
Robot Search and Rescue

A Comparison of 3D Mapping Techniques

by

Maria Guirguis

S.B., E.E.C.S., M.I.T., 2009

Submitted to the Department of Electrical Engineering and Computer Science

In Partial Ful�llment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Massachusetts Institute of Technology

May 2010

Copyright 2010 Maria Guirguis. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole and in part in any medium
now known or hereafter created.

Author

Department of Electrical Engineering and Computer Science
May 21, 2010

Certi�ed by

Cynthia Breazeal, Associate Professor of Media Arts and Sciences
Thesis Supervisor

Certi�ed by

Philipp Robbel, PhD candidate
Thesis Co-Supervisor

Accepted by

Dr. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

1

Robot Search and Rescue
A Comparison of 3D Mapping Techniques

by
Maria Guirguis

egyptoz@mit.edu

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In Partial Ful�llment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Modern robots are involved in sophisticated manipulations of their environment,

and for that they need extensive knowledge of their surroundings. 3D mapping

allows for the creation of such complex maps, and here we explore some of the

options available for the creation of 3D maps. We consider using 2D and 3D sensors

to see how helpful the extra information is.

Supervisors:

Cynthia Breazeal, Associate Professor of Media Arts and Sciences
Philipp Robbel, PhD candidate
MIT Media Lab
Personal Robots Group

2

Contents

1 Introduction 4

2 Project Background 4

3 Previous Work 5

3.1 2D SLAM . 7
3.2 3D Sensors . 9
3.3 6D SLAM . 11

3.3.1 Scan Registration . 12
3.3.2 Calculating Closest Points . 14

4 Methods 15

4.1 Mapping with GMapping . 17
4.2 Mapping with SLAM6D . 18
4.3 Map Evaluation . 19

5 Discussion 20

5.1 GMapping 3D Map . 20
5.2 SLAM6D Map . 21
5.3 Comparison . 23

6 Conslusion 24

List of Figures

1 Hokuyo laser scanner. 10
2 The SwissRanger 3000 Camera along with an intensity image and a range

image. Note the grainy quality of these snapshots. 11
3 ICP match is very close to the ground truth 12
4 Screenshot of the MDS robot in the USARSim Environment. 16
5 Top view of the groundtruth map overlaid with path followed. 17
6 RMS Error. 20
7 Maps Created. 21
8 The top view of the point-cloud rendering of the map from our run. 8a is

the map before applying loop closing, and 8b is after. 22

3

1 Introduction

Urban Search and Rescue has been a topic of much interest in recent years, and there is a

lot of active research in applying robotics in that area. Robots are supplied with various

types of sensors to aid the exploration of their surrounding, and are utilized for data

collection and map creation in areas that are too dangerous or otherwise inaccessible to

humans. A decision is made as to which sensors are useful and how they can be combined

to maximize the information gathered, and the robot can be set free to roam. Because

real sensors generally have errors, it is usually good to combine inputs from multiple ones

so the error can be checked and minimized.

This task is becoming easier as the technology used in robot sensors advances, making

it easier for robots to learn about and interact with their environment robustly. In order

to make decisions in realtime, the processing of the collected data needs to happen quickly

and e�ciently to make the most use of that information. By using combinations of faster

and more e�cient sensors, we can make robots a viable choice as helpers in search and

rescue operations. The task is now to make the robots as autonomous and self-reliant as

possible in carrying out their operations.

2 Project Background

This project is part of a larger project dealing with team-based robotic search and rescue.

The goal is to be able to send in a team of ground and aerial robots that coordinate

amongst them the tasks of searching for people and leading them to safety. The ground

robot used is the Mobile, Dextrous, Social (MDS) Robot, which is equipped with a Hokuyo

laser scanner, a SwissRanger ToF camera, and stereo cameras. The goal of my exploration

is to compare two di�erent approaches to 3D map creation- one which creates a map using

4

2D-based localization (x,y, heading, along with readings from the laser scanner), and one

which utilizes the full 6 dimensions (x, y, z, yaw, pitch, roll, together with 3D range

readings) for localization and mapping. Both approaches plot the same set of 3D data

but each has a di�erent way of localizing the robot to �t that data into a map. The

exploration is carried out using the Urban Search and Rescue Simulator (USARSim),

where a model of the robot and all its sensors has been deployed for data collection and

testing.

3 Previous Work

The idea of mapping is as old as humanity. Maps help humans navigate the world and

�nd things easily. Creating maps, however, is a very di�cult task if done manually, and it

needs exact measurements. Once robots could move around, it was the logical next step to

supply them with distance sensors and employ the data thus collected for map creation.

Accordingly, mapping has been a very active and central area in robotics research for

years. 2D mapping has been extensively studied, but 3D mapping has not been pursued

as assiduously. This is due to its being a much more complicated problem, as the increase

in dimension introduces new degrees of freedom in the movement of the robot, which

makes it more di�cult to maintain an accurate location estimate.

Simultaneous Localization and Mapping, is a class of algorithms used to automatically

create maps using mobile robots. It involves alternating the tasks of localization and

mapping, calculating location on a map based on an internal belief of location and inputs

form a displacement sensor, then re-evaluating the location based on the measured map

and sensor inputs, until a map of the desired area is created. Usually SLAM is done

with 2-dimensional distance sensors that provide readings referring to locations of nearest

obstacles along a slice of the world. 2D sensors have been studied profusely in the context

5

of SLAM, and many excellent techniques exist for coming up with very good planar

maps. This is due to the ability to acquire very high quality information from relatively

inexpensive sensors.

Those algorithms, however, assume that the robot is traveling on �at ground and that

all the readings are coplanar, that the map being created is a horizontal slice through the

world. This assumption doesn't hold for search and rescue situations in disaster areas, as

there is debris and rubble that could cause the robot's movements to not be �at, a�ecting

the sensor's data. Also, the presence of this debris makes it more di�cult to accurately

estimate the robot location because it can cause incorrect estimates of the movement due

to the more probable slippage of the wheels. Additionally, it is useful to have information

about the wall for the entire height of the room- where a door ends, for example, or

whether there are windows- that cannot be gathered from a horizontal slice of the room.

For that, it is more helpful to create and use a 3D map. The goal is to create reliable global

maps quickly (online, without stopping the robot). This provides for more details that

can be exploited by people using the maps. This has become more feasible in recent years

due to the availability of high-quality 3-Dimensional distance sensors. Unfortunately, the

high quality comes at a price:

• Those sensors are generally much more expensive than their counterparts used in

planar mapping.

• Due to the high volume of data collected, the frequency of scans is much lower than

for 2D maps, and the robot has to run slower, even stopping when a scan is being

done.

• They tend to produce a larger amount of data due to their nature, which makes it

more di�cult to process.

6

We will start out by discussing some 2D mapping algorithms and how we extend them

to create 3D maps, examples of 3D sensors and a discussion of how they work, as well as

full 6D SLAM algorithms.

3.1 2D SLAM

2-Dimensional maps are what we normally think of as maps- planar line drawings describ-

ing where important geometrical objects or features are in the world. Available sensors

produce point data as a result of using beams to scan the environment, so any mapping

technique will have to start with such data. Some examples of 1 or 2D scanners include

sonar sensors, laser scanners, and IR sensors. As the robot moves, they collect data along

a given slice of the world, at the height where the sensor is a�xed to the robot. One of

many algorithms can be applied to this collected data- online or o�ine- to create a map.

Some approaches to 2D SLAM are scan matching and curve �tting, particle �lters, and

occupancy grids [7].

Scan matching �nds corresponding parts of consecutive scans then attempts to mini-

mize the cumulative or average distance between them. Once two scans are matched, the

transformation from one to the other is calculated and used to improve the localization

estimate. It is important to have a reasonable initial guess for the relative transformation,

as this makes it more likely that the scan matching would give the best match, and that

the optimization algorithm can calculate the best transformation.

Also, probabilistic methods can be applied to the problem of 2D SLAM, as it allows

for more �exibility in localizing the robot. The stochastic model employed depends on

the uncertainty in the robot's movement and sensor measurements, anticipating the errors

and trying to compensate for them in creating good maps. Some probabilistic methods

used include Maximum Likelihood Estimation and Kalman Filters.

7

Occupancy grid mapping is based on a probabilistic approach. It creates a grid for the

world, and �lls each square with the likelihood of that square being empty of obstacles.

That likelihood is continuously re-evaluated based on sensor input from odometry and

distance scanners.

The last SLAM method we discuss is particle �lters, which is employed in the 2D

localization algorithm, GMapping [4]. This algorithm maintains multiple "particles" that

are associated with di�erent possible states of the world (maps and robot location). At

each step, we sample from a distribution of possible next locations given the measured

odometry displacement, then narrow down the sampled possibilities using the input from

the scanner and its associated distribution. This algorithm is good, but could easily lose

the "correct" particle during the resampling step and not be able to �nd its way back to

the correct map.

Grisetti, Stachniss and Burgard use Rao-Blackwellized particle �lters to create a robust

sampling method featuring a highly accurate distribution for generating potential particles

(proposal distribution) and adaptive resampling of the particles to reduce the risk of

particle depletion. The initial proposal distribution at a given time step is based on

the previous particle distribution, with sampling based on the probabilistic model of the

odometry estimate, and scan matching to give more weight to the more likely particles

based on the range scanner input.

Rao- Blackwellized particle �lter for SLAM is used to estimate the joint posterior

p(x1:t,m|z1:t, u1:t−1) about the map m and the entire trajectory x1:t = x1, . . . , xt of the

robot. This estimation is performed given the observations z1:t = z1, . . . , zt and the

odometry measurements u1:t−1 = u1, . . . , ut−1 obtained by the mobile robot. The Rao-

Blackwellized particle �lter for SLAM makes use of the following factorization

p(x1:t,m|z1:t, u1:t−1) = p(m|x1:t, z1:t) · p(x1:t|z1:t, u1:t−1) (1)

8

which assumes the independence of the two factors. This factorization allows us to

�rst estimate only the trajectory of the robot and then to compute the map given that

trajectory. This technique o�ers an e�cient computation and is often referred to as Rao-

Blackwellization. It especially points to the reliance of map creation on the pose estimate.

Typically, Eq. 1 can be calculated e�ciently since the posterior p(m|x1:t, z1:t) over

maps can easily be computed analytically using x1:t and z1:t, which are known.

To estimate the posterior p(x1:t|z1:t, u1:t−1) over the potential trajectories, a particle

�lter can be used. Each particle represents a potential trajectory of the robot and a map

that is associated with that trajectory. The maps are built from the observations and the

trajectory represented by the corresponding particle. This guarantees that the generated

map has very high probability, since all of the poses along the entire robots trajectory are

considered in its creation.

This approach takes into account the accuracy of the laser range �nder used and

favors locations that are more likely based on the previous observation when creating the

proposal distribution after taking a step, to provide for more accurate and methodical

sampling. If a particular sensor on the robot has very high accuracy, then that sensor's

measurements are exploited to �lter the samples and choose the best particles.

To create a 2D map, the MDS robot uses the Hokuyo laster scanner (Figure 1) to

collect 2D data for localization using Rao-Blackwellized Particels. We later plot 3D point

data collected using the SwissRanger together with the calculated coordinate frame to

create a full 3D map using our 2D range scans.

3.2 3D Sensors

Many sensors can be used for collecting 3D range data. The sensors traditionally used for

collecting 3-Dimensional distance measurements are LADAR scanners, which place a 2D

9

Figure 1: Hokuyo laser scanner.

Laser sensor on a rotating axis to expand the distance measurements into 3D. The robot

needs to be stationary for the entire time of the scan, making it a very slow process, and

the con�guration of the scanner gravely a�ects the quality of the data.

Other means of collecting 3D range data include CCD array cameras, which can cal-

culate distances using stereo vision or patterned �ashes that assign each point a unique

grey code for ID that can easily be read, and triangulation-based camera-beam systems

that calculate the distance to the object based on a geometric formula using the relative

location of the camera, beam origin, and beam endpoint in the environment.

The simplest 3D range scanners, however, are Time of Flight cameras, which send out

several beams and collect them, calculating the distance based on time delay or phase

shift. An example of ToF, phase shift camera is the SwissRanger 3000 which we use for this

exploration. The SwissRanger is a cheap, high frequency, low resolution 3D sensor. This

very small camera, shown in Figure 2 below, generates measurements with a resolution of

176×144 pixels at 20 fps, making it very fast but very low resolution compared with other

sensors used in machine vision (which can give up to 1000× 1000 points per scan). The

Field of View of this camera is 47.5o × 39.6o, which is much narrower than laser scanners

10

(a) SwissRanger (b) Intensity Reading from Swiss-
Ranger

(c) Distance Reading from SwissRanger

Figure 2: The SwissRanger 3000 Camera along with an intensity image and a range image.
Note the grainy quality of these snapshots.

(which scan 180o). Each frame is constructed by sending out a beam of infrared light and

waiting for it to bounce back. Once the beam is recollected, the distance is calculated

using the time and phase shift from the original signal, and the intensity of the returned

signal is calculated from the ratio of returned to initial beams. These two readings, an

example of which is shown in Figure 2, are returned for each measurement. As you can

see, the distance values are in the range [0,7] meters. [2] has a great discussion of various

sensors, including the SwissRanger, along with things to note when using those sensors.

3.3 6D SLAM

Due to the nature of 3D maps which would be attempt to �ll up all of space, grid-based

maps are very computationally expensive to generate, and are generally not considered.

3D maps usually use point clouds or 3D mesh surfaces for calculation and display.

11

3.3.1 Scan Registration

Inherently imprecise sensors provide inexact data, creating the need for registration. Scan

registration is an important step in the generation of 3D maps based on 6D localization,

as it is the process of merging all the collected data into 1 uni�ed coordinate frame. It can

be done by complete scan matching or by feature selection and matching. Feature-based

localization is good to use in support of another SLAM method, but would be lacking if

used by itself. A common technique for scan registration is the Iterative Closest Point

(ICP). It calculates-via an iterative method- a transformation in 3-Dimensional space

which provides the best transformation which matches two data sets. Those data sets can

be 3D world coordinates of walls or other features in the world, collected by any available

means- such as distance sensors and cameras, or any two collections of features whose

distance can be calculated. Because ICP is independent of the representation, we can

use- in addition to 3D points- lines and surfaces, and even CAD meshes [1].

(a) Ground truth data (b) ICP matching, erms= 0.0237

Figure 3: ICP match is very close to the ground truth

The ICP Algorithm was invented by Besl and Mckay [1]. It assumes a model M and

a set of 3D data D, and seeks to �nd the transformation (R, t) such that

E(R, t) =
Nm∑
i=1

Nd∑
j=1

wi,j‖mi − (Rdj + t)‖2 (2)

12

where wi,j is an indicator, equal to 1 if mi = dj and 0 otherwise. This equation shows

we only consider points that are considered near matches to begin with, and all points

that have no potential near matches do not contribute to the error calculation. Due to its

iterative nature, where the error monotonically decreases with every step, ICP guarantees

the minimum error correspondence between the pair of scans, given the maximum number

of iterations and stop conditions.

There are many optimization techniques used for representing the transformation be-

tween two scans for the duration of the iterations. Some examples include:

• Separating the Rotation and translation: �nding the distance between the two

means, removing it, and then �nding the best rotation.

• Using SVD to �nd the rotation matrix by factoring the matrix of the correlation

between M and D.

• Using orthonormal matrices to �nd the rotation matrix.

• Linearizing the displacement by approximating it as helical motion

• Using unit quaternions, an extension into 3D of complex numbers, to calculate the

rotation matrix.

R =


q2
0 + q2

x − q2
y − q2

z 2qxqy − 2q0qz 2qxqz + 2q0qy

2qxqy + 2q0qz q2
0 − q2

x + q2
y − q2

z 2qyqz − 2q0qx

2qxqz − 2q0qy 2qyqz + 2q0qx q2
0 − q2

x − q2
y + q2

z

 (3)

13

where 

q0

qx

qy

qz


=



cos
(
θ
2

)
sin
(
θ
2

)
ax

sin
(
θ
2

)
ay

sin
(
θ
2

)
az


(4)

and θ is the rotation angle around the rotation axis a= (ax, ay, az). Note that saving

the data as a unit quaternion is much more e�cient than the full rotation matrix,

as it only necessitates storing 4 items as opposed to 9.

At the end of a registration step, ICP stops when it has plateaued o�, and so it is

useless to run it again looking for improvements. If the maximum number of iterations,

however, is not enough for convergence (ie. the convergence is very slow), we might see

incomplete registration. The transformation calculated from the registration of a new

scan is applied to the odometry estimate to improve the localization estimate at that

time step.

However e�cient the registration method is, it assumes that it already has pairs of

corresponding points matched up and it tries to minimize the distance between them.

Actually �nding those pairs is a much more extensive job.

3.3.2 Calculating Closest Points

Some methods for speeding up the search for closest points involve breaking up the space

into equally-sized grid cells and starting the search in the cell where the point is, extending

to nearby cells if nothing is found. This presumes a uniform distribution of the data, which

is usually not the case[6].

The one we use here is K-D tree, a type of generalized binary tree. This method divides

the space to buckets, each containing a certain number b of points, separated by axis-

aligned hyperplane decision boundaries for each of K dimensions and D "split dimensions".

14

It is arranged so that the buckets all have approximately the same number of points,

and the search algorithm takes O(KN logN) time at worst. Additionally, randomized

methods, parallelizing, and caching can also be employed to speed up the algorithm, but

the latter comes at the price of more memory usage or increased requirements for the

machine running the algorithm.

Another way to streamline the nearest neighbor search is by decreasing the number

of points we use for the scan matching. This is achieved by subsampling, which can

be done randomly, but produces much better results if the geometry of the surrounding

environment is taken into account and choosing more useful points to keep [3].

It is important to note that it is almost never the case that each single point in

D will �nd a match in M , so trying to force all points to be matched will produce

unsatisfactory results. One might be tempted to use the wi.j's as weights as opposed to

indicator variables, but that has been shown to not produce signi�cantly di�erent results.

In SLAM6D, a threshold value, dmax is used as a maximum point-to-point distance in the

initialization of the closest points calculation. This helps disregard points that are too

distant to begin with and helps improve the match for largely non-overlapping scans.

Finally, as the map is being created sometimes we are met with a scan that matches

one we've seen previously but has been slightly displaced due to the accumulation of error

over time. If such a pair was found, ICP can be used once again to register the new scan,

then the error calculated can be back propagated into pervious scans to make the change

seamless.

4 Methods

The National Institute for Standards and Technology has created life size arenas for testing

robots' ability in Urban Search and Rescue. To simplify algorithm development and robot

15

Figure 4: Screenshot of the MDS robot in the USARSim Environment.

testing, the Urban Search and Rescue Simulator (USARSim) has been developed, which

contains simulations of those arenas for testing simulated versions of the robots in the same

arenas. The simulator is built on top of the Unreal Tournament Video game engine, which

provides accurate 3D graphics as well as a physics engine for modeling body dynamics

and gravity. As you can see in Figure 4, this allows for realistic rendering of robots to

learn about their interaction with the environment and with other robots without actually

using the real robots.

We use USARSim to simulate the MDS robot along with several sensors on board

for the sake of data collection. Our model robot has on board a simulated Hokuyo

scanner and a SwissRanger 3000 ToF camera, with built-in gaussian measurement errors

and con�gurations set to match the real sensors. The robot is run in one of the maps

16

Figure 5: Top view of the groundtruth map overlaid with path followed.

provided with the USARSim, and Figure 5 above shows the groundtruth map with the

path followed overlaid on it. The robot was driven around a loop in a corridor, with some

of the scans reaching into side rooms, but only one or two per room which is not su�cient

to get a more full image of each of the rooms.

The odometry estimate and laser reading were recorded every 0.2s, while the 3D

information was sampled at 1hz. The goal is to explore whether 2D localization is enough

to build a nice 3D map, or is 6D SLAM needed. Note that to enable the use of 2D SLAM,

we necessarily had to have the robot moving on planar ground.

4.1 Mapping with GMapping

GMapping is an implementation of the Rao-Blackwellized particle �lter which was created

by Grisetti, Stachniss and Burgard [4], and which learns 2D maps from odometry together

with the data collected by the Hokuyo laser scanner. It was run online, while the robot

17

is running in simulation, and output the list of poses x1:t = x1, . . . , xt for the trajectory

followed by the robot as calculated using the 2D SLAM algorithm. It also outputs a map,

but we did not utilize the 2D map.

After the run, the trajectory information calculated in GMapping is used to plot the

3D range data collected by the SwissRanger to create a 3D map. No additional processing

of either the trajectory or the range information is done, so this map completely depends

on the 2D SLAM localization estimates.

4.2 Mapping with SLAM6D

To create the 3D map using 6D SLAM, we use the very comprehensive SLAM6D package

developed by Nuechter et al. [5] we use K-D trees to speed up the calculation of closest

point pairs and a dmax = 0.1 to make sure we only consider the relevant points The maxi-

mum number of iterations per registration was set at 50, and the loop closing calculation

using unit quaternions.

Once the pairs of closest points are calculated, the Iterative Closest Point algorithm

is used to register consecutive sets of data into one universal frame using the odometry

as initial estimate of the relative displacement. ICP calculates the appropriate transfor-

mation that allows the robot to calculate its revised pose at each step. Thus the guess

for the robot's world location is employed in the calculation and is revised based on its

outcome. Each run of ICP provides a reasonable registration of the scan into the global

framework, but errors accumulate over time. As the goal is to create a globally-accurate

registration of many readings as the robot moves over time, we use loop detection and

closing, which looks for pairs of non-sequential scans that are physically close and �nds

the best transformations to minimize the error, then unit quaternions are employed to

interpolate the error calculated so as to spread it out over all intervening readings.

18

Table 1: Average and Maximum RMS Error for each of the maps produced

Average RMS Error Max RMS Error
Odometry 0.2286 0.6483
GMapping 0.3561 1.0309
SLAM6D Before Closed Loop 0.7644 2.1031
SLAM6D After Closed Loop 0.5572 1.7434

The SLAM6D algorithm is particularly e�cient in the calculations it does with large

point clouds, and does not create redundant information so as to streamline its execu-

tion, instead only modifying the poses in the trajectory. Thus it avoids extra memory

requirements by only saving the pose of the robot and using the same set of 3D data

4.3 Map Evaluation

For evaluation, we compare the Root Mean Square error of each scan in each of GMapping

and SLAM6D against the saved ground truth values. The RMS error for a given scan s

versus the corresponding one in the groundtruth map g is

erms =

√√√√ 1

N

N∑
i=1

r2
i (5)

where N is the number of points in the scan and r2
i = (xis−xig)2 +(yis−yig)2 +(zis−zig)2

is the Euclidean distance metric for 3D. Figure 6 shows a plot of the RMS error over all

scans for pure odometry, GMapping and 6D SLAM.

To have a more discrete comparison between the various mapping techniques, we also

consider the average and maximum RMS Error for each map as can be seen in table 1.

19

Figure 6: RMS Error.

5 Discussion

Because of the nature of this experiment, we had to limit the environment to a �at ground

so that the 2D SLAM algorithm can work. This run was brief and in a very structured

environment, so the odometry estimate by itself was not bad.

Looking at the produced maps in Figure 7, we can see that both SLAM maps exhibit

large errors due to being badly aligned with the true map.

5.1 GMapping 3D Map

The map produced by GMapping follows very closely the odometry estimates. It is aligned

to the groundtruth map and therefore the error is roughly constant. GMapping provides

a very e�cient way to calculate the map using a 2D grid and Rao-Blackwellized particles

20

(a) Plain Odometry Map (b) GMapping-based Localiza-
tion Map

(c) 6D SLAM ICP Map

(d) Plain Odometry Map top
view

(e) GMapping-based Localiza-
tion Map top view

(f) 6D SLAM ICP Map top
view

Figure 7: Maps Created.

as discussed above. Due to the nature of the particle �lter, we only track the localization

of the best particle at each time step. This best particle may have changed during the

algorithm execution so even though it �nds the highest probability path overall it is not

necessarily the most likely at each time step, as one we see in Figure 7e

We don't see much variance from the odometry due to the fact that the simulation

wasn't run long enough for odometry to deviate much from ground truth.

5.2 SLAM6D Map

Early on in the 6D SLAM run, around scan 10, we see a large jump in the data due to a

quick rotation. This causes the algorithm to lose its bearings for most of the run. A chance

for loop closing is encountered in scan 45, and we see a corresponding dip in the RMS

error when it closes a loop, returning to initial error rate, and achieves a rate lower than

both GMapping and odometry for the 20 steps prior to that point due to interpolation.

21

Figure 8 shows the e�ect of loop closing on the map; the circled part in both sub-images

is where the loop was detected and closed. This shows that loop closing is an important

part of 6D SLAM, particularly because a single incorrect registration skews the remainder

of the readings, as can be seen in 8a.

(a) Before loop closing (b) After loop closing

Figure 8: The top view of the point-cloud rendering of the map from our run. 8a is the
map before applying loop closing, and 8b is after.

Because the simulator renders data more slowly than actual robot, we were forced to

use lower frequency when collecting 3D sensor data, and the results would probably be

better if collected at higher resolution. Additionally, recall that the 3D data was collected

at 1hz, whereas the odometry and laser data at 5hz, and that the SwissRanger can take up

to 20 fps. However, when considering the speed of the 6D SLAM algorithm, which takes

approximately 0.738s to register a pair of scans when using the K-D trees to optimize the

search for closest points, the information from the SwissRanger can't all be used toward

coming up with a better map. Therefore the speed of the robot has to be monitored

and capped so as to collect good information. It does not have to make a complete stop

for each scan, but should not exceed a certain speed to make sure that the scans still

have signi�cant overlap so as to not register scans incorrectly. In order to improve the

resolution or speed, we would need to utilize subsampling techniques for the data, which

are discussed below.

ICP converges to the local minimum, so if the starting point is a good estimate that

22

works well, but it cannot deal with too large of an error (signi�cantly larger than data

precision) unless there is a distinct feature, such as 3D corner or some kind of protrusion,

to help the �t. For now, it is the best way employed in 3D mapping, and is often reinforced

by other checks. ICP is a robust method that is easily applicable and extendible to many

areas, including scan matching for 2D SLAM.

Because ICP is very sensitive to starting conditions, the initial relative displacement

estimate has to be reasonably close to it to come up with a good result. In this case we've

found that odometry reading is a good enough starting point, given the threshold dmax

was set at 0.1.

The resolution used in the simulation is even lower than that of the SwissRanger

(88×73 vs. 176×144), and we've seen that it produced a satisfactory map comparable to

the one from 2D SLAM. Thus the full resolution sensor would likely produce good enough

results for a good map without being too computationally intensive. However, it has to

be carefully con�gured and calibrated to set an integration time and a maximum distance

past which the values are clipped.

5.3 Comparison

The SLAM6D map is a better match, but it's tilted o� center. This is because the reg-

istration mismatch causes all the following scans to be registered in the slightly altered

reference frame, and the loop closing step �t the scans into that altered frame. Accord-

ingly, the frequency of the scans has to be based on the speed of the robot, so as to assure

having overlapping scans to facilitate �nding closest points and the optimal transforma-

tion. On the other hand, the particle �lter approach used for 2D SLAM is more robust

to such errors by continuously resampling the space and giving higher weight by taking

the sensor input into consideration.

23

Both algorithms start o� with the odometry estimates as initial localization estimates,

but even though ICP is guided by odometry, it really deviates. On the other hand, to

nature of GMapping, it follows the odometry readings very closely, whereas ICP has a

better chance of splitting o� as was seen, which in this case was for the worst, but allows

it to disregard incorrect location sensor data and go purely by how well consecutive scans

match one another. Particle �lter places more trust on the sensors, whereas SLAM6D

looks for more general feature similarities.

Looking at the RMS Error values from Table 1, we can see, as expected that odometry

produced the best results. Also, we can see that the loop closing step made a signi�cant

improvement to the RMS Error values of the SLAM6D algorithm. Although comparable,

the Error values for SLAM6D are somewhat larger than those for GMapping.

6 Conslusion

6D SLAM can be improved by increasing the sampling rate- taking 3D scans more fre-

quently. This would make for a more signi�cant amount of overlap between successive

scans to help improve the ICP estimate. Other ways to improve 6D SLAM would be by

subsampling the space and choosing the points more cleverly [3]. Some ways to choose

subsamples cleverly is to include a set representative of the gradient of the data, or that

has very distinctive nth derivatives. If more information is known about the area being

looked at than the distances alone (e.g. more sensors are used), that additional informa-

tion can be taken into consideration. For example, if the color or brightness of a pixel

is known, that can be employed as a metric for �ltering relevant points or aiding in the

distance calculation together with the straightforward Euclidean distance.

We were able to show that 6D SLAM works roughly as well as traditional 2D SLAM

in a �at environment, and more work will be needed to check its accuracy in more general

24

environments.

Some extensions for this exploration to provide more comprehensive testing:

1. Run the robot for some time before collecting any data.. allowing the odometry

estimates to drift.

2. Deploy the experiment in more diverse maps, including non-�at ground, to see the

e�ect of di�ering types of environments and features.

3. Try di�erent resolutions for the 3D scanner, di�erent subsampling techniques for

scan matching, di�erent rates of data collection

References

[1] P. J. Besl and N. D. Mckay, A Method for Registration of 3-D Shapes, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence. 14(2): pp. 239-256, February

1992.

[2] P. Einramhof, S. Olufs, and M. Vincze, Experimental Evaluation of State of

the Art 3D-Sensors for Mobile Robot Navigation. In: 31st AAPR/OAGM Workshop

(2007) .

[3] N. Gelfand et al., Geometrically Stable Sampling for the ICP Algorithm, Fourth

International Conference on 3D Digital Imaging and Modeling (3DIM 2003), pp. 260-

267.

[4] G. Grisetti, C. Stachniss and W. Burgard, Improved Techniques for Grid

Mapping with Rao-Blackwellized Particle Filters, IEEE Transactions on Robotics 23(1)

(2007)

25

[5] A. Nüchter, 3D Robotic Mapping: The Simultaneous Localization and Mapping

Problem with Six Degrees of Freedom. Springer-Verlag, 2009.

[6] S. Rusinkiewicz and M. Levoy, E�cient Variants of the ICP Algorithm, Third

International Conference on 3D Digital Imaging and Modeling (3DIM 2001), pp. 145-

152.

[7] S. Thrun, W. Burgard and D. Fox, Probabilistic Robotics, MIT Press (2005).

26

