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Abstract We use an analytical model for the post-injection spreading of a plume of
CO2 in a saline aquifer under the action of buoyancy and capillary trapping to show
that the spreading behavior is at all times strongly influenced by the shape of the
plume at the end of the injection period. We solve the spreading equation numeri-
cally and confirm that, at late times, the volume of mobile CO2 is given by existing
asymptotic analytical solutions. The key parameters governing plume spreading are
the mobility ratio,M, and the capillary trapping number, —the former sets the shape
of the plume at the end of the injection period, and the latter sets the amount of trap-
ping. As a quantitative measure of the dependence of the spreading behavior on the
initial shape, we use a volume ratio. That is, we evolve the plume from a true end-of-
injection initial shape and also from an idealized “step” initial shape, and we take the
ratio of these mobile plume volumes in the asymptotic regime. We find that this vol-
ume ratio is a power-law inM, where the exponent is governed exclusively by . For
conditions that are representative of geologic CO2 sequestration, the ratio of mobile
volumes between “true” and “step” initial plume shapes can be 50% or higher.

Keywords porous media flow · CO2 sequestration · capillary trapping · residual
trapping · gravity current · similarity solution

1 Introduction

Storage of carbon dioxide in geological formations is widely regarded as a promising
tool for reducing global atmospheric CO2 emissions (see, e.g., [1–5]). To evaluate
reservoir fill and assess leakage risks, an accurate understanding of the subsurface
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spreading and migration of the plume of mobile CO2 during and after injection, in-
cluding its shape, size, and extent, is essential.

1.1 Saline Aquifers and Trapping Mechanisms

Among the geological formations well-suited for use as storage sites are deep saline
aquifers (see, e.g., [1,4,5]). The properties of the CO2 vary with the temperature
and pressure at depth—typically, CO2 is less dense and much less viscous than the
resident groundwater, and will migrate upward due to buoyancy and spread along the
top boundary of the aquifer during and after injection. When upward migration of
mobile CO2 is blocked by an impermeable layer, it is said to be structurally trapped
[5]. Structural trapping is effective but unreliable, as the CO2 remains mobile—a
pre-existing well or the activation of a fault could lead to leakage into shallower
formations.

However, it is well-known that some amount of CO2 will be trapped in the pore
space of the aquifer rock at the trailing edge of the plume as it migrates and spreads
[5–8]. This phenomenon, known as capillary trapping, occurs in flow through a porous
medium as a non-wetting fluid (here, CO2) is displaced by a wetting one (here,
groundwater) from the pore space of the rock (i.e., during imbibition). Capillary trap-
ping is an ideal mechanism for the geological storage of CO2 because the trapped gas
is immobile and distributed over a large area, greatly decreasing the risk of leakage
and enhancing the effectiveness of chemical trappingmechanisms such as dissolution
and mineral deposition, which act on a much longer timescale [6,7]. The fraction of
pore space occupied by trapped or residual CO2 after the bulk is displaced is known
as the residual gas saturation, Sgr; similarly, some fraction of pore space may be oc-
cupied by immobile groundwater, and this fraction is known as the connate water
saturation, Swc

1.2 Previous Work

The injection of mobile, buoyant CO2 into a saline aquifer and its subsequent migra-
tion falls into the broad class of fluid-mechanics problems known as viscous gravity
currents, wherein a finite amount or flux of one fluid is released into a second, ambi-
ent fluid. The introduced fluid having a different density than the ambient fluid, the
flow is governed by the balance of buoyancy and viscous dissipation.

Several cases of a fluid being released or injected into a less dense ambient fluid
on a flat surface were considered by Huppert [9] for both planar and axisymmet-
ric geometries; see references therein for earlier work on gravity currents. Baren-
blatt [10] considered a similar problem, the slumping of an axisymmetric “mound”
of groundwater in a porous medium filled with a less-dense, less-viscous ambient
fluid. Flow in a porous medium introduces several additional complications over un-
constrained flow—of primary interest here is capillary trapping, which causes the
volume of the mound to decrease as it slumps. Capillary trapping is not included in
[10], but Kochina et al. [11] solve the same problem including capillary trapping;
Barenblatt [12] describes both solutions.
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In geological CO2 storage in a saline aquifer, the introduced fluid—CO2—is less
dense and much less viscous than the ambient fluid—brine—and it spreads along
the top boundary of the domain rather than slumping along the bottom boundary.
Similar systems have been considered by Dussan and Auzerais [13] and by Huppert
and Woods [14], although neither considers capillary trapping.

On the specific topic of the geological storage of CO2 in a saline aquifer, much
work has been done quite recently. Numerical studies include [6–8,15], among many
others. Here, however, we are interested in the effect of the shape of the plume at
the end of the injection period on the plume evolution over long times, in the period
when the plume becomes very thin and widespread—this type of study is difficult
with a typical numerical simulator, but is a particular strength of theoretical models,
so these will be our focus here.

Nordbotten et al. [16] develop a model for the shape of the CO 2 plume during
radially outward injection, giving an analytical solution for the case when advective
viscous effects dominate diffusive buoyancy effects, which is often the case during
the injection period; they demonstrate favorable comparison of their results with nu-
merical simulations. Nordbotten and Celia [17] show a different development of the
model for the injection period, giving again the analytical solution for advection-
dominated flow; they then include some dissolution effects with very good agreement
between analytical and numerical results. The flow of CO2 during injection is purely
outward when buoyancy is neglected, so capillary trapping does not play a role in
their studies.

Hesse et al. [18] consider the post-injection spreading and migration of a pla-
nar plume of CO2, developing a model for the plume shape both without and with
capillary trapping that also includes a sloping caprock, along which the plume will
migrate; they develop scaling laws for the plume volume, maximum thickness, and
overall extent for a horizontal aquifer that agree well with numerical solutions, and
comment on the sloping-aquifer case. Hesse et al. [19] give early- and late-time simi-
larity solutions for spreading in a horizontal aquifer without trapping.Hesse et al. [20]
introduce capillary trapping to this problem, showing that the early-time spreading is
self-similar in the planar geometry; they also comment on and give scalings for the
late-time spreading behavior, and further develop a solution for the case when the
aquifer is not horizontal and up-slope migration dominates buoyant spreading.

In geological CO2 storage, the initial condition for post-injection spreading and
migration is the shape of the plume at the end of the injection period. The post-
injection upward spreading of the plume against the caprock has a diffusive mathe-
matical character in all of the models discussed above, and it is well-known that diffu-
sive models typically “lose information” about initial conditions over time [12]; it is
then commonly argued that the initial shape of the plume for post-injection spreading
is unimportant, because the time scales of interest are long and the spreading be-
havior eventually becomes independent of the details of the initial shape. This is the
case when capillary trapping is not considered, but the inclusion of capillary trapping
causes the plume evolution to depend for all time on the details of the initial shape
[11,12]; Hesse et al. make note of this, but they in all cases take the end-of-injection
plume shape to be a “step”.
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Juanes and MacMinn [21,22] model the planar post-injection migration of a CO 2
plume for the case where advection due to net natural groundwater flow through the
aquifer dominates diffusive spreading due to buoyancy, including the effect of capil-
lary trapping and accounting for the true shape of the plume at the end of injection.
Their results demonstrate that the end-of-injection shape plays a strong role in deter-
mining the overall plume footprint.

Here, we study the post-injection spreading of an axisymmetric plume of CO 2
in a horizontal aquifer under the action of buoyancy and capillary trapping, with no
groundwater through-flow, and we show that the particular end-of-injection plume
shape has a strong influence on the spreading behavior at all times.

2 Theoretical Model for CO2 Spreading

We briefly outline the derivation of the spreading equation, following [18,20]. We
take the aquifer to be homogeneous, isotropic, and horizontal, andwith no net ground-
water through-flow.We take the fluids to be incompressible and Newtonian, with con-
stant and uniform properties—this does not require that variation in fluid properties
with temperature and pressure be completely neglected, but rather that variations of
these properties within the aquifer are neglected.

We employ a sharp-interface approximation, neglecting the width of typical gra-
dients in saturation (i.e., the capillary transition zone or “fringe”) compared to typical
length scales in the horizontal and vertical directions, and we further neglect the cap-
illary pressure compared to typical hydrostatic and viscous pressure drops; see, e.g.,
[23,24].

We make the Dupuit or “vertical equilibrium” approximation and neglect the ver-
tical flow velocity compared to the horizontal flow velocity. This approximation is
justified when the characteristic vertical length scale is much smaller than the charac-
teristic horizontal one, H/Rc " 1. This is generally the case for aquifers, which are
typically very thin compared to their horizontal dimensions; see again, [23,24].

In accordance with the sharp-interface approximation, we divide the domain into
three regions, each of uniform CO2 and groundwater saturation and with discontinu-
ous saturations across region-region boundaries. As illustrated in Figure 1, region 1
contains mobile CO2 with a saturation Swc of connate groundwater, region 2 contains
mobile groundwater with a saturation Sgr of trapped CO2, and region 3 contains mo-
bile groundwater with no CO2. The aquifer has a total thickness H, and the thickness
of region i, i = 1,2,3, at a radial position r and time t is denoted h i(r,t), where r is
measured from the axis of symmetry of the plume. Gravity acts downward.

Under these assumptions, we can write the Darcy velocity for each phase in each
region and relate them through conservation of mass, accounting carefully for the
residual fluid that crosses each interface [18,20]. We write the resulting spreading
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Fig. 1 The domain is divided into three regions of uniform CO2 and groundwater saturation separated by
sharp interfaces corresponding to saturation discontinuities. Region 1 (white) has a saturation 1− Swc of
mobile CO2 with a saturation Swc of connate groundwater; region 2 (blue with gray exes) has a saturation
Sgr of trapped CO2 and a saturation 1− Sgr of mobile groundwater; region 3 (blue) contains only mobile
groundwater. The plume is axially symmetric, where the vertical dashed black line indicates the axis of
symmetry and coincides with the injection well. The profile of the plume at an earlier time is also shown,
outlined in dashed gray.

equation,

R̃
h1
t
− 1

r r

(
r[1− f (h1,h2,h3)]h1

h1
r

)
= 0, (1a)

R̃=






1 if h1/ t > 0,

1− if h1/ t < 0,
(1b)

=
gk 1

(1−Swc)
, (1c)

f (h1,h2,h3) = 1h1
1h1+ 2h2+ 3h3

, (1d)

h1
t

=






− h3
t

if h1/ t > 0 and h2 = 0,

− h2
t

otherwise,

(1e)

where = w− g is the density difference between the groundwater and the CO2,
g is the force per unit mass due to gravity, and k and are the intrinsic permeability
and porosity of the aquifer, respectively. The discontinuous accumulation coefficient
R̃ takes different values for drainage (h1 increasing) and imbibition (h1 decreasing),
capturing the loss of volume due to capillary trapping—the relationship Eq. (1e) sim-
ilarly reflects the difference between imbibition, when CO2 is trapped, and drainage,
when it is not. The parameter = Sgr/(1− Swc) is the capillary trapping number,
which measures the fraction of CO2 that is left behind at the imbibition front and
takes a constant value between zero (no trapping) and one. i = kri/µi is the mo-
bility of the mobile phase in region i, i = 1,2,3, where k ri and µi are the relative
permeability to that phase and the viscosity of that phase, respectively.

We expect the relative permeability to groundwater in region 2 to be less than
that in region 3 because of the presence of the trapped gas there. In order to make
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analytical progress, however, we explicitly neglect this effect and assume that 2 =
3. This simplifies Eq. (1) substantially because the distinction between regions 2 and
3 no longer has physical significance, and the nonlinear function f (h 1,h2,h3) can be
rewritten as a function of h1 only,

f (h1) = 1h1
1h1+ 3(H−h1)

. (2)

With Eq. (2), Eq. (1) agrees with the spreading equation of [18,20], but here for an
axisymmetric plume. We write Eq. (1) in dimensionless form,

R̃ − 1
(

[1− f ( )]
)

= 0, (3a)

R̃=






1 if / > 0,

1− if / < 0,
(3b)

f ( ) =
M

M +(1− )
, (3c)

where = h1/H, = t/Tc, = r/Rc, and M = 1/ 3 is the mobility ratio. We
choose the characteristic time Tc to be equal to the diffusive timescale Tc = R2c/(H ),
and we choose the characteristic length scale Rc to be the radius R0 of a cylinder
of volume V0/ (1− Swc) and height H, where V0 is the volume of the plume at
the end of injection, Rc = R0 =

√
V0/( H (1−Swc)). Equation (3) takes only two

parameters,M and . The parameter does not appear explicitly—it influences only
the characteristic timescale.

We seek continuous solutions ( , ) to Eq. (3) with continuous flux [1− f ( )] ,
for some axially symmetric initial shape ( , = 0) = 0( ).

2.1 The Shape of the Plume at the End of Injection

The shape of the plume at the end of the injection period serves as the initial condition
for the post-injection spreading problem. Nordbotten et al. [17] provide an explicit
analytical solution for the plume shape during the injection period, valid when gravity
is negligible relative to the flow induced by injection. By comparing this negligible-
gravity solution to a numerical solution for the full injection model, Nordbotten et al.
find that this assumption is valid when,

2 gk 1H
Qi/H

"M, (4)

where Qi is the volumetric rate of injection.
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The end-of-injection plume shape from this solution, which we denote 0, is
given by

0( ) =






1 if 0≤ ≤ 1/
√
M,

(
1

M−1

)(√
M −1

)
if 1/

√
M < <

√
M,

0 if ≥
√
M,

(5)

forM > 1. ForM = 1, the solution degenerates to a “step” or cylinder:

0( ) =






1 if 0≤ ≤ 1,

0 if ≥ 1.
(6)

We plot these end-of-injection plume shapes in Figure 2.

Fig. 2 The shape of the CO2 plume at the end of injection is plotted here for several mobility ratios—the
plume shape is calculated from Eq. (6) for M = 1 (dashed line), and from Eq. (5) for M = 3, 10, and 30
(solid lines). The plume is axisymmetric about = 0, which corresponds to the injection well. The plume
volume is the same in all cases—note that the so-called “tonguing” of the profile increases dramatically as
M increases.

3 Asymptotic Analytical Solutions to the Spreading Equation

Barenblatt [12] describes the solution to a slumping problem, wherein the slumping
fluid is water and the ambient fluid is a gas—in this case, the density and viscosity of



8

the ambient fluid are neglected, and the governing equation is of the form

R̃
h1
t
− 1

r r

(
rh1

h1
r

)
= 0, (7)

where the coefficient R̃ is conditional as in Eq. (1). The two equations agree exactly
in the limit f " 1, corresponding to h1 " H/M. This is a reasonable assumption
from the outset in Barenblatt’s slumping problem, where the mobility of the slump-
ing fluid is taken to be much smaller than the mobility of the ambient fluid, M" 1,
and where the domain is taken to be unbounded in the vertical direction, h 1 " H.
This is generally not justified in geological CO2 storage, where the mobility of the
CO2 is typically much larger than that of the ambient groundwater,M' 1, and the
plume initially fills the entire thickness of the aquifer; however, the spreading prob-
lem does eventually reach the same limit as the plume becomes very thin, which can
be considered a “late-time” regime.

Equation (3) does not have a known analytical solution, and must be solved nu-
merically. As the plume becomes very thin, however, we expect the numerical so-
lutions to Eq. (3) to converge asymptotically to the analytical solutions to Eq. (7).
Next, we recall the analytical solutions to Eq. (7) provided by [11,12]. These help us
validate the numerical solutions and provide physical insight into the late-time plume
evolution.

3.1 Asymptotic Solution for Spreading without Trapping

When capillary trapping is not considered, the coefficient R̃ in Eq. (7) takes the con-
stant value 1 and [12] shows that the equation is satisfied by a similarity solution.

First, we observe that the plume thickness h1 may be a function of time, space,
the parameter , the aquifer thickness, and the end-of-injection shape of the plume,
which can be fully characterized byM and two of the three parametersH, R 0, andV0.
We therefore write

h1 = h1(r,t,M,V̂0,R0), (8)

where V̂0 = V0/ (1−Swc) is the volume of porous medium filled by the initial fluid
volume V0. Dimensional analysis then reveals that the problem can be expressed in
terms of the four dimensionless groups,

1 = h1
(

t
V̂0

)1/2
, 2 = r

(
1

V̂0 t

)1/4
, 3 = R0

(
1

V̂0 t

)1/4
, 4 =M , (9)

such that the solution takes the form 1 = F( 2, 3) with parameter 4. Since 3
shrinks as time increases, the asymptotic solution can be expressed as 1 = F( 2)
in the limit 3 → 0. Because the details of the end-of-injection plume shape are
contained in 3 and 4, the solution is valid asymptotically for an arbitrary end-of-
injection shape. Proceeding with the mechanics of the similarity solution, the result
is

1 = F( 2) = F0−
1
8

2
2 , (10)
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where the constant F0 is determined by requiring that the volume of the plume be
conserved, a condition that can be applied analytically in this case. The result [12] in
dimensionless form is,

( , ) =
(
1
)1/2[1

2
− 1
8

2
(
1
)1/2]

, (11)

valid for , ≥ 0. This solution is entirely independent of the initial plume shape.
Equation (11) is a solution to Eq. (7), valid asymptotically for an arbitrary initial

plume shape of volumeV0 in the limit as 3→ 0, i.e., for ( )1/4 ' 1. Similarly, we
expect Eq. (11) to be a solution to Eq. (3), valid asymptotically for 3→ 0 and f " 1,
i.e., for ( )1/4 ' 1 and " 1/M, respectively. We use the maximum plume thick-
ness (the thickness at the axis) from Eq. (11) to estimate the time at which the latter
criterion is satisfied, and we find that " 1/M when 2 1/2'M; this estimate serves
as a lower bound on the range of validity of Eq. (11) as a solution to Eq. (3) without
trapping, because f slows the plume evolution while it is non-negligible compared
to 1. In general, we can then expect solutions for larger values ofM to take longer to
converge to this asymptotic behavior.

3.2 Asymptotic Solution for Spreading with Trapping

When capillary trapping is included, the coefficient R̃ becomes discontinuous and the
method from Section 3.1 can no longer produce a smooth solution. Barenblatt [12]
shows that this is because the assumption that the plume evolution becomes indepen-
dent of 3 as 3 → 0 is no longer valid, i.e., the plume evolution never becomes
independent of the initial shape. Equation (7) is instead satisfied by a similarity solu-
tion of the second kind.

The capillary trapping number, which now enters the problem through R̃, forms
a fifth dimensionless group, 5 = . The fact that a physical solution of the form
1 = F( 2) does not exist as 3 → 0 implies that the solution does not become

independent of 3 in this limit, and the solution is assumed to be of the form

1

3
= F1

(
= 2

3

)
, (12)

where the exponents and cannot be determined through dimensional analysis
alone, and must instead be determined in the course of the solution—a hallmark of
such similarity solutions of the second kind. The result [11,12] in dimensionless form
is,

( , ) =
(

B̂2
1−2

)
F1

(
=
B̂

)
, (13)

where the constant B̂ remains unknown and the function F1( ) results from the nu-
merical solution of a system of second-order ordinary differential equations. The con-
stant is an eigenvalue of the solution—for any given value of , there exists only
one particular value of for which the function F1( ) can satisfy the appropriate
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Fig. 3 The eigenvalue in Eq. (13) plotted against the capillary trapping number . For each value of
, there is a single value of for which a solution F1( ) exists. Note that → 1/4 as → 0, at which

point Equations (13) and (11) have the same form—i.e., the asymptotic solution with capillary trapping
converges smoothly to the solution without trapping as the amount of trapping goes to zero.

boundary conditions. We plot against in Figure 3. See [11,12,25] for a more
detailed description.

As in the no-trapping case, the final constant in Eq. (13), B̂, is set by a condi-
tion on the volume of the plume. The analytical solution is an asymptotic description
of the plume evolution, and there is some “early” period during which the asymp-
totic solution clearly does not apply. Because of this, we must in some way match the
asymptotic solution with the general solution as the general solution converges to this
asymptotic behavior. Without capillary trapping, we simply require that the volume
of the plume in the asymptotic regime be equal to the initial volume of the plume.
With capillary trapping, the volume of the plume is no longer conserved; it will in-
stead decrease by some unknown amount as CO2 is trapped in the plume’s wake
during the transitional period. To determine how much plume volume is lost during
the transitional period and fix the value of the constant B̂, then, we solve Eq. (3) nu-
merically until the plume evolution enters the asymptotic regime, and then match the
volume of the plume from the analytical solution with the volume of the plume from
the numerical solution at some arbitrary time in the asymptotic regime. The details
of the initial plume shape then enter the asymptotic solution through B̂.

Integrating Eq. (13) over the domain gives a power-law scaling in time for the
volume of the plume,

V̂ =C 4 −1, (14)

whereC is a constant that depends on B̂ and F1( ), and therefore on the initial plume
shape and the amount of capillary trapping. Because it is only the constant C that
depends on the initial plume shape, the plume evolution for any initial shape will
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converge to a power-law with exponent 4 − 1 that is smaller (more negative) for
larger , i.e., the plume volume will shrink faster for larger . However, the actual
value of the plume volume at any time in the asymptotic regime will depend strongly
on the value ofC, and therefore on the details of the initial shape.

4 Impact of the Initial Plume Shape

To study the effect of the initial plume shape on the long-term plume evolution, we
solve Eq. (3) numerically using a finite-volume method. In the limit as the plume be-
comes thin, these numerical solutions converge to the asymptotic analytical behavior
described in Section 3.

We evolve the plume from two different initial shapes for several values of M,
and for several values of at each M. For the two initial shapes, we use the end-
of-injection shape from Eq. (5) for the appropriate value of M, and also the end-
of-injection shape from Eq. (6), the latter being equivalent to taking M = 1 during
injection—we refer to these in what follows as the “true” and “step” initial shapes,
respectively.

Without capillary trapping (i.e., = 0), we expect the solution for any arbitrary
initial plume shape of volumeV0 to converge to the asymptotic solution as the plume
becomes thin. We illustrate this in Figure 4, in which we plot the time evolution of the
thickness of the CO2 plume at its axis forM= 20 for both the “true” and “step” initial
shapes. Figure 4 shows that the plume evolution converges to the same asymptotic
solution for both initial shapes as the plume becomes thin. Behavior for other values
of M is qualitatively similar, but both the gap that initially exists between the two
numerical solutions and the time it takes for the numerical solutions to converge to
the asymptotic solution increase with M. The reason for the former is that the “true”
and “step” initial plume shapes are increasingly different asM increases, as illustrated
in Figure 2; the reason for the latter is that it takes longer to reach the limit " 1/M
for larger M. Figure 4 also serves as a qualitative demonstration that the numerical
solution provides sufficiently accurate results over long times.

With capillary trapping, the asymptotic behavior is not independent of the initial
plume shape because the amount of CO2 that is trapped depends on the details of
the initial shape. In Figure 5, we plot the time evolution of the volume of the CO 2
plume for = 0.5 andM = 20 for the “true” and “step” initial shapes. The volume of
the plume converges to an asymptotic power-law with the same rate of decay in both
cases, but there is a gap between the curves because substantially different amounts
of CO2 are trapped during the transition from the initial shape toward the asymptotic
behavior. Behavior for other values of andM is qualitatively similar. As for the no-
trapping case, the gap that initially exists between the two numerical solutions and the
time it takes for the numerical solutions to converge to the asymptotic solution both
increase with M. Unlike the no-trapping case, however, this initial gap between the
two numerical solutions never closes—the two solutions are separated for all time.

The qualitative reason for this behavior is shown in Figure 6, in which we plot the
plume shape at several times for the “true” and “step” initial shapes, and we compare
the envelopes of the region containing trapped CO2 for the two cases. The difference
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η
∣ ∣ ξ

=
0

τ

Fig. 4 Time-evolution of the thickness of the CO2 plume at its axis of symmetry ( = 0) without capillary
trapping ( = 0) for M = 20. Numerical solutions to the Eq. (3) (solid black lines) are shown starting
from the “true” initial shape for M = 20 (upward-pointing triangle markers) and the “step” initial shape
(downward-pointing triangle markers); the asymptotic analytical solution from Eq. (11) is also shown
(dashed blue line).

in initial shapes translates directly to substantially different amounts of trapping as
the plume evolves, even for relatively early times.

We have shown that evolving the plume from a “step” initial shape instead of the
“true” initial shape under-predicts the plume volume at later times because it over-
predicts the amount of trapping that occurs at earlier times. We now evaluate the
magnitude of this effect. Because the rate of decay in the asymptotic regime depends
only on , the ratio of the volumes at any time in the asymptotic regime for any
two initial shapes is constant—this is clear from Eq. (14). We therefore calculate
the ratio of the volume of the plume, V1, at some time in the asymptotic regime for
the “step” initial condition to the volume of the plume, VM, at the same time for
the “true” initial condition, and we plot this ratio against M for several values of
(Figure 7). This ratio is equal to 1 for M = 1, i.e., when the “step” and “true” initial
shapes are the same, and decreases with increasingM as the two initial shapes become
increasingly different and the “step” initial shape under-predicts the plume volume at
late times (over-predicts the trapping at early times) by an increasingly large amount.
The volume ratio also decreases as increases because this increases the amount of
trapping at all times. In fact, the volume ratio V1/VM displays a perfect power-law
behavior inM:

V1
VM

=CM−s, (15)



13

V
/ V

0

τ

Fig. 5 Time-evolution of the volume of the CO2 plume with capillary trapping, for = 0.5 and M = 20.
Numerical solutions to Eq. (3) (solid black lines) and asymptotic analytical solutions from Eq. (13) (dashed
blue lines) are shown starting from the “true” initial shape for M = 20 (upward-pointing triangle markers)
and the “step” initial shape (downward-pointing triangle markers). Volume is normalized by the initial
volume. The solutions for the two different initial shapes no longer converge to the same asymptotic
power-law—the rate of decay is the same in both cases, but there is a gap between the curves because
substantially different amounts of CO2 are trapped as the plume transitions from the different initial shapes
to the asymptotic behavior.

where the exponent s is a function of the capillary trapping number. The “step” initial
shape under-predicts the volume of the plume by a factor of two or more for even
moderateM and .

5 Conclusions

We have shown that the post-injection spreading of the CO2 plume under the action
of buoyancy and capillary trapping is strongly influenced by the shape of the plume
at the end of the injection period. The key parameters in the asymptotic spreading
behavior are the mobility ratio,M, and the capillary trapping number, . The former
sets the end-of-injection shape of the plume, and the latter sets the amount of trapping
and therefore the strength of dependence on the end-of-injection plume shape, and
also the rate of decay in the asymptotic power-law regime.

These results indicate that models for subsurface CO2 spreading and migration
should account for the true end-of-injection plume shape in order to predict the thick-
ness, volume, or footprint of the mobile plume over time.
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Fig. 6 The shape of the CO2 plume (solid black lines) at several times during post-injection spreading for
M = 20 and = 0.5, starting from (a) a “true” initial shape and (b) a “step” initial shape; the envelopes
of the region containing trapped gas at = 500 are also shown (dashed red lines). These two initial shapes
are plotted together in (c) with the volume between them shaded in grey—the plume will retreat from this
area as it evolves from the “step” initial profile, leaving trapped gas behind. The envelopes of the region
containing trapped gas at = 500 for the “true” and “step” initial shapes are shown in (d) (dashed red
lines) overlaid on the grey region from (c). It is clear from (c) and (d) that the difference in initial shapes
translates directly to substantially different amounts of trapping as the plume evolves.
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