
DATA STORAGE HIERARCHY SYSTEMS FOR

DATA BASE COMPUTERS

by

Chat-Yu Lam

B.Sc. Massachusetts Institute of
(1974)

M.Sc. Northwestern
(1976)

Technology

University

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(August, 1979)

Chat-Yu Lam 1979

Signature of Author
Sloan School of Management,

^ I

August 1, 1979

nl

Certified by- .--................
Thesis Supervisor

Accepted by ..
Chairman, Department Committee

- /-111

Data Storage Hierarchy Systems for
Data Base Computers

by
Chat-Yu Lam

Submitted to the Alfred P. Sloan School of Management
on August 1979 in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

ABSTRACT

The need for efficient storage and processing of very
large databases to support decision-making coupled with
advances in computer hardware and software technology have
made research and development of specialized architectures
for database management a very attractive and important
area.

The INFOPLEX data base computer proposed by Madnick
applies the theory of hierarchical decomposition to obtain a
specialized architecture for database management with
substantial improvements in performance and reliability over
conventional architectures. The storage subsystem of
INFOPLEX is realized using a data storage hierarchy. A data
storage hierarchy is a storage subsystem designed
specifically for managing the storage and retrieval of very
large databases using storage devices with different
cost/performance characteristics arranged in a hierarchy.
It makes use of locality of data references to realize a low
cost storage subsystem with very large capacity and small
access time.

As part of the INFOPLEX research effort, this thesis is
focused on the study of high performance, highly reliable
data storage hierarchy systems. Concepts of the INFOPLEX
data base computer are refined and new concepts of data
storage hierarchy systems are developed. A preliminary
design of a general structure for the INFOPLEX data storage
hierarchy system is proposed.

Theories of data storage hierarchy systems are developed.
Madnick's model of a generalized storage hierarchy is
extended and formalized for data storage hierarchy systems.
The Least Recently Used (LRU) algorithm is extended to
incorporate the read-through strategy and page overflow
strategies to obtain four classes of data movement
algorithms. These algorithms are formally defined.
Important performance and reliability properties of data

-2-

storage hierarchy systems that make use of these algorithms
are identified and analyzed in detail. It is proved in
Theorems 1 and 2 that depending on the relative sizes of the
storage levels and the algorithms used, it is not always
possible to guarantee that the contents of a given storage
level 'i' is a superset of the contents of its immediate
higher storage level 'i-l', i.e., multi-level inclusion
(MLI) does not hold. Necessary and sufficient conditions
for MLI to hold are identified and proven in Theorems 3 and
4. A property related to MLI is the multi-level overflow
inclusion (MLOI) property. MLOI holds if an overflow page
from storage level 'i' is always found to already exist in
storage level 'i+l'. A data storage hierarchy avoids
cascaded references to lower storage levels if MLOI holds.
Necessary and sufficient conditions for the MLOI to hold are
identified and proven in Theorems 5 and 6. It is possible
that increasing the sizes of intermediate storage levels may
actually increase the number of references to lower storage
levels, resulting in decreased performance. This is
referred to as the multi-level paging anomaly (MLPA).
Conditions necessary to avoid MLPA are identified and proven
in Theorems 7 and 8.

A sinlified structure of the INFOPLEX data storage
hie:-rchy is rived from its general structure. Protocols
for supporting tile read-through and store-behind algorithms
are specified. Two simulation models of this system are
developed. The first .s - incorporates one functional
processor and three storage levels. Results from this model
provide significant insights to the design and its
algorithms and reveals a potential deadlock in the buffer
management schemes. The second model corrects this
potential deadlock and also incroproates five functional
processors and four storage levels. Results from this model
show that the store-behind operation may be a significant
system bottleneck because of the multi-level inclusion
requirement of the data storage hierarchy. By using more
parallelism in the lower storage levels and by using smaller
block sizes it is possible to obtain a well-balanced system
which is capable of supporting the storage references
generated by the INFOPLEX functional hierarchy. The effects
of using projected 1985 technology for the data storage
hierarchy are also assessed.

Thesis SCprv<-ar: Prof. Stuart E. Madnick
Associate Professor of Management Science
M.I.T. Sloan School of Management

-3-

ACKNOWLEDGMENT

I would like to sincerely thank the following individuals
who helped and encouraged me in carrying out this work.

My thesis advisor, Prof. Stuart Madnick, has been a great
teacher and a concerned and understanding advisor. He has
spent considerable time and effort supervising this thesis.
It is a priviledge to be his student.

Members of my thesis committee, Prof. John Little, Prof.
Hoo-min Toong, and Dr. Ugo Gagliardi, have taken time in
spite of their tight schedules to review this work. I am
truely grateful for their interest and enthusiasm.

My colleagues, Sid Huff and Mike Abraham, have at various
times suffered through some of my ill-formed ideas. Their
patience is greatly appreciated.

My wife, Elizabeth, has stood by me throughout this work
with her patience, encouragements and care. She makes all
this worthwhile.

I would like to acknowledge the sources of funding for
this work, and for my doctoral studies.

This research is funded by the National Science
Foundation Grant No. MCS77-20829 and by the Navy Electronics
Systems Command Contract No. N00039-78-G-0160.

My doctoral studies have been made possible by the above
fundings, several Sloan School tuition fellowships, an IBM
Information Systems Fellowship, and research funds from the
NEEMIS Project and the RADC Decision Support Systems
Project. I am grateful for these financial support.

A large portion of this thesis was typed by Waterloo
SCRIPT. Chapter 4 was typed by Marilyn Whatmough and Portia
Smith who have been kind enough to undertake this task that
nobody else would, due to the large number of mathematical
symbols in the chapter.

-4-

TABLE OF CONTENTS

Chapter page

I. INTRODUCTION AND PLAN OF THESIS 9

Introduction 9

Related Research 11
New Instructions Through Microprogramming . . 14
Storage Hierarchy Optimization 15
Intelligent Controllers 16
Back-end Processors 18
Data Base Computers 19

Research Goals and Accomplishments 22
Structure of Thesis 25

Chapter 2 : The INFOPLEX Data Base Computer
Architecture 26

Chapter 3 : A General Structure of the
INFOPLEX Data Storage Hierarchy 26

Chapter 4 : Modelling and Analysis of Data
Storage Hierarchy Systems 26

Chapter 5 : Design of the DSH-ll Data Storage
Hierarchy System27

Chapter 6 : Simulation Studies of the DSH-ll
Data Storage Hierarchy System 27

Chapter 7 : Discussions and Conclusions . . . 28

II. THE INFOPLEX DATA BASE COMPUTER ARCHITECTURE . . . 29

Introduction...... 29
The INFOPLEX Functional Hierarchy31

Rationale for Functional Decomposition . . 32
Example of a Functional Decomposition . . . 33

Entities and Entity Sets 33
Binary Relations 35
N-ary Relations 37
Links Among N-ary Relations 41
Virtual Information 42
Data Verification and Access Control . . . 44
High-level Language Interface 48

INFOPLEX's Approach to Functional
Decomposition 51

The INFOPLEX Data Storage Hierarchy 53
Rationale for a Storage Hierarchy 53

- 5 -

Example of a Physical Decomposition 56
General Structure56
Storage Devices 60
Strategies for Information Movement . . . 61

INFOPLEX's Approach to Physical
Decomposition 69

Research Issues Addressed in This Thesis 69

III. A GENERAL STRUCTURE OF THE INFOPLEX DATA STORAGE
HIERARCHY 71

Introduction 71
Design Objectives 71

Virtual Address Space 72
Very Large Address Space 72
Permanent Data Storage 73
Support Multiple Processors 73
Generalized Multi-level Storage System 74
Direct Inter-level Data Transfer74
High performance 75
Availability 75
Modularity 76
Low Cost 77

e-n-ral Structure of DSH-1 77
ThL DSH-1 Interface 79
The HBighest Performance Storage Level - L(l) 83
A Typical otoragp Level - L(i) 85

Further Design, T s- , 86
Support of Read and Write Operations 87

Multiple Cache Consistency 87
Bus Communication Protocols 88
Multiple Directory Update 89
Multiple Resource Arbitration 89
Transaction Handling 89

Multiple Data Redundancy Properties 90
Automatic Data Repair Algorithms 90
Performance Evaluation 91

Summary . 91

IV. MODELLING AND ANALYSIS OF DATA STORAGE HIERARCHY
SYSTEMS 93

Introduction - - - - - * - - - - - - - - 93
Research on Storage Hierarchy Systems &. 94
Model of a Data Storage Hierarchy . . . - - -. 96

Storage Management Algorithms - - -. 98
i Model of a Data Storage Hierarchy . . . 105

Formal Definitions of Storage Management
Algorithms . . . - - - - - - - - - - - 107

Properties of Data Storage Hierarchy Systems . - 112
Summary of Properties 117

Derivation of Properties122
Summary 150

V. DESIGN OF THE DSH-ll DATA STORAGE HIERARCHY SYSTEM

Introduction 151
Structure of DSH-ll 151

The DSH-ll Interface 153
The Highest Performance Storage Level

A Typical Storage Level - L(i).. 155
Algorithms for Supporting the Read Operation 156

The Read-Through Operation 156
Overflow Handling......... 159
Pathological Cases of Read-Through 160

Racing Requests 160
Erronous Overflow 161
Overflow to a Partially-assembled Block 162

Transactions to Handle the Read Operation . 163
The read-through Transaction 165
The retrieve Transaction 166
The read-response-out Transaction . 167
The read-response-packet Transaction 168
The read-response-in Transaction 169
The store Transaction 171
The overflow Transaction 171

Algorithms to Support the Write Operation . . 172
The Store-Behind Operation 172
Lost Updates 178
Transactions to Support the Write Operation 178

The store-behind Transaction 181
The update Transaction 182
The ack-store-behind Transaction 182

Multi-level Inclusion Properties 183
Importance of MLI 183
A Model of DSH-ll 184
MLI Properties of DSH-ll. 186

Summary 187

VI. SIMULATION STUDIES OF THE DSH-ll DATA STORAGE
HIERARCHY SYSTEM 189

Introduction189
A Simulation Model of DSH-ll The PlL3 Model 191

An Illustration of the DSH-ll Algorithms 191
The PlL3 Model Parameters 194

Simulation Results of the PlL3 Model 195
Preliminary Studies Using the PlL3 Model . 195
More Extensive Studies Using the PlL3 Model 201
A Plausible Theory of Operation 205
Verification of Theory with Data 207

- 7 -

Deadlock-free Buffer Management Schemes . . .
A Deadlock-free Buffer Allocation Algorithm

Another Simulation Model of DSH-ll : The P5L4
Model

The P5L4 Model and its Parameters.... . .
Preliminary Studies Using the P5L4 Model
Tuning the P5L4 Model
Comparing the Performance of DSH-ll

1979 and 1985 Technologies .
Summary

using
. . .

VII. DISCUSSIONS AND CONCLUSIONS

Introduction
Summary of Thesis
Directions for Further Research

REFERENCES

Appendix

A. LIS2TNG OF THE PlL3 MODEL

B. FLOW CHART u? THE P5L4 MODEL . . .

C. LISTING OF THE 5T EL

- 8 -

210
211

216
217
220
227

230
234

235

235
236
238

241

page

249

272

291

Chapter I

INTRODUCTION AND PLAN OF THESIS

1.1 INTRODUCTION

The effective and efficient storage and processing of

very large data bases to support better decision-making has

been a major concern of modern organizations. Though

advances in computer technology are impressive, the rate of

growth of information processing in organizations is

increasing even more rapidly. A key technological advance

in providing better information processing systems is the

development of Data Base Management Systems (DBMS's) (Mar-

tin, 1975). Most organizations today make use of some kind

of DBMS for handling their large databases. Efforts to

develop even more effective DBMS's remain very active and

important (Mohan, 1978).

Current DBMS's are capable of handling large databases on

the order of trillion bits of data (Simonson and Alsbrooks,

1975), and are capable of handling query rates of up to one

hundred queries per second (Abe, 1977). Due to the increas-

ing need for better information, and the declining costs of

processors and storage devices, it is expected that future

- 9 -

high performance DBMS's will be required to handle query

rates and provide storage capacities several orders of mag-

nitude higher than today's (Madnick, 1977). Furthermore,

with such high query rates (generated by terminal users as

well as directly from other computers), it is essential that

a DBMS maintains non-stop operation (Computerworld, 1976).

Thus, guaranteeing the reliability of the DBMS becomes very

difficult.

Current improvements in processor and storage device

technology alone do not seem to be able to meet these orders

of magnitude improvements in performance and reliability.

The nex section reviews several research efforts aimed at

modifying the t-enventional computer architecture for better

information handling. One such research effort is the INFO-

PLEX Project (Lam and Madnick, 1979). The INFOPLEX approach

to obtaining a high performance, highly reliable DBMS is to

design a new computer specifically for data management.

This thesis is a study of the storage subsystem of the INFO-

PLEX data base computer. Research goals and specific accom-

plishments of this thesis will be described in a following

section. The structure of this thesis is then described.

- 10 -

1.2 RELATED RESEARCH

In the past, computers were designed primarily for numer-

ical computation. We now find that processing of large

databases has become a major, if not dominant, component of

computer usage. However, current computer structures still

have the 'von Neumann' structure of twenty years ago. As

Mueller (Mueller, 1976), President of System Development

Corporation, noted: 'the computer industry has gone through

three generations of development to perfect machines optim-

ized for 10 percent of the workload'. It is not surprising

then, that many organizations find their supercomputers run-

ning 'out of steam' as new applications with large databases

are installed.

Figure 1.1 illustrates a simplified typical computer

architecture. It consists of a processor directly accessing

a main memory (with access time in the order of microse-

conds), an I/O processor that controls the movement of data

between main memory and secondary storage devices, an I/O

controller and its associated secondary storage devices

(with access times in the order of milliseconds). Current

DBMS's are software systems that reside in the main memory

together with other software subsystems and application pro-

grams. To provide a high level view of data for application

programs a DBMS has to manage all the data residing in sec-

- 11 -

CENTRAL

PROCESSOR

MAIN

MEMORY

Figure 1.1 A Typical Computer Architecture

-12-

ondary storage devices and coordinate all the data movement

and processing activities. Two potential deficiencies of

adapting the conventional computer architecture for data

base management become evident. First, the processor

becomes strained as new functions are added to the DBMS.

These new functions include high level language support,

better security and data integrity mechanisms, support of

multiple data models, ... , and so on. Second, due to the

large differential in access times of main memory and secon-

dary storage devices (referred to as the 'access gap'), the

speed of processing becomes limited by how fast'useful data

can be brought into main memory from secondary storage dev-

ices. Thus, many organizations find the performance of

their data management system either limited by the available

processor cycles or limited by the speed of I/O operations,

depending on the DBMS used and the applications supported.

These problems have been recognized for some time. Cur-

rent advances in LSI technology make it feasible to consider

new software and hardware architectures to overcome the

above deficiencies. Several such approaches are discussed

below.

- 13 -

1.2.1 New Instructions Through Microprogramming

Conventional processor instructions are usually not well

suited to the requirements of database management systems.

Using firmware, it is possible to augment or enhance the

instructions thus effectively increase the efficiency of the

processor. This approach has been adopted in several sys-

tems. One of the earliest efforts occurred as part of the

LISTAR information retrieval system developed at M.I.T.'s

Lincoln Laboratory (Armenti et al., 1970), where several

frequently used operations, such as a generalized List

Search operation, were incorporated into the microcode of an

IBM System/360 Model 67 computer. The Honeywell H60/64 uses

special instructions to perform data format conversion and

hashing corresponding to frequently used subroutines of

Honeywell's IDS database system (Bachman, 1975). More

recently the IBM System/38 (Soltis and Hoffman, 1979) was

announced with microcode to perform much of the operating

system and data management functions. The performance

advantages of this approach are highly dependent upon the

frequency of use of the new instructions and the extent to

which they fit into the design of the overall database sys-

tem software.

- 14 -

1.2.2 Storage Hierarchy Optimization

It is possible to close the 'access gap' between main

memory and secondary storage devices by using a more conti-

nuous storage hierarchy, thus improving the performance of

the storage subsystem.

Madnick (Madnick, 1973) proposed a model of a generalized

storage hierarchy system and its data movement algorithms.

This storage hierarchy makes use of multiple page sizes

across the storage levels for high performance and maintains

multiple data redundancy across the storage levels for high

performance and high reliability. This type of storage

hierarchy systems have great potentials as storage subsys-

tems for high performance, highly reliable DBMS's. Unfortu-

nately, the lack of better understanding of this type of

storage hierarchy systems is a major obstacle in the devel-

opment of practical storage subsystems in spite of the fact

that a continuous spectrum of storage devices with different

cost/performance characteristics will persist (Dennis et.

al., 1978; Hoagland, 1979; Smith, 1978a).

There has been much work on studying storage hierarchy

systems and their algorithms. We shall review these work in

a later chapter. These studies usually do not consider the

effects of multiple page sizes across different storage lev-

els, nor the problems of providing multiple data redundancy

- 15 -

across the storage levels, as in the system proposed by

Madnick. Developing theories for generalized storage hier-

archy systems specifically for managing large database

remains a challenge.

1.2.3 Intelligent Controllers

Another approach to improving information processing

efficiency is to use intelligent controllers. The control-

ler provides an interface between the main memory and the

devices. Recently, more and more intelligence has been

introduced into these controllers. For example, many con-

trollers can perform the search key operation themselves

(Ahern et al., 1972; Lang et al., 1977). Since only

selected data items are brought to the main memory, the I/O

traffic is reduced and the efficiency of the storage subsys-

tem is increased.

Two major types of intelligent controllers have emerged.

The first type specializes in automating the data transfer

between the storage devices, i.e., the physical storage man-

agement functions. For example, IBM's 3850 Mass Storage

System (Johnson, 1975) uses an intelligent controller to

automatically transfer data between high-capacity, slow-

speed tape cartridges and medium-capacity, fast moving-head

disks. Thus, the processor is relieved of the burden to

manage these data movements.

- 16 -

The second type of intelligent controllers is designed to

handle some of the logical storage management functions,

such as searching for a specific data record based on a key.

This latter type of device is sometimes referred to as a

database computer, and is often used to perform associative

or parallel searching (Langdon, 1978). Most parallel asso-

ciative search strategies are based on a head-per-track sto-

rage device technology (for example, magnetic drums, LSI

shift registers, and magnetic bubbles) and a multitude of

comparators. As each data record rotates, either mechani-

cally or electronically, past a read/write head, it is com-

pared with a match record register, called the mask. Exam-

ples of this type of intelligent controllers include CASSM

(Copeland et al., 1973; Healy et al., 1972; Su and Lipovski,

1975; Su, 1977; Su et. al., 1979), the Rotating Associative

Relational Storage (RARES) design (Lin et al., 1976), and

the Rotating Associative Processor (RAP) (Ozkarahan et al.,

1975; Schuster et al., -1976; Ozkarahan et al., 1977; Schus-

ter, 1978; Schuster, et. al., 1979).

Although the decline in the costs of comparator electron-

ics, due to advances in LSI technology, makes parallel

search strategies quite promising for the future, they are

only well suited to storage technologies that lend them-

selves to low cost read/write mechanisms, and for optimal

- 17 -

performance and operation they tend to require a fairly sim-

ple and uniform database structure (e.g., relational flat

files). To use these intelligent controllers in conjunction

with other storage devices, such as mass storage, some

"staging" mechanisms have to be used. Furthermore, these

intelligent controllers only support part of the information

management functions, much of the complex functions of lan-

guage interpretation, support of multiple user interfaces,

etc., of an information management system cannot easily be

performed in these controllers.

1.2.4 Back-end Processors

The fourth approach is to shift the entire database man-

agement function from the main computer to a dedicated com-

puter thus increasing the processor power available for per-

forming the data management function. Such a computer is

often called a back-end processor. The back-end processor

is usually a minicomputer specifically programmed to perform

all of the functions of the database management system.

Back-end processors have evolved rapidly in recent years.

Some of the earliest experimental efforts include the

loosely coupled DATACOMPUTER (Marill and Stern, 1975),

developed by the Computer Corporation of America using the

DECSystem-10 computer, and the tightly coupled XDMS (Canady

- 18 -

et al., 1974), developed by Bell Laboratories by modifying

the firmware of a Digital Scientific META-4 minicomputer.

More recent developments include the Cullinane Corporation's

IDMS on a PDP/ll compuater. Since the back-end processor is

still a conventional computer whose architecture has been

designed for computational purposes, not for information

management, its performance is still quite limited.

1.2.5 Data Base Computers

The fifth.approach to providing improved information pro-

cessing efficiency is the database computer. The difference

between this approach and the fourth approach (back-end pro-

cessor) is that the database computer has a system architec-

ture particularly suitable for database operations while a

back-end processor merely adapts a conventional computer to

database applications.

There has been relatively little research on the develop-

ment of true database computers (as opposed to work on

intelligent controllers and/or dedicated back-end processors

-- which are sometimes referred to as database computers).

Current data base computer research efforts include the DBC

(Hsiao and Kannan, 1976; Banerjee, et. al., 1978; Banerjee,

et. al., 1979) at the Ohio State University, the GDS (Hako-

zaki et al., 1977) at the Nippon Electric Co., Japan, and

- 19 -

the INFOPLEX effort at M.I.T. (Madnick, 1975b; Lam and Mad-

nick, 1979; Madnick, 1979).

Data Base Computer seems to be a long term solution to

the DBMS requirements of future computer systems. The DBC

approach at Ohio State University makes use of specialized

functional processors for performing the data management

functions thus eliminating the processor bottleneck that

exists in current DBMS's. To improve the efficiency of the

storage subsystem, the DBC makes use of the idea of a parti-

tioned content addressable memory (PCAM). The entire

address space is divided into partitions, each of which is

content addressable. To realize content addressability cost

effectively, the DBC makes use of multiple intelligent con-

trollers at the secondary storage devices.

The INFOPLEX architecture also makes use of multiple

functional processors. However, to obtain a flexible, high

performance, and highly reliable storage subsystem, INFOPLEX

makes use of a storage hierarchy system based on the Madnick

proposal (Madnick, 1973). Conceptually, the INFOPLEX data-

base computer consists of a functional hierarchy and a phy-

sical (storage) hierarchy (See Figure 1.2). The INFOPLEX

functional hierarchy is a hierarchy of specialized micropro-

cessors. It implements all the information management func-

tions of a database manager, such as query language

- 20 -

request rource

rFMNCIINAL HIERARCHY-

functional

rocessor

cluster

interlevel request queue I

level

STORAGE HIERARCHY

storage interface

data
us

level i

memory processor
cluster

- level j

Figure 1.2 The INFOPLEX Structure

-21-

interpretation, security verification, and data path

accessing, etc. The hierarchy of functional processors

establishes a pipeline. Within each stage of the pipeline,

multiple processors are used to realize parallel processing

and provide multiple redundancy. The INFOPLEX storage hier-

archy is designed specifically to support the data storage

requirements of the functional hierarchy. To provide high

performance and high reliability, it makes use of a highly

parallel and reliable architecture, implements distributed

control mechanisms, and maintains multiple data redundancy.

1.3 RESEARCH GOALS AND ACCOMPLISHMENTS

This thesis is a study of the INFOPLEX data storage hier-

archy. We have studied data storage hierarchy systems from

five different and related points of view: (1) development

of concepts for INFOPLEX and data storage hierarchy systems,

(2) architectural design of data storage hierarchy systems,

(3) theoretic analysis of data storage hierarchy systems,

(4) algorithm development for data storage hierarchy sys-

tems, and (5) performance evaluation of data storage hier-

archy systems. Specific goals and accomplishments of this

thesis are listed below.

- 22 -

1. Develop and extend concepts of data base computers

and data storage hierarchy systems: Since Mad-

nick's (Madnick,1975b) proposal to develop a high

performance, highly reliable data base computer,

called INFOPLEX, there has been many alternative

approaches to develop special architectures for

data base management. We have reviewed these pro-

posals and categorized these efforts into: (1)

new instructions through microprogramming, (2)

storage hierarchy optimization, (3) intelligent

controllers, (4) back-end processor, and (5) data

base computers. Concepts of the INFOPLEX data

base computer have been refined and leads to the

development of the concept of a data storage hier-

archy.

2. Architectural design of data storage hierarchy

systems: Although storage hierarchy systems with

two or three levels are very common in current

computer systems, there is no.known storage hier-

archy with more than three storage levels that has

been designed specifically for large databases. A

preliminary design of the general structure of a

data storage hierarchy with an arbitrary number of

storage levels has been developed. This structure

- 23 -

is the basis for future designs of data storage

hierarchy systems for the INFOPLEX data base com-

puter.

3. Theoretic analysis of data storage hierarchy sys-

tems: Madnick (Madnick\-i1973) proposed the model

of a generalized storage hierarchy system that

incorporates multiple page sizes and maintains

multiple data redundancy for high performance and

high reliability. This model is extended and for-

malized for data storage hierarchy systems. The

Least Recently Used (LRU) algorithm is extended to

incorporate the read-through strategy for managing

the data movement in data storage hierarchy sys-

tems. Four classes of algorithms are obtained and

formally defined. The multi-level inclusion

(MLI), multi-level overflow inclusion (MLOI), and

multi-level paging anomaly (MLPA) properties of

data storage hierarchy systems using these algor-

ithms are analyzed in detail and formally proved

as eight theorems and nine lemmas.

4. Develop algorithms for data storage hierarchy sys-

tems: A simplified structure of the INFOPLEX data

storage hierarchy is obtained from the general

structure. Protocols to support the read-through

- 24 -

and the store-behind data movement algorithms are

developed for this structure.

5. Performance evaluation of data storage hierarchy

systems: Two GPSS/360 simulation models of the

INFOPLEX data storage hierarchy are developed.

Simulation results reveal several unexpected pro-

perties of the data storage hierarchy design and

its algorithms. A well-balanced system is used to

compare the performance differential of using

technology in 1979 versus projected technology in

1985. These simulation results indicate that the

current INFOPLEX data storage hierarchy design is

capable of supporting the read and write traffic

generated by the INFOPLEX functional hierarchy.

1.4 STRUCTURE OF THESIS

This thesis is an important step towards developing sto-

rage hierarchy systems specifically for data base computers.

Existing models of storage hierarchy systems are extended to

obtain a formal model of storage hierarchy system which

incorporates multiple page sizes and maintains multiple data

redundancy. Key properties of such systems are analyzed in

detail. Architectures of storage hierarchy systems for

INFOPLEX are developed and the performance of these designs

- 25 -

are evaluated. Details of this research are presented in

seven chapters. Chapter one is self-explainatory. The fol-

lowing outlines the contents of the other chapters.

1.4.1 Chapter 2 : The INFOPLEX Data Base Computer
Architecture

This chapter introduces the objectives and approaches of

the INFOPLEX data base computer. Concepts and research

approaches used in the INFOPLEX functional hierarchy and the

INFOPLEX data storage hierarchy are described. This chapter

provides the background and motivation for the research on

data storage hierarchy systems.

1.4.2 Chapter 3 : A General Structure of the INFOPLEX
Data Storage Hierarchy

A preliminary design of the INFOPLEX data storage hier-

archy, DSH-1, is proposed. The design objectives of DSH-1

are discussed. Then the structure of DSH-1 is introduced.

This design can be used to explore design issues associated

with the INFOPLEX data storage hierarchy. Key design issues

are identified.

1.4.3 Chapter 4 : Modelling and Analysis of Data
Storage Hierarchy Systems

Current research efforts in storage hierarchy systems are

briefly reviewed. A formal model of data storage hierarchy

- 26 -

systems incorporating multiple page sizes and maintain mul-

tiple data redundancy is developed. Extensions to the Least

Recently Used (LRU) algorithm are developed to incorporate

the read-through strategy. Important performance and relia-

bility properties of these systems are formally proved.

These results provide valuable insights to designing data

storage hierarchy systems. The formalisms developed provide

a solid basis for further theoretic analysis of data storage

hierarchy systems.

1.4.4 Chapter 5 : Design of the DSH-ll Data Storage
Hierarchy System

The general structure of the INFOPLEX data storage hier-

archy is used to derive a simpler structure, DSH-ll. This

structure is used as a basis for developing protocols for

supporting the read and write operations. Specifications

for these protocols are presented.

1.4.5 Chapter 6 : Simulation Studies of the DSH-ll Data
Storage Hierarchy System

A simulation model of DSH-ll with one processor and three

storage levels is developed. Results from simulation stu-

dies using this model provide valuable insights to the

DSH-ll design and its algorithms. This knowledge is incor-

porated into another simulation model of DSH-ll that con-

sists of five processors and four storage levels. Simula-

- 27 -

tion studies from this model reveal further interesting

properties of the read-through and store-behind algorithms.

The simulation results also indicate that the current design

is capable of supporting the very high rate of storage

references generated by the INFOPLEX functional hierarchy.

1.4.6 Chapter 7 : Discussions and Conclusions

Chapter 7 summarizes this thesis and indicates fruitful

areas for further research.

- 28 -

Chapter II

THE INFOPLEX DATA BASE -COMPUTER ARCHITECTURE

2.1 INTRODUCTION

This chapter discusses the INFOPLEX data base computer

concepts and its approaches. Specific areas of contribution

of this thesis to the development of the INFOPLEX data base

computer are then listed.

The key concepts of the INFOPLEX architecture are hier-

archical decomposition and distributed control. Techniques

of hierarchical decomposition are applied to organize the

information management functions to obtain a highly modular

functional hierarchy. Each level of the functional hier-

archy is implemented using multiple microprocessors. Tech-

niques of hierarchical decomposition are also applied to

organize the storage subsystem to obtain a modular storage

hierarchy capable of supporting the storage requirements of

the functional hierarchy. Microprocessors are used at each

level of the hierarchy to implement the storage management

algorithms so the hierarchy appears as a very large, highly

reliable, high performance virtual storage space.

- 29 -

Due to the high modularity of these organizations, both

the functional hierarchy and the storage hierarchy can take

advantage of distributed control mechanisms. Each level in

a hierarchy only communicates with its adjacent levels and

each module within a level only communicates with its adja-

cent modules. Thus, no central control mechanism is neces-

sary. Distributed control enhances reli'ability since there

is no single component in the system whose failure renders

the entire system inoperative. Distributed control also

enhances performance since there is no system bottleneck as

would exist in a centrally controlled system.

A functionally decomposed hierarchy, implemented using

multiple microprocessors, can support pipeline processing

naturally. That is, multiple requests for information can

be at various stages of processing at different levels of

the hierarchy simultaneously. Such an architecture also

enhances reliability since errors can be isolated within a

level in the hierarchy thus simplifying error detection and

correction.

Parallel processing is made possible by the hierarchical

decomposition and implementation using multiple microproces-

sors. For example, there may be several identical modules

that implement the same function within a level. All these

modules can be simultaneously operating on different

- 30 -

requests, at the same time, providing potential backup for

one another.

Thus, the distributed control, pipeline and parallel pro-

cessing capabilities of INFOPLEX provide very high reliabil-

ity and high performance.

In addition to providing high performance and high relia-

bility, a viable data base computer must be able to take

advantage of new technological innovations. It must be able

to easily upgrade to incorporate new algorithms, e.g., a new

security checking technique, or new hardware innovations,

e.g., a new storage device. Due to its modular structure,

the INFOPLEX functional hierarchy can take advantage of new

techniques and technologies as they are developed. The

INFOPLEX storage hierarchy is specifically designed to be

able to handle any type of storage devices. Thus rather

than being specialized to a particular data structure, or

type of storage device, INFOPLEX is designed to adapt to the

changing application needs as well as to take advantage of

new technological innovations.

2.2 THE INFOPLEX FUNCTIONAL HIERARCHY

An information management system performs a spectrum of

very complex functions in response to user requests for

information. These requests are often expressed using very

- 31 -

high level languages and often come from many different

sources simultaneously. There are many ways that these com-

plex functions can be implemented. The technique of hier-

archical functional decomposition has been found to be very

effective for advanced information systems (Donovan and

Jacoby, 1975). Similar techniques have been used success-

fully in operating systems (Dijkstra, 1968; Madnick and

Donovan, 1974), basic file systems (Madnick and Alsop, 1969;

Madnick, 1970), and a wide range of complex systems (Pattee,

1973).

This is the approach used in INFOPLEX. The information

management functions are systematically decomposed into a

functional hierarchy, referred to as the INFOPLEX functional

decomposition. The functional modules in the hierarchy are

then implemented using multiple microprocessors.

2.2.1 Rationale for Functional Decomposition

The central idea underlying the hierarchical functional

decomposition approach involves decomposing the system into

a hierarchy consisting of a number of levels, such that each

level interacts only with the levels below it in the hier-

archy. Proper selection of the hierarchy allows design or

operating problems that previously impacted the entire sys-

tem, to be isolated to one or a few specific hierarchical

levels, and thereby more easily handled (Parnas, 1976).

- 32 -

Isolating the information management functions into mini-

mally interrelated modules facilitates the use of multiple

identical modules for performing the same function, so that

reliability and parallelism are enhanced. Furthermore, this

approach provides great flexibility in the technologies used

for implementating each type of functional module. For

example, a particular data structure may be selected from a

spectrum of indexing techniques for a given module without

affecting the design of other types of modules.

2.2.2 Example of a Functional Decomposition

To illustrate the hierarchical functional decomposition

concept, a specific example of a functional decomposition is

discussed in this section. Figure 2.1 illustrates a plausi-

ble hierarchical functional decomposition. Each level of

the functional hierarchy is described below.

2.2.2.1 Entities and Entity Sets

At the most fundamental level, a database system stores

information about things, or entities. Also, it is usually

the case that entities represented in a database fall natur-

ally into logical groups, or "entity sets". The way in

which a database system (a) represents and stores informa-

tion about entities themselves, and (b) represents informa-

tion about the logical grouping of entities into entity

sets, forms the bedrock architecture of the system.

- 33 -

7

interface to high
level languages

data verification and

access control

virtual information

links between n-ary

relations

n-ary relations

binary relations

entity sets

Figure 2.1 An Example Functional Hierarchy

-34-

7 7

1

There are many schemes available for logically and physi-

cally representing entities (i.e., coding, storing, and

addressing entities) and various algorithms for structuring

entity sets. The choice of implementation scheme at this

level affects the performance of the entire system but does

not affect how the functions of the other levels are imple-

mented.

2.2.2.2 Binary Relations

All relationships among entities can be expressed in

terms of binary relationships between pairs of entities.

This functional level makes use of the entity level con-

structs to provide a collection of binary relations (rela-

tions between pairs of entity sets). An element of a binary

relation can be viewed as a triad, consisting of a relation

identifier plus two entities, each from one of the entity

sets participating in the binary relation. Thus a binary

relation can be viewed as a collection of triads with the

same relation identifier.

Perhaps the simplest possible implementation of a set of

binary relations would be as a sequential file of triads,

for example,

(HASSALARYOF , SMITH , 1200)

(HAS SALARY OF , JONES , 1500)

- 35 -

(WORKSINDEPT SMITH , 02)

(WORKSINDEPT , JONES , 07)

The difficulties with this approach are manifest: there is

great data redundancy and thus waste of storage (the rela-

tion identifiers are stored in each triad); insertion of

additional triads would either have to be done out of order,

or else insertions and deletions would be extremely time-

consuming.

Triads could also be stored as linked lists. Alterna-

tively hashing algorithms could be employed to locate any

triad, given two of its three components. The use of linked

lists can improve access speed and reduce storage require-

ments. On the other hand, the use of hashing algorithms

would provide extremely rapid access, but would be poorer in

terms of storage space utilization.

Since a database may contain billions of triads, the log-

ical and physical structures of binary relations have seri-

ous performance implications. Many implementation schemes

for binary relations are possible. Although the choice of

these implementation schemes has various cost and perfor-

mance implications it does not affect how the functions of

the next level are implemented.

- 36 -

2.2.2.3 N-ary Relations

Conceptually, an n-ary relation may be thought of as a

table of data, with rows of the table (usually called

tuples) corresponding approximately to records in a tradi-

tional data file, and columns (or domains) corresponding to

fields. Furthermore, n-ary relations may be constructed out

of sets of basic binary relations. For example, the degree

4 relation EMPLOYEE DEPT SALARY SEX, for which a typical

entry might be

(SMITH, 02, 1200, male),

is semantically equivalent to (i.e., contains the same

information as) the three binary relations WORKSINDEPT,

HASSALARYOF and SEX, as illustrated in Figure 2.2. We

could build up n-ary relation tuples out of tuple-ids of

binary relations, as illustrated in Figure 2.3. In this

approach, the original data entities (SMITH, 01, 1200,

male), would be stored in permanent binary relations, and

all other relations would be constructed out of binary tuple

ids. Tuple ids, being uniform binary numbers, are easy and

efficient to manipulate.

A number of other implementations of n-ary relations is

also possible. The point is, however, that once we have an

- 37 -

WORKSINDEPT
(NAME) (DEPT

SMITH 02 -

HASSALARYOF
(NAME) (SALARY)

SMITH 1200

SEX

SMITH MALE

(BINARY

EMPLOYEEDEPT_SALARY_SEX
(NAME) (DEPT) (SALARY) (SEX)

(DEGREE 4 RELATION)

XI

RELATIONS)

Figure 2.2 An Example 4-ary Relation

-38-

SMITH 02 12000 MALE

,7_

WORKSINDEPT

SMITH 02

-T
I

OI
01

I

I
I

EMPLOYEELDEPTSALARYSEX
The 4-ary tuple

(SMITH, 02, 12000, MALE)
would then be stored

Figure 2.3 An Example Implementation of
N-ary Relations

-39-

RELATION A

(NAME) (AGE) (SKILL) ID

SMITH 27 WELDER 2 2
SMITH 27 JOINER 2

"META- RELATIOfI"
COMMON_SKILL
(A ID) (B ID)

Figure 2.4 Links Among N-ary Relations

-40-

efficient implementation of binary relations, general n-ary

relations may be constructed in a straightforward fashion

out of the binary relations without actually having to

retreat -- conceptually or physically -- back to the level

of basic entities or entity sets. In other words, n-ary

relation functions (to manipulate n-ary relations) can be

implemented by appropriately combining binary relation func-

tions.

2.2.2.4 Links Among N-ary Relations

The various n-ary relations in a typical database would

generally possess a number of logical interconnections. For

example, one relation might contain data on employees and

the skills each employee possesses, while another might

involve data on departments and the skills each department

requires to function. The logical relationship between the

tuples in these relations could be employed to extend the

database structure further, by incorporating a set of

"meta-relations" for storing information about such links

between the regular n-ary relations. The role of the meta-

relations would be to identify related tuples, and to pro-

vide some semantic information regarding the nature of the

interrelationships. In the example cited above, it would

make sense to establish a meta-relation connecting the

appropriate tuples in the original two relations on the

- 41 -

basis of "common skill", as shown in Figure 2.4. Under the

implementation approach illustrated in Figure 2.4, meta-re-

lations would themselves be n-ary relations. The only dif-

ference between them and regular n-ary relations-lies in the

interpretation of their entries. Therefore, all of the pre-

viously designed mechanisms for building and managing n-ary

relations could also be used with the meta-relations. Only

the interpretation of the elements within these relations

would be different.

By incorporating linking information among the different

n-ary relations in a database, either permanently or tempo-

rarily, directly into the database structure itself, it

would be possible to generate more complex systems that

would be capable of presenting different interfaces to dif-

ferent users, depending on the needs and objectives of the

users themselves.

2.2.2.5 Virtual Information

It is not always necessary, or even desirable, that a

database contain all the information that users might wish

to access. Sometimes data interrelationships are algor-

ithmic in nature, such that certain values may be unambigu-

ously derived from others that are already stored in the

database. This gives rise to the concept of "virtual"

information (Folinus et al., 1974).

- 42 -

If an employee's BIRTHDATE is stored in a database, and

the CURRENTDATE is also available, then the employee's AGE

could be calculated by a simple algorithm and need not also

be stored. If this is in fact done, then the employee's AGE

would be an example of "virtual" data -- information that

appears (to the database user) to be stored there, but which

is not actually present as an entity in the database.

There are a number of advantages to "virtualizing" data

in a database. These include:

1. Greater accuracy: for example, an employee's AGE

could be calculated as accurately as necessary if

included as virtual data, whereas it would always

be somewhat "old" if it were simply stored as a

database entity;

2. Elimination of updating: virtual data items them-

selves never need updating;

3. Reduced redundancy: including, for example,

BIRTHDATE, CURRENTDATE, and AGE as three sepa-

rate items in a database is redundant, and incon-

sistent data relationships can easily result if

some of the items are updated independently of

others;

- 43 -

4. Savings in storage: in many cases, the database

storage space required to store items such as AGE

directly would be much larger than that required

to store the coded algorithm for calculating AGE

from other data.

One way of implementing a virtual information capability is

to'extend the definition of n-ary relations to include tuple

identifiers ("ids") that would in fact not refer to binary

relation tuples, but rather would point to procedures for

calculating the virtual data items. Consider a simple

employee relation of degree four, containing real data items

NAME, BIRTHDATE, and SALARY, plus a virtual data item AGE.

The organization of this 4-tuple would then appear as in

Figure 2.5.

2.2.2.6 Data Verification and Access Control

Data verification is the process of checking entries into

a database for qualities such as reasonableness (e.g., a

person's age should be no greater than, say, 125 years), and

consistency (e.g., the sum of the months worked in various

departments by an employee should sum to the number of

months worked for the company). Access control is the pro-

cess of controlling the database with regard to data

retrieval, update, deletion, database reorganization, etc.

- 44 -

(NAME) BIRTH DATE)

SMITH 6/14/45

ID 2

0

e,

PROCEDURE
FOR

CALCULATING
AGE GIVEN

BIRTH-DATE &
CURRENT_DATE.

g AGE 1
L----6fj

E.g., from I-
Operating System CURRENDATE.

or real-time
clock

Figure 2.5 Representation of Virtual Information

-45-

IDI

(DEPT,)

Passed to procedure

Other
necessary - .

Information

A

PROCEDURE

TO VERIFY

ENTITY ON~

UPDATE OR

INSERTION

ddress "p"t

I

Appropri ate
action

Figure 2.6 An Example Data Verification Scheme

-46-

SMI T H 12000

U

(NAME)

For example, department managers may be granted authoriza-

tion to view the employee records of only the employees

working in their own departments; the database administra-

tor, on the other hand, may have access to all the records

in the database. The database administrator may also be the

only person with authority to reorganize the entire data-

base.

Access control also involves considerations such as the

identification of valid users through use of passwords and

other such techniques, mechanisms for allowing users to spe-

cify the type of access (read only, read/write, execute

only, etc.) for files, and allowing users to segment files,

so as to restrict parts of interconnected programs or data

files from certain kinds of access by certain specified

users (an example of a system that has implemented this suc-

cessfully is the MULTICS system).

Both data validity and access control could be imple-

mented in the hierarchical structure being discussed here in

a variety of ways. For example, the basic n-ary relations

could be further extended to include special control and

verification tuples. If data verification were to be per-

formed upon data entries in a certain domain of a relation,

that domain could be flagged in a "verification tuple", and

a data verification routine would be called upon data inser-

- 47 -

tion or update to check the appropriateness of each entry

(see Figure 2.6).

Similarly, control of access to various domains or tuples

could be performed by setting control bits in a special con-

trol tuple or domain, and including, for example, an address

pointer to a list of authorized user passwords, against

which the current user could be checked. These control

tuples or flag bits would serve to describe certain "views",

or combinations of data elements, that each user would be

permitted to access. Alternately, they could be used to

describe elements, domains, tuples, or entire relations that

a user was not permitted to view.

Note that these implementations would utilize the mechan-

isms employed to provide virtual information as discussed

above (i.e., certain ids are used to point to verification

procedures, as they pointed to "virtual information computa-

tion procedures" in the preceding section). Thus, the veri-

fication and access control functions can be realized in

terms of those responsible for virtual information.

2.2.2.7 High-level Language Interface

The user interface, through the data manipulation lan-

guage, basically specifies the way in which the database may

be accessed by the users. In this regard, there are three

main approaches to manipulating a database, corresponding

- 48 -

roughly to the three basic models of database organization

(network, hierarchical, and relational.):

1. An application programmer may wish to 'navigate'

(Bachman, 1975; Codasyl, 1971) a database by using

the data manipulation language to trace through

the data groupings (relations) and interconnecting

linkages (links between n-ary relations). This

approach to database manipulation is usually more

complex than some others, and demands a greater

sophistication on the part of the applications

programmer. He must, for example, be fully aware

of the existence of all the links connecting the

various data groupings, whereas this knowledge is

not necessarily demanded of programmers using

other data manipulation languages. In return for

the greater complexity, the navigational approach

usually offers greater accessing efficiency and

better overall database manipulation performance,

especially when dealing with large and complex

databases.

2. A user may wish to organize and manipulate the

database as a hierarchical tree structure, wherein

the logical interconnections between data group-

ings are always one-to-many in nature. In a

- 49 -

sense, the manipulation of a hierarchical tree

structure is a special case of the general naviga-

tional approach. Hierarchical structures do, how-

ever, allow a number of simplifications to be made

in designing the database management system, as

well as in the data manipulation language. Furth-

ermore, a surprisingly large number of situations

in the real world may be effectively represented

with a hierarchical tree data organization, so it

is worthwhile to treat hierarchical structure as

an important special case.

3. Finally, in many cases it is appropriate for the

applications programmer to access the database

directly in terms of its underlying binary or

n-ary relations (Codd, 1970; Codd, 1974). Such

"direct" manipulation may be made at a relatively

low level, in terms of individual relations and

primitive operations (using the relational alge-

bra) upon them. Alternately, a higher-level

interface could be used to translate more general-

purpose commands (using the relational calculus)

into lower-level operations. Such low-level

accessing methods generally provide greater effi-

ciency, at the expense of greater programming

detail.

- 50 -

2.2.3 INFOPLEX's Approach to Functional Decomposition

The above discussions illustrate one possible decomposi-

tion of the information management functions into hierarchi-

cal levels. Other decompositions are possible. For exam-

ple, the work of (Senko, 1976; Yeh et al., 1977; Toh et al.,

1977; ANSI, 1975) also decomposes the various information

management functions into several levels (e.g., (1) physical

data storage, (2) logical data encoding, (3) access path,

(4) internal schema, and (5) external schema). A common

weakness of these functional decompositions, including our

example decompositon, is that although any particular decom-

position may make good sense and impose a reasonable concep-

tual structure on the information management function, there

are no commonly accepted criteria with which to evaluate any

given decomposition.

A common qualitative criteria often used to decompose

complex functions into sub-modules is that of modularity. A

decomposition is considered to attain high modularity when

each individual module is internally coherent, and all the

modules are loosely coupled with one another. One of the

INFOPLEX research focuses is to develop methodologies to

formalize this notion of modularity quantitatively, and to

use it to evaluate a given decomposition, thus systematic

techniques for obtaining an optimal functional decomposition

- 51 -

of the information management functions can be developed. A

particularly promising approach for this purpose is the

Systematic Design Methodology (Huff and Madnick, 1978).

The following briefly describes this approach.

The Systematic Design Methodology approach to system

design centers on the problem of identifying a system's

modules, or "sub-problems", their functions, and their

interconnections. Using this approach, we begin with a set

of functional requirement statements for the INFOPLEX infor-

mation management functions. Each pair of requirements is

examined in turn, and a decision as to whether a significant

degree of interdependence between the two requirements

exists is made. Then the resulting information is repre-

sented as a non-directed graph structure: nodes are

requirement statements, links are assessed interdependen-

cies. The graph is then partitioned with the objective of

locating a good decomposition. An index of partition good-

ness is employed, which incorporates measures of subgraph

"strength" and "coupling". The actual goodness index is

taken as the algebraic difference between the strengths of

all the subgraphs, and the inter-subgraph couplings. That

is, M=S-C, where S is the sum of the strength measures of

all subgraphs, and C is the sum of all the inter-subgraph

couplings.

- 52 -

Once an agreeable partition is determined, the resulting

sets of requirements are interpreted as "design sub-prob-

lems". From these design sub-problems a functional hier-

archy of INFOPLEX can then be systematically derived. This

procedure is illustrated in Figure 2.7. This approach is

currently being developed in the INFOPLEX Project.

2.3 THE INFOPLEX DATA STORAGE HIERARCHY

To provide a high performance, highly reliable, and large

capacity storage system, INFOPLEX makes use of an automati-

cally managed memory hierarchy (referred to as the INFOPLEX

physical decomposition). In this section, the.rationale for

and an example of an automatic memory hierarchy are dis-

cussed. Then the. INFOPLEX approach to realize such a memory

hierarchy is also discussed.

2.3.1 Rationale for a Storage Hierarchy

The technologies that lend themselves to low cost-per-

byte storage devices (and, thereby, economical large capac-

ity storage) result in relatively slow access times. If it

was possible to produce ultra-fast limitless-capacity sto-

rage devices for miniscule cost, there would be little need

for a physical decomposition of the storage. Lacking such a

wondrous device, the requirements of high performance at low

cost are best satisfied by a mixture of technologies combin-

- 53 -

-54-

statement of information
management requirements

graph

representation

graph

decomposi ti on

intepretation
as design

subproblems

systematic

derivation of

functional

hierarchy

Figure 2.7 INFOPLEX's Approach to Function4l
Decomposition

ing expensive high-performance devices with inexpensive

lower-performance devices.

There are many ways that such an ensemble of storage dev-

ices may be structured, but the technique of hierarchical

physical decomposition has been found to be very effective

(Madnick, 1973; Madnick, 1975a; Madnick, 1975b). Using this

technique, the ensemble of heterogeneous storage devices is

organized as a hierarchy. Information is moved between sto-

rage levels automatically depending upon actual or antici-

pated usage such that the information most likely to be

referenced in the future is kept at the highest (most easily

accessed) levels.

The effectiveness of a memory hierarchy depends heavily

on the phenomonon known as locality of reference (Denning,

1970). A memory hierarchy makes use of this property of

information reference pattern so that the information that

is used frequently would be accessible through the higher

levels of the hierarchy, giving the memory hierarchy an

expected access time close to that of the access time of the

faster memories. This approach has been used in contempo-

rary computer systems in cache memory systems (Conti, 1969),

in virtual memory demand paging systems (Bensoussan et al.,

1969; Greenberg and Webber, 1975; Hatfield, 1972; Mattson et

al., 1970; Meade, 1970), and in mass storage systems (Consi-

dine and Weis, 1969; Johnson, 1975).

- 55 -

Experimentations with physical data reference strings are

reported in (Easton, 1978; Rodriguez-Rosell, 1976; Smith,

1978b). It has been found that there is considerable

sequentiality of physical database reference in these stu-

dies. Sequentiality of references is a special form of spa-

tial locality as discussed by (Madnick, 1973). Several mea-

sures of logical database locality and experimentations with

these measures are reported in (McCabe, 1978; Robidoux,

1979). The observations from these experiments are encour-

aging. In particular they indicate that there is considera-

ble locality of database reference.

2.3.2 Example of a Physical Decomposition

We now discuss an example of a memory hierarchy, its gen-

eral structure, types of storage devices that it may employ,

and some strategies for automatic information movement in

the hierarchy.

2.3.2.1 General Structure

To the user (i.e. the lowest level of the functional

hierarchy) of the memory hierarchy, the memory appears as a

very large linear virtual address space with a small access

time. The fact that the memory is actually a hierarchy or

that a certain block of information can be obtained from a

certain level is hidden from the memory user. Figure 2.8

- 56 -

storage references

1. CACHE

2. MAIN

3. BLOCK

4. BACKING

5. SECONDARY

6. MASS

Figure 2.8 An Example Memory Hierarchy

-57-

Storage
Level

1. Cache

2. Main

3. Block

4. Backing

5. Secondary

6. Mass

Random
Access

Time

100 ns

1 us

100 us

2 ms

25 ms

1 sec.

Sequential
Transfer

Rate
(bytes/sec)_

loM

16M

8m

2M

11m

1M

Unit
Capacity

(bytes)

System
Price

(per byte)

32K 504

100512K

10M 0. 54

loM

100B

0.02*

0.0005t

Figure 2.9 Example Storage Devices

-58-

illustrates the general structure of a memory hierarchy

consisting of six levels of storage devices. Some of the

devices that can be used in these levels are discussed in

the next subsection.

The lowest level always contains all the information of

the system. A high level always contains a subset of the

information in the next lower level. To satisfy a request,

the information in the highest (most easily accessed) level

is used.

Storage reference is accomplished by supplying the memory

hierarchy with a virtual address (say a 64-bit address), the

memory hierarchy will determine where the addressed informa-

tion is physically located. The addressed information will

be moved up the memory hierarchy if it is found in other

than the highest level of the hierarchy. This implies that

there is a high variance in the access time of the memory

system. This situation is alleviated by providing multiple

ports to the memory system so that a pipeline of requests

can be processed. Furthermore, the inherent parallelism

within each memory level and among different memory levels

provides high throughput for the memory system as a whole.

Since the functional levels are designed with high parallel-

ism of operation as one of its major objectives, the proces-

sor making the request can take advantage of the high memory

- 59 -

access time variance. Various schemes are used to make the

automatic management of the memory hierarchy efficient.

Some of these strategies are discussed in a latter section.

2.3.2.2 Storage Devices

Traditionally, computer direct access storage has been

dominated by two fairly distinct technologies: (1) ferrite

core and, later, metallic oxide semiconductor (MOS) LSI

memories with microsecond access times and relatively high

costs, and (2) rotating magnetic media (magnetic drums and

disks) with access time in the range of 10 to 100 millise-

conds and relatively low costs. This has led to the separa-

tion between main storage and secondary storage devices.

Recently several new memory technologies, most notably

magnetic bubbles, electron beam addressed memories (EBAM),

and charge coupled devices (CCD), have emerged to fill the

"gap" between the two traditional memory technologies.

The evolution and increasing deployment of the above and

many other memory technologies have produced a more continu-

ous cost-performance range of storage devices, as depicted

in Figure 2.9 (Madnick, 1975a). Note that these technolo-

gies, which are arbitrarily grouped into six categories,

result in storage devices that span more than six orders of

magnitude in both random access time (from less than 100

- 60 -

nanoseconds to more than 1 second) and system price per byte

(from more than 50 cents per byte to less than 0.0005 cent).

This evolution has facilitated the choice of appropriate

cost-effective storage devices for the memory hierarchy.

For example, for the memory hierarchy discussed in the pre-

vious section, we might use a device like the IBM 3850 Mass

Storage as the mass storage, traditional moving head disks

as secondary storage, magnetic drums as backing store, CCD

or magnetic bubble as block store, core or semiconductor RAM

as main storage, and high performance semiconductor RAM as

cache.

2.3.2.3 Strategies for Information Movement

Various physical storage management and movement techni-

ques, such as page splitting, read through, and store

behind, can be distributed within the memory hierarchy.

This facilitates parallel and asynchronous operation in the

hierarchy. Furthermore, these approaches can lead to

greatly increased reliability of operation. For example,

under the read through strategy (Figure 2.10), when data

currently stored at level i (and all lower performance lev-

els) is referenced, it is automatically and simultaneously

copied and stored into all higher performance levels. The

data itself is moved between levels in standard transfer

- 61 -

(0, I)

N N(1,2)

N (2,3)

~~~1
N (2,3)

Figure 2.10 Illustration of Read Through

-62-



units, also called pages, whose size N (i-1, i) depends upon

the storage level from which it is being moved.

For example, suppose that the datum "a", at level 3, is

referenced (see Figure 2.10). The block of size N(2,3) con-

taining "a" is extracted and moved up the data bus. Level 2

extracts this block of data and stores it in its memory

modules. At the same time, level 1 extracts a sub-block of

size N(1,2) containing "a" and level 0 extracts the sub-

block of size N(0,l) containing "a" from the data bus.

Hence, under the read through strategy, all upper storage

levels receive this information simultaneously. If a sto-

rage level must be removed from the system, there are no

changes needed. In this case, the information is "read

through" the level as if it didn't exist. Since all data

available at level i is also available at level i + 1 (and

all other lower performance levels), there is no information

lost. Thus, no changes are needed to any of the other sto-

rage levels or the storage management algorithms although we

would expect the performance to decrease as a result of the

missing storage level. A limited form of this reliability

strategy is employed in most current-day cache memory sys-

tems (Conti, 1969).

- 63 -



In a store behind strategy all information to be changed

is first stored in L(l), the highest performance storage

level. This information is marked "changed" and is copied

into L(2) as soon as possible, usually during a time when

there is little or no activity between L(l) and L(2). At a

later time, the information is copied from L(2) to L(3),

etc. A variation on this strategy is used in the MULTICS

Multilevel Paging Hierarchy (Greenberg and Webber, 1975).

This strategy facilitates more even usage of the bus between

levels by only scheduling data transfers between levels dur-

ing idle bus cycles. Furthermore, the time required for a

write is only limited by the speed of the highest level

memory.

The store behind strategy can be used to provide high

reliability in the storage system. Ordinarily, a changed

page is not allowed to be purged from a storage level until

the next lower level has been updated. This can be extended

to require two levels of acknowledgment. Under such a stra-

tegy, a changed page cannot be removed from L(l) until the

corresponding pages in both L(2) and L(3) have been updated.

In this way, there will be at least two copies of each

changed piece of information at levels L(i) and L(i+l) in

the hierarchy. Other than slightly delaying the time at

which a page may be purged from a level, this approach does

- 64 -



not significantly affect system performance. As a result of

this technique, if any level malfunctions, it can be removed

from the hierarchy without causing any information to be

lost. There are two exceptions to this process, L(l) and

L(n). To completely safeguard the reliability of the sys-

tem, it may be necessary to store duplicate copies of infor-

mation at these levels only.

Figure 2.11 illustrates this process. In Figure 2.11(a),

a processor stores into L(l), the corresponding page is

marked "changed" and "no lower level copy exists". Figure

2.11(b) shows in a latter time, the corresponding page in

L(2) is updated and marked "changed" and "no lower level

copy exists". An acknowledgment is sent to L(l) so that the

corresponding page is marked "one lower level copy exists".

At a later time (Figure 2.11(c)), the corresponding page in

L(3) is updated and marked "changed" and "no lower level

copy exists". An acknowledgment is sent to L(2) so that the

corresponding page is marked "one lower level copy exists".

An acknowledgment is sent to L(l) so that the corresponding

page is marked "two lower level copy exists". At this time,

the page in L(l) may be replaced if necessary, since then

there will be at least two copies of the updated information

in the lower memory levels.

- 65 -



Request
Source

N (0,1)

SL(I) .

L (2)

L (3)

Figure 2.11(a) Store Behind (a)

-66-



FRequest
Sour ce

Figure 2.11(b) Store Behind (b)

-67-

L (3)



Request
Source

IL V

Figure 2.11(c) Store Behind (c)

-68-



2.3.3 INFOPLEX's Approach to Physical Decomposition

In the previous section, we have illustrated an example

of a memory hierarchy that makes use of an ensemble of het-

erogeneous storage devices. Although memory hierarchies

using two or three levels of storage devices have been

implemented, no known generalized automatic memory hierarchy

has been developed.

The optimality of a memory hierarchy depends on the com-

plex interactions among the memory reference pattern, the

device characteristics, and the information movement strate-

gies. The INFOPLEX approach to this complex problem is to

empirically study and characterize data reference patterns

at several levels (e.g. transaction level, logical data

level, and physical data level), to develop various informa-

tion movement strategies, and to design a prototype memory

hierarchy. The interactions among these components can then

be systematically investigated by means of analytic models

and simulation models.

2.4 RESEARCH ISSUES ADDRESSED IN THIS THESIS

This chapter has provided the background for this thesis.

As is evident from the above discussions, there are a large

number of interesting but unresolved research problems asso-

ciated with INFOPLEX. This thesis is a key step towards

- 69 -



understanding the INFOPLEX data storage hierarchy. In par-

ticular, this thesis has made contributions in the following

areas:

1. Developed and extended concepts for the INFOPLEX

data base computer and data storage hierarchy sys-

tems.

2. Provided a theoretic foundation for analysis of

data storage hierarchy systems.

3. Formalized storage management algorithms to incor-

porate the read-through strategy.

4. Provided detail analysis of the performance and

reliability properties of data storage hierarchies

and their algorithms.

5. Designed prototype data storage hierarchy systems

for INFOPLEX.

6. Developed simulation models to obtain insights to

the data storage hierarchy designs and their

algorithms.

These are elaborated in the following chapters.

- 70 -



Chapter III

A GENERAL STRUCTURE OF THE INFOPLEX DATA STORAGE HIERARCHY

3.1 INTRODUCTION

This chapter proposes the general structure of a data

storage hierarchy system for the INFOPLEX data base compu-

ter. The design of this system is based on Madnick's pro-

posed system (Madnick, 1973). This work brings Madnick's

system one step closer to realization. In the following,

the underlying design goals of this data storage hierarchy

system will be discussed. Then the design, called DSH-1, is

introduced followed by a discussion of further design issues

that need to be addressed.

3.2 DESIGN OBJECTIVES

There are a large number of practical storage hierarchy

systems today. However, the functionality provided by each

is quite different and often falls short of our expectations

(for use as the storage subsystem of the INFOPLEX data base

computer). In the following, we discuss the underlying

design goals of DSH-1.

- 71 -



3.2.1 Virtual Address Space

DSH-1 provides a virtual address space for data storage.

Every data item in DSH-1 is byte addressable using a gener-

alized virtual address. A key advantage of a virtual

address space is that a user (a processor) of DSH-l is

relieved of all physical device concerns. In fact, the pro-

cessor accessing DSH-1 is not aware of how the virtual

address space is implemented. This latter characteristic is

quite unique since most current virtual memory systems are

simulated, at least partially, by software executed by the

processor, e.g., the IBM OS/VS system (Scherr, 1973).

3.2.2 Very Large Address Space

Early virtual memory systems were developed primarily for

program storage, hence their address spaces were quite lim-

ited, e.g., in the order of one million bytes. The MULTICS

(Greenberg and Webber, 1975) virtual memory and the IBM Sys-

tem/38 (Datamation, 1978; Soltis and Hoffman, 1979) logical

storage were developed for program as well as data file sto-

rage. These systems support a large virtual address space.

However, the size of an individual data file in MULTICS is

limited to 2**18 bytes and that in System/38 is limited to

2**24 bytes. Though these are very large address spaces, it

is expected that future systems will require online storage

capacities that are much larger. DSH-1 uses a 64-bit vir-

- 72 -



tual address. Each byte is directly addressable, hence

there is virtually no limit on the size of a logical entity

such as a data file.

3.2.3 Permanent Data Storage

Accesses to permanent data is performed by special soft-

ware routines and a special I/O processor in most virtual

memory systems. The I/O processor brings the data into the

virtual memory and writes the data back to permanent storage

when the data is updated. Systems like MULTICS and Sys-

tem/38 provide a permanent virtual data storage. Any data

in virtual memory is also in permanent storage. DSH-1 also

provides a permanent virtual data storage. Special data

integrity schemes are used to ensure that as soon as a pro-

cessor completes a write operation to a virtual location,

the effect of the write becomes permanent even in the event

of a power failure.

3.2.4 Support Multiple Processors

Most current virtual memory systems have been limited to

supporting 2 to 3 processors. It is necessary that DSH-1

support a large number of processors due to the requirements

for high performance and high availability to be discussed

below. All these processors share the same virtual data

address space. Appropriate synchronization and protection

schemes are used to ensure data integrity and security.

- 73 -



3.2.5 Generalized Multi-level Storage System

To provide a large capacity storage subsystem with.low

cost and high performance, a spectrum of storage devices

arranged in a hierarchy is used. Previous storage hierarchy

systems have been specially designed for a specific 2 or 3

levels hierarchy (e.g., cache and main memory, or main

memory and secondary storage device). Thus, it is extremely

difficult to add or remove a storage level in these systems.

DSH-1 is designed to incorporate any type of storage device

and support reconfiguration of storage levels. This charac-

teristic is particularly important in responding to new dev-

ice technologies.

3.2.6 Direct Inter-level Data Transfer

In most current storage hierarchy systems, data movement

among storage levels is performed indirectly. For example,

to move data from drum to disk in the MULTICS system, data

is read from drum into main memory by the processor which

then writes the data to disk. Recent developments in sto-

rage systems make it possible to decentralize the control of

data movement between storage devices to intelligent con-

trollers at the storage devices. For example, the IBM 3850

Mass Storage (Johnson, 1975) uses an intelligent controller

to handle data transfer between mass storage and disks, mak-

ing the 3850 appear as a very large number of virtual disks.

- 74 -



DSH-1 incorporates intelligent controllers at each storage

level to implement the algorithms for data movement among

the storage levels. Special algorithms are developed to

facilitate efficient broadcasting of data from a storage

level to all other storage levels as well as movement of

data between adjacent storage levels.

3.2.7 High performance

To support the data requirements of the functional pro-

cessors in INFOPLEX, DSH-1 is designed to handle a large

number of requests simultaneously. The operation of DSH-1

is highly parallel and asychronous. Thus, many requests may

be in different stages of completion at various storage lev-

els of DSH-l. Each processor accesses DSH-1 through a data

cache where the most frequently used data items are stored.

3.2.8 Availabli

High availability of DSH-1 is a result of a combination

of the design strategy used, hardware commonality, and spe-

cial algorithms. Key design str-ategies in DSH-1 include the

use of distributed controls and simple bus structures, both

of which contribute to the high availability of DSH-l. Mul-

tiple identical hardware components are used in parallel to

provide high performance and to ensure that no single compo-

nent is critical to system operation. Integrated into the

- 75 -



design are certain algorithms that exploit the structure of

DSH-1 to allow data redundancy and perform automatic data

repair in the event of component failure, thus diminishing

the dangers of multiple failures.

3.2.9 Modularity

DSH-1 is modular at several levels. This provides much

flexibility in system structuring. The number of processors

to be supported by DSH-1 can be varied. The number of sto-

rage levels and the type of storage devices can be chosen to

meet the particular capacity and performance requirements.

All the storage levels have very similar structures and the

same algorithm is used by the intelligent controllers at

each storage level.

Flexibility in system structuring is extended in DSH-1 to

allow for dynamic system reconfiguration. For example, a

defective storage device or storage level can be amputated

without loss of system availability.

An example of a system that also incorporates modularity

as a key design goal is the PLURIBUS (Katsuki et. al., 1978)

system. In PLURIBUS, the basic building block is a bus

module. The number of components on a bus module as well as

the number of bus modules can be easily varied to meet dif-

ferent system requirements.

- 76 -



3.2.10 Low Cost

A storage hierarchy is the lowest cost configuration to

meet the requirement of providing a large storage capacity

with high performance. DSH-1 also make use of common hard-

ware modules as the intelligent controllers at each storage

level, thus reducing hardware development cost. The modu-

larity features of DSH-1 discussed above also facilitate

system upgrading with minimum cost.

Commonality of hardware modules and flexibility of system

upgrade have been employed in many computer systems as an

effective approach to reduce cost. However, these techni-

ques are rarely applied to storage hierarchy systems. DSH-1

is a step in this direction.

Advances in storage device and processor technologies

provide great potentials for development of very effective

data storage hierarchies that incorporate the above charac-

teristics. In the next section, we describe a general

structure of such a system.

3.3 GENERAL STRUCTURE OF DSH-1

The structure of DSH-1 is illustrated in Figure 3.1. A

key design decision in DSH-1 is to make use of an asynchro-

nous time-shared bus for interconnecting multiple components

(processors and memory modules) within a storage level and

- 77 -



DC DC(

Level

L(1)

I 
IZT -LC

I.

S(i) SLC's P(i)

Level

L(I)

B(O) logical buses

Each has b(O) physical buses.

8(1) logical buses
Each has b(1)

physical,
tuses

B(i) logical buse!
Each has b(i)
physical buses

Figure 3.1 Structure of DSH-1

-78-



to make use of an asynchronous time-shared bus for

interconnecting all the storage levels. A key advantage of

the time-shared bus is its simplicity, flexibility, and

throughput. Two alternative approaches can be used in DSH-1

to increase the effective bandwidth of the time-shared bus.

First, a new pended-bus protocol can be used (Haagens,

1978). This asynchronous bus protocol is more efficient

than the usual time-shared bus protocols with the result

that a much larger number of components can share a single

bus. Second, multiple logical buses can be used to parti-

tion the load on the time-shared bus.

In the following subsections, we shall describe the

interface to DSH-l as seen by a functional hierarchy proces-

sor. Then the structure of DSH-1 is described by examining

its highest performance storage level and then a typical

storage level.

3.3.1 The DSH-1 Interface

To the functional hierarchy processors connected to

DSH-l, DSH-1 appears as a large multi-port main memory.

There are K memory ports, hence K processors can simultane-

ously access DSH-l.

The functional processors use a 2**V (V=64) byte virtual

address space. The instructions for each functional hier-

- 79 -



archy processor are stored in a separate 2**I byte program

memory. The program memories are not part of DSH-l. Thus,

2**I bytes of the processor's address space is mapped by the

program memories, leaving 2**V-2**I bytes of data memory to

be managed by DSH-l. This is depicted in Figures 3.2(a) and

3.2(b).

Each processor has multiple register sets to support

efficient multiprogramming. Some of the more important

registers for interfacing with DSH-1 are : (1) a V-bit

Memory Address Register (MAR) for holding the virtual

address, (2) a Memory Buffer Register (MBR) for storing the

data read from DSH-1 and to be written into DSH-l, (3) a

Memory Operation Register (MOR) indicates the particular

operation to be performed by DSH-1, (4) an Operation Status

Register (OSR) which indicates the result of a operation

performed by DSH-1, and (5) a Process Identifier Register

(PIR) which contains the Process Identifier (PID) of the

process that is currently using the processor.

A number of memory operations are possible. The key ones

are the read and write operations and the primitives for

locking a data item (such as those supporting the Test-and-

Set type of operations).

- 80 -



Figure 3.2(a) The DSH-1 Interface

Program

Spau --

Data

Space 2V-2 i

Figure 3.2(b) The DSH-1 Address Space

-81-

Total

Address

Space



All read and write operations to DSH-1 are performed in

the highest performance storage level, L(l). If a refer-

enced data item is not in L(l), it is brought up to L(l)

from a lower storage level via a read-through operation.

The effect of an update to a data item in L(l) is propagated

down to the lower storage levels via a number of store-be-

hind operations.

In a read operation, two results can occur depending on

the state of DSH-l. First, if the requested data is already

in L(l), the MBR is filled with the data bytes starting at

location (MAR) and the processor continues with the next

operation. Alternatively, the addressed data may not be

available in L(l). In this case, the processor is inter-

rupted, the OSR is set to indicate that it may take a while

for the read operation to complete, and the processor is

switched to another process. In the meantime, the addressed

data is copied into L(l) from a lower storage level. When

this is completed, the processor is notified of the comple-

tion of the original read operation.

Similarly, a write operation may result in two possible

responses from DSH-l. First, if the data to be updated is

already in L(l), the bytes in MBR are written to the virtual

address locations starting at (MAR), and the processor con-

tinues with the next operation. Second, a delay similar to

- 82 -



the read operation may occur (when the data to be updated is

not in L(l)), while DSH-1 retrieves the data from a lower

storage level.

This concludes a brief description of the asynchronous

DSH-1 interface, as seen by a functional hierarchy proces-

sor. Next, we examine the structure of DSH-l.

3.3.2 The Highest Performance Storage Level - L(l)

There are h storage levels in DSH-1, labelled L(l), L(2),

L(3), ... , L(h). L(l) is the highest performance storage

level. L(i) denotes a typical storage level. The structure

of L(l) is unique. The structures of all other storage lev-

els are similar.

A distinction must be made between the concept of a phy-

sical bus and a logical bus. The former refers to the

actual hardware that implements communications among levels

and within a level. A logical bus may be implemented using

one or more physical buses. Logical buses represent a par-

titioning, based upon the virtual address referenced, of the

physical buses.

Referring to Figure 3.1, L(l) consists of K memory ports

and S(l) storage level controllers (SLC's) on each of B(l)

logical local buses (i.e., S(1)*B(l) SLC's in total for this

- 83 -



level). Each memory port consists of a data cache control-

ler (DCC) and a data cache duplex (DCD). A DCC interfaces

with the functional hierarchy processor that is connected to

the memory port. A DCC also performs mapping of a virtual

address generated by the processor to a physical address in

the DCD. Another function of DCC is to interface with other

DCC's (e.g., to maintain data cache consistency), and with

SLC's on the logical bus (for communications with other sto-

rage levels).

At L(l), a SLC accepts requests to lower storage levels

from the DCC's and forwards them to a SLC at the next lower

storage level. When the responses to these requests are

ready, the SLC accepts them and sends them back to the

appropriate DCC's. The SLC's also couple the local buses to

the global buses. In essence, the SLC serves as a gateway

between levels and they contend among themselves for use of

the communication media, the logical buses.

At L(l), there are B(l) logical local buses. Each logi-

cal local bus consists of b(l) physical buses. Each logical

bus handles a partition of the addresses. For example, if

two logical buses were used, one might handle all odd num-

bered data blocks and the other would handle all the even

numbered data blocks.

- 84 -



DSH-1 has B(0) logical global buses. Each logical global

bus consists of b(0) global physical buses. The use of

address partitioning increases the effective bus bandwidth.

The use of multiple physical buses for each logical bus

enhances reliability and performance.

3.3.3 A Typical Storage Level - L(i)

A typical storage level, L(i), is divided into B(i)

address partitions. Each address partition consists of S(i)

SLC's, P(i) memory request processors (MRP's), and D(i) sto-

rage device modules (SDM's), all sharing a logical bus. A

logical bus consists of b(i) physical buses.

An SLC is the communication gateway between the

MRP's/SDM's of its level and the other storage levels.

An MRP performs the address mapping function. It con-

tains a directory of all the data maintained in the address

partition. Using this directory, an MRP can quickly deter-

mine if a virtual address corresponds to any data in the

address partition, and if so, what the real address is for

the data. This real address can be used by the correspond-

ing SDM to retrieve the data. Since each MRP contains a

copy of this directory, updates to the directory have to be

handled with care, so that all the MRP's see a consistent

copy of the directory.

- 85 -



An SDM performs the actual reading and writing of data.

It also communicates with the MRP's and the SLC's.

The SLC's, MRP's, and SDM's cooperate to handle a memory

request. An SLC communicates with other storage levels and

passes requests to an MRP to perform the address transla-

tion. The appropriate SDM is then initiated to read or

write the data. The response is then sent to another SLC at

another storage level.

3.4 FURTHER DESIGN ISSUES

The previous section describes the general structure of

DSH-l. From this general structure, a number of interesting

alternative configurations can be obtained. For example, if

all the data caches are taken away, L(l) becomes a level

with only the SLC's for communicating the requests from the

processors to the lower storage levels and for obtaining

responses from these lower storage levels. This configura-

tion eliminates the data consistency problems associated

with multiple data caches.

If we let the number of logical buses be equal to one, we

obtain the configuration without address partitioning.

Another intersting configuration is when there is only

one MRP and one SDM on a given logical bus. This configura-

- 86 -



tion eliminates the need for multiple identical directory

updates.

Thus, by varying the design parameters of DSH-1, a large

number of alternative configurations with quite different

characteristics can be obtained. The- general structure is a

valuable vehicle for investigating various design issues.

Some of the key issues are briefly introduced in the follow-

ing sections.

3.4.1 Support of Read and Write Operations

Key problems in supporting the read and write operations

in DSH-1 include : (1) data consistency in multiple data

caches, (2) protocols for communicating over the shared

bus, (3) algorithms for updating the redundant directories,

(4) algorithms for arbitrating among usage of identical

resources, such as buses, SLC's and MRP's, and (5) specify-

ing the various steps (transactions) that have to be accom-

plished to handle the read and write operations.

3.4.1.1 Multiple Cache Consistency

As illustrated in Figure 3.1, each DSH-1 memory port is a

data cache directly addressable by the processor at the

port. It is possible then, that a data item may be in sev-

eral different data caches at the same time. When the data

- 87 -



item gets updated by a processor, other processors may

reference an inconsistent copy of the data item. The multi-

ple cache consistency problem and its solutions are dis-

cussed in (Tang, 1976; Censier and Feautrier, 1978).

Three basic approaches can be used to resolve this prob-

lem in DSH-l. The first approach is to send a purge request

to all other data caches whenever a processor updates data

in its cache. The second approach is to maintain status

information about the data cache contents. Whenever there

is an update to a data item, this status information is con-

sulted and purge requests are sent only to those caches that

contain the data item being changed. The third approach is

to make use of knowledge of how the data in DSH-1 is to be

used so that the inconsistency problem can be avoided. For

example, knowledge about the interlocking scheme used to

ensure safe data sharing may be used to avoid uncessary

purge requests to other caches.

3.4.1.2 Bus Communication Protocols

In DSH-l, the buses may be used for point-to-point commu-

nication as well as for broadcast type of communications.

It is necessary to ensure that messages are sent and

received correctly. For example, L(i) broadcast data to the

upper levels and one or more of these levels may not be able

- 88 -



to accomodate the data to be received, possibly due to the

lack of buffer space. Communications protocols to handle

these situations are important.

3.4.1.3 Multiple Directory Update

Each MRP contains a directory of all the data in the

SDM's on the same bus. Multiple requests may be handled by

the MRP's. When a MRP updates its directory, other MRP's

may still reference the old copy of the directory. This is

similar but not identical to the multiple cache consistency

problem discussed above. It is necessary to maintain con-

sistency of the MRP directory states.

3.4.1.4 Multiple Resource Arbitration

Multiple identical resources (e.g., buses, MRP's, and

SLC's) are used in DSH-1 to provide parallel processing

while at the same time providing redundancy against failure.

A request for a resource can be satisfied by any one of the

resources. An arbitration scheme is required to control the

assignment of resource.

3.4.1.5 Transaction Handling

A read or a write request may go through a number of

asynchronous steps through a number of storage levels to

completion. A complication to these transactions is that

- 89 -



for high throughput, a request (or response) may be divided

into a number of messages when the request (or response) is

being transported within the hierarchy. Thus, a request (or

response) may have to be assembled, which may take an amount

of time dependent on the traffic within DSH-l. Partial

requests (responses) at a storage level require special han-

dling.

3.4.2 Multijle Data Redundancy Properties

As a result of the read-through operation, several copies

of a referenced data item exists in the DSH-1 storage lev-

els. The two-level store-behind operation also maintains at

least two copies of any updated data item in DSH-1. This is

a key reliability feature of DSH-l. It is important to know

under what conditions and using what types of algorithms can

this multiple data redundancy be maintained at all times.

3.4.3 Automatic Data Repair Algorithms

One of the benefits of maintaining redundant d-ata in

DSH-1 is that lost data due to component failures can be

reconstructed on a spare component from a copy of the lost

data. By using automatic data repair in DSH-1 the probabil-

ity of multiple data loss can be reduced.

- 90 -



Two classes of automatic data repair algorithms are pos-

sible. One strategy is to make use of the multiple data

redundancy properties of DSH-1 and to reconstruct the lost

data from its copy in a different storage level. The other

approach is to maintain duplicate copies of the data item

within a storage level and to reconstruct the lost data from

its copy in the same storage level. The latter approach is

particularly attractive for low performance devices such as

mass storage.

3.4.4 Performance Evaluation

A key issue in the DSH-1 design is predicting its perfor-

mance. In order to accomplish this, a simplified design of

DSH-1 and its algorithms can be developed. A simulation

model can then be developed for this design. Various basic

performance statistics can then be obtained under various

load assumptions. This experiment will provide insights and

directions for further design efforts.

3.5 SUMMARY

The INFOPLEX storage hierarchy is a high performance high

availability virtual memory data storage hierarchy with dis-

tributed controls for data movement and address translation.

It is designed specifically to provide a very large perman-

ent virtual address space to support multiple functional

hierarchy processors.

- 91 -



A general structure of DSH-1, the INFOPLEX storage hier-

archy has been described in this chapter. This general

structure can be used to derive a large number of alterna-

tive configurations which can be used to explore various

algorithms for data storage hierarchy systems.

A number of important design issues associated with DSH-I

are also outlined.

- 92 -



Chapter IV

MODELLING AND ANALYSIS OF DATA STORAGE HIERARCHY SYSTEMS

4.1 INTRODUCTION

This chapter is aimed at modelling data storage hierarchy

systems so as to study these systems from a theoretic point

of view. These studies provide insights to the perfromance

and reliability properties of data storage hierarchy systems

and their algorithms. These insights provide guidance to

developing effective data storage hierarchy systems.

Current research in storage hierarchy systems is reviewed

and extended. A formal model of a data storage hierarchy

which incorporates multiple page sizes and maintains multi-

ple data redundancy is developed. The LRU algorithm is

extended to include the read-through and overflow handling

strategies in a multi-level storage hierarchy. Formal

definitions for these extended algorithms are developed.

Finally, important performance and reliability properties of

data storage hierarchy systems are identified and analyzed

in detail.

- 93 -



4.2 RESEARCH ON STORAGE HIERARCHY SYSTEMS

Two and three-level memory hierarchies have been used in

practical computer systems (Conti, 1969; Johnson, 1975;

Greeberg and Webber, 1975). However, there is relatively

little experience with general hierarchical storage systems.

One major area of theoretic study of storage hierarchy

systems in the past has been the optimal placement of infor-

mation in a storage hierarchy system. Three approaches to

this problem have been used: (1) Static placement (Rama-

moorthy and Chandy, 1970; Arola and Gallo, 1971; Chen, 1973)

- this approach determines the optimal placement strategy

statically, at the initiation of the system; (2) Dynamic

placement (Lum et al, 1975; Franaszek and Bennett, 1978) -

this approach attempts to optimally place information in the

hierarchy, taking into account the dynamically changing

nature of access to information; (3) Information structur-

ing (Hatfield and Gerald, 1971; Jobnson J., 1975) - this

approach manipulates the internal structure of information

so that information items that are frequently used together

are placed adjacent to each other.

Another major area of theoretic study of storage hier-

archy systems has been the study of storage management

algorithms (Belady, 1966; Belady et al, 1969; Denning, 1970;

Mattson et al, 1970; Mattson, 1971; Hatfield, 1972; Madnick,

- 94 -



1973; Goldberg, 1974; Franklin et al, 1978). Here the study

of storage hierarchies and the study of virtual memory sys-

tems for program storage have overlapped considerably. This

is largely due the fact that most of the studies of storage

hierarchies in the past have been aimed at providing a vir-

tual memory for program storage. These studies usually do

not consider the effects of multiple page sizes across sto-

rage levels, nor the problem of providing redundant data

across storage levels as used in the system proposed by Mad-

nick (Madnick, 1973). These considerations are of great

importance for a storage hierarchy designed specifically for

very large data bases. The following sections extend theo-

ries on storage hierarchy to include systems that incorpo-

rate multiple page sizes and maintains multiple data redun-

dancy.

- 95 -



4.3 MODEL OF A DATA STORAGE HIERARCHY

A data storage hierarchy consists of h levels of storage

1 2 h
devices, M , M , ... , M . The page size of M is Q and

the size of M is mi pages each of size Qi. Q is always

an integral multiple of Q _ , for i=2,3 ... , h. The unit

i i+l
of information transfer between M and M is a page, of

size Q . Figure 4.1 illustrates this model of the data

storage hierarchy.

All references are directed to M 1. The storage manage-

ment algorithms automatically transfer information among

storage levels. As a result, the data storage hierarchy

appears to the reference source as a M1 storage device

hwith the size of M

As a result of the storage management algorithms (to

be discussed next), multiple copies of the same infor-

mation may exist in different storage levels.

-96-



References

M2 Unit of data transfer
M '- -'between M I and M 2

.omrnon

data -- - Unit of data transfer
path ---- between M2 and M3

Figure 4.1 Model of a Data Storage Hierarchy

-97-



4.3.1 Storage Management Algorithms

We shall focus our attentions on the basic algorithms

to support the read-through (Madnick, 1975) operation.

Algorithms to support other operations can be derived from

these basic algorithms.

In a read-through, the highest storage level that con-

tains the addressed information broadcasts the information

to all upper storage levels, each of which simultaneously

extracts the page (of the appropriate size) that contains

the information from the broadcast. If the addressed in-

formation is found in the highest storage level, the

read-through reduces to a simple reference to the address-

ed information in that level. Figure 4.2 illustrates the

read-through operation.

Note that in order to load a new page into a storage

level an existing page may have to be displaced from that

storage level. We refer to this phenomenon as overflow.

Hence, the basic reference cycle consists of two sub-cycles,

the read-through cycle (RT), and the overflow handling

cycle (OH), with RT preceeding OH.

For example, Figure 4.2 illustrates the basic refer-

1ence cycle to handle a reference to the page p . During
ya

the Read-Through (RT) subcycle, the highest storage level

(Mx) that contains p1 broadcasts the page containing P1
ya ya

to all upper storage levels, each of which extracts the

-98-



Reference to page P

READ-
THROUGH

(Page Ia

M P co

Page containing P I

cPoge
/* containing

O verf low from M

P ~~,jOverflow from

Overflow f rom M
Mh

READ-THROUGH(RT) OVERFLOW-+IANDLING
REERNCjCCL (OH)

Ut t '-I

1.4 REFERENCE CYCLE

Figure 4.2 The Read Through Operation

-99-

y

~



page of appropriate size that contains from the broadcast.ya

As result of the Read-Through, there may be overflow from

the storage levels. These are handled in the Overflow-

Handling (OH) subcycle.

It is necessary to consider overflow handling because

it is desirable to have information overflowed from a

storage level to be in the immediate lower storage level,

which can then be viewed as an extension to the higher

storage level.

One strategy of handling overflow to meet this objec-

i i+ltive is to treat overflows from M as references to M

We refer to algorithms that incorporate this strategy as

having dynamic-overflow-placement (DOP).

Another possible overflow handling strategy is to

treat an overflow from M as a reference to Mi+1 only

when the overflow information is not already in M+ if

i+lthe overflow information is already in M , no overflow

handling is necessary. We refer to algorithms that in-

corporate this strategy as having static-overflow-place-

ment (SOP).

Let us consider the algorithms at each storage level

for selecting the page to be overflowed. Since the Least

Recently Used (LRU) algorithm (Denning, 1974; Mattson et.

al, 1970) serves as the basis for most current algorithms,

we shall consider natural extensions to LRU for managing

-100-



the storage levels in the data storage hierarchy system.

Consider the following two strategies for handling the

Read-Through Cycle. First, let every storage level above

and including the level containing the addressed infor-

mation be updated according to the LRU strategy. Thus,

all storage levels lower than the addressed information

do not know about the reference. This class of algorithms

is called LOCAL-LRU algorithm. This is illustrated in

Figure 4.3.

The other class of algorithms that we shall consider

is called GLOBAL-LRU algorithm. In this case, all storage

levels are updated according to the LRU strategy whether

or not that level actually participates in the read-

through. This is illustrated in Figure 4.4.

Although the read-through operation leaves supersets

of the page p y in all levels, the future handling of
ya

each of these pages depends upon the replacement algo-

rithms used and the effects of the overflow handling. We

would like to guarantee that the contents of each storage

level, M , is always a superset of its immediately higher

level, M . This property is called Multi-Level Inclu-

sion (MLI). Conditions to guarantee MLI will be derived

in a later section.

It is not difficult to demonstrate situations where

-101-



R eference

READ-
THROUGH r

I-

All these
levels are
not affected

i I

M2

__ _ My' is the highest
level where P is found

M +

Figure 4.3 Local-LRU Algorithm

-102-

to P



READ-
THROUGH

These levels
are also
updated as
if reference
to P were
made to them

Reference to P

MI

M M is the highest
- level where P is found

-A M X+I I

ill.

Figure 4.4 Global-LRU Algorithm

-103-

M



handling overflows generates references which produce

overflows, which generate yet more references. Hence

another important question to resolve is to determine

the conditions under which an overflow from M is always

found to already exist in M i+, i.e., no reference to

storage levels lower than M +l is generated as a result

of the overflow. This property is called Multi-Level

Overflow Inclusion (MLOI). Conditions to guarantee MLOI

will be derived in a later section.

We shall consider these important properties in light

of four basic algorithm alternatives based on local or

global LRU and static or dynamic overflow. Formal

definitions for these algorithms will be provided after

the basic model of the data storage hierarchy system is

introduced.

-104-



4.3.2 Basic Model of a Data Storage Hierarchy

For the purposes of this thesis, the basic model illus-

trated in Figure 4.5 is sufficient to model a data storage

hierarchy. As far as the Read-Through and Overflow-

Handling operations are concerned, this basic model is

generalizable to a h-level storage hierarchy system.

Mr can be viewed as a reservoir which contains all the

information. M is the top level. It has m pages each

of size Q . M3 (j=i+l) is the next level. It has m

pages each of size nQ where n is an integer greater than

1.

-105-



Ref erences

m; pages of size Q; each

Comm mj pages of size nQ; eachdataM
path

M r Reservoir

Figure 4.5 Basic Model of a Data Storage Hierarchy

-106-



4.3.3 Formal Definitions of Storage Management Algorithms

Denote a reference string by r = "r1 , r2, ... , rni'

where rt (1<t<n) is the page being referenced at the t-th

reference cycle. Let S be the stack for M at the begin-

ning of the t-th reference cycle, ordered according to LRU.

That is, S= (S (1), S, (2), . S (K)), where S (1) is the
t t t'I' t

most recently referenced page and S (K) is the least

recently referenced page. Note that K<m (m = capacity

of M1 in terms of the number of pages). The number of

pages in S is denoted as |S1 , hence IS{|j = K. By con-t

vention, SI = 0, S| 0.

St is an ordered set. Define M as the contents of S

without any ordering. Similarly, we can define SI and MI
t t

for MO.

Let us denote the pages in Mi by P , P ,.... Each

page, P3, in M3, consists of an equivalent of n smaller
y

pages, each of size Q = Q /n. Denote this set of pages

by (P])1 , i.e., (PJ)1 = P ,P , In general,
yy ~ y y2' y

(M3) is the set of pages, each of size Q., obtained byt

"breaking down" the pages in Mt. Formally, (M3)1 =t t

0 (Si(k))' where x = Is . (P) 1 is called the

1 y
family from the parent page P . Any pair of pages, P

and Pyb from (P3) 1 are said to be family equivalent,

denoted by P P b. Furthermore, a parent page P and
ya y

-107-



a page P z (for l<z<n) from its family are said to beyz

corresponding pages, denoted by P = Pi.yz y

S and S are said to be in corresponding order, de-t t
1 0 i

noted by St S , if St(k) S3(k) for k = 1, 2, 3, ...w,t t t

where w = min (IS{|, S |. ). Intuitively, two stacks are

in corresponding order if, for each element of the shorter

stack, there is a corresponding page in the other stack

at the same stack distance (the stack distance for page

S (k) is defined to be k).t

M and M are said to be correspondingly equivalent,t t

denoted by M t M if M M and for any k = 1, 2,

ii
... ,l M |there exists x, such that S (k) 9 S (x) andt t t

S(x) S"(y) for all y / k. Intuitively, the two memo-

ries are correspondingly equivalent when each page in

one memory corresponds to exactly one page in the other

memory.

The reduced stack, S , of S is defined to be " (k)t t t

S for k = 1, ... , 5 | where jk is the minimum j

where kk-l = and 9(k) S (j for j<j
Intuitively, K{ is obtained from S by collecting one

tt

page from each family existing in S , such that the page

being collected from each family is the page that has the

smallest stack distance within the family.

In the following, we define the storage management

algorithms. In each case, assume that the page referenced

-108-



at time t is P
ya

LRU (S', P1 ) t= is defined as follows:---- t ya t+

Case 1: P S P = S (k):

S (x-1) , l< x<k
Si (1) =tP ,S t .

t+l ya t+l i ), k<x<[
t -t

Si
t

Case 2: P / S :
ya t

S 1 (l) = Pya S (X) = S (x-1),
t+l ya t+l t

1 < x < min (m., |s + 1)
- 1 t

If IS'I ='m then Pat 1 oa

LOCAL-LRU-SOP

= ( Cm.) is the over-t

flow, else there is no overflow.

(Si, S i P) (S S is definedt t ya~ t~ t+l idend

as follows:
i i

Case 1: P e S :
yat

S = LRU (S1 P1 )r S3
t+l t ya t+1

= Si
t

Case 2: P S, P3 6 S3:
ya t y t

S =LRU (Si, P ), S3 =LRU (S , P3)t t ya t - t y

If there is no overflow from S
t

then St S ' and St S '
t+l t' t+l t

If overflow from S' is the page Poat oa

then (S , S3 SOP (S i,, P3I P)t+1 t+1 - t' t' oa

defined as:

S += S,; if P0 S , then S t+ S

if P, g S, then S3
o t t+l

= LRU (S3J PJ)
- t' 0

-109-



Case 3:

LOCAL-LRU-DOP

P1/ Si and Pi / S :
ya t y t

(handled as in Case 2)

(S,, P t I)=S+1 St1 is defined as

Case 1: P E S :
ya t

S = LRU (S1, P ), S =S
t+l t ya t+l t

Case 2: P /S and P3 S3:
ya t y t

S ,= LRU (S ,I P ), S , = LRU (S, P)
tt ya' t' t y

If no overflow from S then St
t t+l

Si
ti

and St S '
t+l t

If overflow from S is Pa thent oa

(S S ) = DOP (S , S3, P ) which is
t+1' t+1 t' t oa

defined as:

S S and S
t+l t' t+l = LRU (SJ pJ)

- t' 0

Case 3: P S S and P] / S:
ya t y t

(handled as in Case 2 above)

GLOBAL-LRU-SOP (S ,S), Pya +1' St is defined as
t t ya tl t+l

follows:

S, = LRU (S' , p ) and S, LRU (S3, P ),
t t ya t = t y

If no overflow from S 1 then SI =S'
t t~j ti

Stt+l

and

S 'i

If overflow from S is Pa then (S Si+1
t oa t+l' t+l

=SOP (S ,ii S, Po)t t oa

-110-



GLOBAL-LRU-DOP (Sl, S , Py (S t+1' St ) is defined as
t' t' ya tl t+l

S LRU (S P and S = LRU (S3, P3)
t t ya t t y

If no overflow from S' then St S and St S'
t t~l t t+l t

If overflow from S is Po then (St+1, St+t. oa tl t+l

DOP (S ,,jS3,, P )
-- t t oa

-111-



4.4 PROPERTIES OF DATA STORAGE HIERARCHY SYSTEMS

One of the properties of a Read-Through operation is

that it leaves a "shadow" of the referenced page (i.e.,

the corresponding pages) in all storage levels. This pro-

vides multiple redundancy for the page. Does this multiple

redundancy exist at all times? That is, if a page exists

in storage level M , will its corresponding pages always

be in all storage levels lower than M ? We refer to this

as the Multi-Level Inclusion (MLI) property. As illus-

trated in Figure 4.6 for the LOCAL-LRU algorithms and in

Figure 4.7 for the GLOBAL-LRU algorithms, it is not

always possible to guarantee that the MLI property holds.

For example, after the reference to P in Figure 4.6(a)31

the page P1 exists in M but its corresponding page P

is not found in M3 . In this chapter we shall derive the

necessary and sufficient conditions for the MLI property

to hold at all times.

Another desirable property of the data storage hierarchy

is to avoid generating references due to overflows. That

is, under what conditions will overflow pages from M

find their corresponding pages already existing in the

storage level M i+l? We refer to this as the Multi-Level

Overflow Inclusion (MLOI) property. We shall investigate

the conditions that make this property true at all times.

-112-



(a) LOCAL-LRU-SOP

(b) LOCAL- LRU-DOP

Figure 4.6 Violation of MLI by Local-LRU Algorithms

-113-



(a) GLOBAL-LRU-SOP

(b) GLOBAL-LRU-DOP

Figure 4.7 Violation of MLI by Global-LRU Algorithms

-114-



Referring to the basic model of a data storage hierarchy

in Figure 4.5, for high performance it is desirable to

minimize the number of references to Mr (the reservoir).

If we increased the number of pages in M , or in Mj, or

in both, we might expect the number of references to Mr

to decrease. As illustrated in Figure 4.8 for the LOCAL-

LRU-SOP algorithm, this is not always so, i.e., for the

same reference string, the number of references to the

reservoir actually increased from 4 to 5 after M is

increased by 1 page in size. We refer to this phenomena

as a Multi-Level Paging Anomaly (MLPA). One can easily

find situations where MLPA occurs for the other three

algorithms. Since occurrence of MLPA reduces performance

in spite of the costs of increasing memory sizes, we

would like to investigate the conditions to guarantee

that MLPA does not exist.

-115-



P2 I I I P31 1PHiP 41

P 221

P

p I

P1

P

I 1 I

I P'

overf low f rorn MI p2 1p3

reference to MZ P P Ip p

contentsof I(m =I2 P p i P

, I j I

reference to Mr

number of references to Mr 4

reference to M  P11 P2I P

contents of M1  P1  1 i p 1

(mi =3 311 1

P I I 11 i

overflow from M' I I

reference to M p -

p1 1ppi I p p i Ipi
contents of M 1 1 2 2 I 3 4

(m = 2) : P, .1P, P 1P ;p
4 1 2 2 3

reference to Mr * '4)
I

P21

p

p
2

Pi
4

I I '~
t*,4)l* -*-
p j j

number of references to M= 5

4.8 Illustration

-116-

of MLPAFigure



4.4.1 Summary of Properties

The MLI, MLOI, and MLPA properties of the data

storage hierarchy have been derived in the form of eight

theorems. These theorems are briefly explained and

summarized below and formally proven in the following

section.

Multi-Level Inclusion (MLI) : It is shown in Theorem

1 that if the number of pages in M is greater than the

number of pages in Mi (note Mi pages are larger than

those of M ), then it is not possible to guarantee MLI

for all reference strings at all times. It turns out

that using LOCAL-LRU-SOP, or LOCAL-LRU-DOP, no matter how

many pages are in Mi or M , one can always find a refer-

ence string that violates the MLI property (Theorem 2).

Using the GLOBAL-LRU algorithms, however, conditions to

guarantee MLI exist. For the GLOBAL-LRU-SOP algorithm, a

necessary and sufficient condition to guarantee that MLI

holds at all times for any reference string is that the

number of pages in M3 be greater than the number of pages

in M (Theorem 3). For the GLOBAL-LRU-DOP algorithm, a

necessary and sufficient condition to guarantee MLI is

that the number of pages in Mi be greater than or equal

to twice the number of pages in M (Theorem 4).

Multi-Level Overflow Inclusion (MLOI) : It is obvious

that if MLI cannot be guaranteed then MLOI cannot be

-117-



guaranteed. Thus, the LOCAL-LRU algorithms cannot guaran-

tee MLOI. For the GLOBAL-LRU-SOP algorithm, a necessary

and sufficient condition to guarantee MLOI is the same

condition as that to guarantee MLI (Theorem 5). For the

GLOBAL-LRU-DOP algorithm, a necessary and sufficient

condition to guarantee MLOI is that the number of pages

in Mi is strictly greater than twice the number of pages

in M (Theorem 6). Thus, for the GLOBAL-LRU-DOP algo-

rithm, guaranteeing that MLOI holds will also guarantee

that MLI will hold, but not vice versa.

Multi-Level Paging Anomaly (MLPA) : We have identified

and proved sufficiency conditions to avoid MLPA for the

GLOBAL-LRU algorithms. For the GLOBAL-LRU-SOP algorithm,

this condition is that the number of pages in MD must be

greater than the number of pages in M - before and after

any increase in the sizes of the levels (Theorem 7). For

the GLOBAL-LRU-DOP algorithm, this condition is that

the number of pages in Mi must be greater than twice the

number of pages in M before and after any increase in

the sizes of the levels (Theorem 8).

In summary, we have shown that for the LOCAL-LRU algo-

rithms, no choice of sizes for the storage levels can

guarantee that a lower storage level always contains all

the information in the higher storage levels. For the

-118-



GLOBAL-LRU algorithms, by choosing appropriate sizes for

the storage levels, we can (1) ensure that the above

inclusion property holds at all times for all reference

strings, (2) guarantee that no extra page references to

lower storage levels are generated as a result of handling

overflows, and (3) guarantee that increasing the sizes

of the storage levels does not increase the number of

references to lower storage levels. These results are

formally stated as the following eight Theorems. Formal

proofs of these Theorems are presented in the following

section.

-119-



THEOREM 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, or GLOBAL-

LRU-SOP, or GLOBAL-LRU-DOP, for any m.>2, m.<m.
J-1

implies 2rt, (M3) M

THEOREM 2

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, for any

m >2, and any mi , r~t, (M3) M

THEOREM 3

Under GLOBAL-LRU-SOP, for any m.>2, r,t, (M3) 2

M iff m. > m.
t 3 1

THEOREM 4

Under GLOBAL-LRU-DOP, for any m.>2,VVr,t, (M )'1- --t
i

M iff m. > 2m.
t J--

THEOREM 5

Under GLOBAL-LRU-SOP, for any m > 2,9 r,t, an over-

flow from M1 finds its corresponding page in M

iff m. > m.
J 1

THEOREM 6

Under GLOBAL-LRU-DOP, for any m > 2, Vr,t, an

overflow from M finds its corresponding page in

mi iff m. > 2m.
J 1

THEOREM 7

Let M (with m pages), Mi ( with m. pages) and Mr
b A

be System A.

-120-



Let M'1 (with m.' pages), M'j (with m.' pages) and
1 J

Mr be System B.

Let m' > m. and m.' > m.. Under GLOBAL-LRU-SOP,1 - ) - j
for any mi > 2, no MLPA can exist if

m. >m. and m.' > m.'

THEOREM 8

Let System A and System B be defined as in Theorem 7.

Let m.' > m. and m.' > m.. Under GLOBAL-LRU-DOP,
i - i) -)J

for any mi > 2, no MLPA can exist if m. >

2m. and m.' > 2m.'
) 1

-121-



4.4.2 Derivation of Properties

THEOREM 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, or GLOBAL-

LRU-SOP, or GLOBAL-LRU-DOP, for any m. > 2, m. < m.
1 - J- i1

implies.3 r,t, (M] ) M

PROOF

Case 1 : m. < m.
J lI

Consider the reference string r=" P la' 2aS2a'

(m.+1)a
J

Using any one of the algorithms, the following

stacks are obtained at t=m.+2 :
J

S i= (Pi Pi P )
t (m +l)a m.a''' 2a' la

JJ

S = (P3m ' .' ''' 3' 2
JJ

Thus, P a M but P la ( ( 1  1 , i.e., (M3) M

Case 2: m. = m. =w
J 1

Consider the reference string r = " Pa' 2a

i "'
(w+l)a

Using any one of the above algorithms, the following

stacks are obtained at t=w+2 :

S i= (P i P P
t (w+l)a' wa' 3a' 2a

S= (p] I~ pi60P3, p3)t 1 (w+)1 ' ' 3

Thus, P 1 E Mt but Pa (M) i.e., (M M2a t 2a t t - t

Q.E.D.

-122-



THEOREM 2

Under LOCAL-LRU-Sop, or LOCAL-LRU-DOP, for any

m. > 2, and any m.,3r,t, (Mi) 'Mi.
t t

PROOF (For LOCAL-LRU-SOP)

For m.<m. the result follows directly from THEOREM 1.J- 1

For m.>m., using the reference string
J 3-

r "Pi P , P , P , P i Pi ,
za la za 2a' za m.a

J

the following stacks will be produced at t=2m.+l
J

S =(P P P P)
t m ' za (m.-l)a' ' (m.-m.+2)a

J J J 1

S{ (P3 , P3 _,.. P3, PI)= .L m.-l' r 2' 1
J J

Thus, P3  M 1 but P 1  (M3)1 i.e., (M3)1J:;M.
za t za t t -to

Q.E.D.

PROOF (For LOCAL-LRU-DOP)

For mj.m. the result follows directly from THEOREM 1.

For m.>m., using the following reference stringJ l

r Pi I P , P , P i P , P i ,

za la za 2a za m.a

The following stacks will be produced at t=2m.+l
J

St m. a' za' ' (m.-m.+2)a
J ~J 3-

S3- (a1 , a 2 , ... , am.

Where for l<i<m., a ' P ... , P p , P4

JJ J-1
since Pi is the only overflow from Mi.z

Thus, P C M but P / (M3), i.e., (M-)i*M t
za t za t t t

Q.E.D.

-123-



THEOREM 3

Under GLOBAL-LRU-SOP, for any m. >2, V r, t, (M3)1 -
1- t

M iff m.>m.
t 3 1

PROOF

This proof has two parts. Part (a) to prove V r,t,

(M3)1 M 1=-> m '> m
t -t J

or equivalently, m < m dr,t, (
J- 1

Part (b) to prove m.>m. raVr,t, (M ) ''M
J a 't -t

PROOF of Part (a): m.< m. r,, (M)1 M1
a- 1 t) t

This follows directly from THEOREM 1.

Q.E.D.

To Prove Part (b), we need the following results.

LEMMA 3.1

V r,t such that jM3| <m., if m. = m. + 1, then
Ji 1ii -10 3

(a) (M ) M , and (b) St = S
t t'M t

PROOF of LEMMA 3.1

For t=2 (i.e., after the first reference), (a) and (b)

are true. Suppose (a) and (b) are true for t, such

that |M I< m.

Consider the next reference:

Case 1: It is a reference to M

There is no overflow from M or M,, so (a) is still

true. Since Global-LRU is used, (b) is still true.

-124-



Case 2: It is a reference to Mi:

There is no overflow from M3. If no overflow from

i
M , the same arguement as Case 1 applies. If there is

overflow from M , the overflow page finds its corres-

ponding page in Mi. Since SOP is used, this overflow

can be treated as a "no-op". Thus (a) and (b) are

preserved.

Case 3: It is a reference to Mr

There is no overflow from M3 since IM +ll<m . Thus

the same reasoning as in Case 2 applies.

Q.E.D.

LEMMA 3.2

V r,t, such that IMt| = mi., if m.=m.+l then
J J li

t ))fli

(a) (M3) .)=M, (b) S' S3, and (c) (SJ(m )) S=0

Let us denote the conditions (a) (b) and (c) jointly

as Z(t).

PROOF of LEMMA 3.2

Suppose the first time SI(m.) is filled is by thet J

t*-th reference. That is, S (m.) = 0 for all t<t*tJ

and S3(m.) Y # for all t>t*. From LEMMA 3.1 we know
t J

that (a) and (b) are true for all t<t*.

Let t =t* + 1, t2 = t* + 2, ... , etc. We shall show,

by induction on t, starting "at tl, that A(t) is true.

First we show that Z(t1 ) is true as follows:

-125-



Case 1: M e M

0 0 Si, and M3* e M1 -=)S3 (m.-l) c S (m.)
t- t t = t t - t*i

As a result of the reference at t* (to Mr

St*1 = S(m.-l) and S 1*(m) overflows from M1.

This overflow page finds its corresponding apge in M.
J

because there is no overflow from Mi and (a). Since

SOP is used, the overflow from M can be treated as

a "no-op". Furthermore, since Global-LRU is used,

(b) is true after the t*-th reference, (b) and

|S >|st*+1 I----(a) and (c). Thus Z (t1 ) is true.

Case 2:(M3*) . M 1 and M and M

(M )ir>M * and M Ml:1S]*(k) such that

(S, (k) )f M = 0 0 0 Si and (Sb*(k))if)M * = 0

k>|K!, | and (S{*(x)) M1  for all x where

m _1 > x >k. Thus (S3*(m _ )) ( S , = 0 (i.e., the last

page of S3 is not

S *(m ) overflows from M'. There is no overflow from

M3. Thus the overflow page from M finds its corres-

ponding page in M3. For the same reasons as in Case

1, (b) is still preserved. (b) and ISt*+1 t*+1I$

(a) and (c) are true. Thus, Z(t1 ) is true.

Assume that Z(tk) is true; to show that Z(t k+) is true,

we consider the next reference, at time tk+l:

-126-



Imagine that the last page of Sk does not exist,t k

i.e., S3t(mn) = (. If the reference at t is to
t k jk+l '

a page in Mt or Mk then (a) and (b) still hold
tk tkI

because Global-LRU is used and because overflow from

M finds its corresponding page in Mi (See the proof

of LEMMA 3.1).

If the reference at t is to a paqe not in M3k, then
k+l k

we can apply the agruement as that used in considering

the reference at time t above to show that Z(tk+1) is

still true.

Q.E.D.

LEMMA 3.3

V r,t, if m.=m.+l then (a) (M3) 2 M and (b) (S (mm
j t -t t in

S= 0

PROOF of LEMMA 3.3

For t such that j<m(a) follows directly from

LEMMA 3.1 and (b) is true because S (m) =
tJ

For t such that IM3I = m (a) and (b) follows directly
J

from LEMMA 3.2

Q.E.D.

LEMMA 3.4

V r,t, if m.> m. than (a) (M) 1  M1 and (b)t (t

(S](in. )'lSl

-127-



PROOF of LEMMA 3.4

Let m. = i.+k. We shall prove this lemma by induction
J 1

of k. For k=l (a) and (b) are true from LEMMA 3.3.

Suppose that (a) and (b) are true for k. Consider

m.=m.+(k+l). That is consider the effects of
J 1

increasing Mi by 1 page in size:

Since M is unchanged, M3 (with m +k+1 pages) sees

the same reference string as Mi (with m.+k pages).

Applying the stack inclusion property (Mattson et al.,

1970), we have Mj(with m +k+1 pages)2 M (with m i+k pages).

Thus (a) is still true. Suppose (S3(m +k+))'lSl
i

then there is a page in M that corresponds to this

page. But Si (m +k+l) is not in M3 (with m.+k pages).t 1

This contradicts the property that (M,)',) M. This
t - te

showes that (b) is still true.

Q.E.D.

PROOF of Part (b); m >M ;4V r,t, (M ) mi:
J 1 t -to

This follows directly from LEMMA 3.4.

Q.E.D.

-128-



THEOREM 4

Under GLOBAL-LRU-DOP, for any m,> 2, V r,t, (M3)-t

M iff m.>2m.
t J- 1

PROOF

This proof has two parts:

Part (a): m .<2m. r,t, (M3).. M1
J 1 t t

Part (b): m >2m.:: V r,t, (M-) M

PROOF of Part (a): m. < 2m. 3 r, t, (M3) 1 M1
J 1 t

For m. <m. the result follows from THEOREM 1.J - 1

Consider the case for 2m. >m. >m.:
1 J 1

The reference string r = "P , P(2 )ala 2a 3a' (m )

will produce the following stacks:

S = (PI P Pt (2m.)a' (2m.-1)a' '' (m,+1)a

S a, a2, a3, ... , a ) where a.'s are picked from

L and L2 alternatively, starting from L .

L= (P, P P3) and
1 m (M1

L= (P PiI Pi
2 2m. (2m. i-1) ' ' ''' m +1) .

1 11

If m is even, then (a , 3' am.-1) corresponds to
J

the frist m./2 elements of L and (a a, am)
J

corresponds to the first m./2 elements in L . We see
J2

that P(m.+1)a is in St but its corresponding page

is not in S (P is not in S3 since m /2 <m-).

If m is odd, then (a1, a3, am .) corresponds to the

first (m.+1)/2 elements in L and (a , 2 ,..., a m*-)

-129-



corresponds to the first (m.-l)/2 elements in L . We
J2

see that the page P is in S but its correspond-(m.i+1)a ' t
.1

ing page is not in S3 because max( (m.-1)/2) = m.-1,
t i

thus, am 1 ) is at most the (M-1)-th element of
J

L2 m -(m-1)+1 m+2.In both cases, (M ) M.

Q.E.D.

To prove Part (b), we need the following preliminary

results.

LEMMA 4.1

Under GLOBAL-LRU-DOP, for m. >2, m. >2m , a page

found at stack distance k in M implies its corres-

ponding page can be found within stack distance 2k in

M3.
Mt

PROOF of LEMMA 4.1

We prove by induction on t.

At t=l, the statement is trivially true. At t=2
I

(i.e., after the first reference) S (1) and itst

corresponding page are both at the beginning of the

stack, hence the induction statement is still true.

Suppose the induction statement is true at time t, i.e.,

P = S (k) 2? P can be found within stack distanceza t z

2k within S3.
t

-130-



Suppose the next reference is to P . There arewa

three cases:

Case 1: P E M (P =S (x))wa t wa t

From the induction statement, Pi is found within stack
w

distance 2k in S3 as illustrated in.Fugure 4.9.t

Consider the page movements in the two stacks as a result

of handling the reference to P :
wa

(1) Pa and P3 are both moved to the top of their
wa w
stack, the induction statement still holds for

these pages.

(2) Each page in A increases its stack distance by

1, but its corresponding page is in A', each page

of which can at most increase its stack distance

by 1. Thus the induction statement holds for all

pages in A.

(3) None of the pages in B are moved. None of the pages

in B' are moved. (See Figure 4.9) If a page

in B has its corresponding page in B', the induction

statement is not violated. Suppose a page in B,

Pa S (k) (k>x), has its corresponding page,

P= S (w) in A'. Then P3 can at most increaseb t b

its stack distance by 1. But w< 2x because

P e A'. Since 2k > 2x, the induction statementb

is not violated.

-131-



Stock distance X

MI wal

A B

Stack distance 2X

M w

A' B

Figure 4.9

-132-



Case 2: P ? M, P3 e M3
wa t w t

Each page in M increases its stack distance by 1.

Each corresponding page in Mi can at most increase

its stack distance by 2, one due to the reference and

i
one due to an overflow from M Hence if

Pa= S k, k <mi, then P a S (k+l), and Pi canza 't"' 3 za t+l Z

be found within stack distance 2(k+l) in Mi at time

t+l.

Case 3: P M, P IVMwa t w t

rAs a result of the read-through from M , each page

in M is increased by a stack distance of 1. That is,

i ii i
for k <mi., P = S (k) P = S t+ (k+1).

i za t za t+

Each page in Mi can at most increase its stack distance

by 2, one due to loading the referenced page and one due

to an overflow from M . Hence, the page Pi is foundz

within stack distance of 2k+2 in M3. Since max(2k+2) =

2m. <m., P3 is still in M3.z

Q.E.D.

COROLLARY to LEMMA 4.1

m.>2m. V r,t, (S3(m.)) S =#
3 i t 3t

PROOF of COROLLARY

For any Pa in S1, its corresponding page can be

found within stack distance 2m in St and since

pages in S3 are unique, the information in the last

-133-



page of S is not found in St, i.e., (S (m )) S

PROOF of Part (b): m. > 2m. :p V r,t, (M3) ~ M
3- 1 t - t

This follows directly from LEMMA 4.1.

Q.E.D.

-134-



THEOREM 5

Under GLOBAL-LRU-SOP, for any mi > 2, V r,t, an over-

flow from M finds its corresponding page in Mi iff

m. >m.
] 3-

COROLLARY

Under GLOBAL-LRU-SOP, for any m. > 2, V r,t, an over-

flow from M finds its corresponding page in Mi iff

V r,t, (MI)'' M .
t t

PROOF

This Proof has two parts as shown below.

PROOF of Part (a); m. >im. # V r,t, an overflow from M1
J 1

finds its corresponding page in Mi

From LEMMA 3.4 m.> m = V r,t, (MI)' M and
I i t - t

(S3(m ))'(lS? = M. Suppose the overflow from Mi,

P is caused by a reference to Mi. Then just before
oa

P ois overflowed, P 0 exists in M . After the over-

oaflow, Po finds its corresponding page still existing

in Mi . Suppose the overflow, P , is caused by a

reference to Mr. Then just before the overflow from

M ,P exists in Mi and (S(m.))1 fl S=
0 t t

the information in the last page of M3 is not M

This means that the last page of M3 is not P* , thus,

the overflow page P finds its corresponding pageoa

still in Mi after an overflow from Mi occurs.

-135-



PROOF of Part (b): m <m. -a r,t, such that an overflow

from N' does not find its corresponding page in Mj.

From THEOREM 1, m <m : r,t, (M3)'$ M 1 , then there
J- 1t t

exists P a M and P /M3. We can find a referenceza t z

string such that at the time of the overflow of

Pa from M , P3 is still not in M3. A string ofza z

references to Mr will produce this condition. Then

at the time of overflow of P' , it will not find its
za

corresponding page in M.

Q.E.D.

-136-



THEOREM 6

Under GLOBAL-LRU-DOP, for m >2, V r,t, an overflow

from M finds its corresponding page in Mi iff m. >2m

COROLLARY

Under GLOBAL-LRU-DOP, for m. >2, V r,t, an overflow

from M finds its corresponding page in Mi implies

that V r,t, (M3)1'; M .
t -to

PROOF

This proof has two parts as shown below.

PROOF of Part (a): m. >2m. da V r,t, an overflow from M1
J 1

finds its corresponding page in M.

THEOREM 4 ensures that m. > 2m. =V r,t, (MI )? Mi

and LEMMA 4.1 ensures that (S (m W)) n S= we then

use the same argument as in Part (a) of THEOREM 5.

PROOF of Part (b): m. <2m.=y93 r,t, such that an overflowJ- 1

from M does not find its corresponding page in Mi.

Case 1: ml. <2m.
J 1

m. <2m P' ;r,t, (MI) M1 (from the proof of part (a) of
J 1 o t t

THEOREM 4). We then use the same argument as in Part

(b) of THEOREM 5.

Case 2: m. = 2m.
J I

The reference string r = "Pla' P ' Pla 2a' (2m j a

P " will produce the following stacks(2m. +-)1a

-137-



(at t=2m.+1):

S =(P P P)t (2m.)a ' (2m.-1)a' (m.+1)a

S= (P P P P . a Pt m. 2m.' M.-l 2m.-l ''' l' m+1
1 1 1 1

In handling the next reference, to page P
(2m.+1)a'

the pages P and PD overflow at the same(m.+1)a m.+1
1 1.

time, hence the overflow page P from M
(m i. +1)a

does not find its corresponding page in M3.

Q.E.D.

-138-



THEOREM 7

Let M (with m. pages), Mi (with m. pages) and Mr
1 J

be System A. Let M' (with m.' pages), M' (with

m.' pages)and Mr be System B. Let m.' >m. andI - I

m' > m.. Under GLOBAL-LRU-SOP, for any m >2, no

MLPA can exist if m. >m. and m.' >m.'.
J li J -1

PROOF

We shall show that V r,t, (M U(M) 1 )C (M' U (M' ) )
t tt t

This will ensure that no MLPA can exist.

Since m ' >m and LRU is used in M and M' , we can

apply the LRU stack inclusion property to obtain

M1 CM'.t- t

From THEOREM 5, we know that overflows from M or

from M' always find their corresponding pages in

Mj and M' respectively. Since SOP is used, these

overflows can be treated as "no-ops". Thus, Mi

and M' see the same reference string and we can

apply the LRU stack inclusion property to obtain

M3 C M'3 (since m.' >m. and LRU is used).t- t J- J

M C M' and M C M' >(M1 \ (M3) 1) (MI' I (M')1).
t - t t L ) QED

Q.E.D.

-139-



THEOREM 8

Let System A and System B be defined as in THEOREM 7.

Let m' > m. and m.' > m.. Under GLOBAL-LRU-DOP, for

any m. > 2, no MLPA can exist if m. > 2mi and m.'>2mi.'.
J 1 J 1

PROOF

We need the following preliminary results for this proof.

LEMMA 8.1

Let St be partitioned into two disjoint stacks, Wt andt

Vt defined as follows: W (k) = S(( for k=1,...,|Wtt t ,k tI
where j0=O, and jk is the minimum jk>3k-1 such that
3 1, i cj

P E S and P = (j)'

Vt(k) = S( for k=l, ... , |Vtj where j0=0, and

is the minimum jk > jk-l such that S , P za

S((jk). (Intuitively, Wt is the stack obtained from

S( by collecting those pages that have their corres-t

ponding pages in Mt such that the order of these pages

in S3 is preserved. V is what is left of S] aftert t t

W is formed.) Then, r,t, (a) W = I and

(b) Vt Ot where Ot is the set of pages corresponding

to all the pages that ever overflowed from M , up to

time t.

PROOF of LEMMA 8.1

From THEOREM 4, m > 2m. r,t, -(M3)1 M1. Thus,

for each page in M , its corresponding page is in M .

-140-



This set of pages in Mt is exactly Wt, and Wt S by

definition. Since the conditions for Vt and Wt are

mutually exclusive and collectively exhaustive, the

other pages in MI that are not in W are by definitiont

in Vt. Since a page in Vt does not have a correspon-

ding page in M , its corresponding page must have once

ibeen in M because of Read-Through, and later over-

flowed from M1 . Thus a page in Vt is a page in Ot'

Q.E.D.

-141-



LEMMA 8.2

Any overflow page from M3 is a page in Vt t

PROOF of LEMMA 8.2

From THEOREM 4, m > 2m r,t, (M )' 2 M
i t i

From THEOREM 6, m > 2m r,t, an overflow from M

always finds its corresponding page in Mi

An overflow from Mt is caused by a reference to Mr. An

overflow from M also implies that there is an overflow
t

from Mt.

Suppose the overflow page from M3 is Pi. Also supposet 0

P3 W, i.e., P3 W ' V ' We shall show that this leads

to a contradiction.

The overflow page from M' is either P or P (yfo).t oa ya

If P o P is overflowed from M1, THEOREM 6 is vio-

lated since Po and P3 overflow at the same time so
oa 0

P will not find its corresponding page in M3.

If Py P3 is overflowed from M1, THEOREM 4 is vio-

lated since after the overflow handling, there exists

a page Pob P in M1 (since P E Wt) but P is no

longer in M .

Q.E.D.

LEMMA 8.3

If there is no overflow from either MI or M'3 then

r,t, Vt and V' have the same reverse ordering.

Two stacks S and Si are in the same reverse ordering,

-142-



S ro Si, if rS (k) = rSj(k) for l<k<min (151 | Is i),

where rS denotes the stack obtained from S by rever-

sing its ordering. By convention, S ro Si if S'=0

or Si = 1

PROOF of LEMMA 8.3

To facilitate the proof, we introduce the following

definitions:

(1) The ordered parent stack, (S )j, of the stack

S is the stack of parent pages corresponding to,

and in the same ordering as, the pages in the

reduced stack, , of Si. Formally, (S1)) e

and (S ')j o

(2) Define a new binary operator, concatenation (||),

between two stacks, S and S2, to produce a new

stack, S, as follows:

S = S | where S(k)= S (k) for k=l, 2,...,ISlI

S2(k) for k=jS 1+1,...,

(|Sk L + Is 2)

(3) Define a new binary operator, ordered difference

(o), between a stack S1 and a set T, to produce

a new stack, S, as follows:

S = S o T, where S(k)=S (jk) for k=1,2,...,

(|1 - |S T )(IS i 1 j k ss'uT
such that j0 =01 jk is the minimum j k>j k-l such

-143-



that Si (jk)A T = 0. Intuitively, S is obtained

from S by taking away those elements of S1 which

are also in T.

Figure 4.10 illustrates the LRU ordering of all Level i

pages ever referenced up to time t. Since there is no

overflow from either Mi of M' , the length of this

LRU stack is less than or equal to min(m., mi')
J J)

By the definition of V, VL = (Yt 2 -

But (S' )J = (S1)1 | ( Xt o (S') )t t t - t

hence V= (Yt - (S) j( (X ) o (S'),))
=_ (Yt - t

Similarly, by the definition of Vt t = (Zt -

But (Zt)j = (X t 2 (xt

Hence Vt M (X) 30(SI) 3) my )(( 30 (xl3) o (S'),)Hec t=((t - t t -

M (X)Jo(S1) J) j((Y )J0 ( (SI))V(xt)3))= (( t t - t

Xt -

Thus, the two stacks are in the same reverse ordering.

Q.E.D.

-144-



St
Most
recently

referenced
Xt Y t Least recently

referenced

S 
t

Figure 4.10

-145-

z t



LEMMA 8.4

r,t, (a) M' E!Mj, (b) Vt and V are either in the

same reverse ordering or the last element of Vi is

not an element of Vt

PROOF of LEMMA 8.4

(a) and (b) are true for any time before there is

any overflow from either Mi or M'3. (a) is true

because any page ever referenced is in Level j, so

a page found in Mi is also found in M'U. (b) is

true because of the result from LEMMA 8.3.

Assume that (a) and (b) is true for t. Consider

the next reference at t+l. Suppose this reference

does not produce any overflow from either Mi or M'3

then (a) still holds because M'3 MI and M' M
t- t t -t

(See THEOREM 7). (b) still holds because overflows

from Mi and M'j are taken from the end of stacks

Vt and V3 respectively, and since there is no over-

flow from Level j, (b)'s validity is not disturbed.

Suppose this reference does produce overflow(s)

from Level j.

Case 1 : overflow from M'j, no overflow from M:

This cannot happen since overflow from M'j implies

reference to Mr which in turn implies overflow

from Mi also.

-146-



Case 2 : overflow from Mi, no overflow from M'S :

* Suppose the last element in V' is not an element

of Vt. Then starting from the end of V, if we

eliminate those elements not in Vt, the two

stacks will be in the same reverse ordering.

This follows from LEMMA 8.3 and is illustrated

in Figure 4.11. Thus we see that overflow from

MI, i.e., overflowing the last page of Vt, will

not violate (a) since this page is still in V3 .

(b) is still preserved since the last page in

V1 is still not in Vt.

* Suppose V' and V t are in the same reverse order-

ing. Then overflowing the last page of V t does

not violate (a) and results in.-the last page of

VI not in Vt.
t

Case 3 : overflow from Mi and overflow from M':

" Suppose the last element in V3 is not in Vt.tt

Referring to Figure 4.11 in Case 2, we see the

result of overflowing the last element of V' and

the last element of Vt does not violate (a) and

still preserves the condition that the last

element of V is not in Vt

" Suppose V3 and V t are in the same reverse order-

ing. Then overflowing the last elements of V3

-147-



IZZIK

LIZIL

X8 X9 X7 X6 X5 X4 X3 X2 Xii

X X8 X9 X7 X6 X5 X4 X3 X2 XI

Figure 4.11

-148-



and Vt leaves V1 and Vt still in the same

reverse ordering. (a) is not violated since

the same page is overflowed form M'j and Mi.

Q.E.D.

PROOF of THEOREM 8

M"'1: M1 for the same reasons as those used in

THEOREM 7.

From LEMMA 8.4 M'j Mi.

Hence, (Mi 0 (MI) 1 )C (M' J (M'9)
Q.E.D.

-149-



4.5 SUMMARY

We have developed a formal model of a data storage hier-

archy system specifically designed for very large databases.

This data storage hierarchy makes use of different page

sizes across different storage levels and maintains multiple

copies of the same information in different storage levels

of the hierarchy.

Four classes of algorithms obtained from natural exten-

sions to the LRU algorithm are formally defined and studied

in detail. Key properties of data storage hierarchy systems

that make use of these algorithms are identified and for-

mally proved.

It is found that for the LOCAL-LRU algorithms, no choice

of sizes for the storage levels can guarantee that a lower

storage level always contains all the information in the

higher storage levels. For the GLOBAL-LRU algorithms, by

choosing appropriate sizes for the storage levels, we can

(1) ensure the above multi-level inclusion property to hold

at all times for any reference string, (2) guarantee that no

extra page references to lower storage levels are generated

as a result of handling overflows, and (3) guarantee that no

multi-level paging anomaly can exist.

- 150 -



Chapter V

DESIGN OF THE DSH-ll DATA STORAGE HIERARCHY SYSTEM

5.1 INTRODUCTION

In chapter 3, DSH-1, a general structure of the INFOPLEX

data storage hierarchy system is introduced. DSH-1 incorpo-

rates novel features to enhance its reliability and perfor-

mance. Many alternative architectures of data storage hie-

rarchies can be derived from DSH-l. These structures can be

used to perform detail studies of various design issues con-

cerning data storage hierarchies.

This chapter describes a simple structure of the INFOPLEX

data storage hierarchy derived from DSH-l. This structure

is called DSH-ll and is used to develop detail protocols for

supporting the read and write operations. Multi-level

inclusion properties of DSH-ll are then discussed.

5.2 STRUCTURE OF DSH-ll

The general structure of DSH-ll is illustrated in Figure

5.1. There are h storage levels in DSH-ll, denoted by L(l),

L(2), ... , L(h). L(l) is the highest performance storage

level. L(l) consists of k memory ports. Each memory port

- 151 -



LIIIm
F- - --- --- -- I

cache

control er

I cache
I _____ L(1)

SLC

L(2) -

SLCSM

lobal bus -

L(h)

SLC 1 S

Figure 5.1 Structure of DSH-11

-152-

-KI



is connected to a processor. All k memory ports share the

same local bus. A storage level controller (SLC) couples

the local bus to the global bus. The global bus connects

all the storage levels.

All other storage levels have the same basic structure.

In each storage level, there is an SLC which couples the

local bus to the global bus. There is a memory request pro-

cessor (MRP) that handles requests to the storage level.

There are a number of storage device modules (SDM's) that

store the data within the storage level. The SLC, MRP, and

SDM's share the same local bus.

The number of SDM's in different storage levels may be

different. The type of storage device in the SDM's in dif-

ferent storage levels are different. For high efficiency,

the block sizes of different storage levels are different.

L(l) has a block size of q(l), L(2) has a block size of

q(2)=n(l)*q(l), and so on, where n(l), n(2), ... , n(h-1) are

non-zero integers.

5.2.1 The DSH-ll Interface

From the point of view of a processor connected to a

DSH-ll memory port, DSH-ll appears as a very large virtual

memory with 2**V bytes. The entire virtual address space is

byte addressable. The instructions for a processor are

- 153 -



stored in a local memory outside of DSH-ll. This local

memory has an address space of 2**G bytes. Hence, the

effective data address space is (2**V-2**G) bytes.

All operations on data within DSH-ll are performed in

L(l). Thus, if a referenced data item is not in L(l), it

has to be brought into L(l) from a lower storage level.

This induces a delay on the instruction comparable to a page

fault in virtual memory systems. Each processor has multi-

ple register sets to support efficient multiprogramming.

The key registers for interfacing with DSH-ll are the memory

operation register (MOR), the memory address register (MAR),

the memory buffer register (MBR), the operation status

register (OSR), and the process identification register

(PIR). The MAR is V bits wide and the MBR is n bytes wide,

where n is less than q(l), the block size of L(l).

A read operation requests n bytes of data at location

pointed to by MAR to be brought into the MBR. A write oper-

ation requests the n bytes of data in the MBR be written to

the location pointed to by the MAR. We shall assume that

the n bytes of data in a memory reference do not cross a

L(l) block boundary (If a data item crosses block boundar-

ies, multiple requests will be used so that each request

only reference data within block boundaries).

- 154 -



A read or write operation may proceed at the speed of the

L(l) devices when the referenced data is found in L(l).

Otherwise, the operation is interrupted and the processor

switches to another process while DSH-ll moves the refer-

enced data into L(l) from a lower storage level. When the

data is copied into L(l), the processor is again interrupted

to complete the operation.

5.2.2 The Highest Performance Storage Level - L(l)

As illustrated in Figure 5.1, L(l) consists of k memory

ports. Each memory port consists of a data cache controller

(DCC) and a data cache duplex (DCD). A DCC communicates

with the processor connecting to the memory port. A DCC

also maintains a directory of all data in the DCD. All k

memory ports share a local bus. The SLC serves as a gateway

for communication between L(l) and other storage levels.

5.2.3 A Typical Storage Level - L(i)

A typical storage level, L(l), consists of a number of

SDM's, an MRP, and an SLC. An SLC serves as the gateway for

communication among storage levels. The MRP services

requests to L(i). An SDM performs the actual reading and

writing of data. An SDM consists of a device controller and

the actual storage device.

- 155 -



To gain high throughput, communications over the global

bus is in standard size packets. The packet size is such

that it is sufficient for sending one L(l) data block. Com-

munications over a local bus at L(i) is also in standard

size packets. The size of a packet depends on the storage

level and is chosen so that a packet is sufficient to send a

data block of size q(i).

In the following sections, the read and write operations

are discussed in detail.

5.3 ALGORITHMS FOR SUPPORTING THE READ OPERATION

5.3.1 The Read-Through Operation

A read request is issued by a processor to its data cache

controller. The data cache controller checks its directory

to see if the requested data is in the data cache. If the

data is found in the data cache, it is retrieved and

returned to the processor. If the data is not in the data

cache, a read-through request is queued to be sent to the

next lower storage level, L(2), via the storage level con-

troller.

At a storage level, a read-through request is handled by

the memory request processor. The memory request processor

checks its directory to determine if the requested data is

in one of the storage device modules at that level. If the

data is not in the storage level, the read-through request

- 156 -



is queued to be sent to the next lower storage level via the

storage level controller.

If the data is found in a storage level, L(i), a block

containing the data is retrieved by the appropriate storage

device module and passed to the storage level controller.

The storage level controller broadcasts the block to all

upper storage levels in several standard size packets. Each

upper storage level has a buffer to receive these packets.

A storage level only collect those packets that assemble

into a sub-block of the appropriate size that contains the

requested data. This sub-block is then stored in a storage

device module.

At L(l), the sub-block containing the requested data is

stored, and the requested data is sent to the processor with

the proper identification.

Figure 5.2 illustrates the read-through operation.

Assume that DSH-ll has only three storage levels, L(l) with

block size b, L(2) with block size 2b, and L(3) with block

size 4b. Suppose a reference to a data item 'x' is found in

a block in L(3). Then the sub-block of size 2b containing

'x' is broadcasted to L(2) and L(l) simultaneously. L(2)

will accept and store the entire sub-block of size 2b. L(l)

will only accept and store a block of size b that contains

- 157 -



''I,,,,',

Figure 5.2 Illustration of Read Through

-158-

; I P '



'xI. The two sub-blocks, each of size 2b of a parent block

in L(3) are referred to as the child blocks of the parent

block.

5.3.2 Overflow Handling

To accomodate a new data block coming into a storage

level as a result of a read-through, an existing data block

may have to be evicted. The block chosen for eviction is

that which is the least recently referenced block such that

none of its child blocks is in the immediate upper storage

level. To support this scheme, each block is associated

with an Upper Storage Copy Code (USC-code). If any of the

child blocks of a data block is in the immediate upper sto-

rage level, its USC-code is set. Each time the last child

block in L(i) of a parent block in L(i+l) is evicted from

L(i), an overflow request is sent to L(i+l) to reset the

USC-code of the parent block.

Blocks in L(l) and L(2) are handled slightly differently

due to the use of data caches in L(l). Since multiple

copies of the same data block may be in different data

caches, evicting a block does not necessarily guarantee no

other copy exists in L(l). The following strategy is

adopted to overcome this difficulty. During a read-through,

the USC-code of the block in L(2) is incremented by 1. Each

- 159 -



time a block in L(l) is evicted, an overflow request is sent

to L(2) to decrement the USC-code of theicorresponding par-

ent block. This strategy does not require communications

among different data caches.

5.3.3 Pathological Cases of Read-Through

The parallel and asynchronous operations of DSH-ll and

the use of buffers at each storage level complicates algor-

ithms for handling the read operation. Pathological cases

that affect the algorithms are discussed below.

5.3.3.1 Racing Requests

Two different requests Rl and R2 may reference the same

block of data. Furthermore, these two requests may be

closed to each other such that both may be reading-through

the same block of data at some storage level. Since a data

block is transmitted in several packets asynchronously, each

packet must be appropriately identified to avoid confusion

when assembling the data sub-blocks at higher storage lev-

els.

A similar situation arises when Rl and R2 are closed

together such that R2 begins to read-through the same data

block that has just been read-through by R1. Thus a data

block arriving at a storage level may find that a copy of it

- 160 -



already exists at that storage level. In this case, the

incoming data block is ignored. At L(l), this data block is

ignored and the one in the data cache is read and returned

to the processor, since this is the most recent copy of the

data block.

5.3.3.2 Erronous Overflow

When a data block is evicted from L(i) to make room for

an incoming data block, an overflow request containing the

virtual address of the evicted data block may be generated.

The purpose of the overflow request is to inform L(i+l) that

there is no longer any data block in L(i) with the same

family address as the virtual address in the overflow

request. Hence, an overflow request is generated only when

the last member of a family in L(i) is evicted.

The overflow request has to be forwarded to the MRP at

L(i+l). At any point on the way to the MRP, a data block in

the same family as the evicted block may be read-through

into L(i). This poses the danger that when the MRP receives

the overflow request indicating that no data block in the

same family as the evicted block exists in L(i), there is

actually one such block being placed in L(i).

The following strategy is incorporated in the algorithms

that support the read-through operation to avoid such a

potential hazard,

- 161 -



1. At the time the overflow request is to be created
in L(i), a check is made to see if there is any
data block in the same family as the evicted block
that is currently in any buffer of L(i) waiting to
be placed in L(i). If so, the overflow request is
not created.

2. At the time a new data block arrives in L(i), any
overflow request with the same family address as
the incoming data block waiting to be sent to
L(i+l) is purged.

3. When an overflow request arrives at L(i+l) from
L(i), a check is made to see if there is any data
block waiting to be sent to L(i) that has the same
family address as the overflow request. If so,
the overflow request is purged.

4. At the time a request is generated to send a data
block to L(i), any overflow request from L(i) that
is still waiting in L(i+l) that has the same
family address as the data block to be sent to
L(i) is purged.

5.3.3.3 Overflow to a Partially-assembled Block

Suppose that as a result of a read-through from L(i+2),

B(i), the only child block of B(i+l), is in L(i) and B(i+l)

is partly assembled in the buffer in L(i+l). It is possible

that B(i+l) is still partly assembled in L(i+l) when B(i) is

evicted from L(i). The overflow request will find that the

corresponding parent data block is still being assembled in

L(i+l). A solution to this difficulty is to check, at the

time of arrival of the overflow request, if there is any

incoming data block which is the target parent block of the

evicted block as indicated in the overflow request. If so,

the overflow request is held till this parent block has been

placed in a storage device.

- 162 -



5.3.4 Transactions to Handle the Read Operation

A read request is issued by a processor to its data cache

controller. If the data is not found in the data cache, it

has to be brought up via a read-through. The read-through

operation is realized via a number of transactions. The

flow of transactions to support the read-through operation

is illustrated in Figure 5.3.

A read-through transaction is created by a data cache

controller and propagated to lower storage levels. At each

storage level, the read-through transaction is handled by a

memory request processor which checks its directory to see

if the requested data is in the current storage level. If

the data is not in the current storage level, the read-

through transaction is sent to the next lower storage level.

Suppose that the data requested is found at L(i). The

read-through transaction is terminated and a retrieve tran-

saction is created to read the data from a storage device.

A read-response-out transaction that contains the read data

is sent to the storage level controller. The storage level

controller generates a number of read-response-packet tran-

sactions which are broadcasted to all higher storage levels.

Each of these transactions contains a sub-block of the

requested data.

- 163 -



read

read-throug

(4 )

read-response-in

store

overflow

read-response-packet

Hread-resp ut'

Figure 5.3 Transactions to Support
Read Through

-164-



At each higher storage level, an appropriate number of

read-response-packet transactions are assembled into a

read-response-in transaction which contains a data block of

the appropriate size. The memory request processor obtains

free space for the new data block in the read-response-in

transaction either by using existing free space or by evict-

ing an existing block. Eviction of an existing data block

may result in an overflow transaction being sent to the next

lower storage level. At the memory request processor, the

read-response-in transaction is serviced and a store tran-

saction is created. A storage device module handles the

store transaction by writing the data to a storage device.

The following subsections describe the algorithms for

handling each of the above transactions.

5.3.4.1 The read-through Transaction

The read-through transaction is created by a data cache

controller and propagated down the storage levels via the

storage level controllers. It has the following format:

( read-through, virtual-address, process-id),

where virtual-address is the virtual address of the refer-

enced data item, and process-id consists of a CPU identifier

and a process number. It is the identifier of the process

that generated the read operation. The transaction is han-

- 165 -



dled by a memory request processor using the following

algorithm.

1. Search directory for read-through.virtual-address.

2. If not found, forward the transaction to the sto-
rage level controller, which will send it to the
next lower storage level.

3. If found, suppose it is in the i-th directory
entry, and suppose directory(i).TRANSIT-code is
not set, do:

i) Set directory(i).USC-code to indicate a
child block exists in the higher storage
level for this block. If this is level
L(2), increment directory(i).USC-code
instead of setting it.

ii) Set directory(i).HOLD-code to forbid any
overflow to this block while the data is
being retrieved.

iii) Create a retrieve transaction :( retrieve,
virtual-address,directory(i).real-address,p-
rocess-id).

iv) Send the retrieve transaction to the appro-
priate storage device module.

4. If found, suppose it is in the i-th directory
entry, and suppose directory(i).TRANSIT-code is
set, then hold the request and retry later. When
the TRANSIT-code is set, it indicates that the
corresponding data block is in transit, hence any
reference to it is not allowed.

5. End.

5.3.4.2 The retrieve Transaction

The retrieve transaction is created by a memory request

processor and handled by a storage device module as follows.

- 166 -



1. Read the data block using retrieve.real-address.

2. Create a read-response-out transaction :( read-
response-out, virtual-address, process-id, data),
where data is the block containing the referenced
data item.

3. Send the read-response-out transaction to the sto-
rage level controller.

4. End.

5.3.4.3 The read-response-out Transaction

The read-response-out transaction is created by a storage

device module and handled by a storage level controller

using the following algorithm.

1. Purge any incoming overflow transaction that has
the same family address as read-response-
out.virtual-address.

2. Send ( update-directory, virtual-address,HOLD-
code=0) to memory request processor to reset the
HOLD-code, so that overflow to this block is now
allowed.

3. Broadcast the transaction ( reserve-space, virtu-
al-address, process-id) to all higher storage lev-
els to reserve buffer space for assembling
read-response-out.data.

4. Wait till all higer levels have acknowleged the
space reservation transaction.

5. Generate the appropriate number of ( read-res-
ponse-packet, virtual-address, process-id, data,
data-virtual-address) transactions. Data is a
standard size sub-block and data-virtual-address
is the virtual address of this sub-block.

6. Broadcast each read-response-packet transaction to
all higher storage levels.

7. End.

- 167 -



5.3.4.4 The read-response-packet Transaction

This transaction is created by a storage level controller

and broadcasted to all higher storage level controllers

where they are assembled into read-response-in transactions

to be handled by the memory request processors. Note that a

storage level only accepts those packets relevant for assem-

bling into a data block of the appropriate size, all other

associated packets are ignored. The following algorithm is

used by a storage level controller in assembling the

read-response-in transactions.

1. If this is the first packet of the assembly, do:

i) Purge any outgoing overflow transaction that
has the same family address as the block
being assembled.

ii) Add the packet to the assembly.

2. If this is an intermediary packet of the assembly,
simply add it to the assembly.

3. If this is the last packet of the assembly, do:

i) Replace the assembly by a ( read-response-
in, virtual-address, process-id, data) tran-
saction. Data is the block just assembled.

ii) Send the above transaction to the memory
request processor.

4. End.

- 168 -



5.3.4.5 The read-response-in Transaction

This transaction is created by a storage level controller

and sent to a data cache controller (for L(l)) or to a

memory request processor (for L(2), L(3), ... ).

The following algorithm is used by a data cache control-

ler in handling this transaction.

1. Purge any outgoing overflow transaction that has
the same family address as the block in the read-
response-in transaction.

2. Search directory for read-response-in.virtual-
address.

3. If found, suppose it is the i-th directory entry,
do:

i) Read data from the data cache using direc-
tory(i) .real-address.

ii) Send data to the processor.

iii) Increment directory(i).USC-code by 1.

4. If not found, do:

i) Select a block to be evicted (assuming that
data cache is full). This is the least
recently referenced block such that it is
not engaged in a stored-behind process.
Suppose this block corresponds to direc-
tory(i).

ii) Obtain directory(i).virtual-address, direc-
tory(i).USC-code, and directory(i).real-
address.

iii) Write read-response-in.data into location
directory(i).real-address in the data cache.

iv) Return read-response-in.data to the proces-
sor.

- 169 -



v) Create ( overflow, directory(i).virtual-
address, USC-code=directory(i).USC-code)
transaction, send it to the storage level
controller.

vi) Update directory(i).virtual-address with
read-response-in.virtual-address.

vii) Set directory(i).USC-code to 1.

5. End.

At a memory request processor, the read-response-in tran-

saction is handled as follows.

1. Purge any outgoing overflow transaction with the
same family address as the data block in the
read-response-in transaction.

2. Search for read-response-in.virtual-address in the
directory.

3. If not found, do:

i) Select a block to be evicted (assuming that
the storage level is full). This is the
least recently referenced block such that it
is not engaged in a store-behind process, it
is not held (i.e., HOLD-code = 0), and it is
not in transit (i.e., TRANSIT-code = 0).
Suppose this block corresponds to direc-
tory(i).

ii) Obtain directory(i).virtual-address and
directory(i).real-address.

iii) If the evicted block is the last of its
family in the storage level and that there
is no incoming block with the same family
address then create a ( overflow, direc-
tory(i).virtual-address, USC-code=l) tran-
saction. Send the transaction to the sto-
rage level controller to be sent to the next
lower storage level.

iv) Set directory(i).TRANSIT-code to 1 to indi-
cate the corresponding block is in transit.

- 170 -



v) Update directory(i).virtual-address with
read-response-in.virtual-address.

vi) Set directory(i).USC-code to 1.

vii) Create a ( store, directory(i).real-address,
data) transaction and send it to the appro-
priate storage device module.

4. End.

5.3.4.6 The store Transaction

This transaction is handled by a SDM. Store.data is

placed in store.location, and a transaction ( update-direc-

tory, virtual-address, TRANSIT-code = 0) is sent to the MRP

to reset the TRANSIT-code so that references to this block

is now allowed.

5.3.4.7 The overflow Transaction

This transaction is created by a data cache controller or

a memory request processor and routed to a memory request

processor in the lower storage level via the storage level

controllers. At each stop on the way to a memory request

processor, a check is made to see if any incoming data block

has the same family address as the overflow transaction. If

so, the following algorithm is executed.

1. If the direction of flow of the overflow and
read-response-in are opposite, the overflow is
purged.

2. If the direction of flow of the overflow and the
read-response-out are opposite, the overflow is
purged.

- 171 -



3. If the two transactions are in the same direction
of flow, the overflow is held to be processed
after the read-response-in is handled.

At a memory request processor, if the HOLD-code is set

for the parent block of the overflowed block, the overflow

transaction is purged (HOLD-code is set indicates that the

block is being retrieved by an SDM to be read-through to all

upper storage levels). Otherwise, the USC-code of the par-

ent block is decremented by overflow.USC-code.

5.4 ALGORITHMS TO SUPPORT THE WRITE OPERATION

Algorithms to support the write operation are simplified

by the multi-level inclusion properties of DSH-ll. The mul-

ti-level inclusion properties of DSH-ll guarantee that all

the data items in L(i) is contained in L(i+l). Thus, when

writing a child block in L(i) to its parent block in L(i+l),

the parent block is guaranteed to exist in L(i+l). The mul-

ti-level inclusion properties of DSH-ll will be discussed in

a later section.

5.4.1 The Store-Behind Operation

After a block is placed in a data cache as a result of a

read-through operation, its parent block exists in L(2), and

its grand-parent block exists in L(3), and so on. Due to

the multi-level inclusion properties of DSH-ll, this situa-

tion will persist as long as the block is in the data cache.

- 172 -



After a data block in a data cache is updated, it is sent

down to the next lower storage level to replace the corres-

ponding child block in its parent block. This updated par-

ent block is sent down to the next lower storage level to

update its parent block, and so on. This process is refered

to as the store-behind operation and takes place at slack

periods of system operation.

DSH-ll uses a two-level store-behind strategy. This

strategy ensures that an updated block will not be consid-

ered for eviction from a storage level until its parent and

grand-parent blocks are updated. This scheme will ensure

that at least two copies of the updated data exists in

DSH-ll at any time. To support this scheme, a Store-Behind

Code (SB-code) is associated with each data block in a sto-

rage level. The SB-code indicates the number of acknow-

ledgements from lower storage levels that the block must

receive before it can be considered for eviction.

In a write operation, the data item is written into the

data cache duplex, and the processor is notified of the com-

pletion of the write operation. we shall assume that the

data item to be written is already in L(l) (This can be

realized by reading the data item into L(l) before the write

operation). A store-behind operation is next generated by

the data cache controller and sent to the next lower storage

- 173 -



PROCESSOR

count=2 L(1 )

store-behind

L(3)

5.4(a) Illustration of Store Behind (a)

-174-

Figure



PROCESSOR

count=l

acknowledge

count=2

L(2)

-i
store-behind

Figure 5.4(b) Illustration of Store Behind (b)

-175-



PROCESSOR

count=O

acknowledge

count=]

L(2)

acknowledge

L (3)

Figure 5.4(c) illustration of Store Behind (c)

-176-



level. The block in L(l) that has just been updated is

marked with a count of 2. This is illustrated in Figure

5.4(a).

When a store-behind operation is received in L(2), the

addressed data is written, and marked with a count of 2. An

acknowledgement is sent to the next upper storage level,

L(l), and a store-behind operation is sent to the next lower

storage level, L(3). When an acknowledgement is received at

L(l), the counter for the addressed data item is decremented

by 1, which becomes 1. This is illustrated in Figure

5.4(b).

The store-behind is handled in L(3) by updating the

appropriate data block. An acknowledgement is sent to L(2).

At L(2), the corresponding block counter is decremented by

1, which becomes 1. The acknowledgement is forwarded to

L(l). At L(l), the corresponding block counter is decre-

mented by 1 which now becomes 0, hence the block is elligi-

ble for replacement. This is illustrated in Figure 5.4(c).

Thus we see that the two-level store-behind strategy

maintains at least two copies of the written data at all

times. Furthermore, lower storage levels are updated at

slack periods of system operation, thus enhancing perfor-

mance. Detail algorithms for supporting this scheme will be

discussed in a later section.

- 177 -



5.4.2 Lost Updates

Several different updates to the same block will result

in several different store-behind requests be sent to the

next lower storage level. It is possible that these store-

behind requests arrive at the next storage level out of

sequence, resulting in lost updates.

To resolve this potential hazard, there is a time-stamp

associated with each block indicating the last time the

block was updated. There is also a time-stamp associated

with each child block of the parent block indicating the

last time the child block was updated by a store-behind

operation. A store-behind request will contain the block to

be updated and its time-stamp. This time-stamp will be com-

pared with that of the corresponding child block in the tar-

get parent block. Only when the store-behind data is more

recent will the update to the target parent block be per-

formed.

5.4.3 Transactions to Support the Write Operation

Figure 5.5 illustrates the transactions to support the

write operation. We shall assume that the target block of a

write operation already exists in a data cache. This can be

ensured by first reading the target block before issuing the

write request to the data cache. After the data is written

into a target data block in a data cache, a store-behind

- 178 -



wrte(

Istore-beh '4

Ipack,

ack-store-behind

store-behb] update I

Fiur L. rascion oSpotSoeBhn

-179-



transaction containing the updated block is sent to the next

lower storage level. The store-behind transaction is ser-

viced by the memory request processor. The memory request

processor generates an update transaction and sends it to

the appropriate storage device module. The memory request

processor also sends an ack-store-behind transaction to the

higher storage level. The storage device module handles the

update transaction by replacing the corresponding child

block in the target parent block with the data in the

store-behind transaction. Another store-behind transaction

containing the updated parent block is created and sent to

the storage level controller to be forwarded to the next

lower storage level.

A store-behind transaction is sent to the next lower sto-

rage level in several standard size packets, each corres-

ponds to a store-behind-packet transaction. At a storage

level controller, these packets are assembled into the ori-

ginal store-behind transaction. The algorithms for sending

and assembling packets are very similar to those used for

the read-through operation and will not be repeated here.

The following describes the algorithms for supporting the

above transactions to realize the write operation.

- 180 -



5.4.3.1 The store-behind Transaction

A store-behind transaction has the following format:

store-behind, virtual-address,process-iddatatime-stamp)

This transaction is handled by a memory request processor

using the following algorithm.

1. Search directory for store-behind.virtual-address.

2. If not found, hold the transaction and retry after
a time out, because the target parent block is
still being assembled in the buffer.

3. If found, compare store-behind.time-stamp with the
time-stamp of the corresponding child block of the
target parent block.

4. If store-behind.data is more current than the
child block, do:

i) Send ( update, virtual-address, data, real-
address, time-stamp-of-parent) to the appro-
priate storage device module.

ii) Update the time-stamp of the child block
with store-behind.time-stamp.

iii) Send ( ack-store-behind, virtual-address,
process-id, ACK-code = 2) to the immediate
higher storage level. ACK-code indicates
the number of levels this transaction is to
be routed upwards.

5. If store-behind.data is not more current than data
in storage level, send two ( ack-store-behind,
virtual-address, process-id, ACK-code = 2) to the
immediate higher storage level.

6. End.

- 181 -



5.4.3.2 The update Transaction

The update transaction is handled by a storage device

module using the following algorithm.

1. Replace the appropriate child block in the target
parent block by update.data.

2. The updated target parent block is retrieved.

3. Send ( update-directory, virtual-address, SB-code
= 2) to the memory request processor to increment
SB-code of the target parent block by 2.

4. ( store-behind, virtual-address, process-
id,target-parent-block, time-stamp =
update.time-stamp-of-parent) is sent to the sto-
rage level controller to be sent to the next lower
storge level.

5. End.

5.4.3.3 The ack-store-behind Transaction

This transaction is handled by a memroy request proces-

sor. The algorithm used is as follows.

1. The SB-code of the corresponding block is decre-
mented by 1.

2. The ack-store-behind.ACK-code is decremented by 1.

3. If ack-store-behind.ACK-code is greater than 0 the
forward the ack-store-behind to the immediate
upper storage level.

4. End.

- 182 -



5.5 MULTI-LEVEL INCLUSION PROPERTIES

As a result of the read-through operation, the block

read-through into L(l) leaves its 'shadow' in every lower

storage level that participated in the read-through opera-

tion. Is it true then, that a storage level, L(i), always

contains every data block in L(i-l)? When this is true,

multi-level inclusion (MLI) is said to hold.

It has been formally proved in Chapter 4 that certain

algorithms incorporating the read-through strategy can guar-

antee MLI provided that the relative sizes of the storage

levels be appropriately chosen. Furthermore, it is found

that certain other algorithms can never guarantee MLI. This

section explores the MLI properties of DSH-ll. In the fol-

lowing sections, the importance of MLI is briefly reviewed,

a model of DSH-ll is developed, and the MLI property of

DSH-ll is analyzed informally.

5.5.1 Importance of MLI

The MLI properties have important implications for the

performance and availability of DSH-ll. First, since the

block size of L(i) is larger than that of L(i-1), L(i) can

be viewed as an extension of the spatial-locality (Madnick,

1973) of L(i-l). Second, except for the lowest storage

level, each data item has at least two copies in different

- 183 -



storage levels. Hence, even the failure of an entire sto-

rage level will not result in data loss. Third, algorithms

to support the write operation is simplified if MLI holds

because a store-behind operation always finds the target

parent data block exists in a storage level.

5.5.2 A Model of DSH-ll

Figure 5.6 illustrates a model of DSH-ll. DSH-ll has h

storage levels, L(l), L(2), ... , L(h). L(l) consists of k

data caches. Each data cache consists of a buffer B(l,i),

and a storage, M(l,i). All the buffers of the data caches

are collectively denoted as B(l), and all the storage of the

data caches are collectively denoted as M(l). The size of

B(l,i) is b(l,i) number of blocks of size q(l). The size of

M(1,i) is m(l,i) number of blocks of size q(l). Hence L(l)

has b(l) = b(l,l) + b(l,2) + ... + b(l,k) blocks of buffer

space and m(l) = m(l,l) + m(1,2) + ... + m(l,k) blocks of

storage space.

A buffer is for holding data blocks coming into or going

out of the storage level. A data block may be partially

assembled in a buffer. Only data blocks in the storage

space are accounted for by the directory. Note that a buf-

fer is not used for holding transactions that do not contain

any data, e.g. an ack-store-behind transaction does not

occupy any buffer space.

- 184 -



Figure 5.6 A Model of DSH-ll

-185-

L(1)

L(2)

L(i)

L (h)



A typical storage level, L(i), consists of a buffer B(i),

and a storage, M(i). The size of B(i) is b(i) number of

blocks each of size q(i). The size of M(i) is m(i) number

of blocks each of size q(i). The block size of L(i) is

q(i), where q(i) = n(i-l)*q(i-1), for i = 2, 3, ... , h.

The n(i)'s are integers.

5.5.3 MLI Properties of DSH-ll

Based on the model in the previous section, the MLI con-

dition can be stated as follows: a data block, whole or

partially assembled, that is found in L(i) is also found in

L(i+l). This section shows that for DSH-ll, it is possible

to guarantee the following: (1) MLI holds at all times, (2)

it is always possible to find a block for eviction to make

room for an incoming block, and (3) an overflow transaction

from L(i) always finds its target parent block in L(i+l).

Proposition

Let J = i + 1. Using the algorithms described in the previ-
ous sections, if m(j) is greater than m(i)+b(i) then

1. MLI holds for L(i) and L(j), i.e., any block found
in L(i) can be found in L(j),

2. If block replacement in M(j) is required, there is
always a block not in L(i) that can be considered
for overflow, and

3. An overflow transaction from L(i) always contains
the address of a block that can be found in M(j).

Proof of Proposition

- 186 -



There are three cases:

1. There are no overflows from L(i): Since m(j) is
greater than m(i)+b(i), no overflow from L(i)
implies no overflow from L(j). Thus all blocks
present in L(i) are still in L(j), i.e., (1) is
true.

2. There are overflows from L(i), no overflow from
L(j): No overflow from L(j) implies that all
blocks referenced so far are still in L(j). Thus
any block in L(i) is still in L(j), i.e., (1) is
true. Since any overflow from L(i) will find the
block still in L(j), (3) is true.

3. There are overflows from L(j): Consider the first
overflow from L(j). Just before the overflow, (1)
is true. Also just before the overflow, M(j) is
full. M(j) is full and m(j) is greater than
m(i)+b(i) implies that there is at least one block
in M(j) that is not in L(i) (i.e., their USC-code
= 0). Choose from these blocks the least recently
referenced block such that its SB-code = 0. If no
such block exists, wait, and retry later. Eventu-
ally the store-behind process for these blocks
will be terminated and these blocks will be
released. Thus a block will be available for
overflow from M(j). Thus (2) is true. After the
overflow, (1) is still preserved. (1) and (2)
implies (3).

If next reference causes no overflow from L(j), then the

arguement in Case 2 applies. If the next reference causes

overflow from L(j), then the arguement in Case 3 applies.

5.6 SUMMARY

The DSH-ll design, a data storage hierarchy for the INFO-

PLEX data base computer, is described. Protocols for sup-

porting the read and write operations in DSH-ll are des-

- 187 -



cribed in detail. It is then shown that DSH-ll is able to

guarantee multi-level inclusion at all times for any refer-

ence string provided that the sizes of the buffers and sto-

rage at the storage levels are chosen appropriately.

- 188 -



Chapter VI

SIMULATION STUDIES OF THE DSH-ll DATA STORAGE HIERARCHY
SYSTEM

6.1 INTRODUCTION

This chapter discusses the results of a series of simula-

tion studies of the DSH-ll data storage hierarchy system.

A key objective of these simulation studies is to assess

the feasibility of supporting very large transaction rates

(millions of reads and writes per second) with good response

time (less than a millisecond) using the DSH-ll storage

hierarchy and the read-through and store-behind algorithms.

A GPSS/360 simulation model is developed for a DSH-ll

configuration with one processor and three storage levels.

The results obtained from this model are very interesting.

It is found that, at very high locality levels, when most of

the references are satisfied by the highest performance sto-

rage level, the store-behind algorithm interacts with the

DSH-ll buffer management algorithms to create a system dead-

lock. This has not been anticipated in the design of

DSH-ll, and has led to a redesign of the DSH-ll buffer man-

agement scheme.

- 189 -



Another GPSS/360 simulation model is developed for a

DSH-ll configuretion with five processors and four storage

levels. This model makes use of deadlock-free buffer man-

agement algorithms. Results from this model reveal further

interesting properties of the store-behind algorithm and of

the DSH-ll design. It is found that at high locality lev-

els, the store-behind requests form a pipeline. Thus the

rate of write operations that can be serviced is limited by

the slowest stage in the pipeline, i.e., the slowest storage

device. It is also found that a bottleneck may be developed

at the lowest level when the block size of that level is too

large.

A well-balanced system is obtained by increasing the

degree of parallelism in the lower storage levels and by

decreasing the block sizes used by these storage levels.

This system is then used as a basis to compare the perfor-

mance of the DSH-ll architecture under different technology

assumptions. It is found that using 1979 technologies, a

throughput of .7 million operations per second with mean

response time of 60 microseconds are obtained for a mix of

storage references consisting of 30 percent read requests.

Using 1985 technologies, the same storage reference mix pro-

duces a throughput of 4 million operations per second with

10 microseconds mean response time.

- 190 -



6.2 A SIMULATION MODEL OF DSH-ll : THE PlL3 MODEL

The PlL3 model of DSH-ll is a GPSS/360 model of a DSH-ll

configuration with one processor and three storage levels.

It represents a basic structure from which extensions to

include more processors and storage levels can be made. The

structure of PlL3 is illustrated in Figure 6.1(a). Each

module in Figure 6.1(a) actually consists of four queues and

a facility (Figure 6.1(b)). The facility is referred to as

the request processor (RP). There are two input queues, one

for transactions with data (the XQ), and one for transac-

tions with messages (the IQ). The two corresponding output

queues are named YQ and OQ respectively. The XQs and YQs

have limited capacity, since they are the data buffers.

There is no limit on the lengths of the IQs and the OQs.

The following example illustrates the naming conventions

used in the model. The K2 module actually consists of the

KRP2, KIQ2, KOQ2, KXQ2 and KYQ2. The current length of KXQ2

is denoted as KXL2 and the maximum allowable length of KXQ2

is denoted as KXM2.

6.2.1 An Illustration of the DSH-ll Algorithms

A listing of the PlL3 model is presented in Appendix A.

To illustrate the model logic, the following is a brief des-

cription of the path followed by a read-through transaction.

A read request (TXN) is queued in KIQ3 (the input message

- 191 -



LBUSl

LBUS2

D21

LBUS3

Figure 6.1(a) The PlL3

D32

Configuration

IQ RP 0Q

XQ YQ

Figure 6.1(b) A Module in PlL3

-192-

D22



DEGREE OF MULTIPROGRAMING OF A CPU = 20

SIZES OF DATA QUEUES (XQ AND YQ) = 10

DIRECTORY SEARCH TIME = 200 NANOSEC.

READ/WRITE TIME OF A L(1) STORAGE DEVICE = 100 NANOSEC.

READ/WRITE TIME OF A L(2) DEVICE = 1000 NANOSEC,

READ/WRITE TIME OF A L(3) DEVICE = 10000 NANOSEC.

BUS SPEED = 10 MHZ

BUS WIDTH = 8 BYTES

SIZE OF A TRANSACTION WITHOUT DATA = 8 BYTES

BLOCK SIZE AT L(1) = 8 BYTES

BLOCK SIZE AT = 128 BYTES

BLOCK SIZE AT L(3) = 1024 BYTES

% READ REQUESTS = 70%

% WRITE REQUESTS = 30%

CONDITIONAL PROB. OF FINDING DATA IN A LEVEL

GIVEN THAT THE DATA IS NOT IN ANY UPPER LEVEL = P

Figure 6.2 Input Parameters to PlL3

-193-



queue of the storage level controller at level 3). When

KRP3 is free, TXN is serviced and put into KOQ3. When LBUS3

is available, TXN is sent to RIQ3 (the input message queue

of the memory request processor at level 3) where it waits

for RRP3, the request processor. RRP3 then searches its

directory to obtain the real address for TXN. TXN is put

into ROQ3 to be sent to a storage device, say, D31. When

LBUS3 is free, TXN is sent to DIQ31 (the input meSsage queue

for device D31). TXN waits in DIQ31 for DRP31 to be free

and also for a slot in DYQ31 (the output data queue for D31)

to hold the retrieved data. When both conditions are met,

DRP31 retrieves the data and puts it in DYQ31 where it waits

for the LBUS3 to be free and for there to be a slot in KXQ3

(the input data queue of the storage level controller at

level 3) to hold the data. When both conditions are ine,

the data is sent to KXQ3. Then the data is put in KYQ3

waiting for the GBUS and for all the upper storage levels to

be free to receive the broadcast...

6.2.2 The PlL3 Model Parameters

The model is highly parametized. Parameters for the PlL3

model are chosen to reflect current (1979) processor and

storage technology. A key parameter that characterizes the

references made to DSH-ll is the locality level. The local-

ity level (P) is the condition probability that a referencric

- 194 -



is satisfied at a given storage level given that the

reference is not satisfied in all upper storage levels.

Figure 6.2 summarizes all the model parameters.

6.3 SIMULATION RESULTS OF THE PlL3 MODEL

Three different locality levels are used for the PlL3

model. The simulated time is one milisecond (one million

time units in the model). Some unusual phenomena are uncov-

ered during the analysis of these preliminary results. This

leads to more extensive simulation studies to obtain more

data points. A plausible theory is then proposed to explain

these phenomena. Detail traces of the model is used to ver-

ify the theory. The findings are discussed in the following

subsections.

6.3.1 Preliminary Studies Using the PlL3 Model

A series of three simulation studies are carried out with

three locality levels : high (P=.85), medium (P=.5), and low

(P=.2). Throughputs, mean response times and utilizations

of the facilities are summarized in Figure 6.3.

Throughput in millions transactions per second are plot-

ted against the locality levels in Figure 6.4. From Figure

6.4, it seems that a throughput of .6 million transactions

per second is the maximum that one could obtain with this

configuration.

- 195 -



Locality Level
H- o o

o Throughput per millisecond 0
cn oo

GBUS Utilization
CCD

H LBUS1 Utilization

Data Cache Utilization ...
0D

LBUS2 Utilization

rt
D21 Utilization

0 -

LBUS3 Utilization

D31 Utilization

0 MiMean Response Time (Nsec) w %



THROUGHPUT IN 106 REQUESTS

PER SECOND

7

a5

.4l

.2

,2'

,1 .2 .3 ,' 95 .6 7 .8 91.

Figure 6.4 Throughput Vs. Locality Level
(PlL3 Preliminary Results)

-197-



MEAN RESPONSE TIME IN
MICROSECOND

.1 .2 3 .4 5 .6 .7 .8 .9 1.0
Figure 6.5 Mean Response Time Vs. Locality Level

( PlL3 Preliminary Results)

-198-

10



UTILIZATION
-199-

19

6 L(3) DEVICE
... --- ~

GBUS

N. DATA

LBUS1

ID- ----

CACHE

1 .2 .3 .4 .5 .6 .7 .8 .9

Figure 6.6 Utilization Vs. Locality Level
(PlL3 Preliminary Results)

- -0- -,



Mean response time per transaction are plotted against

locality levels in Figure 6.5. This shows that a mean res-

ponse time of 5 micro seconds is obtainable at high locality

levels. Furthermore, as the locality level increases, there

will be more references being satisfied in the high perfor-

mance storage levels, thus the mean response time will.

decrease.

Utilizations of the various facilities are plotted

against locality levels in Figure 6.6. It can be seen from

these plots that at low locality levels, the slowest storage

level becomes a system bottleneck. At higher locality lev-

els, bus utilizations drop because most references are

satisfied by the data cache, DRPll, making the use of the

buses unnecessary except for store-behind operations.

At high locality levels, one would also expect the utili-

zation of the data cache, DRPll, to be very high. However,

this is not supported by the data. In fact, even though the

throughput at the P=.85 locality level is larger than that

at the P=.50 locality level, the DRP11 utilization actually

drops.

Examine the data more closely, another puzzle is discov-

ered. If one multiply throughput by the mean response time

divided by the maximum degree of multiprogramming, one

- 200 -



should obtain a number closed to the simulated time

(1,000,000). For the P=.20 case, this number comes out to

be 915657. For the P=.50 case, this number comes out to be

858277. But for the P=.85 case, this number is only 180027.

It is suspected that either the data is wrong or there are

some unusual blocking phenomena in the system in the P=.85

case.

6.3.2 More Extensive Studies Using the PlL3 Model

Since it is not difficult to obtain more data points by

varying the locality levels, a second series of simulations

is carried out. The results of these simulations are pre-

sented in Figure 6.7.

Throughputs are plotted against locality levels in Figure

6.8. This shows that as the locality level increases,

throughput also increases. A throughput of closed to one

million transactions per second is obtainable at about P=.80

locality level. However, after the P=.80 point, throughput

drops sharply as the locality level increases. This

requires some explaination.

In Figure 6.9, mean response time is plotted against

locality levels. This shows that as locality level

increases, mean response time decreases. This plot does not

seem to provide insight as to why throughput decrease shar-

ply after the P=.80 locality level.

- 201 -



-202-.

.95 532 .14 .03 .15 .16 .05 .21 .25 3986

.90 581 .16 .04 .17 .19 .06 .26 .42 :3957

.85 589 .23 .52 .19 .26 .09 .35 .52 6021

.80, 947 .50 .94 .31 .57 .19 .71 .99 16298

.70 811 .53 .10 .27 .65 .20 .69 1.00 23317

.65 758 .51; .10 .26 .62 .18 .68 1.00 22505

.60 698 .51 .10 .23 .63 .19 .65 1.00 27114

.50 548 .50 .10 .20 .65 .17 .62 1.00 31324

.40 456 .45 .08 .16 .63 .15 .59 1.00 i39142

.30 320 .42 .07 .12 .60 .12 .52 1.00 56908

.20 286 .42 .07 .10 .63 .11 .52 1.00 64032

C

0 4-
4J 4J 4-

LiN C 0 E
-r-C -r 0 C '- C --

I- C 0 0- r O O0 1-
.. - - -r0-r--

4 E 4- 3 N J 4-
-- -r- C N

N -r- N r- N C

N - g. -L)- - O~ ~ -0

- D -- -- C O
r 6

Figure 6.7 PlL3 Model - Extensive Results



-203-

THROUGHPUT IN 106 REQUESTS PER SECOND

1~

1'
/

g

I

I.

0

el1 m 7 3 - m4 6 97 *1 's

Figure 6.8 Throughput Vs. Locality Level
(PlL3 Extensive Results)

.9

8.

.7.

.6

.5

.4

.3

.2-

.1



-204-

RESPONSE TIME IN MICROSECOND

o>

NO
0

0

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Figure 6.9 Mean Response Time Vs. Locality Level

(PlL3 Extensive Results)

MEAN

70.

60

50.

40

30.

20.



6.3.3 A Plausible Theory of Operation

One theory to explain the sharp drop in throughput at

very high locality levels is that at such high locality lev-

els, the rate of write operations being generated is very

high. Since a write will not proceed until DRPll is free

(to write the data), and DRPll's YQ has a buffer slot (for

holding the store-behind operation), the write operation may

hold up other transactions in their use of DRPll. Since the

utilization of DRPll is very low, the blocking must be due

to the YQ being full often. Many store-behind transactions

closed togther will tend to make the YQ full often. These

blocking transactions will tend to hold up other transac-

tions hence resulting in low system throughput.

If the YQ is full often, it must be because transactions

in it cannot move on to the next facility. This will happen

if the bus LBUS1 is busy or the XQ buffer of Kl is full, or

both. From the data, we see that all the bus utilizations

are very low, hence the blocking must be due to the fact

that the XQ buffer of Kl is full often. Proceeding in this

manner, one could argue that at high locality levels, the

rate of store-behind operations is very high, which results

in store-behind transactions being backed up from a storage

device. This backing up of store-behind operations causes

long queueing delays for other transactions as well, result-

- 205 -



ing in low system throughput. This blocking situation also

prevents DRPll to be kept busy as evident from its low uti-

lization.

We can now explain why the utilization of DRPll at the

P=.85 locality level is lower than that at the P=.50 local-

ity level. At P=.85, due to the store-behind transactions

being backed up, very few acknowledgements to the store-be-

hind transactions ever return to DRPll. In the P=.50 case,

most acknowledgements to store-behind transactions return to

DRPll. Thus, even though the number of reads and writes

handled by DRPll in the P=.50 case is lower than that han-

dled by the DRPll in the P=.85 case, there are many more

acknowledgements serviced by DRPll in the P=.50 case, hence

the corresponding utilization is higher.

There are no backing up of store-behind transactions in

the low locality level cases because the rate at which they

are generated is low. Since the store-behind transactions

are separated from one another there is enough time for a

device to service a previous store-behind transaction before

another one comes along.

- 206 -



6.3.4 Verification of Theory with Data

The above theory seems to explain the phenomena well and

agrees well with the observed data. To verify the theory,

detail model traces are examined to determine the status of

the system at the time of simulation termination.

It is found that for low locality levels, there is indeed

no backing up of the store-behind transactions. There is a

backlog of requests to be processed by the lowest storage

level devices due to their large service times. For high

locality levels, starting from P=.85, store-behind transac-

tions begin to be backed up, from storage level 2. However,

the back up is due to a system deadlock developed at storage

level 2, and not due to the slower speeds of the devices, as

hypothesized above.

The deadlock at storage level 2 is illustrated in Figure

6.10. All the XQs and YQs are full. A store-behind tran-

saction in DYQ21 is waiting for LBUS2 and a KXQ2 buffer

slot. LBUS2 is free but KXQ2 buffer is full. KXQ2 will not

be cleared because KYQ2 is full. KYQ2 cannot be cleared

because both buffer of R2 are full. These buffers cannot be

cleared because DXQ21 and DYQ21 are full. DYQ21 cannot be

cleared because it is waiting for KXQ2 to be cleared. Thus

a deadlock is developed. This deadlock causes the XQs and

YQs in the upper storage levels to be gradually filled as

- 207 -



Store-behind

Store-

store-behind

xQ XQ

R2 / /
R2 ,' D21

id Y-i YQ

hi nd sttS6re-behind

Fi.gure 6.10 Deadlock In PlL3 Model

-208-

I



more store-behind transactions are generated. When YQ at

DRPll is full, the system will be held up when the next

write transaction arrives.

It is interesting to note that this deadlock only occurs

at very high locality levels. This is beacuse at high

locality levels, the rate of store-behind transactions gen-

erated is very high. Comparing the P=.95 case and the P=.50

case, even though the same number of store-behind transac-

tions are generated to lower storage levels in both cases,

the rate at which they are generated in the P=.95 case is 30

times that of the P=.50 case. Store-behind transactions

sparsely separated from one another give chance for the dev-

ice to service them, therefore avoiding a deadlock. This

deadlock situation is not too different from a traffic jam

at a Boston rotary during rush hour.

In retrospect, the causes of the deadlock are due to the

rate of store-behind transactions and the use of one single

buffer for data coming into a storage level as well as for

data going out of a storage level. The potential for dead-

lock of using a common buffer was not discovered during the

design of DSH-ll due to the complex interactions of the var-

ious protocols for store-behind, read-through, and overflow

handling operations.

- 209 -



6.4 DEADLOCK-FREE BUFFER MANAGEMENT SCHEMES

In the DSH-ll simulation model, there are five types of

transactions supporting the read-through and store-behind

operations. These transactions are : read-through-request

(RR), read-through-result (RT), overflow (OV), store-behind-

request (SB), and acknowledgement (AK). Each type of tran-

saction is handled differently. Furthermore, the same type

of transaction is handled differently depending on whether

the transaction is going into or out of a storage level. A

potential deadlock exists when different transactions share

the same zuffer and their paths form a closed loop. We have

seen an example of such deadlock in the PlL3 model where SB

transactions coming into a storage level and SB transactions

going out of a storage level form a closed loop. Other

potential deadlocks exists in the PlL3 model. This section

is focused on developing deadlock-free buffer management

algorithms.

Potential deadlocks exist beacause different transaction

types share the same buffer and that the First Come First

Serve (FCFS) strategy is used for allocating buffer slots.

A simple strategy to avoid deadlock is not to allow buffer

sharing among different transaction types. No path crossing

can occur thus no loop can exist. Although this strategy is

easy to implement, it does not make optimal use of the buf-

- 210 -



fer space. Another strategy to avoid deadlock is to allow

buffer sharing, but to make use of more sophisticated buffer

allocation algorithms. One such algorithm is discussed

below.

6.4.1 A Deadlock-free Buffer Allocation Algorithm

Two types of buffers are used at each storage level, the

IN buffers and the OUT buffers. Transactions coming into

the storage level use the IN buffers and transactions going

out of the storage level use the OUT buffers. Transaction

coming into a storage level from a higher storage level are

the RR, SB, and OV transactions. Transactions coming into a

storage level from a lower storage level are the RT and AK

transactions. Similarly, transactions going out of a sto-

rage level to the next lower storage level are the RR, SB,

and OV transactions. Transactions going out of a storage

level to a higher storage level are the RT and AK transac-

tions. Each component in a storage level has an IN buffer

and an OUT buffer. This is illustrated in Figure 6.11.

The general idea of this buffer allocation scheme is not

to allow the buffers to be completely filled. When the buf-

fers are filled up to a certain level, only those transac-

tions that can be processed to completion and resulting in

freeing up buffer slots are accepted. The precise algorithm

is as follows.

- 211 -



(SB,OV,RR)

(AKRT)

(SB,,0V,RR)

storage level
controller.

memory request storage device
processor controller

(RR,SB)

(SB,AKRT)

(AK ,RT)

Figure 6.11 A Deadlock-free Buffer Scheme

-212-



1. The size of OUT is always greater than the size of

IN.

2. Always maintain at least one empty slot in an IN

buffer.

3. Buffer-full (BF) condition is raised when the num-

ber of transactions in IN plus the number of tran-

sactions in OUT is equal to the size of OUT.

4. If BF then do not accept any RR or SB into a sto-

rage level. Only process OV, RT, and AK transac-

tions.

We now provide an informal argument to show that the

scheme described above is indeed deadlock-free. First we

have to show that the RR and SB transactions are not the

only transactions in the system when all the buffer pairs

have their BF conditions raised. Then we have to show that

processing each of 'the OV, AK and RT transactions will free

up some buffer slots thus lowering some BF conditions.

Suppose that all the BF conditions are raised. Examine

the OUT buffers of the lowest storage level. Since the size

of OUT is greater than that of IN, BF implies that there is

at least one transaction in OUT. This transaction must be

going out of the storage level to a higher storage level,

hence cannot be a RR or a SB transaction.

- 213 -



Level i-1

any transaction

--- y (9) OV terminated

Level i

any transaction

------- y(5) OV terminated

Level i+1

(1) RT

Figure 6.12 Illustration of the Deadlock-free
Buffer Scheme

-214-



Consider a RT transaction at level i+l (Figure 6.12).

(1) All upper storage level, level i and level i-l can

receive this transaction since there is always one empty

slot in each IN buffer. The departure of the RT transaction

creates an empty slot in the OUT buffer of the sender (level

i+l). (2) Level i.can now send a transaction to level i+l

which creates a slot in level i. The RT transaction can now

be serviced in level i. (3) Handling the RT transaction may

create an OV transaction in level i. Luckily there is a

buffer slot for the OV transaction in level i. (4) The OV

transaction can be sent to level i+l because there is always

a free slot in the IN buffer at level i+l. (5) The OV tran-

saction will be serviced to completion in level i+l. Hence,

there is a free slot in level i as result of these opera-

tions. (6) Now a transaction from level i-l can be sent to

level i. (7) The RT transaction can be handled in level i-l

which may create an OV transaction. (8) The OV transaction

can be sent to level i. (9) Finally, the OV transaction is

handled and terminated in level i. Thus, there is a free

buffer slot created in level i-l as a result of processing

the RT transaction.

Handling an AK transaction may generate another AK to be

sent to the immediate upper storage level. The same argu-

ment for the RT transaction can be applied to show that a

- 215 -



buffer slot will be freed up as a result of handling the AK

transaction.

It is clear from the above discussion that this buffer

management scheme requires more complex protocols among sto-

rage levels and a complex priority scheme for the transac-

tions. A key advantage of this scheme is that it makes

efficient use of buffer space since different transactions

with varying buffer space requirements can share a common

buffer pool.

6.5 ANOTHER SIMULATION MODEL OF DSH-ll : THE P5L4 MODEL

A GPSS/360 simulation model of another DSH-ll configura-

tion with five processors and four storage levels is devel-

oped. This model is referred to as the P5L4 model. This

model revised the basic logic used in the PlL3 model to use

a deadlock-free buffer management scheme and to accomodate

four additional processors and an additional storage level.

The simple scheme of using separate buffers for different

transactions is used for the P5L4 model.

The first series of studies provides further insights to

the operation of the store-behind algorithms. It also shows

that level 4 storage may be too slow and its local bus may

not have engough bandwidth to support the amount of data

transfer activities at that level.

- 216 -



The second series of studies is aimed at obtaining a

well-balanced system. The degree of parallelism in the

lower storage levels are increased and the demand on the

buses is lowered by reducing the block sizes. A well-ba-

lanced system is obtained which is then used as the basic

system to study the effect of using projected 1985 technolo-

gies for DSH-ll. Results of these studies and their analy-

sis are presented in the following sections, after a brief

introduction to the P5L4 model and its parameters.

6.5.1 The P5L4 Model and its Parameters

The structure of the P5L4 model is very similar to that

of the PlL3 model. However, the basic component of the

model is quite different. The basic component of the P5L4

model is a facility and a number of data buffers, one for

each type of transaction comming into the storage level and

going out of the storage level. Figure 6.13(a) illustrates

the DSH-ll configuration that P5L4 is modelling, and Figure

6.13(b) illustrates the basic component of the model. A

flow chart of the P5L4 model logic is presented in Appendic

B. A listing of the P5L4 model is presented in Appendix C.

The parameters used in the P5L4 model are the same as

those used in the PlL3 model with the following exceptions.

(1) There are five processors, each with 10 degrees of mul-

- 217 -



-218-

Lbusl

KI

Figure 6.13(a) The P5L4 Configuration

IN
data buffers

request
processo

OUT

Figure 6.13(b) A Module in P5L4



DEGREE OF MULTIPROGRAMING OF A CPU =10

SIZES OF DATA BUFFERS = 10

DIRECTORY SEARCH TIME = 200 NANOSEC,

READ/WRITE TIME OF A L(1) STORAGE DEVICE = 100 NANOSEC.

READ/WRITE TIME OF A L(2) DEVICE = 1000 NANOSEC.

READ/WRITE TIME OF A L(3) DEVICE = 10000 NANOSEC.

BUS SPEED = 10 MHZ

BUS WIDTH = 8 BYTES

SIZE OF A TRANSACTION WITHOUT DATA = 8 BYTES

BLOCK SIZE AT L(1) = 8 BYTES
BLOCK SIZE AT L = 128 BYTES

BLOCK SIZE AT L(3) = 1024 BYTES

% READ REQUESTS = 70%

Z WRITE REQUESTS = 30%

CONDITIONAL PRCB. OF FINDING DATA IN A LEVEL

GIVEN THAT THE DATA IS NOT IN ANY UPPER LEVEL = P

Figure 6.14 Input Parameters to the P5L4 Model

-219-



tiprogramming (as opposed to 20 in the PlL3 model). (2)

There is a new storage level with 2 storage devices having

access times 10 times higher than those of the devices in

level 3. The parameters used in the P5L4 model are summar-

ized in Figure 6.14.

6.5.2 Preliminary Studies Using the P5L4 Model

A preliminary study using the P5L4 model is carried out

using several different locality levels and using the param-

eters listed in Figure 6.14. The simulated time is one mil-

lisecond (one million model time units). Results from these

studies are summarized in Figure 6.15. Figure 6.15(a) is a

table listing the throughput, mean response time, total

transaction wait time, total transaction execution time, and

'system utilization'. System utilization is defined as the

ratio of the product of the total number of transactions

completed and the mean response time to the product of the

simulated time and the maximum number of active requests

pending at all the processors. It indicates the percentage

time that DSH-ll is busy.

Figure 6.15(b) tabulates the utilizations of the buses

and the utilizations of typical storage devices at each sto-

rage level. The utilizations of all the memory request pro-

cessors and all the the storage level controllers are very

- 220 -



-221-

(a) Throughput, Response Time, etc.

(b) Utilizations

P gbus lbus1lbus2 lbus bus4 Ll L2 L3 L4

.50 92 .06 .30 .99 .94 .02 .11 .46 .99

160 .91 .06 .31 .991 .94: .03 .11 .46 .99

.70 .91 .07 .32 .99 .941 .041.13 .52 .88

.80 .88 .05 .26 .99 .94 .04 .10 .44 .92

.95 84 .04 .21 .99 .95 .04 .06 .51 .90

Figure 6.15 Preliminary Results of P5L4 Model



800 1

transactions per

millisecond

700-

600~

500

locality level
400-

.5 .6 9 .95

Figure 6.16 Throughput Vs. Locality Level
(P5L4 Preliminary Results)

-222-



mean response time
(microsecond)

I

N
N

'N

--0

\\

locality level

.5 .6 .7 .8 .9 .95

Figure 6.17 Mean Response Time Vs. Locality Level
(P5L4 Preliminary Results)

-223-



low. Figure 6.15 (b) shows that the devices and the local

buS at level 4 are satuarated for all. locality levels. The

local bus at level 3 is saturated but the devices at level 3

are only 50 percent utilized. Saturation of level 4 at low

locality levels is due to the large number of read-through

requests that has to be handled at that level. For example,

at a locality level of .5, one-fouth of all read requests

will be serviced by level 4. This creates a heavy burden on

the level 4 devices and on its bus. At high locality lev-

els, however, the number of read-through requests directed

to level 4 is rather small. For example, at a locality

level of .8, only .8 percent of all read requests are ser-

viced by Ivel I. The saturation of level 4 at high local-

ity levels is due to t-hE store-behind requests. At hiqh

locality levels, the number of write requests are much

higher, thus there is a high demand on level 4 to service

the corresponding store--behind requests. It seems that

level 3 storage devices have the capacity to handle the

read-through and store-behind requests at all locality lev-

els. However, the local bus at level 3 is saturated at all

locality levels. The bus saturation at level 3 is possibly

due to the store-behind requests. We shall discuss ways to

eliminate these performance bottlenecks in a later section.

- 224 -



Throughput data presented in Figure 6.15(a) is plotted as

a graph in Figure 6.16. Figure 6.16 shows that throughput

rises sharply starting from the .5 locality level, then its

follows a much slower rate of increase after the .7 locality

level. At a low locality level, throughput is low since a

large proportion of the read requests has to go to the

slower storage devices. As the locality level increases, a

large proportion of requests can be handled by the higher

storage levels. The higher storage levels are not heavily

utilized, thus they can complete the requests quickly. The

faster transactions can be completed, the faster new tran-

sactions can arrive since the model is a closed one. This

explains the sharp increase in throughput between .5 and .7

locality levels.

When the locality level is high, the rate of store-behind

transactions coming into the model becomes high. Since

there is a fixed proportion of reads and writes in the

request stream, the throughput at high locality levels

becomes limited by how fast the store-behind requests can be

serviced. Thus, at high locality levels, increasing the

locality level further will not produce a dramatic increase

in throughput.

The plot of mean response time in Figure 6.17 provides

further insights to the store-behind operations. Figure

- 225 -



6.17 shows that there is a discontinuity in the mean

response time curve between .6 and .7 locality levels. The

discontinuity may be explained as follows. As the locality

level increases, the rate of store-behind transactions com-

ing into the model also increases. Read operations become a

less dominar:t factor of system performance. There is a

pipeline of buffer slots for store-behind transactions- A

write request is completed as soon as it has completed a

write to its data cache and has placed a store-behind tran-

saction in the store-behind pipeline . The store-behind

transaction flows along the pipeline until- it is serviced

and temJiated by - level 4 storage evice. If a write

reque~ canno t fda slot (>iIn the store-behind pipeline, it

has to wait. At hi locaity .e'eIs, the store-behind

pipeline is full, hence, wri: e operations tend to incure a

larger wait time waiting for pipeline slots. It seems that

the store-behind pipelip is full after the .7 locality

level, causing long wait times by transactions, hence larger

mean response times for all. locality levels higher than .7.

The store-behind pipeline is rot full for all locality lev-

els below .7. Thus transactions have smaller mean response

time in these cases. This expains the difference in behav-

ior of the two mean response time curves.

- 226 -



The data seems to support this theory. Outputs from the

simulation runs shows that the pipeline is full for all

locality levels greater than and equal to .7. The total

transaction time column in Figure 6.15(a) shows that there

is a dramatic increase in the transaction wait time for all

cases with locality level above .7. The figure also shows

that the transaction wait time is a dominant portion of the

total transaction time. Since.mean response time is the

ratio of total transaction time to total number of completed

transactions, the more than doubling of the wait time going

from .6 to .7 locality level is the key factor in the sudden

increase in mean response time. The sudden increase in wait

time is due to the fact that the pipeline is just filled up,

new transactions begin to experience prolonged delays.

These preliminary studies have provided valuable insights to

the dynamics of the store-behind operation. We now have

gained enough understanding of the model to tune it for bet-

ter performance.

6.5.3 Tuning the P5L4 Model

Our objective in this next series of studies is to try to

obtain a well-balanced system. From the preliminary stu-

dies, we know that to .:educe mean response time we have to

increase the efficiency of the store-behind pipeline. One

approach to increase the efficiency of the pipeline is to

- 227 -



increase the parallelism of the lower storage levels, so

that the service times of the stages of the pipeline are

better balanced. The preliminary studies also reveal that

our initial choice of block sizes may not be appropriate for

the system.

The approach that is taken to obtain a well-balanced sys-

tem is as follows. The locality level is fixed at .9. Then

the degree of parallelism in level 3 is increased by a fac-

tor of 5 and that of level 4 is increased by a factor of 10.

This is accomplished by decreasing the effective service

times of the devices at these levels appropriately.

Finally, Cha model is run for several choices of block sizes

for the storage levels. The simulated time for these runs

are much longer than in the preliminary studies to ensure

that steady state behavior is observed. The results

obtained are summarized in Figure 6.18.

The first study uses the same block sizes as those used

in the preliminary studies. The results of this study are

summarized in column one which clearly shows that level 4 is

the bottleneck causing the very low throughput and high mean

response time. Note that the devices are not saturated.

This indicates that the block sizes are too large thus tie-

ing up the bus at level 4 during data transfer.

- 228 -



locality level = .90

b c sies (8,128,1024) (8,64,512) (8,64,256)

i throughput 176 458 721
(per _mg)

MRESP TIME
(ns) 258580 96260 60940

gbus util. .62 .67 .77

lbusl util. .02 .04 .07

lbus2 . .10 .15 .26

lbus3 " .67 .71 .84

lbus4 1.00 .99 .99

L1 .01 .04 .06

L2 " .03 07

L3 " .28 .27 .28

L4 " .17 .40 .83

Figure 6.18 Tuning the P5L4 Model

-229-



In the next study, the size of data transfer between

level 2 and level 3 and that between level 3 and level 4 are

reduced by one half. The results of this study are summar-

ized in column 2. The bus at level 4 is still a bottleneck.

There is significant improvement in the utilizations of

level 4 storage devices.

Next, the size of data transfer between level 3 and level

4 is halved. This produces a fairly well-balanced system.

The tesults are summarized in column 3. A throughput of 47

million operations per second with meanresponse time of 60

microseconds is obtained. The utilizations across storage

levels are wrell-balanced comparatively.

6.5.4 Comparing the Performance of DSH-ll using 1979
and 1985 Technologies

The well-balanced system obtained from the previous stu-

dies will be used as a basis for comparing the performance

of DSH-ll under 1979 and 1985 technology assumptions. The

parameters used in the 1979 case are exactly those used in

the well-balanced system of the previous studies. For the

1985 case, we will use a bus speed that is 5 times faster

than that used in the 1979 case. In general, the speeds of

the storage devices in the 1985 case will be faster. We

estimate that the level 1 storage devices will be twice as

fast in 1985 as in 1979. All other devices are estimated to

- 230 -



be 10 times faster in 1985 than in 1979. Lastly, we expect

1985 to produce better associative processors for directory

searching thus the directory search time will be reduced by

one half in 1985. These estimates will be incorproated in

the parameters for the 1985 case.

The model using 1979 technology assumptions is run for 4

different request streams with different proportions of

reads and writes. The model using 1985 technology assump-

tions is then run with the same 4 different request streams.

The locality level is fixed at .9 in both cases. The

results are summarized in Figure 6.19.

The throughputs for the two cases are plotted on the same

graph in Figure 6.20. In general, for both cases, through-

put increases as the proportion of read requests increases.

It can be inferred from the results that the throughput of

DSH-ll using 1985 technology is between 5 to 10 times better

than using 1979 technology. For a request stream with 70

percent read requests and 30 percent write requests, DSH-ll

using 1979 technology can support a throughput of .7 million

requests per second with a mean response time of 60 microse-

conds. For the same mix of requests, DSH-ll using 1985

technology can support a throughput of 4 million requests

per second with a mean response time of 10 microseconds.

- 231 -



-
1~~

% read TRUPTI MRESP gbus

i(per (ns) U.
i ms)

l1bus3lbusi bus
11 bus4

U. U. .I

.50 450 97580 .76 .06 .25 .84 .9

.70 721 60940 .771 .07 .2611 .84 .9

.80 1559 26790 .85 .10 .34 .91 .9

.90 3239 134401 .90 .14 .93 .C

9

9

Li
U.

.04

.06

L2 L3
U. U.

.1 .25

.11 .28

7 .11 18 .34

7 .23 .28 .35

(a) 1979 Technology

.70 43201 9940

.80 15040 2640

.90 22760 1760

(b) 1985 Technology

Thc11hi1

.79 .07

.96 .15

.95 .16

.28

.47

.47

bus3
U.

.82

lbusl
U.

.99

.86 .98

.97 .92

.96 .91

LI

Up

.13

L2

U.

.05

.20 .06

.64 .14

.99 .17

Figure 6.19 Comparing Performance of P5L4
Using Different Technologies

'.4
U.

.67

.65

.71

.83

L3

U.

.27

.28

.38

L4

U.

.35

.34

.28

.27 .34

i



-233-

throughput
(million per second)

1985
25

20

151

10

to

C

0
%read

.5

Figure 6.20 Throughput Vs. % Read
(Comparative Performace)

1979



6.6 SUMMARY

Two simulation models of the DSH-ll storage hierarchy

system are developed and used to understand the performance

characteristics of DSH-ll and its algorithms. The first

model is developed for a DSH-ll configuration with one pro-

cessor and three storage levels. Results from this model

uncovers an unsuspected deadlock potential in the DSH-ll

buffer management scheme. This leads to the development of

new buffer management schemes for DSH-ll. A second model is

developed for a DSH-ll configuration with five processors

and four storage levels. This model also makes use of a

deadlock-free buffer management scheme. Results from this

model provides :much insights to the performance implications

of the read-through and store-behind algorithms. After suf-

ficient understanding of the model is obtained, the model is

tuned for better performance. The resulting system is then

used as a basis for comparing the performance implication of

using different technology for DSH-l1.

Results from these simulation studies not only provide

valuable insights to the important dynamic behavior of

store-behind and read-through algorithms, they also provide

assurance that the DSH-ll is capable of supporting the

memory requirements of the INFOPLEX functional hierarchy.

- 234 -



Chapter VII

DISCUSSIONS AND CONCLUSIONS

7.1 INTRODUCTION

Database management is a major component of computer

usage. Adapting conventional computer architectures to sup-

port database management functions has several disadvan-

tages. Two major disadvantages have been recognized for

some time. These are (1) processor power limitation of

the conventional computer, and (2) the 'access gap' that

exists between main memory and secondary storage devices of

conventional computers.

Various approaches have been proposed to develop special-

ized architectures for database management. These

approaches have been discussed in Chapter 1. One of these

approaches is the INFOPLEX data base computer effort. INFO-

PLEX eliminates the processor power limitation by using mul-

tiple specialized functional processors and makes use of a

generalized storage hierarchy specifically designed for man-

aging very large databases. A major obstacle to realize

effective storage hierarchy systems has been the lack of

understanding of these systems and their algorithms. Previ-

- 235 -



ous studies of storage hierarchy systems have been focused

on systems with two or three storage levels, and usually for

program storage. This thesis is focused on the study of

generalized storage hierarchy systems for data storage,

referred to as data storage hierarchy systems. Theories and

models of data storage hierarchy systems are developed.

Formal definitions of data management algorithms for data

storage hierarchy systems are defined. Important properties

of data storage hierarchy systems have been analyzed in

detail to provide valuable insight for design of practical

data storage hierarchy systems. Designs for the INFOPLEX

data storage hierarchy are developed and protocols for real-

izing the read and write operations are specified. Finally,

simulation models for these designs are developed to assess

the feasibility of these designs for supporting the very

high transaction rates of INFOPLEX and to obtain better

understanding of the read-through and store-behind opera-

tions from a practical point of view.

7.2 SUMMARY OF THESIS

Chapter 1 of the thesis provides a framework for under-

standing the rationale behind various approaches to develop

specialized machines for data management. Major contribu-

tions of this thesis are also listed.

- 236 -



The background and motivation for this research is the

INFOPLEX data base computer project. Concepts of the INFO-

PLEX data base computer are presented in Chapter 2. An

example functional hierarchy and an example storage hier-

archy for INFOPLEX are used to illustrate some of these con-

cepts.

A preliminary design of the INFOPLEX data storage hier-

archy is proposed in Chapter 3. Design objectives and the

structure of the system are presented. Further design

issues that need to be resolved are also identified.

Formal modelling and analysis of data storage hierarchy

systems are presented in Chapter 4. It contains formal

proofs of the multi-level inclusion (MLI), the multi-level

overflow inclusion (MLOI), and multi-level paging anomaly

(MLPA) properties of data storage hierarchy systems.

The preliminary design of the INFOPLEX data storage hier-

archy system presented in Chapter 2 is simplified in Chapter

5. This simplified design is then used to develop protocols

for supporting the read and write operations. Specifica-

tions for these protocols are presented in Chapter 5.

A simulation model of the INFOPLEX data storage hierarchy

system with one functional processor and three storage lev-

els is developed in Chapter 6. Results from this simulation

- 237 -



model are analyzed. Insights from these analysis lead to

some design changes. Another simulation model of the INFO-

PLEX data storage hierarchy is then developed. This model

incorporates five functional processors and four storage

levels. Results from this model are analyzed and reveal

further interesting properties of the design and of the data

management algorithms. The impacts of using projected 1985

technology are also assessed.

7.3 DIRECTIONS FOR FURTHER RESEARCH

This thesis has provided a theoretic framework for formal

analysis of data storage hierarchy systems. Using this

framework, several important properties of data storage

hierarchy systems that have performance and reliability

implications are studied in detail. This work also opens up

many areas for further investigation. Do the properties of

data storage hierarchy systems proved in this thesis hold

for systems using any stack algorithm (Mattson et. al.,

1970)? What are the effects of introducing the two-level

store-behind algorithm into the system? Are the conditions

for avoiding the multi-level paging anomaly (MLPA) also

necessary conditions, i.e., what are the causes of MLPA?

These are interesting and important questions. The formal

basis developed in this thesis will be a major steping stone

toward resolving these open questions.

- 238 -



The preliminary design of the INFOPLEX data storage

hierarchy can be used to develop algorithms that improve the

efficiency and reliability of the data storage hierarchy.

The automatic data repair algorithms introduced in Chapter 3

are particularly interesting and promising. A number of

other design issues are discussed but left as open issues.

For example, the multi-cache consistency problem by itself

is a subject of great importance but still quite lacking of

theoretic basis for analysis.

The simulation results reveal several important proper-

ties of the design and of the algorithms that are quite

unexpected. The deadlock potential in the initial design

can be corrected quite easily. The fact that the store-be-

hind operation can be a system bottleneck is not anticipated

before. It has been argued in the past that store-behind

operations take place during system slack periods thus do

not adversly impact system performance. A number of alter-

native schemes can be developed to improve the efficiency of

the store-behind operation. May be we can separate the read

only data from the read/write data and keep the read/write

data higher up in the data storage hierarchy system. This

would reduce the store-behind traffic to lower storage lev-

els. The implications of this type of data management stra-

tegy remain uncharted.

- 239 -



Some of these issues are currently being addressed as

part of the INFOPLEX research effort (Abraham, 1979).

- 240 -



REFERENCES

(Abe, 1977) : Abe, Y., 'A Japanese On-line Banking System',
Datamation, September 1977, 89-97.

(Abraham, 1979): Abraham, M. J., ' Properties of Reference
Algorithms for Multi-level Storage Hierarchies', Masters
Thesis, M.I.T. Sloan School of Management, Cambridge,
Mass.,June 1979.

(Ahearn et. al., 1972) Ahearn, G.P., Dishon, Y., and
Snively, R.N., 'Design Innovations of the IBM 3830 and
2835 Storage Control Units', IBM Journal of Research and
Development 16, 1 (January, 1972), 11-18.

(ANSI, 1975) : ANSI, 'Interim Report of ANSI/X3/SPARC group
on Database Management Systems', ANSI, February, 1975.

(Armenti et. al., 1970) : Armenti, A., Galley, S.,
Goldberg, R., Nolan, J., and Scholl, A., 'LISTAR -
Lincoln Information Storage and Associatve Retrieval
System', AFIP Conference Proceedings, 36, (1970),
313-322.

(Arora and Gallo, 1971) : Arora, S.R., and Gallo, A.,
'Optimal Sizing Loading and Reloading in a Multi-level
Memory Hierarchy System', Spring Joint Computer
Conference, 1971, 337-344.

(Bachman, 1975) : Bachman, C., 'Trends in Database
Management - 1975', AFIP Conference Proceedings, 44,
(1975), 569-576.

(Banerjee et. al., 1978) : Banerjee, J., Hsiao, D.K., and
Baum, R.I.,~rConcepts and Capabilities of a Database
Computer', ACM Trans. on Database Systems, 3, 4
(December, 1978), 347-384.

(Banerjee et. al., 1979) : Banerjee, J., Hsiao, D.K., and
Kannan, K., 'DBC - A Database Computer for Very Large
Databases', IEEE Trans. on Computers, C-28, 6 (June
1979), 414-429.

- 241 -



(Belady, 1966) : Belady, L.A., 'A Study of Replacement
Algorithms for a Virtual-storage Computer', IBM Systems
Journal, 5, 2, (1966), 78-101.

(Belady et. al., 1969) : Belady, L.A., Nelson, R.A., and
Shedler, G.S., 'An Anomaly in Space-time Characteristics
of Certain Programs Running in a Paging Machine', Comm.
ACM, 12, 6, (June, 1969), 349-353.

(Bensoussan et. al., 1969): Bensoussan, A., Clingen, C.T.,
and Daley, R.C., 'The MULTICS Virtual Memory', Second
Symposium on Operating Systems Principles, Princeton
University, October 1969, 30-42.

(Canaday et. al., 1974) : Canaday, R.H., Harrison, R.D.,
Ivie, E.L., Ryder, J.L., and Wehr, L.A., 'A Back-end
Computer for Database Management', Comm. ACM, 17,10
(October 1974), 575-584.

(Censier and Feautrier, 1978) : Censier, L.M., and
Feautrier, P., 'A New Solution to Coherence Problems in
Multicache Systems', IEEE Trans. on Computers, C-27, 12
(December, 1978), 1112-1118.

(Chen, 1973) : Chen, P.P., 'Optimal File Allocation in
Multi-level Storage Systems', Proceedings National
Computer Conference, June 1973.

(Codasyl, 1971) : Codasyl, 'Data Base Task Group, April
1971 Report', ACM, New York, 1971.

(Codd, 1970) : Codd, E.F., 'A Relational Model of Data for
Large Shared Data Banks', Comm. ACM, 13, 6 (June 1970),
377-387.

(Codd, 1974) : Codd, E.F., 'Recent Investigations in
Relational Database Systems', Information Processing 71,
North Holland Publishing Company, 1974.

(Computerworld, 1976) : Computerworld, 'Reliability Seen
Key to TWA Reservations System', Computerworld, September
6, 1976, 22.

(Conti, 1969) : Conti, C.J., 'Concepts for Buffer Storage',
IEEE Computer Group News, March 1969, 6-13.

(Considine and Weis, 1969): Considine, J.P., and Weis,
A.H., 'Establishment and Maintenance of a Storage
Hierarchy for an Online Database Under TSS/360', Fall
Joint Computer Conference, 35 (1969), 433-440.

- 242 -



(Copeland et. al., 1973) : Copeland, G.P., Lipovski, G.J.,
and Su, S.Y.W., 'The Architecture of CASSM: A Cellular
System for Non-numeric Processing', Proceedings of First
Annual Symposium on Computer Architecture, December,
1973, 121-128.

(Datamation, 1978) Datamation, December, 1978, 230.

(Denning, 1970) : Denning, P.J., 'Virtual Memory', ACM
Computing Surveys, 2, 3 (September 1970), 153-190.

(Dennis et. al., 1978) Dennis, J.B., Fuller, S.H.,
Ackerman, W.B., Swan, R.J., and Weng, K., 'Research
Directions in Computer Architecture', M.I.T. Laboratory
for Computer Sciences, LCS-TM-114, September, 1978.

(Dijkstra, 1968) : Dijkstra, E.W., 'The Structure of T.H.E.
Multiprogramming System', Comm. ACM, 11, 5 (May 1968).

(Donovan and Jacoby, 1975) : Donovan, J.J., and Jacoby,
H.D., 'A Hierarchical Approach to Information System
Design', CISR-5, Sloan School of Management, MIT, January
1975.

(Easton, 1978): Easton, M.C., 'Model for Database Reference
Strings Based on Behavior of Reference Clusters', IBM
Journal of Research and Development, 22, 2 (March, 1978),
197-202.

(Folinus et. al., 1974) : Folinus, J.J., Madnick, S.E., and
Schutzman, H., 'Virtual Information in Database Systems',
Working Paper CISR-3, Sloan School of Management, MIT,
July 1974.

(Franaszek and Bennett, 1978) : Franaszek, P.A., and
Bennett, B.T., 'Adaptive Variation of the Transfer Unit
in a Storage Hierarchy', IBM Journal of Research and
Development, 22, 4, (July, 1978), 405-412.

(Franklin et. al., 1978) : Franklin, M.A., Graham, G.S.,
and Gupta, R.K., 'Anomalies with Variable Partition
Paging Algorithms', Comm. ACM, 21, 3, (March, 1978),
232-236.

(Goldberg, 1974) : Goldberg, R.P., 'The Double Paging
Anomaly', Proceedings National Computer Conference, 1974,
195-199.

(Greenberg and Webber, 1975) : Greenberg, B.S., and Webber,
S.H., 'MULTICS Multilevel Paging Hierarchy', IEEE
INTERCON, 1975.

- 243 -



(Haagens, 1978) : Haagens, R.B., 'A Bus Structure for
Multi-Microprocessing', Masters Thesis, M.I.T. Department
of Electrical Engineering, Cambridge, Mass., January,
1978.

(Hakozaki et. al., 1977) : Hakozaki, K., Makino, T.,
Mizuma, M., Umemura, M., and Hiyoshi, S., 'A Conceptual
Design of a Generalized Database Subsystem', Proc. Very
Large Data Bases, 1977, 246-253.

(Hatfield, 1972) Hatfield, D.J., 'Experiments on Page
Size, Program Access Patterns, and Virtual Memory
Performance', IBM Journal of Research and Development,
16, 1 (January 1972), 58-66.

(Hatfield and Gerald, 1971) : Hatfield, D.J., and Gerald,
J., 'Program Restructuring for Virtual Memory', IBM
Systems Journal, 10, 3, (1971), 168-192.

(Healy et. al., 1972) : Healy, L.D., Doty, K.L., and
Lipovski, G.J., 'The Architecture of a Context Addressed
Segment Sequential Storage', AFIPS Conference
Proceedings, 41, (1972), 691-701.

(Hoagland, 1979) Hoagland, A.S., 'Storage Technology:
Capabilities and Limitations', Spring COMPCON, 1979,
60-64.

(Hsiao and Kannan, 1976) : Hsiao, D.K., and Kannan, K.,
'The Architecture of a Database Computer - Part II: The
Design of Structure Memory and its Related Processors',
OSU-CISRC-TR-76-e, Ohio State University, December 1976.

(Huff and Madnick, 1978) : Huff, S.L., and Madnick, S.E.,
'An Approach to Constructing Functional Requirement
Statement's for System Architectural Design', M.I.T. Sloan
School of Management, C.I.S.R. Internal Report No.
P010-7806-06, (June 1978).

(Johnson, 1975) : Johnson, C., 'IBM 3850 - Mass Storage
System', AFIPS Conference Proceedings, 44, (1975),
509-514.

(Johnson J, 1975) : Johnson, J., 'Program Restructuring for
Virtual Memory Systems', MIT Project MAC, TR-148, March,
1975.

- 244 -



(Katsuki et. al., 1978) : Katsuki, D., Elsam, E.S., Mann,
W.F., Roberts, E.S., Robinson, J.G., Skowronski, F.S.,
and Wolf, E.W., 'Pluribus - An Operational Fault-Tolerant
Multiprocessor', Proceedings of the IEEE, 66, 10 (October
1978), 1146-1159.

(Lam and Madnick, 1979) Lam, C.Y., and Madnick, S.E.,
'INFOPLEX Data Base Computer Architecture - Concepts and
Directions', MIT Sloan School Working Paper No. 1046-79
(also as CISR Working Paper No. 41), 1979.

(Lang et. al., 1977) : Lang, T., Nahouraii, E. Kasuga, K.
and Fernadez, E.B., 'An Architectural Extension for a
Large Database System Incorporating a Processor for Disk
Search', Proc. Very Large Data Bases, 1977, 204-210.

(Langdon, 1978) : Langdon G.G. Jr., 'A Note on Associative
Processing for Data Management', ACM Trans. on Database
Systems, 3, 2 (June 1978), 148-158.

(Lin et. al., 1976) Lin, S.C., Smith, D.C.P., and.Smith,
J.M. 'The Design of a Rotating Associative Memory for
Relational Database Applications'. ACM Trans. on
Database Systems, 1, 1 (March 1976), 53-75.

(Lum et. al., 1975) Lum, V.Y., Senko, M.E., Wang, C.P.,
and Ling, H., 'A Cost Oriented Algorithm for Data Set
Allocation in Storage Hierarchies', Comm. ACM, 18, 6,
(June, 1975), 318-322.

(Madnick, 1970) Madnick, S.E., 'Design Strategies for
File Systems', MIT Project MAC Report No. TR-78, October
1970.

(Madnick, 1973) Madnick, S.E., 'Storage Hierarchy
Systems', MIT Project MAC Report No. TR-105, 1973.

(Madnick, 1975a) Madnick, S.E., 'Design of a General
Hierarchical Storage System', IEEE INTERCON Proceedings,
1975, 1-7.

(Madnick, 1975b) Madnick, S.E., 'INFOPLEX - Hierarchical
Decomposition of a Large Information Management System
Using a Microprocessor Complex', Proceedings National
Computer Conference, 44, (May 1975), 581-587.

(Madnick, 1977) : Madnick, S.E., 'Trends in Computers and
Computing: The Information Utility', Science, 195, 4283
(1973), 1191-1199.

- 245 -



(Madnick, 1979): Madnick, S.E., 'The INFOPLEX Database
Computer: Concepts and Directions', Proceedings IEEE
Computer Conference, February 26, 1979, 168-176.

(Madnick and Alsop, 1969) : Madnick, S.E., and Alsop, J.
'A Modular Approach to File System Design', Spring Joint
Computer Conference Proceedings, 34 (May 1969), 1-14.

(Madnick and Donovan, 1974) : Madnick, S.E., and Donovan,
J.J., Operating Systems, McGraw-Hill, New York, 1974.

(Marill and Stern, 1975) : Marill, T., and Stern, D., 'The
Datacomputer - a Network Data Utility', AFIPS Conference
Proceedings, 44 (975), 389-395.

(Martin, 1975) : Martin, J., Computer Data Base
Organization, Prentice-Hall, New York, 1975.

(Mattson, 1971) : Mattson, R.L., 'Evaluation of Multilevel
Memories', IEEE Transactions on Magnetics, Vol. MAG-7,
No. 4 (DEcember, 1971), 814-819.

(Mattson et. al., 1970) : Mattson, R.L., Gecsei, J., Slutz,
D.R., and Traiger, I.L., 'Evaluation Techniques for
Storage Hierarchies', IBM Systems Journal, 9, 2 (1970),
78-117.

(McCabe, 1978): McCabe, E.J., 'Locality in Logical Database
Systems: A Framework for Analysis', Masters Thesis,
M.I.T. Sloan School of Management, Cambridge, Mass., July
1978.

(Meade, 1970): Meade, R.M., 'On Memory System Design',
AFIPS Conference Proceedings, 37 (1970), 33-43.

(Mohan, 1978) : Mohan, C., 'An Overview of Recent Data Base
Research', DATABASE, Fall 1978, 3-24.

(Mueller, 1976) : Mueller, G., Computer, 9, 12 (December
1976), 100.

(Ozkarahan et. al., 1975) : Ozkarahan, E.A., Schuster,
S.A., and~Smith, K.C., 'RAP - Associative Processor for
Data Base Management', AFIPS Conference Proceedings, 44,
(1975), 379-388.

(Ozkarahan et. al., 1977) : Ozkarahan, E.A., Schuster,
S.A., and Sevcik, K.C., 'Performance Evaluation of a
Relational Associative Processor', ACM Trans. on Database
Systems, 2, 2 (June, 1977), 175-195.

- 246 -



(Parnas, 1976) : Parnas, D.L., 'On The Design and
Development of Program Families', IEEE Transactions on
Software Engineering, SE-2-1, March 1976.

(Pattee, 1973) Pattee, H.H., Hierarch Theory: The
Challenge of Complex Systems, George Brazillier, New
York, 1973.

(Ramamoothy and Chandy, 1970) : Ramamoorthy, C.V., and
Chandy, K.M., 'Optimization of Memory Hierarchies in
Multiprogrammed Systems', Journal of the ACM, July 1970.

(Robidoux, 1979): Robidoux, S.L., 'A Closer Look at
Database Access Patterns', Masters Thesis, M.I.T. Sloan
School of Management, Cambridge, Mass., June, 1979.

(Rodriguez-Rosell, 1976): Rodriguez-Rosell, J., 'Empirical
Data Reference Behavior in Data Base Systems', Computer,
November, 1976, 9-13.

(Scherr, 1973) : Scherr, A.L., 'Functional Structure of IBM
Virtual Storage Operating Systems Part II : OS/VS2-2
Concepts and Philosophies', IBM Systems Journal, 12, 4
(1973), 382-400.

(Schuster, 1978) : Schuster, S.A., 'Data Base Machines',
Proceedings of the Conference on Computing in the 1980's,
1978, 125-131.

(Schuster et. al., 1976) : Schuster, S.A., Ozkarahan, E.A.,
and Smith, K.C., 'A Virtual Memory System for a
Relational Associative Processor', Proceedings National
Computer Conference, 1976, 855-862.

(Schuster et. al., 1979) : Schuster, S.A., Nguyen, H.B.,
Ozkarahan, E.A., and Smith, K.C., 'RAP.2 - An Associative
Processor for Databases and Its Applications', IEEE
Trans. on Computers, C-28, 6 (June 1979), 446-458.

(Senko, 1976) : Senko, M.E., 'DIAM II: The Binary
Infological Level and its Database Language - FORAL',
Proceedings of the ACM Conference on Data. March 1976,
1-21.

(Simonson and Alsbrooks, 1975) : Simonson, W.E., and
Alsbrooks, W.T., 'A DBMS for the U.S. Bureau of the
Census', Proc. Very Large Data Bases, 1975, 496-497.

- 247 -



(Smith, 1978a) : Smith, A.J., 'Directions for Memory
Hierarchies and their Components: Research and
Development', IEEE Proceedings COMPSAC, 1978, Chicago,
704-709.

(Smith, 1978b): Smith, A.J., 'Sequentiality and Prefetching
in Data Base Systems', ACM Trans. on Database Systems,
September, 1978.

(Soltis and Hoffman, 1979) : Soltis, F.G., and Hoffman,
R.L., 'Design Considerations for the IBM System/38',
Spring COMPCON, 1979, 132-137.

(Su, 1977) : Su, S.Y.W., 'Associative Programming in CASSM
and its Applications', Proc. Very Large Data Bases, 1977,
213-228.

(Su and Lipovski, 1975) : Su, S.Y., and Lipovski, G.J.,
'CASSM: A Cellular System for Very Large Databases',
Proc. Very Large Data Bases, September 1975, 456-472.

(Su et. al., 1979) : Su, S.Y.W., Nguyen, L.H., Emam, A.,
and Lipovski, G.J., 'The Architectural Features and
Implementation Techniques of the Multicell CASSM', IEEE
Trans. on Computers, C-28, 6 (June 1979), 430-445.

(Tang,1976) : Tang, C.K., 'Cache System Design in the
Tightly Coupled Multiprocessor System', Proceedings
National Computer Conference, 1976, 749-753.

(Toh et. al., 1977) : Toh, T., Kawazu, S., and Suzuki, K.,
'Multi-Level Structures of the DBTG Data Model for an
Achievement of the Physical Independence', Proc. Very
Large Data Bases, 1977, 403-414.

(Yeh et. al., 1977) : Yeh, R.T., and Baker, J.W., 'Toward a
Design Methodology for DBMS: A Software Engineering
Approach', Proc. Very Large Data Bases, 1977, 16-27.

- 248 -



Appendix A

LISTING OF THE PlL3 MODEL

- 249 -



CONVERSATIONAL MONITOR SYSTEM

//LAM1 JOB LAM,MPROFILE='RETURN',
// PROFILE=' HIGH',
// TIME=2

PA SS WOD
//GPSS PROC
//C EXEC PGt=DAG1,TIME=2
//STEPLIB DD DSN=ICTLUCK.LIBRARY.GPSS.LOAD,DISP=SHR
//DOJTPUT DD SYSOUT=PRiLFILE=RETURH, DCB=BLKSIZE=931
//DINTERO DD UNIT=SCRATCH,SPACE=(CYL, (1,1)) ,DCB=BLKSIZE=1880
//DSYMTAB DD UNIT=SCRATCH,SPACE= (CYL, (1,1)),DCB=BLKSIZE=7112
//DREPTGEN DD UNIT=SCEATCH,SPACE=(CYL, (1,1)),DCB=BLKSIZE=800
//DINTWORK DD UNIT=SCRATCH,SPACE=(CYL, (1,1)),DCB=BLKSIZE=2680
// PEND
//STEP1 EXEC GPSS,PARM=C
//DINPUT1 DD *

* *

* TRANSACTION PARAMETER USAGE
* *
* Pl CPU IDENTIFIER *
* P2 ARRIVAL TIME *
* P3 COMPLETION TIME *
* P4 TOTAL EXECUTION TIME *
* P5 TOTAL ELAPSED TIME *
* P6 TOTAL WAIT TIME *
* P7 SERVICE TIME *
* P11 DUMMY *
* *

*

NTXN EQU o1,X NUMBER OF TXNS PROCESSED
SUMX EQU 02,X EXECUTICN TIME OF ALL TXNS
SUMo IQU 03,X QUEUE TIME OF ALL TXNS
SUMW EQU 04,X ELAPSED TIME OF ALL TXNS

*

MAIMP EQU 05,X DEGREE OF CPU MULTIPLROGRAMMING
NREAD EQU 06,X PARTS IN THOUSAND OF READ TXNS
NWPIT EQU 07,X PARTS IN THOUSAND OF WRITE TXNS

*
PIN1 EQU 08,X PROD OF FINDING READ DATA IN L(1)
PIN2 EQU 09,X PROB OF FINDING READ DATA IN L(2)
PIN3 EQU 10 ,X PROD OF FINDING READ DATA IN L (3)

*

POV1 EQU 11,X PROB OF OVERFLOW FROM L(1)
POV2 EQU 12,X PROD OF OVERFLOW FROM L(2)
POV3 EQU 13,X PROD OF OVERFLOW FROM L(3)

*

* MAXIMUM DATA QUEUE LENGTHS *
*******************4***************************** *****************
*

DXM1I EQU 14,X
DYM11 EQU 15,X
DIM12 EQU 16,X
DYM12 EQU 17,X

-250-

FILE: GPSS1 VS1JOB D1



CONVERSATIONAL MONITOR SYSTEM

DXN 13 EQU
DT13 EQU

*
DX521 EQU
DYEh2l EQU
DXH22 EQU
DY H22 EQU

*
DIM31 EQU
DY131 EQU
DX?132 EQU
DY32 EQU

Kl EQU
EQU

KXM2 EQU
KY112 EQU

KXM3
KYM3

*

EQU
EQU

RXN2 EQU
RY82 EQU

RXM3 EQUJ
PYK3 EQU

18,X
19,X

20,X
21,X
22,X
23, X

24,X
25,X
26,X
27,X

28,X
29,X

30,X
31,X

32,X
33,X

34,X
35,X

36, X
37,X

***** **** *******************************************************
* CURRENlT LENGTHS OF DATA QUEUES *
********************************$************* *** *****************
*

DXL11 EQU
DYL11 EQU
DXL12 EQU
DYL12 EQU
DIL13 EQU
DYL13 EQU

*

DYL21 EQU
DYL21 EQU
DXL22 EQU
DYL22 EQ a

*

DXL31 EQU
DYL31 EQU
DXL32 EQUJ
DYL32 EQU

*

KILl EQU
KYLl EQU

*.

KXL2 EQU
KTL2 EQU

*

38,X
39,1
40,X
41,X
42-,X
43,X

44,1
45,X
46,X
47,X

48,X
49,X
50,X
51,X

52,X
53,X

54,X
55,X

-251-

FILE: GPSS1 VS1JOB8 Di



FILE: GPSS1

KXL3 EQU
KYL3 EQU

RXL2 EQU
RYL2 EQU

*

RXL3 EQU
RYL3 EQU

CONVERSATIONAL MONITOR SYSTEM

56,X
57,X

58,X
59,X

60,X
61,X

* SERVICE TIMES OF DEVICES, BUSES, PROCESSORS *
***** ************************************************************

DEX11 EQU 62,X L(1) STORAGE SERVICE TIME
DEX12 EQU 63,X
DEX13 EQU 64,X
DEX21 EOU 65,X L(2) STORAGE SERVICE TIMES
DEX22 EQU 66,X
DEX31 EQU 67,X L(3) STORAGE SERVICE TIMES

68,X
69,X
70 X
71,X
7 2,X
73,X
74,X
75,X

BUS SERV TIME L(1)
BUS SERV. TIME L(2)
BUS-SERV. TIME L(3)
BUS SERV. TIME FOR MSG
LEVEL CONTROLLER (K) SERVICE
MEMORY REQUEST PROCESSOR (R)

TIME
SERVICE TIME

*********4c*************************************** ****************

* VARAIBLE DEFINITIONS

(X$5UM W/X$NTXN)
P3-P2

MEAN RESPONSE TIME
TXN ELAPSED TIME

P3-P2-P4 TXN WAIT TIME
P4
(X$KXL1'L'X$KXM1)*(X$KXL2'LIX$KXM2)*FNU$GBUS
(X$DYL11'L'X$DYM11)*FNUSDRP11
(X$KXL1'L'X$KXM1) *FNU$LBUS1
(X-DYL21'L'X$DYM21) *FN U$DRP21
(X$DYL22' L' X$DYM22) *FN$USDRP22
(X$KXL2'L'X$KXM2) *FNU$LBUS2
(X$KYL24L' X$KYM2) *FNU$KRP2
(X$KXL1'L'X3KXM1)*FNU$GBUS
(X$DXL1 1 L' X$ DX311) *FNU$LBUS1
(X$DYL31'L'XSDY131) *FNU$DRP31
(X$DYL32' Ll X$DYM32) *FNU$DEP32
(X$KXL3'L'X$KXM3)*FNU$LBUS3
(X$KYL3' L' X$KYM3) *FNU$KRP3
(X$RXL2'L'X3PXM2) *FNU$LBUS2
(X$RYL2L' X$rYM2) *FNU$RRP2
(X$DXL21aLOX$DXM21) *FNU$LBUS2
(X$DXL22'L'X$DXM22) *FNU$LBUS2

-252-

DEX32
BEXD1
BEXD2
BXD3
BEXM
KEX
PEX
TIMER

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

MRESP
TXNW
TXNQ
TXNX
RTOK
BV Al
BVA2
BVA3
BVA21
BV A4
BVA5
BVA6
BVA7
BV AB
BVA22
BVA9
BVA10
BVA 11
BVA12
BVA13
oVA2 3

FVARIABLE
VARIABLE
VARIABLE
VARIABLE
BVARIABLE
DVAPIABLE
BVARIABLE
BVARIABLE
BVARIAULE
BVARIABLE
BVARIABLE
BVARIABLE
BVAEIABLE
BVARIABLE
BVAPIABLE
BV AR IABLE
BVARIABLE
BVARIABLE
BVARIABLE
BVARIABLE
BVARIABLE

VS1JiOB D3



CONVERSATIONAL MONITOR SYSTEM

BVA14 BVARIABLE
BVA15 BVARIABLE
BVA16 DVARIABLE
BVA17 BVARIABLE
BVA18 BVARIABLE
BTA19 BVARIABLE
BVA24 BVARIABLE
BVA20 BVARIABLE

(X$KYL1'L'X$KYM1)*FNU$KRP1
(X$KXL2'L X$KXM2) *FNU$GBUS
(X$KXL3' L'XSKXM3) *FNU$GBUS
(X$RXL3'L' X$RIM3) *FNU$LBUS3
(XSEYL3'L'X$RYM3)*FNU$RRP3
(XSDXL31'L'X$DXfi31)*FNUSLBUS3
(X$DXL32'L'X$DXM32) *FNU$LBUS3
(X$KYL1'L'X$KYN1)*FNU$NRP1

********************************************** *******************
* *

* QTABLE DEFINITIONS - DISTRIBUTIONS OF QUEUE LENGTHS *
* - -*

*

* FUNCTION DEFINITIONS
*

VICHNV FUNCTION P1,D3
2,vWW11/3,WW12/4,WWW13

VICHA FUNCTION P1,D3
2,AAA11/3,AAA12/4,AAA13

* TABLE DEFINITIONS - DISTRIBUTIONS OF TXN ELAPSED TIME, *
* WAIT TIME *
* *
********************************************** *******************

TlNN TABLE
TXKQ TABLE
TINX TABLE

V$TXNW, 100,100, 100
V$TXNQ, 100, 100, 100
V$TXNX,100,100,100

********************************************* **** ****************

* INITIALIZE CONSTANTS

X$MAXMP,20
X$N1READ,700
X$NWRIT,300
X$PIN1,400
X$PIN2,400
X$PIN3,1000
X$PcV1,500-
X$POV2,500
X$DX11, 10

DEGREE OF MULTIPROGRAMMING OF A CPU
% READ TXN
% WRITE TXN
PROB OF FINDING READ DATA IN L(1)
PROB OF NOT IN L(1) AND IN L(2)
PRCB OF FINDING DATA IN L(3)
PROB OF OVERFLOW FROM L(1)
PROB OF OVERFLOW PROM L(2)
MAXIMUM DATA QUEUE LENGTH

-253-

INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

FILE: GPSS1 VS1JOB Dl



CONVERSATIONAL MONITOR SYSTEM

INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
I NIT IA L
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

X$DYm11 ,10
X$DXM12, 10
X$DYM12, 10
X$DXM13, 10
X$DYM13, 10
XSDXM21, 10
X$DYM21,10
X$DXYM22,10
X$DYM22,10
X$DXM31,10
X$DYM31,10
X$DXM32,10
X$DYM32,10'
X$KXM1,10
XSKYM1,10
X$KXM2,10
X$KYM2,10
X$KXM3,10
X$KYM3,10
X$RXM2,10
X$RYM2,10
X$RXM3,10
X$RYM3,10
X$DEX11,100
X$DEX12,100
X$DEX13,100 -
X.ADLX21,1000
X$DEX22, 1000
X3DEX31,10000
X$DEX32, 10000
X$BEXD1,100
X$BEXD2,1600
X$qEXM,100
X$KEX,100
X3 REX, 200
X$TIMER,10C0000

ACCESS TIME

ACCESS TIME

D21

D31

IN NANOSEC

IN NANOSEC

BUS SERV. TIME IN NANOSEC

L(I) CONTR. P. SERV. TIME IN NANOS
REQ. P. SERVICE TIME IN NANOS
SIMULATION TIME

* *
* MACRO -UTX *
* *
** ** **** **** ** *** *** ** *** *** ******

UTI STARTMACRO
SEIZE #A
DEPART #B
ASSIGN 4+,#C
ASSIGN 7,;C
ADVANCE P7
RELEASE #A
ENDMACRO

******* ** *** ****** *** **********

-254-

ACCESS TIME OF D11 IN NANOSEC

FILE: GPSS1 VS100B DS5



CONVERSATIONAL MONITOR SYSTEM

* *
* HACRO - UQTQ *
* *

UQTQ STARTMACRO
QUEUE #A
SEIZE #B
DEPART #A
ASSIGN 4+,#D
ASSIGN 7,#D
ADVANCE P7

-RELEASE #B
QUEUE #C
ENDMACRO

* *

* MACRO - UQT *
* *
*********** **************

UQT STARTHACRO
QUEUE #A
SEIZE #B
DEPART #A
ASSIGN 4+,#C
ASSIGN 7,#C
ADVANCE P7
RELEASE #B
ENDMAChO

*** ********* ** **** **** **** * ****

* *

* MACRO - UQDQ *
* *

UQDO STARTMACRO
QUEUE tA
TEST E #G,1
SAVEVALUE #D,1
SaIZE tE
DEPART #A
SAVEVALUE #B,1
ASSIGN 4+,#F
ASSIGN 7,#F
ADVANCE P7
RELEASE tE
QUEUE #C
ENDMACRO

4*41******* *** ** ** ***
* *

-255-

FILE: GPSS1 VS1JOB D4



FILE: GPSS1 VS1JOB D7

* MACRO - UQD *
* *
***** ***4** ****************

CONVERSATIONAL MONITOR SYSTEM

UQD STARTMlACRO
QUEUE
TEST E
SAVEVALUE
SEIZE
DEPART
SAVEVALUE
ASSIGN
ASSIGN
ADVANCE
RELEASE
ENDMACRO

*
* MACRO - FINI
*

FINI STAFTMACRO
MARK
S AVEVALUE
S AVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
TABULATE
TABULATE
TABULATE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ENDMACRO

#A
#G,1
#D,1
4E
#A
#B, 1
4+,#F
7,#F
P7

NTXN+, 1
SU MX+,V$TXNX
SUMQ+,VZTXNQ
SUMW+,V$TXNW
MEESP,V$mBESP
TXNW
TXNQ
TXNX
1,0
2,0
3,0
4,0
5,0
6,0

SIMULATE
*************************** ********

* CPU #1

CPU1 GENERATE ,,,X$MAXMP,,,F

* START FOR CPU1 TXNS *

STAR1 PRIORITY 9
MARK 2
ASSIGN 1,1

SET HIGH PRIORITY
ARRIVAL TIME OF TIN
SET CPU ID = 1

-256-



CONVERSATIONAL MONITOR SYSTEM

TRANSFER .X$NREADWWW1,R.R1
* ** **********************
* READ TXN FROM CPU1 *

READ OR WRITE TXN?

RRR1 QUEUE DIQ1 READ TXN-
SEIZE DRP11
DEPART DIQl
PRIORITY 0 RESET PRIORITY
ASSIGN 4+,X$REI TIME FOR DIRECTORY SEARCH
ASSIGN 7,X$REX
ADVANCE P7
RELEASE DRP11
TRANSFER .X$PIN1,NIN11,IND11 IS DATA IN L(i)?

*************** **********

* READ TXN FROM CPU1 *
* IS SATISFIED IN L(l) *

IND11 ASSIGN 11,0

* READ DATA FROM D11 *
*********,*********** ****

DIQ11,DRP11,X$DEX11

* USE FINI MACRO *
* THE TXN IS COMPLETED *

FINI MACRO
TRANSFER ,STAR1

*************,****** ******

* READ TXN FROM CPU1 IS *
* NOT SATISFIED IN L(1) *

**** **** *** ***** *** ****

NIN11 QUEUE

THE TIN BECOMES A NEW TIN

D0011

* USE UTX TO USE *
* THE LCCAL BUS LBUS1 *

UTX MACRO LBUS1,DOQ1,X$BEXM
TRANSFER ,COMR GO TO COMMON CODE FOR READ

* WRITE TXN FROM CPU1 *
***** ********************

WW1 QUEUE DIQl1
TEST E BV$BVA1,1
SAVEVALUE DYL11+,1
SEIZE DRP11
PRIORITY 0
DEPART DIQl1

D11 OUT QUEUE AND DRP FREE?
SAVE SPACE IN OUT Q

RESET PRIORITY

-257-

UQT MACRO

MIE: GPSS1 VS1JOB DS



FILE: GPSS1 VS1JOB D9

ASSIGN 4+,X$DEX11
ASSIGN 7,X$DEX11
ADVANCE P7
RELEASE DRP11
SPLIT 1,STB1

*** ****** **** **** *** ****

* WPITE TXN IS COMPLETED*
*********************** **

FINI MACRO
TRANSFER ,STAR1

*************** *******
* STORE-BEEIND TXN *
***** ********************

STB1 QUEUE DYQ11

TEST E BV$BVA2,1
SAVEVALUE KXL1+,1

CONVERSATIONAL MONITOR SYSTEM

TIEE FOR WRITING DATA

CREATE A STORE-BEHIND TXN

BECOMES A NEW TXN FROM CPU1

PUT TIN IN DATA QUEUE

Kl IN-Q AND LBUS1 FREE ?
RESERVE SPACE IN IN-Q

***** ********************

* USE LBUS1 TO SEND TXN *
* FPOM D11 TO K1 *

******** *** *** *** ** ****

UTX MACFO
SAVEVALUE
TRANSFER

IBUS1,DYQ11,X$BEXD1
DYL11-,1 R
,CoMW T

ELEASE SPACE IN D1l
0 COMMON CODE FOR WRITE

* COMMON CODE FOR *
* READ TO LOWER LEVELS *
* JOINED BY ALL CPUS *
***************** ********

COMR ASSIGN 11,0
***** ********************
* USE K1 *

******* ** *** ****** ******

DUMMY STATEMENT

UQTO MACRO KIQ1,KriPl,KOQ1,XSKEX
***** ********************

* USE GLOBAL BUS GBUS *

UTX MACRO GBUS,KOQ1,X$BEXM
******************** *****

*USE K2 *

UQTQ MACRO KIQ2,KFRP2,KOQ2,X$KEX

* USE LOCAL BUS lBUS2 *
************ *************

UTX MACRO LBUS2,KOQ2,X$BEXM
********************** ***

* USE R2 TO SEE IF DATA *
IS IN L(2) *

*********** ****** ********

UQT MACRO PIQ2,BRP2,X$REX

-258-



CONVERSATIONAL MONITOR SYSTEM

TRANSFER .X$VIN2,NIN2,INL2 IS DATA IN L(2)?

* DATA IS NOT FOUND IN *
*L(2) *

NIN2 QUEUE ROQ2

* ** ** *** **** ***** ** *****

* USE LBUS2 SEND TXN TO *
* K2 *

UTX MACRO LBUS2,ROQ2,X$BEXM
***** ********************

* SERVICED BY K2 *
******* **** **** *** ****

UQT MACRO KIQ2,KBP2,KOQ2,XSKEX
***** ***************** ***

* USE GBUS SEND TXN TO *
*K3 *

UTZ MACRO GBUS,KOQ2,X$DEXN

* SE1EVICED BY K3 *
**** ** *** **** ** *** ****

UQTQ MACRO KIQ3,KRP3,KOQ3,XSKEX

* USE LBUS3 SEND TXN TO *
*R3 *

****** *** * *** **** *****

UTX MACRO LDUS3,KOQ3,X$BEXM
********************** ***

* SEARCH DIRECTORY IN *
* R3 FOR DATA *

UQT MACRO RIQ3,RRP3,X$REX
TRANSFER ,INL3 DATA IS IN L(3)

* DATA IS FOUND IN L(2), READ THE *
* DATA AND SEND IT UP TO L(1) *

INL2 QUEUE 002

*********** **************

* SEND TXN TO DEVICE *
* VIA LBUS2 *

UTX MACRO LBUS2,ROQ2,X$BEXM

** **** ** * ****** *************
* IS DATA IN D11 OR D12? *

-259-

FILE: GPSS1 VS1JOB Dio



CONVERSATICNAL MONITOR SYSTEM

TRANSFER .5,iRRR21,RRR22

* DATA IS IN D11 *

RRR21 QUEUE DIQ21
TEST E BV$8VA3,1
SAVEVALUE DYL21+,1

* ** ***** * ** *** ***** ****

* USE D21 TO RETRIEVE *
* THE DATA *

TIX MACRO
QUEUE

TEST E
SAVEVALUE

QUEUE TO RETRIEVE DATA
D21 OUT-Q AND DRP21 FREE?
SAVE SPACE IN D21 OUT-Q

DRP21,DIQ21,X$DEX21 RETRIEVE THE DATA
DYQ21 PUT DATA IN SLOT

BV$BVA4,1
KXL2+, 1

K2 IN-Q AND LBUS2 FREE?
RESERVE K2 IN-Q SLOT

**** *** ** ******* ** **

* USE LBUS2 SEND DATA TO *
* K2 *

UTX MACRO

SAVEVALUE
TRANSFER

LBUS2,DYQ21, X$BEXD1

DYL21-,1
,RTF2

RELEASE SLOT IN D21 OUT-QUEUE
TO CODE FOR READ-THROUGH FROM L(2)

* DATA IS IN D22 *
***** ***************

RRR22 QUEUE
TEST E
SAVEVALUE

UTX MACRO

QUEUE
TEST E
SAVEVALUE

UTX MACRO

DIQ22
BV$BVA21,1
DYL22+,1

DRP22,DIQ22,X$DEX22

DYQ22
BV$BVA4,1
KXL2+,1

LBUS2,DYQ22,X$BEXD1

SAVEVALUE DYL22-,1
TRANSFER ,RTF2

******** **************************
* READ THROUGH PROM LEVEL L(2) *
*************************** ********

RTF2 ASSIGN 11o

-260-

FILE: GPSS1 VS1JOB Dil



CONVERSATIONAL MONITOR SYSTEM

* SERVICED BY K2 *
****** *** *** **** **** ********

UQDQ MACRO KXQ2,KXL2-,KYQ2,KYL2+,KRP2,X$KEXBV$BVA5

TEST E BV$BVA6,1 K1 IN-Q AND GBUS FREE?
SAVEVALUE KXL1+,1 RESERVE Kl IN-Q SLOT

** ****** ** ***** *** **

* USE GBUS TO SEND DATA TO*
*K1 *
***.****************4******

UTX MACRO GBUSKYQ2,X$BEXD1
SAVEVALUE KYL2-,1 RELEASE SLOT IN K2

***** ******************************

* STORE DATA INTO L(1) AS A RESULT*
* OF READ-THROUGH *

STOR1 ASSIGN 11,0

***** ********************

* SERVICED DY K1 *

UQD MACRO KXQ1,KXL1-,,KYL1+,KRP1,I$KEX,BVSBYA2O

* SEND TO D11 OR D12 *
*********** ***************** *****

SPLIT 1,FNSICHW,1
TERMINATE

* STORE TO Dl *

VWl ASSIGN 11,0
QUEUE KYQ1
TEST E BV$BVA7,1

. SAVEVALUE DXL11+,1

* **** ****** **** ** ** *** ***

* SEND TXN TO D11 VIA *
* LBUS1 *

UTX MACRO LDUS1,KYQ1,X$BEID

SAVEVALUE KYLI-,1

******** *** ***** ** ***

WHICH DATA CACHE TO GO?

WRITE TO D11

SPACE IN D11 IN-Q AND LBUS1 FREE?
YES, RESERVE A SLOT

RELEASE K1 SLOT

-261-

FILE: GPSS1 VS1JOB D 12



CONVERSATIONAL MONITOR SYSTEM

* WRITE DATA TO D11 *
******** 4*****l***********

UQT MACRO DXQ11,DRP11,X$DEX11

SAVEVALUE DXL11-,1
TRANSFER .XSPOVINOV11OVL11 ANY OVERFLOW FROM L(1)?

* NO OVERFLOW FROM L(1) *
***** ****** **************

NOVll ASSIGN 11,0

***** ********************

* THE READ TXN HAS ENDED*

FINI MACRO
TRANSFER STAR1

* THERE IS OVERFLOW FRCM*
* L(1), END THE READ *
* TXN, AT THE SAME TIME *
* HANDLE THE OVERFLOW *
***** * ** I* ****** * ** *** ***

OVL11 SPLIT 1,OVF11 GOT. OVERLOW HANDLING
FINI MACRO AT T'E SAME TIME END THE TXN

TRANSFER ,STAR1

* OVERFLOW HANDLING FOR *
*D11 *
* **** *** *** ** ** ***** ** ***

OVF11 ASSIGN 11,0

UQT MACRO DOQ11,LBUS1,X$BEXM
TRANSFLR ,OVL1 GOTO COMMON CODE FOR OVERFLOW

* WWW12 *

* WWW13 *

NWW12 ASSIGN 11,0
WWW13 ASSIGN 11,0

* COMMON CODE FOR OVERFLOW FROM *
* L (1) *

-26 2-

VS1lJOB Dli:IFILE: GPSS1



CONTERSATIONAL MONITOR SYSTEM

OVLl ASSIGN 11,0

************** *********************
* USE Ki, THEN GBUS, THEN K2 *
* THEN LBUS2, THEN USE R2
************ ***********************

UQTQ MACRO KIQ1,KRP1,KOQ1,X$

UTI MACRO GBUS,KOQ1,X$BEXM

UQTQ MACRO KIQ2,KRP2,KOQ2,X$

UTX MACRO LBUS2,KOQ2,X$BEXN

QUEUE RIQ2

UTX MACRO RRP2rBIQ2,X$REX

TERMINATE

* DATA IS FOUND IN L(3) *
******* ****** ** *** ****

INL3 QUEUE EOQ3

* * *** ** ** ** ******* * *** * **

* USE LBUS3 SEND TXN TO *
*D31 *

UTX MACRO LBUS3,ROQ3,X$BEXH

* ** ** ****** *** ** ** *** ******

* READ FROM D31 OR D32? *

TRANSFER .5,ERR31,RRR32

* READ FROM D31 *
***** ***************

RRR31 QUEUE DIQ31
TEST E BV$BVA8,1
SAVEVALUE DYL31+,1

* READ DATA FROM D31 *
***** ********************

SPACE IN D31 OUT-Q AND DRP31 FREE?

-263-

PILE: GPSS1 VS1JOB D1S



CONVERSATIONAL MONITOR SYSTEM

UTX MACRO

QUEUE
TEST E
SAVEVALUE

DRP31,DIQ31,X$DEX31

DYQ3 1
BV$BVA9,1
KXL3+,1

SPACE IN K3 IN-Q AND LBUS3 FREE?
YES, RESERVE SLOT

***** *** **** **** *** ****

* USE LBUS3 SEND DATA TO *
* K3 *
***************.****** ****

LBUS3,DYQ31,X$BEXD2

SAVEVALUE DYL31-,1
TRANSFER ,RTF3 GO TO READ-THROUGH FROM L(3)

* READ FLOM D32 *

BRR32 QUEUE
TEST E
SAVEVALUE

UTX MACRO

Q)UEIE
TEST E
SAVEVALUE

UTX MACRO -

DIQ32
BV$BVA22,1
DYL32+,1

DRP32,DIQ32,XSDEX32

DYQ32
BV$IIVA9,1
KXL3+,1

LBUS3,DYQ32,X$BEXD2

SAVEVALUE DYL32-,1
TRANSFER ,RTF3

************ ********** *************

* READ-THROUGH FROI L(3) DATA IS *
* SENT TO L(2) AND L(1) AT THE *
* SAME TIME *

RTF3 ASSIGN 11,0

* SERVICED BY K3 *

UQDQ MACRO

TEST E
SAVEVALUE
SAVEVALUE

KXQ3,KXL3-,KYQ3,KYL3+,KRP3,X$KEX,BV$BVA1O

BV$RTOK,1
KXL1+,1
KXL2+,1

L(1) & L(2) READY & GBUS FREE?

* BOTH L(1) AND L(2)

-264-

UTX MACRO

FILE: GPSS1 VS1JOB Dl.



CONVERSATIONAL MONITOR SYSTEM

* READY TO ACCEPT DATA *
* FRO GBUS *
* ** ***** *** ** **** *4'*****

UTZ MACRO GDUSKYQ3,X$BEXD2

SAVEVALUE KYL3-,1
SPLIT 1,STOR1 READ-THROUGH TO L(1)

* READ-THROUGH TO L(2) *

STOR2 ASSIGN 11,0

***** ********************

* SERVICED BY K2 *
**** ** ***** ** *** ** ****

00D MACRO KXQ2,KXL2-,KYQ2,KYL2+,KRP2,X$KEXDVSBVA5

TEST E BVSBVA11,1 SPACE IN R2 IN-Q AND LBUS2 FREE?
SAVEVALUE EXL2+,1 YES, RESERVE SLOT

* USE LDUS2 SEND TO R2 *
******************** *****

UTZ MACRO LBUS2,KYQ2,XSBEXD2

SAVEVALUE KYL2-,1 FREE SLOT.IN K2

* ** *** **** *** ***'* ** ** ***

* SERVICED BY R2 *

UQD MACRO BXQ2,RXL2-,,RYL2*RRP2,X$REX,BV$BVA12

SPLIT 1,OVH2 HANDLE ANY OVERFLON

* STORE INTO D21 OR D22? *
* **** * ** **** * * *******'* * * ** * ****

TRANSFER .5,sSS21,SSS22

***** ********************

* STORE INTO D21 *
***** **** **** ** *** ** ****

SSS21 QUEUE RYQ2
TEST I BV$BVA13,1 D21 IN-0 AND LBUS2 FREE?
SAVEVALUE DXL21+,1 YES, RESERVE THE SPACE

-265-

FILE: GPSS1 VS1JOB D16



VILE: GPSSI VS1JOB DI7

* SEND DATA TO D21 VIA BUS *
***** ** ************** ***4'******

UTX MACRO

CONVERSATIONAL NOITTOR SYSTEN

LBU 52, RY02,X$8EXD2

SAVEVALUE VYL2-,1

UQOT MACPO

SAVEVALUE
TERMINATE

PELEASE SPACE IN R2

DXQ21,DRP21,X$DEX21

DXL?1-,1

STORE INTO D22 *

SSS22 QUEUE
TEST E
SAVEVALUE

UTX MACRO

SAVEVALUE

UOT MACRO

SAVEVALUE
TERMINATE

RYQ2
BV$BVA23, 1
DXL22+,1

LBUS2,RYQ2,X$BEXD2

RYL2-,1

DXQ22,DRP22,X$DEX22

DXL22-,1

* HAND. ANY OVEERF. FROM 1(2) *

OVU2 TRANSFER .X$POV?,NOV2,OVL2
OVL2 QUEUE ROQ2

* USE LBUS2, USE K2, USE *
* GBUS, USE K3, USE LBUS3,
* TIEN USE P3

UTX MACPO

UQTQ MACRO

UTX MACRO

UQTQ MACRO

UTX MACRO

UQT MACRO

******* ***

LBUS2, EOQ2,X$BEXM

KIQ2,KRP2,KOQ2,X$KEX

GBUSKOQ2,X$EBEXM

KIQ3,KRP3,KOQ3,X$KEX

LBUS3,KOQ3,X$BEXM

RIQ3,RPP3,X$REX

TERMINATE

-266-

NOV2



CONVERSATIONAL XONITOR SYSTEM

********************** ***

* COMICN CODE FOR WRITE *
* TO LOWER LEVELS *

COMW ASSIGN 11,0 DUMMY STATEMENT

*** * *** ***** *** ** *** ****

* SERVICED BY K1 *

UQDQ MACRO KXQ1,KXL1-,KYQ1,KYL1+,KRP1,X$KEXBV$BVA 4

TEST E BV$BVA15,1 K2 IN-Q AND GBUS FREE?
SAVEVALUE KXL2+,1

* USE GBUS *
***** * *** ****** *** ** ****

UTX MACRO GBUSKYQ1,X$BEXD1
SAVEVALUE KYL1-,1

* SERVICED BY K2 *

UQDQ MACRO KXQ2,KXL2-,KYQ2,KYL2+,KRP2,X$KEXBVSBVAS

TEST E BV$BVA11,1 R2 IN-Q AND LBUS2 FREE?
SAVEVALUE RXL2+,1

* ** ****** **p* ** ***** ** ****

* USE LBUS2 *
***** ********************

UTX MACRO LBUS2,KYQ2,X$BEXD1
SAVEVALUE KYL2-,1

* *** * *********** ** ** ** ** *
* SERVICED BY R2 *
******** *****************

UQD MACRO RXQ2,RXL2-,,RYL2+,RRP2,X$REXBV$BVA12

* ** **** ** ** * * **** ** *** *** * ** * '***

* SERVED BY D21 OR D22? *

TRANSFER .5,SWS21,SWS22

***** *** **** **********

* SERVICED DY D21 *

-267-

FIL91': GPSS1 VS1JOB D/g



CONVERSATIONAL MONITOR SYSTEM

SVS21 QUEUE RYQ2
TEST E BVSBVA13,1
SAVEVALUE DXL21+,1

UTX MACRO LBUS2,RYQ2,X$BEXD1

SAVEVALUE RYL2-,1
UQDQ MACRO DXQ21,DXL21-,DYQ21,DYL21+,DRP21,X$DEX21,BV$BVA3

TEST E BV$BVA4,1 K2 IN-Q AND LBUS2 FREE?
SAVEVALUE KXL2+,1

*** **** ** *** ***** ** ****

* USE LDUS2 SEND TO K2 *
******************** *****

UTX MACRO LBUS2,DYQ2iX$BEXD2

SAVEVALUE DYL21-,1
SPLIT 1,ACK2 PREPARE TO SEND ACK TO L(1)

TRANSFER ,STD23 GO TO STORE-BEHIND TO L(3)

* **** *** **** *** ***** ** *******

* SEND ACK TO L(1) *
***** *************************

ACK2 QUEUE DOQ21

UTX MACRO LBUS2,DOQ21,X$BEXM

TRANSFER ,ACK21

* SERVICED BY D22 *

SRS22 QUEUE RYQ2
TEST E BV$BVA23,1
SAVEVALUE DXL22+,1

UTX MACRO LBUS2,RYQ2,X$BEXD1

SAVEVALUE RYL2-,1

UQDQ MACRO DXQ22,DXL22-,DYQ22,DYL22+,DRP22,X$DEX22,BV$BVA21

TEST E BV$BVA4,1
SAVEVALUE KXL2+,1

UTX MACRO LBUS2,DYQ22,XSBEXD2

SAVEVALUE DYL22-,1
SPLIT 1,ACK3

-268-

FILE: GPSS1 VS1JOB Dli



CONVERSATIONAL MONITOR SYSTEM

TRANSFER ,STB23

ACK3 QUEUE DOQ22

UTX MACRO LBUS2,Do022,X$BEXM

TRANSFER ,ACK21

* STORE-BEHIND FROM *
* L(2) TO L(3) *

STB23 ASSIGN 11,0

UQDQ MACRO KXQ2,KXL2-,KYQ2,KYL2+,KRP2,X$KEXBV$BVA5

TEST E BV3BVA16,1 K3 IN-Q AND GBUS FREE?
SAVEVALUE KXL3+,1

UTX MACRO GBUSKYQ2,X$BEXD2

SAVEVALUE KYL2-,1

UQDQ MACRO KXQ3,KXL3-,KYQ3,KYL3+,KRP3,X$KEX,BV$BVA10

TEST E BV$BVA17,1 R3 IN-Q AND LBUS3 FREE?
SAVEVALUE RXL3+,1

UTX MACRO LBUS3,KYQ3,X$BEXD2

SAVEVALUE KYL3-,1

UQD MACRO RXQ3,RXL3-,,RYL3+,RRP3,X$REXBV$BVA18

*** ** ****** * ***'*** ** *** *********

* SERVICED BY D31 OR D32? *

TRANSFER .5,SWS31,SWS32

* SERV. BY D31 *
***************** 4***

SWS31 QUEUE RYQ3
TEST E BV$BVA19,1
SAVEVALUE DXL31+,1

UTI MACRO LBUS3,RYQ3,X$BEXD2

SAVEVALUE RYL3-,1

-269-

FILE: GPSS1 VS1JOB D2o



CONVERSATIONAL MONITOR SYSTEM

UOT MACRO DXQ31,DRP31,X$DEX31

SAVEVALUE DXL31-,1

UOT MACRO DOQ31,LBUS3,X$BEXl
-TRANSFER *ACK22

*********** ****** ***

* SERV. BY D32 *
***** ***************g

SNS32 QUEUE RYQ3
TEST E BVSBVA24,1
SAVEVALUE DXL32+,1

UTX MACRO LBUS3,RYQ3,X$BEXD2

SAVEVALUE RYL3-,1

UQT MACRO DXQ32,DRP32,X$DEX32

SAVEVALUE DXL32-,1

UQT MACRO D0032,LBUS3,X$BEXM

TRANSFER ,ACK22

*********** ************************

* ACK FROM L(2) TO L(3) *

ACK22 ASSIGN. 11,0

UQTQ MACRO KIQ3,KRP3,K003,X$KEX

UTX MACRO GBUS,KOQ3,X$BEXM

UQTQ MACRO KIQ2,KRP2,KOQ2,X$KEX

UTZ MACRO LBUS2,KO02,X$BEX

UQTQ MACRO R102,RRP2,RO02,X$REX

UTX MACRO LBUS2,ROQ2,X$BEXM
TRANSFER ,ACK21

******* ****************************

* ACK FROM L(2) TO L(1) *

ACK21 ASSIGN 11,0

UQTQ MACRO KIQ2,KRP2,KOQ2,X$KEX

-270-

FILE: GPSS1 VS1JO'B D21



CONVERSATIONAL MONITOR SYSTEM

UTX MACRO

UQTQ MACRO

UTI MACRO
SPLIT
TERMINATE

AAA11 ASSIGN
AAA12 ASSIGN
AAA13 ASSIGN

QUEUE
SEIZE
DEPART
ASSIGN
ASSIGN
ADVANCE
RELEASE
TERMINATE

GDUSKOQ2,X$BEXM

KIQ1 ,KRP1,KOQ1,X$KEx

LBUS1, KOQ1,X$DEXN
1,FN$WICHA,1

11,0
11,0
11,0
DIQ1l
DRP11
DIQ1l
4+,X$REX
7,X$REX
P7
DEP11

******************
* AAA12 *

******* ** **** ****

* AAA13

* TIMER SEGNENT - TINE UNIT IS *
* ONE NANOSECOND *

GENERATE
TERBINATE

START
END

XSTIKER
1

1

-271-

FILE: GPSS1 VS1JOB D22



Appendix B

FLOW CHART OF THE P5L4 MODEL

- 272 -



(star1)

(comr)

-273-



(star2)

send
store-behind

to Ki via lbuj 1

yes

(comw)

(comr)

-274-



(star3)

(comr)

-275-



(star4)

yes

(comw)

(comr)

-276-



(star5)

(comw)

(comr)

-277-



(-comr)

(in13)

(inl4)
(in12)

-278-



(inl2)

(rrr22)

(storl)

-279-



(www1l (wwwl 4)(www1l (wwwk )

(starl)

-280-



(inl3)

(rrr32)

(storl) (stor2)

-281-



(stor2

(sss22)

-282-



i n1 4)

-283-



(stor3)

(sss32)

-284-



(comw)

(sws2l)

-285-
(stb23)

(sws22)

(ack2l)



(stb23)

(sws3l)

-286- (ack32)(stb34)



(stb34)

(sws4l)

(ack43)

-287-

sws42



(ack2l)

(aaall) (aaal2) (aaal4) (aaa15)

-288-



(ack32)

(ack2l)

-289-



(ack43)

(ack32)

-290-



Appendix C

LISTING OF THE P5L4 MODEL

- 291 -



CONVERSATIONAL MONITOR SYSTEM

//LAH4 JOB LAMMPOFILF='RETURN',
// PROFILE=ILOW',
// TIE=9
//*PASSWOrD
//GPSS PROC
//C EXEC PGM=DAGO1,TIME=&TLIMIT
//STEPLIB DD DSN=POTLUCK.LIBEARY.GPSS.LOADDISP=SHR
//DOUTPUT DD SYSOUT=PROFILE=RETURN,DCB=BLKSIZE=931
//DINTERO DD UNIT=SCBATCHSPACE=(CYL,(1,1)) ,DCB=BLKSIZE=1880
//DSYMTAB DD UNIT=SCRATCH,SPACE=(CY L, (1,1)) ,DCB=BLKSIZE=7112
//DR!EPTGEN DD UNIT=SCE ATCII,SPACE=(CYL, (1,1)) ,DCB=BLKSIZE800
//DINTWORK DD UNIT=SCR AT CHSPACE= (CYL', (1,1) )DCB=BLKSIZE=2680
// PEND
//STEP1 EXEC GPSSPAR=C.,TLIMIT=9
//DINPUT1 DD *

E EALLOCATE FUN,5, QUE, 10, FAC,50, BVR, 200 BLO ,2000,VAR,50.
'REALLOCATE FSV,50,HSV,10,COM,40000

* * * *** ***** ** *** *** ** ****

* *

* TXN PARM USAGE *
-* *

* P1 CPU ID *
* P2 TXU ARRIVAL TIME*
* P3 TXN COMPL TIME *
* P4 TXN EXEC TIME *
* P11 DUMMY *
* *
***** ********************

** ***** *** * **** ** *** ****
* *

* .0DEL COMPONENTS *
*A

* BUSES: GBUS, LBUS1,.. *
* CACHES: D11,...D15 *
* LEVEL CONTRL: K1,...K4*
* REQ PROCS: R2, .. R4 *
* DEVICES: D21, ...D42 *
* STORAGE : RI, RO *
* STORAGE : SI, SO *
* STORAGE : TI, TO *
* STORAGE : AI, AO *
* STORAGE : OI, 00 *
* *

** ** *** **** *** *** ** *****

* *

* MODEL PARAMETERS *
* . *

INITIAL X$AXMP,10 DEGREE OF KULTIPROG PER CPU
INITIAL X$NREAD,500 - READ REQ

-292-

FILE: GPSSS4 VS1JOB D1



CONVERSATIONAL MONITOR SYSTEE

INITIAL
INITIAL
INITlAL
INTTIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

X$ NWRTT,500
X$PIN1,900
X$PIN2,900
X$PIN3,900
X$PlN4,1000
X$POV1,500
X$POV2, 500
X$POV3,500
XSDEX1,10
X$DEX2,100
X$DEX3,200
X3DEX4,1000
X$BEXM,10
X$BEX1,10
XSBEX2,80
XSBEX3,320
X3REX,20
X$KEX,10
X$RDEX1, 30
XITIMER,200000

% WRITE HEQ
CONDITIONAL PRO.3 OF FINDING DATA
IN A LEVEL GIVEN THAT THE
DATA IS NOT FOUND IN ANY UPPER
LEVEL
PROB OF OVERFLOW

DEVICE SERVICE TIME

BUS SERVICE TINE

DIRECTORY LOOK UP
CONTROLLER SERV TINE
LOOKUP PLUS READ TIME 0 CACHE
SINULATION TIME

* SAVEVALUES

* NTXN TOTAL TXN PROC. *
* SUMX TOTAL EXEC TIMES *
* SUMNWTOTAL WAIT TIMES *
* SUMT TOTAL ELAPSED TIN*
* *

* **** ** **** ** * *** *****

*
* VARIABLES

*
*

FVARIABLE (X$SUMT/X$NTXN)
VARIABLE P3-P2
VARIABLE P3-P2-P4
VARIABLE P4

MEAN RESP TIME
TXN ELAPSED TIME
TXN WAIT TIME.
TIN EXEC TIME

TXNT TABLE
TXNW TABLE
TZNX TABLE

VSTXNT, 100, 100, 100
V$TXNW, 100,100,100
V$TXNX, 100,100,100

-293-

***** ******** ************

HRESP
TXNT
TXNN
TXNK

*************************
* *

* TABLES *
* *

FILE: GPSS54 VS1JOB D2



FILE: GPS554 VS1JOB D3 CONVERSATIONAL MONITOR SYSTEM

FUNCTIONS*-

NICHNW FUNCTION P1,DS
2,WWW11/3,WWW12/4,WWW13/5,WWW14/6,WWW15

WICHA FUNCTION P1,DS
2,AAA11/3,AAA12/4,AAA13/5,AAA14/6,AAA15

*STORAGE FOR L (1) * -
CACHES*

STORAGE RD1,0SSD32/TI1l/SA13l
STORAGE SRD41/$Ilo/$I1oOSAD4l
STORAGE SRD51/$Ile/$I1oOSAD5l

STORAGEODEIS
SOAES$RID11,10/S$SID2112/S$TID1,0S$I111
STRAES$RID12,10/S$SID12,21/S$TID2,10SAD21
SOAES$RID13,10/S$SID13,2/S$TID1,10SAD31
SOAES$RID14,10/SSSID14,20/S$TID14,10/SAD41

STOR AGE S$RID415,10/S$SID415,2/S$TID1,10SAD51

*STORAGE FOR DEVIPC * .

STOR AGE $I31/$I31/$I31/$Ivl/$Rol
STORAGE SBB,0SSRl/$I~l/$l~l/$I~l

STORAGE RK
STORAGE S$RID21,10/S$SKID21,1/$TID21,10IllOS$O1,l

S$RD2,1/SS22,94 $I221



FILE: GPS554 .VS1JOB D+-

*STORAGE FOR K2vK3,K4*

STORAGE
STORAGE
STOR AGF
STORXGE
ST ORAGE
STORAGE

CONVERSATIONAL MONITOR SYSTEMl

S$RIK2,1O/S$SIK2,1O/S$TIK2,1O/S$AIK2,10/S$01K2,10
S$RIK3,1O/S$SIK3,1O/S$-TIK3,1O/S$AIK3,1O/S$OIK3,10
S$PIK), 1O/S$S-IKl 1/S $TIK4t 1O/S$ANIK44 1O/S$OEK4, 10
S$PoK2,1O/S$S0K2,1O/S$T0rK2,10/S$AOK2,10/S$00K2,,10
S$PCK3, 1O/S$SOK3, 10/S$TOK3, 1O/S$AOK3, 10/S$00K3, 10
S$ R 0K4 ,1O/S$SOK 4, 1/S$TOK4,10O/S $AOK4 ,10/S $00K4 , 1

*BOOLEAN VARIABLES *

*BY FOR READ-THROUGH *

RTOK2 BVkkfEABLE
RTOK3 BYARIABLE
RTOK4 BVARIABLE

*BY FOR L(l)

DKP 1
DKS1
T)KOl
KDT11
KDT 12
KDT1 3
KDT 14
KDT1 5
KDA1 1
KDA12
KDA13
KDA1 4
KDA15

DVARIABLE
DVARIABL7
BYARIABLE
BV AKIA3L~E
BVARIABLE
BVAHIABLE
BVARIADLE.
BYAPIABLE
BV AR lABLE
IVARIABLE
BVAPRIABLE
BVARIADLE
BV AR IABLE

FNU$GBUS*SNF$TIK1
FNU$GBUS*SNF$TIKl*SNF$TIK2
FNU$GDUS* SNF$TIK 1*SNF$TIK2*SNF$TIK3

FNU$LBUS1*SNF$ROK1
FNU$LD3US 1*SNFSOK1
FNU$LBUS1*SNF$OOK 1
FNU$ LBUS1*SNFXTID11
FNIJ$LIUS1*SNF$TID12
FNUSLBUS1*SN?$TID13
FNU$LBtJS1*SNF$TID14
FNU$LBtJS1*SNF$TID15
FNEJ$LBUS1*SNF$AID1 1
FNU$ LBUS1*SNF$AID12
FNU$LBEJS1*SNF$AID13
FNUSLBUS1*SNF$AID14
FNU$LDUS1*SNF$AID15

*BY FOR INTER LEVEL COM*

KKR12 BVARhBLE
KKS12 BVAFIABLE

FN U$G BUS *5NF$ RIK 2
FNU$GBU S*SNF$SIK2

-295-



FILE GPS54 S1JO D5CONVERSATIONAL MONITOR SYSTEM

KK612 BVMUIABLZ
KKT21 BVARIABLE
KKA21 BVAFIABLE
KKiE23 BYAPIABLE
KKS23 IVARIABLE
KK023 BJIABIABLE
KKT32 BYAPIABLE
KKA32 BYAPIABLE
KKR34 BVAPIABLE
K KS34& B'IAPLABLE
JKK034 IVARIABLE
KCKT43 BYAPIABLE
KKA43 BYARIABLE

FNU$ GBIS*SNFPSSOK2
?NU$GBUS'*SNP$TIK1
FNUSGIJUS*SNF$ AIK1
FNU$GBUS*SNF$RIK3
FNUSGBIYS*SI4FSSIK3
FNU$GBUS*SNFSOIK3
FNU$GBUS*SJF$T1"K2
FNIJ fGDLS*SNF$AIIC2
FNU$GBUS*SNF$RIK4-
FNU DGBUS*SNP$SIK4
FNUSG:BUS*SNF$OI(4
FNU$GBU S* SNP$TIK3
FNUSG.BUS*SNF$AIK3

***** **4L*****************

* *
* BY FOR L(2) OPS *
*
* ** * * ***** ** ** * *** ** **

TPRB2 BYAPIABLE
KRS2 BVARIABLZ'
KET2 BVARIABLE
KRA2 BVANIABLE
KRO2 BVARIUkLE
RDR21 BVARIABLE
EDS21 BVAFIABLE
EDT21 BYARIABLE
BDR22 BYARIABLE
EDS22 BVARIABLE
BDT22 BVARIABLE
DKS2 BVARIABLE
DKT2 BVAPIABLE
DKA2 BYARIABLE
RKR2 IVARIABLE
PK02 .DV ARIABLE
PKA2 BVARIABLE

FNU$LBUS2*SNF$R1R2
FI4U$fLBUS2*SNF$SIR2
FNU$LBUS2*SNF$TIRt2
FNU$LI3US2*SNFSAIR2
FNU$LDU52*SNF$OIR2
FN U$lBUS2*SNF$RID21
F NU $LBIJ S2* SN? $SI D21
FNU$LBUS2*SNF$TID21
FNU$LBUS2*SNF$HID22
FNU$ L1US2*SNFS1D22
?PNU$L13fS2* SN? 5TID22
FNU$LBiUS2*SNF$SOK2
FN U$L BUS2* SN? $TOK2
FNU$LI3US2*S NFSAOK2
FNU$LBUS2*SNF$ROK2
PNU$LBUS 2*SNF$00K2
FNU$LBUS2*SNF$AOK2

*BV FOR L (3) OPS

KRR3 BVARIABLE
1(953 BVARIABLE
KRT3 BYABIABLE
KRA3 DYARIABLE
KP03 BYARIABLE
RDR31 BVARIABLE
RDS31 -BVAP IABLE
RDT31 BVARIABLE
RDR32 BVARIABLE'
RDS32 BYARIABLE
RDT32 DVARIkBLE

FNU$LBUS3*SNF.$RIR3
FNU$LBUS3*SNF$SIR3
FNU$LBUS3*SNF$TIR3
F N USLBU S3*SNF $Al 93
PNU$LBUS3*SWF$01R3
FNU$LBUS3*SNF$R1D31
FNU$LBUS3* SNFSSID31
FNU5LBUS3*SNP$T.ID31
FNUSLBU S3*sN?$P1D32
FNUSL13US3*SNPSSID32
FNU$LBUS3*SNFSTID32

-296-

FILE: GPSS 4 VSIJOB DS'



CONVERSATIONAL MONITOR SYSTEM

DlS 3 BVARIABLE FNil$LBU.'3*SNF$SOK3
DKT3 BVARIABLE FNUSLDUS3*SNF$TOK3
DKA3 BVARIABLE FNU$LBUS3*SNF$AOK3
PKR3 BVARIABLE FNU$LBUS3*SNF$ROK3
RKA3 BVAPIABLE FNU$LBUS3*SNF$AOK3
RKO3 BVARIABLE FNU$LBUS3*SNF$00K3

***** ****************4****
* *

* BV FOR L(4) OPS *
e- *

* ** ** ****** ** **** *** ** ***

KRR4 BVARIABLE FNU$LBUS4*SNF$PIR4
KRS4 BVARIABLE FNU$LBUS4*SNF$SIR4
KRO4 DVARIABLE FNU$LBUS 4*SHF$01R4
RDR41 BVARIABLE FNU$LBUS4*SNF$RID41
RDS41 BVARIABLE FNUSLBUS4*SNF$SID41
RDR42 DVARIABLE FNU$LBUS4*SNF$RID42
RDS42 BVAPIABLE FNU$LBUS4*SNF$SID42
DKT4 BVARIABLE FNU$LBUS4*SNF$TOK4
DKA4 BVAFIABLE FNU$LBUS4*SNF$AOK4

** ** *** *** ***** ** *** ** ***

* *

* MACROS *
* *

4***** ********** I*********

* *

* MACRO -USE *
* #A FACILITY *
* #B USAGE TIME *
* *

USE STARTMACRO
SEIZE #A
ADVANCE #B
ASSIGN 4+,#B
RELEASE #A
ENDMACRO

*********** **************
* *

* MACRO - SEND *
* *

*#A FROM *
* #B TO *
*#C VIA *
* #D TRANSIT TIME *
* #E BV FOR SEND OP *
* *

-297-

FILE: GPSSS4 VS1JOB D6



CONVERSATIONAL NONITOR SYSTEM

SEND STARTAACRO
TEST E
ENTER
SEIZE
ADVANCE
ASSIGN
RELEASE
LEAVE
ENDIIACRO

#E,1
#B
#C
#D
4+,#D
#C
#A

*.************************

* BACRO - FINI

***** ********************

FINI STARTMACRO
MARK
SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
ASSIGN
ASSIGN
ASSIGN
ASSIGN
ENDMACRO

.3
NTIN+,l
SUMX+,V$TXNX
SUMN+,V$TXNN
SUIT+,V$ TINT
mRESPV$NESP
1,0
2,0'
3,0
4,0

BEGIN SINULATION

**--------------------------------------------------------------*

SINULATE
*********************** **

* CPU #1
*

RMULT

CPU1 GENERATE
STAR1 PRIORITY

NARK
ASSIGN
TRANSFER

RRR1 TRANSFER

3,5,7,9,11,13,15,17

,,,X$MAXMP, ,,F
9 SET HIGH P FOR NEW TIN
2 ARRIVAL TINE
1,1 CPU ID
.X$NREAD,WWW1,RRR1
.X$PIN1,NIN11,RIN11

* *
* DATA IS IN DATA CACHE *

-298-

FILE: GPSS&-4 VS1JOB D7



CONVERSATIONAL MONITOR SYSTEM

RIN11 ENTER RID11
USE MACRO DRP11,X$RDEX1

LEAVE RID11
FINI MACRO

TRANSFER ,STAR1

**** * * **** ***************

* *

* DATA IS NOT IN CACHE *
* *
***** ************4********

NIN11 ENTER
,USE, MACRO

PRIORITY
SEND MACRO

PUT TXN IN READ REQ BUFFER
SEARCH AND READ CACHE
FREE BUFFER

A NEW TXN

RIDl1 PUT IN READ REQ BUFFER
DRP11,X$REX SEARCH DIRECTORY
0 RESET PRIORITY
RID1,ROK1,LBUS1,X$BEXMBV$DKR1

TRANSFER ,COMR TO COMMON CODE FOR READ

* WRITE REQUEST TO CACHE*

WWWI ENTER

USE MACRO

SID11 PUT %(N IN WRITE REQ BUFFER

DRP11,XSRDEX1 WRIVE DATA IN CACHE

PRIORITY 0 RESET TXN PRIORITY
SEND MACRO SID11,SOK1,LBUS1,X$BEX1,BV$DKS1

SPLIT 1,COMW

FINI MACRO

TRANSFER ,STAR1

***** ********************

* CPU #2

* ** ** ** ** * **** * ** ** **** **

CPU2 GENERATE
STAR2 PRIORITY

MARK
ASSIGN
TRANSFER

RRR2 TRANSFER

,,,X$MAXMP,,,F
9 SET HIGH P FOR NEW TXN
2 ARRIVAL TIME
1,2 CPU ID
.X$NREADWWW2,RRR2
.X$PIN1,NIN12,IN12

-299-

A NEW TXN

FILE: GPSS54 VS1JOB D8



FCLLE: GPSS54 VS1JOB Di

* *

* DATA IS IN DATA CACHE *
* *
* **** **** *** ** *** *******

RIN12 ENTER RID12
USE MACRO DRP12,X$RDEX1

LEAVE RID12
FINI MACRO

TRANSFER ,STAR2

* *

* DATA IS NOT IN CACHE *
* *

CONVERSATIONAL MONITOR SYSTEM

PUT TXN IN READ REQ BUFFER
SEARCH AND READ CACHE
FREE BUFFER

A NEW TXN

VIN12 ENTER RID12 PUT IN READ REQ BUFFER
USE MACRO DRP12,X$REX SEARCH DIRECTORY

PRIORITY 0 RESET PRIORITY
SEND MACRO RID12,ROK1,LBUS1,X$BEXH.BV$DKR1

TRANSFER ,COmR TO COMMON CODE FOR READ

* ** ** *** ** ******** ******
* *

* WRITE REQUEST TO CACHE*
* *
* **** **** ** *** *** *** ***

WWW2 ENTER

USE MACRO

SID12 PUT TIN IN WRITE REQ BUFFER

DRP12,X$RDEX1 WRITE DATA IN CACHE

PRIORITY 0 RESET TXN PRIORITY
SEND MACPO SID12,SOK1,LBUS1,X$BEX1,BV$DKS1

SPLIT 1,CO MW

FINI MACRO

TRANSFER ,STAR2

*** *********************
* *
* CPU #3 *
* *
* **** ** ** * * *************

A NEW TXN

CPU3 GENERATE ,,,X$MAXMP,,,F
STAR3 PRIORITY 9 SET HIGH P FOR NEW TIN

MARK 2 ARRIVAL TIME
ASSIGN 1,3 CPU ID
TRANSFER .X$NREAD,WWW3,PRR3

BRR3 TRANSFER .X$PIN1,NIN13,RIN13

-300-



FILE: GPSS54 VS1JOB D10

***4******* ***************
* *

* DATA IS IN DATA CACHE *
* *.

**** **** *** **** *** ****

RIN13 ENT.ER RID13
USE MACRO DRP13,X$RDEX1

LEAVE RID13
FINI "ACRO

TRANSFER ,STAR3

CONVERSATIONAL MONITOR SYSTEN

PUT TXN IN READ REQ BUFFER
SEARCH AND READ CACHE
FREE BUFFER

A NEW TXN

* DATA IS NOT IN- CACHE *
* *

NIN13 ENTER RID13 PUT IN READ REQ BUFFER
USE . MACRO DRP13,X$REX SEARCH DIRECTORY

PRIORITY C RESET PRIORITY
SEND MACRO RID13,ROK1,LBUS1,X$BEXHBV$DKR1

TRANSFER ,COMR TO COMMON CODE FOR READ

* *** ******* **** ** ********
* *
* WRITE REQUEST TO CACHE*
* *
********************** ***

WN3 ENTER SID13 PUT TXN IN WRITE REQ BU

USE MACRO DRP13,X$RDEX1 WRITE DATA IN CACHE

PRIORITY 0

SEND MACRO SID13,S

SPLIT 1,COmW

FINI MACRO

TRANSFER ,STAR3

*** *****************
* *
* CPUt'4 *
* *

CPU4 GENERATE ,,,X$MAXMP,,,F
STAR4 PRIORITY 9

MARK 2

RESET-TXN PRIORITY

)K1, LBUS1,X$BEX1,BV$DKSI

SET HIGH P FOR NEW TIN
ARRIVAL TIME

-301-

FFER



CONVERSATIONAL KONITOR SYSTEM

ASSIGN 1,4 CPU ID
TRANSFER .X$NREADWW4,RRR4.

RRR4 TRANSFER .X$PIN1,NIN14,RIN14

************'I*************
* *

* DATA IS IN DATA CACHE *
* *

EIN14 ENTER RID14 PUT TIN -IN READ REQ BUFFER
USE MACRO DRP14,X$RDEZ1 SEARCH AND READ CACHE

'LEAVE RID14 FREE BUFFER
FINI MACRO

TRANSFER ,STAR4 A NEV TXN

* *

* DATA IS NOT IN CACHE *
* *
***** ********************

NIE14 ENTER RID14 PUT IN READ REQ BUFFER
USE MAClO DRP14,X$REX SEARCH DIRECTORY

PRIORITY 0 RESET PRIORITY
SEND MACRO RID14,ROKI1,LBUS1,X$BEXM,BV$DKR1

TRANSFER ,COMR TO COMMON CODE FOR READ

* *

* WRITE REQUEST TO CACHE*
* *
*********** **************

VN94 ENTER SID14 PUT TIN IN WRITE REQ BUFFER

USE MACRO DRP14,X$RDEI1 WRITE DATA IN CACHE

PRIORITY 0 RESET TXN PRIORITY

SEND MACRO SID1l4SOK1,LBUS1,X$BEX1,BV$DKS1

SPLIT 1,COmW

7111 MACRO

TRANSFER ,STAR4 A NEW TXN

* *
* CPU #5 *
* *
***** ********************

-302-

FILE: GPSS54 VS1JOB Dij



CONVERSATIONAL MONITOR SYSTEM

CPUS GENERATE ,,,X$MAXMP,,,F
STAR5 PRIORITY 9 SET HIGH P FOR NEW TXN

MARK 2 ARRIVAL TIME
ASSIGN 1,5 CPU ID
TRANSFER .X$NBEAD,WWW5,RRB5

RRRS TRANSFER .X$PIN1,NIN15,RIN15

* DATA IS IN DATA CACHE *
* *

RIN15 ENTER RID15
USE MACRO DRP15,X$RDEX1

LEAVE RID15
FINI MACRO

TRANSFER. ,STAR5

***** ********************
* *
* DATA IS -NOT IN CACHE *
* *

PUT TXN IN READ REQ BUFFER
SEARCH AND READ CACHE
FREE BUFFER

A NEW TXN

NIN15 ENTER RID15 PUT IN READ REQ BUFFER
USE MACRO DRP15,X$REX SEARCH DIRECTORY

PRIORITY 0 RESET PRIORITY
SEND MACRO RID15,ROK1,LBUS1,X$BEXM,BV$DKR1

TRANSFER ,COMR TO COMMON CODE FOR READ

***** ********************

* WRITE REQUEST TO CACHE*
* *

MWW5 ENTER SID15 PUT TXN IN WRITE REQ BUFFER

USE Hi.CRO DRP15,X$RDEX1 WRITE DATA IN CACHE

PRIORITY 0 RESET TXN PRIORITY

SEND MACRO SID15,SOK1,LBUS1,X$BEX1,BV$DKS1

SPLIT 1,COMW

FINI MACRO

TRANSFER ,STAR5 A NEW TIN

*
* COMMON CODE FOR READ REQUEST

-303-

FILE: GPSSS4 VS1JOB D12



CONVERSATIONAL MONITOR SYSTEM

* *
*---------------------------------------------------------------*

COIR ASSIGN 11,0

USE MACRO KRP1,X$KEX

SEND MACRO ROK1,lRIK2,GBUS,X5BEXM,BV$KKR12

USE MACRO KRP2,X$KEX

SEND MACRO RIK2,RIR2,LBUS2,X$BEXMBV$KRR2

USE MACRO RRP2,X$REX

TRANSFER .X$PIN2,NIN2,RIN2
'NIN2 -ASSIGN 11,0

SEND MACRO RIR2,ROK2,LUUS2,X$BEXN,BV$RKR2

USE MACRO KRP2,X$KEX

SEND MACRO ROK2,RIK3,GBUSX$BEXMBV$KKR23

USE MACRO KRP3,X$KEX

SEND MACRO RIK3,RIR3,LBUS3,X$BEXMBV$KRR3

USE MACRO RRP3,X$REX

TRANSFER .X$PIN3,NIN3,RIN3
NIN3 ASSIGN 11,0

SEND MACRO RIR3,ROK3,LBUS3,X$BEXMBV$RKE3

USE MACRO KRP3,X$KEX

SEND MACRO ROK3,RIK4,GBUS,X$BEIM,BV$KKR34

USE MACRO KRP4,X$KEX

SEND MACRO RIK4,RIR4,LBUS4,X$BEXtBV$KRR4

USE MACRO RRP4,X$REX

TRANSFER ,RIN4

--------- -----------------------------------------------*
* - *

* READ DATA IS FOUND IN L(2) *
* *

*-----------------------------------------------------------*

RIN2 TRANSFER .5,RRR21,RRR22

-304-

FILE: GPSS54 VS1JOB D13



CONVERSATIONAL MONITOR SYSTEM

* *

* DATA IS IN D21 *
**

RRR21 ASSIGN 11,0

SEND MACRO RIR2,RID21,LBUS2,X$BEXH,BV$PDR21

.USE MACRO DRP21,XSDEX2

SEND MACRO RID21,TOK2;LBaS2,X$BEX1,BV$DKT2

TRANSFER ,RTF2

*4********* **************
* *
* DATA IS IN D22 *
* *
*********** **4************

BRR22 ASSIGN 11,0

SEND MACRO RIR2,RID22,LBUS2,X$BEXHBV$RDR22

USE MACRO DRP22,X$DEX2

SEND MACRO RID22,TOK2,LBUS2,X$BEX1,BV$DKT2

TRANSFER ,RTF2

* *
* READ-THROUGH TO L(1) *
* '
***** ********************

RTF2 ASSIGN 11,0

USE MACRO KRP2,X$KEX

SEND MACRO TOK2,TIK1,GBUSX$BEX1,BV$RTvOK2

*---------------------------------------------------------------*
* *
* STORE DATA INTO L(1) AS RESULT OF A READ-THROUGH *
* *
*----------------------------------------------------------------*

STOR1 ASSIGN 11,0

USE MACRO KRP1,X$KEX

SPLIT 1,FN$WICHW,1

-305-

FILE: GPSS54 VS1JOB Dit



CONVERSATIONAL MONITOR SYSTEM

TERHINATE

***** * ******** ****
* *

* RT STORE INTO D11 *
* *

vWW11 ASSIGN 11,0

SEND MACRO TIK1,TID11,LBUS1,XSBEX1,BV$KDT11

USE MACRO DRP11,X$DEX1

TRANSFER .X$POV1,NOV11,OVL11
NOV11 LEAVE TID11

FINI MACRO

TRANSFER ,STAR1

OVL11 SPLIT 1tOVF11 .

FINI MACRO

TRANSFER ,STAR1
OVF11 ASSIGN 11,0

SEND MACRO TID11,00KILBUS1,X$BEXM,BV$DKO1

TRANSFER ,OVL1

* **** ** **** ** ** ********
* *

* RT STORE INTO D12 *
* *

UVVW12 ASSIGN 11,0

SEND MACRO TIK1,TID12,LBUS1,X$BEX1,BV$KDT12

USE MACRO DRP12,X$DEX1

TRANSFER .X$POV1,NOV12,OVL12
NOV12 LEAVE TID12

FINI MACRO

TRANSFER ,STAF2

OVL12 SPLIT 1,OVP12

FINI MACRO

-306-

-FILE: GPSS54 VS1JOB Di 15



CONVERSATIONAL MONITOR SYSTEM

TRANSFER ,STAR2
OVF12 ASSIGN 11,0

SEND MACRO TID12,0OK1,LBUS1,X$BEXMBV$DKO1

TRANSFER ,OVL1

* *

* RT STORE INTO D13 *
* *
*********** **************

WWW13 ASSIGN 11,0

SEND MACRO TIK1,TID13,LBUS1,X$BEX1,BV$KDT13

USE MACRO DRP13,X$DEX1

TRANSFER .X$POV1,NOV13,OVL13
NOV13 LEAVE TID13

FINI MACRO

TRANSFER ,STAR3

OVL13 SPLIT 1.0VF13

FINI MACRO

TRANSFER ,STAR3
OVF13 ASSIGN 11,0

SEND MACRO TID13,OOK1,LBUS1,X$BEXMBV$DKO1

- T1EANSFER ,OVL1

*********** **************
* *

* RT STORE INTO D14 *
* *

****** *** ****** ** *****

WWW14 ASSIGN 11,0

SEND MACRO TIK1,TID14,LBUS1,X$BEX1,BV$KDT14

USE MACRO DRP14,X$DEX1

TRANSFER .X$POV1,NOV14,OVL14
NOV14 LEAVE TID14

FINI MACRO

TRANSFER ,STAR4

-307-

FILE: GPSS54 VS1JOB DIG



FILE: GPSS54 VS1JOB D17

OVL14 SPLIT 1,OVF14

FINI MACRO

TRANSFER ,STAR4
OVF14 ASSIGN 11,0

SEND MACRO TID14,OOK1,LBUS1,X$BEXM,BV$DKO1

TRANSFER ,OVL1

* **** **** **** **** *** ** ***

* *
* HT STORE INTO D15 *
* *

WWW15 ASSIGN 11,0

SEND MACRO TIK1,TID15,LBUS1,X$BEX1,BV$KDT1

USE MACRO DRP1S,X$DEX1

TRANSFER .X$POV1,NOV15,OVL15
NOV15 LEAVE TID15

FINI MACRO

TRANSFER ,STAR5

OYL15 SPLIT 1,OVF1S

FINI MACRO

TRANSFER ,STAR5
OVF15 ASSIGN 11,0

SEND MACRO TID15,OOK1,LBUS1,X$BEXM,BV$DKO1

TRANSFER ,OVL1

* *
* HANDLE OVF FROM L(1) *
* *

OVL1 ASSIGN 11,0

USE MACRO KRP1,X$KEX

SEND MACRO OOK1,0IK2,GBUS,X$BEXM,BV$KK012

USE MACRO KRP2,X$KEX

-308-

5

CONVERSATIONAL MONITOR SYSTEM



CONVERSATIONAL MONITOR SYSTEM

SEND MACRO OIK2aOIR2,LBUS2,X$BEXMBV$KR02

USE MACRO RRP2,X$REX

LEAVE OIR2
TERMINATE

*---------------------------- ------- *
* *
* READ DATA IS FOUND IN L(3) *

* *
*---------------------------------------------------------------

RIN3 TRANSFER .5,RB31,RRR32

* *

* DATA IS IN D31 *
- * *

RRR31 ASSIGN 11,0

SEND MACRO RIR3,RID31,LBUS3,X$BEXMBV$RDR31

USE MACRO DRP31,X$DEX3

SEND MACRO RID31, TOK3,LBUS3,X$BEX2,BV$DKT3

TRANSFER ,RTF3

***** *********** *********
* *

* DATA IS IN D32 *
* *
***** ********************

RRR32 ASSIGN 11,0

SEND MACRO RIR3,RID32,LBUS3,X$BEXM,BV$RDE32

USE MACRO DRP32,X$DEX3

SEND MACRO RLD32,TOK3,LBUS3,X$BEX2,BVSDKT3

TRANSFER ,RTF3

* *** ******* *** ***** *** ***
* *

* RT TO L(1) AND L(2) *
* *-
* **** **** **** **** ** *** ***

RTF3 ASSIGN 11,0

-309-

FILE:l GPSS54 VS1JOB DI8



FILE: GPSS54 VS1JOB- Dig CONVERSATIONAL MONITOR SYSTER

USE MACRO KRP3,X$KEX .

TEST E BV$FTOK3,1
ENTER TIK1
ENTER - TIK2
SEIZE GBUS
ADVANCE X$BEX2
ASSIGN 4+,X$BEX2

- RELEASE GBUS
- LEAVE TOK3

SPLIT 1,STOR1
SPLIT 1,STOR2
TERMINATE

*------ ------------------------------------------------------------ *

* *

* STORE DATA INTO L(2) AS RESULT OF A READ-THROUGH
* *

------------------------------------------------------- *

STOR2 ASSIGN 11,0

USE MACRO KRP2,X$KEX

SEND MACRO. TIK2,TIR2,LBUS2,X$DEX2,BVSKRT2

USE MACRO RRP2,XSREX

SPLIT 1,OVH2
TRANSFER .5,SSS21,SSS22

** *** ** *** **** *** ** **** ***
* *

* STORE INTO D21 *
* *
** *** **** **** ** ***** ****

SS521 ASSIGN 11,0

SEND MACRO TIR2,TID21,LBUS2,X$BEX2,BV$RDT21

USE MACRO DRP21,X$DEX2

LEAVE TID21
TERMINATE

************** ***********
* *..

* STORE INTO D22 *
* * -
* ** * **** ** *** ***** ******

SSS22 ASSIGN 11,0

-310-



CONVERSATIONAL MONITOR SYSTEM

SEND MACRO TIR2,TID22,LDUS2,X$8EX2,DV$RDT22

USE MACRO DRP22,X$DEX2

LEAVE TID22
TERMINATE

* OVERFLOW HANDLING *
*- -

* **** *** **** ** *** *******

OTH2 TRANSFER
OVL2 TEST E

ENTER
SEIZE
ADVANCE
ASSIGN
RELEASE

SEND MACRO

USE MACRO

SEND MACRO

USE MACRO

LEAVE
NOVL2 TERMINATE

.X$POV2, NOVL2,OVL2
BVSRKO2,1-
00K2
LBUS2
X$BEXM
4+,X$EXN
LBUS2

00K2,OIK3,GBUSX$BEXEBY$KK023

KRP3,X$KEX

OIK3,OIR3,LBUS3,X$BEX,BV$KRO3

BRP3,X$REX

OIR3

*---------------------------------------------------------------*

* *
* READ DATA IS FOUND IN L(4) *
* *

------------------------------------------------------------ *

RIN4 TRANSFER .5,RRR41,RRR42

* ** ****** *** ** *** ***** ***

* DATA IS IN D41 *
* *

*** ** *** ***** ***** ** ****

RNR41 ASSIGN 11,o

SEND MACRO RIR4,eID41,LBUS4,X$BEXHBV$RDR41

USE MACRO DRP41,X$DEX4

SEND MACRO RID41,TOK4,LBUS4,X$BEX3,BV$DKT4

TRANSFER ,RTF4

-311-

* FILE: GPSS54 VS1JOB D20



CONVERSATIONAL MONITOR SYSTEM

********4** **************
* *

* DATA IS IN D42 *
* *
** ** ********* * *** *******

RRR42 ASSIGN 11,0

SEND MACRO RIR4,RID42,LBUS4,X$BEX,BV$RD42

USE MACRO DRP42,X$DEX4

SEND MACRO RID42,TOK4,LBUS4,XSBE3,BV$DKT4

TRANSFER ,RTF4

*4**** ** ******* ** *********
* *

* RT TO L(1),L(2),L(3) *
* *
***** ********************

RTF4 ASSIG 11,0-

USE MACRO KRP4,X$KEX .

TEST E BV$RTOK4,1
ENTER TIKI
ENTER TIK2
ENTER TIK3
SEIZE GBUS
ADVANCE X$BEX3
ASSIGN 4+,X$BEX3
RELEASE GBUS
LEAVE TOK4
SPLIT 1,STOR1
SPLIT 1,STCR2
SPLIT 1,STOR3
TERMINATE

*---------------------------------------------------------------*
* *

STORE INTO L(3) AS A RESULT OF READ-THROUGH *
* *
*---------------------------------------------------------------*

STOR3 ASSIGN- 11,0

USE MACRO KRP3,XSKEX

SEND MACRO TIK3,TIR3,LBUS3,I$BE13,BV$KRT3

USE MACRO ERP3,X$REX

-312-

FILE: GPSS54 VS1JOB D 21



CONVERSATIONAL MONITOR SYSTEM

SPLIT 1,0V113
TRANSFER .5,SSS31,SSS32

************I 4*************
* *

* STORE INTO D31 *
* *

SSS31 ASSIGN 11,0

SEND MACRO TIR3,TID31,LBUS3,X$BEX3,BV$RDT31

USE MACRO DRP31,X$DEX3

LEAVE TID31
- TERMINATE

* *

* STORE INTO D32 *
* *

SSS32 ASSIGN 11,0

SEND MACRO TIR3,TID32,LBUS3,X$BEX3eBV$RDT32

USE MACRO DRP32,X$DSX3

LEAVE TID32
TERMINATE

* OVERFLOW HANDLING *
* *

OVH3 TRANSFER
OVL3 TEST E

ENTER
SEIZE
ADVANCE
ASSIGN
RELEASE

SEND MACRO

USE MACRO

SEND MACRO

USE MACRO
LEAVE

.X$PCV3,NOVL3,OVL3
BV$K03,1
OCK3
LBUS3
X$BEXM
4+,X$BEXM
LBUS3

OOK3,0IK4,GBUSX$BEXM,BV$KKO34

KRP4,X$KEX

OIK4,OIR4,LBUS4,IX$BEXM,BV$KRO4

RRP4,X$REX
OIR4

-313-

FILE: GPSS54 VS1JOD D22



CONVERSATIONAL MONITOR SYSTEM

NOVL3 TERMINATE

--------------------------------------------------
* *
* COMON CODE FOR STORE-BEHIND *
* *

*------------------------------------------------

CONW ASSIGN 11,0

USE MACRO KRP1,X$KEX

SEND MACRO SOK1,SIK2,GBUSXSBEX1,BSVKKS12

USE MACRO KRP2,X$KEX

-SEND-- MACRO SIK2,SIR2,LBUS2,X$BEX1.BVSKR S2-

USE MACRO RRP2,X$REX

TRANSFER .5,SWS21,SWS22

* *

* SB VRITE INTO D21 *
* *
*********** **************

SVS21 ASSIGN 11,0

SEND MACRO SIR2,SID21,LBUS2,X$BEX1,BV$RDS21

USE MACRO DEP21,X$DEX2

SEND MACRO SID21,SOK2,LBUS2,X$BEX2,BVSDKS2

SPLIT 1,STB23
ENTER AOK2
TRANSFER ,ACK21

****************** *******
* *

* SB VRITE INTO D22 *
* *--

SWS22 ASSIGN 11,0-

SEND MACRO SIR2,SID22,LBUS2,X$BEX1,BV$RDS22

USE MACRO DRP22,X$DEX2

SEND MACRO SID22,SOK2,LBUS2,XSBEX2,BV$DKS2

SPLIT 1,STB23

-314-

FILE: GPSS54 VSlJOB D23



CONVERSATIONAL MONITOR SYSTEM

ENTER AOK2
TRANSFER ,ACK21

-- - - - - -- - - - - -- - - - -- -- - - - - - -- - - - - - -

* *
* STORE-BEHIND TO 1(3) *
* *
*---------------------------------------------------------------*

STB23 ASSIGN 11,0

USE MACRO KRP2,X$KEX

SEND MACRO SOK2,SIK3,GBUSX$BEX2,BV$KKS23

USE MACRO KRP3,X$KEX

SEND MACRO SIK3,SIR3,LBUS3,X$BEX2,BV$KRS3

USE MACRO PRP3,X$REX

TRANSFER .5,SWS31,SWS32

* *

* SD WRITE INTO D31 *
* *
********************** ***

SWS31 ASSIGN 11,0

SEND MACRO SIR3,SID31,LBUS3,X$BEX2,BV$RDS31

USE MACRO DRP31,X$BEX3

SEND MACRO SID31,SOK3,LBUS3,X$BEX3,BV$DKS3

SPLIT 1,STB34
ENTER AOK3
TRANSFER ,ACK32

* *

* SB WRITE INTO D32 *
* *

SWS32 ASSIGN 11,0

SEND MACRO SIR3,SID32,LBUS3,X$BEX2,BV$RDS32

USE MACRO DRP32,X$DEX3

SEND MACRO SID32,SOK3,LBUS3,X$BEX3, BV$DKS3

-315-

FILE: GPSS54 VS1JOB D2-+



CONVERSATIONAL MONITOR SYSTEM

SPLIT 1,ST034
ENTER AOK3
TRANSFER ,ACK32

----------------------------------------------*
* *
* -STORE-BEHIND TO L(4) *
* *
*------------------------------------------------------- ------- *

-$TB34 ASSIGN 11,0

USE MACRO KRP3,X$KEX

SEND MACRO SOK3,SIK4,GBUSX$BEX3,BV$KKS34

USE MACRO KRP4,X$KEX

SEND MACRO SIK4,SIR4,LBUS4,X$BEX3,BV$KRS4

USE MACRO REP4,X$REX

TRANSFER .5,SWS41,SNS42

********************** ***
* *

* SB WRITE INTO D41 *
* *

SWS41 ASSIGN 11,0 '

SEND MACRO SIR4,SID41,LBUS4,X$BEX3,BV$RDS41

OSE MACRO DRP41,X$DEX4

SEND MACRO SID41,AOK4,LBUS4,X$BEXI1,BV$DKA4

TRANSFER ,ACK43

* *-

* SB WRITE INTO D42 *
* *

SVS42 ASSIGN 11,0

SEND MACRO SIR4,vSID42,LBUS4,X$BEX3,BV$RDS42

USE MACRO DRP42,X$DEX4

SEND MACRO SID42,AOK4,LBUS4,X$BEXMBVDKA4

TRANSFER ,ACK43

-316-

FILE: GPSS54 VS1JOB D 25'



CONVERSATIONAL MONITOR SYSTEM

*-------------- ------------------ *

*.*

* ACK FROM L(4) TO L(3) *
* *

*------------------------------------------ d

ACK43 ASSIGN 11,0

USE MACRO KRP4,X$KEX

SEND MACRO AOK4,AIK3,GBUSXSBEXNBVSKKA43

USE MACRO KEP3,X$KEX

SEND MACRO AIK3,AIR3,LBUS3,X$DEXMBY$KRA3

USE MACRO RRP3,X$REX

* **** ** *** * *** ***** ** ****
* *

* FORWARD TIlE ACK UP *
* *

SEND MACRO AIR3,AOK3,LBUS3,X$BEXM,BV$RKA3

USE MACRO KRP3,X$KEX

SEND MACRO AOK3,AIK2,GBUSX$BEX,BV$KKA32

USE MACRO KRP2,X$KEX

SEND MACRO AIK2,AIR2,LBUS2,X$BEXM,DV$KRA2

USE MACRO RRP2,X$REX

LEAVE AIB2
TERMINATE

--------------- --------------------------------------------*
* *

* ACK FROM L(3) TO L(2) *
* *
*---------------------------------------------------------------*

ACK32 ASSIGN 11,0

USE MACRO KRP3,X$KEX

SEND MACRO AOK3,AIK2,GBUSX$BEXI,BV$KKA32

USE MACRO KRP2,X$KEX

SEND MACRO AIK2,AIR2,LBUS2,X$BEXM,BV$KRA2

-317-

PILE: GPSS54 VS1JOD D26



CONVERSATIONAL SONITOR SYSTEM

USE MACRO RRP2,X$REX

SEND MACRO AIR2,AOK2,LBUS2,X$3EXdSVSRKA2

TRANSFER ,ACK21

------------- -- *
*

* ACK FROM L(2) TO L(1) *
*

ACK21 ASSIGN 11,0

USE MACRO KRP2,X$KEX

SEND MACRO AOK2,AIK1,GBUSXSBEXBVSKKA21

USE MACRO KRP1,ISKEX

SPLIT 1,FN$VICHA,1
TERMINATE

* * NL*** ***B* ********
* *

* ACK HANDLED BY D11 *

***** ********************

AAA 11

S END

USE

ASSIGN

MACRO

MACRO

LEAVE
TERMINATE

11,0

AIK1,AID11,LBUS1,X$bEMeBV$KDA1 1

DRP11,X$REX

AID11

*** ** **** ** **** ** **4****
* *
* ACK HANDLED BY D12 *
* * *

**** ******* **'****

AIA12

SEND

ASSIGN

MACRO

USE MACRO

11,0'

AIKl 1AID12,LBUS1,i$BEXBV$DA12

DRP12, XSREX

LEAVE AID12
TERMINATE

-318-

VILE: GPSS54 VS1JOB D27



CONVERSATIONAL MONITOR SYSTEM

* *
* ACK HANDLED BY D13 *
* *
** ** ***** ** **** ** ***** ***

AAA13 ASSIGN 11,0

SEND MACRO AIK1,AID13,LBUS1,X$BEXMBV$KDA13

USE ACRO DRP13,X$REX

LEAVE AID13
TERMINATE

* *

* ACK HANDLED BY D14 *
* *

AAA14 ASSIGN 11,0

SEND MACRO AIK1,AID14,LBUS1,X$BEXMBV$KDA14

USE MACRO DRP14,X$REX

LEAVE AID14
TERMINATE

* *

* ACK HANDLED BY D15 *
* *
* ** * **** *** **** ***** ****

AAA15 ASSIGN 11,0

SEND MACRO AIK1,AID15,LBUS1,X$BEXMBV$KDA15

USE MACRO DRP15,X$REX

LEAVE AID15
TERMINATE

*---------------------------------------------------------------*
* *

* SIMULATION CONTROL *
* *
*------------------------------------------ ---------------- --------- -------- *

GENERATE X$TIMER
TERMINATE 1
START 1
END

-319-

PILE'. GPSS54 VS1JOB D19



BIOGRAPHIC NOTE

Chat-Yu Lam was born in Swatow, Kwuntung
Province, China, on December 18, 1951. He emigrated to
HongKong in 1959 where he completed grade school at the Chi
Tak Public School in 1964 and completed high school at the
Queen Elizabeth School in 1970.

He attended Massachusetts Institute of Technology in
September 1970 and graduated in June 1974 with a B.Sc. in
Electrical Engineering. During this time, he was a systems
programmer for the M.I.T. Departmental Information System
and was in the Cambridge Project JANUS Database Management
System design team.

In September 1974 he attended Northwestern University and
graduated with a M.Sc. in Computer Science in June 1976.
During this time he was also a software system analyst at
A.B. Dick Company, Chicago.

He began his doctoral program at the Sloan School df
Management, M.I.T., in September 1976, majoring in
Management Information Systems. While at the Sloan School,
he was a research assistant for the NEEMIS Project, the RADC
Decision Support Systems Project, and the INFOPLEX Project.
He was a teaching assistant for the Database Systems,
Operating Systems, and Systems Programming courses at the
Sloan School. He was also in the MIMS Database Management
System development team at the MITROL Inc., Waltham,
Massachusetts.

PUBLICATIONS

1. 'Properties of Storage Hierarchy Systems with Multiple
Page Sizes and Redundant Data', ACM Trans. on Database
Systems, 4 3 (September 1979) (wtil S.A MadnTk)

2. 'INFOPLEX Data Base Computer Architecture - Concepts and
Directions', M.I.T. Sloan School Working Paper No.
1046-79 (C.I.S.R. Working Paper No. 41), 1979 (with S.
Madnick)

3. 'Composite Information Systems - A New Concept in
Information Systems', M.I.T. Sloan School Working Paper
No. 993-78 (C.I.S.R. Working paper No. 35), 1978 (with
S. Madnick)

4. 'The GMIS 2 Architecture', M.I.T. Energy Laboratory
Working Paper No. MIT-EL-77-014WP, 1977 (with J. Lamb
et. al.)

-320-


