
PERFORMANCE STUDY

OF GMIS

by

LUIS EDUARDO SCHMIDT SARMENTO

Engenheiro, Escola Politecnica da USP
Brazil
(1973)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1976

Signature of Author ..........................................
Alfred P. Sloan School of Management

May 7, 1976

Certified by .................................................

Thesis Supervisor

Accepted by ..................................................
Chairman, Departmental Committee

on Graduate Students



PERFORMANCE STUDY OF GMIS

by

Luis Eduardo Schmidt Sarmento

Submitted to the Alfred P. Sloan School of Management on May 7,
1976 in partial fulfillment of the requirements for the degree
of Master of Science.

Abstract

This paper presents and analyzes alternatives to improve
the performance of GMIS (Generalized Management Information
System).

System performance is measured by using tools developed
by IBM to study the performance of VM/370 systems.

The- data obtained in the measurement procedure is used in
a GPSS program that simulates the following improvement alter-
natives under different loads on the computer and on GMIS it-
self:

a) optimize the programming of the data base
virtual machine, so that each query is
processed faster.

b) hardware upgrade, using a faster CPU

c) change GMIS architecture so that several
queries can be processed simultaneously
by having several data base VM's running
in multi-programming and accessing a
common segmented data base.

We conclude that alfernative a is the one with the highest
payoff. Alternative c is not efficient and hardware upgrade is
not necessary given the present load conditions.

Thesis Supervisor: Peter Pin-Shan Chen
Title: Assistant Professor of Management Science
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CHAPTER 1

Introduction

1.1 Purpose of the Study

The purpose of this study is to measure GMIS performance

under different loads on the computer, predict the performance

degradation that the system may have by serving various users

simultaneously, and analyze alternatives for performance im-

provement.

1.2 Description of GMIS

This section presents a brief description of GMIS (Gen-

eralized Management Information System). A more comprehensive

description can be found in Gutentag [1] and examples of appli-

cations in Donnovan and Jacoby [2].

GMIS is a flexible data management system which permits

rapid implementation of many applications systems, and current-

ly is installed on the IBM System /370 Model 158 located at the

IBM Cambridge Scientific Center. It uses the virtual machine

concept extensively. A virtual machine may be defined as a

replica of a real computer system simulated by a combination

of software and appropriate hardware support. The virtual

machine /370 system enables a single IBM /370 to appear

functionally as though it were multiple independent system

/370's.



A configuration of virtual machines used in GMIS is de-

picted in Figure 1.1 where each box denotes a separate virtual

machine.

VM (1) VM (2)

DATA BASE VM

VM (3) VM(01)

FIGURE 1.1

Each GMIS user resides in his own virtual machine with a

copy of the user interface he requires. Each user transaction

to the data base is written into a transaction file, and that

user's request for processing is sent through a communication

mechanism to the data base machine. The multi-user interface



processes each request in a FIFO order, by reading the selected

user's transaction file, writing the results to a reply file

that belongs to the user, and signaling to the user machine

that the request has been processed. Each user interface reads

the reply file as if the reply had been passed directly from

the data base management system.

1.3 Contents of the Study

We start our Chapter 2 by analyzing the performance and

load of the System /370 where GMIS is currently installed.

The idea is to verify whether or not we can put the blame on

an overcrowded computer for GMIS bad performance, since many

other applications share the computer with GMIS. This analysis

also provides the basis to judge whether a hardware upgrade is

advisable as a means to improve GMIS performance.

In Chapter 3 we present a Queueing Model of GMIS. The

model is used in a GPSS simulation program to determine the

degradation in performance with each additional user, as well

as the impact on performance of the following improvement

alternatives:

a) optimize the programming of the data base machine so

that each query is processed faster.

b) hardware upgrade, using a faster CPU (use the model

168 instead of the 158 being used).

c) change the software architecture so that several

queries can be processed simultaneously by having several data
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base machines running in multiprogramming and accessing a

common segmented data base.



CHAPTER 2

Analysis of Performance and Load
of the System /37-0 Where

GMIS is Installed

This chapter presents a performance analysis of the system

370 model 158 with 2 megabytes, where GMIS is presently imple-

mented. The framework we adopt in this analysis is the one

proposed by Bard in a series of articles [3,4,5]. The measure-

ment of the relevant performance data was made over a period of

one month by using the Virtual Machine Performance Tool (VMPT).

VMPT is an IBM aid that is described briefly in the next

chapter. Further details on VMPT can be found in the user's

guide [6].

2.1 Description of VM 370

VM /370 is, for the purpose of performance analysis,

simply a virtual-memory time sharing system (for a more

comprehensive description see [7,8,9]). Each user of the

system may enter tasks, usually from a remote terminal. The

system shares its resources among these tasks. The flow of

user tasks through the system is depicted in Figure 2.1.

A user is in the dormant state until he has completed

entering a task. Until proven otherwise, the task is assumed

to be interactive, i.e., to require fast response while making

only slight demands on system resources. While receiving



End of task

Ql
Candidate

Task

DORMANT

Room Available in Main Storage

Entered

End of task
-Qi

End of Q2 time-slice

Q2
Candidate

Room Available in Main Storage

End of Ql time-slice

FIGURE 2.1

Q2
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service, such tasks are said to be in Q1, but before being ad-

mitted to this state they are called Ql candidates. If a Ql

task does not terminate before consuming a certain amount of

CPU time (roughly 400 msec), it loses its interactive status.

It now becomes a Q2 candidate, and is eligible to be admitted

into Q2, which is the set of noninteractive tasks being cur-

rently serviced. There is also a limit (about 5 seconds) on

the amount of CPU time that a task may receive during one stay

in Q2. A task requiring more CPU time may cycle several times

between the Q2 candidate and Q2 states.

The only tasks which may actually receive CPU time at any

moment are those in Ql and Q2. These are called in-Q tasks,

and their number is the multiprogramming level (MPL). The Ql

and Q2 candidates are tasks which are ready to run, but are

not allowed to do so at the moment because the system does not

wish to overcommit its resources. Admissions from Q candidate

to in-Q status is in order of task priority.

In-Q users' main storage requirements are met dynamically

through a demand paging mechanism. The system maintains an

estimate of each user's storage requirements; this estimate is

called the user's projected working set. Admission is based

principally on the availability of main storage space to

accommodate the user's projected working set.

2.2 System Saturation and Bottlenecks

As the MPL goes up, the system is increasingly able to
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overlap the use of its various components, consequently im-

proving their utilization. Soon, however, one or more com-

ponents approach 100 percent utilization so that no further in-

crease is possible. The system then is saturated and one or

more components are the bottlenecks responsible for the satura-

tion. These components are the ones whose capacity must be in-

creased first before overall system performance can be improved.

The main function of the system scheduler is to maintain

the optimal MPL for the given system configuration and user

work load. We will analyze in this section the relation be-

tween performance and the load placed on the system. We will

adopt as a measure of system load the number of active users

on the system. Active users are those logged on the system

which used some CPU time during an observation period of 60

seconds.

The main hardware components of a VM /370 System are the

CPU, main storage, the paging subsystem, and the I/0 subsystem.

We will analyze below the utilization of each of those com-

ponents as a function of system load. But before doing that,

let's see how the load on the system varies over a typical day

on the IBM Cambridge Scientific Center installation. Appendix

A shows how the number of active users and logged on users

very over an average day. From the beginning of a day up to

7:00 a.m., the load is leveled at about 4 active users. At

8:00 a.m. the load starts going up until 10:00 a.m. reaching
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a peak of 16 active users. It goes down as lunch time

approaches and goes up again after lunch to reach a peak of

19 active users by 3:00 p.m. Then it declines sharply up to

6:00 p.m. and then smoothly until the end of the day.

CPU utilization analysis can be done based on two plots:

one, presented in Appendix B, showing CP and problem states

percentages as a function of active users; the other, pre-

sented in Appendix C, showing CPU wait percentage and its

components. The VM /370 system always runs users' CPU in-

structions in the problem state and its own (CP) instructions

in the supervisor state. The amount of time that CPU spends

in problem state is therefore a good measure of "useful" work

done, or through put attained by the system. The system

breaks up total wait time into three components: Idle wait,

when no high speed I/O are outstanding; Page wait, when out-

standing I/O requests are primarily for paging and I/O wait,

when outstanding I/O requests are not primarily for paging.

In Appendix B we can see that CPU problem state percentage

get to its peak at about 22 active users. Total CPU utiliza-

tion seems to level off thereafter with a small drop in

problem state percentage being compensated by an increase in

CP state percentage. By looking at Appendix C we can confirm

this impression, verifying that total wait percentage levels

off beyond 22 active users. This means that the system is

saturated at a load of 22 active users, and since there still

is a significant amount of wait (about 17%) at the saturation
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point we can conclude that CPU is not bottlenecking the system.

This wait state is mostly I/O wait and it may be due to poor

overlapping of CPU and I/O activities, caused by main storage

being insufficient to accommodate an adequate MPL, or because

the I/O subsystem is not fast enough for this CPU.

Appendix D shows Ql, Q2 and Q candidates as a function of

active users. Main storage is (or at least the scheduler

thinks that it is) saturated when the Q candidates list is

never empty. We can see from Appendix D that this happens at

about 24 active users. However, the main memory is not bottle-

necking the system since paging at this load is moderate (see

page wait in Appendix C) and CPU is at its peak utilization.

Main memory would have to be increased only if a more power-

ful CPU were installed.

Appendix E shows the percentage of pageble core utiliza-

tion by users in Q and the percentage of pageble core demanded

by all users in Q and Q candidates. We can see that core

utilization is low even at the main memory saturation point.

This might mean that the scheduler is keeping a lower MPL than

main memory would accommodate (without increasing much the

paging activity) because the Q-candidate tasks are of an I/O

bound nature and an increase in the MPL would overcommit an

already saturated I/O subsystem. If that is the case, the

I/O subsystem is bottlenecking the system and should be ex-

panded and/or better balanced. However, if the Q-candidate

tasks are not of an I/O bound nature, the scheduler is
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unnecessarily constraining the system, since an increase in

MPL could be accommodated by main memory and would lead to a

better overlapping of CPU and I/O activities, increasing CPU

utilization and overall system performance.

In conclusion to the analysis above we may say that the

IBM Cambridge Scientific Center computing facility is well

balanced and dimensioned to handle its peak load near satura-

tion. However, we think that an improvement in the I/O sub-

system, if feasible, would better balance the system com-

ponents and lead to better performance and response -times,

especially for I/O bound applications (as GMIS for instance).

The upgrade of the other components of the system or the im-

provement of the I/O subsystem beyond the point in which it is

no longer bottlenecking the system will be necessary only if

the load increases in the future.



CHAPTER 3

Model of GMIS

This chapter presents a description and analysis of a

queueing model of GMIS.

The model is used in a GPSS simulation program to deter-

mine the degradation in performance with each additional

user, as well as the impact on performance of the following

improvement alternatives:

a) optimize the programming of the data base machine

so that each query is processed faster.

b) hardware upgrade, using a faster CPU (use the model

168 instead of the 158 being used).

c) change the software architecture so that several

queries can be processed simultaneously by having several data

base machines, running in multiprogramming and accessing a

common segmented data base.

3.1 Model Description

We start with a queueing model that was presented in a

working paper by Donovan and Jacoby (2]. Then we extend it so

that some simplifying assumptions are dropped and alternative

c above is included.

The model shown graphically in Figure 3.1 assumes that

all modeling VM have virtual speed constant and equal.
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FIGURE 3.1
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However, when some VM's are blocked, waiting for a query, the

others are allocated a larger share of CPU processing power,

and become faster in real time. It is assumed that each un-

blocked VM receives the same amount of CPU processing power,

that all modeling machines are running in batch without inter-

action with the user between queries, and that all users logged

on the computer are using GMIS (the last three assumptions will

be relaxed later).

Let the following variables be:

M = number of modeling machines logged on

j = number of blocked modeling VM (waiting for data)

R. = query rate of each modeling VM, when there are
J

j blocked machines

L. = rate at which a new query enters in queue, when
J

there are j blocked machines

L = query rate of each modeling VM when running alone

(virtual CPU time = real CPU time)

uj = rate at which the data base VM "serves" the in-

coming queries, when there are j blocked machines

u = service rate of data base VM, when running alone

Then we may write the relations:



Rj - -L
R =M-J+1

Rj L
M

J = 1,2... (M-1)

J= 0

L. = (M-j) R.

L
M-J+1 J = 1,2...M

From the 3 first relations we can derive:

L. L J = 0

L M-J
L M-J+l

L J = 1,...M

By using Little's formula [101 we can get the expected

time that a query stays in queue and is served.

M

Y Pi

E [t] = j=0
M

L.P.
J)J

J=o

where P. is the steady state probability that j machines

are waiting for data. P . can be determined by using a birth

and death markov process [11,121 as illustrated in Figure 3.2.

19
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U. U (j+1)

FIGURE 3.2

P. =L
) u.P L 0-J

M
J=o

P.=1
J

The improvement alternatives a and b presented earlier can

be analyzed by using different values for L and u. Alternative

c requires that we transform the model into a multiple server

queueing model with state dependent parameters [12]. That is

done by redefining the relations for L . and u. as follows:
J J

0 0 9 0

P 0-1)



(M-J) L J = O,...,N
M

(M-J) L J = (N+l) ,....,
(M-J)+N

u = M U J = 0...N

uj (M-J)+N J

where N is the number of "servers" (data base machines)

in the system.

The above extension to the model does not include the

overhead of coordinating several data base machines accessing

a segmented data base in a multilock scheme. This simplifica-

tion is more reasonable if we assume that only a small pro-

portion of the transaction to be processed will eventually

modify the contents of the data base.

The coordination mechanism could be built as follows:

All data base machines would share the same virtual card

reader and read the virtual cards punched by the modeling

machines in a way analogous to the communication mechanism

currently implemented in GMIS. When a machine is processing

a transaction that modifies a given segment of the data base,
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it would have to lock that segment during the update procedure.

This locking could be done by means of a "key" located in the

beginning of each segment or in a shared memory area. This

key would be tested by the data base machines before accessing

a segment.

We proceed now to modify the model to be interactive as

shown in Figure 3.4.

The boxes representing service time of the VM's refer to

the elapsed time from when the machine became a Q candidate at

the start of the transaction until it is dropped from Q at the

end of the transaction. Thus, network delays, printing time,

keypunching time, etc., are included in think time.

The mathematical analysis of the scheme in Figure 3.4 is

not simple, so we decided to use a simulation program in the

analysis.

3.2 Parameters Evaluation

The parameters think time, service time of modeling VM

and service time of data base VM, were measured by using the

following tools:

VM/MONITOR [8,13] is a data collection tool designed for

sampling and recording a wide range of data. The collection

of data is divided into functional classes. The different

data collection functions can be performed separately or con-

currently. Key words in the monitor command enable the col-

lection of data, identify the various data collection classes



FIGURE 3.4
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and control the recording of collected data on tape for later

examination and reduction. MONITOR CALL instructions with

appropriate classes and codes are embedded throughout the main

body of VM /370 code (CP). When a MONITOR CALL instruction

executes, a program interruption occurs if the particular

class of call is enabled. Monitor output consists of event

data and sampled data. Event data is obtained via MONITOR

CALL instructions. Sampled data is collected following timer

interruptions.

VM /370 Predictor [14]. This is an IBM internal use

program. It was designed to support marketing recommendations

resulting in proposals for IBM equipment. It consists of two

distinct parts:

1) The VM predictor model is an analytic model designed

to predict VM /370 performance for specified system configura-

tions and workloads. This model was not used in this study.

2) The VM predictor data reduction package is a set of

programs to analyze data obtained by running VM/Monitor.

This package produces a report describing the workload charac-

teristics for each user logged on the system during the

monitored period (see sample in Appendix F). It also pro-

duces a report summarizing systems performance during the

monitoring section (see sample in Appendix G), for comparison

to the VM predictor model performance'predictions.

VM Performance Tool [6]. VMPT is an IBM aid designed for

software analysis of VM /370 systems. The VMPT package is made



up of two components: a performance measurement package (VMP)

and a performance data analysis package (VMA).

The VM /370 system maintains various sets of internal

counters for system activity, for each I/O device and for each

user logged into the system. The general functions of VMP are

to read these VM /370 counters at specified intervals through

a disconnected virtual machine, to save the values of these

counters in a special disk file and to perform various types of

analysis on the data read.

The VMA component of VMPT is designed to provide an ex-

tension to the analytic facilities in VMP and is used to obtain

an overall characterization of system performance. The

general functions of VMA are to compute simple statistics such

as means and standard deviations and produce histograms,

scatter and trend plots for selected variables. The primary

source of input to VMA is found in the disk file created by

VMP and VM /370 observations. (Sample VMA reports can be

found in Appendixes A, B, C, D, E and H.)

3.2.1 User Think Time

Appendix H shows a VMA activity report that contains mean

and standard deviation of think time for all interactive jobs

(GMIS and non-GMIS users) over a period of one month. We

decided to adopt these values in the simulation, since VMA

does not provide reports broken down by users and the benchmark

programs we monitored presented think times consistent with
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those values. These benchmarks, as many other GMIS applica-

tions, are not actually interactive. They simply print on the

terminal the answers for queries previously recorded on a disk

file.

Based on the data on the VMA report we assumed the think

time to be an Erlang distribution of second order with mean

equal to 5.94 seconds. This value is less than one would

observe in a real interactive job. But by adopting this dis-

tribution on the simulation we can produce a range of think

times from near zero for those pre-programmed queries, up to

30 or 40 seconds when the user has to input some data through

the terminal.

3.2.2 VM Service Times

The service times of the data base and modeling VM's were

measured for two benchmark programs in several one hour

monitoring sections. The monitor tapes obtained were analyzed

by using the VM Predictor Data Reduction Package.

Both programs used as benchmarks are actual GMIS applica-

tions. Benchmark-1 runs on a APL environment and is a set of

uniform complex queries of the type

SELECT TOT (SUMS) FROM PFF - CONSUMPTION WHERE MONTH = 1 AND

STATE = 'CT' AND COUNTY = 'FAIRFIELD' AND FUELTYPE IN

('MIDDLE DISTILLATE', 'DISTILLATE', 'NUMBER 2 OIL');

The answer for each query is printed on the terminal and

saved in a file. At the end of the run several plots are out-



put in the printer.

Benchmark-2 runs on TRANSACT and is a set of non-uniform

queries. Appendix I presents a complete list of these queries.

This program instead of passing one query at a time to the

data base VM, as benchmark-1 does, passes the complete set of

queries in the beginning of the run. This way there is no

communication between the modeling VM and database VM for

each query. They communicate only at the beginning and at the

end of the job.

We decided to base our estimate of service time of data

base VM on benchmark-2, because it contains a wider range of

query types and to base our estimate of service time of

modeling VM on benchmark-1 because the communication pattern

between the two VM's for this program is similar to the scheme

presented in Figure 3.4.

Figures 3.5, 3.6 and 3.7 show the scatter plots of average

service time per query versus average number of users in-Q

during the monitoring section for the data base and modeling

machines. The number of users in Q measures the degree of

multiprogramming during the monitoring section; that is, the

average number of virtual machines (GMIS and non-GMIS users)

that shared system resources during the monitored period.

The least square lines for service time- of data base VM

and modeling VM are respectively:

DB.VM service time = 5.44 x USERS - 1.46 seconds

M.VM service time = 1.13 x USERS - .94 seconds
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We assumed the service times to be exponentially dis-

tributed with a mean given by the above equations.

We may drop now the assumption previously made about all

VM's receiving the same amount of CPU processing power. The

modeling VM's requiring less system resources will tend to run

in Ql (high priority) and the data base machine will tend to

run in Q2 (low priority, bigger time slice). These differences

in priority are already accounted for in the above equations,

since they result from direct measurement of the service times.

3.3 Simulation

We used GPSS [15,16,17] to simulate the model in Figure

3.4. Appendix J presents the coding of the program.

The program logs one user per hour into the system up to

10 users. It prints the statistics at the end of each simulated

hour (time unit = 1/100 of a second). Appendix K presents a

sample of these statistics.

We run several times the simulation of 1 to 10 active

GMIS users, simulating various ways of improving GMIS per-

formance. The results are presented and analyzed in the next

section.

The holding times in each entity of the GPSS program are

determined as follows:

Think time - a sample is drawn each time from an Erlang

distribution of second order with mean equals to 5.94 seconds.

Modeling VM's running time per query - a sample is drawn
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from an exponential distribution with mean equals to the

result obtained by plugging the number of unblocked VM's into

the equation presented in the previous section.

Data base VM running time per query is determined in the

same way as the modeling VM's. But since the holding time in

the data base VM is usually much longer than in the modeling

VM's, the program reajusts several times the running speed of

the data base VM during each query, to make it sensitive to the

state changes of the other VM's.

3.4 Analysis of the Simulation Results

3.4.1 The effect of having GMIS sharing the computer with

other applications

Figure 3.8 presents the results of the first three simula-

tion runs. It shows for each run the total processing time per

query versus the number of GMIS users being simulated. Total

processing time per query is the data base VM running time plus

the time the query was in the queue, waiting to be processed.

In the first run, GMIS users shared the computer with non-

GMIS users. There was an average of 2 non-GMIS users in-Q

(running all the time), what corresponds to a load of about 8

to 10 active users on the computer. This, plus the load

correspondent to GMIS users bring the number of active users

on the computer up to 18 to 20. This is the peak load of a

typical day on the IBM Cambridge Scientific Center installation

(see VMA report in Appendix A). This load is typical only in
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FIGURE 3.8
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its total because it is very unusual to find more than one

GMIS user simultaneously on the system.

The second plot on Figure 3.8 shows the results when

GMIS users only were simulated.

The third plot shows the results where again there was

8 to 10 non-GMIS users on the computer but with the following

improvements being simulated simultaneously:

a) the programming of the data base VM was optimized

to run 30% faster than before.

b) the CPU model 158, with basic machine cycle equals

115 manoseconds, was substituted by a model 168, with a basic

machine cycle of 80 manoseconds [18]. Note: as pointed out

in the previous chapter, CPU is not the only resource that may

constrain performance. Thus what we mean by changing the CPU

for a faster model is an upgrade in all system components

(main memory, I/O and paging subsystems) so that the new system

can outperform the old one in the proportion of their basic

machine cycle times.

c) GMIS architecture was changed to have two data base

VM's running in parallel.

By analyzing the simulation results (Figure 3.8) for the

runs described above, we can see that GMIS performance is very

sensitive to the number of simultaneous GMIS users. In fact,

it takes slightly more than 10 times longer to process a query

when there are 10 GMIS users than when there is only one.

GMIS performance is also very sensitive to the number of
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non-GMIS users sharing system resources with GMIS users. It

takes about three times as much to process a query when there

is 8 to 10 active non-GMIS users on the computer than it takes

when GMIS is running alone on the system. The combination of

improvements we simulated with 8 to 10 active non-GMIS users

had the net effect of making GMIS run as fast as it did when we

simulated GMIS running alone with no improvements. This was a

mere coincidence, but it does show that a combination of im-

provements can drastically reduce processing time per query.

3.4.2 The effect of optimizing the data base VM program-

Figure 3.9 presents the results obtained in two simulation

runs where we simulated different degrees of optimization in

the programming of the data base VM (data base VM 30% and 50%

faster than before) with GMIS users only on the computer.

Figure 3.9 also shows the plot for GMIS with no improvements

so we can compare with the other plots. We can see in these

plots that a certain percentage improvement on the data base

VM coding causes total processing time per query to drop by

about the same percentage. This makes sense since the data

base VM is the bottleneck on the stream of queries and any

improvement on the bottleneck should directly affect the over-

all performance, up to the point where this element is no

longer constraining the system.
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FIGURE 3.9
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3.4.3 The effect of having more than one data base VM

Figures 3.10 and 3.11 present the results for the simula-

tion of 10 GMIS users being served by 1 to 10 data base VM's

running in parallel. We can see that in the case where GMIS

was simulated alone in the computer, there was no significant

gain by having more than one data base machine. This result

is reasonable because with 10 GMIS users on the system, the

data base machine will tend to be running all the time with the

modeling VM's blocked while one of them is being served. If

we introduce, for instance, a second data base machine into

the system, both will tend to be running all the time, but now

with half of the speed because system resources are being shared

by the two of them. In other words, we doubled the number of

servers but we also doubled the time each server takes to

process a transaction, so the expected waiting time in the

system does not change. The same reasoning can be applied for

more than two servers.

The results for the case where the 10 GMIS users were

sharing the computer with 8 to 10 non-GMIS users (two non-GMIS

users in-Q all the time) were different. When there is only

one data base VM, it is running with one third of the speed it

would run if GMIS was alone in the computer. This is because

there is in average two non-GMIS users permanently sharing the

computer resources with the data base VM. So, when we add a

second data base VM, GMIS will be receiving half of the com-

puter resources instead of only a third. In this case we
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doubled the number of servers without increasing the service

time in the same proportion. Thus the expected waiting time in

the system is decreased. When we increased the number of data

base VM's from 1 to 10 in this simulation run we had decreasing

marginal gains in performance. This can be understood by the

same line of reasoning, since when we have 1, 2, 3 ... 10 data

base VM's, they receive respectively 1/3, 2/4, 3/5 .... 10/12

of the system resources.

In conclusion, there is no gain in performance by having

several data base VM's when GMIS is running alone in the com-

puter. Actually there would be a loss in performance due to

the overhead of co-ordinating the data base VM's (this overhead

is not included in the model). There is a gain in performance

by having several data base VM's, when GMIS is not alone in

the computer. But this gain in response time for GMIS users

is obtained at the expense of all the other users. A similar

effect may be obtained in a much simpler and more efficient

way; that is, increasing the priority of GMIS users in rela-

tion to other users.

3.4.4 The effect of using a faster CPU

In another run we simulated GMIS running (only GMIS in

the computer) in an upgraded installation that has a faster

CPU, model 168. For comparison, we present in Figure 3.12

the results of this simulation together with the results

obtained by simulating a data base VM 30% faster. The new
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CPU is roughly 30% faster than the old one.

The results of these two different ways of improving per-

formance were very close, despite the fact that when we use a

faster CPU we increase both the speed of the modeling VM's and

the speed of the data base VM. The data base VM is the bottle-

neck element in the system, and the increase in its speed

accounted for most of the overall gain in performance while

the increase in the speed of the modeling VM's had little im-

pact.

In Chapter 2, we concluded that the CPU was well

dimensioned given the present load conditions. But an up-

graded computer using a faster CPU model may be necessary in

the future, in case the load on the system increases due to

the implementations of new GMIS applications, for instance.

3.5 Model Validation

A complete validation of the simulation results is very

hard to do. The first difficulty is that all simulation runs

represent hypothetical situation in the future; that is,

heavier usage of GMIS, code optimization of GMIS, faster CPU

and change in GMIS architecture. So validation of the type

predicted-versus-real will eventually be possible only in

the future.

The second difficulty is that we had only one account on

the computer available to us during this work. This made it

impossible to measure GMIS performance with more than one VM
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running the benchmarks simultaneously, to check against the

simulation preduction.

What we did then to make sure the simulation results are

coherent with the assumptions we made was to calculate the

number of queries that should have been made by one GMIS user

in every simulation run and compare it with the actual number

of queries simulated for one user.. The number of queries that

should have been simulated can be calculated as follows:

Number of Queries Simulated time
Expected time per query

3600
E[think time]+2E[model VM serv. time]+E[D.Base VM serv. time]

The expected number of queries for each run is shown in

Figure 3.13 together with the actual number of queries taken

from the simulation statics for each run.

The discrepancies shown in Figure 3.13 are well within

the accuracy of the model and we can say that the simulation

results are coherent with the assumptions made about the

parameters in the model.
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Simulation Expected # of Queries Actual # of Queries

1) GMIS and non-
GMIS users,
no improve-
ments

2) GMIS only, no
improvements

3) GMIS only
DB-VM 30%
faster

4) GMIS only
DB-VM 50%
faster

5) GMIS and non-
GMIS users,
faster CPU,
DM-VM 30%
faster

6) GMIS only,
faster CPU

FIGURE 3.13
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CHAPTER 4

Conclusions and Recommendations
for Further Research

This paper has presented the analysis and evaluation of

several ways of improving GMIS performance.

We showed that changing the system architecture so that

several queries are processed simultaneously by several data

base VM's decreases GMIS response time, but increases response

time for non-GMIS users. A priority scheme can achieve a

similar result in a much simpler and more efficient way.

We showed further that the use of a faster CPU model as

a means to improve GMIS performance is only advisable if the

load on the computer increases in the future, and in this case

other components of the system will probably have to be up-

graded too. The system is presently dimensioned to work

efficiently even when the load is at its peak during the day.

The optimization of the data base VM programming seems to

be the alternative with the highest payoff since this is the

bottleneck element in GMIS.

We recommend that further research is done to identify and

optimize the most often used routines in the data base VM.

Further research on the SEQUEL structure may also lead to better

performance. For instance, SEQUEL does not have a JOIN com-

mand. It handles joins through nested queries, which is very
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inefficient, if many rows of the tables involved have to be

accessed.
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'!OTi (Y I A R 19 67)

SELECi
SELECI
SELEC'l
SELEC
SELECV
SLLEC 1

SELELC
S EL EC 

SELECTr
SELEC1

SELECT

SELLCT
SELkCI



57
FILE: CUNTRiOL TOTAL A CAMBR~IDGE. SCIENTIFIC CENTER~

SELEC1 liul(AMUN~T) friufi l1?74 WEPIZ DATE = 7LiU1
AND F~zjiA'Xk-E = INSIDiUAL FUEL U11.';
SELEC1 '10 I (AMOUNI) FFOI1- Irie74 W~hhA-L D A TE = 7 40 b

AND £1i/i IM't9' AND FELIih = 'RESIDUA A' FUF L OIL';
Sk~.:L '.ul (AMOUA~II) FPddM ll't-73 1%lLiiP M' 7301 4 AND
FUEL'171 1 = ':.SloUhL LUEL uiL' ANiD STiATE l hI';
SELEC'. TufI(AMwU> T) F!-.OM Iri73 wifi\L f:ITE =.(;

AND Fu.LIlYI..= l'i:SI!YUAL F01iL U01±.' A,,D STA21 IN

SELLC~I LEALfr LLOL. Fnu , lhE7. M!L DATE =7201*
AND kUrL'!YTxE;- 9'.ESIDUAL ?Ft±. 01L' AVD STArIL = I~

SLE; I lU'L(AlWUNT) t'ium IYPV/z WHE.LF DATE 72(Jb AND STATE $ MA'
ANDI riif.'6iE ='IISIDUL kiUFLi U11.9;
SELk.Li Cul'A FEU~O,1s LP71;
SELEZ-1 Tu'1 (AMOJN~I) ?hOMl 1f.i71 W1LhL DIATL 7167 AND FUELTYPE

LE~L-L~~rU'2L OIL' AhrD Sl 1Ji:
SE Lt C '- V~i( C tS'l) F h CMl [iS I uN W H lkhxI, :'I In 74 01
SELtL.(A 'lu'i (CUS 1) FFOM L6STuF&A oi~ ~1Ai =H 7412;
SEL ZI i.,V -- ( VUlL J Z1 ') kFN l A ! iSj. L F')W : h t% l- DATE = 7L4019;
SLLEC. .,AX (,117) F ,OM Clr S;.LES;

hIJDEL C:EuLi ANDU Yri. = 1!,7L.;
S E.L -'C, i jutG rl 0!4 :1IL~i6 Lli~ uDEL = I~~uL~

AND Y.:.At =194
SEU kC± * iluti C'1hLATA;
SEA.F.,2 gu T (11,uT 1 ' 1 Yh) r~u 1- t 6._~u M hIr,! !STA iOdl 1
STATL CN. lU
SELEA.i 'Ulk (,.,197 0Y)l 0or ::J-i;UN IT S W'2r S A1. MA';

SELLCIi ut'l (0 G1U~ "iLu. EuuL, ZtJ, 'I T='A' ;

SLI~i T u2(ffUl.lcuIL) FiEt onL-. rdEbUI'NELVIUM

SELLC i ~±.UI1YA)FlU. FIL.U .!'In HE v;S TE I:iI

SELECT i0 (U' lAl;i) kp.hUN I DtuUAYCOUN1' wUi. r STATE '=A';
SE LECT 11~ ('PhbL9r~ PA'~U A-DACU!'1 ,.JEINHUSTE WFf'A';

SELvECT ' (A.17 FLOM FkEGDAYANzVIA IION ;
SELEk:'L ',u',(UlLJA7Y7A) Fur .11 bYVCU~

SELECT1 I o2 (L"L5M7& FOM I'hAYLE(, IA21NI

SELECT T01 (tArUA17) FFOM D.DAYFV"VOUNT

WREhE STATE = 'cNs;

APPENDIX I (continued)



060C OPERATION A,8,C,0,E.F,G

* FUCTIONS VARIABLES TABLES

COMMENTS

EPOIS FUNCTION ANIC24 EXPONENTIAL DISTRIBUTION MEAN a I
0,0/o.1,.104/.2,.222/.3,..5i/.4,.509/.,..69/.6,.915/.7,.Z2/.?51.3B
.9,..,9S1.13/.,2,.2/.99,2.3/.92,.52/.94,2,./.95,2.99/.96,3.2
.9?,3.5/.99,3.9/.99.4.6/.995,5.3/.996.62/.999,T/.9998,8

SMO FVARIABLE
STVM FVARIABLE
THINK FVARIABLE
ACTIV VARIABLE
XP FVARIARLE

RTIME TABLE
*

TVM STORAGE

11VeVSACTIv-94 SERVICE TIME MODEL VM
(136*V$ACTIV-361*P2/1000 SERVICE TIME 0. BASE
297*FNSXPOIS+29T*FNSXPDIS THINK TIME
SSMVM+SSTVM+2
L0004FN$XPOIS

MPI,1500,1500,22

I START WITH ONE SEQUEL MACHINE

* MODEL SEGMENT I
GENERATE 360000,,1,10,1,2,F LOGIN 10 USERS 1 PER HOUR

BACK ENTER USER USER STARTS THINKING
ADVANCE VSTHINK
LEAVE USFR
ENTER MVM MODELING VM STARTS RUNNING
ADVANCE VSSMDFNSXPOIS
LEAVE MVM
ASSIGN 2,VSEP
MARK 1
QUEUE ROR QUERY SENT TO TVM READER
ENTER TVM TVM STATS RUNNING
DEPART ROR
ADVANCE VSSTVM
ADVANCE VSSTVM
ADVANCE V$STVM
ADVANCE VSSTVM
LEAVE TVM
TABULATE RTIME
ENTER MVM MODEL STARTS 2ND RUN
ADVANCE VSSMDFNSXPOIS
LEAVE MVM
TRANSFER ,BACK START NEXT QUERY

* MODEL SEGMENT 2
GENERATE 36C000,,,2
TERMINATE I

*

* SIMULATE 1 TO 10 USERS -
ACTIV VARIABLE SSMVM+SSTVM

START I
RESET
START I
RESET
START I
RESET

RUN FOR ONE HOUR G PRINT STATISTICS

GMIS ONLY ON THE COMPUTER

APPENDIX J: GPSS Code for the Model

KO0CK
NUMOER

. CARO
NUMBER



START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START

* SIMULATE It
TVM STORAGE

RESET
START

TVM STORAGE
RESET
START

TVM STORAGE
RESET
START

TVM STORAGF
RESET
START

TVM STORAGE
RESET
START

TVM STORAGE
RESET
START

TVM STORAGE
RESET
START

TVM STORAGE
RESET
START

TVM STORAGE
RESET
START

*
* SIMULATE I

CLEAR
STVM FVARIABLE
TVM STORAGE

START
RESET
START
RESET
START
RESET
START
RESET
START
RESET

USERS
2

WITH I TO 10 DATA BASE MACHINES

6

1

1
I

a

9

10

TO 10 USERS USING SEQUEL 30 X FASTER

70/100*1I36*VSACTIV-36)*P2/1000

I

I

APPENDIX J (continued)



START
RESET
START
RESET
START
RESET
START
RESET
START

* SIMULATE 1
CLEAR

STVM FVARIABLE
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START

*

* SIMULATE 1
CLEAR

SMO FVARIABLE
STVM FVARIABLE

START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START

1

I

1
1
I

TO 10 USERS USING SEQUEL 50 9 FASTER

50/100*(136*VSACTIV-36l*P2/1000
1

1

1

I

I

TO 10 USERS USING FASTER CPU MODEL 16S

TO/100*1 113*VSACTIv-941
T0/100*1 136*VSACTIV-36)*P2/1000
1

I

1

1

1

1

I

1

APPENDIX J (continued)

113
114
115
116
11?
lie
119
120

-121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141



SIMULATE I
CLEAR
VARIABLE
FVARIABLE
FVARIABLE
STORAGE
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RESET
START
RE SE T
START
RESET
START
END

TO 10 USERS, SEQUEL 30 2 FASTER, CPU=1689 W/ 2 TVM'S

S$MVM+SSTVM+2
70/100*(113*VSACTIV-94)
70/100*70/10C*(136*V$ACTIV-36)*P2/1000
2
1

1

1

1

1

1

1

1

1

APPENDIX J (continued)

ACTIV
SMD
STVM
TVM

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195



RELATIVE CLOCK
BLOCK COUNTS
K.OCK CURRENT

1 0
2 0
3 1
4 0
5 0

0
7 0
t 0
9 0

10 0

340000 ABSOLUTE CLOCK

TOTAL
1

340
340
339
339
339
339
339
339
339

BLOCK
11
12
13
14
13
16
17
to
19
20

CURRENT
0
0
0
0
0
0
0
0
0
0

TOTAL
339
339
339
339
339
339
339
339
339
339

360000

BLOCK
21
22
23
24

CURRENT
0
0
0
0

TOTAL
339
339
1
1

BLOCK CURRENT TOTAL BLOCK CURRENT

APPENDIX K

Sample GPSS Output Statistics

TOTAL



STORAGE CAPACITY

MVM 2141483647
TVM I

USER 2147483647

AVERAGE
CONTENTS

.035

.389

.575

AVERAGE
UTILIZATION

.000

.389

.000

APPENDIX K (continued)

ENTRIES

678
339
340

AVERAGE
TIME/TRAN

18.948
413.333
608.917

CURRENT
CONTENTS

1

MAX IMUM
CONTENTS

1
1
1



QUEUE MAXIMUM AVERAGE TOTAL ZERO PERCENT
CONTENTS CONTENTS ENTRIES ENTRIES ZEROS

ROR 1 .000 339 339 100.0
$AVERAGE TIME/TRANS a AVERAGE TIME/TRANS EXCLUDING ZERO ENTRIES

AVERAGE
TIME/TRANS

.000

WAVERAGE
TIME/TRANS

.000

TABLE CURRENT
NUMBER CONTENTS

APPENDIX K (continued)



TABLE RTIME
ENTRIES IN TABLE

339
MEAN ARGUMENT

413.333
STANDARD DEVIATION

434.000
SUM OF ARGUMENTS

140120.000 NON-WEIGHTED

UPPER
LIMIT

1500
3000
4500

OBSERVED
FREQUENCY

327
11

REMAINING FREQUENCIES ARE ALL. ZERO

PER CENT
OF TOTAL

96.46
3.24
.29

CUMULATIVE
PERCENTAGE

94.4
99.7

10Q.0

CUMULATIVE
REMAINDER

3.5

APPENDIX K (continued)

MULTIPLE
OF MEAN

3.629
7. 258

10.887

DEVIATION
FROM MEAN

2.503
5.960
9.416


