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CHARACTER SHEAVES ON DISCONNECTED GROUPS, X

G. LUSZTIG

ABSTRACT. We classify the unipotent character sheaves on a fixed connected
component of a reductive algebraic group under a mild condition on the char-
acteristic of the ground field.

INTRODUCTION

Throughout this paper, G denotes a fixed, not necessarily connected, reductive
algebraic group over an algebraically closed field k with a fixed connected compo-
nent D which generates G. This paper is part of a series [L9] which attempts to
develop a theory of character sheaves on D.

Our main result here is the classification of “unipotent” character sheaves on D
(under a mild assumption on the characteristic of k). This extends the results of
[L3, TV, V], which applied to the case where G = G°. While in the case of G =
G° the classification of unipotent character sheaves is essentially the same as the
classification of unipotent representations of a split connected reductive group over
F,, the classification in the general case is essentially the same as the classification
of unipotent representations of a not necessarily split connected reductive group
over F, given in [L14].

We now describe the content of the various sections in more detail. §43 contains
some preparatory material concerning (extended) Hecke algebra and two-sided cells
which are used later in the study of unipotent character sheaves. In §44 we study
the unipotent character sheaves in connection with Weyl group representations and
two-sided cells. (But it turns out that the method of associating a two-sided cell
to a unipotent character sheaf along the lines of [L3] III] is better for our purposes
than the one in §41.) A number of results in this section are conditional (they
depend on a cleanness property and/or on a parity property); they will become
unconditional in §46. In §45 we show that the problem of classifying the unipotent
character sheaves on D can be reduced to the analogous problem in the case where
GY is simple and G has trivial centre. In §46 we extend the results of [L3, IV, V],
on the classification of unipotent character sheaves on D from the case G = G° to
the general case.

Erratum to [L9), V]; in line 4 of 25.1 replace “syatem” by “system”.

Erratum to L9, VI]: on p. 383 lines -25, -24 replace Z by 'Z% and A? by A;.

Erratum to L9, VII]: on p. 248, line 4 of 35.5 replace G°F by G°F'.
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Erratum to [L9, VIII]: on p. 346, line 14 replace the first k by &’; on p. 350, lines
3 and 4 of 39.6 delete “The restriction of”, “to”; on p. 350, line 6 of 39.6 replace
first o by x; the 5 lines preceding 39.8 (“If n = 3 then ... is proved”) should be
replaced by the following text:

“If n = 3, then W must be of type Dy, ' is the alternating group in the four
letters a, b, ¢, d, W) is either {1} or Z/2 (with trivial [-action) or the Z/2-vector
space spanned by a,b,c,d with the obvious I'-action. It is enough to show that
E = E'®E" where E' is a 4[W ) T]-module defined over Q and E” is a U[W FT]-
module of dimension 1 over . If WUT has order < 2, this follows from the fact
that:

(a) Any simple U[I']-module is either defined over Q or has dimension 1.
(Indeed, if it has dimension > 1, then it is the restriction to I" of the 3-dimensional
reflection representation of the symmetric group in the four letters, which is defined
over Q.)

Now assume that W) has order > 2. We can find a homomorphism e : W) —
U4* (with image in {1, —1}) whose stabilizer in T is denoted by I, and a simple [T
module Ejy such that £ = Ind%iizll:e(Eg X Ep); here E. is the one-dimensional
U[WE)-module defined by e (necessarily defined over Q). If T, = T, then E =
E.X Ey where Ej is as in (a) and the desired result follows. If I'. has order 2, then
E) is defined over Q, hence F is defined over Q. If I'. £ I" and I, is not of order 2,
then I, is of order 3, Ej is the restriction to I'. of a one-dimensional {[I']-module
E” and we have F = F' ® E” where E' = Ind%igge (E. X 4) is defined over Q.
Hence the proposition holds in this case. The proposition is proved.”

Erratum to L9, IX]: on p. 354, line -8 replace Vy,ViP by Qy, QF; on p. 354, line
-7 replace 34.4 by 34.2; on p. 355, lines -8, -13 replace V) by Q,; on p. 359, first line
of 40.8 replace c,.» by ¢y,,; on the preceding line replace in by €; on p. 361, line 9
insert“” before £; on p. 363, line 6 before “Let” insert: “Let £ = IC(ZQ“jD, L)
on p. 365, second line of 41.4, two ) are missing; on p. 366, last displayed line of
41.4 replace 4 A by - ¢(A); on p. 368, line 2 remove “the condition that”; on
p. 369, line7 a ) is missing; on p. 371, line 1 replace H, by H; on p. 372, line 4
of 42.5 replace ®A by ®4; on p. 376, line -22 replace WW by W; on p. 376, line
-10 replace HPAD by HP>4: on p. 377, line -10 replace vt by 9; on p. 378, line 6
replace A by D.

Notation. Let € := ep be as in 26.2. If X is an algebraic variety over k and
K € D(X), we write H'(K) instead of PH'(K). If K € D(X), we set griK =
> iez(—1)"H'(K), an element of the Grothendieck group of the category of perverse
sheaves on X. The cardinal of a finite set X is denoted by | X|.

CONTENTS

43. Preparatory results on Hecke algebras.

44. Unipotent character sheaves and two-sided cells.
45. Reductions.

46. Classification of unipotent character sheaves.
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43. PREPARATORY RESULTS ON HECKE ALGEBRAS

43.1. This section contains some preparatory material concerning (extended) Hecke
algebras and two-sided cells which will be used later in the study of unipotent char-
acter sheaves.

We fix an even integer ¢ > 2 which is divisible by |G/G|. Let T' be a cyclic
group of order ¢ with generator . Let W be the semidirect product of W with
I' (with W normal) where wrw ™! = €(x) for x € W. Note that the group WP
in 34.2 is naturally a quotient of W, via 2w’ — 2D’ with z € W, i € Z. Let
Irr(W) be the category whose objects are the simple (or equivalently, absolutely
simple) Q[W]-modules. Let Irr*(W) be the category whose objects are the simple
Q[W]-modules Ey such that tr(z, Ey) = tr(e(z), Eo) for all z € W. Let Mod(W)
be the category whose objects are the QW V]-modules of finite dimension over Q.
Let Irr (W) be the subcategory of Mod(W) counsisting of those objects that remain
simple on restriction to QW]. Let Irr(W) be a set of representatives for the
isomorphism classes in Irr(W). Let ¢ be the object of Irr(W) whose underlying
Q-vector space is Q with W acting trivially and @ acting as multiplication by —1.
Note that if £ € Trr(W), then E|qw) € Irr(W). Conversely, we show:

(a) for any Ey € Irr(W), the set {E € Irr(W); Elqw = Eo} has exactly two
elements; one is isomorphic to the other tensored with ¢.

From [L14 3.2] we see that there exists a linear map of finite order v : Ey — Ey
such that y(z(e)) = e(x)(y(z)) for any e € Ey, x € W. (We use the following
property of e: if 5,5’ € I are such that ss’ has order > 4, then s, s’ are in distinct
orbits of € on I.) Moreover, from the proof in [L14) 3.2] we see that « can be chosen
so that 'ycl = 1 where ¢ is the order of the permutation € : W — W. In particular,
we have v¢ = 1. This proves that the set in (a) is nonempty. The remainder of (a)
is immediate.

Let & be a subset of Irr(W) such that {E|qw); E € €} represents each isomor-
phism class in Irr®(W) exactly once.

43.2. Recall the notation A = Z[v,v~']. Define [ : W — N by l(zw’) = I(z) for
x € W,i € Z; here | : W — N is the standard length function. Let wy be the
longest element of W. Let H be the A-algebra with 1 with generators T,,(w € W)
and relations

TwTy = T for w,w’ € W with l(ww') = I(w) + I[(w'),
T2 =T+ (v—v YT, for s € L.

We have a surjective 4-algebra homomorphism ( : H — HP, wai — Tin for
r € W, i € Z where HP is the algebra H? in 34.4 (with n = 1); thus, a number of
properties of H can be deduced from the corresponding properties of HP in §34.
Let & — &' be the A-algebra isomorphism H — H such that Tf = (—1)!"7T 1,
for all w € W. Let": A — A be the ring isomorphism such that vi=v" fori € Z.
Let: H — H, £ — £ be the ring isomorphism such that aT,, = ETJ}I for w € W,
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a € A; this isomorphism commutes with & — &7, For w € W we set

Cow = Z vl(y)*l(“g)Py@(vz)Tywi €H,
yeW;y<z

Cw = Z (—D) Ao p ()T € H,
zeEW;z<z

where w = 2w’ (x € W,i € Z) and

Py.(a) = Z”y,qujﬂa Ny.ej €4
JEZ
are the polynomials defined in [KLI] for the Coxeter group W. Note that n, , ; =0
unless j € 2Z and ny . ; = 65,0. We have ¢, = ;T and €, = ¢ It follows that

=Y (-)!WyTWH®p (T, e H

yeEW;y<z

and CIU = CIU.

Let HY = Q(v) ®4 H, a Q(v)-algebra. Let H' = Q ®4 H where Q is regarded
as an A-algebra under v - 1. We have H' = QW] (with T;, € H' identified with
w € QW] for w € W). Let & — &|,—1 be the ring homomorphism H — H' given
by v — 1, Ty — w for w € W.

Let H,H",H' be the algebras defined like H.H. H! by replacing w by W.
We identify H, H", H' with subalgebras with 1 of H, H”, H' in an obvious way.
We have H! = Q[W]. Note that H is the same as the algebra H,, in 31.2 (with
n=1).

For z,y € W we have c,c, = ) w75 ,C. With 7 € A. There is a well-defined
function a : W — N such that for any z,y,2 € W we have r7 , € v2*) Z[v~1] and
for any z € W we have rZ , ¢ v**)~1Z[v~1] for some z,y € W. For any 2,9,z € W
we define v, , .1 € Z by 12, =7, .-10**) mod va&~1Z[v1].

We define a preorder < on W as follows: we say that =’ < x if there exists x1, xo
in W such that in the expansion (in H) ¢, coCo, = 3o cw Ty ¢y With 1y € A,
then we have r, # 0. Let ~ be the equivalence relation on W attached to <. The
equivalence classes for ~ are called the two-sided cells of W. (See also [KL1].) We
write < y instead of x <y, = ¢ y. It is known that a : W — N is constant on
each two-sided cell. If c, ¢’ are two-sided cells, we write ¢ < ¢’ instead of z < 2’ for
some/any x € ¢, 2’ € ¢’. This is a partial order on the set of two-sided cells; we
also write ¢ < ¢’ instead of ¢ < ¢/, ¢ # .

The free abelian group H* with basis {t,;x € W} is regarded as a ring with
multiplication given by t,t, = > w Va1t for z,y € W. This ring has a
unit element of the form ) 5.5, t5 where D is a well-defined subset of W. We have
H>* = @ H (as rings) where ¢ runs over the two-sided cells and HZ® is the
subgroup of H> generated by {t,;x € c}. Let H™ be the free abelian group with
basis {t,@"; 2 € W,i € [0,c—1]}. We have naturally H>® C H® (t, = t,v°). The
group ring Z(I'] is also naturally contained in H> by @' — 3, p tav. We regard
H® as a ring with 1 so that H>® and Z[I'] are subrings with 1 and wt,w ™ = b ()
for z € W. We have a surjective ring homomorphism ¢ : H>* — HlD’OO, tywt
t,pi for z € W,i € Z where H”"™ is the ring H?> (with n = 1) in 34.12.



86 G. LUSZTIG

Define A-linear maps ® : H — A® H®, ® : H — A® H® by &(cl) =
Y eW deD.a(d)=a(z) Toat= for € W, (I)(stwi) = ®(cl)w’ for v € W,i € Z. Now
®, ® are homomorphisms of rings with 1. We have the commutative diagram

H —— A@H>®

| |
HP —— Ao HP™

where the upper horizontal map is the composition of T : H — H with ® and the
lower horizontal map is the map denoted by ® in 34.1, 34.12 (which is not the same
as the present ®).

For any field k let H® = k® H®, H® = k® H®. Let ®’ : H' — HE s
Qv . HY — I{TE;(U) be the Q(v)-algebra homomorphisms obtained from ®, P by
extension of scalars. Let ®' : H!' — HZ, ol H' — H&o be the Q-algebra
homomorphisms obtained from ®, ® by extension of scalars. Now ®*, &, &1 ! are
algebra isomorphisms. Since the Q-algebra QW] = H! is split semisimple, the
same holds for the Q-algebra Hg'.

Now ¢ +— &7 induces by extension of scalars a Q(v)-algebra isomorphism HY —
H" and a Q-algebra isomorphism H! — H?!; these leave HY, H! stable and are
denoted again by & — ¢F.

43.3. Let Ey € Irr(W). We can view Ej as a simple Hg-module Eg° via ®'. Now
Q(v) ®q EF° is naturally a simple H (30( U)—module and this can be viewed as a simple
H"-module Ej via ®*.

Let E € Irr(W). We can view E as a simple f[&o-module E* via ®'. Now
Q(v) ®q E* is naturally a Hao(v)—module and this can be viewed as an H*-module
EY via ®". By restriction, E can be viewed as a simple QW] = H'-module Ej.
From the definitions we see that Ej is the restriction of the Hv-module E” to H".

Let E' be the Q[W]-module with the same underlying Q[W]-module structure
as F but with the action of @ equal to —1 times the action of @ on E. Then E'’
is defined. Clearly, E'?, EY have the same underlying H"-module and the action of
Tw on E'? is equal to —1 times the action of Tw on K7,

Let sgn be the object of Irr(VV) with underlying vector space Q on which w € W
acts as multiplication by (—1)/(*), We set Ef = E @ sgn € Irr(W).

43.4. Let F € Irr(VV). From the definitions, for any £ € H, ¢ € H>® we have:
(a) tr(§, EY) € A, tr(§ EY)|v=1 = tr(§lo=1, E), tr((, E%) € Z.
Hence it makes sense to write
tr(¢, EY) =Y _tr(§, E%;i)v’ where tr(, E;i) € Z.
i€Z
More generally, for £ € H” we write tr(§, BY) = > ez tr(§, B i)v' (possibly infinite
sum) where tr(&, EV;i) € Q (here tr(¢§, E¥) € Q(v) is viewed as a power series in

Q((v)))-

For any ¢ € H we show:
(b) tr(&, (BY)") = te(&", B).
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Let E*! be the H Y-module whose underlying Q(v)-module is £ but with { € HY
acting as &' in the HY-module EV. Note that the H’-module E*T is simple and its
restriction to an HY-module is simple. Also, the assignment E’ — E’Y defines a

bijection between the set of isomorphism classes of objects of Irr(W) and the set of
isomorphism classes of simple H"-modules whose restriction to H? is simple. Thus
we have E'f 2 EY for some F; € Irr(W). It is enough to show that (ET)? = Evt
or that (E1)Y 2 EV as H’-modules. Using (a) for & € H we have:

v 'U"‘ v
tr(fvzl, El) = tr(f, El)v:l = tr(f, E )v:l = tI‘(ET, E )v:l
= tr(&f|p=1, E) = tr(€|y=1, E @ sgn).
Thus, tr(w, B1) = tr(w, EY) for any w € W so that E; = Et in Irr(W) and
(ET)v = EV, as required.
For any w € W we have:
(c) tr(T, %, EY) = tr(Tw, EY).

The proof is the same as that of 34.17 (we use also (a)).
For any ¢ € H we show:

(d) tr(, B) = tr(¢, BY).

We may assume that £ = cle with x € W,j € Z. Since & = &, it is enough to
verify:
i gtr(t.w’, B®) = Z 7z gtr(t.w’, B).
zEW,deD,a(d)=a(z) z€W,deD,a(d)=a(z)

This follows from the obvious identity r; , = r7 , for any z,y,z € W.

For any w € W we show:
(e) tr(T, (EN)") = (1) ex(T,,, B7).
Using (b),(d), we see that the left-hand side of (e) equals

(—1)! (T 1), BY) = (- 1) ™tx (T, BY) = (-1)"“tx (T, EV).
This proves (e).
43.5. For E € Irr(W) we define f% € Q[v,v™!], f&* € Q by
(a) > (T, BY)? = fhpdimE, Y tr(ty, B*)® = fF dim E.
zeW rEW

Note that f3, f3* depend only on E|qw). Now fg is # 0; it specializes to
|W|/dim E for v = 1. Since E§° is a simple Hg-module, the integer tr(t,, E§°) is

or some x € W. Hence . For E, E’ in Irr(W), the following holds:
0 f W. H f #0. For E, E' in Irr(W), the following hold
(b) > sew t0(Tye, EV)tr(Tyer, E'V) equals £ dim E if E, E' are isomorphic and
equals 0 if Elqw] % E'|qw)-

This can be deduced from 34.15(c) using the commutative diagram in 43.2 (we use
also 43.4(a)). Similarly,

(€) Dpew tr(zw, E)tr(zw, E') equals [W| if E, ' are isomorphic and equals
0 if E|qrw) 2 E'|lqw-
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43.6. Let Ey € Irr(W). Let EG° be the irreducible Hg-module corresponding to
Ey as in 43.3. Since Hy = PD. Q® HE® as Q-algebras, there is a unique two-sided
cell ¢ = cg, such that E§° restricts to a simple module of the summand Q ® H*
(and all other summands act as 0 on E§°). Let ag, be the value of a on cg,.

Let E € Irr(W). We set cg = cg,, ag = ag, where Ey = Elqw) € Irr(W).
We show:

(a) If v € W, then tr(cl_, EV) = tr(t,o, E¥)v™% mod v *+1Z[v]; equiv-
alently, tr(cl_, EV;—ag) = tr(t,w, E*®) and tr(cl_,E%a) = 0 for all
a< —ag.

(b) If x € W and the action of cl._, on EV is # 0, then z < x for some z € cg.

From the definition,

tr(cl_,EY) = Z 5 atr(t.w, ).
z€W ,deD,a(d)=a(z)

In the last sum we have tr(t,zo, E°°) = 0 unless z € cg in which case a(z) = ag.
For such z we have r; ; = 7;.4,.-10*" mod v?E~1Z[v~1], hence Tha =

rZ ., =
z,d
Ye.dz—10" % mod v~ *ETZ[y] and

tr(cl_, EY) = Z Sz tr(t,w, E%) ™" mod v *ET1Z[y]
2EW

and (a) follows.
In the setup of (b), the action of ZzEW,dGD,a(d) a(z) otz on B is # 0.

Hence there exist z € cg,d € D such that r7 ; # 0 (so that z < z). This proves
(b).
We show:
(¢) If € W, then tr(Tye, EY; —ag) = sgn(z)tr(tyw, E®) and tr(Tye, EV;d)
=0 forala< —ag.

We argue by induction on I(x). If I(z) = 0, we have z = 1 and T, = cf_ and
the result follows from (a). Assume now that {(z) > 0. From the definition we
have cf, = sgn(z)T(zw) + & where € € 30,10, <i(s) V2[0]Te . The induction hy-
pothesis shows that tr(¢, EV;a) = 0 for all @ < —ap. Hence sgn(x)tr(fww, E?a) =
tr(cl_, E¥;a) for all @ < —ag; now (c) for x follows from (a).

T

Using (c) and 43.5(b) we see that

fpdimE = Z tr(t,w, E*)%0™2%F 4 strictly higher powers of v.
TEW

Now using 43.5(a) we obtain:

(d) Y = fe'v™2*F 4 strictly higher powers of v.

Now let E’ be another object of Irr(W). We show:
(€) D pew tr(tam, EX)tr(tyw, E'°) is equal to fg° dim E (if E, E are isomor-
phic) and is equal to 0 if E'|qiw) % Eo.
We can assume that cgr = cg (otherwise, the sum in (e) is 0). Combining 43.5(b)
with (c) for £ and E’ and with (d) we see that =272 3~ tr(t,w, E®)tr(t,w,
E’*), plus a Z-linear combination of strictly higher powers of v is equal
to fg£ dim Fv=2%® plus a Z-linear combination of strictly higher powers of v (if
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E,E' are isomorphic) and is equal to 0 if E'|qw] 2 FEo. Taking coefficients of
v~2%E we obtain (e).
We show:

(f) €(cp) = cE.
For any x € W we have tr(e(z), Ey) = tr(z, Ey). It follows that for any x € W

we have tr(t.(,), EG°) = tr(ts, E5°). We can find = € cp such that tr(t,, £5°) # 0.
Then tr(te(q), EG°) # 0, hence e(x) € cg and (f) follows.

43.7. Let (W, S) be a Weyl group (S is the set of simple reflections). Let o : W —
W be an automorphism of W such that o(S) = S and such that whenever s # s’
in S are in the same orbit of o, the product ss’ has order 2 or 3. Let b € Z~( be
such that o” = 1. Let W be the semidirect product of W with the cyclic group C
of order b with generator o so that in W we have the identity czo~! = o(x) for
any © € W. Let I be a o-stable subset of S and let W; be the subgroup of W
generated by I. Let E be a simple Q[W]-module such that E|qw is simple. Let

W; = W;C, a subgroup of W. Let Eg, = Q; ® E. We show:
(a) The Q[Wi]-module Eq,ly;, is isomorphic to @©;E; where each EY is a
Q[W;]-module and either E) is induced from a Qi[W;C']-module where
C' is a proper subgroup of C, or El|w, is simple and E is defined over Q.
The general case reduces immediately to the case where o permutes transitively
the irreducible components of W. In this case we may identify W with W; x
Wy x---xWyand S =857 xS X--- x5 (t factors) where (W7, S) is an irre-
ducible Weyl group; the automorphism ¢ may be written as o(wi,ws,...,w;) =
(o' (we), w1, wa, ..., we—1), w; € Wy where ¢’ is an automorphism of (W7, S7). We
have I = I} x Iy x -+ x I where I C I is o’-stable. Hence W; = Wp, x Wy, x
- x Wp,. Note that b/t € Z-g. Let Wl be the semidirect product of Wy with
the cyclic group C; of order b/t with generator ¢’ so that in W, we have the iden-
tity o’z10’' "1 = o’(z1) for any z; € W,. We can find a simple Q[W;]-module E;
such that E|w, is simple and such that E = E; K Ey K --- X E; (¢ factors) as a
Q[Wi]-module and o acts on E as e; Kea® -+ - Key — o' (er) Key Keg K-+ - Key_q,

(e; € E;). Let Wll = Wy, C1, a subgroup of Wi.

Assume that (a) holds when W, S, o, b, I, E are replaced by W1y, S1,07,b/t, 11, E.
Let By g, = Qi ® E1. Then we can identify ELQz‘VT/Il = @D,cs £ ; where each

Eijisa Q:[W7,]-module with properties like those of E’ in (a). We have Eq, =

iviiegein g Bl BB, W KE] 5 as a Wi-module. If we take the sum of all
summands where (j1, ja2, ..., j¢) is fixed up to a cyclic permutation, then we obtain
a Wr-submodule & of Eq,- If j1,j2,...,j: are not all equal, then Elw, is induced
from a Q;[W;C’]-module where C’ is a proper subgroup of C. If j; = jo = -+ = jy,
then & = By, XE); K- X E ;. If in addition, ] ; is induced from a

Qi [Wr, C1l- module where C’1 is a proper subgroup of C1, then £ is a direct sum of
Qi[W;]-modules induced from Q;[W;C’]-modules where C’ are proper subgroups
of C. If, on the other hand, El,j1|W11 is simple and El’j1 is defined over Q, then
E|lw, is simple and & is defined over Q. Thus (a) holds for W, S, c,b, I, E. We can
therefore assume that (W, S) is an irreducible Weyl group. Let b’ be the order of
o: W — W. We have b/b’ € Z~(. By the proof of [L14] 3.2] we can find a Q-linear
isomorphism o’ : E — E such that ¢’* = 1 and ¢’z0’ ! = o(z) : E — E for any
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x € W. Since E|w is absolutely simple, we must have ¢/ = +0 : E — E. Hence
if (a) holds when E is modified so that the action of o is replaced by that of o’
(and b is replaced by V'), then (a) also holds for the original F and b. Thus we
may assume that b = o’. In this case we have b < 3. Assume first that b < 2.
We write Eq, |y, = @, Ej where each E} is a simple Q;[W;]-module. TIf j is
such that E |y, is not simple, then £’ is induced by a Q;[WC’]-module where C’
is a proper subgroup of C. If j is such that E§|WI is simple, then there exists a
Q[Wi]-module Ej of finite dimension over Q such that Ej|w, = Q;® Ey as Q;[W]-
modules moreover, by the proof of [L14} 3.2], there exists a Q-linear isomorphism

: By — Ejy such that 62 = 1 and 626! = o(x) for any 2 € W;. We extend & to
a Ql linear isomorphism Q; ® Ey — Q; ® Ey denoted again by &. Since Ej is an
absolutely snnple Wi-module we have 0 = aé : Q; ® Ey — Q; @ Ey where a € Ql
Since 02 =62 =1 on Q; ® Ey, we have a = £1. Hence 0 : Q; @ Ey — Q; ® Ey is
defined over Q. We see that (a) holds for E. Next we assume that b = 3 so that W
is of type Dy. In this case (a) is verified by examining the known explicit W-graph
realization of E. This completes the proof of (a).

43.8. We now return to the setup in 43.1, 43.2. Let I be a subset of I such that
€(I) = I. Let P € Py (see 26.1). Then NpP # () so that D' := NpP/Up is
a connected component of the reductive group G’ := NgP/Up; note that G'° =
P/Up. Let Wy be the subgroup of W generated by Wy (see 26.1) and I'; now
W, I,W; play the same role for G’, D' as W,I, W for G,D. Let HI be the
algebra defined like H” (with W, I replaced by Wy, I). We have naturally HY 7 C HY
as algebras with 1. For any subgroup I'V of T' let H}} ™ be the subspace of H}’
spanned by the elements T, with z € Wy and i € Z such that @® € I"; this

is a subalgebra of lf[]” Let H?Q ,H(%I7I~{}}’gl be the Q;(v)-algebras obtained by

applying Qi(v) ®qq) () to Hy, H", H'" .
Let E € Irr(W). Let EY be the H”-module corresponding to E; see 43.3. We
have the following result:
(a) The restriction to I:I}:QL of the f{%z -module Q@ E" is isomorphic to @D, E]
where each EY; is a H” = -module and either

(i) E} is of the form ® gorr EY for some proper subgroup I'" of T
1a

I Qi
and some H[ VQz -module EY, or
(ii) E} is of the form Q; ® M;" where M; € Irr(W7y).

Here M} is defined like E? in terms of W instead of W.
Note that (a) is a v-analogue of 43.7(a). It can be proved by the same method
as 43.7(a) or it can be reduced to 43.7(a) with W = W,b = c.

43.9. In the setup of 43.8 let x € W;. We show:
tr(Toe, BY) = Y (B, EYtr(Tow, E"),

@ tr(zew, E) = 5 (E',E)tr(zw, E');
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here for any E’ in the sum,
<E/, E> = dimQ(v) HOmFI}J (E/v, EW) = dimQ HomVVI (E/, E)

Using 43.8(a) we can write the left-hand side of the first equality in (a) as

Y trquw) (Tow, E).
J
Here E; is as in 43.8(a); if it is as in 43.8(i), then trQl(U)(wa, E;) =0since IV #T.
The contribution of the j as in 43.8(ii) yields the right-hand side of the first equality

in (a). The proof of the second equality in (a) is entirely similar.
We show:

(b) If E' in (a) satisfies (E', E) # 0, then ap < ag;

(here ag is as in 43.6 and ap is defined similarly in terms of £/, Wy). Indeed, the
simple W-module E'|w, appears in the W-module E|w,, hence (b) follows from
[L12, 20.14(a))].

Let I:I}X’ be defined like H> but for W instead of W. For z € W we show:

(c) tr(tpw, BX) = > (B, Etr(tye, E'™).
E'EITJ(WI);LLE/ =ag

(The simple Q ® H*-module E'* is defined like E* but for W instead of W.)
We take the coefficient of v~ % in both sides of the first equality in (a) (they are
in A; using 43.6(c) we obtain

sgn(z)tr(t,w, E>) = Z(E', EVtr(Tyw, E'; —ag)
E/
where the sum over E’ is as in (a). By (b) the previous sum can be restricted to
the E’ such that aps < ag. The contribution of F’ with ags < ag is 0 by 43.6(c)
(for W7). Thus the sum can be restricted to the E’ such that ag: = ag. For such
E’ we have, using again 43.6 (for Wy):

tr(Tper, 'Y —ap) = tr(Typw, E'"; —ap) = sgn(z)tr(t,w, E'™)
and (c) follows.

43.10. For any E € Irr(W) we define ¢ : Ww — Z by ¢p(zw) = tr(zw, E).
Note that ¢pe, = —dp (¢ as in 43.1). The functions ¢ with E € Irr(W) generate
a subgroup R(W) of the group of all functions Ww — Z which are constant on the
orbits of the conjugation W-action on Wew. From 43.5(c) we see that {¢g; E € €}

is a Z-basis of R(W). For any € W we set:
1 -
(a) Ny = Z~ 5 i1(taw, E®) o = > tr(t,w, E¥)gp € R(W).
Eclrr(W) Ece¢

From 43.6(e) we see that for any E € € we have:

(b) > tr(tew, B®)Rye = f37 dim(E)¢p € R(W).
reW
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Now let I be a subset of I such that ¢(I) = I. We define a homomorphism JV‘Z\\/]I :
R(WI) - R(W) by

J\Yi;\/'lf (¢pr) = Z (E',E)¢p

EEm(W);aE/ =ag

for any B’ € Irr(W;). This is clearly well defined. For € W, we define NS
R(W7) in the same way as R, € R(W) but in terms of W7 instead of W. From
43.9(c) we see that

(©) T (8L) =N

43.11. Let I be a subset of I such that e(I) = I. We fix a two-sided cell ¢’ of W7
such that e(c¢’) = ¢/. There is a unique two-sided cell ¢ of W such that ¢’ C ¢; we
must have ¢(c) = c. We show:

(a) if E' € Irr(W;p), E € Irr(W) satisfy ¢ = cgr (see 43.6 with W replaced by
W;) and (E',E) # 0, then cg < c.

To prove this we may replace E, E’ by their restrictions to W, W;. Thus we may
assume that W = W, W; = W, = 1. Since ¢/ = cp, there exists z € ¢’ such
that the action of ¢, in the Q ® H*-module E'> is # 0. Using 43.6(a) we see
that the action of ¢/ in the HY-module E'" is # 0. Since (E’, E) # 0, E! may be
regarded as a HVY-submodule of E¥. Hence the action of ¢}, in the H’-module EV
is # 0. Using 43.6(b) we see that z < z for some z € cg. By definition we have
x € c. This proves (a).
We show:

(b) if £’ € Irr(Wy), E € Irr(W) satisfy ¢’ = cpr (see 43.6 with W replaced by
W;) and ae = ag, (E',E) #0, then c = cg.
Since the a-function of W is known to be the restriction of the a-function of W,

we see that the value of the a-function on ¢ and cg coincide. Since cg < ¢ (see
(a)) it follows that ¢ = cg.

43.12. Let © € W. Let ¢ be the two-sided cell containing x. According to [L14]
(5.3.1)] there exists uniquely defined elements a, , € Q(v) (for y € W,y < z) such
that (—1)"®)¢f — 2o (fl)l(y)ay,mc;g acts as zero on Ej for any Ey € Irr(W)
with cg, # c.

Moreover, for y < z we have

— J
Ay, = E : Ay,2;5V

J€Z>o

y<z

where a, ,.; € Z for all j and ay 5,; = 0 unless j = [(z) + {(y) mod 2; see [L14]
(5.3.6)]. It follows that the sum

1 ~
(a) > itr(clw - > ()W, Lol E) s € R(W)
Echir(W) yy=<w

is equal to the same sum restricted to those E such that cg = c¢. For such F we have

ap = a(x) and for any y such that y < z, ay,mtr(c;gw, Ev) is of the form p~2a(®)+1
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times a rational function in v which is regular at v = 0; moreover, tr(c}_, EV) is of

the form v=2®)tr(t,., E>) plus higher powers of v. Thus (a) is of the form

1
Z §vfa(m)tr(t$w, E®)¢p +o0

Eclrr(W);cg=c
where ¢ is a linear combination of elements ¢z with coefficients of the form v—2()+1
times a rational function in v which is regular at v = 0. In the previous sum the
condition cg = ¢ can be dropped and the sum is unchanged. We see that (a) is
equal to v @R, + ¢ with o as above. Taking in this identity coefficients of
v~2() in the expansions at v = 0 we obtain:

1
N, = Z §(tr(cjm,E”; —a(x))

- Z (_1)7l(w)+l(y)ay,z;jtr(czwaEv; —a(x) _j))(bE

Y,J;y<x,5>0

44. UNIPOTENT CHARACTER SHEAVES AND TWO-SIDED CELLS

44.1. In this section we study the unipotent character sheaves in connection with
Weyl group representations and two-sided cells. A number of results in this section
are conditional (they depend on a cleanness property and/or on a parity property);
they will become unconditional in §46.

The following convention will be used in this section. In parts of 44.3-44.7,
marked as #...8, we assume that the ground field k is an algebraic closure of F,
and we fix an Fg-structure on G with Frobenius map F' : G — G which leaves
B*,T (see 28.5) stable and induces the identity map on W and on G/G?; we will
view the various varieties which appear with the natural Fg-structure induced by
that of G. The results in other parts of this section are valid for a general k (by a
standard reduction to the case k = Fy).

If X is an algebraic variety with a given F,-structure, we write D,,,(X) for the
corresponding mixed derived category of Q;-sheaves. If A € D,,(X) is perverse and
j € Z, we denote by A; the canonical subquotient of A which is pure of weight j.

44.2. For any w € W let
Ziyp ={(B,B',x) € Bx Bx D;zBz~" = B',pos(B, B') = w}
(see 28.8),
Ziy p ={(B,B',z) € Bx Bx D;zBx~" = B',pos(B, B') < w};
note that Zg'y 1, = | ew.w<w Zé’f;)D. Let
BY ={(B,B’) € B x B;pos(B, B') = w},
BY = {(B,B’) € B x B;pos(B, B') < w}.
Define p : Zé‘jLD — BY by u(B,B’,r) = (B,B’). Note that u is a fibration with

connected smooth fibres and Zé”; o =Y (BY') for any w' < w. Hence Ziyp is
an irreducible smooth open dense subvariety of Z%”I p- Let Q" be the local system
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Q; on BY and let Q}”ﬁ =1C(B», Q) € D(BY). Let Qw be the local system Q; on
Z&I’D and let

QU = IC(Zy.p, Q¥) = Q) € D(Z{1 )

44.3. 4 For y,w e W,y <w and i € Z let ny ,,; be as in 43.2; by [KL2],

(a) HY(Q ?jﬁ)|8y is a local system isomorphic to (Q))®"v-wi ; moreover, it admits
a filtration (over Fy) with ny ., ; steps and each subquotient isomorphic over
F, to Qi(—i/2).
Using the fibration p we deduce that

(b) Hi(QwﬁMZgI ,, is a local system isomorphic to (Qy)@"%wﬂ; moreover, it ad-
mits a filtration (over F ) with ny, ., ; steps and each subquotient isomorphic
over F, to Q;(—i/2).
Define my, : Zg'y  — D, @y : Z&LD — D by (B,B’,z) — x. Let

K% =1,Q" € D(D), KY=#,Q" € D(D).

(With the notation of 28.12 we have K = K;‘)’le.) We view Q¥ and Q¥F as
objects of Dy, (Zy'; ) and Dm(Zé‘jLD) such that Frobenius acts trivially on the
stalk at any F,-rational point of Zé‘jl’D. Applying to them 7, and 7y, we obtain
objects K'Y € D,,(D), K, € Dp(D).

The following equality in the Grothendieck group of mixed perverse sheaves on
D is verified (using (b)) along the lines of [L3] 12.6):

(c) YNEDH(ED) = > Y (—) nywnH (K)(=h/2).
i€EZ yeEW;y<w i,h€Z
We now take the part of weight j in (c); note that H7 (K 7)) is pure of weight j since

7w preserve weights and Q"# is pure of weight 0. We see that for any j € Z, the
following equality holds in the Grothendieck group of perverse sheaves on D:

(d) () H/(KE) = > Y (~)'nywnH (EY);—n-#

yeW ;y<w i,h€Z

44.4. We shall often write D“" instead of DR (see 28.14).

Definition. We say that a character sheaf A on D is unipotent if A € D"
Let D be the set of isomorphism classes of unipotent character sheaves on D.
The following two conditions on a simple perverse sheaf A on D are equivalent:
(i) A€ Dun,
(il) A4 K} for some w € W.
This follows from (a) below which is verified along the lines of [L3} (12.7.1)III].

(a) Let w € W be such that A A K, for any y € W,y < w. Then (A :
Hi(K®)) = (A: Hi(KY)) for any i € Z.

Let = be a set of representatives for the isomorphism classes of objects in Dun: note
that = is a finite set.
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44.5. Let A € D"". We regard HT,, as an ideal in H. Let ¢§' : HT, — A be
the composition of the map HT., — H 1TD (restriction of the natural surjection
H— HP) with the map (4 : HlTD — Ain 31.7 (with n = 1). From the definitions,
¢Y is an A-linear map # and for any x € W we have:

(a) C64(,Ul(m)j—v _U_dlmGZ A Hz Kx) )’U] ‘

For x €¢ W we show:
(b) (§ (eaT) = v~ TN (A HI(KD)) (—0).
JEZ
& By 44.3(d) we have for any j:
() A:H(KD) = > > (—D'nyzn(A: H(EY) ).
yeEW y<z i,h€Z
We deduce
pm MG S (A () (o)
JEZ
(C) — o~ dim G—I(z) Z Z ny . h A H? (Ky )] h)
yeW; y<zx i,j,h€Z
p— dim G—l(z) Z Z nymh (A: Hz(Ky) v j'+h'¢
yeEW y<zi,j' ,h€Z
We can rewrite this as

v H®) Z Zny;chv CA y)Tyw)

yeEW, ;y<z heZ
=v7 N P00 W Te) = G (e T).
yeW;y<z
This proves (b).
44.6. Let £“"(D) be the subgroup of the Grothendieck group of the category of

perverse sheaves on D generated by the objects in D", Let Kg' (D) = QK" (D).
Let (:) be the symmetric Q-bilinear form on Kg'(D) with values in Q such that
(A: A)=1if Aec D" and (A: A') =0if A, A’ € D" are not isomorphic. Note
that if P is a perverse sheaf on D all of whose simple subquotients are in ﬁ“”, then

the present meaning of (A : P) agrees with the earlier meaning; see 31.6.
For any x € W we show:

(a) griKp) = Y Pua(lgri(Kp) € K*(D).
yeEWy<z
& Specializing 44.5(c) for v = 1 & we deduce
grl(}?f)) - Z Z ny,z,hgrl((KyD)j’) € ]Cun(D)
yeEW, y<zx j',h€Z
and (a) follows. )
For any E € Mod(W) we set

(b) Rp = |W/|! Z DMy (zow, B)gri(KE)
reW



96 G. LUSZTIG

(an element of K&*(D)). We show:

(c) Rg =W Y (1) Ytr(Gpelumr, B)gri(Kp)
zeW
where ¢, is as in 43.2. We shall use the known inversion formula
(d) Y (D) WTEP, (@) Pugrwe:(@) = 0yn
2eEW3y<z<wz

for any y < x in W. Using (a),(d) and the definition of ¢,,, we see that the
right-hand side of (c) is

|W|71 Z (_1)dimG(_l)l(z)il(x)Py,x(1)Pwoz,wox(Utr(zwa E)gri(Kp)

z,y,zEW;y<z<z
= |W‘_1 Z (_1)dimGtr(yw, E)grl(K%) = Rg,
yeEW

as required. y o -

Let Modg, (W) be the category of Q;[W]-modules of finite dimension over Q.
For E' € Modgq, (W) we define Rp € Q; @ K**(D) by the same formula as (b).

For any ¢ € R(W) (see 43.10) we define Ry € K&'(D) by Ry = . pce PeRE
where ¢ = 3, e PEdr (pPe € Z). This is independent of the choice of & since

Rgg, = —Rpg for E € Irr(W). Note that for E € Irr(W) we have Ry, = Rg.

44.7. Let A € D*". For any E € Irr(W) we set:
v 1 T T v
(a) b= e O 6 (Tow)tr(Tow, BY) € Q).

fhpdimE S

Note that this definition is compatible with that in 34.19(b). Using 34.19(a) we see
that for any £ € H we have

(b) (' (T=) = Y b ptr(ETw, EY).
Ec¢
Taking here £ = ¢, € W and using 44.5(b), we deduce:
(©) (A HI(RD))(—v) = oG S 4 (e, T, BY),
JEZ Ece

Let D“"¢ be the subcategory of D" whose objects are the unipotent character
sheaves on D which are cuspidal.

An object A € D“"¢ is said to be clean if the following condition is satisfied:
Als_g = 0 where S is the isolated stratum of D such that supp(A) is the closure
S of S.

We say that D has property 2 if any A € Dune is clean. We say that D has
property 2 if for any parabolic subgroup P of G° such that Np P # (), the connected
component NpP/Up of NgP/Up has property 2y. (Compare 33.4(b).)

We say that D has property 2 if for any A € D" and any w € W, i € Z such
that (A : HY(K%)) # 0 we have i = dimsupp(A4) mod 2.

In the remainder of this section we assume that D has property .

Using 35.18(g) we see that for any E, E’ in € we have

(d) Z bv’,EbZ’,E’ = 6E’E’.
A'eE
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Let A € D“". Using 35.22 we see that for any E € Irr(W) we have
(e) by g € Q.

(The quasi-rationality assumption in 35.22 is automatically satisfied in our case;
see 43.4(a).) In view of (e) we shall write ba g instead of b} 5. We show:

(f) bap = (—1)""CA: RE).

Let z € W. & Setting v = 1 in 44.5(a) we obtain

() G (Tow)lom1 = ) (~1)'(A: H'(KD);) = (A: gri(KD)). M
2

Setting v = 1 in (b) with £ = T, and using (e) we obtain
G (Tow) o1 = Z ba ptr(zw, E).

Ece¢

Combining with (g) we obtain

(h) (A:gri(Kp)) = baptr(zw, E).
Eee

Using the orthogonality relations 43.5(b) specialized for v = 1 we obtain
bap =W Y tr(ewm, E)(A: gri(KD))
reEW

for any F € €. This proves (f) in the case where E € €. This clearly implies (f) in
the general case.
We can now rewrite (h) as

(i) gri(Kp) = (1) N " tr(vw, E)Rg
Ece¢
in £&'(D) and (c) as
() D (A:HI(KR))(—v) = (—1)imGudimEHE® N " (A Rp)tr(c, T, EY).
JjEZ Ece
We show:
(k) there exists E € € such that (A: Rg) # 0.

We can find z € W and j € Z such that (A : H/(K%)) # 0. Then the left-hand
side of (j) is # 0, hence so is the right side. Thus (k) holds.
We show:

(1) For E,E' € Modg, (W) we have
(Rp: Rpr) = W[ Y tr(aw, B)tr(zw, E).
reW

Moreover, if E,E' € €, then we have (Rg : Rg/) = g, 5/ -
Here (:) is the bilinear form Q; ® K“*(D) x Q; ® K“*(D) — Q, extending (:) in
44.6.

Assume first that E,E’ € € Clearly, Rp = >, =(A" : Rg)A’", Rpr =

> ae=(A": Rp)A'. Tt follows that

(RE . RE/) = Z (A/ . RE)(A/ . REI) = Z bA”EbA',E' = 6E,E’

A'€eE AleZ
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where the last two equalities come from (f),(d). This proves the second equality in
(1). To prove the first equality in (1) we may assume that E, E" are simple objects of
Modag, (W). If the restriction of E to Q;[W] is not simple, then tr(zw, E) = 0 for
any * € W, hence both sides of the first equality in (1) are 0. Thus we may assume
in addition that E|q,wj is simple; similarly we may assume that E'|q, jwy is simple.
Replacing E, E’' by their tensor products with one-dimensional representations of
W which are trivial on W reduces us to the case where E, E’ come from objects of &
by extension of scalars. Using then the second identity in (1) we see that it is enough
to show that for E, E' € € we have [W|™' "\ tr(zw, E)tr(zw, E') = §p,g/; but
this is known from 43.5(c). This completes the proof of (1).

For any € W,i € Z we take the coefficient of v+{#)+dimG ip the two sides of
(j); we obtain:

. . . _ 1 - )
(m)  (=1)HE(A gHETEmE )y = N str(cle, E% i) (A Rp).
E€lir(W)

For any y, z in W we show:
(n) gri(Ep ) = gri(Kp).

Using (i) this is the same as

Z tr(y 'zwy, E)Rp = Z tr(zw, E)Rg

Eece Eece

which is clear since tr(y~'zwy, F) = tr(zw, E) for any E € €.
We show:

(o) If E € Mod(W), then Rg is a Z-linear combination of elements Ry, with

E, € Irr(W).

We can write Q; @ E = @, E, where E;, are simple Q [W]-modules. Hence
Rg = Rq,or = >, Re,. If h is such that Ej|w is not a simple Q;[W]-module,
then tr(zw,Ep) = 0 for any « € W, hence Rg, = 0. If h is such that Ep|w
is a simple Q;[W]-module, then by taking the tensor products of Ej with a one-
dimensional representation of W which is trivial on W we obtain a module which
comes from an object of Irr(VV). It follows that Rp = ZEleG cg, Rp, where cg,
are integer combination of roots of 1. Using (1) we have cg, = (Rg : Rp,) =
(W[!S cw tr(zw, E)tr(zw, Ey). This is a rational number; being also an alge-
braic integer it is an integer. This proves (o).
We show:

(p) For E € &, x € W we have (Rg : gri(K%)) = (—1)3" (2w, F).

Using (i) we have (R : gr1(K$)) = (Rg : (-1)3mE Y ., ¢ tr(zw, E')RE) so that
(p) follows from (1).

44.8. The A-linear involution d : K(D) — £(D) in 42.2 induces (by the specializa-
tion v = 1) a Z-linear involution d : (D) — K(D) (K(D) as in 38.9). By extension
of scalars, d gives rise to a Q-linear involution Q ® K(D) — Q ® (D) denoted
again by d.

Let A € D. We show that:

(a) d(A) _ (71)codim(supp(A))Ao
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where A° € D. We can find a parabolic Py of G° such that NpPy # () and a
cuspidal character sheaf Ag on Dy := NpPy/Up, such that A is a direct summand
of indgo(Ao). We have Py € Py where J C I, e(J) = J. By 38.11(a) we have d(A4) =
(—=1)17<I 4° where A° € D and J, is the set of orbits of ¢ : J — .J. It remains to show
that codim(supp(A)) = |Je] mod 2. From the theory of admissible complexes (6.7)
and from 3.13(b) we see that dim supp(A) = dim G° —dim(P,/Up,)+dim supp(Ap);
that is, codim(supp(A)) = codim(supp(Ap)). Also, the analogue of J, for Ag is J.
itself. Thus we are reduced to the case where A = Ag; that is, we may assume
that A is cuspidal. Let G' = DZgO\G, D' = DZgO\D. Then the support of A is
the closure of a subset of D which is the inverse image of a single G'°-conjugacy
class C'in D’ under the obvious map D — D’. Moreover, P’ 2%,, = {1}. The set I
for G’ can be identified with that for G. Since codim(supp(A)) = codimp-C, it is
enough to show that codimp/C = |I.| mod 2 for any G’°-conjugacy class C in D’.
According to Spaltenstein [S] we have codimp/C = 23+ where [ is the dimension
of the variety of Borel subgroups of G’° that are normalized by some fixed element
of C' and r is the rank of the connected centralizer in G’ of any quasisemisimple
element of D’. Thus, codimp/C' =r mod 2. It remains to note that r = |I|.
By 42.9 (specialized with v = 1) we see that for any z € W we have:
(b) d()_H'(Kp)) = (-1)! Y H'(Kp)
i€Z i€Z
in K(D). Here H'(K%) is identified with the element Doae=(A: HY(K%))A' of

K (D). We show that for any E € Irr(W) we have:
(c) d(REg) = Regsgn-
Indeed, by (b), this is the same as the obvious equality
W Z Z (—1)FHAm OHE) 1 (oo, B)HI(KE)
i€Z zEW
=W > (-1 Cr(avw, E @ sgn) H' (Kp).
I€Z zEW

If A € D", then, by 44.7(k), there exists E € Irr(W) such that the coefficient of
Ain Rg is # 0. Applying d to Rg we see that the coefficient of A° in d(Rg) is
# 0; that is, the coefficient of A° in Rggsen is # 0. In particular, A° € D"". In

the same way we see that for any E € Irr(W) we have
(d) (A:Rg) ==%(A°: REgsgn)-
Using (a) and the equality dd = 1 we obtain
A = (—1)edim(supp(A)) g 4°2) — (—1)codim(supp(4)) (_1)codim(supp(4°))( goyo.
It follows that (A°)° = A and
(e) codim(supp(A4)) = codim(supp(4°)) mod 2.

44.9. For any sequence s = (s1, s2, ..., s,) in I we write K%, K%, instead of KISJS’,

RpQ'; see 28.12,
Let A € D**. Then (A: H'(K%)) # 0 for some w € W,i € Z. We set

(a) eA _ (71)i+dimG.
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We show that e is well defined. Assume that we have also (A : H' (K%')) # 0
with w' € W, i/ € Z. We must show that i =i mod 2. Let s = (s1,$2,...,8:),
s’ = (s1,85,...,5.) be sequences in I such that s1s2...s, = w, sish...s., =/,
r=1(w), r =l(w"). We will show that

(b) K is a direct summand of K$,.

Assuming this and a similar statement for w’, s’ instead of w,s we see that (A :
H'(K%)) # 0 and (A : H'(K%)) # 0 and the congruence i« = i mod 2 follows
from 35.17(a). (Although in 35.17 it is assumed that D is clean, in the present
application it is enough to use the weaker hypothesis that 2 holds for D.)

Recall that K%, = 7s!Q; where

Z;,I,D ={(Bo,Bi,...,B,,g9) € B x D;
9Bog™' = By, pos(Bi_1, B;) € {1,s;} for i € [1,7]}

and Tg : ZS,I,D. — D is given by (Bg,Bi,...,B,,9) — ¢g. Recall from 44.2

that K% = 7,,Q"%. We have 75 = wp Where p : _ZQS,)LD — Zyp is given by
(Bo, B1,...,Br,g) — (Bg, By, g). Hence K% = py1(pmQq) so that to prove (b) it is
enough to show that Q“? is a direct summand of p;Q;. This follows from the fact
that p is proper and is an isomorphism over an open dense subset of Zj’ ,,. This

proves (b).

44.10. We now fix a subset I C I such that ¢(I) = I. Let P € Pr (see 26.1).
Then NpP # () so that D' :== NpP/Up is a connected component of the reductive
group G’ := NgP/Up; note that G'° = P/Up. Let n' : NpP — D’ be the

obvious map. As in 27.1 we consider the diagram D’ £V SV 25 D where
Vi ={(g9,2) € DxG%ax"1gx € NpP}, Vo ={(g9,2P) € DxG°/P;x 19z € NpP},
a(g,z) = 7'(z71gx), d'(g,z) = (9,2P), a”(g,2P) = g. As in 27.1 for any G'°-
equivariant perverse sheaf A’ we define a complex of sheaves A = ind5, (4’) € D(D)
by A = ayA}[2dim Up] where A} € D(V3) is such that a* A’ = o’*A]. We show:
(a) If A" € D", then indB,(A') is isomorphic to a direct sum of objects of
Dun
The proof is similar to that of [L3] 4.8(I)]. Before giving it we need some prelimi-
naries. Let B’ be the flag manifold of G’° = P/Up. For 3 € B’ let B € B be the

inverse image of 3 under the obvious map P — G’°. Let w € W (see 26.1). Recall
that

Ziyp ={(B,B',x) € Bx Bx D;zBx~' = B',pos(B, B') < w}.
Replacing here D, I by D’, I we have

Zélj[,D/ = {(6aﬂ/ay) eB x B x D/;yﬂy71 - ﬂ/,pos(ﬂaﬂ/) < ’U)}
We have a commutative diagram with cartesian squares

a ~ ~r

_ s _
241D Vi Z§1,p

Lo

’ "
D/

S}

Vo —— D
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where
Vi={(3,V,y,9.2) B xB xDypy ' =pf, 2" 'gz € NpP,
y =7'(z"gz),pos(3, f') < w},
a8, 8.y, 9.2) = (8,8y), @(B,8,y.9,2) = (xfz"",zf'x™ ", g),
88,8 y) =y, 88,7, y,9.%) = (9,2), 8"(B,B',x) = (z,2P)

with z € G° such that 2~'Bz C P.
Note that a,a are smooth with connected fibres and a’,a’ are principal P-
bundles. It follows that

IC(Vla QZ) = @*IC(Z&LDH Ql) = al*IC(ZéLjLDa QZ)
where the first Q; lives on
{(57 bla y»g; IE) E ‘717 pos(ﬂ7 /81) = ’LU} = Q_l(Zé)‘j]’D’) = d/_l(Zéle’D)a
the second Q; lives on Z(})‘jI’D, and the third Q; lives on Z(})‘jI’D. Hence
SIC(V1, Qi) = a8 IC(Z ) b, Qu) = &/* 6/ IC(Zy pr Qu);

that is, 6{1C(V1, Qi) = a*K} = o/*K' where K’ = §/'IC(Z; 5, Qi) € D(Va).
Since a, a’ are smooth with connected fibres of dimension dim D +dim Up, dim D —
dim Up, respectively, we see that for any ¢ we have

Q* (Hz'—dirn D—dimUp Kg/)[dlm D + dim UP] _ Hz (Q*Kun/)
— HZ(a/*Rg) _ a/*(Hi—dim D+dim UPK/)[dimD _ dlm UPL
hence (setting j = ¢ —dim D — dim Up):
a*(HKp) =o' (HT24mUr K[ —2dim Up).

We see that o ‘ .
indB,(H'K,) = a) (HT24mUr 7).
We have
(b) @ indp, (H K [—5] = @HI 9™ Ur Ki5)[—4] in D(D).

J J
Indeed the left-hand side is

@ ay (HI+24mUr iy — o' K'[2 dim Up]

J

= af’d,”IC(Z(}fLD, Ql)[Q dim Up] = Kg [2 dim UP];
(we have used that K' = P, HIK'[—j] which follows from the decomposition
theorem [BBD] applied to the proper map ¢”). This is equal to the right-hand side
of (b) since K5 = P, HI(KY¥)[—j], by the decomposition theorem applied to the
proper map a”§”. Now HIKY, is a direct sum of character sheaves on D’; hence,
by 30.6(a), indB,(H7K,) is a perverse sheaf on D for any j. Taking H' for both
sides of (b) we obtain for any i € Z:
(c) indD, (H'KY,) = H*2dimUr g,
Now let A’ € D'un We can find w € Wy and i € Z such that A" appears in H K5,
Since H'K®, is semisimple, A’ is a direct summand of H'KY%,. Using (c) we see
that indB, (A’) is a direct summand of H*+2dimUr £ Hence (a) holds.
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From (a) we see that A’ — indB,(A’) (with A’ € D’'*") defines a group homo-
morphism K**(D') — K*"(D) and a Q-linear map Kg'(D') — K§'(D) denoted
again by indg,.

Applying this homomorphism to both sides of 44.6(a) for D’ instead of D and
for x € Wy and using (c) we obtain

gri(Kp) = Y P.(1)indp (gr1(KH)).
yEW;y<z

Here, P, , are as in 43.2 for W or equivalently for W. The left-hand side can be
evaluated using 44.3(d) for D; we obtain:

Z Py (1)gri(K}) = Z Py,x(l)indg'(grl (Kp))-
yeEWy<z yeEW y<z

Since the matrix (Py ;)szyew, is invertible, we deduce for any y € W:
(d) indp (gr1(Kp,)) = gri(Kp).

44.11. We preserve the setup of 44.10. Let I', W be as in 43.1 and let W be the
subgroup of W generated by W/ and I'; now W plays the same role for W as
W for W. For any E’ € Mod(W;), the element Ry € K& (D") is defined as in

44.6(b). Let 1nngE' € Mod(W) be the induced module. We show:
(a) ind?, (Rp') = R, € K& (D).

nd¥W E’
Wr
Applying ind5, to 44.6(b) with E, D replaced by E’, D’ and using 44.10(d) we

obtain
indp, (Re) = (W71 > (1) 4 r(aw, B H (KP).
1€Z zeW
Using the definitions and 44.7(n) we have
1ndW E |W| ! Z Z l+dimGtr(‘rw’indEl)Hi(K%)
i€Z €W
= [WITHW 7 ) > (—1) S (yarwy ™, B H (Kp)
i€Z xeW, yeW;yzwy eWw
=WIWLTYT Y () e, B)HI(KY )
i€Z zEW,yeW
=[WITHW, T Y Y () e (ew, B HY(K)
1€Z zeWr,yeW
=W 7> Y ()G (e, B HY(KD).
i€Z 2EW
Now (a) follows since dim G = dim G’ mod 2.

44.12. We preserve the setup of 44.10. Let s be a sequence in I. From 29.14 we see
that resB (K%)) = @7 Kb/[—dg] where T is a certain finite collection of sequences
in I and dy are integers. Since K%, = @, H'(K%)[—i], K%, = @, H(K},)[—i], we
have

(a) @resD (H'(K3%)) @ HY (KY)[—i — dy).

i te7 i



CHARACTER SHEAVES ON DISCONNECTED GROUPS, X 103

By 31.14, resd (H'(K%,)) is a perverse sheaf on D’. Hence taking H* for both sides
of (a) we obtain

(b) resp (H'(Kp)) = @ H"*(K}).
teT

In particular, if A € D"", then res?’ (A) is a direct sum of objects in D’un Hence
A resP'(A) (with A € D*") defines a group homomorphism K“*(D) — K“*(D’)
and a Q-linear map K""(D)q — K§'(D’) denoted again by resB’. Taking the
alternating sum over ¢ in (b) we obtain:

(c) resp (gr1(KB)) = > (—1)"gri(K}).
teT

For any £ € K§ (D), &' € K§'(D') we have

(d) (resp (€) : €) = (€ : indD, (¢)))

where the first (:) refers to D’ and the second (:) refers to D. Indeed, we can assume
that £ = A € Dv*, ¢ = A’ € D'*"; in this case (d) follows from the equalities in
30.9 and the semisimplicity of the perverse sheaves resd (A), indB, (4").

The following subspaces of K§'(D) coincide:

-the subspace (1) spanned by the Ry (with E € Mod(W));

-the subspace (2) spanned by the Rp (with E € Irr(W));

-the subspace (3) spanned by the elements gri(K7) (with © € W);

-the subspace (4) spanned by the elements gri(K%,) for various sequences s in I.
Indeed, (1) C (3) by 44.6(b); (3) C (2) by 44.7(i); (2) C (1) obviously; moreover,
(3) = (4) by the arguments in 31.7. We denote any of the four subspaces above by
Vp. We define similarly a subspace Vp: of IC&"(D’ ). We show

(e) resD (Rg) = Rp|y,

where Ely,, € Mod(W7;) is the restriction of E. From (c) we see that resB maps
Vp into Vp/. Thus both sides of (e) are in Vp,. Now the restriction of (:) (for D')
to Vpr is nondegenerate (we use the analogue of 44.7(1) for D’). Hence to prove (e)
it is enough to show that

() (resP (Rg) : Rp/) = (RE\w, : Rg)
for any E’ € Mod(W7). By (d) and 44.11(a), the left-hand side of (f) is equal to

(Rp :indB,(Rp) = (Rg : R

ind":wvl B
Using 44.7(1) for D and for D’ we see that it is enough to use the equality

WY tr(ew, B)tr(ew, indYy E') = [W; 7 Y tr(ew, B)tr(ew, EY)
TEW reEW

which follows from the standard character formula for an induced representation.
This proves (f) and hence (e).
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44.13. Let 2 € W be such that for any y € W we have yrowy o= ¢ W;. We
show:

(a) resp (gr1(Kp)) = 0.
Using 44.7(i), we see that it is enough to show:

(—1)*mE " tr(aw, E)resp (Rp) = 0.
Ece
Using 44.12(e) and 44.6(b) for D’, we see that left-hand side is

Z tr(xw,E)RE|w = |W,|™! Z Z )G (2, B)tr(zw, E)gri(K5).
Ece Ece 2eW;

To show that this is zero it is enough to show that for any z € W we have

Z tr(zw, E)tr(zw, E) = 0.

Ec¢
The left-hand side is equal to [W|~'|W| times 3", tr(zcw, E)tr((xw) !, F) where
E runs over the simple Q; [W]—modules up to isomorphism. (A module E whose
restriction to W is not simple contributes 0 to the last sum.) It is enough to show
that the last sum is 0. It is also enough to show that zw and xzw are not conjugate
in W. But this follows from our assumption on x. This proves (a).

44.14. An element w € W is said to be D-anisotropic if the following condition
holds: for any x € W, I G I such that €(I) = I we have zwe(x)~! ¢ W, Let
A e D",

We show:

(a) A is cuspidal if and only if any w € W such that (A : gri(K)) # 0 is

D-anisotropic.

Assume first that A is not cuspidal. By 31.15 there exists I S I, ¢(I) = I and P €
Pr (so that NpP # 0) such that setting D' = NpP/Up, G’ = NgP/Up we have
resD "(A) # 0. By 31.14 and 44.12, resB’(A) is an N-linear combination of objects
in D'“". Hence there exists z € W; and i € Z such that (resD (A): Hl(KD)) #0.
Using 44.7(m) for D’ we see that there exists E’ € Irr(WI) such that (resD (A) :
Rp/) # 0. Hence there exists y € W; such that (resB3 (A) : gri(KY%,)) # 0.
Using 44.12(d) we deduce (A : 1ndD/(gr1 (K?,)) # 0 and using 44.10(d) we see that
(A:gri(K%)) #0. Since y € Wy, y is not D-anisotropic.

Conversely, assume that there exist w € W,z € W, [ g I such that (A :
gri(K%)) # 0, €(I) = I and zwe(z)~! € W;. Using 44.7(n) we see that we can
assume that z = 1,w € Wj. Choose P € P; (so that NpP # ) and set D' =
NpP/Up, G' = NgP/Up. Using 44.10(d) we see that (A : indD, (gr1(K%))) # 0.
Using 44.12(d) we see that (resB (A) : gri(K%,)) # 0 so that resB (A) # 0. Thus
A is not cuspidal. This proves (a).

We show:

(b) Letw € W be such that w is D-anisotropic. Then l(w) = |I| mod 2 where
1. is the set of orbits of € : 1T — 1.

We use the notation in 42.7. We consider the equality

(~D)MHEM(VR) =) (~1)"H™ (V})

n
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(see 42.7) in the Grothendieck group of W”-modules. Taking the trace of wD &
WP we obtain

(1) det(wD, Vr) = Y _t,

where

ty = (—1)"tx(wD, P @ A™(

Jen FeEFy

F).

Since wD permutes the summands in the last direct sum, we have ¢, = 0 unless
there exist J € n and F' € F; such that D(J) = J and wD(F') = F. For such J, F
we can find Fy € F; such that D(Fy) = Fy and {y € W;y(Fy) = F;} = Wy;
moreover, F' = x71(F;) for some z € W and we(x) 1 (F;) = 27 1(F;) so that
zwe(z) 1 (Fy) = Fy and zwe(x)~! € W . Since w is D-anisotropic, we see that
J =1 Thus t, = 0 unless » = {I}. On the other hand, if n = {I}, then
Fy={0}, 7, = 0 and t,, = 1. Thus we have (—1)/! det(wD, Vr) = 1. Note that
det(w,Vr) = (=1)"*). Since D permutes a basis of Vg indexed by I (according
to €) we have det(D,Vr) = (—1)H=1%l. We see that (—1)!*)(—1) = 1. This
proves (b).

44.15. Let P be a parabolic subgroup of G° such that NpP # (. Let D' =
NpP/Up (a connected component of NgP/Up). We show:

(a) If A € D'"* A € D", are such that A appears with nonzero coefficient in
indB, (A") (or equivalently A" appears with nonzero coefficient in resB (A)),
then e = A", Moreover, codim(supp(A)) = codim(supp(4’)) mod 2.
We can find I C I, ¢(I) = I such that P € Py and w € Wy, ¢ € Z such
that A’ is a direct summand of H*(K,). Then indD,(A4’) is a direct summand
of indp,(H'K,), hence a direct summand of H'T2dmUr K% (see 44.10(c)). Tt
follows that A is a direct summand of HiT2dmUr ¥ By definition we have
ed = (—1)itdim(P/Up) A — (_1)i+2dimUp+dimG® Thyg e4 = eA’. This proves
the first statement of (a). We can find a parabolic subgroup P; of G° such that
NpP, #0, P, C Pand A, € ﬁ?{”c (where D; = NpP;/Up,) such that A’ is a com-
ponent of indg; (A1), hence A is a component of indgl(Al). To prove the second
statement of (a) it is enough to show that (—1)codim(supp(4)) — (_1)codim(supp(A1))
(—1)codim(supp(A") — (_1)codim(supp(41))  Thug we are reduced to the case where A’
is cuspidal. In this case, by 3.13(b) we have dim supp(A) = dim(G°) —dim(P/Up)+
dim supp(A’). Thus, codim(supp(A4)) = codim(supp(4’)) and (a) is proved.
We show:
(b) If A € D' and A° € D" is defined by d(A) = (—1)cdmGuPp(4) 40 (see
44.8(a)), then eA” = e”.
If P, D’ are as in (a), then, by (a), ind3,resB’ (A) is a linear combination of objects
Ay € D" with et = e?. Since d(A) is an alternating sum of elements of the form
indg,resB/(A), we see that d(A) is a linear combination of objects A; € D" with
et = e, Now (b) follows.
Let x € W. We show:
(c) The element Ry, € K§(D) is a Z-linear combination of objects A € Dun
such that e = (—1)1=)—a(@),
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Let ¢ be the two-sided cell containing z. Using 43.12(b), for any A € D" we have
(with notation in 43.12):

(AiRe)= Y i(cha, B —ala)
(d) Echr(W)

Y ()@MW, (el B —ale) — )(A: Re).

Y,J;y<x,j >0

From 44.7(j) we have for any A € D*" and z € W:

> (d(A) : HI(Kp))(—v)

jEZ
) . 1
= (- GpAmEHE Y T (d(A) : Rp)tr(caw, E)
Echir(W)
. . 1
_ (_1)d1mGUd1mG+l(z) Z §(A . RE@Sgn)tr(czwav)
Echir(W)
) . 1
= (L) G R N (A Rp)tr(cam, (B @ sgn)")
E€lir(W)
) . 1
= (-G tmEHE Y T (A Rp)te(cle, BY).
Echir(W)

(We have used 44.8(c), 43.4(c).) Hence for any N € Z we have

FAval

1 v im 2)(I7% z
> A Rp)telo, B N) = (d(4) s BN OO (R )) (—1) N,
Echt(W)

Introducing this in (c) we obtain
(At Ry,) = (~1)0720)(@ () : B0 G20 ()
€ 3 ()OO @A) B O (),

Y,J;y<x,j>0

Since ay 4;; are integers (see 43.12) we see that (A : Ryx,_) € Z. Assume now that
(A: Ry,_) #0. Using (e) and 43.12 we see that either

(Ao . gdim G+l(x)7a(x)(f(%)) 7& 0
or there exist y, j such that j = I(z) + I(y) mod 2,
(Ao . HdimG+l(y)—a(m)—j([_(1[;))) 7& 0

(here A° is as in 44.8(a)). In the first case we have e?” = (—1)"®)~2()  In the
second case we have e’ = (—1)!W—a®)—i = (_1)l@)-a®) gince j = I(z) + I(y)
mod 2. This implies (c) in view of (b).

Note that D has property 2 (see 44.7) if and only if for any A € D" we have
ed — (71)codim(supp(A)).
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44.16. We show that if D has property 2, then for any A € D weW,ickZ
we have

(a) (—1)+emE(A: d(H (K}))) € N.
Indeed, the expression (a) is equal to (—1)"F4m&(d(A) : Hi( ) (see 38.10(e)).

o

If this is # 0, then it is equal to (—1)cdimurp(4)eA”(4° ;. Hi(K¥)). By property
A for A° and 44.8(e), this is equal to

(_l)codim(supp(A))(_1)codim(supp(A°))(Ao . Hz([’(g)) — (AO . HZ(Kg)) e N.
This proves (a).

44.17. Let x € W and let ¢ be the two-sided cell of W that contains x. Let a be
the value of a: W — N on c. We show that in K§'(D) we have:

(a) (—1)~@H@) ati@)+dmd (o)

= Ry, @sgn + Q-linear combination of elements Ry , _gsgn With ¥ <z,
(b) (—1)~eH@g(g-ati@+dimG fray)

= Ry, + Q-linear combination of elements Ry _,  with ' <z
By 44.7(m), the left-hand side of (b) is equal to ), %tr(cmfw, E?;—a)d(Rg). By
44.8(c) and 43.4(b), 43.6(b), this equals

1 T v 1 A v
Z §tr(Crva E7; 7a)RE®sgn = Z §tr(0xTw, (E ® Sgn) ; 7a)RE

B B
1
= ZE: tr(cl_, B’ —a)Rp = Z itr(c;ﬁw, EY;—a)Rg =b +1"

FE;cg=c

| —

where

1 1
b — Z §tr(clw,E”;—a)RE: Z 5tr(tggw,EOO)RE
E;cg=c Eicp=c
1
-3 Lt s = R
B
1
v'= > Ftr(cle. B —a)Rp.

FEicg<c

Now b” is a Z-linear combination of elements of the form Rz where E is such that
cg < c and these elements are Q-linear combinations of elements of the form Ry,
for various 2’ € W such that 2’ < z, by 43.10(b). This proves (b). Now (a) is
obtained by applying d to both sides of (b) and using the equality d(Ry) = Rygsgn
for any ¢ € R(W) (see 44.8(c)).

Now let a’ be the value of a : W — N on the two-sided cell wgc = cwy. We
show:

(_1)711 +l(woa;)H7a +l(wox)+dim G(Kggm) _ RNwozw®Sgn

()

+ Q-linear combination of elements Ry, gsgn With 2 < x'.

woz’ @

This is obtained by replacing = by woz in (a) and noting that for y € W we have
woy < woz if and only if x < y.
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In the remainder of this section we assume that D satisfies property U (in addi-
tion to property ).

For any x € W we set 7, = Ry, ,, T = (—1) 7200 Hwon) Ry o en. We note
the following properties of the elements r,, 7:

(i) (rz : re) = 0 whenever x o ';
(ii) for any two-sided cell ¢, the Q-vector space spanned by {r,;z € c} coincides
with the Q-vector space spanned by {7;x € c};
(ili) for any € W there exist d, o € Q defined for 2’ < =z such that
(A:ry + Zx/;$,<x dyry) € N for any A € f)un;
(iv) for any € W there exist d,.» € Q defined for x < 2’ such that
(A7 + Y g se dawar) € N for any A € DU,

In the setup of (ii), let V. be the Q-vector space spanned by Rg with E € Irr(W)
such that cg = c¢. From the definitions, for any x € c, r, belongs to V. Conversely,
for any E € Irr(W) such that ¢z = ¢, Rp belongs to the first vector space in (ii),
by 43.10(b). Thus the first vector space in (ii) is equal to V¢. Let V! be the Q-

vector space spanned by Rp:gsgn with E' € Irr(W) such that ¢gr = wge. From the
definitions, for any z € c, 7, belongs to V. Conversely, for any E’ € Irr(W) such
that cgr = woc, Rergsgn belongs to the second vector space in (ii), by 43.10(b).
Thus the second vector space in (i) is equal to V.. If E’ € Irr(W), then we have
cg = woc if and only cgrggen = ¢ (a known property of two-sided cells). It follows
that Vo = V and (ii) is proved.

We prove (i). Let ¢, ¢’ be the two-sided cells that contain x,z’ respectively.
Assume that ¢ # ¢’. It is enough to show that (h: h') =0 for any h € V¢, b/ € Vo.
Hence it is enough to show that if E, E’ € Irr(VV) are such that cg = c,cp = ¢/,
then (Rg : Rg/) = 0. This follows from 44.7(1) since E, E' have nonisomorphic
restrictions to Q[W].

Now (iv) follows from (c) and (iii) follows from (b) in view of 44.16(a).

From (i)—(iv) we deduce, by a general result in [L3, 16.8(III)], that:
(d) (A:r,)eN, (A:7,)eNforany Ae D" zeW.

We show:

(e) Let A € D" and let E,E' € Irr(W) be such that (A : Rg) # 0, (A :
RE/) 75 0. Then Cp = Cgr.

By the proof of (ii) we see that there exists x € cg such that (A : r;) # 0; similarly,
there exists @’ € cps such that (A : rp) # 0. Using this and (d) we deduce
(A:ry) >0, (A:ry) > 0. It follows that (ry : ) > 0. (By (d), (ry : 72) is a
sum of terms in N, at least one of which is > 0.) Again by the proof of (ii) we have

E : 2 : l
Ty = SElREl,’I‘I/ = $E2RE2;

Eiicg,=cp Esicp,=cpr

where sg, € Q, 5%, € Q. From (r, : ryr) # 0 it follows that there exist £, Ey such
that cg, = cg, cg, = cg/, (Rg, : Rg,) # 0. From 44.7(1) we deduce that Ej, Es
have isomorphic restrictions to Q[W], hence cg, = cg,. It follows that cg = cp.
This proves (e).
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PropositAion 44.18. Recall that D is assumed to have property A and property 2A.
Let A € D",

(a) There exists a well-defined two-sided cell ¢y in W such that whenever E €
Irr(W) and (A : Rg) # 0, we have cg = ¢'4. Moreover, we have €(c’y) =
cy.

(b) We have woc/y = ca where c4 is as in 41.4.

(a) follows from 44.17(e) and 43.6(f). We prove (b). Recall (41.8) that
(c) A4 K% for somex € ca;if 2’ € W and A+ K'g, then x < o’.
We show:
(d) if E € Irr(W) is such that (A: Rg) # 0, then c4 < wocg.
Using 44.6(c) we see that

(WY ()™ Cte(Gpm o, B) (A : H'(KB)) #0.
i€Z xeW
Hence there exist x € W, i € Z such that tr(¢yem|p=1, ) # 0 and (A : HY(K%)) # 0.
Using (¢) we deduce that y < x for some y € c4. From the definitions we have

Crm = (,1)l(wow)jﬂ ot

Wo ~woxrw *

It follows that tr(wocl, elv=1, E) # 0. Thus the action of ¢}, ,|v=1 on E is # 0.
Using 43.6(b) we see that z < woz for some z € cg. Hence x < wpz. Since y <X z,
we have y < wpz. Since y € c4 we have ¢4 < wocg. This proves (d).

We show:
(e) There exists E € Irr(W) such that (A : Rg) # 0 and wocg = c4.
Let z be as in (c). We have 3,5 (A HI(K%))(—v)? # 0. Using 6.7(c) we deduce
that

plmGHE) N p )y ptr (e, BY) # 0.
Ece¢

Hence there exists £ € Irr(W) such that (A : Rg) # 0 and tr(cyw, EV) # 0 that
is, tr(cl_, (ET)?) # 0. The last condition implies, in view of 43.6(b) that z < z for
some z € cgi = wocg. Thus, wocg =< ca. Since ¢4 < wocg by (d), it follows that
ca = wocg. This proves (e).

From (e) we see that woc’y = c4. The proposition is proved.

44.19. For any e-stable two-sided cell ¢ of W let ﬁ’c‘" be the category whose
objects are those A € D“" such that ¢/, = ¢ (see 44.18) and let K¢(D) be the
subgroup of K“"(D) generated by the various A € D** up to isomorphism. We
have K“"(D) = @, K¢(D) where ¢ runs over the e-stable two-sided cells of W. We
show:

(a) A A° (see 44.8(a)) induces a bijection between the set of isomorphism
classes in f)g” and the set of isomorphism classes in ﬁmc; 1t also induces
an isomorphism K¢(D) = K®o¢(D).

Let A € D", Then (A : Rg) # 0 for some E € Irr(W) such that ¢z = c. We have
(d(A) : d(Rg)) # 0 and (A° : Rpgsgn) # 0 (see 44.8(d)). Thus A° € D¥» =

CE®sgn
ﬁun

woe- The remaining statements of (a) are immediate.
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44.20. Let I be a subset of I such that (1) = I. We fix a two-sided cell ¢’ of W7
(see 26.1) such that e(c’) = ¢’. There is a unique two-sided cell ¢ of W such that
¢/ C ¢; we must have ¢(c) = c.
Let Irre (W) = {E € rr(W); ¢ = ¢}, It/ (Wy) = {E' € Ir(Wi); ¢ = '}
Let RC(VV) be the subgroup of R(W) generated by the elements ¢p with E €
Irrc(W). Let Re (WI) be the subgroup of R(WI) generated by the elements ¢ g/
with B’ € Irres(W7y). From 43.11(b) we see that

(a) JW R(W;) — R(W) satisfies J3 (Ret(Wr)) C Re(W).

Let K¢(D) be as in 44.19. Similarly, we define K¢ (D'). Define a Q-linear map
Pe : QK" (D) — QRK(D)by A Aif A€ D™ and A— 0if A € D", ¢y # ¢;

this restricts to a homomorphism K**(D) — K°¢(D). Note that for E; € Irr(W)
we have Rg, € Q ® K21 (D), hence

(b) pe(RE,) = RE, if cg, =c and pe(Rg,) =0 ifcg, #c.
Let E' € Trre/(W;). We show:

(c) RJ“,’VVI (pgr) — pc(RindglE/)'

By 44.7(0) and (b), both sides of (c) are integer combinations of elements of the
form Rp, with E; € €. Hence (using 44.7(1)) it is enough to show that for any
FE1 € €, we have

(d) (RJ‘ZV (¢rr) : REl) = (pc(RinngE’) : REl)

Wi
If cg, # c, then from (b) we see that the right-hand side of (d) is zero; moreover,
since ¢ € Re' (W) we have vag (pr') C Re(W) (see (a)), hence Ryw 4 ) €
I 2 E’/

K¢(D) so that the left-hand side of (d) is also zero. Thus, we may assume that
cg, = c¢. In this case (d) can be rewritten in the form

(RJ“}Z;,VI (d5r) : RE1) = (RinngE’ : RE1)
or equivalently (using 44.7(1)) in the form

Z (E'E)[W|~! Z tr(uw, E)tr(uw, E1)

(e) EG@(W);G,E/:G.E ueW
= W[ ! Z tr(xw,indglE')tr(xw,El).
zeW

The right-hand side of (e) can be rewritten as [W;| ™' Yy tr(zow, E')tr(zw, E));
substituting tr(2e, B1) = g cp(wv,) (B1, E1)tr(2w, E) (see 43.9(a)) this be-
comes

W™ Y te(zw B Y (B Et(zw, BY)

zEWT E|elrr(W7)
= Y (B, E)a(E,E)) = (E,E) - (E'®.E)
E,elrr(Wr)

where o(E’, E{) is 1 if B/ 2 F{, is =1 if B/ &2 F{ ® ¢ and is 0 otherwise. Now in
the left-hand side of (e) the second sum is zero unless E is isomorphic to E; or to
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E; ® ¢ in which case we have automatically ag: = ap (since agp = ap,). Thus the
left-hand side of (e) is equal to

Z (E'E)|W|! Z tr(uw, E)tr(uw, E1)

Eclrr(W) ueEW
= Y  (E.E)a(E,E)=(E E)—(E E ®E).
E€lit(W)

This proves (e) and hence (c).

For any A’ € D' we set tindp,(A") = pe(indB, (A)), (see 44.13). Now A’ —
tind5, (4’) defines a group homomorphism K¢ (D’) — K¢(D) and a Q-linear map
QK (D) — Q ® K¢ (D); these are denoted again by tindB,.

Let ¢’ € Re/(Wy). We show:

. 1D B )
(f) tlndD/ (R¢/) - RJ“}\\/]I ((b,).
We may assume that ¢’ = ¢p where E' € Irre/ (VV 1). From the definitions we have
Ry, €Q® K¢ (D) and tindp, (Ry,,) € Q® K°(D). Applying p. to the identity

indp, (Ry,,) = R € K&'(D)

indgl E/
(see 44.14(a)) we obtain
tindp, (Ry,,) = pe(R

indx":vIE/)'
Now (f) follows from (c). .

For any z € ¢ we have Ny € Re(W). Similarly, for any € ¢’ we have
NI € Re/(Wi). Combining (f) (with ¢/ =RL_ z € ¢/) with 43.10(c) we see that

(g) tindp, (Rys_) = Rz _ -
We define a homomorphism 'J\\gl : R(W) — R(W;) by

/JVV:,/I (0E) = Z (E',E)dp
E'clir(Wr)ap =ap

for any E € Irr(W).
Let ¢ € Rc(W) and let A’ € D'%". We show:

(h) (tindB,(A"): Ry) = (A" R ).

We may assume that ¢ = ¢ where E € Irro(W). By the definition of tind5, (A’),
the left-hand side of (h) is equal to (ind5,(A4’) : Rg). From the second equality in
43.9(a) we see that

1T ()

_ /
R, = Y, (E.E)Rp.
E'clrr(Wr)
By 43.9(b) we may restrict the previous sum to those E’ such that ap < ag;
moreover, for £’ such that ags < agp we have cg # ¢’. Thus we have Rp), =
I

R/JWI(¢) plus a linear combination of A” € D'*" with ¢/;, # ¢/. We see that
W

the right-hand side of (h) is equal to (A’ : RE\W,)’ hence to (A’ : resB (Rg)) (see
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44.12(e)) and (h) is equivalent to (indD,(A’) : Rg) = (A’ : resB (Rg)); but this
follows from 44.12(d). This proves (h).

44.21. We preserve the setup of 44.20. We assume that
(i) for any E’ € Irres (W) there exists a unique E € Irre(W) (up to isomor-
phism) such that (E’, E) # 0; moreover, we then have (F’, F) = 1;
(ii) for any E € Irre(W) there exists a unique E’ € Irre/ (W) (up to isomor-
phism) such that (E’, E) # 0; moreover, we then have (E', E) = 1.
Note that the E' — F in (i) and E — E’ in (ii) defined inverse bijections £’ — E

between the sets of isomorphism classes of objects in Irre/(W;) and Irre(W). If
E’ «— FE, then

JVY\‘,/I (¢E') = dE,
(a) ’Jg’ (¢r) = ¢pr + linear combination of elements ¢ g/ with

E" € Irr(Wp) — Irre (W7).

The second equality in (a) is obvious. To prove the first equality in (a) we consider
E € Irr(W) such that apr = ap and (E', E) # 0. Tt is enough to show that E = E.
By 43.11(b) we have cz = c. Using (i) we see that £ = E, as required.

We show:

(b) if A" € D', then tindYy (A') # 0.

Assume that tindxv:vI(A’) = 0. From 44.20(h) we deduce (A’ : R =0 for

'JVYVV’(¢E))
any E € Irre(W). Thus, for any E’ € Irre/ (W) we have (A’ : Ry,,) =0 (see (a)).
This contradicts 44.7(k) for D’. This proves (b).

We show:

(c) if A€ D', then A := tindxv:vl (A") is a single object of DU

By 44.7(k) we can find E’ € Irr(W;) such that (A’ : Rgr) # 0. We have necessarily
E' € Irres(Wy). By 43.10(b), R is a Q-linear combination of elements Ry:_ such
that tr(t,o, E>) # 0 (and in particular 2 € ¢’). Hence there exists 2 € ¢’ such
that (A’ : Ryr_) # 0. By 44.20(d) we have

(d) Ryr_ =n1A1 +n2ds + - +n, A,

where A4; € D" are nonisomorphic to each other and n; € Z~g; we can assume
that A; = A’. We have:

'JVV;I Npw) = me + linear combination of elements ¢p» with

(e) E" ¢ II‘I‘(WI) — Irres (WI)

Using (a) we see that this is equivalent to the identity tr(t,w, E®) = tr(t,w, E'™)
(for any E' < E as above) which follows from 43.10(c). For i,j in [1,r] we set
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W e W .
1'7;7]» = (tlndWI (Az) : tlndWI (Aj)) We have_

3 minzi = (tindYy (Ryr_) : tindWy (R _)) = (tind¥y, (Rws_) = Ry,
i,j€[1,r]

= (Ryz_ R,J‘\’gv"vI(Nm)) = (R i Rw_)= Y nl.

i€[1,r]

(The first equality comes from (d); the second equality comes from 44.20(g); the
third equality comes from 44.20(h); the fourth equality comes from (e); the fifth

equality comes from (d).) Since tindgl (A;) is an N-linear combination of objects

in D*" and is # 0 by (b), we see that (tindgl (4;): tindgj (A;))is>1ifi=jand
is > 0if i # j. Hence from the equality 3, .oy . nin@ij = 2 i1, n? it follows
that z; ; =1if i = j and x; ; = 0 if ¢ # j. Since A’ = A; we see that (c) holds.
We show:
(f) If A1, Ay are objects of D' and A := tindgl (A1) = tindgl (Az), then
Ay = A,

Assume that A; 2 As. Let E' € Ity (WI) We can find F € Irr, (W) such that
(E',E) = 1. For i = 1,2 we have:

(A: Rp) = (tindY (A4;): Rp) = (A : R )= (A; : Rp).

TN (5)
(The second equality holds by 44.20(h); the third equality holds by (a).) Thus
we have (A1 : Rg) = (A2 : Rp) for any E' € Irre/(Wy). This implies that
(A1 Ryr_) = (A2 @ Rys_) for any 2 € W;. We can choose z € ¢’ such that
(A1 : Rypr_) # 0. Then we have also (Az : Rys_) # 0. We can assume that A;, Ay
are the first two terms in the right-hand side of (d). But in the proof of (c) we have
seen jchat (tindgl ({11) : tindgl (A2)) = 0. This contradicts the assumption that
tind%l(Al) = tindgj (A2) which is # 0 by (b). This proves (f).
We show:

(g) If A€ D", then there exists A’ € D' such that A = tindgf (A).

(¢

By 44.7(k) we can find E' € Irr(W) such that (4 : Rg) # 0. We have necessarily
E € Ire(W). Let E' € Irre/(Wy) be such that £ < E. By 44.20(f) we have

0#(A:Rg)=(A: R,w (E,)) = (A: tindg (Rg)). Hence there exists A’ €
Wi I

ﬁ”é," such that (A" : Rp/) # 0 and (A : tindgl(A')) # 0. This implies that
A= tindgj (A’). This proves (g).

Combining (c), (f), (g), and using 44.20(h) and (a), we obtain the following
result:

(h) A" — tindxv:vl (A" defines a bijection between the set of isomorphism classes

in D" and the set of isomorphism classes in DE™; this bijection has
the following property: for any E € Irt(W) and any A’ € D.,"™ we have
(tindYy (A"): Rp) =0 if E ¢ Irre(W) and (tind¥ (A'): Rg) = (A": Rp)

where E' € Trre/ (W) is defined uniquely by (E',E) = 1.
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45. REDUCTIONS

45.1. In this section we show that the problem of classifying the unipotent char-
acter sheaves on D can be reduced to the analogous problem in the case where G°
is simple and Z5 = {1}.

Let 7 : G% — GY be a simply connected covering of the derived group of G°.
Let G° = Z2, x GY,. The homomorphism 1 : G® — G, (2, g) — 27(g) is surjective
with finite kernel which may be identified with {z € Zgo ;7(2) € Z&0}. Let 5(G°)
be the category whose objects are the local systems £ of rank 1 on G such that for
some &y € s (Zgo) we have ¢*€ =2 £ X Q; or equivalently € is a direct summand of
the local system (£ X Q). (When GY is a torus this definition of s§(G°) agrees
with that in 28.1.) Let £ € s(G°). We show:

(a) & is GO-equivariant for the conjugation action of G° on GO.
(b) & is GY. x G, -equivariant for the G, x GY.-action on G° given by (x1,22) :
g 7(x1)g7(z5 ).
(c) For any x € G° we have L:E = € where L, : G° — G° is given by g — zg.
Let & € $,(220) be such that £ is a direct summand of (£ X Q;). The G°-

action on GO given by y : (z,2) — §(z,2)§ ' (where § € ¥ ~1(y)) is well defined
and is compatible under ¢ with the conjugation action of G on G°; moreover,
E R Qq is GP-equivariant. Hence 1 (£y X Q;) is GY-equivariant and (a) holds. The
GY. x GY -action on GO given by (x1,x3) : (2,) — (2, x1225 ) is compatible under
¥ with the G2, x G% -action on G (as in (b)) and £ X Q; is GY, x GO -equivariant.
Hence 11(& X Q;) is G2, x GY.-equivariant and (b) holds. We prove (c). The
GO-action on GO given by (z,z) : (2/,2') — (2"2',zz’) is compatible under ¢ with
the GO-action on G° given by (z,2) : g — 2"7(x)g and & K Q; is GY-equivariant.
Hence 91(&y X Q) is GO-equivariant. Since the map GO — G°, (z,z) — 2"7(z) is
surjective, we see that (c) holds.

Let B*,T be as in 28.5. Let h : T — G° be the inclusion; let T = 7~ 1(T) (a
maximal torus of G%.). Let 7r : T — T,tr : 22, x T — T be the restrictions
of 7,7. Let s(T)' be the category whose objects are the local systems £’ in s(7T')
which satisfy one of the following four equivalent conditions:

(i) for some & € 5(Z2,) we have Y& = & ®@ Qu;

(i) £ is a direct summand of the local system 71(£ ® Qp);

(ili) 73-&" = Qu;

(iv) for any coroot f :k* — T we have f*&' = Q.

From the definitions we see that:

(d) &+ Ep := h*E is an equivalence of categories s(GY) — s(T)!.
Let s(T)! be the category whose objects are the local systems £’ in 5(T) such that
&*& = Q for any o € R (see 28.3). We identify 7' = T as in 28.5. Then s(7)?
becomes s(T)?.

45.2. Let d € Np(B*) N Np(T). There is a unique automorphism &y : G2, — G,
such that 7(do(g)) = d~'7(g)d for all g € GY,.. Define an automorphism 4 : GO —
GO by 6(z,9) = (d~12d,d0(g)). Then ¥(5(y)) = d~ 4(y)d for all y € GO.

Let £ € 5(G%). Note that Ad(d~')*€ € s(G°). Define Lg—1 : D — G by
g—dlg. Weset Ep = L . &, alocal system of rank 1 on D. We show that the
following three conditions are equivalent:
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() Ad(d!)E = &;
(ii) Ad(dil)*gT = Ep;
(iii) the local system £p on D is G-equivariant for the conjugation action of
G° on D.
Now (i), (ii) are equivalent by 45.1(d); moreover, if (i) or (iii) holds for some
d € Np(B*) N Np(T), then it holds for any d € Np(B*) N Np(T) (by the G°-
equivariance of &, see 45.1(a)).

Assume first that (i) holds. Let D = {(y,2') € D x G%d 'y = ¥(2')}. Let
L' : D — G 4/ : D — D be the obvious projections. Let & € s(Z%0) be such
that ¥v*€ =2 & X Q;. Then

Ad(d™ ) ERQ = 0*(Eo R Q) = 6*Y*E X *Ad(d N E =P E =2 ERQ,
hence Ad(d—1)*&y = &. By 28.2, & is Zgo—equivariant for the Zgo—action on Zgo
given by 2z : 2z — d'zpdzzg 1 Hence & X Q; is GO-equivariant for the GO-action
on GO given by z : ' — d(z)z’z~'. Define a G%action on D by = : (y,z') —
(Y(x)yp(x)~1, 6(z)2’z~1). This action is compatible under 1" with the G°-action
on D given by z : y — ¥ (x)y(z)~! and is compatible under L’ with the G°-action
on GO given by z : 2’ — §(z)z'z~L. Tt follows that L'* (& X Q;) is GY-equivariant
and Y[L'*(E RN Q;) = Ly (g X Q) is GY-equivariant. Since LY . € is a direct
summand of L}, (Ey X Q)), we see that L% . & is G-equivariant. Since G acts
on D through its quotient G°, we see that ker ¢ acts naturally on the stalk of Ly . ¢
at y € D through a character x which is independent of y. To show that L} ,&
is GO-equivariant it is enough to show that y = 1. Let T = ¢~ (7)), a maximal
torus of GO. Then L}_,&|qr is T-equivariant (for the restriction of the G%-action to
T) Since kery) C T, y is determined by the T-equivariant structure of Ly 1 Elar.
To show that x = 1 it is then enough to show that L3 ,&|4r is T-equivariant for
the conjugation T-action on dT. From (i) we deduce Ad(d~1')*Er = Er. By 28.2,
Er is T-equivariant for the T-action on T given by o : ¢ +— diltodttgl. Also,
A:dTl — T,dt — t is compatible with the T-action on T' (as above) and the T-
action on dT' given by conjugation. Hence \*Er is T-equivariant. Hence L3_,E|ar
is T-equivariant. We see that (iii) holds.

Conversely, assume that (iii) holds. Then m*L}_,& = m'*L}_,€ where m,m’ :
G° x D — D are given by m(g,y) = gyg~',m/(g9,y) = y. Define j : G — G° x D
by 7(g9) = (g9,dg). Then Ly-1mj = Ad(d~'), Lg-1m'j = 1, hence Ad(d~1)*€ =
Jm*Ly €= m* L € = £. We see that (i) holds.

45.3. Let £ € 5(G) and let £ = & € s(T)'. Then D € W$. Moreover, for any
w € W we have w € W7 (see 45.1(iv) and 28.3(a)); hence wD € W. Hence the
local system L on Zi1p is defined as in 28.7. From the definitions we see that

L =7 Ep where 7, : Zy’; , — D is the map (B, B', g) — g. Hence
Ky = mumy€p = €p ® mum, Qi = Ep © 1 Qi = Ep ® K5 € D(D),
(notation of 28.19).

45.4. Now let I be a closed normal subgroup of G contained in Z50. Then G’ =
G/T is a reductive group and the image D’ of D under the obvious homomorphism
w: G — G is a connected component D’ of G’ that generates G'. We may regard
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naturally T' as a subgroup of the canonical torus T of G° and we may identify
naturally T/T" with T, the canonical torus of G’. Let W’ be the Weyl group of
G'% and let I’ be its set of simple reflections (see 26.1). We identify W/ = W,
I’ =1 in an obvious way. Then W acts on T, T’ compatibly with the canonical
map T — T'. Let wp : D — D’ be the restriction of w.

Let w € W. Then K%, K% € D(D), K%,,K%, € D(D’) are defined. We show

(a) KY~uwhKY € D(D), K%~ whKY, € D(D).

Define Zé"”J)D, in terms of G’ in the same way that Z(})le,D is defined in terms of
G. Let my @ Zgy p — D be as in 45.3 and let m, : Zy’y ,, — D’ be the anal-
ogous map defined in terms of G’. Define w’' : Zy'rp — Zyrp by (B,B',g) —
(w(B),w(B’),w(g)). We have a cartesian diagram

’
w w w
ZQ),I,D ZQ),I,D’

D £ D
Hence
wpKp = wpm, Qi = 1 Qi = K,

as required. The second statement in (a) is proved similarly. We set r = dim(T").
From (a) we deduce for any i € Z:

(b) HY(Kp) = wp(H " (Kp))[r], H(KE) = wp,(H " (KR)[r].

(c) If A" € D', then the perverse sheaf wi(A')[r] is a direct sum of finitely

many objects of D",

45.5. In the setup of 45.4 we assume that I' = Z2,. Then wp : D — D’ is a

a fibration with smooth, connected fibres. Using this and 45.4(c) we see that if

A’ € D' then wi (A")[r] € D*" and (in the setup of 45.4(b)):

(@) (A" HT(KR) = (wp(A)lr] : H'(KD)),

(A": H'(Kp))) = (wp(A)[r] - H'(KB)).
A

Now let A € D", We show that A = w (A’)[r] for some A’ € D'“". We can find
w € W and ¢ € Z such that (A : H'(K})) > 0. By 45.4(b) we then have (A :
wi (H="(K%,))[r]) > 0. Hence there exists A’ € D"*" such that (A4 : wk(A")[r]) >
0, as required. Note that if A, A” are objects of D'*" such that w}(A')[r] =
wh(A")[r], then A’ = A” (a standard property of wy)). We see that A" — wi,(A")[r]

defines a bijection Q/“" ~, D"

Let E € Irr(W). Let Rp € K§'(D) be as in 44.6(b) and let Ry € K§'(D') be

the analogous object defined in terms of G’. From (a) we see that for A’ € D'*"
we have

(b) (A": Rp) = (wp(A)[r] : Rp).
Moreover, since dim supp(wj, A[r]) = dimsupp(A) + r, we see from (a) that:

(¢c) if D' has property A, then D has property 2.
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45.6. In the setup of 45.4 we assume that Z2, = {1} so that I is a finite abelian
group. Then 22,, = {1}. Let I'* = Hom(T', Q}). For x € I'* define Py € T'* by
x +— x(dzd™1) (with d € Np(B*) N Np(T)). Let PT* = {x € T*;Px = x}. Let
wp : G® — G’ be the restriction of w. Since T is abelian, we have

(a) wong = @ EX

x€er*

where £X is a local system of rank 1 on G'?, equivariant for the G%-action g : ¢’ —
wo(g)g’ of G° on G’°, which induces an action of I on any stalk of £X through x.

Let £, be the restriction of £X to T”. Let ¢’ be the composition GY, Y, GO o, Gro
(¢ as in 45.1). For y € I'* we have wiEX = Qy, hence 1'*EX = Q; and £X € 5(G'?).
Let d' = w(d) € D'. Define L), , : D' = G'° by ¢’ — d'~'g’. For x € I'* we set
EN =L, _,*EX, alocal system of rank 1 on D’. From (a) we deduce

(b) wD!Ql = @ EX,.

xer=
It follows that ®x€F* &S, is GY-equivariant for the G%-action
(c) 919" — wolg)g'wo(g)™!

on D’. Hence for any x, £, is G%-equivariant for the action (c). Since the restriction
of the action (c) to I' is trivial, we see that (c) induces an action of I' on the stalk of
&Y, at y € D’ through a character ¥ which is independent of y. Moreover, we have
x = 1 if and only if £, is G'%-equivariant for the conjugation action of G’® on D'.
By 45.2 (for G’ instead of G), this last condition is equivalent to the condition that
Ad(d'~1)*EX =2 £X; that is, to the condition that Py = y. Thus we have ¥ = 1 if
and only if Py = x. We show:

(d) If A’ € D' and x € T* satisfies Py # X, then the simple perverse sheaf

1 =E% @A is not in D'.
Indeed, A’ is a G'%-equivariant simple perverse sheaf (for the conjugation action of
G'%) and A} is G°-equivariant for the action (c) in such a way that the induced
action of I' on stalks is via the nontrivial character y. We see that A} is not
G'%-equivariant for the conjugation action of G’%; (d) follows.
Let w € W. We show:

EX
(e) wpiKpp= @ EpTe @ oK.
XET";Px=x XET™;P x#x
Using the cartesian diagram in 45.4 we have
wpi K = wpim1Q = mh,wiQp = mlymh,*wpiQr = wp Qi @ (7,7, * Qi)
= wD!Ql X W;U[Ql = ngQl X Kg/ = @ 5%, ® Kg/.
x€er*

It remains to use 45.3 (for G’, T” instead of G, T).
We show:
(f) If A" € D" and x € T*, Px = x, x # 1, then A’ ¢ D1
Indeed, if A’ € D"g;', then by 32.24 there exists a € W such that Q; = a*Q; = &5,
as local systems on 77 = T'. Using 45.1(d) (for G’ instead of G) it follows that
EX = &' hence x = 1, a contradiction.
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We show that for any A’ € D'“" and i € Z we have
(e) (A": wp H'(KP)) = (A" : H'(KP)).

We use that wp HY(K%) = H'(wp1K%) which holds since wp is a finite covering.
Hence the left-hand side of (g) can be rewritten using (e) as

L w,EX, .
S P AHEYT)+ Y (A:eh e H(KR))
XET*;Px=x XE*;Px##x
The term corresponding to x such that Py # x is 0 by (d); the term corresponding
to x such that Py = x, x # 1 is 0 by (f) and (g) follows.
Using 45.4(b) we can reformulate (g) as follows:

(h) (A" wpwh (H' (Kp))) = (A H'(KP))).
In Kv*(D’) we have H!(KY,) = > 5= mjAy where Aj, Ay, ... A} are mutually
nonisomorphic objects in D'*" and m; € Z-o. Applying (h) with A" = A} we
obtain ijl m;(Aj, : wpwi,(A%)) = my, hence Z;Zl mj(wh(A}) : wh(A))) = my,
for h € [1, s]. Since (wp(4},) : wp(A})) > dp ; it follows that (wp(A),) 1 wp(A))) =
On,j for h,j € [1,s]. It follows that the perverse sheaf w}, A’ is simple. Since any
A’ € D' appears in some H(K%,), we see that in our case we have the following
refinement of 45.4(c):

(i) if A € D', then wh(A') € Du,
Now let A € D*". Let w), A be the sum of all simple summands of the semisimple
perverse sheaf wpiA which are in D'*". We show that:

(j) w9,A € D'vn,
We can find w € W and i € Z such that A appears in H(K%). Using 45.4(b) we
see that A appears in w} (H*(KY,)). Hence there exists C € D'“" which appears
in H'(K%,) such that (A : w)C) > 0. By (i), wyC is a simple perverse sheaf. It
follows that A = wC. Thus C appears in wpiA. In particular, w®,4 # 0. Now
assume that C,C’ are two objects in D'“™ such that both C' and C’ appear in
wprA. Then A = w} C; similarly, A = wj,C’. Thus the simple objects w},C, wi,C’
are isomorphic. It follows that dim Hom(C’,wpwi,C) = 1. We have

wpiwpC = C7@MUDuUB()l=:C7@Duan)l:: 6}9 C®EN.
x€er*
It follows that for some x € I'* we have dim Hom(C’,C ® £) = 1, hence ¢’ =
C ® &),. This forces Py = x, by (d). Then &, is defined and from 45.3 we
see that C ® &, € D'®7 so that €' € D'®77. Using (f) we deduce that xy = 1
and C’ = C. Thus, the semisimple perverse sheaf w%, A4 is nonzero and isotypic.
If C € D'vn appears in w%, A, then, as we have seen, we have A = w},C, hence
dim Hom(C,wpiA) = 1 so that dim Hom(C,w%,A) = 1. Thus w?%,4 is simple. This
proves (j).
From (i), (j), and the proof of (j) we see that:
(k) A" — w}(A") defines a bijection 2/“" = D™ the inverse bijection is
induced by A — w9, A.

We define W' in terms of G/, D’ in the same way as W was defined in terms of
G,D. We may assume that W = W. Let E € Irr(W). Let Rp € K& (D) be as



CHARACTER SHEAVES ON DISCONNECTED GROUPS, X 119

in 44.6(b) and let Ry € K§'(D') be the analogous object defined in terms of G'.
From (g) we see that for A’ € D"*" we have

1) (A": Rp) = (wp(4A') : Rp).
If Ae D", we W, i€ Z, then
(A HU(RE)) = (A wh HU(RE)) = (wprd s HI(EE)) = (whid : HI(EE).
Since A = w}(wh,A) we have dim supp(A) = dim supp(w$,A). We see that
(m) if D’ has property A, then D has property 2.

45.7. In the setup of 45.4 assume that I' = Zgo. Then A’ — wi)(A')[r] defines a

bijection Q/“” = Qun Moreover, for any w € W, any A’ € D'*" and any i € Z

we have:

(a) (A" H(K)) = (wp(A)[r] : H'(KD)).

Note that G/Zgo can be obtained from G in two steps: first we form G; = G/ Zgo

which has Z(C)?‘f = {1} and then we have G/Zgo = G1/Zg0. We use 45.5 to compare

G to G1 and 45.6(k),(h) to compare G to G/Zgo. The statements above follow.
We define W’ in terms of G’, D’ in the same way as W was defined in terms of

G,D. We may assume that W' = W. Let E € Irr(W). Let Ry € K& (D) be as
in 44.6(b) and let Rf, € K§'(D') be the analogous object defined in terms of G'.

From (a) we see that for A’ € D'“" we have
(b) (A": Ri) = (wp(4') : Rp).
Combining 45.5(c), 45.6(m) we see that:

(¢) If D’ has property A, then D has property 2.

Now if A’ € D' then A’ is cuspidal if and only if wh(A’)[r] is cuspidal. It follows
that:

(d) If D’ has property Ay, then D has property 2g.

45.8. Assume now that Zgo = {1}. Let A = Z5. Let G' = G/A.

If g € G satisfies gg1 = g1g mod Z¢ for any g1 € G, then for any g; € G we have
9919 *gy € G (since G/GY is abelian), hence gg19~ g7t € G°NZg C Zqo = {1};
thus, g € Zg. We see that Zg = {1}.

Let 7 : G — G’ be the obvious map. Then 7 induces an isomorphism G° = G’°
and an isomorphism of D onto a connected component D’ of G’ which generates
G'. We identify the canonical tori and Weyl groups of G°, G’° in the obvious way.

Let w € W. From the definitions it is clear that

(a) KY=n"K¥% K% =71"K%,.
It follows that:

(b) A" — 7* A’ induces a bijection Dlun =, D"
Moreover, if w € W, A’ € D'*" and i € Z, then

(c) (A': HI(Kp)) = (x4 s H (Kp),
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Let E € Irr(W). Let Rp € K§'(D) be as in 44.6(b) and let Ry € K§'(D’) be the

analogous object defined in terms of G’. From (c) we see that for A’ € D'*" we
have

(d) (A": Ry) = (r"A": Rp).
From the definitions we see that:

(e) If D' has property A, then D has property 2.
(f) If D’ has property Yo, then D has property 2.

45.9. Assume now that Z¢ = {1} with G° adjoint. We have G* = [] s Gy where
§ is a finite set and G (f € §) are the maximal connected simple closed subgroups
of GY. There is a well-defined permutation ¢ : § = § such that gGrg~! = G,y for
allge D, f € F. Let § be the set of orbits of « on §. For any O € § we set Go =
I feo Gy. Then Go is a closed connected normal subgroup of G; hence we have
a well-defined homomorphism 6o : G — Aut(Gp) given by g :  — grg~!. The
image of 0o is denoted by Go. Since Go is adjoint, Go is a reductive group with
identity component Gp; it is generated by its connected component Do := 0o (D).

Let g € Z5,. We have g = 0o(g) with g € G and ygrg ty~! = gyzylg?
(that is y~tg lygr = vy~tgtyg) for any y € Go. Thus y 1g lyg (an element
of Gp) is in the centre of Go so that y~lg~lyg = 1 for any y € Go. We see that
fo(g~") = 1; that is, g=' = 1. Thus, Z5_ = {1}.

Note that the homomorphism G — [[ycz Go given by (fo)pez is an imbed-
ding of reductive groups by which we can identify the identity components G =
[locz Go and the component D with the component [, 3 Do-

We can identify W = HO€§ Wo where Wp is the Weyl group of Go. Let
w € W and let wop be the Wp-component of w. From the definitions we have

(a) Kp =RoesKpg, Kp=WoczKpg.

Hence for i € Z we have:

H'(Kp) = P Koz (Kp2),

(iO)§ZoiO:i
(b) 874 1o (WO
H'(Kp) = @ NoezH (KDO)'

(iO)§Zo to=1

Assume that Ap € ﬁ%” is given for each O € §. Let A = MopezAo, a simple
perverse sheaf on D. We can find w = (wp) € W and (ip) € NS such that
(Ao : H'*(Kp2)) > 0 for all O, hence (A : ®O€§HiO(K}3"g)Z > 0. Using (b) we
deduce that (A: H(K%)) > 0 where i = Y, io. Hence A € D",

Conversely, let A € Dun. We can find w = (wp) € W and (io) € N7 such that
(A: H'(K})) > 0. Using (b) we deduce that (A : Koz H'C(Kpo)) > 0 for some
(io) € NS such that i = > o to. Hence there exist Ap € DY (O € §) such that
(Ao : H'o(Kp2)) >0 and A = Rpc3A0. We see that:

AU ~ Fa

(c) (Ao) — Mpez Ao induces a bijection H Dy — D"
0€¥
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Moreover, if (Ap) < A under this bijection, then

(d) (A:H(Kp) = > ]]Ao:H(Kp2).

(i0)iX 0 to=1 O€F
For O € § we define W, Irr(Wy) in terms of Go in the same way as W, Irr(W)
were defined in terms of G (see 43.1). For each O € § we assume, given an object,
Ep € Irr(Wp). Then the vector space E = @, Fo can be naturally regarded as

an object of Irr(W). (Any object of Irr(W) can be obtained in this way.) Define
Rg, € IC&”(D@) in terms of Go in the same way as Rgp was defined in terms of

G. Let (Ap) < A be as above. From (d) we see that for A’ € D’'*" we have
(e) (A:Rp) =[] (Ao : Reo)-

OeF
From the definitions we see that:

(f) If Do has property A for any O, then D has property 2.
(g) If Do has property Ao for any O, then D has property .

45.10. Let x,2’,y € W be such that 2’ = yxe(y) 1. We show

(a) gri(KD) = gri(KD) € K*(D).

The proof is similar to that in [DL, 1.6]. Arguing by induction on I(y) we see that
we may assume that y =s € 1.

Assume first that [(z) = I(2) = I(sz) + 1. Define an isomorphism Z§; , —
Z(Z{I,D by (B, B’,g) — (B1, B}, g) where By, B} € B are given by pos(B, B;) = s,
pos(B1,B') = sz, B} = gB1g~'. (We then have pos(By, B}) = (sz)e(s) = 2'.) It
follows that K% = K% .

The case where I(z) = I(z') = l(sz’) + 1 can be reduced to the previous case by
exchanging x, x'.

Assume next that I(2') = l(z) + 2. If (B,B',g) € ZQ”,”:I’D, then there are well-
defined By, B} in B such that pos(B,B;) = s, pos(B1, B}) = x,pos(Bi,B’') =
e(s). We partition Zg:I’D into two pieces Z’, Z"” (one closed, one open) defined,
respectively, by the conditions B} = gB1g~ ', B} # gB1g~'. Let K', K" be the
direct image with compact support of Q; under the maps Z' — D, Z" — D,
(B,B',g) — g. Then gr(K%) = gri(K') + gri(K"). Now (B, B',g) — (B, B}, g)
defines an affine line bundle Z’ — Z§; . Hence gri(K') = gri(Kp). It remains
to show that gri(K”) = 0. Let Z be the set of all (B, By, By, B',g) in B* x D
such that pos(B,By) = s, pos(Bo, B)) = z¢e(s), gBg~' = B’, gBog~' = B}.
If (B,Bo,B},B',g) € Z, there is a unique B € B such that pos(Bo,B) = T,
pos(B, B})) = €(s). We partition Z into two subsets Z;, Z (one closed, one open)
defined, respectively, by the conditions B = B’, B # B’. Let K,K;, K, be the
direct image with compact support of Q; under the maps Z — D, Z, — D,
Zy — D, (B, By, B}, B',g) — g. We have gri(K) = gri(Ky) + gri(K,). Now

(B, By, By, B', g) — (Bo, B}, g) is an isomorphism Z; — ngl(“g and an affine line

bundle Z — Z(;)“I(SL)); hence K = K, and gr1(K3) = 0. Moreover, (B, B, By, B, g)—

(B,B’,g) is an isomorphism Zy — Z”. Hence Ky = K" and gri(K") = 0, as
required.
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The case where [(z) = I(z’)+2 can be reduced to the previous case by exchanging
x,2’. It remains to consider the case where I(x) = I(z') = I(sx) — 1 = l(sz’) — 1.
In this case we have x = 2’ (see [DL], 1.6.4]) and there is nothing to prove.

45.11. Assume now that Zg = {1}, that G is adjoint # {1} and that G has no
closed connected normal subgroups other than G° and {1}. Let e be a pinning (or
épinglage, see 1.6) of G° which projects to (B*,T) under the map p in 1.6. By
the adjointness of G there is a unique element d € D such that Ad(d) : G* — G°
stabilizes e under the action 1.6(i). We have G° = [];cs Gy as in 45.9. Let
1:F — T, Fbeasin459. If O € F, then Go (as in 45.9) is a closed connected
normal subgroup of G other than {1}, hence it is equal to G°. Thus, we have O = §
that is, ¢ : § — § has a single orbit. Let k = |§|. We can identify § = Z/kZ in
such a way that ¢(j) = j + 1 for any j € Z/kZ.

For j € Z/kZ let B; be the variety of Borel subgroups of G;. We can identify
B = HjeZ/ch Bj by B < (Bo,Bl,...,Bk_l) where B € B,Bj S Bj satisfy B =
HjeZ/kZ Bj. In particular, we have B* = HjeZ/kZ B} where B is a Borel subgroup
of Gj. We also have T' = [[ ;.7 7 Tj, where T is a maximal torus of B;. We can
view e as a collection (e;);cz/rz Where e; is a pinning of G; which projects to
(Bj,Tj). Note that Ad(d) carries e; to e;j11 for any j € Z/KZ.

We can identify W = HjeZ/kZ W, where W; is the Weyl group of G; and I =
LljeZ/kZ I; where I; is the set of simple reflections in W;. Recall that e : W — W
is the automorphism induced by Ad(d) : GY — G°. We have ¢(W;) = W for
Jj € Z/KZ.

Now d* normalizes Gy and Ad(d*) : Gy — Gy stabilizes eg. Let G’ be the
subgroup of G generated by Gy and d*. Since d has finite order, G’ is closed,
G'° = Gy and D’ = d*Gy is a connected component of G’ that generates G.

We show that Zg = {1}. If ¢ € Z¢/, then we have ¢ = d*"z for some
r € Z,x € Gy and Ad(¢’) : Gg — Gy is the identity map, hence Ad(g’) stabilizes
eo. Since Ad(d*") also stabilizes eg, we see that Ad(z) stabilizes ey. Since Gy is
adjoint, we must have 2 = 1, hence ¢’ = d*". Thus ¢’ commutes with d. Since ¢’
also centralizes Gy and d, G generate (G, we see that ¢’ centralizes G, hence ¢’ = 1
(by our assumption that Zg = {1}). This verifies our assertion.

Define § : D — D' by 3(dgogi -..9k—1) = dgr—1dgr—2 ...dgo where g; € G,
or equivalently by the requirement that (¥ € 8(¢)G1Gs...Gy_1 for ¢ € D. This
is a principal {1} x G; X G5 X - -+ X Gj_1-bundle where this group acts on D by
restriction of the conjugation action of G°. Moreover, 3 is compatible with the
conjugation action of G° on D and the conjugation action of Gy on D’ via the
homomorphism GY — G which takes go to go if go € Gy and g; to 1ifi € [1,k—1].
We see that (setting t = (k — 1) dim Gy):

(a) A" — B*A'[t] is an equivalence between the category of Go-equivariant per-
verse sheaves on D' and the category of G°-equivariant perverse sheaves on
D.

Let w € Wy C W. The variety Zj’; , may be identified with

{((Bo, B1,...,Br_1),(By, By,..., Br_1),dgogs - - - ge—1); Bj, Bj € Bj, g; € Gy,
Bj = Ad(dg;-1)B;-1(j € Z/kZ),pos(Bo, B)) = w, B; = B}(j # 0)}
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or with

{(Bo, Bj, dgogi - - - gr—1);
By, B}, € By, g; € Gj, By = Ad(dgi—_1dgk—2 . . . dgo) Bo, pos(Bo, By) = w}.

We see that we have a cartesian diagram

B
0.1.D * L0,
B

where
B:((Bo,B,...,By-1),(B},Bl,...,B}_1),dgog1 - - - gr—1)
— (B, By, dgi—1dgi—2 . . . dgo).

Using this cartesian diagram we see that K5 = 3*KJj,. Similarly, we have K% =
B*K3¥,. Since [ is smooth with connected fibres we see that for any i € Z we have
H'(Kp) = " H'(Kp)[t], H(Kp) = 8*H " (Kp)t]

and
(b) (B*A'[t) - H'(KD)) = (A - H'(Kp)),

(B*A'[t] - H'(KT)) = (A" H'Y(K])))

for any simple perverse sheaf A’ on D’. From (b) we see that, if A’ € D’un | then
B*A'[t] € Dv.

Conversely, assume that A € DU". Let X be the set of sequences
s = (s1,82,...,8) in I such that (A : H'(K%)) > 0 for some i. Let X, be the
set of all s = (s1, 82,...,8,) € X such that s, € I for all h. Note that X’ # (). Let
N be the minimum value of Ny := Zje[o,kfl],he[l,r];shelj jwheres = (s1,82,...,5)
runs through X.

Assume that N > 0. We choose s € X such that Ny = N. We can find
h € [1,7] such that s, € I; for some j € [1,k — 1]; moreover, we can assume that
h is maximum possible with this property. Then s, € Iy for b’ € [h + 1,7]. Let

S = (81,82, -+, Sh—1,Sh41s--+5r,Sp). Since spsp = sprsp for b € [h+ 1,7], we
see using the definitions that K% = K%. Thus s’ € X. Note that Ny = N.
Let s” = (¢ 1(sn), 81,82, -+, 8h_1,5h41,---,5). By 28.16 we have KE; = KE;/.

Thus s” € X. Since sp, € I; with j € [1,k — 1] we have ¢ '(s;) € I;_;. Thus
Ng» = Ny —1 = N — 1. This contradicts the minimality of V. We have shown
that N = 0. We choose s € X such that Ng = 0. We then have s € Xy. Thus we
have Xy # 0.

By the proof of the implication (iii) = (i) in 28.13 we deduce that there exists
w € Wy and i € Z such that (A : HY(K%)) > 0. Using (a) we can write A = 5*A'[{]
where A’ is a well-defined simple Gg-equivariant perverse sheaf on D’. Using (b)
we see that (A’ : H"*(K%,)) > 0. Hence A’ € D'*". Thus:

(c) A — B*A'[t] induces a bijection D'** =5 D,

We define W' in terms of G/, D’ in the same way as W was defined in terms of

G, D; let @' be the element of W’ which plays the same role for W' as @ for V:V
We can assume that the order of @’ in W’ is the same as the order of @ in W.
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Let E’ € Trr(W’). Then the vector space E = E' @ E' @ ---® E' (k factors) can be

regarded as an object of Irr(W) with = = (x¢, 1,...,2k-1) (x; € W;) acting by
ehRe, @ @y — xoleh) @e Hap)(eh) @ @ e (zp_1)(eh_y)

and w acting by ey Qe @ ---Qef,_, — w'(e),_1) ey ® - Qe)_5. (Note that any

object of Irr(W) can be obtained in this way.) Define Rg: € K§'(D') in terms of

G’ in the same way as R was defined in terms of G. We show that for A’ € D'u"
we have

() (5 A'lt) s Ri) = (4" Ry).
Let A = p*A'[t]. Using (b) we see that the right-hand side of (d) equals

Wol ™t Y (—) i (aew!, B)(A HY(KE,))

rEW,i€Z
S Wt YD (1) G, ) (A Y (K))
rEW,i€Z
S Wol Tt S (1), B) (A< HY(KE)).
xEW,i€EZ

(We have used that tr(zw, E) = tr(zw’, E') for x € Wy, which follows from the
definitions.) Let Wy = [[;cz/1z.;20 W;- We note that the map W, x Wy — W,
(y,z) — yxe(y)~! is a bijection. Using 45.10(a) we see that the left-hand side of
(d) equals

W[ 3 (—1)8im Ctity (yae(y) o, B)(A : HI (KW ))
yeEW, , €W ,i€Z
=|w|! > (—1) i (vw, B)(A - HY (Kp)).
YyEW.,x€Wo,i€Z

Thus the two sides of (d) are equal.
Using (b) and the definitions we see that:

(e) If D’ has property A, then D has property 2.
Note that if O is a G°-orbit on D, then 8(O) is a G’%-orbit on D’. Moreover, if O’
is a G'%orbit on D', then 371(0’) is a G%-orbit on D. We see that:

(f) The map O — B(O) is a bijection between the set of G°-orbits on D and
the set of G'°-orbits on D'; the inverse bijection takes a G'°-orbit O' on D'
to 371(0').
We show:
(g) If D' has property Ao, then D has property 2.

Let A € D", Then supp(A) is the closure of a single G°-orbit O in D. We have
A = B*A'[t] where A’ € D'*". Hence supp(A’) = 8~ (supp(A)). From (f) we see
that supp(A’) is the closure of a single G'%-orbit O’ in D’. Hence A’ is cuspidal.
By the assumption of (g) we see that A’ is zero outside O’. Hence A is zero outside
B71(0’) which is a single G%-orbit necessarily equal to O. Thus D has property
2Ap.
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46. CLASSIFICATION OF UNIPOTENT CHARACTER SHEAVES

46.1. Let p > 1 be the characteristic exponent of k. In this section we extend the
results of [L3, IV, V] on the classification of unipotent character sheaves on D from
the case G = GV to the general case.

In the remainder of this subsection we assume that D = G° and that (a) below
holds:

(a) If GO has a factor of type Eg or Fy, then p # 2.
We note that:

(b) Any character sheaf on D is clean.

(¢) Any admissible complex (see 6.7) on D is a character sheaf.
This is reduced to the case where G is almost simple as in [L3], 23.21(V)]. In that
case, (b) is proved in [L3| IV, V], assuming in addition that: if G® has a factor Eg,
then p # 3,p # 5; if G° has a factor E; or Fy, then p # 3; if G° has a factor Fg,
then p # 2; if GO has a factor G, then p # 2,p # 3. In the remaining cases an
additional argument (given by Shoji [Shl Sec.5] and Ostrik [Os]) is needed. The
fact that (b) implies (¢) is proved as in [L3l IV, V].

46.2. Assume that G° is semisimple and that for any proper parabolic subgroup
P of G° such that NpP # () the following condition is satisfied: any irreducible
cuspidal admissible complex on NpP/Up whose support contains some unipotent
clement is a character sheaf. Let A € D“"¢ be such that for some unipotent
G%-orbit S in D and some irreducible cuspidal local system € on S we have A =
IC(S, &)[dim S] extended by 0 on D—S. We assume that for any G%-orbit C C S—9
there is no irreducible cuspidal local system on C. We show:
(a) A is clean.

The proof is along the lines of that of [L3| 7.9(II)]. Assume that A is not clean. Let
C C §—8 be a G°-orbit of minimum possible dimension such that H*(A) is nonzero
on C for some i; let iy be the largest i such that H*(A) is nonzero on C. Let £ be
an irreducible local system on C' which is a direct summand of H%(A)|c. By our
assumption, £ is not a cuspidal local system on C. By 8.8, 8.3, 8.2(b) we can find
(L', S") € A (see 3.5) such that S’ contains unipotent elements and an irreducible
cuspidal local system £ on S’ such that, setting & = IC (Y7 g/, mE') extended by 0
outside Yz ¢ (€' as in 5.6), there exists a direct summand A; of & whose restriction
to the unipotent variety of D is (up to shift) IC(C, £) extended to the unipotent
variety by zero outside C. Let (L”,S”) = (G°,S). Our assumption implies that
L’ # G° so that L', L" are not G%-conjugate. Hence 23.7 is applicable and yields
HI(D,& ® A) = 0 for any j. Hence H(D, Ay ® A) = 0 for any j. Since supp(A4) C
S we have supp(A; ® A) C S so that HJ(D,A; ® A) = HJ(S,A; ® A). Since
supp(A;1) NS C supp(&') NS C C we have HI(S,A; ® A) = HI(C, A; @ A). Since
Ais zero on C—C (by the minimality of C') we have HI (C, A;®A) = HI(C, A;®A).
We see that HI(C,A; ® A) = 0 for all j. Since A;|c is £ up to shift, it follows
that HJ(C,L ® A) = 0 for all j. In particular, we have H2**(C, L ® A) = 0
where b = dim C. Consider the spectral sequence Ey® = H(C,H*(A) ® L) =
H'+$(C,A®L). Then Ey*® = 0if s > ig (by our choice of ig) or if > 2b. Tt follows
that E37% = B3V = ... = E2bio But E2% is a subquotient of H2(C, A® L),
hence it is zero. It follows that 0 = E2"% = H2(C, H(A)®L). Since L is a direct
summand of H (A)|¢, it follows that H2*(C, L ® L) = 0. This is a contradiction.
This proves (a).
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46.3. In this subsection we assume that G is almost simple, that m := |G/G°| > 1,
and that Zg € G°. Let A € D", Let S be the stratum of D such that supp(A)
is the closure of S. Now A|g is (up to shift) an irreducible cuspidal local system
E. Note that m is 2 or 3. Let s € G be a semisimple element and let u € G
be a unipotent element such that su = us € S. Let G' = Zg(s). Let § be the
connected component of G’ that contains u. Let S’ be the (isolated) stratum of
0 that contains u. Let & be the inverse image of £ under S’ — S, g — sg. Let
A =1C(8',&")[dim S'] extended by 0 on § — S’. By 23.4(c), A’ is a direct sum of
cuspidal admissible complexes A} on G 0,

We show:

(a) If p # m, then A is clean.
By our assumption, the image of u in G/GY is 1. Thus u € Zgo(s). Since
Zq0(8)/Zco(s)? has order prime to p, we see that u € Zgo(s)?. Hence § =
Zgo(s)? = G'°. By 23.4(a) it is enough to show that each A} is clean with re-
spect to G’. This follows from 46.1(b),(c) applied to G’, G'°. (Note that G’° does
not have a factor Eg; it can have a factor Fy only if G° is of type Eg and p # 2, in
which case 46.1(b),(c) are applicable.) This proves (a).

We show:

(b) Assume that G° is of type A,_1 (n > 3) or D, (n > 2). Assume that p =
m = 2 and that for any proper parabolic subgroup P of G° such that Np P #
(0 the following condition is satisfied: any irreducible cuspidal admissible
complex on NpP/Up is a character sheaf on NpP/Up. Then A is clean.

In this case the image of s in G/G® is 1. Hence s € G° and u € D. There is at
most one cuspidal admissible complex on D. (See 12.9.) This complex must be
isomorphic to A. Now the conclusion follows from 46.2(a).

46.4. In this subsection we assume that GO is simple of type A, 1 (n > 3), that
|G/G°| = 2, that Zg = {1} and that D # G°. In this case ¢ : W — W is given by
w — wowwy *. In particular, we have Trr(W) = Irr(W) (see 43.1). We show:
(a) D has property 2.
(b) D has property 2A.
(¢) If p =2, then any irreducible cuspidal admissible complex on D is in Dune,
(d) For any Ey € Trr(W) there is a unique object A, € D*" (up to isomor-
phism) which satisfies Rp = spAg, in K§'(D) for any E € Irr(W) such
that E|lquw) = Eo (here sg = £1); moreover, Eo — Ag, is a bijection from
the set of isomorphism classes in Irr(W) to D"

We can assume that (a)—(d) hold when n is replaced by n’ where 3 < n' < n. (This
assumption is empty if n = 3.)

Note that if P is a proper parabolic subgroup of G° such that NpP # () and
such that (setting D’ = NpP/Up) either D'*¢ £ () or (if p = 2), there is at least
one cuspidal admissible complex on D', then P/Up is of type A, or a torus and
the induction hypothesis shows that D’ satisfies property 20y and (if p = 2) any
irreducible cuspidal admissible complex on D’ is in D’“nc,

Using 46.3(a) (if p # 2) and 46.3(b) (if p = 2) we see that (a) holds.

Now let Ey € Irr(W). We can extend Ey to a W-module E in which @ acts as
wy € W. We set e = (—1)%Fo@sentlwo) "ol = (—1)%0. From [L14, (7.6.6)] we
see that there exists x € cg, such that N, = ep¢g, (fl)l(m)*a(z) = epe’y. Using
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44.15(c) (which is applicable in view of (a)) we deduce that egRg is a Z-linear
combination of objects A € D" such that e = egely. Since (Rg : Rg) = 1 we
deduce that Rp = sgAg, for a well-defined Ag, € Dv and sgp = *1; moreover,
e4r0 = epel,. Since any A € D" satisfies (A : Rg) # 0 for some E as above
we see that A = Ap, for some Ey. Also, if Ey, Ej are nonisomorphic objects of
Irr(W) and E,E’ are the corresponding extension to W, then (Rg : Rp/) = 0;
hence (Ag, : Ag;) = 0 so that Ap, ¥ Ag,. We see that (d) holds.
Let Ey, F be as above. For w € W, we have

(Ag, : gr1(Kp)) = £(Rg : gr1(Kp)) = £tr(ww, E) = ttr(wwp, Ey)

(see 44.7(p)). Hence, by 44.14(a), the condition that Ag, is cuspidal is that
tr(wwg, Eg) = 0 whenever w € W is not D-anisotropic. Now w € W is not
D-anisotropic if and only if wwy has even order. Thus the condition that Ag, is
cuspidal is that tr(w’, Ey) = 0 whenever w’ € W has even order. The last condi-
tion holds if and only if n is of the form 14+ 2+ --- + s and EFy corresponds to the
partition of n with parts 1,2,...,s. (See [L7, 9.2, 9.3, 9.4].) In this case we have
aE, = AE,@sen, hence eAfo = (—1)lwo) = (1)l = (—1)codimisurp(40))  (For the
last equality see 44.8(a).) Thus the equality e? = (—1)%dimGupp(4) holds for any
cuspidal A € D" The analogous equality holds for noncuspidal A in view of the
induction hypothesis and 44.15(a). We see that (b) holds.

Now assume that p = 2. Let X} be the set of isomorphism classes of irreducible
cuspidal admissible complexes on D. Let X5 be the set of isomorphism classes of
objects in D¢, Using 12.9 we see that [X;| = 1if n € {3,6,10,...} and |X;| =0
otherwise. By the arguments above we see that |X2| = 1 if n € {3,6,10,...}.
Clearly, X5 C X;. It follows that X5 = X;. This proves (c).

This completes the inductive proof of (a)—(d).

Let Ey, E,x be as above. By 44.17(d) (which is applicable in view of (a),(b))
we have (Ag, : Rx,_) € N, hence (Ag, : egRg) € N, hence (sgRg : egRg) € N,
hence sgeg € N, hence sg = eg. Thus we have:

(e) AEO = eERE.

46.5. Assume that G° is semisimple and that A is a cuspidal admissible sheaf on
D such that supp(A) is contained in the unipotent variety of D. Assume also that
GY is of type A, x A, x --- x A, (r factors, n =1 or n = 2). We show:
(a) A is clean.

By arguments in 12.3-12.6 we are reduced to the case where G is almost simple
and Zg C GO, If G = G, the conclusion follows from 46.1. Thus we can assume
that G # G°. As in 12.7 we see that we must have n = 2, p = 2, |G/G°| = 2. By
46.4(c), we have A € D¥"¢; using this and 46.4(a), we see that A is clean. This
proves (a).

46.6. In the setup of 46.3 we assume that G is of type D; and p = m = 3 or of
type Eg and p =m = 2. Let A € Dune. We show:
(a) A is clean.

By 12.9 there is exactly one cuspidal admissible complex on D (say A’) whose
support is contained in the variety of unipotent elements in D. If A = A’, then
A is clean by 46.2(a). Hence we may assume that supp(A) is not contained in the
variety of unipotent elements in D. In this case G’V is of type 41 x A; x A; x Ay
(if G is of type D4) and of type As x Ay X Ag (if G is of type Eg). By 23.4(a) it is
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enough to show that each A} (as in 46.3) is clean with respect to G’. This follows
from 46.5(a) with r =4,n =1 or r = 3,n = 2. This proves (a).

46.7. In this subsection we assume that G is simple of type Dy, that |G/G°| = 3,
that Zg = {1}, hence D # G°. We show:

(a) D has property 2.
Note that if P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D’ = NpP/Up) we have D'“"¢ £ (), then P is a Borel subgroup so
that D’ satisfies property 2. Using 46.3(a) (if p # 3) and 46.6(a) (if p = 3) we see
that (a) holds.

The objects of Irr®(W) can be listed as: 1,4,1’,4’,2, 6,8 (each number represents
an object of the corresponding degree; moreover, 1 is the unit representation, 1’ is
the sign representation, 4 is the reflection representation, 4 = 4®1’). Each of these

objects is naturally defined over Q and it can be viewed as an object of Irr(W)
which is also defined over Q with w® = 1 on it; we denote this object of Irr(W) in
the same way as the corresponding object in Irr®(W). From [L14] (7.6.5)] we see

that each of the elements

¢1, P4, O1/, Par, P8 + P2, P8 — P2, P8 + d6, P8 — P

is of the form N, for some x € W such that [(z) — a(z) = 0 mod 2. From this
we deduce using 44.15(c) that each of the elements

(b) Ry, R4, Ry, Ry, Rg + Ry, Rg — Ry, Rg + R, Rg — R

is a Z-linear combination of objects A € D" such that e? = 1. Since the elements
(b) span over Q the same vector space as that spanned by the Rg with E € Irr(W)
and since each each A € D" satisfies (A : Rg) # 0 for some E € Irr(W) we see
that each A € D" has nonzero inner product with some element in (b), hence it
satisfies e = 1. If A € D¢, then codim(supp(A)) = |I.| mod 2; we have |I.| = 2,
hence codim(supp(A4)) = 0 mod 2. Thus e? = (—1)cdimupp(4) if 4 € Dunc. The
analogous equality holds for noncuspidal A in view of 44.15(a) since it trivially holds
on D’ as above. We see that

(¢) D has property 2A.
By 44.17(d) (which is applicable in view of (a),(b)), the inner product of any A €
D"™ with any element in (b) is in N. Since the inner product of any two elements

in (b) is known (it is 0,1 or 2) we see that there exist mutually nonisomorphic
objects

(d) A13A4;A1’7A4’aa>bv C7d
of D" such that

Ri=A,Ry=A4,Ry/ = Ay, Ry = Ay,Rs+ Ry = a+ b,
Rs— Ry=c+d,Rs+ Rg=a+c,Rs— Rg =b+d.
The list (d) exhausts the isomorphism classes in D" since any A € D" has

nonzero inner product with some element in (b). Note that Rg = (a+b+c+d)/2,
Ry=(a+b—c—d)/2, Re = (a—b+c—d)/2.
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46.8. In this subsection we assume that G° is simple of type Fg, that |G/G| = 2,
that Zg = {1}, hence D # G°. We show:

(a) D has property 2.
Note that if P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D’ = NpP/Up), there is at least one cuspidal admissible complex on
D’; then P/Up is either of type As or a torus. (The case where P/Up is of type
Dy is excluded using 23.4(a) when p # 2 and 12.9(b) when p = 2.) In either case
D’ satisfies property . Using 46.3(a) (if p # 2) and 46.6(a) (if p = 2) we see that
(a) holds.

In our case ¢ : W — W is given by w ~— woww, *. The objects of Irr(W) (up
to isomorphism) can be listed as

107 617 2027 3037 1537 1~537 6447 6057 8167 2467 8077 6077 9077 ]-077
207, 8110, 6011, 2412, 6413, 3015, 1515, 1515, 2020, 625, 136

where N,, or N,, denotes an object Ey € Irr(W) such that dim Ey = N,ag, = n.

Each object of Irr(W) can be regarded as an object of Irr(W') on which w acts as
wp; this object of Irr(VV) is denoted in the same way as the corresponding object
in Irr(W).

From [L14] 7.10] we see that each of the elements

P10 = D615 D205, —P6055 D245, D816+ P8110> P24125 —P6011 1 P2020> — P65+ Plse>

—$305 — D155, —P305 T D155, —P305 — Pry,s —P305 T i,y

—®3015 — P1515> —P3015 T P1515> —P3015 — P15y —P3015 + Prpyes

—®g0, + ¢60, + D10, —P80, — D60, + P10,, —2080, — P10,

=80, + ®60, + P90, —P80, — P60, + Po0,, —2¢80, — P90,, —P0, — P20,
is of the form N, (r € W,[l(x) = a(z) mod 2) and that each of the elements
— P64y, P6a,s 18 Of the form R, (z € W, [(x) # a(z) mod 2). From this we deduce
using 44.15(c) that each of the elements

(b) Ri,, — R, , Roo,, —Reos, R2ag, Rs14, Rs1,05 Rodys, — 60,1, R20405 —Réas, Risg

—R30, — Ris,, —Rs0 + Risy, —Rs0, — Ry, —Rso0, + Ry,

_R3015 - R1515’ _R3015 + R15157 _R3015 - R1~515’ _R3015 + R1~5157

—Rso, + Reo, + Ri0,, —Rso, — Reo, + Ri0,, —2Rg0, — Rio,,

—Rso, + Reo, + Roo,, —Rso, — Reo, + Roo,, —2Rs0, — Roo,, —Rso, — R0,
is a Z-linear combination of objects A € D" guch that e* = 1 and that each of
the elements

(¢) —Rea,, Roay,

is a Z-linear combination of objects A € D" guch that e* = —1. Since the
elements in (c) have self-inner product 1, we have Rgy, = £ A, Rgq,, = £ A" where
A, A" € D', Since (Rga, : Rea,,) = 0, we see that A 2 A’. By 44.8(c) we have
d(Rg4,) = Rea,s, hence d(A) = £A'. If A were cuspidal, we would have d(A4) = A.
Thus A is not cuspidal. Similarly, A’ is not cuspidal. If A; € D“"¢ then A; must
have nonzero inner product with some Rp, hence with at least one of the elements
in (b),(c). But we have just seen that its inner product with any element in (c) is
zero. Thus, A; must have nonzero inner product with at least one of the elements
in (b). It follows that et = 1. We have codim(supp(A;)) = |I.| mod 2; moreover
II| = 4, hence codim(supp(A;)) = 0 mod 2. Thus, e = (—1)cdimupp(4) if
A € D"¢. The analogous equality holds for noncuspidal A in view of 44.15(a)
since it holds on D’ as above, by 46.4(b). We see that:
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(d) D has property 2.
By 44.17(d) (which is applicable in view of (a),(d)), the inner product of any A €
D¥" with any element in (b) or (c) is in N. Since the inner products of any two
elements in (b) or (¢) are known, we see that there exist mutually nonisomorphic
objects
Ay, Agy 5 A20,, Aoy s A2465 Asler As1105 A2415, A60115 A2040 > A62s5 Alsg5
as, b3, C3, dg, als, b15, C15, d15, a, b, C, d, €, f, g, h
of D" such that
Ry, = A1y, —Re, = Ag,, Ra0, = A20,, —Re0, = Asos, R24s = A24,,
Ry, = Agig, Rg1,o = As1yoy R24y, = A4y, —R30, — R15, = a3 + b3,
—Rs0, + Ri5, = c3 +d3, —Rao, — R1*53 =asz + c3, —R30, + R1~53 = b3 + ds,
—R30,5; —Ri5,5; = a15+b15, —R30,5 + Ri15,; = c15+dis, —Rs0,; — Ry, = ai5+c1s,
—R30,5 + By5,, = bis + dis,
—Rso, + Reo, + Rio, =a+b+d, —Rgo, — Reo, + Rio, =d+e+ f,
—2Rg0, — Rio, =b+c+ f+ g+ h, —Rso, + Reo, + Roo, =a+b+c,
—R807 —R607 +R907 = C+€+f, ,—2R807 —R907 = b+d+f+g+h,
—Rgo, — R20, = b+ f.
(We use [L14] 7.7(iii)].) Hence we have
—Rgo, = (a+3b+2c+2d+e+3f+2g+2h)/6, Reo, = (a+b—e—f)/2,
Rgp, =(a+2c—d+e—g—h)/3, Rip, =(a—c+2d+e—g—h)/3,
—Roo, = (a—3b+2c+2d+e—3f + 29+ 2h)/6.

46.9. We fix an integer n > 1. Let W,, be the group of all permutations of
{1,2,...,n,n/,...,2', 1’} which commute with the involution ¢ < . For each
Jj € [1,n —1] let s; € W, be the involution which interchanges j,j 4+ 1 and also
J',(j+ 1) and leaves the other elements unchanged. Let s,, € W,, be the permu-
tation which interchanges n,n’ and leaves the other elements unchanged. Define
a homomorphism x : W, — {£1} by the condition x(s;) = 1 if j € [1,n — 1],
X(sn) = —1.

We now assume that n > 2. Then W/ := kerx is a Coxeter group on the
generators s;(j € [1,n —1]) and s,5,—15,.

For h € [2,n—1] let W, 5, be the subgroup of W), consisting of the permutations
in W,, which carry each of

{1,2,...,n—=h}, {n—h+1,n—h+2....n,n",....(n—h+2),(n—h+1)},
{1,2/,...,(n—h)"}

into itself. We may identify in an obvious way W,, , with &,,_; x W}, where &,,_j,
is the symmetric group in n — h letters.

46.10. Let m € N. Let X" be the set of all ordered pairs (S,T) (“symbols”) of
distinct subsets of N (with |S| = |T'| = m) such that

Zaz—l—Zx:n—l—mQ—m.

zeS zeT
We define a “shift” map X — X™*! by (S,T) — ({0} U (S +1),{0} U (T + 1)).
Using the shift maps we can form the direct limit X,, = lim,, .o, X,*. We have an
obvious map X™ — X,,. If m > n, then any (S,T) € X™*! satisfies 0 € S,0 € T.
Hence if m > n, the shift map X — X™*! is a bijection. We shall sometimes
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identify X, with X" with some fixed m > n. But some elements of X, can be
represented by elements of X" where m < n.

Note that if (S,7) € X', then SUT C [0,n+m — 1]. Thus X" is finite for any
m so that X, is finite.

Let X™ be the set of all pairs (M, N) of disjoint subsets of N such that M # 0,
|M| + 2|N| = 2m and

Zx—i—ZZJc:n—l—mQ—m.

zeM zeN

We define a “shift” map X™ — X™*! by (M,N) — (M + 1,{0} U (N + 1)).
Using the shift maps we can form the direct limit X,, = lim,,_ oo )_(,T. We have
an obvious map X™ — X,,. If m > n, then any (M, N) € X™*! satisfies 0 € N
(hence 0 ¢ M). Hence if m > n, the shift map X™ — X™*! is a bijection. We
shall sometimes identify X,, with X}L" with some fixed m > n.

For (M, N) € X™ let Vys (resp. V) be the set of all subsets of M with cardinal
|M|/2 (resp. with even cardinal); we regard Vi as an Fa-vector space with addition
E,E' — E+E' =(EUE') — (ENE'). Let

Vi = {n: Vi — Fay-linear, n(M) = 1};

here M is viewed as an element of Vj,.
Define tps : M — Fy by ty(z) = {2’ € M;2’ < x2}| mod 2. Define an injective
map Vy — Vs by

Hw HY =t} (1)« H;

the image of this map is denoted by V. -
We define a (surjective) map ¢ : X" — X[ by (S,T) — (S*T,SNT); if
(M,N) € X", then H — (NUH,NU(M — H)) is a bijection Vs < (~Y(M, N).

46.11. An irreducible Q[W,]-module is said to be nondegenerate if its restriction
to W/ is irreducible. To a nondegenerate irreducible Q[W,,]-module we associate
an element (S,T) of X, as in [L7] 2.7(ii)]. We obtain a bijection [[S,T]] < (S,T)
between the set of nondegenerate irreducible Q[W,,]-modules (up to isomorphism)
and X,,. Note that [[S,T]] and [[T, S]] have the same restriction to W7,.

46.12. In 46.12-46.24 we assume that G is adjoint of type D, (n > 2), that
|G/G°| = 2, that Z5 = {1}, hence D # G°. We choose an isomorphism of W
with W/ as Coxeter groups and we use it to identify the two groups. We de-
fine a surjective homomorphism W — W,: it takes @ to s, and its restriction
to W is the obvious imbedding W = W, — W,,. Via this homomorphism any

nondegenerate irreducible Q[W, ]-module can be viewed as an object of Irr(W)
so that the set of isomorphism classes of objects of Irr(W) can be identified with
the set of isomorphism classes of nondegenerate irreducible Q[W,,]-modules, hence
with the set {[[S,T]]; (S,T) € X,}. Note that for (S,T),(S’,7") in X,, we have
(S, T) = ¢(S8,T") if and only if the two-sided cells attached to [[S,T]] and to
[[S”, T"]] coincide. Thus X,, may be viewed as as indexing set for the two-sided cells
of W which are e-stable. We write cps v for the two-sided cell of W corresponding

to (M,N) € X,,.
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46.13. For any two-element subset C' of N let [C] be the closed interval in R
with extremities in C. Let M be a finite nonempty subset of N of even cardinal.
An admissible arrangement of M is a set ® of two-element subsets of M forming
a partition of M with the following property: for any four element subset of M
of the form C' U C’ where C € ®, C’' € &, we have [C] C [C'] or [C'] C [C] or
[C]N[C’'] =0. (This agrees with the definition in [L14] p. 164].) For example, the
admissible arrangements of {0, 1,2,3,4,5} are

¢, = {(Oa 1)7 (2a3)7 (4a 5)}’ by = {(075)a (172)a (374)}3 Q3 = {(033)’ (132)’ (4a 5)}a
@, ={(0,1),(2,5),(3,4)}, @5 =1{(0,5),(1,4),(2,3)}.

If ¥ is a subset of ® and i € Fy, we denote by W’ the set of all = € ¢, (i) such that
x belongs to some pair in V.

Now let (M, N) € X™. Let ® be an admissible arrangement of M and let dco
be a subset such that \<i>| is odd. We set

R 1 -
c(M,N,®,®) = B Z( )‘qmq}% ([WOU(®—0) UN, o U(d—w)oun]] € R(W).
vCo

The last inclusion holds since for any ¥ C ® we have (—1)1#7%| = —(—1)I2n(@-D)],

From [L14] (5.18.1)] we see that:
(a) There exists x € W such that ¢(M, N, ®, ) = N, and l(z) = a(z) mod 2.
From [L15 1.19] we see that
)

(b) If H € V), then there exists an admissible arrangement ® of M and ¥ C ®
such that H = 9% U (® — W)!; that is,

[NUH NUM — H)]]=[v'u(®—-¥)'UuN, ¥ u(®—-¥)°UNJj;

DNUH,NU(M—H))] = 2~ IM/2+1 Z (—1)@0‘1}/‘0(]\/[7 N,®,d).
dCd;|d|=0dd

46.14. We now state some properties (a)—(d) of D.

(a) D has property 2.

(b) D has property 2.
In view of (a),(b), the results in 44.17-44.21 are applicable to D. In particular, for
any e-stable two-sided cell ¢ of W, the Subcategory D“” of DU is defined as in
44.19. We shall write DM N DM n instead of Dun Dun where (M, N) € X,,.

CM,N’ —CM,N
(c) For any m > n and any (M,N) € X there exists a bijection n — A,,
Vif < QX;N such that

—1
(Ay : Ryvumvuar—yy) = 27172 (—1)yn(tar (D+H)

foranyn e Vy,, HE V.

(d) If p =2, then any irreducible cuspidal admzsszble complex on D 1is in Dune.
moreover, D¢ is empty unless n = s> with s odd, s > 3, in which case
Dune has ezactly one object up to zsomorphzsm, its support is contained in
the set of unipotent elements of D.
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The proofs for (a)—(d) are given in 46.15-46.23 under the induction hypothesis that
(a)-(d) hold when n is replaced by n’ with 2 < n/ < n. (This assumption is empty
ifn=2.)

46.15. If P is a proper parabolic subgroup of G° such that NpP # () and such
that (setting D' = NpP/Up) either D' £ () or (if p = 2) there is at least
one cuspidal admissible complex on D’, then P/Up is of type D, or a torus and
the induction hypothesis shows that D’ satisfies property 20y and (if p = 2) any
irreducible cuspidal admissible complex on D’ is in D’“nc.

Using 46.3(a) (if p # 2) and 46.3(b) (if p = 2) we see that 46.14(a) holds.

Using 46.13(a) and 44.15(c) (which is applicable in view of 46.14(a)) we see that
for any M, N, ®,® as in 46.13(a), R, (11 n,8,8) is a Z-linear combination of objects
A € D" such that e® = 1. Using 46.13(b) we deduce that for any E € Irr(W),
REg is a Z-linear combination of objects A € D" such that e* = 1. Since any
Ae Dun appears with nonzero coefficient in Rg for some E € I1rr(V~V)7 we see that
any A € D satisfies e = 1.

We show:

(a) If D"nc £ (), then n is odd.

If p = 2, this follows from 12.9(b). If p # 2, then we can find an isolated semisimple
element s € D such that Zg(s)? carries a cuspidal admissible complex supported
on the unipotent variety of Zg(s)? (see 23.4(b)). Now Zg(s)? is either semisimple
of type B,—_1 (and then n — 1 must be even by the known theory for connected
classical groups) or is semisimple of type B, X B, witha > 1,0 > 1,a+b=n—1
(and then a,b must be even and n — 1 must be even). Thus (a) holds.

Now if A € D" we have (—1)cdimGurp(4) — (1)Ll = (—1)"~1 and this
equals 1 by (a). Thus we have e = (—1)cdim@upp(4) for any cuspidal A € D",
The analogous equality holds for noncuspidal A in view of the induction hypothesis
and 44.15(a). We see that 46.14(b) holds.

46.16. For h € [2,n— 1] let P" be the parabolic subgroup of G° which contains B*
and is such that the Weyl group of P"/Upn is the subgroup of Wyn := W/ NW,,
of W = W/. Then W (the subgroup of W generated by W and w, see 43.8)
is the inverse image under W — W,, of W,, 1, and Irr(VV 1») can be identified under
W — W, r, with the set of isomorphism classes of irreducible Q[W,, ;,]-modules of
the form FX E’ where E is an irreducible Q[&,,—]-module and E’ is an irreducible
nondegenerate Q[Wy,]-module. Let G* = NgP"/Upn. Then D" = NpP" /Upny is
a connected component of G*. We have Gh/Zh = PGL,,_p x G" where Z" is a one-
dimensional torus in the centre of (G")? and G" is a group like G (with n replaced by
h). Hence 46.14(a)-46.14(d) hold for D" instead of D (by the induction hypothesis)

and the objects in (D")“" can be written in the form AKX A’ with A € P/G\Lzrih
and A’ € (D" (where D" = D" /ZM).

46.17. Using 46.13(a) and 44.17(d) (which is applicable in view of 46.14(a),
46.14(b)) we see that for any (M, N) € X", any admissible arrangement ® of M
and any ® C ¢ with |®| = odd we have that R,/ v ¢ 4 15 a N-linear combination
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of objects in D“" or equivalently that

z Z \qm‘I’IR
[[TOU(®—T) UN,T1U(®—T)OUN]]
\I/C<I>

is an N-linear combination of objects in D"".

46.18. We prove 46.14(c) assuming that | M| = 2. We have M = {z,y} with z < y.
From 46.17 we see that Rnu{y},Nu({z})) 1S an N-linear combination of objects in

f)%z\r- Since R[[Nu{y},Nu({x})]] has self-inner product 1 it must be equal to a single

object of 15}\‘/? n and the desired result follows.

46.19. We prove 46.14(c) assuming that |M| = 4. We have M = {x,y, z,u} with
r <y <z<u. From 46.17 we see that:
Rinugy,up,Nu({e, 2Dl = RINU{zub, Nudw.2 DIl
(&) R +R
([NU{y,u}, NU({z,z})]] [[NU{z,u}, NU({z,y})]]
are N-linear combinations of objects in ﬁ}(}z N+ Since the inner products of any two
elements in (a) are known (they are 0,1 or 2) we see that there exist four mutually
non-isomorphic objects a, b, ¢, d of Dy n such that
Rinugy.u) Nu({z,2))) + BINugeu) VU2 = @ + b,
Rinvugy,ub Nu(z,20)) — BINU{@u} Nu(y2) = ¢+ d,
RiiNvugyup,Nu(e,2 )l  BINuEz ) Nu(ayh) = @+ 6,
Riivugy,ul,Nu(e,2 DIl — Blivugzul No(eyh) = b+ d.
Hence we have

Rinufyup Nu(e,zp) = (@+ 0+ c+d)/2,
RiNu{a ), NU(y,ep) = (@40 —c—d)/2,
RiNUz ), NU(zyh))) = (@ — b+ c—d)/2.

There are well-defined elements 74, 75, e, Nq of V}; such that

na({x,y}) = Oana({y7z}) = 077717({957y}) = Oanb({yvz}) =1,
nc({x’y}) = 1#70({%2}) = Oand({wvy}> = 1777d({y72}) =1

The assignment 7, — a, n, — b, 1. — ¢, ng — d is a bijection Vj, < QX;N which
establishes 46.14(c) in our case.

46.20. We now assume that |M| > 4 and that (M, N) has the following property:
there exists k& € [0, max(M U N)] such that k ¢ M UN. We set

h=n—|{z>kxze M} —2/{x>k;z e N}.
Clearly, h < n. Let
M ={z<kzeMiu{zr>ka+1le M},
N ={r<kizeN}U{z>kz+1€eN}.
Note that M’, N’ are disjoint subsets of N such that |[M’'| = |M|,|N’| = |N| and

Z x—|—2Zm: Zx—l—QZm—(n—h):h—l—mQ—m.

zeM’ reEN' zeM zeN
In particular, h > 0. If h < 1, we see that |M’'| = 2h, hence |M| = 2h < 4, a
contradiction. Thus we have h € [2,n — 1]. We see also that (M',N’) € X;. We
define a bijection M’ = M by z + z if 2 < k and = + 2 +1 if 2 > k. This induces
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a bijection Vs = Vi, hence a bijection Vi, = V{,,. Consider the two-sided cell
¢ = cyr N X cg of Wi (see 46.16) where ¢ is the two-sided cell associated to
the sign representation sgn; of &,,_;,. We have ¢’ C ¢ where ¢ = c¢)s y. Moreover,
¢/, c satisfy the assumptions (i),(ii) of 44.21. Consider the composite bijection

~ ~ ,ah ~ ,~h ~ 7
Vie = Vip = (D) x = (D)e" = D s
here the first bijection is as above; the second bijection comes from the induction
——un
hypothesis; the third bijection is A’ — AX A’ where A = Ry, € PGL,,_; the

fourth bijection comes from 44.21(h). Using 44.21(h) we see that this composite
bijection has the required properties. This proves 46.14(c) in our case.

46.21. We now assume that |M| > 4 and that there exists y > 0 such that y €
N,y —1¢ N. Recall that M UN C [0,m + n — 1]. We can assume that m = n so
that M UN C [0,¢] where t = 2n — 1. Let

M ={z;t—-zeM}CN, N={ze0,t]jt—r¢ MUN} CN.
We have M/ (1 N' = 0, [M'| + 21| = M| + 2(t + 1) — 21M UN]| = 2n,

Z x4+ 2 Z sz(t—x)—!—Q Z x—2 Z (t—2)

rit—xeM z€[0,t];t—x¢g MUN reM z€[0,t] e MUN
=Mt =) w+t?+t-2Mt-2INt+2) z+2) =
zeM zeM TzEN
=t +t— [M[t—2IN[t+ > z+2) z=n’
xeM zeN

We see that (M’,N') € X. We have a bijection M’ = M, x — t — z. This
induces a bijection Vy;s = Vjs and a bijection Vi, — V. Since y € N, we have
y ¢ M, hence t —y ¢ M'. Since y € N, we have t —y ¢ N’. Thus, t—y ¢ M'UN’.
Ify—1e M,thent—y+1e M andt—y<t—y+1. Ilfy—1¢ M, then
y—1¢ MUN (sincey—1¢ N),hencet—y+1€ N andt—y <t—y+1. In any
case we have t —y+1 € M'UN’ and ¢t —y € [0, max(M’' UN")]. By 46.20, 46.14(c)
holds when (M, N) is replaced by (M’, N'). Consider the composite bijection
Vi = |47 = QX?/,N/ = Q;ZN;

here the first bijection is as above; the second bijection is as in 46.14(c) for (M’, N');
the third bijection is A — A°; see 44.19(a). (Note that for A € D" we have
A° = d(A) since e? = 1 by 46.15.) The composite bijection above is denoted by
n— A,. We have A, = d(A,) where n € V}j; corresponds to ' € Vj;, and A, is
attached to ' by 46.14(c) for (M’, N'). For any J C M, let J' C M’ be the image
of Junder z — t — z. Let H € V). Using 44.8(c) and [L15, (1.4.1)] we have

(Ay - Bynvomvuae—mn) = (d(Ay) = d(Ryvooe -, nvum))-
(We have [[NUH,NU(M — H)|]®@sgn = [[N'U(M’'— H'), N'UH’]].) This equals
(A = Bivrusqar—ry voumy) = 27 M V20 (2 (QF =10+t ),
(We have used 46.14(c) for (M’, N’).) By definition we have
W (M= H')xt37 (1) =0/ (M = H)" * 37 (0)) = /(M — H) * 37 (0))")
= (M — H) x t3;(0)) = n(H * ty; (1))
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so that 46.14(c) holds in our case. For the last equality we note that
(M — H) * t3; (0)) +n(H *t3/ (1)) = n((M — H) x 3/ (0) * H x /(1))
= n(M * M) = n(0) = 0.

46.22. We now assume that (M, N) € X does not satisfy the assumptions of
46.18, 46.19, 46.20 or 46.21. Then |M| > 6 and there exist » > 0, s > 3 such that

N={0,1,....r—1}, M={r,r+1,r+2,...,7+2s — 1}.

Note that (M, N) has the same image in X, as (M’, N') = ({0,1,2,...,2s—1},0).
Since the statements of 46.14(c) for (M,N) and (M’,N’) are equivalent, it is
enough to prove 46.14(c) for (M’, N') instead of (M, N). Thus we may assume
that (M, N) = ({0,1,2,...,2s — 1},0) with s > 3. We have (M, N) € X5,.

If @ is an admissible arrangement of M let Cg be the set of all subsets E of M
with the following property: if (z,y) is a pair in @, then « € F if and only if y € E.
Note that Cg is a subspace of the vector space Vj; of dimension s and containing
M. Clearly, ¥ — (W% U (® — ¥)1) is a bijection between the sets of subsets of ®
and Cp. Via this bijection the function ¥ — [® N ¥| mod 2 (for & C & that |P] is
odd) can be viewed as a linear function Ce — Fs. This gives a bijection between
{®;® c @, || = odd} and the set of linear functions Cp — Fy which take the value
1 on M. Using the notation (E) instead of [[S, T]] where (S,T) € (~'(M, N) and
E = S* € Vj; we see that the elements ¢(M, N, ®, ®) (see 46.13) are the same as
the elements

M N,B:6) = 5 37 ()P g € R(W)
E€Cq
for various linear functions & : Cg — F2 such that (M) = 1.

Now let &’ be another admissible arrangement of M and let &' : Co» — Fa be a

linear form such that ¢'(M) = 1. We have

]. ’ ’
(RC(NI,N,@;g) : RC(M7N7¢/;§/)) = Z Z (,1)5(E)+f (B )(R(E> . R(E’})

EcCqy,E'€Cq/
1 / 1 /
=3 Z (—1)EE+E(E) _ 1 Z (—1)EIHE (M —E)
EcCsNCyr EcCsNCqr
1 /
=3 > ()SEHEE = | {n € Hom(Vir, Fa)inles = & nley, = &'}-
EcCsNCypr

Now let k € [0,2s —2] and let M' ={0,1,2,...,k—1,k+1,...,2s—2}, N' = {k}.
We have Yy a+ > cno @ = h+ s> —s where h = s> — (25 —k—1). Since s >3
and k € [0,2s — 2], we have h € [4,s* — 1] and (M',N’) € X}.

Consider the two-sided cell ¢/ = cpr 2 X ¢g of Win (see 46.16) where ¢ is the
two-sided cell associated to the sign representation sgn;, of &,,_;,. We have ¢ C ¢
where ¢ = cp .

Define an imbedding j : M’ — M by j(z) =z if x € [0,k — 1], j(z) = x + 1 if
v €[k+1,25—2]. Let VY, = {E € Vig;|EN {k,k + 1}| = even}, a hyperplane in
V. If E € VY, then j71(E) € V.

Let 11,72 be two elements of V;, such that

(a) m(E)+n2(E) = |En{k,k+1}| mod 2 forall E € Vj; and my ({k,k+1}) =
(ks k4 1) = 0,
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We define a linear function 7' : Vayr — Fa by 0/ (E') = n1(5(E’)) = n2(j(E")) for
E’" € V. (The last equality follows from (a) and the fact that j(E')N{k,k+1} =
.) We have n/(M’) = 1. (We use that

L= (M) =m@M){kk+1}) =m((M))
which follows from (a).) Thus we have ' € V},,. Let A,/ be the object of (ﬁh)}(},w,
associated to 7’ by the induction hypothesis applied to (M’, N’). Then Rgg,, MA,, €

(D"™)r is defined. We set ay, ,, = tindD, (Rsgn, W A,) (see 44.20). By definition,
this is an element of K" (D) which is an N-linear combination of objects in D7 v

Now let (S,T) € ¢("*(M,N). Using 44.20(h) we see that (cuy, n, : Rys.ry) is 0 if
|ISN{k,k+ 1} # 1, while if |SN{k,k+ 1} =1, it is
(b) (AW/ :R[[S’,T’}])
where (S',T") € ("*(M’, N') is given by
S'={z<kxeStu{k}u{zr>kz+1eS}
T ={zx<kzeTyul{klu{z>kaz+1eT}.

By the induction hypothesis, the expression (b) is equal to
2*\M'\/2+1(,1)#(%@1/(1)*(5/*{’6})) — 2*S+2(71)n1(3“) — 2*S+2(,1)172(S“)_
Hence, if ® is an admissible arrangement of M and & : C4 — F5 is a linear function

such that £(M) = 1, then
1

(anyma * Re(u,n,@56)) = B) Z (_1)£(E)(041717172 : Rig))
EcCs
1 —s
=3 Z (_1)5(13)2 +2(_1)n1(E)
EcCq;
|[EN{k,k+1}|=even
_ Z 278+1(71)771(E)+€(E).
EecCq;

|[EN{k,k+1}|=even

This is equal to the number of elements in {n,72} whose restriction to Co is
equal to £&. (It is 2,1 or 0.) We now apply [L14] 9.2] to Y = V), with its ba-
sis {{0,1},{1,2},...,{2s — 2,25 — 1}} and to the family of elements R,/ n o)
for various ®,¢ as above and the family of elements o), ,, for various 71,12,k as
above. (These elements are N-linear combinations of objects in Djf y.) We see
that there exists a bijection Vj, < ﬁﬁN, n < A, such that for any n € Vj, we
have Re(v v .o, = ZWGVA’JWI%:& A, for any ®,¢ as above and «y), ., = A, + A,
for any 71,72, k as above.

Now let E € Vj;. We can rephrase 46.13(b) as follows: there exists an admissible
arrangement ® of M such that E € Cg; moreover,

by =27 > (~)*F)e(M, N, ®;€).
£€Hom (Cp,F2);6(M)=1
For n € V; we then have
(Ap: Ripy) =270 > (=1 (A: Ry nvaiey) = 2757 (=1)75).

fEHOm(Ccp,FQ);
&(M)=1
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We see that 46.14(c) holds in our case. This completes the proof of 46.14(c).

46.23. In this subsection we assume that p = 2. Let P be a proper parabolic
subgroup of G° such that NpP # () and such that (setting G’ = NgP/Up, D’ =
NpP/Up) we have D'une £ (). Let D', G’ be the quotient of D', G’ by the trans-
lation action of Zg,o. Let 7 : D’ — D’ be the obvious map. From the induction
hypothesis we see that P/Up is of type D,. (with r an odd square > 9) or a torus,
that D’“"¢ has exactly one object A up to isomorphism and that supp(A) is con-
tained in the inverse image under 7 of the variety of unipotent elements of G’
contained in D’. Let D" be the subcategory of D“" consisting of objects which
are isomorphic to direct summands of indg, (A). From 27.2 and 11.9 we see that
the set of isomorphism classes in DunP g in bijection with the set of isomorphism
classes of simple modules of Q[W,,_,]. Since any noncuspidal object of D" belongs
to DunF for a P as above (unique up to G%-conjugacy), we see that the number of
noncuspidal objects of Dun is equal to

(a) > p2(k)
k>0,5>0,s odd, s2+k=n
where ps (k) is the number of irreducible representations of Wy, up to isomorphism.

Now let z,, = |[D""|. From 46.14(c) we see that z,, = |X,|. Since |X,| is known
from [L7] we see that

Tpn = |Xn‘ = Z p2(k)
k>0,5>0,s odd, s2+k=n
where py(0) = 1. Comparing with (a) we see that the number of cuspidal objects

of Qun is 1 if n = s2 for some odd s > 3 and is 0 otherwise. From 12.9 we see that
the set of irreducible cuspidal admissible complexes on D (up to isomorphism) is
empty unless n = s2 for some odd s > 3 in which case it has exactly one object
(whose support is necessarily contained in the unipotent variety). Since any object
of D™ is an admissible complex on D we see that 46.14(d) holds for D.

This completes the inductive proof of the statements 46.14(a)—(d).

46.24. Let (M,N) = ({0,1,2,...,25s — 1},0) € X2, n = s? with s odd, s > 3.
Define a linear function n : Vjy — Fs by
n(E) =|E Nty (0)] mod?2=|ENty;(1)] mod 2.
Since s is odd we have n(M) = 1, hence n € V{,. In the setup of 46.22 we show:
(a) A, € D""e,
For w € W, we have (in view of 46.22 and 44.7(i)):

(A 2o (KB)) = (<)™C 5 3 tr(wse. (B))( Ay : )
E€VNM
=(—1)dimG% Z tr(ww,<E>)2’S+1(_1)ﬁ(E).
EeVu

By 44.14(a), the condition that A, is cuspidal is that (A, : gr1(K}3)) = 0 whenever
w € W is not D-anisotropic. Thus it is enough to show that

(b) 3 tr(wew, (E))(~1)/F0 O = g
E€Vy
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whenever w € W = W/ satisfies the condition: w is not D-anisotropic or equiva-
lently, the condition: ws,, € W,, has no eigenvalue 1 in the reflection representation
of W,,. Note that (b) holds by [L3, (22.5.2)V]. (In that reference the words: “ele-
ments of W'” should be replaced by: “elements of W/ — W”.)

Theorem 46.25. Assume that p satisfies the following condition: if G has a
factor of type Eg or Fy, then p # 2. Then:

(a) If A is a unipotent cuspidal character sheaf on D, then A is clean (see
14.7).

(b) If A is a unipotent character sheaf on D, then for any w € W, i € Z such
that (A : H(K¥%)) # 0 we have i = dimsupp(A4) mod 2 (or equivalently
ed = (_1)codim(supp(A)))'

By the results in §45 we are reduced to the case where G is simple and Zg = {1}.
If D= GY (a) is a special case of 46.1(b); the fact that (a) implies (b) is proved
in this case as in [L3, IV, V]. If D # G°, then (a) and (b) follow from 46.4(a),(b);
46.7(a),(c); 46.8(a),(d); 46.14(a),(b). This completes the proof.

46.26. Let e be a pinning (see 1.6) of GY which projects to (B*,T') (see 28.5) under
the map p in 1.6. We can find d € D such that 3 := Ad(d) : G — G° preserves e.
Moreover, 3 depends only on D (not on d). Note that § has finite order, say r.

Let G be a connected reductive algebraic group over C with a fixed Borel sub-
group B, a fixed maximal torus T C B and a fixed pinning e which projects to
(B, T) such that G is a Langlands dual of G°. In particular, 7, T are Langlands
dual tori. There is a unique automorphism v : G — G preserving e such that the
restriction of v to T corresponds to (is “contragredient of”) the restriction of § to
T under the Langlands duality between 7" and T. Note that v has order r.

A G-conjugacy class C' in G is said to be special if some/any g € C is such
that g, has finite order not divisible by p, g, is a special unipotent element of the
connected reductive group Zg(gs)? (see [L14, (13.1.1)]).

Let C be a special G-conjugacy class in G which is y-stable. For g € C let A(g,,)
be the group of components of the centralizer of g, in Zg(gs)°, let A(g,) be the
canonical quotient of A(g,) defined in [L14] p. 343] (in terms of g,, Zg(gs)° instead
of u,G1) and let I(g,) be the kernel of the canonical homomorphism A(g,) —
A(gu). Let A(g) = {(a,7) € G x Z/rZ;av/(g)a" = g}/Z5(g)° be a group with
multiplication (a, j)(a',j') = (ay/(a’), j + j'). We identify Zg(g)° with a (normal)
subgroup of A(g) by a — (a,0) and we set A(g) = A(g)/Zc(9)° (a finite group).
Let A(g) — Z/rZ be the (surjective) homomorphism induced by (a,j) — j. Since
Z 74920 (94)° = Zc(g)® we see that I(g,) is naturally a subgroup of A(g). From the
definitions we see that that in fact I(g,) is normal in A(g). Let G, = A(g)/I(gu).
The homomorphism A(g) — Z/rZ induces a surjective a homomorphism G, —
Z/rZ. For j € Z/rZ let gg,’ be the inverse image of j under this homomorphism.
Let Gc = |,ec Gg- Now G acts on Ge: if z € G, g € C, then Ad(x) induces
an isomorphism G, = Grgz-1. Let gé = ngec g;, a G-stable subset of G~. For
any g € C, the set of G-orbits on G} is in natural bijection with the (finite) set
of G4-conjugacy classes in Q;. Thus G acts on G}, with finitely many orbits. This
makes G, into an algebraic variety (a finite union of homogeneous spaces for G).

Let B, be the set of all triples (C, X, £) where C is a y-stable special G-conjugacy
class in G, X is a G-orbit in G}, and £ is an irreducible G-equivariant local system
on X (up to isomorphism). Let 4" be the set of all (C, X, &) € B, such that C
is a unipotent G-conjugacy class in G.



140 G. LUSZTIG

46.27. We have P = | |, P where C runs over the set of y-stable special

unipotent classes in G and e s the set of triples in B5" whose first component

is C. Under the Springer correspondence, the set of ~-stable special unipotent
classes in G is in bijection with the set of special irreducible representations Fj
(up to isomorphism) of the Weyl group of G or of G whose character is fixed by
€ : W — W and hence in bijection (via Ey — cg,, see 43.6) with the set of e-stable
two-sided cells of W3 let C; be the special unipotent class corresponding to the
two-sided cell c. Assume that p is as in 46.25. We have the following result:

(a) For any e-stable two-sided cell ¢ in W there is a natural bijection ﬁ’c‘" —

un
7,Ce "

By the results in §45 we are reduced to the case where GV is simple and Z5 = {1}.
If D = G (a) is established in [L3, IV, V]. If D # G, then (a) follows from
46.4(d), 46.7, 46.8, 46.14(c).

By taking disjoint union over the various ¢ we obtain a bijection Dun RU

We will show elsewhere that this extends to a natural bijection D « .. (See [L3}
IV, V] for the case where G = G°.)
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