random linear combinations. Let U
denote the number of uncoded (systematic) packets received
at the destination, U rv bin( K, p), and C denote the number
of random linear combinations received at the destination,
C rv bin(E,p). Since the channel is memoryless, U and C
are independent. Also let z'» denote the total number of
packets decoded at the destination. In this case z'» can take
any integer value between 0 and K; however Z(s) can take
values 1,2, ... , K - 1 only if uncoded packets are received
and the random linear combinations received are not sufficient
to decode the entire block. In particular, for x = 1, ... ,K -1,

(6)

Pr( a random K x N matrix has rank K)
K+E

L Pr(Kxn matrix has rank K)Pr(N=n)
n=O

K+EK-l

L II (I-qi-n)Pr(N=n) (5)
n=K i=O

E[,\(ns)] = 1 - Pr(Z(ns) = K).

Pr(Z(ns)=K)
In this section we quantify the performance benefits of

systematic network coding for communication over a single
lossy link. The performance is quantified in terms of the packet
loss rate and the per-packet delay. We consider a situation
in which a single source node (a cut-node) has K packets
that it would like to transmit to a single destination node.
Transmission is carried out over an erasure link in which p
denotes the probability that a transmitted packet is received
without error; with probability 1 - p the packet is dropped
on the channel and cannot be received. Coding is performed
over the finite field IFq and can be performed in either a non
systematic or a systematic manner. We assume that in the case
ofnon-systematic coding, decoding is only performed once the
decoder has gathered a full-rank matrix of encoding vectors,
Le., there is no aggressive or "earliest decoding" as in [3].
This implies that if a transmitting node generates a systematic
(or uncoded) packet while performing non-systematic coding,
which happens with probability K q-K, then the destination
will not be able to recover that packet unless it collects
a full-rank matrix of encoding vectors. Because of these
assumptions, our analysis is most appropriate for large finite
fields (e.g., q = 28 ) . We assume throughout that random linear
combinations of packets are formed by choosing coefficients
uniformly from IFq •

Regarding notation, in the following we will denote a
binomial random variable X as X rv bin(N,p), indicating
that Pr(X = x) = (~)pX(I - p)N-x, x = 0,1, ... , N. We
also denote a geometrically distributed random variable X as
X rv geom(p), where Pr(X = x) = p(I - p)x-l, x 2: 1.

A. Packet loss rate

We first characterize the packet loss rate for fixed-rate
coding. (Note: for rateless coding the packet loss rate is zero.)
This is relevant to a scenario in which the source node has only
partial knowledge of the channel- for instance, the source may
know p but not the realization of the channel - and can arise
for a system with limited feedback and/or large propagation
delay. In this case the source will attempt to overcome erasures
on the channel by sending E redundant packets in addition to
the K information packets, where E is a deterministic value.
There is a non-zero probability that some or all of the packets
are never received at the destination. We define the packet loss
rate ,\ as the ratio between the number of packets received at
the destination and K; ,\ takes values between zero and one.

In the case of non-systematic coding, in every transmission
a random linear combination over IFq of the K packets is sent.
Let N denote the number of transmissions during which a
transmitted packet is not erased; clearly N rv bin( K + E, p).
Also let z(ns) denote the number of original packets decoded
upon completion of K +E transmissions; Z(ns) is either zero
(if the receiver cannot recover a rank-K matrix of encoding

Pr(Z(s)=x) =

Pr(U=x) (1- c=t-x Pr(C=c) Ktl-\l-qi-
C

) ) . (7)

By similar arguments, we can write

Pr(Z(s) = K) =
K E K-x-l

L Pr(U=x) L Pr(C=c) II (I_qi-C). (8)
x=o c=K-x i=O

In this case we denote the loss rate by ,\ (s) and its expected
value is given by

K

E[.x(s)] = 1 - ~ LZPr(Z(s) = z). (9)
z=l

Figure 2(a) displays numerical examples of the loss rate as a
function of E, the number of redundant packets. As expected,
systematic coding provides a smaller expected loss rate than
non-systematic coding.



--Non-systematic, p=O.9
...• .. Systematic, p=O.9
~ Non-systematic, p=O.5
· 0· Systematic, p=O.5

4 5

Packet ID

8

4

2 0 ··· ···· ··
0 · · · ···

0 ·· ···· ···· 0 · ··· · · ·
0 0

..... ....
. · 0 , ... "."

8 •............

6

• ..........

• ..........
• ..........

4 .•...... .... --Non-systematic, p=O.9
....... ..... ..•. Systematic, p=O.9

2
.........

~ Non-systematic, p=O.5
o Systematic, p=O.5

0
252010 15

Redundant packets (E)

0.9

0.7

0.6

0.8

(a) Average loss rate versus redundant packets for fixed-rate coding. (b) Average per-packet delay versus packet ID for rateless coding.

Fig. 2. Comparison of systematic and non-systematic coding in terms of average packet loss rate and per-packet delay for K = 8, q = 28 .

B. Per-packet delay

We now characterize the per-packet delay of non-systematic
and systematic coding. In this case we consider the use of
rateless codes, i.e., it is assumed that there is feedback on
the channel and transmissions are made continually until the
source receives an acknowledgment indicating that all K
packets have been decoded at the receiver. (Note that the per
packet delay for fixed-rate coding can be infinite.) We denote
the delay of packet i within a generation by D i , i = 1, .. . , K.
We assume that all packets in a generation are available at
the source node when transmission begins; D, measures the
time from the start of transmission until packet i is decoded
at the destination. Also we assume that when random linear
combinations of packets are sent, decoding is performed only
when the receiver has collected a full-rank matrix of encoding
vectors.

For non-systematic coding, all K packets will be decoded
at the same time and the per-packet delay is constant with
respect to i. In this case we let D}ns) denote the per-packet
delay. The value of the delay is given by the sum of K terms
Yk, k = 0, ... , K - 1, where Yk denotes the number of
transmissions needed for a new linearly independent packet
to be received given that the receiver has already collected
k linearly independent packets. This argument is more thor
oughly described in [9]. Then for all i = 1, .. . ,K ,

K-l

E[D}ns)] = L E[Yk], Yk rv geom(p(l-l- K)) (10)
k=O
K

~ (II)
P

For systematic coding, the delay of packet i is given by
i if the packet is received when transmitted in its uncoded
form, or it is given by some value at least as large as
K + 1 if the receiver must solve a system of equations to
recover that packet. Clearly, the delay of packet i takes value
i with probability P, which is the probability of successful

transmission of that packet in uncoded form. If packet i is
not received in uncoded form, which happens with probability
1 - P, then the delay is given by K plus the time needed
to receive enough coded packets to decode all K packets. In
the second case, we condition on the value of the number
of successful transmissions of uncoded packets UK-1, where
UK-l rv bin(K - 1,p). Conditioned on UK-l = i . the time
needed to receive enough coded packets to recover all K is
given by the sum of K - j terms Yk where [9]

Yk rv geom(p(l-l-(K- j))), k = 0, ... , K - j -1. (12)

Then the expected per-packet delay is given as

E[D}s)]

~ pi+(1-p) (K+ f.' Pr(UK-' ~ j)Kt:,' EIYkl)

(13)

Figure 2(b) plots numerical examples of the per-packet
delay for non-systematic and systematic coding as a function
of i, which is referred to as the packet ID. Again, as expected,
we observe that systematic coding provides improved perfor
mance, particularly for a lossy channel.

IV. PACKET LOSS RATE ON A MULTIHOP PATH

In this section we compute the packet loss rate performance
for systematic coding over a single muItihop path. The path
consists of L +1 nodes connected by L directed links. A set of
K packets is to be transmitted from source node °via nodes
1, . .. , L - 1 to destination node L. The L transmitting nodes
on the path are all cut-nodes. We let Pi, i = 1, ... ,L, denote
the probability that a transmitted packet is received on the link
between nodes i - I and i and E i , i = 1, ... , L denote the
number of redundant packets sent on that link. The number
of redundant packets E, can be any non-negative integer, the
E, packets are sent immediately after the original K packets,
and the loss rate performance for E, ---. 00 corresponds to the



performance for rateless coding on the link between nodes
i-I and i. Additionally, Z, denotes the number of packets
that can be decoded at node i; it can take values in [0,K].
The results on packet loss rate described here can apply to,
for instance, the tandem network shown in Fig. l(a) or to one
of the paths in the multicast tree shown in Fig. 1(b).

A. Non-systematic coding

In this scheme, each transmitting node will send random
linear combinations of the original K packets. Node i-I will
transmit K +E, random linear combinations of the packets it
has received. Specifically, node i-I will re-encode the linear
combinations it has received. In order for destination node L
to be able to decode the original K packets, each node on the
path must also have gathered enough packets in order to be
able to decode the original K. We have the following result.

Lemma 1. The packet loss rate for non-systematic coding on
a path of L hops is given by

Lemma 2. The packet loss rate for systematic coding on a
path of L hops is given by

K

E['\r)] = 1 - ~ L zPr(Zi
s)

= z) (15)
z=l

where the marginal distribution of zis) can be computed
from the joint distribution of the pair (zis), UL) given by the
following recursive equations. For u; = 0, ... , K - 1 and
Ui-l = Ui, ... , K

Pr(Zis)=Ui, Ui=UiIZi~\<K, Ui- 1=Ui-l) = !(uilui-l),
(16)

and

Pr(Zis)=Ui, Ui=UiIZi~\=K, Ui- 1=Ui-l) = !(uilui-l)

x (1- Kc:I~~l!(cilui-l) KTI-\l-Qj -
Ci )) , (17)

andfor u.; = 0, ... , K and Ui-l = iu, ... , K,
L K+Ei K-l

E[,\(ns)] = 1 - II L II (1 - qj-n)Pr(Ni = n) (14) Pr(Z;s)=K, Ui=UiIZ;~l=K,Ui-1=Ui-l) = !(uilui-I)

i=l n=K j=O (K+E. u· 1 K U 1 )

where N i rv bin(K + Ei,Pi). x Ci=t.~~ !(cilui-l) tr (l_qj-
C
i ) , (18)

Proof Let zi
ns)

denote the number of packets decoded where!(u.;IUi-l) denotes the probability mass function (pmj)
at node L under the systematic coding scheme. We have ofa bin(Ui-l, Pi) random variable evaluated at Ui, !(cilui-l)

E['\ (ns)] = 1 _ Pr(ZL(ns) = K) denotes the pmfofa bin(K +E, - Ui-l,Pi) random variable
evaluated at c.. and U« = Z~s) = K with probability one.

= 1 - Pr(Zi
ns)

= KIZi~i = K)Pr(Zi~i = K)
L Proof Let zis) denote the number of packets that node i

= 1 - II Pr(Z;ns) = Klzt~) = K), Z~ns) = K is able to decode, U, denote the number of uncoded (system-
i=l atic) packets received at node i, and C, denote the number of
L K+Ei coded packets (random linear combinations) received at node

= 1- II L Pr(Ni=n)Pr(Kxn matrix has rank K) i. Note that the c, packets received at node i are not necessar-
i=l n=K ily linearly independent. Conditioned on Ui - 1 = Ui-l, then

U, ::; Ui-l and U, rv bin(Ui-l,Pi). Also, given Ui - 1 = Ui-l,
where in the final equality, N, denotes the number of coded ( ) (s)then C, rv bin K + E, - Ui-l,Pi . In order for Zi = K, it
packets (random linear combinations) received at node i. must be true that Z;~l = K. We have,
Clearly N, rv bin(K + Ei,Pi). The result follows. •

B. Systematic coding

In this case each transmitting node forwards the first K
packets it receives (without re-encoding) and then sends E,
random linear combinations of the packets it has received. The
scheme is carried out as described in (3). The first K packets
received by a node may consist of both uncoded (systematic)
packets as well as random linear combinations of packets; the
random linear combinations received among the first K will
not be re-encoded. Once again, in order for destination node
L to be able to decode all K original packets, each of its
upstream nodes must also have collected enough packets to
be able to decode the original K packets. However, with this
scheme, the destination may be able to recover a partial block,
or fewer than K packets, by collecting uncoded (systematic)
packets. The packet loss rate is quantified below.

Pr(Zis)=K, Ui=UiIZi~l=K, Ui- 1=Ui-l) = !(uilui-l)
K+Ei-Ui-l

x L !(cilui-l)Pr((K-Ui) XCi matrix is full rank).
ci=K-Ui

From the equation above, the result in (18) follows. Next,
zis

) < K indicates that node i is only able to recover the
U, uncoded (systematic) packets it has received. If Zi~l =

K, then zis) < K only if node i does not receive K - U,
linearly independent random linear combinations. By the same
reasoning as used above,

Pr(Zis)=Ui, Ui=UiIZi~l=K, Ui- 1=Ui-l) = !(uilui-l)

x (l~c:1=:~~(CiIUi-l)Pr((K-Ui)XCi matrix is full rank))
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Fig. 3. Expected packet loss rate versus redundant packets on a multihop path. In these results K = 8, q = 28 , PI = ... = PL, and E I = ... = EL = E.

and (17) follows. Finally, in the case that Zi(~1 < K and
Z; s) < K, node i will only be able to recover its uncoded
(systematic) packets and this outcome is independent of how
many coded packets i receives; in this case (16) applies. •

C. Numerical results

Two numerical examples of the packet loss rate on a
multihop path are shown in Fig. 3. We have computed these
results assuming that PI = ... = P L and E I = . . . = E L = E.
The figures display the values of the loss rate for L = 2,3,
and 5. As expected, the packet loss rate increases with Land
systematic coding provides a consistently smaller loss rate than
non-systematic coding.

V. CONCLUSIONS

This work presents a strategy that is a blend of the tradi
tional replicate-and-forward technique used in packet networks
and the technique of random linear coding of packets for coop
erative communication. We propose that replicate-and-forward
be used at cut-nodes in the network, and that forwarding is
followed by the transmission of "parity packets" or random
linear combinations. Furthermore, systematic coding can be
used at other nodes (in addition to cut-nodes) and we have
provided specific conditions for which systematic network
coding at a node will not increase the number of redundant
packets sent through the network relative to non-systematic
network coding. We have provided quantitative results on the
performance benefits of systematic network coding in terms
of the packet loss rate and per-packet delay. There can also
be drawbacks to the use of systematic network coding: it
may increase the incidence of out-of-order packet delivery and
may require additional coordination to determine the coding
strategy used at each node. These costs, in addition to the
benefits, of systematic network coding will depend on many
factors, including the size and topology of the network and
the specific manner in which systematic network coding is

implemented. Our future work will more thoroughly explore
these issues.
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