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ABSTRACT

The need for efficient storage and processing of very
large databases to support decision-making coupled with
advances in computer hardware and software technology have
made research and development of specialized architectures
for database management a very attractive and important
area.

The INFOPLEX data base computer proposed by Madnick
applies the theory of hierarchical decomposition to obtain a
specialized architecture for database management with
substantial improvements in performance and reliability over
conventional architectures. The storage subsystem of
INFOPLEX is realized using a data storage hierarchy. A data
storage hierarchy is a storage subsystem designed
specifically for managing the storage and retrieval of very
large databases using storage devices with different
cost/performance characteristics arranged in a hierarchy.

It makes use of locality of data references to realize a low

cost storage subsystem with very large capacity and small
access time.

As part of the INFOPLEX research effort, this thesis is
focused on the study of high performance, highly reliable
data storage hierarchy systems. Concepts of the INFOPLEX
data base computer are refined and new concepts of data
storage hierarchy systems are developed. A preliminary
design of a general structure for the INFOPLEX data storage
hierarchy system is proposed.

Theories of data storage hierarchy systems are developed.
Madnick's model of a generalized storage hierarchy is
extended and formalized for data storage hierarchy systems.
The Least Recently Used (LRU) algorithm is extended to
incorporate the read-through strategy and page overflow
strategies to obtain four classes of data movement
algorithms. These algorithms are formally defined.
Important performance and reliability properties of data
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storage hierarchy systems that make use of these algorithms
are identified and analyzed in detail. It is proved in
Theorems 1 and 2 that depending on the relative sizes of the
storage levels and the algorithms used, it is not always
possible to guarantee that the contents of a given storage
level 'i' is a superset of the contents of its immediate
higher storage level 'i-1', i.e., multi-level inclusion
(MLI) does not hold. Necessary and sufficient conditions
for MLI to hold are identified and proven in Theorems 3 and
4. A property related to MLI is the multi-level overflow
inclusion (MLOI) property. MLOI holds if an overflow page
from storage level 'i' is always found to already exist in
storage level 'i+l'. A data storage hierarchy avoids
cascaded references to lower storage levels if MLOI holds.
Necessary and sufficient conditions for the MLOI to hold are
identified and proven in Theorems 5 and 6. It is possible
that increasing the sizes of intermediate storage levels may
actually increase the number of references to lower storage
levels, resulting in decreased performance. This is
referred to as the multi-level paging anomaly (MLPA).
Conditions necessary to avoid MLPA are identified and proven
in Theorems 7 and 8.

A sinplified structure of the INFOPLEX data storage
hiecr.rchy is . =rived from its general structure. Protocols
for supporting tne read-through and store-behind algorithms
are specified. Two simulation models of this system are
developed. The first ... o) incorporates one functional
processor and three storage levels. Results from this model
provide significant insights to the design and its
algorithms and reveals a potential deadlock in the buffer
management schemes. The second model corrects this
potential deadlock and also incroproates five functional
processors and four storage levels. Results from this model
show that the store-behind operation may be a significant
system bottleneck because of the multi-level inclusion
requirement of the data storage hierarchy. By using more
parallelism in the lower storage levels and by using smaller
block sizes it is possible to obtain a well-balanced system
which is capable of supporting the storage references
generated by the INFOPLEX functional hierarchy. The effects
of using projected 1985 technology for the data storage
hierarchy are also assessed.

Thesis Sugcrwi~nr: Prof. Stuart E. Madnick
Associate Professor of Management Science
M.I.T. Sloan School of Management
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Chapter I

INTRODUCTION AND PLAN OF THESIS

1.1 INTRODUCTION

The effective and efficient storage and processing of
very large data bases to support better decision-making has
been a major concern of modern organizations. Though
advances in computer technology are impressive, the rate of
growth of information processing in organizations is
increasing even more rapidly. A key technological advance
in providing better information processing systems is the
development of Data Base Management Systems (DBMS's) (Mar-
tin, 1975). Most organizations today make use of some kind
of DBMS for handling their large databases. Efforts to
develop even more effective DBMS's remain very active and

important (Mohan, 1978).

Current DBMS's are capable of handling large databases on
the order of trillion bits of data (Simonson and Alsbrooks,
1975), and are capable of handling query rates of up to one
hundred queries per second (Abe, 1977). Due to the increas-
ing need for better information, and the declining costs of

processors and storage devices, it is expected that future



high performance DBMS's will be required to handle query
rates and provide storage capacities several orders of mag-
nitude higher than today's (Madnick, 1977). Furthermore,
with such high query rates (generated by terminal users as
well as directly from other computers), it is essential that
a DBMS maintains non-stop operation (Computerworld, 1976).

Thus, guaranteeing the reliability of the DBMS becomes very

difficult.

Current improvements in processor and storage device
technology alone do not seem to be able to meet these orders
of magnitude improvements in performance and reliability.
The nex section reviews several research efforts aimed at
modifying the conventional computer architecture for better
information handling. One such research effort is the INFO-
PLEX Project (Lam and Madnick, 1979). The INFOPLEX approach
to obtaining a high performance, highly reliable DBMS is to
design a new computer specifically for data management.

This thesis is a study of the storage subsystem of the INFO-
PLEX data base computer. Research goals and specific accom-
pliéhments of this thesis will be described in a following

section. The structure of this thesis is then described.
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1.2 RELATED RESEARCH

In the past, computers were designed primarily for numer-
ical computation. We now find that processing of large
databases has become a major, if not dominant, component of
computer usage. However, current computer structures still
have the 'von Neumann' structure of twenty years ago. As
Mueller (Mueller, 1976), President of System Development
Corporation, noted: 'the computer industry has gone through
three generations of development to perfect machines optim-
ized for 10 percent of the workload'. It is not surprising
then, that many organizations find their supercomputers run-
ning 'out of steam' as new applications with large databases

are installed.

Figure 1.1 illustrates a simplified typical computer
architecture. It consists of a processor directly accessing
a’main memory (with access time in the order of microse-
conds), an I/0 processor that controls'the movement of data
between main memory and secondary storage devices, an I/0
controller and its associated secondary storage devices
(with access times in the order of milliseconds). Current
DBMS's are software systems that reside in the main memory
together with other software subsystems and application pro-
grams. To provide a high level view of dafa for application

programs a DBMS has to manage all the data residing in sec-
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ondary storage devices and coordinate all the data movement
and processing activities. Two potential deficiencies of
adapting the conventional computer architecture for data
base management become evident. First, the processor
becomes strained as new functions are added to the DBMS.
These new functions include high level language support,
better security and data integrity mechanisms, support of
multiple data models, ..., and so on. Second, due to the
large differential in access times of main memory and secon-
dary storage devices (referred to as the 'access gap'), the
speed of processing becomes limited by how fast ‘useful data
can be brought into main memory from secondary storage dev-
ices. Thus, many organizations find the performance of
their data management system either limited by the available
processor cycles or limited by the speed of I/O operations,

depending on the DBMS used and the applications supported.

These problems have been recognized for some time. Cur-
rent advances in LSI technology make it feasible to consider
new software and hardware architeétures to overcome the
above deficiencies. Several such approaches are discussed

below.
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1.2.1 New Instructions Through Microprogramming

Conventional processor instructions are usually not well
suited to the requirements of database management systems.
Using firmware, it is possible to augment or enhance the
instructions thus effectively increase the efficiency of the
processor. This approach has been adopted in several sys-
tems. One of the earliest efforts occurred as part of the
LISTAR information retrieval system developed at M.I.T.'s
Lincoln Laboratory (Armenti et gl., 1970), where several
frequently used operations, such as a generalized List
Search operation, were incorporated into the microcode of an
IBM System/360 Model 67 computer. The Honeywell H60/64 uses
special instructions to perform data format conversion and
hashing corresponding to frequently used subroutines of
Honeywell's IDS database system (Bachman, 1975). More
recently the IBM System/38 (Soltis and Hoffman, 1979) was
announced with microcode to perform much of the operating
system and data management functions. The performance
advantages of this approach are highly dependent upon the
frequency of use of the new instructions and the extent to

which they fit into the design of the overall database sys-

tem software.
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1.2.2 Storage Hierarchy Optimization

It is possible to close the 'access gap' between main
memory and secondary storage devices by using a more conti-
nuous storage hierarchy, thus improving the performance of

the storage subsystem.

Madnick (Madnick, 1973) proposed a model of a generalized
storage hierarchy system and its data movement algorithms.
This storage hierarchy makes use of multiple page sizes
across the storage levels for high performance and maintains
multiple data redundancy across the storage levels for high
performance and high reliability. This type of storage
hierarchy systems have great potentials as storage subsys-
tems for high performance, highly reliable DBMS's. Unfortu-
nately, the lack of better understanding of this type of
storage hierarchy systems is a major obstacle in the devel-
opment of practical storage subsystems in spite of the fact
that a continuous spectrum of storage devices with different
cost/performance characteristics will persist (Dennis et.

al., 1978; Hoagland, 1979; Smith, 1978a).

There has been much work on studying storage hierarchy
systems and their algorithms. We shall review these work in
a later chapter. These studies usually do not consider the
effects of multiple page sizes across different storage lev-

els, nor the problems of providing multiple data redundancy

- 15 -



across the storage levels, as in the system proposed by
Madnick. Developing theories for generalized storage hier-

archy systems specifically for managing large database

remains a challenge.

1.2.3 Intelligent Controllers

Another approach to improving information processing
efficiency is to use intelligent controllers. The control-
ler provides an interface between the main memory and the
devices. Recently, more and more intelligence has been
introduced into these controllers. For example, many con-
trollers can perform the search key operation themselves
(Ahern et al., 1972; Lang et al., 1977). Since only
selected data items are brought to the main memory, the I/O

traffic is reduced and the efficiency of the storage subsys-

tem is increased.

Two major types of intelligent controllers have emerged.
The first type specializes in automating the data transfer
between the storage devices, i.e., the physical storage man-
agement functions. For example, IBM's 3850 Mass Storage
System (Johnson, 1975) uses an intelligent controller to
automatically transfer data between high-capacity, slow-
speed tape cartridges and medium-capacity, fast moving-head

disks. Thus, the processor is relieved of the burden to

manage these data movements.
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The second type of intelligent controllers is designed to
handle some of the logical storage management functions,
such as searching for a specific daté record based on a key.
This latter type of device is sometimes referred to as a
database computer, and is often used to perform associative
or parallel searching (Langdon, 1978). Most parallel asso-
ciative search strategies are based on a head-per-track sto-
rage device technology (for example, magnetic drums, LSI
shift registers, and magnetic bubbles) and a multitude of
comparators. As each data record rotates, either mechani-
cally or electronically, past a read/write head, it is com-
pared with a match record register, called the mask. Exam-
ples of this type of intelligent controllers include CASSM
(Copeland et al., 1973; Healy et al., 1972; Su and Lipovski,
1975; Su, 1977; Su et. al., 1979), the Rotating Associative
Relational Storage (RARES) design (Lin et al., 1976), and
the Rotating Associative Processor (RAP) (Ozkarahan et al.,
1975; Schuster et al., 1976; Ozkarahan et al., 1977; Schus-

ter, 1978; Schuster, et. al., 1979).

Although the decline in the costs of comparator electron-
"ics, due to advances in LSI technology, makes parallel
search strategies quite promising for the future, they are
only well suited to storage technologies that lend them-

selves to low cost read/write mechanisms, and for optimal
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performance and operation they tend to require a fairly sim-
ple and uniform database structure (e.g., relational flat
files). To use these intelligent controllers in conjunction
with other storage devices, such as mass storage, some
"staging" mechanisms have to be used. Furthermore, these
intelligent controllers only support part of the information
management functions, much of the complex’functions of lan-
guage interpretation, support of multiple user interfaces,
etc., of an information management system cannot easily be

performed in these controllers.

1.2.4 Back-end Processors

The fourth approach is to shift the entire database man-
agement function from the main éomputer to a dedicated com-
puter thus increasing the processor power available for per-
forming the data management function. Such a computer is
often called a back-end processor. The back-end processor
is usually a minicomputer specifically programmed to perform

all of the functions of the database management system.

Back-end processors have evolved rapidly in recent years.
Some of the earliest experimental efforts include the
loosely coupled DATACOMPUTER (Marill and Stern, 1975),
developed by the Computer Corporation of America using the

DECSystem-10 computer, and the tightly coupled XDMS (Canady

- 18 -



et al., 1974), developed by Bell Laboratories by modifying
the firmware of a Digital Scientific META-4 minicomputer.
More recent developments include the Cullinane Corporation's
IDMS on a PDP/11 compuater. Since the back-end processor is
still a conventional computer whose architecture has been

designed for computational purposes, not for information

management, its performance is still quite limited.

1.2.5 Data Base Computers

The fifth approach to providing improved information pro-
cessing efficiency is the database computer. The difference
between this approach and the fourth approach (back-end pro-
cessor) is that the database computer has a system architec-
ture particularly suitable for database operations while a
back-end processor merely adapts a conventional computer to

database applications.

There has been relatively little research on the develop-
ment of true database computers (as opposed to work on
intelligent controllers and/or dedicated back-end processors
-- which are sometimes referred to as database computers).
Current data base computer research efforts include the DBC
(Hsiao and Kannan, 1976; Banerjee, et. al., 1978; Banerjee,

t. al., 1979) at the Ohio State University, the GDS (Hako-

zaki et al., 1977) at the Nippon Electric Co., Japan, and
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the INFOPLEX effort at M.I.T. (Madnick, 1975b; Lam and Mad-

nick, 1979; Madnick, 1979).

Data Base Computer seems to be a long term solution to
the DBMS requirements of future computer systems. The DBC
approach at Ohio State University makes use of specialized
functional processors for performing the data management
functions thus eliminating the processor bottleneck that
exists in current DBMS's. To improve the efficiency of the
storage subsystem, the DBC makes use of the idea of a parti-
tioned content addressable memory (PCAM). The entire
address space is divided into partitions, each of which is
content addressable. To realize content addressability cost
effectively, the DBC makes use of multiple intelligent con-

trollers at the secondary storage devices.

The INFOPLEX architecture also makes use of multiple
functional processors. However, to obtain a flexible, high
performance, and highly reliable storage subsystem, INFOPLEX
makes use of a storage hierarchy system based on the Madnick
proposal (Madnick, 1973). Conceptually, the INFOPLEX data-
base computer consists of a functional hierarchy and a phy-
sical (storage) hierarchy (See Figure 1.2). The INFOPLEX
functional hierarchy is a hierarchy of specialized micropro-
cessors. It implements all the information management func-

tions of a database manager, such as query language
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interpretation, security vefification,_and data path
accessing, etc. The hierarchy of functional processors
establishes a pipeline. Within each stage of the pipeline,
multiple processors are used to realize parallel processing
and provide multiple redundancy. The INFOPLEX storage hier-
archy is designed specifically to support the data storage
requirements of the functional hierarchy. To provide high
performance and high reliability, it makes use of a highly
parallel and reliable architecture, implements distributed

control mechanisms, and maintains multiple data redundancy.

1.3 RESEARCH GOALS AND ACCOMPLISHMENTS

This thesis is a study of the INFOPLEX data storage hier-
archy. We have studied data storage hierarchy systems from
five differeﬁt and related points of view: (1) development
of concepts for INFOPLEX and data storage hierarchy systems,
(2) architectural design of data storage hierarchy systems,
(3) theoretic analysis of data storage hierarchy systems,
(4) algorithm development for data storage hierarchy sys-
tems, and (5) performance evaluation of data storage hier-
archy systems. Specific goals and accomplishments of this

thesis are listed below.
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Develop and extend concepts of data base computers
and data storage hierarchy systems: Since Mad-
nick's (Madnick,1975b) proposal to develop a high
performance, highly reliable data base computer,
called INFOPLEX, there has been many alternative
approaches to develop special architectures for
data base management} We have reviewed these pro-
posals and categorized these efforts into: (1)
new instructions through microprogramming, (2)

storage hierarchy optimization, (3) intelligent

~controllers, (4) back-end processor, and (5) data

base computers. Concepts of the INFOPLEX data
base computer have been refined and leads to the
development of the concept of a data storage hier-

archy.

Architectural design of data storage hierarchy
systems: Although storage hierarchy systems with
two or three levels are very common in current
computer systems, there is no known storage hier-
archy with more than three storage levels that has
been designed specifically for large databases. A
preliminary design of the general structure of a
data storage hierarchy with an arbitrary number of

storage levels has been developed. This structure
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is the basis for future designs of data storage

hierarchy systems for the INFOPLEX data base com-

puter.

Theoretic analysisAQE data storage hierarchy sys-
tems: Madnick (Madnickj, 1973) proposed the model
of a generalized‘storage hierarchy system that
incorporates multiple page sizes and maintains
multiple data redundancy for high performance and
high reliability. This model is extended and for-
malized for data storage hierarchy systems. The
Least Recently Used (LRU) algorithm is extended to
incorporate the reathhrough strategy for managing
the data movement in data storage hierarchy sys-
tems. Four classes of algorithms are obtained and
formally defined. The multi-level inclusion
(MLI), multi-level overflow inclusion (MLOI), and
multi-level paging anomaly (MLPA) properties of
data storage hierarchy systems using these algor-
ithms are analyzed in detail and formally proved

as eight theorems and nine lemmas.

Develop algorithms for data storage hierarchy sys-
tems: A simplified structure of the INFOPLEX data
storage hierarchy is obtained from the general

structure. Protocols to support the read-through
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and the store-behind data movement algorithms are

developed for this structure.

5. Performance evaluation of data storage hierarchy
systems: Two GPSS/3608 simulation models of the
INFOPLEX data storage hierarchy are developed.
Simulation results reveal several unexpected pro-
perties of the data.storage hierarchy design and
its algorithms. A well-balanced system is used to
compare the performance differential of using
technology in 1979 versus projected technology in
1985. These simulation results indicate that the
current INFOPLEX data storage hierarchy design is
capable of supporting the read and write traffic

generated by the INFOPLEX functional hierarchy.

1.4 STRUCTURE OF THESIS

This thesislis an important step towards developing sto-
rage hierarchy systems specifically for data base computers.
Existing models of storage hierarchy systems are extended to
obtain a formal model of storage hierarchy system which
incorporates multiple page sizes and maintains multiple data
redundancy. Key properties of such systems are analyzed in
detail. Architectures of storage hierarchy systems for

INFOPLEX are developed and the performance of these designs
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are evaluated. Details of this research are presented in
seven chapters. Chapter one is self-explainatory. The fol-

lowing outlines the contents of the other chapters.

1.4.1 Chapter 2 : The INFOPLEX Data Base Computer
Architecture

This chapter introduces the objectives and approaches of
the INFOPLEX data base computer. Concepts and research
approaches used in the INFOPLEX functional hierarchy and the
INFOPLEX data storage hierarchy are described. This chapter
provides the background and motivation for the research on

data storage hierarchy systems.

1.4.2 Chapter 3 : A General Structure of the INFOPLEX
Data Storage Hierarchy

A preliminary design of the INFOPLEX data storage hier-
archy, DSH-1, is proposed. The design objectives of DSH-1
are discussed. Then the structure of DSH-1 is introduced.
This design can be used to explore design issues associated
with the INFOPLEX data storage hierarchy. Key design issues

are identified.

1.4.3 Chapter 4 : Modelling and Analysis of Data
Storage Hierarchy Systems

Current research efforts in storage hierarchy systems are

briefly reviewed. A formal model of data storage hierarchy
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systems incorporating multiple page sizes and maintain mul-
tiple data redundancy is developed. Extensions to the Least
Recently Used (LRU) algorithm are developed to incorporate
the read-through strategy. Important performance and relia-
bility properﬁies of these systems are formally proved.
These results provide valuable insights to designing data
storage hierarchy systems. The formalisms developed provide
a solid basis for further theoretic analysis of data storage

hierarchy systems.

1.4.4 Chapter 5 : Design of the DSH-11 Data Storage
Hierarchy System

The general structure of the INFOPLEX data storage hier-
archy is used to derive a simpler structure, DSH-11. This
structure is used as a basis for developing protocols for

supporting the read and write operations. Specifications

for these protocols are presented.

1.4.5 Chapter 6 : Simulation Studies of the DSH-11l Data
Storage Hierarchy System

A simulation model of DSH-11l with one processor and three
storage levels is developed. Results from simulation stu-
dies using this model provide valuable insights to the
DSH-11 design and its algorithms. This knowledge is incor-
- porated intb another simulation model of DSH-11 that con-

sists of five processors and four storage levels. Simula-
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tion studies from this model reveal further interesting
properties of the read-through and store-behind algorithms.
The simulation results also indicate that the current design
is capable of supporting the very high rate of storage

references generated by the INFOPLEX functional hierarchy.

1.4.6 Chapter 7 : Discussions and Conclusions

Chapter 7 summarizes this thesis and indicates fruitful

areas for further research.

- 28 -



Chapter II .

THE INFOPLEX DATA BASE COMPUTER ARCHITECTURE

2.1 INTRODUCTION

This chapter discusses the INFOPLEX data base computer
concepts and its approaches. Specific areas of contribution
of this thesis to the development of the INFOPLEX data base

computer are then listed.

The key concepts of the INFOPLEX architecture are hier-
archical decomposition and distributed control. Techniques

of hierarchical decomposition are applied to organize the

information management functions to obtain a highly modular
functional hierarchy. Each level of the functional hier-
archy is implemented using multiple microprocessors. Tech-
niqués of hierarchical decomposition are also applied to
organize the storage subsystem to obtain a modular storage
hierarchy capable of supporting the storage requirements of
thé functional hierarchy. Microprocessors are used at each
level of the hierarchy to implement the storage management
algorithms so the hierarchy appears as a very large, highly

reliable, high performance virtual storage space.
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Due to the high modularity of these organizations, both
the functional hierarchy and the storage hierarchy can take

advantage of distributed control mechanisms. Each level in

a hierarch? only communicates with its adjacent levels and
each module within a level only communicates with its adja-
cent modules. Thus, no central control mechanism is neces-
sary. Distributed control enhances reliability since there
is no single component in the system whose failure renders
the entire system inoperative. Distributed control also
enhances performance since there is no system bottleneck as

would exist in a centrally controlled system.

A functionally decomposed hierarchy, implemented using

multiple microprocessors, can support pipeline processing

naturally. That is, multiple requests for information can
be at various stages of processing at different levels of
the hierarchy simultaneously. Such an architecture also

enhances reliability since errors can be isolated within a

level in the hierarchy thus simplifying error detection and

correction.

Parallel processing is made possible by the hierarchical

decomposition and implementation using multiple microproces-
sors. For example, there may be several identical modules
that implement the same function within a level. All these

modulés can be simultaneously operating on different



requests, at the same time, providing potential backup for

one another.

Thus, the distributed control, pipeline and parallel pro-
cessing capabilities of INFOPLEX provide very high reliabil-

ity and high performance.

In addition to providing high performance and high relia-
bility, a viable data base computer must be able to take
advantage of new technological innovations. It must be able
to easily upgrade to incorporate new algorithms, e.g., a new
security checking techniqué, or new hardware innovations,
e.g., a new storage device. Due to its modular structure,
the INFOPLEX functional hierarchy can take advantage of new
techniques and technologies as they are developed. The
INFOPLEX storage hierarchy is specifically designed to be
able to handle any type of storage devices. Thus rather
than being specialized to a particular data structure, or
type of storage device, INFOPLEX is designed to adapt to the
changing application needs as well as to take advantage of

new technological innovations.

2.2 THE INFOPLEX FUNCTIONAL HIERARCHY

An information management system performs a spectrum of
very complex functions in response to user requests for

information. These requests are often expressed using very
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high level languages and often come from many different
sources simultaneously. There are many ways that these com-
plex functions can be implemented. The technique of hier-

archical functional decomposition has been found to be very

effective for advanced information systems (Donovan and
Jacoby, 1975). Similar techniques have been used success-
fully in operating systems (Dijkstra, 1968; Madnick and
Donovan, 1974), basic file systems (Madnick and Alsop, 1969;

Madnick, 1978), and a wide range of complex systems (Pattee,

1973).

This is the approach used in INFOPLEX. The information
management functions are systematically decomposed into a
functional hierarchy, referred to as the INFOPLEX functional
decomposition. The functional modules in the hierarchy are

then implemented using multiple microprocessors.

2.2.1 Rationale for Functional Decomposition

The central idea underlying the hierarchical functional
decomposition approach involves decomposing the system into
a hierarchy consisting of a number of levels, such that each
level interacts only with the levels below it in the hier-
archy. Proper selection of the hierarchy allows design or
operating problems that previously impacted the entire sys-
tem, to be isolated to one or a few specific hierarchical

levels, and thereby more easily handled (Parnas, 1976).
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Isolating the information management functions into mini-
maliy interrelated modules facilitates the use of multiple
identical modules for performing the same function, so that
reliability and parallelism are enhanced. Furthermore, this
approach provides great flexibility in the technologies used
for implementating each type of functional module. For
example, a particular data structure may be selected from a
spectrum of indexing techniques for a given module without

affecting the design of other types of modules.

2.2.2 Example of a Functional Decomposition

To illustrate the hierarchical functional decomposition
concept, a specific example of a functional decomposition is
discussed in this section. Figure 2.1 illustrates a plausi-
ble hierarchical functional decomposition. Each level of

the functional hierarchy is described below.

2,2.2.1 Entities and Entity Sets

At the most fundamental level, a database system stores
information about things, or entities. Also, it is usually
the case that entities represented in a database fall natur-
ally into logical groups, or "entity sets". The way in
which a database system (a) represents and stores informa-
tion about entities themselves, and (b) represents informa-
tion about the logical grouping of entities into entity
sets, forms the bedrock architecture of the system.
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There are many schemes available for logically and physi-
cally representing entities (i.e., coding, storing, and.
addressing entities) and various algorithms for structuring
entity sets. The choice of implementation scheme at this
level affects the performance of the entire system but does

not affect how the functions of the other levels are imple-

mented.

©2.2.2.2 Binary Relations

All relationships among entities can be expressed in
‘terms of binary relationships between pairs of entities.
This functional level makes use of the entity level con-
structs to provide a collection of binary relations (rela-
tions between pairs of entity sets). An element of a binary
relation can be viewed as a triad, consisting of a relation
identifier plus two entities, each from one of the entity
sets participating in the binary relation. Thus a binary
relation can be viewed as a collection of triads with the

same relation identifier.

Perhaps the simplest possible implementation of a set of
binary relations would be as a sequential file of triads,

for example,

(HAS_SALARY OF , SMITH , 1200)

(HAS_SALARY OF , JONES , 1500)
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(WORKS_IN DEPT . SMITH , 02)

(WORKS_IN DEPT , JONES , @7)

The difficulties with this approach are manifest: there is
great data redundancy and thus waste of storage (the rela-
tion identifiers are stored in each triad); insertion of
additional triads would either have to be done out of order,

or else insertions and deletions would be extremely time-

consuming.

Triads could also be stored as linked lists. Alterna-
tively hashing algorithms could be employed to locate any
triad, given two of its three components. The use of linked
lists can improve access speed and reduce storage require-
ments. On the other hand, the use of hashing algorithms

would provide extremely rapid access, but would be poorer in

terms of storage space utilization.

Since a database may contain billions of triads, the log-
ical and physical structures of binary relations have seri-
ous performance implications. Many implementation schemes
for binary relations are possible. Although the choice of
these implementation schemes has various cost and perfor-
mance implications it does not affect how the functions of
the next level are implemented.
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2.2.2.3 N-ary Relations

Conceptually, an n-ary relation may be thought of as a
table of data, with rows of the table (usually called
tuples) corresponding approximately to records in a tradi-
tional data file, and columns (or domains) corresponding to
fields. Furthermore, n-ary relations may be constructed out
of sets of basic binary relations. For example, the degree
4 relation EMPLOYEE DEPT SALARY SEX, for which a typical

entry might be
(SMITH, 02, 1200, male),

is semantically equivalent to (i.e., contains the same
information as) the three binary relations WORKS_IN DEPT,
HAS SALARY OF and SEX, as illustrated in Figure 2.2. We
could build up n-ary relation tuples out of tuple-ids of
binary relations, as illustrated in Figure 2.3. 1In this
approach, the original data entities (SMITH, 01, 12080,
male), would be stored in permanent binary relations, and
all other relations would be constructed out of binary tuple
ids. Tuple ids, being uniform binary numbers, are easy and

efficient to manipulate.

A number of other implementations of n-ary relations is

also possible. The point is, however, that once we have an
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efficient implementation of binary relations, general n-ary
relations may be constructed in a straightforward fashion
out of the binary relations without actually having to
retreat -- conceptually or physically -- back to the level
of basic entities or entity sets. In other words, n-ary
relation functions (to manipulate n-ary relations) can be

implemented by appropriately combining binary relation func-

tions.

2.2.2.4 Links Among N-ary Relations

The various n-ary relations in a typical database would
generally possess a number of logical interconnections. For
example, one relation might contain data on employees and
the skills each employee possesses, while another might
involve data on departments and the skills each department
requires to function. The logical relationship between the
tuples in these relations could be employed to extend the
database structure further, by incorporating a set of
"meta-relations" for storing information about such links
between the regular n-ary relations. The role of the meta-
relations would be to identify related tuples, and to pro-
vide some semantic information regarding the nature of the
interrelationships. 1In the example cited above, it would
make sense to establish a meté—relation connecting the

appropriate tuples in the original two relations on the
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basis of "common skill", as shown in Figure 2.4. Under the

implementation approach illustrated in Figure 2.4, meta-re-

lations would themselves be n-ary relations. The only dif-

ference between them and regular n-ary relations-lies in the
interpretation of their entries. Therefore, all of the pre-
viously designed mechanisms for building and managing n-ary

relations could also be used with the meta-relations. Only

the interpretation of the elements within thése relations

would be different.

By incorporating linking information among the different
n-ary relations in a database, either permanently or tempo-
rarily, directly into the database structure itself, it
would be possible to generate more complex systems that
would be capable of presenting different interfaces to dif-

ferent users, depending on the needs and objectives of the

users themselves.

2.2.2.5 Virtual Information

It is not always necessary, or even desirable, that a
database contain all the information that users might wish
to access. Sometimes data interrelationships are algor-
ithmic in nature, such that certain values may be unambigu-
ously derived from others that are already stored in the
database. This gives rise to the concept of "virtual"

information (Folinus et al., 1974).
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If an employee's
the CURRENT DATE is
could be calculated
be stored. If this

would be an example

BIRTH_DATE is stored in a database, and
also available, then the employee's AGE
by a simple algorithm and need not also
is in fact done, then the employee's AGE

of "virtual" data -- information that

appears (to the database user) to be stored there, but which

is not actually present as an entity in the database.

There are a number of advantages to "virtualizing" data

in a database. These include:

l. Greater accuracy: for example, an employee's AGE

could be calculated as accurately as necessary if

included as virtual data, whereas it would always

be somewhat "o0ld" if it were simply stored as a

database entity;

2. Elimination of updating: virtual data items them-

selves never

need updating;

3. Reduced redundancy: including, for example,

BIRTH_DATE, CURRENT _DATE, and AGE as three sepa-

rate items in a database is redundant, and incon-

sistent data

relationships can easily result if

some of the items are updated independently of

others;
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4, Savings in storage: in many cases, the database
storage space required to store items such as AGE
directly would be much larger than that required

to store the coded algorithm for calculating AGE

from other data.

One way of implementing a virtual information capability is
to extend the definition of n-ary relations to include tuple
identifiers ("ids") that would in fact not refer to binary
relation tuples, but rather would point to procedures for
calculating the virtual data items. Consider a simple
employee relation of degree four, containing real data items
NAME, BIRTH_DATE, and SALARY, plus a virtual data item AGE.
The organization of this 4-tuple would then appear as in

Figure 2.5.

2.2.2.6 Data Verification and Access Control

Data verification is the process of checking entries into
a database for qualities such as reasonableness (e.g., a
person's age should be no greater than, say, 125 years), and
consistency (e.g., the sum of the months worked in various
departments by an employee should sum to the number of
months worked for the company). Access control is the pro-
cess of controlling the database with regard to data

retrieval, update, deletion, database reorganization, etc.
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For example, department managers may be granted authoriza-
tion to view the employee records of only the employees
working in their own departments; the database administra-
tor, on the other hand, may have access to all the records
in the database. The database administrator may also be the

only person with authority to reorganize the entire data-

base.

Access control also involves considerations such as the
identification of valid users through use of passwords and
other such techniques, mechanisms for allowing users to spe-
cify the type of access (read only, read/write, execute
only, etc.) for files, and allowing users to segment files,
so as to restrict parts of interconnected programs or data
files from certain kinds of access by certain specified
users (an example of a system that has implemented this suc-

cessfully is the MULTICS system).

Both data validity and access control could be imple-
mented in the hierarchical structure being discussed here in
a variety of ways. Fdr example, the basic n-ary relations
could be further extended to include special control and
verification tuples. If data verification were to be per-
formed upon data entries in a certain domain of a relation,
that domain could be flagged in a "verification tuple", and

a data verification routine would be called upon data inser-
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tion or update to check the appropriateness of each entry

(see Figure'2.6).

Similarly, control of access to various domains or tuples
could be performed by setting control bits in a special con-
trol tuple or domain, and including, for example, an address
pointer to a list of authorized user passwords, against
which the current user could be checked. These control
tuples or flag bits would serve to describe certain "views",
or combinations of data elements, that e%ch user would be
permitted to access. Alternately, they could be used to
describe elements,‘domains, tuples, or entire relations that

a user was not permitted to view.

Note that these implementations would utilize the mechan-
isms employed to provide virtual information as discussed
above (i.e., certain ids are used to point to verification
procedures, as they pointed to "virtual information computa-
tion procedures"” in the preceding section). Thus, the veri-
fication and access control functions can be realized in

terms of those responsible for virtual information.

2.2.2.7 High-level Language Interface

The user interface, through the data manipulation lan-
guage, basically specifies the way in which the database may
be accessed by the users. In this regard, there are three
main approaches to manipulating a database, corresponding
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roughly to the three basic models of database organization

(network, hierarchical, and relational.):

l. An application programmer may wish to 'navigate'
(Bachman, 1975; Codasyl, 1971) a database by using
the data manipulation language to trace through
the data groupings (relations) and interconnecting
linkages (links between n-ary relations). This
approach to database manipulation is usually more
complex than some others, and demands a greater
sophistication on the part of the applications
programmer. He must, for example, be fully aware
of the existence of all the links connecting the
various data groupings, whereas this knowledge is
not necessarily demanded of programmers using
other data manipulation languages. 1In return for
the greater complexity, the navigational approach
usually offers greater accessing efficiency and
better overall database manipulation performance,
especially when dealing with large and complex

databases.

2. A user may wish to organize and manipulate the
database as a hierarchical tree structure, wherein
the logical interconnections between data group-

/

ings are always one-to-many in nature. 1In a
P
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sense, the manipulation of a hierarchical tree
structure is a special case of the general naviga-
tional approach. Hierarchical structures do, how-
ever, allow a number of simplifications to be made
in designing the database management system, as
well as in the data manipulation language. Furth-
ermore, a surprisingly large number of situations
in the real world may be effectively represented
with a hierarchical tree data organization, so it
is worthwhile to treat hierarchical structure as

an important special case.

Finally, in many cases it is appropriate for the
applications programmer to access the database
directly in terms of its underlying binary or
n-ary relations (Codd, 1976; Codd, 1974). Such
"direct" manipulation may be made at a relatively
low level, in terms of individual relations and
primitive operations (using the relational alge-
bra) upon them. Alternately, a higher-level
interface could be used to translate more general-
purpose commands (using the relational calculus)
into lower-level operations. Such low-level
accessing methods generally provide greater effi-

ciency, at the expense of greater programming

detail.
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2.2.3 INFOPLEX's Approach to Functional Decomposition

The above discussions illustrate one possible decomposi-
tion of the information management functions into hierarchi-
cal levels. Other decompositions are possible. For exam-
ple, the work of (Senko; 1976; Yeh et al., 1977; Toh et al.,
1977; ANSI, 1975) also decomposes the various information
management functions into several levels (e.g., (1) physical
data storage, (2) logical data encoding, (3) access path,
(4) internal schema, and (5) external schema). A common
weakness of these functional decompositions, including our
example decompositon, is that although any particular decom-
position may make good sense and impose a reasonable concep-
tual structure on the information management function, there
are no commonly accepted criteria with which to evaluate any

given decomposition.

A common qualitative criteria often used to decompose
complex functions into sub-modules is that of modularity. A
decomposition is considered to attain high modularity when
each individual module is internally coherent, and all the
modules are loosely coupled with one another. One of the
INFOPLEX research focuses is to develop methodologies to
formalize this notion of modularity quantitatively, and to
use it to evaluate a given decomposition, thus systematic

techniques for obtaining an optimal functional decomposition
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of the information management functions can be developed.
particularly promising approach for this purpose is the
Systematic Design Methodology (Huff and Madnick, 1978).

The following briefly describes this approach.

The Systematic Design Methodology approaéh to system
design centers on the problem of identifying a system's
modules, or "sub-problems", their functions, and their
interconnections. Using this approach, we begin with a set
of functional requirement statements for the INFOPLEX infor
mation management functions. Each paif of requirements is
examined in turn, and a decision as to whether a significan
- degree of interdependence between the two requirements
exists is made. Then the resulting information is repre-
sented as a non-directed graph structure: nodes are
requirement statements, links are assessed interdependen-
cies. The graph is then partitioned with the objective of
locating a good decomposition. An index of partition good-
ness is employed, which incorporates measures of subgraph
"strength" and "coupling". The actual goodness index is
taken as the algebraic difference between the strengths of
all the subgraphs, and the inter-subgraph couplings. That
is, M=S-C, where S is the sum of the strength measures of

all subgraphs, and C is the sum of all the inter-subgraph

couplings.
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Once an agreeable partition is determined, the resulting
sets of requirements are interpreted as "design sub-prob-
lems". From these design sub-problems a functional hier-
archy of INFOPLEX can then be systematically derived. This
procedure is illustrated in Figure 2.7. This approach is

currently being developed in the INFOPLEX Project.

2.3 THE INFOPLEX DATA STORAGE HIERARCHY

To provide a high performance, highly reliable, and large
capacity storage system, INFOPLEX makes use of an automati-
cally managed memory hierarchy (referred to as the INFOPLEX
physical decomposition). In this section, the rationale for
and an example of an automatic memory hierarchy are dis-
cussed. Then the INFOPLEX approach to realize such a memory

hierarchy is also discussed.

2.3.1 Rationale for a Storage Hierarchy

The technologies that lend themselves to low cost-per-
byte storage devices (and, thereby, economical large capac-
ity storage) result in felatively slow access times. If it
was possible to produce ultra-fast limitless-capacity sto-
rage devices for miniscule cost, there would be little need
for a physical decomposition of the storage. Lacking such a
wondrous device, the requirements of high performance at low

cost are best satisfied by a mixture of technologies combin-
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ing expensive high-performance devices with inexpensive

lower-performance devices.

There are many ways that such an ensemble of storage dev-

ices may be structured, but the technique of hierarchical

physical decomposition has been found to be very effective

(Madnick, 1973; Madnick, 1975a; Madnick, 19755). Using this
technique, the ensemble of heterogeneous storage devices is
organized as a hierarchy. Information is moved between sto-
rage levels automatically depending upon actual or antici-
pated usage such that the information most likely to be
referenced in the future is kept at the highest (most easily

accessed) levels.

The effectiveness of a memory hierarchy depends heavily
on the phenomonon known as locality of reference (Denning,
1970). A memory hierarchy makes use of this property of
information reference pattern so that the information that
is used frequentiy would be accessible through the higher
levels of the hierarchy, giving the memory hierarchy an
expected access time close to that of the access time of the
faster memories. This approach has been used in contempo-
rary computer systeﬁs'in cache memory systems (Conti, 1969),
in virtual memory demandvpaging systems (Bensoussan et al.,
'1969; Greenberg and Webber, 1975; Hatfield, 1972; Mattson et
al., 1970; Meade, 1970), and in mass storage systems (Consi-
dine and Weis, 1969; Johnson, 1975).
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Experimentations with physical data reference strings are
reported in (Easton, 1978; Rodriguez-Rosell, 1976; Smith,
1978b). It has been found that there is considerable
sequentiality of physical database reference in these stu-
dies. Sequentiality of references is a special form of spa-
tial locality as discussed by (Madnick, 1973). Several mea-
sures of logical database locality and experimentations with
these measures are reported in (McCabe, 19?8; Robidoux,
1979). The observations from these experiments are encour-
aging. 1In particular they indicate that there is considera-

ble locality of database reference.

2.3.2 Example of a Physical Decomposition

We now discuss an example of a memory hierarchy, its gen-
eral structure, types of storage devices that it may employ,

and some strategies for automatic information movement in

the hierarchy.

2.3.2.1 General Structure

To the user (i.e. the lowest level of the functional
hierarchy) of the memory hierarchy, the memory appears as a
very large linear virtual address space with a small access
time. The fact that the memory is actually a hierarchy or
that a certain block of information can be obtained from a

certain level is hidden from the memory user. Figure 2.8
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illustrates the general structure of a memory hierarchy
consisting of six levels of storage devices. Some of the
devices that can be used in these levels are discussed in

the next subsection.

The lowest level always contains all the information of
the system. A high level always contains a subset of the
information in the next lower level. To satisfy a request,
the informafion in the highest (most easily accessed) level

is used.

Storage reference is accomplished by supplying the memory
hierarchy with a virtual address (say a 64-bit address), the
memory hierarchy will determine where the addressed informa-
tion is physically located. The addressed information will
be moved up the memory hierarchy if it is found in other
than the highest level of the hierarchy. This implies that
there is a high variance in the access time of the memory
system. This situation is alleviated by providing multiple
ports to the memory system so that a pipeline of requests
can be processed. Furthermore, the inherent parallelism
within each memory level and among different memory levels
provides high throughput for the memory system as a whole.
Since the functional levels are designed with high parallel-
ism of operation as one of its major objectives, the proces-

sor making the request can take advantage of the high memory
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access time variance. Various schemes are used toc make the
automatic management of the memory hierarchy efficient.

Some of these strategies are discussed in a latter section.

2.3.2.2 Storage Devices

Traditionally, computer direct access storage has been
dominated by.two fairly distinct technologies: (1) ferrite
core and, later, metallic oxide semiconductor (MOS) LSI
memories with microsecond access times and relatively high
costs, and (2) rotating magnetic media (magnetic drums and
disks) with access time in the range of 10 to 100 millise-
conds and relatively low costs. This has led to the separa-

tion between main storage and secondary storage devices.

Recently several new memory technologies, most notably
magnetic bubbles, electron beam addressed memories (EBAM),
and charge coupled devices (CCD), have emerged to fill the

"gap" between the two traditional memory technologies.

The evolution and increasing deployment of the above énd
many other memory technologies have produced a more continu-
ous cost-performance range of storage devices, as aepicted
in Figure 2.9 (Madnick, 1975a). Note that these technolo-
gies, which are arbitrarily grouped into six categories,
result in storage devices that span more than six orders of

magnitude in both random access time (from less than 100
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nanoseconds to more than 1 second) and system price per byte

(from more than 50 cents per byte to less than 0.06005 cent).

This evolution has facilitated the choice of appropriate
cost-effective storage devices for the memory hierarchy.
For example, for the memory hierarchy discussed in the pre-
vious section, we might use a device like the IBM 3850 Mass
Storage as the mass storage, traditional moving head disks
as secondary storage, magnetic drums as backing store, CCD
or magnetic bubble as block store, core or semiconductor RAM

as main storage, and high performance semiconductor RAM as

cache.

2.3.2.3 Strategies for Information Movement

Various physical storage management and movement techni-
ques, such as page splitting, read through, and store
behind, can be distributed within fhe memory hierarchy.
This facilitates parallel and asynchronous operation in the
hierarchy. Furthermore, these approaches can lead to
greatly increased reliability of operation. For example,

under the read through strategy (Figure 2.10), when data

currently stored at level i (and all lower performance lev-
els) is referenced, it is automatically and simultaneously
copied and stored into all higher performance levels. The

data itself is moved between levels in standard transfer
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units, also called pages, whose size N (i-1l, i) depends upon

the storage level from which it is being moved.

For example, suppose that the datum "a", at level 3, is
referenced (see Figure 2.10). The block of size N(2,3) con-
taining "a" is extracted and moved up the data bus. Level 2
extracts this block of data and stores it in its memory
modules. At the same time, level 1 extracts a sub~block of
size N(1,2) containing "a" and level 0 extracts the sub-

block of size N(0,1) containing "a" from the data bus.

Hence, under the read through strategy, all upper storage
levels receive this information simultaneously. If a sto-
rage level must be removed from the system, there are no
changes needed. 1In this case, the information is "read
through" the level as if it didn't exist. Since all data
available at level i is also available at level i + 1 (and
all other lower performance levels), there is no information
lost. Thus, no changes are needed to any of the other sto-
rage levels or the storage management algorithms although we
would expect the performance to decrease as a result of the
missing storage level. A limited form of this reliability
strateqgy is employed in most current-day cache memory sys-

tems (Conti, 1969).
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In a store behind strategy all information to be changed

is first stored in L(l1), the highest performance storage
level. This information is marked "changed" and is copied
into L(2) as soon as possible, usually during a time when
there is little or no activity between L(1l) and L(2). At a
later time, the information is copied from L(2) to L(3),
etc. A variation on this strategy is used in the MULTICS
Multilevel Paging Hierafchy (Greenberg and Webber, 1975).
This strategy facilitates more even usage of the bus between
levels by only scheduling data transfers between levels dur-
ing idle bus cycles. Furthermore, the time required for a
write is only limited by the speed of the highest level

memory.

The store behind strategy can be used to provide high
reliability in the storage system. Ordinarily, a changed
page is not allowed to be purged from a storage levél until
the next lower level has been updated. This can be extended
to require two levels of acknowledgment. Under such a stra-
tegy, a changed page cannot be removed from L(l) until the
corresponding pages in both L(2) and L(3) have been updated.
In this way, there will be at least two copies of each
changed piece of information at levels L(i) and L(i+l) in
the hierarchy. Other than slightly delaying the time at

which a page may be purged from a level, this approach does
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not significantly affect system performance. As a result of
this technique, if any level malfunctions, it can be removed
from the hierarchy without causing any information to be
lost. There are two exceptions to this process, L(l) and
L(n). -To completely safegquard thg reliability of the sys-
tem, it may be necessary to store duplicate copies of infor-

mation at these levels only.

Figure 2.11 illustrates this process. 1In Figure 2.11(a),
a processor stores into L(l), the corresponding page is
marked "changed" and "no lower level copy exists". Figure
2.ll(b) shows in a latter time, the corresponding page in
L(2) is updated and marked "changed" and "no lower level
copy exists". An acknowledgment is sent to L(l) so that the
corresponding page is marked "one lower level copy exists".
At a later time (Figure 2.11(c)), the corresponding page in
L(3) is updated and marked "changed" and "no lower level
copy exists". An acknowledgment is sent to L(2) so that the
corresponding page is marked "one lower level copy exists".
An acknowledgment is sent to L(l) so that the corresponding
page is marked "two lower level copy exists". At this time,
the page in L(l) may be replaced if necessary, since then
there will be at least two copies of the updated information

in the lower memory levels.
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2,3.3 INFOPLEX's Approach to Physical Decomposition

In the previous section, we have illustrated an example
of a memory hierarchy that makes use of an ensemble of het-
erogeneous storage devices. Although memory hierarchies
using two or three levels of storage devices have been

implemented, no known generalized automatic memory hierarchy

has been developed.

The optimality of a memory hierarchy depends on the com-
plex interactions among the memory reference pattern, the
device characteristics, and the information movement strate-
gies. The INFOPLEX approach to this complex problem is to
empirically study and characterize data reference patterns
at several levels (e.g. transaction level, logical data
level, and physical déta‘level), to develop various informa-
tion movement strategies, and to design a prototype memory
. hierarchy. The interactions among these components can then
be systematically investigated by means of analytic models

and simulation models.

2.4 RESEARCH ISSUES ADDRESSED IN THIS THESIS

This chapter has provided the background for this thesis.

As is evident from the above discussions, there are a large

number of interesting but unresolved research problems asso-

ciated with INFOPLEX. This thesis is a key step towards
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understanding the INFOPLEX data storage hierarchy. 1In par-

ticular, this thesis has made contributions in the following

areas:

1. Developed and extended concepts for the INFOPLEX

data base computer and data storage hierarchy sys-

tems.

2, Provided a theoretic foundation for analysis of

data storage hierarchy systems.

3. Formalized storage management algorithms to incor-

porate the read-through strategy.

4. Provided detail analysis of the performance and
reliability properties of data storage hierarchies

and their algorithms.

5. Designed prototype data storage hierarchy systems

for INFOPLEX.

6. Developed simulation mcdels to obtain insights to

the data storage hierarchy designs and their

algorithms.

These are elaborated in the following chapters.
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Chapter III

A GENERAL STRUCTURE OF THE INFOPLEX DATA STORAGE HIERARCHY

3.1  INTRODUCTION

This chapter proposes the general structure of a data
storage hierarchy system for the INFOPLEX data base compu-
ter. The design of this system is based on Madnick's pro-
posed system (Madnick, 1973). This work brings Madnick's
system one step closer to realization. 1In the following,
the underlying design goals of this data storage hierarchy
system will be discussed. Then the design, called DSH-1, is
introduced followed by a discussion of further design issues

that need to be addressed.

3.2 DESIGN OBJECTIVES

There are a large number of practical étorage hierarchy
systems today. However, the functionality provided by each
is quite different and often falls short of our expectations
(for use as the storage subsystem of the INFOPLEX data base
computer). In the following, we discuss the underlying

design goals of DSH-1.
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3.2.1 Virtual Address Space

DSH~1 provides a virtual address space for data storage.
Every data item in DSH-1 is byte addressable using a gener-
alized virtual address. A kéy advantage of a virtual
address space is that a user (a processor) of DSH-1 is
relieved of all physical device concerns. In fact, the pro-
cessor accessing DSH-1 is not aware of how the virtual
address space is implemented. This latter characteristic is
guite unique since most current virtual memory systems are
simulated, at least partially, by software executed by.the

processor, e.g., the IBM 0S/VS system (Scherr, 1973).

3.2.2 Very Large Address Space

Early virtual memory systems were developed primarily for
program storage, hence their address spaces were quite lim-
ited, e.g., in the order of one million bytes. The MULTICS
(Greenberg and Webber, 1975) virtual memory and the IBM Sys-
tem/38 (Datamation, 1978; Soltis and Hoffman, 1979) logical
storage were deveioped for prégram as well as data file sto-
rage. These systems support a large virtual address space.
However, the size of an individual data file in MULTICS is
limited to 2**18 bytes and that in System/38 is limited to
2**24 bytes. Though these are very large address spaces, it
is expected that future systems will require online storage

capacities that are much larger. DSH-1 uses a 64-bit vir-
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tual address. Each byte is directly addressable, hence
there is virtually no limit on the size of a logical entity

such as a data file.

3.2.3 Permanent Data Storage

Accesses to permanent data is performed by special soft-
ware routines and a special I/O processor in most virtual
memory systems. The I/O processor brings the data into the
virtual memory and writes the data back to permanent storage
when the data is updated. Systems like MULTICS and Sys-
tem/38 provide a permanent virtual data storage. Any data
in virtual memory is also in permanent storage. DSH-1 also
provides a permanent virtual data storage. Special data
integrity schemes are used to ensure that as soon as a pro-
cessor completes a write operation to a virtual location,

the effect of the write becomes permanent even in the event

of a power failure.

3.2.4 Support Multiple Processors

Most current virtual memory systems have been limited to
supporting 2 to 3 processors. It is necessary that DSH-1
support a large number of processors due to the requirements
for high performance and high availability to be discussed
below. All these processors share the same virtual data
address space. Appropriate synchronization and protection
schemes are used to ensure data integrity and security.
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3.2.5 Generalized Multi-level Storage System

To provide a large.capacity storage subsystem with low
cost and high performance, a spectrum of storage devices
arranged in a hierarchy is used. Previous storage hierarchy
systems have been specially designed for a specific 2 or 3
levels hierarchy (e.g., cache and main memory, or main
memory and secondary storage device). Thus, it is extremely
difficult to add or remove a storage level in these systems.
DSH-1 is designed to incorporate any type of storage device
and support reconfiguration of storage levels. This charac-

teristic is particularly important in responding to new dev-

ice technologies.

3.2.6 Direct Inter-level Data Transfer

In most current storage hierarchy systems, data movement
among storage levels is performed indirectly. For example,
to move data from drum to disk in the MULTICS system, data
is read from drum into main memory by the processor which
then writes the data to disk. Recent developments in sto-
rage systems make it possible to decentralize the control of
data movement between storage devices to ihtelligent con-
trollers at the storage devices. For example, the IBM 3850
Mass Storage'(Johnson, 1975) uses an intelligent controller
to handle data transfer between mass storage and disks, mak-

ing the 3850 appear as a very large number of virtual disks.
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DSH-1 incorporates intelligent controllers at each storage
level to implement the algorithms for data movement among
the storage levels. Special algorithms are developed to
facilitate efficient broadcasting of data from a storage
level to all other storage levels as well as movement of

data between adjacent storage levels.

3.2.7 High performance

To support the data requirements of the functional pro-
cessors in INFOPLEX, DSH-1 is designed to handle a large
number of requests simultaneously. The operation of DSH-1
is highly parallel and asychrbnous. Thus, many requests may
be in different stages of completion at various storage lev-
els of DSH-1. Each processor accesses DSH-1 through a data

cache where the most frequently used data items are stored.

3.2.8 Availability

High availability of DSH-1 is a result of a combination
of the design strategy used, hardware commonality, and spe-
cial algorithms. Key design étrategies in DSH-1 include the
use of distributed'controls and simple bus structures, both
of which contribute to the high availability of DSH-1. Mul-
tiple identical hardware components are used in parallel to
provide high performance and to ensure that no Single compo-

nent is critical to system operation. Integrated into the
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design are certain algorithms that exploit the structure of
DSH-1 to allow data redundancy and perform automatic data

repair in the event of component failure, thus diminishing

the dangers of multiple failures.

3.2.9 Modularity

DSH-1 is modular at several levels. This provides much
flexibility in system structuring. The number of processors
to be supported by DSH-1 can be varied. The number of sto-
rage levels and the type of storage devices can be chosen to
meet the particular capacity and performance requirements.
All the storage levels have very similar structures and the
same algorithm is used by the intelligent controllers at

each storage level.

Flexibility in system structuring is extended in DSH-1 to
allow for dynamic system reconfiguration. For example, a

defective storage device or storage level can be amputated

without loss of system availability.

An example of a system that also incorporates modularity
as a key design goal is the PLURIBUS (Katsuki et. al., 1978)
system. In PLURIBUS, the basic building block is a bus
module. The number of components on a bus module as well as
the number of bus modules can be easily varied to meet dif-

ferent system requirements.
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3.2.10 Low Cost

A storage hierarchy is the lowest cost configuration to
meet the requirement of providing a large storage capacity
with high performance. DSH-1 also make use of common hard-
ware modules as the intelligent controllers at each storage
level, thus reducing hardware development cost. The modu-
larity features of DSH-1 discussed above also facilitate

system upgrading with minimum cost.

Commonality of hardware modules and flexibility of system
upgrade have been employed in many computer systems as an
effective approach to reduce cost. However, these techni-
ques are rarely applied to storage hierarchy systems. DSH-1

is a step in this direction.

Advances in storage device and processor technologies
provide great potentials for development of very effective
data storage hierarchies that incorporate the above charac-
teristics. In the next section, we describe a general

structure of such a system.

3.3 GENERAL STRUCTURE OF DSH-1

The structure of DSH-1 is illustrated in Figure 3.1. A
key design decision in DSH-1 is to make use of an asynchro-

nous time-shared bus for interconnecting multiple components

(processors and memory modules) within a storage level and
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to make use of an asynchronous time-shared bus for
interconnecting all the storage levels. A key advantage of
the time-shared bus is its simplicity, flexibility, and
throughput. Two alternative approaches can be used in DSH-1
to increase the effective bandwidth of the time-shared bus.
First, a new pended-bus protocol can be used (Haagens,
1978). This asynchronous bus protocol is more efficient
than the usual time-shared bus protocols with the result
that a much larger number of components can share a single
bus. Second, multiple logical buses can be used to parti-

tion the load on the time-shared bus.

In the following subsections, we shall describe the
interface to DSH-1 as seen by a functional hierarchy proces-
sor. Then the structure of DSH-1 is described by examining

its highest performance storage level and then a typical

storage level.

3.3.1 The DSH-1 Interface

To the functional hierarchy processors connected to
DSH-1, DSH-1 appears as a large multi-port main memory.

There are K memory ports, hence K processors can simultane-

ously access DSH-1.

The functional processors use a 2**V (V=64) byte virtual

address space. The instructions for each functional hier-
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archy processor are stored in a separate 2**I byte program
memory. The program memories are not part of DSH-1. Thus,
2**T bytes of the processor's address space is mapped by the
program memories, leaving 2**V-2**I bytes of data memory to

be managed by DSH-1. This is depicted in Figures 3.2(a) and
3.2 (b).

Each processor has multiple register sets to support
efficient multiprogramming. Some of the more important
registers for interfacing with DSH-1 are : (1) a V-bit
Memory Address Register (MAR) for holding the virtual
address, (2) a Memory Buffer Register (MBR) for storing the
data read from DSH-1 and to be written into DSH-1, (3) a
Memory Operation Register (MOR) indicates the particular
operation to be performed by DSH-1, (4) an Operation Status
Register (OSR) which indicates the result of a-operation
performed by DSH-1, and (5) a Process Identifier Register
(PIR) which contains the Process Identifier (PID) of the

process that is currently using the processor.

A number of memory operations are possible. The key ones
are the read and write operations and the primitives for
locking a data item (such as those supporting the Test-and-

Set type of operations).
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All read and write operations to DSH-1 are performed in
the highest performance storage level, L(l). If a refer-
enced data item is not in L(1l), it is brought up to L(1)

from a lower storage level via a read-through operation.

The effect of an update to a data item in L(l) is propagated

dowq to the lower storage levels via a number of store-be-

hind operations.

In a read operation, two results can occur depending on
the state of DSH-1. First, if the requested data is already
in L(1l), the MBR is filled with the data bytes starting at
location (MAR) and the processor continues with the next
operation. Alternatively, the addressed data may not be
available in L(l). In this case, the processor is inter-
rupted, the OSR is set to indicate that it may take a while
for the read operation to complete, and the proéessor is
switched to another process. In the meantime, the addressed
data is copied into L(1) from a lower storage level. When
this is completed, the processor is notified of the comple-

tion of the original read operation.

Similarly, a write operation may result in two possible
responses from DSH-1. First, if the data to be updated is
already in L(l), the bytes in MBR are written to the virtual
address locations starting at (MAR), and the processor con-

tinues with the next operation. Second, a delay similar to
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the read operation may occur (when the data to be updated is
not in L(l1)), while DSH-1 retrieves the data from a lower

storage level.

This concludes a brief description of the asynchronous
- DSH-1 interface, as seen by a functional hierarchy proces~

sor. Next, we examine the structure of DSH-1.

3.3.2 The Highest Performance Storage Level - L(1)

There are h storage levels in DSH-1, labelled L(1l), L(2),
L(3), «.., L(h). L(1l) is the highest performance storage
level. L(i) denotes a typical storage level. The structure

of L(1) is unique. The structures of all other storage lev-

els are similar.

A distinction must be made between the concept of a phy-
sical bus and a logical bus. The former refers to the
actual hardware that implements communications among levels
and within a level. A logicél bus may be implemented using
one or more physical buses. Logical buses represent a par-
titioning} based upon the virtual address referenced, of the

physical buses.

Referring to Figure 3.1, L(1l) consists of K memory ports
and S(l1) storage level controllers (SLC's) on each of B(1l)

logical local buses (i.e., S(1)*B(l) SLC's in total for this
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level). Each memory port consists of a data cache control-
ler (DCC) and a data cache duplex (DCD). A DCC interfaces
with the functional hierarchy processor that is connected to
the memory port. A DCC also performs mapping of a virtual
address generated by the processor to a physical address in
the DCD. Another function of DCC is to interface with othe:
DCC's (e.g., to maintain data cache consistency), and with

SLC's on the logical bus (for communications with other sto-

rage levels).

At L(1), a SLC aécepts requests to lower storage levels
from the DCC's and forwards them to a SLC at the next lower
storage level. When the responses to these requests are
ready, the SLC accepts them and sends them back to the
appropriate DCC's. The SLC's also couple the local buses to
the global buses. 1In essence, the SLC serves as a gateway
between levels and they contend among themselves for use of

the communication media, the logical buses.

At L(1), there are B(l) logical local buses. Each logi-
cal local bus consists of b(l) physical buses. Each logical
bus handles a partition of the addresses. For example, if
two logical buses were used, one might handle all odd num-
bered data blocks and the other would handle all the even

numbered data blocks.
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DSH-1 has B(#) logical global buses. Each logical global
bus consists of b(#) global physical buses. The use of
address partitioning increases the effective bus bandwidth.
The use of multiple physical buses for each logical bus

enhances reliability and performance.

L(i)

3.3.3 A Typical Storage Level
A typical storage level, L(i), is divided into B(i)
address partitions. Each address partition consists of S (i)
SLC's, P(i) memory request processors (MRP's), and D(i) sto-
rage device modules (SDM's), all sharing a logical bus. A

logical bus consists of b(i) physical buses.

An SLC is the communication gateway between the

MRP's/SDM's of its level and the other storage levels.

An MRP performs the address mapping function. It con-
tains a directory of all the data maintained in the address
partition. Using this directory, an MRP can quickly deter-
mine if a virtual address corresponds to any data in the
address partition, and if so, what the real address is for
the data. This real address can be used by the correspond-
ing SDM to retrieve the data. Since each MRP contains a
copy of this directory, updates to the directory have to be
handled with caré, so that all the MRP's see a consistent

copy of the directory.
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An SDM performs the actual reading and writing of data.

It also communicates with the MRP's and the SLC's.

The SLC's, MRP's, and SDM's cooperate to handle a memory
request. An SLC communicates with other storage levels and
passes requests to an MRP to perform the address transla-
tion. The appropriate SDM is then initiated to read or
write the data. The response is then sent to another SLC at

another storage level.

3.4 FURTHER DESIGN ISSUES

The previous section describes the general structure of
DSH-1. From this general structure, a number of interesting
alternative configurations can be obtained. For example, if
all the data caches are taken away; L{(l) becomes a level
with only the SLC's for communicating the requests from the
processors to the lower storage levels and for obtaining
resbonses from these lower storage levels. This configura-

tion eliminates the data consistency problems associated

with multiple data caches.

If we let the number of logical buses be egual to one, we

obtain the confiquration without address partitioning.

Another intersting configuration is when there is only

one MRP and one SDM on a given logical bus. This configura-



tion eliminates the need for multiple identical directory

updates.

Thus, by varying the design parameters of DSH-1, a large
number of alternative configurations with quite different
characteristics can be obtained. The general structure is a
valuable vehicle for investigating various design issues.
Some of the key issues are briefly introduced in the follow-

ing sections.

3.4.1 Support of Read and Write Operations

Key problems in supporting the read and write operations
in DSH-1 include : (1) data consistency in multiple data
caches, (2) protocols for communicating over the shared
bus, (3) algorithms for updating the redundant directories,
(4) algorithms for arbitrating among usage of identical
resources, such as buses, SLC's and MRP's, and (5) specify-
ing the various steps (transactions) that have to be accom-

plished to handle the read and write operations.

3.4.1.1 Multiple Cache Consistency

As illustrated in Figure 3.1, each DSH-1 memory port is a
data cache directly addressable by the processor at the
port. It is possible then, that a data item may be in sev-

eral different data caches at the same time. When the data
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item gets updated by a processor, other processors may
reference an inconsistent copy of the data item. The multi-
ple cache consistency problem and its solutions are dis-

cussed in (Tang, 1976; Censier and Feautrier, 1978).

Three basic approaches can be used to resolve this prob-
lem in DSH-1. The first approach is to send a purge request
to all other data caches whenever a processor updates data
in its cache. The second approach is to maintain status
information about the data cache contents. Whenever there
is an update to a data item, this status information is con-
sulted and purge requests are sent only to those caches that
contain the data item being changed. The third approach is
to make use of knowledge of how the data in DSH-1 is to be
used so that the inconsistency problem can be avoided. For
example, knowledge about the interlocking scheme used to
ensure safe data sharing may be used to avoid uncessary

purge requests to other caches.

3.4.1.2 Bus Communication Protoccls

In DSH-1, the buses may be used for point-to-point commu-
nication as well as for broadcast type of communications.
It is necessary to ensure that messages are sent and
received correctly. For example, L(1) broadcaét data to the

upper levels and one or more of these levels may not be able



to accomodate the data to be received, possibly due to the
lack of buffer space. Communications protocols to handle

these situations are important.

3.4.1.3 Multiple Directory Update

Each MRP contains a directory of all the data in the
SDM's on the same bus. Multiple requests may be handled by
the MRP's. When a MRP updates its directory, other MRP's
may still reference the o0ld copy of the directory. This is
similar but not identical to thé multiple cache consistency
problem discussed above. It is necessary to maintain con-

sistency of the MRP directory states.

3.4.1.4 Multiple Resource Arbitration

Multiple identical resources (e.g., buses, MRP's, and
SLC's) are used in DSH-1 to provide parallel processing
while at the same time providing redundancy against failure.
A request for a resource can be satisfied byvany one of the

resources. An arbitration scheme is required to control the

assignment of resource.

3.4.1.5 Transaction Handling
A read or a write request may go through a number of
asynchronous steps through a number of storage levels to

completion. A complication to these transactions is that

- 89 -



for high throughput, a request (or response) may be divided
into a number of messages when the request (or response) is
being transported within the hierarchy. Thus, a request (or
response) may have to be assembled, which may take an amount
of time dependent on the traffic within DSH-1. Partial

requests (responses) at a storage level require special han-

dling.

3.4.2 Multiple Data Redundancy Properties

As a result of the read-through operation, several copies
of a referenced data item exists in the DSH-1 storage lev-
els. The two-level store-behind operation also maintains at
least two copies of any updated data item in DSH-1l. This is
a key reliability feature of DSH-1l. It is important to know
under what conditions and using what types of algorithms can

this multiple data redundancy be maintained at all times.

3.4.3 Automatic Data Repair Algorithms

One of the benefits of maintaining redundant data in
DSH-1 is that lost data due to component failures can be
reconstructed on a spare component from a copy of the lost
data. By using automatic data repair in DSH-1 the probabil-

ity of multiple data loss can be reduced.
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Two classes of automatic data repair algorithms are pos-
sible. One strategy is to make use of the multiple data
redundancy properties of DSH-1 and to reconstruct the lost
data from its copy in a different storage level. The other
approach is to maintain duplicate copies of the data item
within a storage level and to reconstruct the lost data from
its copy in the same storage level. The latter approach is
particularly attractive for low performance devices such as

mass storage.

3.4.4 Performance Evaluation

A key issue in the DSH-1 design is predicting its perfor-
mance. In ofder to accomplish this, a simplified design of
' DSH-1 and its algorithms can be developed. A simulation
model can then be developed for this design. ‘Various basic
performance statistics can then be obtained under various
load assumptions. This experiment will provide insights and

directions for further design efforts.

3.5 SUMMARY

The INFOPLEX storage hierarchy is a high performance high
availability virtual memory data storage hierarchy with dis-
tributed controls for data movement and address translation.
It is designed specifically to provide a very large perman-
ent virﬁual address space to support multiple functional
hierarchy processors.
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A general structure of DSH-1, the INFOPLEX storage hier-
archy has been described in this chapter. This general
structure can be used to derive a large number of alterna-
tive configurations which can be used to explore various

algorithms for data storage hierarchy systems.

A number of important design issues associated with DSH-1

are also outlined.
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Chapter IV

MODELLING AND ANALYSIS OF DATA STORAGE HIERARCHY SYSTEMS

4.1 INTRODUCTION

This chapter is aimed at modelling data storage hierarchy
systems so as to study these systems from a theoretic point
of view. These studies provide insights to the perfromance
and reliability properties of data storage hierarchy systems
and their algorithms. These insights provide guidance to

developing effective data storage hierarchy systems.

Current research in storage hierarchy systems is reviewed
and extended. A formal model of a data storage hierarchy
which incorporates multiple page sizes and maintains multi-
ple data redundancy is developed. The LRU algorithm is
extended to include the read-through and overflow handling
strategies in a multi-level storage hierarchy. Formal
definitions for these extended algorithms are developed.
Finally, important performance and reliability properties of

data storage hierarchy systems are identified and analyzed

in detail.
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4.2 RESEARCH ON STORAGE HIERARCHY SYSTEMS

Two and three-level memory hierarchies have been used in
practical computer systems (Conti, 1969; Johnson, 1975;
Greeberg and Webber, 1975). However, there is relatively

little experience with general hierarchical storage systems.

One major area of theoretic study of storage hierarchy
systems in the past has been the optimal placement of infor-
mation in a storage hierarchy system. Three approaches to
this problem have been used: (1) Static placement (Rama-
moorthy and Chandy, 197@0; Arola and Gallo, 1971; Chen, 1973)
- this approach determines the optimal placement strategy
statically, at the initiation of the system; (2) Dynamic
placement (Lum et al, 1975; Franaszek and Bennett, 1978) -
this approach attempts to optimally place information in the
hierarchy, taking into account the dynamically changing
nature of access to information; (3) Information structur-
ing (Hatfield and Gerald, 1971; Jobnson J., 1975) - this
approach manipulates the internal structure of information
so that information items that are frequently used together

are placed adjacent to each other.

Another major area of theoretic study of storage hier-
archy systems has been the study of storage management
algorithms (Belady, 1966; Belady et al, 1969; Denning, 1970;

1]

Mattson et al, 1978; Mattson, 1971; Hatfield, 1972; Madnick,
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1973; Goldberg, 1974; Franklin et al, 1978). Here the study
of storage hierarchies and the study of virtual memory sys-
tems for program storage have overlapped considerably. This
is largely due the fact that most of the studies of storage
hierarchies in the past have been aimed at providing a vir-
~tual memory for program storage. These studies usually do
not consider the effects of multiple page sizes across sto-
rage levels, nor the problem of providing redundant data
across storage levels as used in the system proposed by Mad-
nick (Madnick, 1973). These considerations are of great
importance for a storage hierarchy designed specifically for
very large data bases. The following sections extend theo-
ries on storage hierarchy to include systems that incorpo-

rate multiple page sizes and maintains multiple data redun-

dancy.
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4.3 MODEL OF A DATA STORAGE HIERARCHY

A data storage hierarchy consists of h levels of storage
. 1 2 h . i,
devices, M7, M", ..., M. The page size of M  is Qi and
the size of M' is m, pages each of size Qi' Qi is always

an integral multiple of Qi—l’ for i=2,3 ..., h. The unit

of information transfer between Mi and Mi+l is a page, of
size Qi‘ Figure 4.1 illustrates this model of the data
storage hierarchy.

All references are directed to Ml. The storage manage-
ment algorithms automatically transfer information among
storage levels. As a result, the data storage hierarchy
appears to the reference source as a Ml storage device
with the size of M'.

As a result of the storage management algorithms (to

be discussed next), multiple copies of the same infor-

mation may exist in different storage levels.
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4.3.1 Storage Management Algorithms

We shall focus our attentions on the basic algorithms

to support the read-through (Madnick, 1975) operation.

Algorithms to support other operations can be derived from
these basic algorithms.

In a read-through, the highest storage level that con-
tains the addressed information broadcasts the information
to all upper storage levels, each of which simultaneously
extracts the page (of the appropriate size) that contains
the information from the broadcast. If the addressed in-
formation is found in the highest storage level, the
read-through reduces to a simple reference to the address-
ed information in that level. Figure 4.2 illustrates the
read-through operation.

Note that in order *to load a new page into a storage
level an existing page may have to be displaced from that
storage level. We refer to this phenomenon as overflow.
Hence, the basic reference cycle consists of two sub-cycles,
the read-through cycle (RT), and the overflow handling
cycle (OH), with RT preceeding OH.

For example, Figure 4.2 illustrates the basic refer-
ence cycle to handle a reference to the page p;a. During

the Read-Through (RT) subcycle, the highest storage level

. 1
(MX) that contains pya broadcasts the page containing Péa

to all upper storage levels, each of which extracts the
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page of appropriate size that contains P;a from the broadcast.

As result of the Read-Through, there may be overflow from
the storage levels. These are handled in the Overflow-
Handling (OH) subcycle.

It is necessary to consider overflow handling because
it is desirable to have information overflowed from a
storage level to be in the immediate lower storage level,
which can then be viewed as an extension to the higher

storage level.

One strategy of handling overflow to meet this objec-

1

tive is to treat overflows from M as references to mtt
We refer to algorithms that incorporate this strategy as

having dynamic-overflow-placement (DOP).

Another possible overflow handling strategy is to
treat an overflow from M' as a reference to Ml+l only

1

when the overflow information is not already in Mt . If

the overflow information is already in Ml+l, no overflow
handling is necessary. We refer to algorithms that in-

corporate this strategy as having static-overflow-place-

ment (SOP).

Let us consider the algorithms at each storage level
for selecting the page to be overflowed. Since the Least
Recently Used (LRU) algorithm (Denning, 1974; Mattson et.
al, 1970) serves as the basis for most current algorithms,

we shall consider natural extensions to LRU for managing
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the storage levels in the @ata storage hierarchy system.

Consider the following two strategies for handling the
Read-Through Cycle. First, let every storage level above
and including the level containing the addressed infor-
métion be updated according to the LRU strateéy. Thus,
all storage levels lower fhan the addressed information
do not know about the reference. This class of algérithms
is called LOCAL-LRU élgorithm. This is illustrated in
Figure 4.3.

The other class of algorithms that we shall consider

is called GLOBAL-LRU algorithm. 1In this case, all storage

levels are updated according to the LRU strategy whether
~or not that level actually participates in the read-
through. This is illustrated in Figure 4.4.

Although the read-through operation leaves supersets
of the page p;a in all levels, the future handling of
each of these pages depends upon the replacement algo-
fithms used and the effects of the overflow handling. We
would‘like to guarantee that the contents of each storage

level, Mi, is always a superset of its immediately higher

level, Ml_l. This property is called Multi-Level Inclu-

sion (MLI). Conditions to guarantee MLI will be derived
in a later section.

It is not difficult to demonstrate situations where
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handling overflows generates references which produce
overflows, which generate yet more references. Hence
another important question to resolve is to determine
the conditions under which an overflow from M.l is always
found to already exist in Mi+l, i.e., no reference to

storage levels lower than Ml+l is generated as a result

of the overflow. This property is called Multi-Level

Overflow Inclusion (MLOI). Conditions to guarantee MLOTI

will be derived in a later section.

We shall consider these important properties in light
of four basic algorithm alternatives based on local or
global LRU and static or dynamic overflow. Formal
definitions for these algorithms will be provided after
the basic model of the data storage hierarchy system is

introduced.
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4.3.2 Basic Model of a Data Storage Hierarchy

For the purposes of this thesis, the basic model illus-
trated in Figure 4.5 is sufficient to model a data storage
hierarchy. As far as the Read-Through and Overflow-
Handling operations are concerned, this basic model is
generalizable to a h-level storage hierarchy system.

M can be viewed as a reservoir which contains all the
information. Mi is the top level. It has m, pages each
of size Q;. Mj (j=i+1) is the nexf level. It has mj
pages each of size nQi where n is an integer greater than

1.
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4,3.3 Formal Definitions of Storage Management Algorithms

Denote a reference string by r = "rl, r2, ooy rn",

where re (I<t<n) is the page being referenced at the t-th

reference cycle. Let St be the stack for M' at the begin-

ning of the t-th reference cycle, ordered according to LRU.
i
t

most recently referenced page and St(K) is the least

That is, S- = (S7(1), 8X(2), ..., S’ (K)), where S} (1) is the
t t t t
recently referenced page. Note that K< m, (mi = capacity

of M' in terms of the number of pages). The number of

i i i

pages in S is denoted as [Stl , hence IStI = K. By con-
. i i
vention, Sy = f#, |Sll = 0.
St is an ordered set. Define Mt as the contents of St
without any ordering. Similarly, we can define S% and M%
for MJ.

Let us denote the pages in M by Pi, P%, ...+ Each

page, P;, in Mj, consists of an equivalent of n smaller

pages, each of size Qi = Q./n. Denote this set of pages
jyi . Jyio_ i i i

by (Py) , l1.e., (Py) {%yl’ Py2""'Py£} . In general,

(Mij__)l is the set of pages, each of size Qi’ obtained by

"breaking down" the pages in M. Formally, mhH?t =
t t

C) (s (x))* where x = |82] . (PJ)! is called the
k=1 t t y .

family from the parent page P;' Any pair of pages, P;a

and P;b from (P;)l are said to be family equivalent,
denoted by P;a £ P;b' Furthermore, a parent page P; and
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a page P;Z (for 1<z<n) from its family are said to be

corresponding pages, denoted by P;Zg P;.
St and Si are said to be in corresponding order, de-

HO

i0 .7 . i j
noted by S, = si, if S (k) S%(k) for k = 1, 2, 3, «..w,
where w = min (ISiI, [Si[ ). Intuitively, two stacks are
in corresponding order if, for each element of the shorter

stack, there is a corresponding page in the other stack

at the same stack distance (the stack distance for page

St(k) is defined to be k).

Mt and Mg are said to be correspondingly equivalent,
ie . i
denoted by Mt Mt if |Mt|

...,|Mil there exists x, such that St(k)

=|Mi| and for any k = 1, 2,
g oJ

. St(x) and
S%(x) % St(y) for all v # k. Intuitively, the two memo-
ries are correspondingly equivalent when each page in
one memory corresponds to exactly one page in the other
memory.

i
) t
i,. _ =i .. . .
Sy (3 ) for k =1, ..., lStI where j, is the minimum j

The reduced stack, §i, of S, is defined to be §i(k) =

where jk>jk_l(j0 = 0) and §t(k) ; st(j) for <j,.

Intuitively, 51

page from each family existing in S

is obtained from Si by collecting one
i
t'
being collected from each family is the page that has the

such that the page

smallest stack distance within the family.
In the following, we define the storage management

algorithms. In each case, assume that the page referenced
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at time t is Pla.

i
Ya)
Case 1:

i
LRU (S, P

case 2:

LOCAL-LRU-SOP

Case 1:

Case 2:

S S . .
St+1 is defined as follows:
i S NN DR
Pya € St, Pya = St(k) : .
ST (x-1), l<x<k
st o) =l , sl ) A -
= , = . .
£+l ya t+l Sl(x), k<xK[Sl[
t -t
i i
Pya £ St :
i i i _oed
St+l(l) = Pya' St+l(x) = St(x 1),
. ' i
1< x < min(mg, ]St[ + 1)
i, _o i Li . _
1f |St[ = m; then P__ = S_ (m;) is the over

flow, else there is no overflow.
L

i 43
(Stl Stl Pya

(St+l, Sg+l) is defined

as follows:

i i
Pya € St :
Sge1 T LRU (8¢ Poo)y Siyp = Si
i b, pig gl
Pya £ St' Py £ St :
i i i j j j
Sgv = LRU (Sg, PUo), sg, = LRU (s], Pg),
If there is no overflow from St
i _ ol 3 _ o]
then St+l Stl and St+1 St'
If overflow from St is the page P;a
el j _ i j i
then (St+l' St+l) SOP (St,, St" Poa)
defined as:
i gl se 5] J I
St+l St" if Po £ St' then St+l = St',
- 3 J I - J J
if Po J'4 St' then St+l LRU (St,, PO)
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. pl g otanand g8l
Case 3: Pya 4 St and Py £ St :

(handled as in Case 2)

_ _ i 3 i - i 3 . .
LOCAL-LRU~-DOP (St, St’ Pya) (St+l’ St+l) is defined as
Case 1l: Pl £ Sl :
hdaas s yva t
i - i i j _ 3
Sts1 = LRU (S, Pya)' St+1 T St
. pl i 5 I
Case 2: Pya 4 St and Py € St :
i _ i i s J 53
St LRU (st, Pya), Sy LRU (st, Py)
If no overflow from Si then Si = Si
t t+1 t!
j &)
and St+l St'

If overflow from ST is Pt  then
t oa

1 J _ i i i , _
(St+l' St+]_) = DOP (Stv r St' ’ Poa) which is
defined as:

Sty1™ Spr and Spyy = LRU (Sg., PO)

. i i J J .
Case 3: Pya 4 St and Py 4 St :

(handled as in Case 2 above)

_ _ i 3 i _ i 3 . .
GLOBAL~LRU~-SOP (St' St' Pya) (St+l' St+l) is defined as
follows:
i _ i5i i Jp3
St' LRU (St' Pya) and St' LRU (S7, Py),
i i ol
If no overflow from St then St+l = St' and
3 - &7
St+1 St'
If overflow from Si is P:.L then (Si Sj )
t oa t+1" T+l
= S0P (Sgys STvs Pgy)

tl' tll oa
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N R, R S A, E
GLOBAL-LRU-DOP (S_, St' Pya) (St+l' St+l) is defined as

i i pi B I pI
Si. = LRU (Si, Pya) and S{, = LRU (S, Py)
i i _ i 5 I
If no overflow from St then St+1 St' and St+1 St'
i, i i j _
If overflow from S; is ?oa Fhen (St+l' St+l) =
pop (st,,sd,, Pl )

t'"'"t'"! Toa
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4.4 PROPERTIES OF DATA STORAGE HIERARCHY SYSTEMS

One of the properties of a Read-Through operation is
that it leaves a "shadow" of the referenced page (i.e.,
the corresponding pages) in all storage levels. This pro-
vides multiple redundancy for the page. Does this multiple
redundancy exist at all times? That is, if a page exists
in storage level Mi, will its corresponding pages always
be in all storage levels lower than Mi? We refer to this

as the Multi-Level Inclusion (MLI) property. As illus-

trated in Figure 4.6 for the LOCAL-LRU algorithms and in
Figure 4.7 for the GLOBAL-LRU algorithms, it is not
always possible to guarantee that the MLI property holds.
For example, after the reference to P§l in Figure 4.6 (a)
the page Pil exists in Mi but its corresponding page Pg
is not found in Mj. In this chapter we shall derive the
necessary and sufficient conditions for the MLI property

to hold at all times.

Another desirable property of the data storage hierarchy
is to avoid generating references due to overflows. That
is, under what conditions will overflow pages from Mi
find their corresponding pages already existing in the

storage level Ml+l? We refer to this as the Multi-Level

Overflow Inclusion (MLOI) property. We shall investigate

the conditions that make this property true at all times.
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Referring to the basic model of a data storage hierarchy
in Figure 4.5, for high performance it is desirable to
minimize the number of references to M' (the reservoir).
If we increased the number of pages in Mi, or in Mj, or
in bbth, we might expect the number of references to M-
to decrease. As illustrated in Figure 4.8 for the LOCAL-
LRU-SOP algorithm, this is not always so, i.e., for the
same reference'string, the number of references to the
reservoir actually increased from 4 to 5 after Mi is
increased by 1 page in size. We refer to this phenomena

as a Multi-Level Paging Anomaly (MLPA). One can easily

find situations where MLPA occurs for the other three
algorithms. Since occurrence of MLPA reduces performance
in spite of the costs of increasing memory sizes, we
would like to investigate the conditions to guarantee

that MLPA does not exist.
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4.4,.1 Summary of Properties

The MLI, MLOI, and MLPA properties of the data
storage hierarchy have been derived in the form of eight
theorems. These theorems are briefly explained and
summarized below and formally proven in the following
section.

Multi-Level Inclusion (MLI) : It is shown in Theorem

1 that if the number of pages in Mi is greater than the
number of pages in Mj (note Mj pages are larger than
those of Mi), then it is not possible to guarantee MLI
for all reference strings at all times. It turns out
that using LOCAL-LRU-SOP, or LOCAL-LRU-DOP, no matter how
many pages are in Mj or Mi, one can always find a refer-
ence string that violates the MLI property (Theorem 2).
Using the GLOBAL-LRU algorithms, however, conditions to
guarantee MLI exist. For the GLOBAL-LRU-SOP algorithm, a
necessary and sufficient condition to guarantee that MLI
holds at all times for any reference string is that the
number of pages in Mj be greater than the number of pages
in Mi-(Theorem 3). For the GLOBAL-LRU-DOP algorithm, a
necessary and sufficient condition to guarantee MLI is
that the number of pages in Mj be greater than or equal
to twice the number of pages in Mi (Theorem 4).

Multi-Level Overflow Inclusion (MLOI) : It is obvious

that if MLI cannot be guaranteed then MLOI cannot be
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guaranteed. Thus, the LOCAL-LRU algorithms cannot guaran-
tee MLOI. For the GLOBAL-LRU-SOP algorithm, a necessary
and sufficient condition to guarantee MLOI is the same
condition as that to guarantee MLI (Theorem 5). For the
GLOBAL-LRU-DOP algorithm, a necessary and sufficient
condition to guarantee MLOI is that the number of pages

in Mj is strictly greater than twice the number of pages
in Mi (Theorem 6). Thus, for the GLOBAL-LRU-DOP algo-
rithm, guaranteeing that MLOI holds will also guarantee
that MLI will hold, but not vice versa.

Multi-Level Paging Anomaly (MLPA) : We have identified

and proved sufficiency conditions to avoid MLPA for the
GLOBAL-LRU algorithms. For the GLOBAL-LRU-SOP algorithm,
this condition is that the number of pages in MJ must be

greater than the number of pages in M' before and after

any increase in the sizes of the levels (Theorem 7). For
the GLOBAL~LRU-DOP algorithm, this condition is that
the number of pages in M) must be greater than twice the

. i . .
number of pages in M~ before and after any increase in

the sizes of the levels (Theorem 8).

In summary, we have shown that for the LOCAL-LRU algo-
rithms, no choice of sizes for the storage levels can
guarantee that a lower storage level always contains all

the information in the higher storage levels. For the
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GLOBAL-LRU algorithms, by choosing appropriate sizes for
the storage levels, we can (1) ensure that the above
inclusion property holds at all times for all reference
strings, (2) guarantee that no extra page references to
lower storage levels are generated as a result of handling
overflows, and (3) guarantee that increasing the sizes

of the storage levels does not increase the number of
references to lower storage levels. These results are
formally stated as the following eight Theorems. Formal
proofs of these Theorems are presented in the following

section.
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THEOREM 1
Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, or GLOBAL-
LRU-SOP, or GLOBAL-LRU-DOP, for any mi32, m
. . j\i i
implies 3 r,t, (Mt) £Mt

THEOREM 2

< m,
Jj— 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, for any
)y 1 i
miZZ, and any mj, gr,t, (Mi) ?Mt
THEOREM 3
Under GLOBAL-LRU-SOP, for any m,>2, V r,t, (M?c)l?_
Ml iff m. > m.
t ] 1
THEOREM 4
Under GLOBAL-LRU-DOP, for any miiZ,JVLr,t, (M%)lgg
MY iff m., > 2m,.
t J - 1
THEOREM 5
Under GLOBAL-LRU~-SOP, for any m, > Zf\fi,t, an over-
flow from M' finds its corresponding page in M
iff mj > my
THEOREM 6
Under GLOBAL-LRU-DOP, for any m, > Z,AVLr,t, an
overflow from M- finds its corresponding page in
M) iff m. > 2m.
j i
THEOREM 7
Let M' (with m, pages) , M} ( with mj pages) and m"

be System A.

-120-



Let M'i (with mi' pages), M'j (with mj' pages) and
M" be System B.
Let m;' > m, and mj' > mj. Under GLOBAL-LRU-SOP,
for any m, > 2, no MLPA can exist if
m, >n&vand mj' > mi'
THEOREM 8
Let System A and System B be defined as in Theorem 7.
Let m,' > m; and mj' > my. Under GLOBAL-LRU-DOP,
for any m; > 2, no MLPA can exist if m, >

] ]
2mi and mj > 2mi
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4.4.2 Derivation of Properties

THEOREM 1

Under LOCAL-LRU-SOP, or LOCAL-LRU-DOP, or GLOBAL-

LRU-SOP, or GLOBAL-LRU~DOP, for any m, > 2, mj i'mi
1mp11e53r t, (MJ .;QM
PROOF
: m. < m,

Case 1 : mj m,
Consider the reference string r=" Pia' P;a, ceay

i ”
P(mj+l)a :

Using any one of the algorithms, the following

stacks are obtained at t=mj+2 :

_ i i i i
t (P(mj+l)a' ija' ey P2a’ Pla)

s 3 J
St (P(mj-f-l)' P myt ot P3s P3)
Thus, Pia € M but P i ¥ (MJ , i.e., (MJ 5__§M
Case 2 : mj = m.l =W

. . — n pl i

Consider the reference string r Pla' P2a' coey

i "

Plwtl)a

Using any one of the above algorithms, the following

stacks are obtained at t=w+2 :

i i i i

St - (P(V\H'l)a' Pwa' ® e o P3a, Pza)
3 - opd Pl 3 3 53
5t = (Py, P(w+l)' Pw' "'P4' P3)

i i i jyio, Jy 1 i
Thus, P, ¢ M{ but P, 4 (Mt) y i.e., (Mt) 2M .

Q.E.D.
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THEOREM 2
Under LOCAL-LRU-sOpP, or LOCAL-LRU-DOP, for any
m. > 2, and any m.,Br,t, (Mj)lﬁMl.
i - J t =t
PROOF (For LOCAL-LRU-SOP)
For mjimi the result follows directly from THEOREM 1.

For mj>mi, using the reference string

i i i i i i

-_n ”
r= Pza’ Pla' za' P2a' e Pogr ija ’
the following stacks will be produced at t=2mj+1 :
i i i i i
ST = (P , P__, P ¢ eeey P )
m.a a m.-1l)a m.-m.+2)a
t 3 z ( 3 ) ( 57M3 )

si = (), 2 ., ..., P, P}

t m.’' “m. 1
.3 J . . . .
i i i jvi . j,i i
Thus, PZa £ Mt but Pza £ (Mt) , 1.4, (Mt) qéb%f

Q0.E.D.
PROOF (For LOCAL-LRU-DOP)
For m <my the result follows directly from THEOREM 1.
For mj>mi, using the following reference string
i i i i i i

= " P co o P 1]
r Pza’ P1a' za' P2a' ' “za' ija '

The following stacks will be produced at t=2mj+1 :

i i i i
Sg T (Pm.a’ Poar oo P(m.—m.+2)a)'
. J J 1
J _
St - (al, a2, o e 7 amj)
. J j J 3 pJ
Where for 1i15mj, a;e {E?j' ij-ll ceoy P3, Pz, P;}

since P; is the only overflow from mJ,
i i i j i . i i
Thus, Pza € Mt but Pza £ (Mt) , i.e., (Mt)iébgf
Q'E.D.
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THEOREM 3

Under GLOBAL-LRU-SOP, for any m, >2, ¥ T,t, (M}’C)l -

ME iff m.>m.
t J o1

PROOF
This proof has two parts. Part (a) to prove ¥ r,t,
i i .
(ML) "2 My :>mj > my

. Gii, i
or equivalently, mjf_miiﬁir,t,(Mt) P Mg

Part (b) to prove mj>mi:—7Vr,t, (Mg)l?.Mtl:

) - jyi i
PROOF of Part (a): mjf_mi~?73r,t,(Mt) ?Mt

This follows directly from THEOREM 1.
Q.E.D.

To Prove Part (b), we need the following results.

LEMMA 3.1
¥ r,t such that |MJ| <m,, if m, = m, + 1, then
t 1 J 1

j, i i =1 0 _.j
(a) (Mt) ?_Mt, and (b) St = St

PROOF of LEMMA 3.1

For t=2 (i.e., after the first reference), (a) and (b)
are true. Suppose (a) and (b) are true for t, such
that 1Mf__|_< m,
Consider the next reference:
Case 1l: It is a reference to Mi:
There is no overflow from Mi or Mj, so (a) is still
true. Since Global-LRU is used, (b) is still true.
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Case 2: It is a reference to Mj:

There is no overflow from Mj. If no overflow from

Mi, the same arguement as Case 1 applies. If there is
overflow frqm Mi, the overflow page finds its corres-
ponding page in Mj. Since SOP is used, this overflow
can be treated as a "no-op". Thus (a) and (b) are
preserved.

Case 3: It is a reference to M':

There is no overflow from MJ since |Mi+1L§mi. Thus

the same reasoning as in Case 2 applies.

Q.E.D.

LEMMA 3.2

¥ r,t, such that [M%l = m., if m.=m,+1 then
] J 1

jyi i i 9 ] j i i_
(a) (My) ">M, (b) Sy = S, and (c) (St(mj)) Ns.=#
Let us denote the conditions (a) (b) and (c) jointly
as z(t).

PROOF of LEMMA 3.2

Suppose the first time Sg(mj) is filled is by the
t*-~th reference. That is, Sg(mj) = @ for all t<t*
and Sg(mj) # @ for all t>t*. From LEMMA 3.1 we know
that (a) and (b) are true for all t<t*.

Let t1=t* + 1, t, =t* + 2, ..., etc. We shall show,

2

by induction on t, starting ‘at t that A(t) is true.

l!
First we show that Z(tl) is true as follows:
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Case 1: Mi* e Mi*

si o o s JEDRINE SRR, R i
Six 0 Sy, and Mg, e Mt*">st*(mj 1) ¢ Six

As a result of the reference at t* (to Mr),

(mi)

SJ*+l(m ) = Sg*(mj—l) and Si*(mi) overflows from Mi.
This overflow page finds its corresponding apge in Mj
because there is no overflow from Mj and (a). Since
SOP is used, the overflow from Mi can be treated as
a "no-op". Furthermore, since Global-LRU is used,
(b) is true after the t*-th reference, (b) and

|57 *+11 Bt*+l|=#(a) and (c). Thus Z(t;) is true.

Case 2: (MJ*) :)Mt* and M%* and ¢ Mt*

(Mi*) IDMt* and M] P é Mt*”7383*(k) such that

(SJ*(k)) th* =g s k 0 s%* and (SJ*(k)) nM =g

i
t*

m,_,> x >k. Thus (S]*(mj DI TNSL. = # (i.e., the last

k>ISt*|and (sJ px (X) )1 Ml, = ¢ for all x where

page of SJ* is not St*)

t*(m ) overflows from M There is no overflow from
MJ. Thus the overflow page from M finds its corres-
ponding page in Mj. For the same reasons as in Case

1, (b) is still preserved. (b) and [S%*+l|> ISi*+l|:b

(a) and (c) are true. Thus, Z(tl) is true.
Assume that Z(tk) is true; to show that Z(tk+l) is true,

we consider the next reference, at time tk+1:
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Imagine that the last page of Si does not exist,

k
\ Jj - £ .
i.e., Stk(mj) g. If the reference at K+1 is to
a page in Mt or M% , then (a) and (b) still hold
k k

because Global-LRU is used and because overflow from
M finds its corresponding page in M (See the proof
of LEMMA 3.1).

If the reference at t is to a page not in M7 , then
k+1 tk

we can apply the agruement as that used in considering

the reference at time tl above to show that Z(tk+1) is

still true.

Q.E.D.

LEMMA 3.3
. _ j, i i j i
¥ r,t, if mj—mi+1 then (a) (Mt) _D_Mt and (b) (St(mm)) N
i_
St— g

PROOF of LEMMA 3.3

For t such that [M%]fmi(a) follows directly from
LEMMA 3.1 and (b) is true because Si(mj) =g

For t such that |Mi| = mj(a) and (b) follows directly

from LEMMA 3.2

0.E.D.

LEMMA 3.4

yiomi ana ()

- j
¥ r,t, if ms> my than (a) (M{) " 2M,

(s{m))*Nsy = 2
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PROOF of LEMMA 3.4

Let mj = mi+k. We shall prove this lemma by induction

of k. PFor k=1 (a) and (b) are true from LEMMA 3.3.

Suppose that (a) and (b) are true for k. Consider

mj=mi+(k+l). That is consider the effects of

increasing Mj by 1 page in size:

Since Mi is unchanged, Mj (with mi+k+l pages) sees

the same reference string as Mj (with mi+k pages) .

Applying the stack inclusion property (Mattson et al.,

1970) , we have Mj(with mi+k+1 pages) 2 Mj (withlpfﬂcpages).

Thus (a) is still true. Suppose (S)(m +k+1))M sl # g

then there is a page in Mi that corresponds to this

page. But Sg(mi+k+l) is not in Mj (with mi+k pages) .

This contradicts the property that (Mz)ig Mi. This
showes that (b) is still true. |

Q.E.D.
PROOF of Part (b): m. >mi=§;v r,t, (Mz)i-_::_Mi:

] t
This follows directly from LEMMA 3.4.

Q.E.D.
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THEOREM 4

Under GLOBAL-LRU-DOP, for any m.> 2, ¥ r,t, (Mf:)l )

—

MY iff m.>2m,
t J— 1

PROOF
This proof has two parts:

Part (a): mj<2mi:—‘,~3 r,t, (M?c)li M

i
' t
. Jyi_ i
Part (b): mj_>__2mi:y ¥ r,t, (Mt) 2 M

. Jyi i
PROOF of Part (a): m, <2m;= 3J r,t, (Mp) ) My

For m.j_fmi the result follows from THEOREM 1.

Consider the case for 2mi:>mj:>mi:

i i

: _n 1 i n

The reference string r = Pla ’ P2a' P3a’ "-'P(Zmi)a
will produce the following stacks:

i _ i i i

5t = Plngyar P 2m.-1)a’ " P m.+1)a)”

i i i

j_ \ .

St = ( Ays 8yy Bgr ceey am') where a;'s are picked from

]

Ll and L2 alternatively, starting from Ll’

- (pJ J ]
Ll (Pmi, P(mi-l)’ ooy Pl) and

pJ

j
(P m.+1).
i

pJ
2, " “ (2m,-1)" *°°'
i i

o
I

If mj is even, then (al, gy ee- am.—l) corresponds to

J
the frist mj/2 elements of Ll and (a2, Bpr oe- amj)
corresponds to the first mj/2 elements in L2. We see

that P?m +1)a is in St but its corresponding page
i i

. . 3j j . . jo.
is not in St (P(mi+l) is not in St since mj/2 <mi).
If mj is odd, then (al, az, ... a ) corresponds to the

J
first (mj+l)/2 elements in Ll and (az, 2

m

gr weer @y _q)
™
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corresponds to the first (mj—l)/2 elements in L We

20
see that the page pl is in St but its correspond-

(mi+l)a
ing page is not in S% because max( (mj—l)/Z) = mi-l,
thus, a(mj—l) is at most the (n&-l)—th element of
j _p] 3)d o gyt
Lo, P2mi—(mi-l)+l'Pmi+2. In both cases, (M) %Eiwt.
Q.E.D.

To prove Part (b), we need the following preliminary

results.

LEMMA 4.1
Under GLOBAL-LRU-DOP, for m, >2, mj zZmi, a page

found at stack distance k in Mt implies its corres-

ponding page can be found within stack distance 2k in

j
M.

PROOF of LEMMA 4.1

We prove by induction on t.

At t=l, the statement is trivially true. At t=2

(i.e., after the first reference) Si(l) and its

corresponding page are both at the beginning of the
stack, hence the induction statement is still true.

Suppose the induction statement is true at time t, i.e.,
i

P = St(k) = P; can be found within stack distance

2k within sg.
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Suppose the next reference is to P;a. There are
three cases:

i i i _ i
Case 1: Pwa € Mt (Pwa—st(x))

From the induction statement, Pa is found within stack
distance 2k in Sz as illustrated in Fugure 4.9.

Consider the page movements in the two stacks as a result
of handling the reference to Pia:

(1) P;a and P% are both moved to the top of their
stack, the induction statement still holds for

these péges.

(2) Each page in A increases its stack distance by
1, but its corresponding page is in A', each page
of which can at most increase its stack distance
by 1. Thus the induction statement holds for all

pages in A.

(3) None of the pages in B are moved. None of the pages
in B' are moved. (See Figure 4.9) If a page
in B has its corrésponding page in B', the induction
statement is not violated. Suppose a page in B,

pga = st(k) (k>x), has its corresponding page,

Pg = S%(w)'in A'. Then Pg can at most increase
its stack distance by 1. But w< 2x because

Pg € A'. Since 2k > 2x, the induction statement

is not violated.
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. i i 53 ]
Case 2: Pwa Z Mt’ Pw 'S Mt

Each page in Mi increases its stack distance by 1.
Each corresponding page in Mj can at most increase
its stack distance by 2, one due to the reference and
one due to an overflow from Mi. Hence if

Pga = Si(k), k <mi, then Pia = Si+l(k+l), and Pg can
be found within stack distance 2(k+1l) in Mj at time

t+l.
. pl i 53 3
Case 3: Pwa 4 Mt' Pw A Mt
As a result of the read-through from Mr, each page
in M' is increased by a stack distance of 1. That is,

i

for k <mi, Pza

_ ol i_ i
= St(k) ;?Pza St+1(k+l) .
Each page in M? can at most increase its stack distance
by 2, one due to loading the referenced page and one due
to an overflow from M'. Hence, the page P; is found
within stack distance of 2k+2 in MJ. Since max (2k+2) =
2m, <m., pJ is still in M7,

i—"3 z
Q.E.D.

COROLLARY to LEMMA 4.1

] i i _
m, >2m, =¥ or,t, (st(mj)) N Sy = 8

PROOF of COROLLARY

For any P;a in St, its corresponding page can be
found within stack distance 2mi in SJ, and since

pages in S% are unique, the information in the last
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5 i 3 in i
page of Sy is not found in S, i.e., (St(mj)) N S,=%-

i

PROOF of Part (b): mj>2m; =% ¥ r,t, (Mtj:)l 2

This follows directly from LEMMA 4.1.

Q.E.D.
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THEOREM 5

Under GLOBAL-LRU-SOP, for any miELZ, ¥ r,t, an over-

flow from M' finds its corresponding page in M) iff

m. >m,
J 1

COROLLARY

Under GLOBAL-LRU-SOP, for any miz_Z, ¥ r,t, an over-

flow from M' finds its corresponding page in M) iff

5.1 i
¥ r,t, (M%) 2 M.

PROOF

PROOF

This Proof has two parts as shown below.

of Part (a): nﬁ >nﬁvﬁ7V’r,t, an overflow from M*

finds its corresponding page in M-

From LEMMA 3.4 m;> m = ¥ r,t, (MJ) t and
(Sj(m )) r\s = @. Suppose the overflow from Ml,
: .

Poa is caused by a reference to MJ Then just before
Pga is overflowed, Pg exists in MJ. After the over-
flow, Pia‘finds its corresponding page still existing
inbfj.Suppose the overflow, Pia , is caused by a
reference to M°. Then just before the overflow from
Mi, Pg exists in M:l ~and (Sj(m )) N Si =g i.e.,

the 1nformat10n in the last page of Mj is not Mi.
This means that the last page of MJ is not_Pg, thus,
the overflow page Pia finds its corresponding page

still in M7 after an overflow from M7 occurs.
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PROOF of Part (b): mjjgmiﬁ;lﬂ r,t, such that an overflow

from M does not find its corresponding page in M7,

From THEOREM 1, m, <m; = 3 r,t, (Mg)i$ Mii:, then there
exists Piae:Mi and Pg ngg. We can find a reference
string such that at the time of the overflow of

P;a from Mi, Pg is still not in Mj. A string of
references to MY will produce this condition. Then
at the time of overflow of Pia’ it will not find its

corresponding page in M9,

Q.E.D.
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THEOREM 6
Under GLOBAL-LRU-DOP, for “3,32' ¥ r,t, an overflow

from MT finds its corresponding page in M) iff mj >2mi

COROLLARY
Under GLOBAL-LRU-DOP, for nH”32, ¥ r,t, an overflow
from M' finds its corresponding page in M3 implies

i

- i i
that ¥ r,t, (M)"2 M.

PROOF

This proof has two parts as shown below.

PROOF of Part (a): “ﬁ >2mi = ¥ r,t, an overflow from Mt
finds its corresponding page in MI .
THEOREM 4 ensures that mj > 2mi >V r,t, (M,:c'):L 2 Mtl:
and LEMMA 4.1 ensures that (S%(mj))l r\st‘= @, we then

use the same argument as in Part (a) of THEOREM 5.

PROOF of Part (b): mj §2mi-3,>3 r,t, such that an overflow

from M* does not find its corresponding page in MI,

Case 1l: m <2m
i i '

m, <2m,®»3r,t, (M) £Mt (from the proof of part (a) of
THEOREM 4). We then use the same argument as in Part
(b) of THEOREM 5.
Case 2: m. = 2m,
i i i

la’ P2a’ et P(Zmi)a’
i

P(Zm +1)a" will produce the following stacks
i

The reference string r = "P
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(at t=2mi+l):

i _ i i i
5t = ®mya * Plam,-)a’ * 7 Plm.+1)a’
i i i
J - (pd 3 3 J J pJ
St (Pm.' P2m.’ Pm.--l’ P2m.—l’ et Pl’ Pm.+l)
i i i i i
. i
In handling the next reference, to page P(Zmi+l)a'
i J
the pages P(mi+l)a and Pmi+l overflow at the same

i

time, hence the overflow page P(mi+l

from Ml
)a

does not find its corresponding page in M7,

Q.E.D.
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THEOREM 7
Let M' (with m, pages), M3 (with mj pages) and M*
be System A. Let M'" (with m.' pages), M'J (with

mj' pages) and M" be System B. Let n&'jimi and

na'_inﬁ. Under GLOBAL-LRU-SOP, for any m. >2, no

MLPA can exist if m; >m, and m.' >m,"'.

PROOF
We shall show that ¥ r,t, (MiU(Mg)i)EE (M'i U(M'g)i)
This will ensure that no MLPA can exist.
Since m,' >m, and LRU is used in M and M'i, we can
apply the LRU stack inclusion property to obtain
wicwi,
From THEOREM 5, we know that overflows from Mi or
from M'i always find their corresponding pages in
Mj and M'j respectively. Since SOP is used, these
overflows can be treated as "no-ops". Thus, Mj
and M'j see the same reference string and we can
apply the LRU stack inclusion property to obtain

MJ E;M'J (since m.' >m. and LRU is used).
t t J — 3

My € M'pand Mg My S JM)D) E ™'Y M.

Q.E.D.
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THEOREM 8

Let System A and System B be defined as in THEOREM 7.

Let mi‘ > m, and mj' > mj. Under GLOBAL-LRU-DOP, for

any m,

> 2, no MLPA can exist if m. > 2m, and m. '>2m,"'.
i — J 1 J 1

PROOF

We need the following preliminary results for this proof.

LEMMA 8.1
Let Si be partitioned into two disjoint stacks, Wt and
. . R _
v, defined as follows: W, (k) §.(3,) for k l,...,IWtI

wher? jo=0, and Jy 1s the minimum Jk>]k-l such that
1 i R I
E}IPza € St and Poa St(jk).
= sJ3 = P = ;
v, (k) = 87 (3 ) for k=1, ..., IVt! where j,=0, and j,
. C s . i i i
is the minimum I > Jg-1 such that'}V‘Pza £ St' Pza %

Si(jk)' (Intuitively, W, is the stack obtained from

t
Sg by collecting those pages that have their corres-
i
t

1 is preserved. Vt is what is left of S% after
W, is formed.) Then,)er,t, (a) Wt g §t and

(b) th; Ot where ot is the set of pages corresponding

ponding pages in M, such that the order of these pages

in S

to all the pages that ever overflowed from Ml, up to
time t.

PROOF of LEMMA 8.1

From THEOREM 4, mj > 2mi %Vr,t, (Mtj__)l th. Thus,
for each page in Mi, its corresponding page is in Mg.
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=1

This set of pages in M is exactly Wt' and W_e St by

t t

definition. Since the conditions for Vt and W, are
mutually exclusive and collectively exhaustive, the
other pages in Mg that are not in Wt are by definition
in Vt' Since a page in Vt does not have a correspon-
ding page in Mi, its corresponding page must have once

been in M- because of Read-Through, and later over-

flowed from M'. Thus a page in V_ is a page in O

t t°

Q.E.D.
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LEMMA 8.2

Any overflow page from M) is a page in V

t t

PROOF of LEMMA 8.2

B j i i
From THEOREM 4, my > 2mi—->¥r,t, M) ™ 2 M

i
From THEOREM 6, mj > 2mi§}%fr,t, an overflow from M

always finds its corresponding page in M7

An overflow from Mg is caused by a reference to M°. An

overflow from Mi also implies that there is an overflow
i

from M. ‘

‘Suppose the overflow page from M% is Pg. Also suppose

Pg € Wt' i.e., Pg £ Vt' We shall show that this leads

to a contradiction.
i

The overflow page from Mt

, . i i
is either Poa or Pya(y#o).

If P;a.g Pg is overflowed from Mt, THEOREM 6 is vio-
lated since P;a and Pg overflow at the same time so
P;a will not find its corresponding page in M3,

If P;a % Pg is overflowed from Mi, THEOREM 4 is vio-
lated since after the overflow handling, there exists
a page Péb c Pg in Mi (since Pg € Wt) but Pg is no
longer in Mj.
Q.E.D.
LEMMA 8.3
If there is no overflow from either Mj or M'j then

*7'r,t, Ve and Vé have the same reverse ordering.

Two stacks S* and SJ are in the same reverse ordering,
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i

s3, if rs*(x) = rsI (k) for 1<k<min ([s*| , |sT]),

ST ro
where rS denotes the stack obtained from S by rever-
sing its ordering. By convention, Si xo sj if Si=¢
or Sj =

PROOF of LEMMA 8.3
To facilitate the proof, we introduce the following
definitions:

(1)

(2)

(3)

The ordered parent stack, (Sl)J, of the stack

s' is the stack of parent pages corresponding to,

and in the same ordering as, the pages in the
reduced stack, §i, of Si. Formally, (Si)j e gl
and (Si)j o gl

Define a new binary operator, concatenation (||),

1 and Sz, to produce a new

between two stacks, S
stack, S, as follows:
S = Slllsz, where S (k)= Sl(k) for k=1, 2,...,|Sl|
s?(x) for k=|st{+1,...,
(st + [s2])

Define a new binary operator, ordered difference

(o) , between a stack S1 and a set T, to produce

a new staék, S, as follows:

s = st o T, where s()=s’(3,) for k=1,2,...,

(1stt - 1stAT) ),

such that j0=0 is the minimum jk such

4 ]k >Jk_l
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that Sl(jk)f)T = @. Intuitively, S is obtained
from Sl by taking away those elements of Sl which
are also in T.
Figure 4.10 illustrates the LRU ordering of all Level i
pages ever referenced up to time t. Since there is no
overflow from either Mj of M'j, the length of this
LRU stack is less than or equal to min(mj, mj')
By the definition of Vé, Vé = (Yt)j o (S'ti__)j
But (s'ii:)j = (Si)j ]« (xt)j o (sti:)j),
hence v{ = (¥.)7 o ( (sH3 ||( xp o sH))
- p? o (spIY D)

Similarly, by the definition of Vt, vV, = (Zt)Jg (St)n

t
i 3 3 3
But (2,)7 = (X.)° {] ( (¥v,)7 o (X)),

Hence Vt

3, eiy3 3 3 i3
((Xt).g(s?).)ll (((Yt{ o ‘?t{ ) o (§t) )
3o (giyd 3 iy3 3

((X ) 0(s0)7) [| ((x ) o(s) Y (X))

3 13 .
((x)3 o () ]]vy

Thus, the two stacks are in the same reverse ordering.

Q.E.D.
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LEMMA 8.4

PROOF

Vr,t, (a) M'%QMJ. (b) Vt and th: are either in the

same reverse ordering or the last element of Vé is

not an element of Vt

of LEMMA 8.4

(a) and (b) are true for any time before there is
any overflow from either Mj or M'j. (a) is true
because any page ever referenced is in Level j, so
a page found in Mj is also found in M‘j. (b) is
true because of the result from LEMMA 8.3.

Assume that (a) and (b) is true for t. Consider
the next reference at t+l. Suppose this reference
does not produce any overflow from either Mj or M'j,
then (a) still holds because M'z g_Mi and M'i 2 Mi':
(See THEOREM 7). (b) still holds because overflows

from MJ and M'J are taken from the end of stacks

‘Vt and Vé respectively, and since there is no over-

flow from Level j, (b)'s validity is not disturbed.

Suppose this reference does produce overflow(s)

from Level j.

Case 1 : overflow from M'j, no overflow from Mj :
This cannot happen since overflow from M'j implies
reference to M° which in turn implies overflow

from MJ also.
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Case 2 : overflow from Mj, no overflow from M'J ;

Suppose the last element in Vé is not an element

of Vt‘ Then starting from the end of V!, if we

eliminate those elements not in V the two

£’
stacks will be in the same reverse ordering.
This follows from LEMMA 8.3 and is illustrated
in Figure 4.11. Thus we see that overflow from
Mj, i.e., overflowing the last page of Ver will
not violate (a) since this page is still in Vé.
(b) is still preserved since the last page in
Vé is still not in Vt’

Suppose Vé and V. are in the same reverse order-

ing. Then overflowing the last page of Vt does

not violate (a) and results in.the last page of

' .
Vt not 1in Vt'

Case 3 ¢+ overflow from mJ and overflow from m'J :

Suppose the last element in Vé is not in Vt’

Referring to Figure 4.11 in Case 2, we see the

result of overflowing the last element of Vé and

the last element of Vt does not violate (a) and

still preserves the condition that the last

element of Vé is not in Vt

Suppose Vé and Vt are in the same reverse order-

ing. Then overflowing the last elements of Vé
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and Vi leaves Vé and Vt still in the same

reverse ordering. (a) is not violated since

the same page is overflowed form M'j and Mj.
Q.E.D.

PROOF of THEOREM 8

M'l > Ml for the same reasons as those used in
THEOREM 7.
From LEMMA 8.4 M'J DmMJ,
i j, i 1 Jy i
Hence, My {J M) € ' U Hh)

Q.E.D.
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4.5  SUMMARY

We have developed a formal model of a data storage hier-
archy system specifically designed for very large databases.
This data storage hierarchy makes use of different page
sizes across different storage levels and maintains multiple
copies of the same information in different storage levels

of the hierarchy.

Four classes of algorithms obtained from natural exten-
sions to the LRU algorithm are formally defined and studied
in detail. Key properties of data storage hierarchy systems
that make use of these algorithms are identified and for-

mally proved.

It is found that for the LOCAL-LRU algorithms, no choice
of sizes for the storage levels can guarantee that a lower
storage level always contains all the information in the
higher storage levels. For the GLOBAL-LRU algorithms, by
choosing appropriate sizes for the storage levels, we can
(1) ensure the above multi-level inclusion property to hold
at all times for any reference string, (2) guarantee that no
extra page references to lower storage levels are generated
as a result of handling overflows, and (3) guarantee that no

multi-level paging anomaly can exist.
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Chapter V

DESIGN OF THE DSH-11 DATA STORAGE HIERARCHY SYSTEM

5.1 INTRODUCTION

In chapter 3, DSH-1, a general structure of the INFOPLEX
data storage hierarchy system is introduced. DSH-1 incorpo-
rates novel features to enhance its reliability and perfor-
mance. Many alternative architectures of data storage hie-
rarchies can be derived from DSH-1. These structures can be
used to perform detail studies of various design issues con-

cerning data storage hierarchies.

This chapter describes a simple structure of the INFOPLEX
data storage hierarchy derived from DSH-1. This structure
is called DSH-11 and is used to develop detail protocols for

supporting the read and write operations. Multi-level

inclusion properties of DSH-11 are then discussed.

5.2 STRUCTURE OF DSH-11

The general structure of DSH-11 is illustrated in Figure

5.1. There are h storage levels in DSH-11, denoted by L(1),
L(2), ... , L(h). L(l) is the highest performance storage

level. L(1) consists of k memory ports. Each memory port
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is connected to a processor. All k memory ports share the
same local bus. A storage level controller (SLC) couples
the local bus to the global bus. The global bus connects

all the storage levels.

All other storage levels have the same basic structure.
In each storage level, there is an SLC which couples the
local bus to the global bus. There is a memory request pro-
cessor (MRP) that handles requests to the storage level.
There are a number of storage device modules (SDM's) that
store the data within the storage level. The SLC, MRP, and

SDM's share the same local bus.

The number of SDM's in different storage levels may be
different. The type of storage device in the SDM's in 4if-
ferent storage levels are different. For high efficiency,
the block sizes of different storage levels are different.
L(1) has a block size of g(l), L(2) has a block size of
g(2)=n(l)*g(l), and so on, where n(l), n(2), ..., n(h-1) are

non-zero integers.

5.2.1 The DSH-11 Interface

From the point of view of a processor connected to a
DSH-11 memory port, DSH-11 appears as a very large virtual
memory with 2**V bytes. The entire virtual address space is

byte addressable. The instructions for a processor are
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stored in a local memory outside of DSH-11l. This local
memory has an address space of 2**G bytes. Hence, the

effective data address space is (2**V-2**G) bytes.

All operations on data within DSH-11 are performed in
L(l). Thus, if a referenced data item is not in L(1l), it
has to be brought into L(l) from a lower storage level.

This induces a delay on the instruction comparable to a page
fault in virtual memory systems. Each processor has multi-
ple register sets to support efficient multiprogramming.

The key registers for interfacing with DSH-11] are the memory
operation register (MOR), the memory address register (MAR),
the memory buffer register (MBR), the operation status
register (OSR), and the process identification register
(PIR). The MAR is V bits wide and the MBR is n bytes wide,

where n is less than g(1), the block size of L(1l).

A read operation requests n bytes of data at location
pointed to by MAR to be brought into the MBR. A write oper-
ation requests the n bytes of data in the MBR be written to
the location pointed to by the MAR. We shall assume that
the n bytes of data in a memory reference do not cross a
L(1) block boundary (If a data item crosses block boundar-
ies, multiple requests will be used so that each request

only reference data within block boundaries).
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A read or write operation may proceed at the speed of the
L(l) devices when the referenced data is found in L(1).
Otherwise, the operation is interrupted and the processor
switches to another process while DSH-11 moves the refer-
enced data into L(1l) from a lower storage level. When the
data is copied into L(1l), the processor is again interrupted

to complete the operation.

5.2.2 The Highest Performance Storage Level L(1l)

As illustrated in Figure 5.1, L(1l) consists of k memory
ports. Each memory port consists of a data cache controller
(DCC) and a data cache duplex (DCD). A DCC communicates
with the processor connecting to the memory port. A DCC
also maintains a directory of all data in the DCD. All k
memory ports share a local bus. The SLC serves as a gateway

for communication between L(1l) and other storage levels.

5.2.3 A Typical Storage Level - L(i)

A typical storage level, L(l), consists of a number of
SDM's, an MRP, and an SLC. An SLC serves as the gateway for
communication among storage lgvels. The MRP services
requests to L(i). An SDM performs the actual reading and
writing of data. An SDM consists of a device controller and

the actual storage device.
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To gain high throughput, communications over the global
bus is in standard size packets. The packet size is such
that it is sufficient for sending one L(1l) data block. Com-
munications over a local bus at L(i) is also in standard
size packets. The size of a packet depends on the storage

level and is chosen so that a packet is sufficient to send a

data block of size g(i).

In the following sections, the read and write operations

are discussed in detail.

5.3 ALGORITHMS FOR SUPPORTING THE READ OPERATION

5.3.1 The Read-Through Operation

A read request is issued by a processor to its data cache
controller. The data cache controller checks its directory
to see if the requested data is in the data cache. If the
data is found in the data cache, it is retrieved and
returned to the processor. If the data is not in the data

cache, a read-through request is queued to be sent to the

next lower storage level, L(2), via the storage level con-

troller.

At a storage level, a fead—through request is handled by
the memory request processor. The memory request processor
checks its directory to determine if the requested data is
in one of the storage device modules at that level. If the

data is not in the storage level, the read-through request
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is queued to be sent to the next lower storage level via the

storage level controller.

If the data is found in a storage level, L(i), a block
containing the data is retrieved by the appropriate storage
device module and passed to the storage level controller.

" The storage level controller broadcasts the block to all
upper storage levels in several standard size packets. Each
upper storage level has‘a buffer to receive these packets.

A storage level only collect those packets that assemble
into a sub-block of the appropriate size that contains the

requested data. This sub-block is then stored in a storage

device module.

At L(l1), the sub-block contéining the requested data is
stored, and the requested data is sent to the processor with

the proper identification.

Figure 5.2 illustrates the read-through operation.
Assume that DSH-11 has only three storage levels, L(1l) with
block size b, L(2) with block size 2b, and L(3) with block
size 4b. Suppose a referehce to a data item 'x' is found in
a block in L(3). Then the sub-block of size 2b containing
'x' is broadcasted to L(2) and L(l) simultaneously. L(2)
will accept and store the entire sub-block of size 2b. L(1)

will only accept and store a block of size b that contains
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x'. The two sub-blocks, each of size 2b of a parent block

in L(3) are referred to as the child blocks of the parent

block.

5.3.2 Overflow Handling

To accomodate a new data block coming into a storage
level as a result of a read-through, an existing data block
may have to be evicted. The block chosen for eviction is
that which is the least recently referenced block such that
none of its child blocks is in the immediate upper storage
level. To support this scheme, each block is associated
with an Upper Storage Copy Code (USC-code). If any of the
child blocks of a data block is in the immediate upper sto-
rage level, its USC-code is set. Each time the last child
block in L(i) of a parent block in L(i+l) is evicted from
L(i), an overflow request is sent to L(i+l) to reset the

USC-code of the parent block.

Blocks in L(1l) and L(2) are handled slightly differently
due to the use of data caches in L(l). Since multiple
copies of the same data block may be in different data
caches, evicting a block does not necessarily guarantee no
other copy exists in L(l). The following strategy is

adopted to overcome this difficulty. During a read-through,

the USC-code of the block in L(2) is incremented by 1. Each
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time a block in L(1l) is evicted, an overflow request is sent
to L(2) to decrement the USC-code of the: corresponding par-
ent block. This strategy does not require communications

among different data caches.

5.3.3 Pathological Cases of Read-Through

The parallel and asynchronous operations of DSH-11 and
the use of buffers at each storage level complicates algor-
ithms for handling the read operation. Pathological cases

that affect the algorithms are discussed below.

5.3.3.1 Racing Requests

Two different requests Rl and R2 may reference the same
block of data. Furthermore, these two requests may be
closed to each other such that both may be reading-through
the same block of data at some storage level. Since a data
block is transmitted in several packets asynchronously, each
packet must be appropriately identified to avoid confusion

when assembling the data sub-blocks at higher storage lev-

els.

A similar situation arises when Rl and R2 are closed
together such that R2 begins to read-through the same data
block that has just been read-through by R1l. Thus a data

block arriving at a storage level may find that a copy of it
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already exists at that storage level. 1In this case, the
incoming data block is ignored. At L(1l), this data block is
ignored and the one in the data cache is read and returned

to the processor, since this is the most recent copy of the

data block.

5.3.3.2 Erronous Overflow

When a data block is evicted from L(i) to make room for
an incoming data block, an overflow request containing the
virtual address of the evicted data block may be generated.
The purpose of the overflow request is to inform L(i+l) that
there is no longer any data block in L(i) with the same
family address as the virtual address in the overflow
request. Hence, an overflow request is generated only when

the last member of a family in L(i) is evicted.

The overflow request has to be forwarded to the MRP at
L(i+l). At any point on the way to the MRP, a data block in
the same family as the evicted block may be read-through
into L(i). This poses the danger that when the MRP receives
the overflow request indicating that no data block in the
same family as the evicted block exists in L(i), there is

actually one such block being placed in L(i).

The following strategy is incorporated in the algorithms

that support the read-through operation to avoid such a
s
potential hazard,

)
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1. At the time the overflow request is to be created
in L(i), a check 1s made to see if there is any
data block in the same family as the evicted block
that is currently in any buffer of L(i) waiting to
be placed in L(i). If so, the overflow request is

not created.

2. At the time a new data block arrives in L(i), any
overflow request with the same family address as
the incoming data block waiting to be sent to
L(i+l) is purged.

3. When an overflow request arrives at L(i+l) from
L(i), a check 1s made to see if there is any data
block waiting to be sent to L(i) that has the same
family address as the overflow request. If so,
the overflow request is purged.

4. At the time a request is generated to send a data
block to L(i), any overflow request from L(i) that
is still waiting in L(i+l) that has the same

family address as the data block to be sent to
L(i) is purged.

5.3.3.3 Overflow to a Partially-assembled Block

Suppose that as a result of a read-through from L(i+2),
B(i), the only child block of B(i+l), is in L(i) and B(i+l)
is partly assembled in the buffer in L(i+l). It is possible
that B(i+l) is still partly assembled in L(i+1l) when B(i) is
evicted from L(i). The overflow request will find that the
corresponding parent data block is still being assembled in
L(i+l). A solution to this difficulty is to check, at the
time of arrival of the overflow request, if there is any
incoming data block which is the target parent block of the
evicted block as indicated in the overflow request. If so,
the overflow request is held till this parent block has been
placed in a storage device.
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5.3.4 Transactions to Handle the Read Operation

A read request is issued by a processor to its data cache
controller. If the data is not found in the data cache, it
has to be brought up via a read-through. The read-through

operation is realized via a number of transactions. The

flow of transactions to support the read-through operation

is illustrated in Figure 5.3.

A read-through transaction is created by a data cache
controller and propagated to lower storage levels. At each

storage level, the read-through transaction is handled by a

memory request processor which checks its directory to see
if the requested data is in the current storage level. If
the data is not in the current storage level, the read-

through transaction is sent to the next lower storage level.

Suppose that the data requested is found at L(i). The

read-through transaction is terminated and a retrieve tran-

saction is created to read the data from a storage device.

A read-response-out transaction that contains the read data

is sent to the storage level controller. The storage level

controller generates a number of read-response-packet tran-

sactions which are broadcasted to all higher storage levels.
Each of these transactions contains a sub-block of the

requested data.
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At each higher storage level, an appropriate number of

read-response-packet transactions are assembled into a

read-response-in transaction which contains a data block of

the appropriate size. The memory request processor obtains

free space for the new data block in the read-response-in

transaction either by using existing free space or by evict-
ing an existing block. Eviction of an existing data block
may result in an overflow transaction being sent to the next
lower storage level. At the memory request processor, the

read-response-in transaction is serviced and a store tran-

saction is created. A storage device module handles the

store transaction by writing the data to a storage device.

The following subsections describe the algorithms for

handling each of the above transactions.

5.3.4.1 The read-through Transaction

The read-through transaction is created by a data cache

controller and propagated down the storage levels via the
storage level controllers. It has the following format:

( read-through, virtual-address, process-id),

where virtual-address is the virtual address of the refer-
enced data item, and process-id consists of a CPU identifier
and a process number. It is the identifier of the process

that generated the read operation. The transaction is han-
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dled by a memory request processor using the following

algorithm.

1. Search directory for read-through.virtual-address.

2. If not found, forward the transaction to the sto-
rage level controller, which will send it to the
next lower storage level.

3. If found, suppose it is in the i-th directory

entry, and suppose directory(i) .TRANSIT-code is
not set, do:

i) Set directory(i) .USC-code to indicate a
child block exists in the higher storage
level for this block. If this is level
L(2), increment directory(i).USC-code
instead of setting it.

ii) Set directory (i) .HOLD-code to forbid any
overflow to this block while the data is
being retrieved.

iii) Create a retrieve transaction :( retrieve,

virtual-address,directory(i).real-address,p-
rocess-id). '

iv) Send the retrieve transaction to the appro-
priate storage device module.

4, If found, suppose it is in the i-th directory

’ entry, and suppose directory(i) .TRANSIT-code is
set, then hold the request and retry later. When
the TRANSIT-code is set, it indicates that the
corresponding data block is in transit, hence any
reference to it is not allowed.

5. End.
5.3.4.2 The retrieve Transaction

The retrieve transaction is created by a memory request

processor and handled by a storage device module as follows.
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1. Read the data block using retrieve.real-address.

2. Create a read-response-out transaction :( read-
response-out, virtual-address, process-id, data),
where data 1s the block containing the referenced
data item.

3. Send the read-response-out transaction to the sto-
rage level controller.

4. End.

5.3.4.3 The read-response-out Transaction

The read-response-out transaction is created by a storage

device module and handled by a storage level controller

using the following algorithm.

l. Purge any incoming overflow transaction that has
the same family address as read-response-
out.virtual-address.

2. Send ( update-directory, virtual-address,HOLD-
code=f) to memory request processor to reset the
HOLD-code, so that overflow to this block is now
allowed.

3. Broadcast the transaction ( reserve-space, virtu-
al-address, process-id) to all higher storage lev-
els to reserve buffer space for assembling
read-response-out.data.

4. Wait till all higer levels have acknowleged the
space reservation transaction.

5. Generate the appropriate number of ( read-res-
ponse-packet, virtual-address, process-id, data,
data-virtual-address) transactions. Data is a
standard size sub-block and data-virtual-address
is the virtual address of this sub-block.

6. Broadcast each read-response-packet transaction to
all higher storage levels.

7. End.
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5.3.4.4 The read-response-packet Transaction
This transaction is created by a storage level controller
and broadcasted to all higher storage level controllers

where they are assembled into read-response-in transactions

to be handled by the memory request processors. Note that a
storage level only accepts those packets relevant for assem-
bling into a data block of the appropriate size, all other
associated packets are ignored. The following algorithm is
used by a storage level controller in assembling the

read-response-in transactions.

1. If this is the first packet of the assembly, do:
i) Purge any outgoing overflow transaction that
has the same family address as the block
being assembled.
ii) Add the packet to the assembly.

2. If this is an intermediary packet of the assembly,
simply add it to the assembly.

3. If this is the last packet of the assembly, do:
i) Replace the assembly by a ( read-response-

in, virtual-address, process-id, data) tran-
saction. Data is the block just assembled.

ii) Send the above transaction to the memory
request processor.

4. End.
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5.3.4.5 The read-response-in Transaction
This transaction is created by a storage level controller
and sent to a data cache controller (for L(l)) or to a

memory request processor (for L(2), L(3), ...).

The following algorithm is used by a data cache control-
ler in handling this transaction.
1. Purge any outgoing overflow transaction that has

the same family address as the block in the read-
response-in transaction.

2. Search directory for read-response-in.virtual-
address.

3. If found, suppose it is the i-th directory entry,

do:

i) Read data from the data cache using direc-
tory (i) .real-address.

ii) Send data to the processor.

iii) Increment directory(i).USC-code by 1.

4, If not found, do:

i) Select a block to be evicted (assuming that
data cache is full). This is the least
recently referenced block such that it is
not engaged in a stored-behind process.
Suppose this block corresponds to direc-
tory(i).

ii) Obtain directory(i).virtual~address, direc-
tory (i) .USC-code, and directory(i).real-
address.

iii) Write read-response-in.data into location
directory(i).real-address in the data cache.

iv) Return read-response-in.data to the proces-
sor.
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5.

V)

vi)

vii)

End.

Create ( overflow, directory(i).virtual-

address, USC-code=directory(i).USC-code)

transaction, send it to the storage level
controller.

Update directory(i).virtual-address with
read-response-in.virtual-address.

Set directory (i) .USC-code to 1.

At a memory request processor, the read-response-in tran-

saction is handled as follows.

1.

Purge any outgoing overflow transaction with the
same family address as the data block in the
read-response-in transaction.

Search for read-response-in.virtual-address in the
directory.

If not found, do:

i)

ii)

iii)

iv)

Select a block to be evicted (assuming that
the storage level is full). This is the
least recently referenced block such that it
1s not engaged in a store-behind process, it
is not held (i.e., HOLD-code = @), and it is
not in transit (i.e., TRANSIT-code = #).
Suppose this block corresponds to direc-
tory (i).

Obtain directory(i).virtual-address and
directory(i) .real-address.

If the evicted block is the last of its
family in the storage level and that there
is no incoming block with the same family
address then create a ( overflow, direc-
tory(i).virtual-address, USC-code=1l) tran-
saction. Send the transaction to the sto-
rage level controller to be sent to the next
lower storage level.

Set directory(i) .TRANSIT-code to 1 to indi-
cate the corresponding block is in transit.
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v) Update directory(i).virtual-address with
read-response-in.virtual-address.

vi) Set directory(i).USC-code to 1.

vii) Create a ( store, directory(i).real-address,
data) transaction and send it to the appro-
priate storage device module.

4. End.

5.3.4.6 The store Transaction
This transaction is handled by a SDM. Store.data is

placed in store.location, and a transaction ( update-direc-

tory, virtual-address, TRANSIT-code = @) is sent to the MRP
to reset the TRANSIT-code so that references to this block

is now allowed.

5.3.4.7 The overflow Transaction

This transaction is created by a data cache controller or
a memory request processor and routed to a memory request
processor in the lower storage level via the storage level
controllers. At each stop on the way to a memory request
processor, a check is made to see if any incoming data block
has the same family address as the overflow transaction. If
so, the following algorithm is executed.

1. If the direction of flow of the overflow and

read-response-in are opposite, the overflow is
purged.

2. If the direction of flow of the overflow and the

read-response-out are opposite, the overflow is
purged.
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3. If the two transactions are in the same direction
of flow, the overflow is held to be processed
after the read-response-in is handled.

At a memory request processor, if the HOLD-code is set
for the parent block of the overflowed block, the overflow
transaction is purged (HOLD-code is set indicates that the
block is being retrieved by an SDM to be read-through to all
upper storage levels). Otherwise, the USC-code of the par-

ent block is decremented by overflow.USC-code.

5.4 ALGORITHMS TO SUPPORT THE WRITE OPERATION

Algorithms to support the write operation are simplified
by the multi-level inclusion properties of DSH-11l. The mul-
ti-level inclusion properties of DSH-11 guarantee that all
the data items in L(i) is contained in L(i+l). Thus, when
writing a child block in L(i) to its parent block in L(i+l),
the parent block is guaranteed to exist in L(i+l). The mul-

ti-level inclusion properties of DSH-11 will be discussed in

a later section.

5.4.1 The Store-Behind Operation

After a block is placed in a data cache as a result of a
read-through operation, its parent block exists in L(2), and
its grand-parent block exists in L(3), and so on. Due to
the multi-level inclusion properties of DSH-11, this situa-

tion will persist as long as the block is in the data cache.
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After a data block in a data cache is updated, it is sent
down to the next lower storage level to replace the corres-
ponding child block in its parent block. This updated par-
ent block is sent down to the next lower storage level to
updaté its parent block, and so on. This process is refered

to as the store-behind operation and takes place at slack

periods of system operation.

DSH-11 uses a two-level store-behind strategy. This

strategy ensures that an updated block will not be consid-
ered for eviction from a storage level until its parent and
grand-parent blocks are updated. This scheme will ensure
that at least two copies of the updated data exists in
DSH-11 at any time. To support this scheme, a Store-Behind
Code (SB-code) is associated with each data block in a sto-
rage level. The SB-code indicates the number of acknow-
ledgements from lower storage levels that the block must

receive before it can be considered for eviction.

In a write operation, the data item is written into the
data cache duplex, and the processor is notified of the com-
pletion of the write operation. we shall assume that the
data item to be written is already in L(l) (This can be
realized by reading the data item into L(l1) before the write

operation). A store-behind operation is next generated by

the data cache controller and sent to the next lower storage
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level. The block in L(l) that has just been updated is
marked with a count of 2., This is illustrated in Figure

5.4 (a).

When a store-behind operation is received in L(2), the
addressed data is written, and marked with a count of 2. An
acknowledgement is sent to the next upper storage level,
L(l), and a storé—behind operation is sent to the next lower
storage level, L(3). When an acknowledgement is received at
L(l), the counter for the addressed data item is decremented
by 1, which becomes 1. This is illustrated in Figure

5.4 (b).

The store-behind is handled in L(3) by updating the
appropriate data block. An acknowledgement is sent to L(2).
- At L(2), the corresponding block counter is decremented by
1, which becomes 1. The acknowledgement is forwarded to
L(l). At L(l), the corresponding block counter is decre-
mented by 1 which now becomes @, hence the block is elligi-

ble for replacement. This is illustrated in Figure 5.4(c).

Thus we see that the two-level store-behind strategy
maintains at least two copies of the written data at all
times. Furthermore, lower storage levels are updated at
slack periods of system operation, thus enhancing perfor-

mance. Detail algorithms for supporting this scheme will be

discussed in a later section.
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5.4.2 Lost Updates

Several different updates to the same block will result
in several different store-behind requests be sent to the
next lower storage level. It is possible that these store-
behind requests arrive at the next storage level out of

sequence, resulting in lost updates.

To resolve this potential hazard, there is a time-stamp
associated with each block indicating the last time the
block was updated. There is also a time-stamp associated
with each child block of the parent block indicating the
last time the child block was updated by a store-behind
operation. A store-behind request will contain the block to
be updated and its time-stamp. This time-stamp will be com-
pared with that of the corresponding child block in the tar-
get parent block. Only whén the store-behind data is more

recent will the update to the target parent block be per-

formed.

5.4.3 Transactions to Support the Write Operation

Figure 5.5 illustrates the transactions to support the
write operation. We shall assume that the target block of a
write operation already exists in a data cache. This can be
ensured by first reading the target block before issuing the
write request to the data cache. After the data is written

into a target data block in a data cache, a store-behind

- 178 -



g O

_write

) @ —
] |

EstoreAbeh ngd ] ::::: T [__:::}_-<::::>
Ipac%fié? .

e

ack-store-behind

—_— -

o |2

store—behitd \ update f

D%
| | %

.
T e e e e G e e A G e e e M W e e . o S e S e e o G e e e o o b o ae e

|
1
|
I
!
:
1
)
!
|
f
|
]
|
1
|
1
1
I
|
]
I
1
]
!
|
I
1
!
‘-

Figure 5.5 Transactions to Support Store Behind

-179-



transaction containing the updated block is sent to the next

lower storage level. The store-behind transaction is ser-

viced by the memory request processor. The memory request
processor generates an update transaction and sends it to
the appropriate storage device module. The memory request

processor also sends an ack-store-behind transaction to the

higher storage level. The storage device module handles the
update transaction by replacing the corresponding child
block in the target parent block with the data in the

store-behind transaction. Another store-behind transaction

containing the updated parent block is created and sent to
the storage level controller to be forwarded to the next

lower storage level.

A store-behind transaction is sent to the next lower sto-

rage level in several standard size packets, each corres-

ponds to a store-behind-packet transaction. At a storage

level controller, these packets are assembled into the ori-

ginal store-behind transaction. The algorithms for sending
and assembling packets are very similar to those used for
the read-through operation and will not be repeated here.
The following describes the algorithms for supporting the

above transactions to realize the write operation.
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5.4.3.1 The store-behind Transaction

A store-behind transaction has the following format:

( store-behind, virtual-address,process-id,data,time-stamp)

This transaction is handled by a memory request processor

using the following algorithm.

l. Search directory for store-behind.virtual-address.

2. If not found, hold the transaction and retry after
a time out, because the target parent block is
still being assembled in the buffer.

3. If found, compare store-behind.time-stamp with the

time-stamp of the corresponding child block of the
target parent block.

4, 1If store-behind.data is more current than the
child block, do:

i) Send ( update, virtual-address, data, real-
address, time-stamp-of-parent) to the appro-
priate storage device module.

ii) Update the time-stamp of the child block
with store-behind.time-stamp.

iii) Send ( ack-store-behind, virtual-address,
process-id, ACK-code = 2) to the immediate
higher storage level. ACK-code indicates

the number of levels this transaction is to
be routed upwards.

5. If store-behind.data is not more current than data
in storage level, send two ( ack-store-behind,
virtual-address, process-id, ACK-code = 2) to the
immediate higher storage level.

6. End.
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5.4.3.2 The update Transaction
The update transaction is handled by a storage device
module using the following algorithm.
1. Replace the appropriate child block in the target
parent block by update.data.
2. The updated target parent block is retrieved.

3. Send ( update-directory, virtual-address, SB-code

= 2) to the memory request processor to increment
SB-code of the target parent block by 2.

4., ( store-behind, virtual-address, process-
id,target-parent-block, time-stamp =
update.time-stamp-of-parent) is sent to the sto-
rage level controller to be sent to the next lower
storge level.

5. End.

5.4.3.3 The ack-store-behind Transaction
This transaction is handled by a memroy request proces-
sor. The algorithm used is as follows.
1. The SB-code of the corresponding block is decre-
mented by 1.
2. The ack-store-behind.ACK-code is decremented by 1.
3. 1If ack-store-behind.ACK-code is greater than @ the

forward the ack-store-behind to the immediate
upper storage level.

4., End.
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5.5 MULTI-LEVEL INCLUSION PROPERTIES

As a result of the read-through operation, the block
read-through into L(1l) leaves its 'shadow' in every lower
storage level that participated in the read-through opera-
tion. 1Is it true then, that a storage level, L(i), always
contains every data block in L(i-1)? When this is true,

multi-level inclusion (MLI) is said to hold.

It has been formally proved in Chapter 4 that certain
algorithms incorporating the read-through strategy can guar-
antee MLI provided that the relative sizes of the storage
levels be appropriately chosen. Furthermore, it is found
that certain other algorithms can never guarantee MLI. This
section explores the MLI properties of DSH-11l. 1In the fol-
lowing sections, the importance of MLI is briefly reviewed,
a model of DSH-11 is developed, and the MLI property of

DSH-11 is analyzed informally.

5.5.1 Importance of MLI

The MLI properties have important implications for the
per formance and availability of DSH-11. First, since the
block size of L(i) is larger than that of L(i-1), L(i) can

be viewed as an extension of the spatial-locality (Madnick,

1973) of L(i-1). Second, except for the lowest storage

level, each data item has at least two copies in different
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storage levels. Hence, even the failure of an entire sto-
rage level will not result in data loss. Third, algorithms
to support the write operation is simplified if MLI holds
because a store-behind operation always finds the target

parent data block exists in a storage level.

—

5.5.2 A Model of DSH-11

Figure 5.6 illustrates a model of DSH-11. DSH-11 has h
storage levels, L(1), L(2), ... , L(h). L(1) consists of k
data caches. Each data cache consists of a buffer B(1l,1i),
and a storage, M(1l,i). All the buffers of the data caches
are collectively denoted as B(l), and all the storage of the
data caches are collectively denoted as M(l). The size of
B(l,i) is b(1l,i) number of blocks of size g(l). The size of
M(1,i) is m(1l,i) number of blocks of size g(l). Hence L(1l)
has b{l) = b(1,1) + b(1,2) + ... + b(l,k) blocks of buffer
space and m(l) = m(1,1) + m(1,2) + ... + m(1l,k) blocks of

storage space.

A buffer is for holding data blocks coming into or going
out of the storage level. A data block may be partially
assembled in a buffer. Only data blocks in the storage
space are accounted for by the directory. Note that a buf-
fer is not used for hoiding transactions that do not contain

any data, e.g. an ack-store-behind transaction does not

occupy any buffer space.
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A typical storage level, L(i), consists of a buffer B(i),
and a storage, M(i). The size of B(i) is b(i) number of
blocks each of size g(i). The size of M(i) is m(i) number
of blocks each of size g(i). The block size of L(i) is
g(i), where g(i) = n(i-1)*qg(i-1), for i =2, 3, ... , h.

The n(i)'s are integers.

5.5.3 MLI Properties of DSH-11

Based on the model in the previous section, the MLI con-
dition can be stated as follows: a data block, whole or
partially assembled, that is found in L(i) is also found in
L(i+l). This section shows that for DSH-11, it is possible
to guarantee the following: (1) MLI holds at all times, (2)
it is always possible to find a block for eviction to make
room for an incoming block, and (3) an overflow transaction

from L(i) always finds its target parent block in L(i+l).

Proposition

Let J = i + 1. Using the algorithms described in the previ-
ous sections, if m(j) is greater than m(i)+b(i) then

1. MLI holds for L(i) and L(j), i.e., any block found

in L(i) can be found in L(j),

2. If block replacement in M(j) is required, there is

always a block not in L(i) that can be considered
for overflow, and

3. An overflow transaction from L(i) always contains
the address of a block that can be found in M(j).

Proof of Proposition
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There are three cases:

1. There are no overflows from L(i): Since m(j) is
greater than m(i)+b(i), no overflow from L (i)
implies no overflow from L(j). Thus all blocks
present in L(i) are still in L(j), i.e., (1) is
true.

2. There are overflows from L(i), no overflow from
L(j): No overflow from L(j) implies that all
blocks referenced so far are still in L(j). Thus
any block in L(i) is still in L(j), i.e., (1) is
true. Since any overflow from L(i) will find the
block still in L(3j), (3) is true.

3. There are overflows from L(j): Consider the first
overflow from L(j). Just before the overflow, (1)
is true. Also just before the overflow, M(j) is
full. M(j) is full and m(j) is greater than
m(i)+b(i) implies that there is at least one block
in M(j) that is not in L(i) (i.e., their USC-code
= @). Choose from these blocks the least recently
referenced block such that its SB-code = @. If no
such block exists, wait, and retry later. Eventu-
ally the store-behind process for these blocks
will be terminated and these blocks will be
released. Thus a block will be available for
overflow from M(j). Thus (2) is true. After the
overflow, (1) is still preserved. (1) and (2)

implies (3).
If next reference causes no overflow from L(j), then the
arguement in Case 2 applies. If the next reference causes

overflow from L(j), then the arguement in Case 3 applies.

5.6 SUMMARY

The DSH-11 design, a data storage hierarchy for the INFO-
PLEX data base computer, is described. Protocols for sup-

porting the read and write operations in DSH-11 are des-
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cribed in detail. It is then shown that DSH-11 is able to
guarantee multi-level inclusion at all times for any refer-
ence string provided that the sizes of the buffers and sto-

rage at the storage levels are chosen appropriately.
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Chapter VI

SIMULATION STUDIES OF THE DSH-11 DATA STORAGE HIERARCHY
SYSTEM

6.1 INTRODUCTION

This chapter discusses the results of a series of simula-

tion studies of the DSH-11 data storage hierarchy system.

A key objective of these simulation studies is to assess
the feasibility of supporting very large transaction rates
(millions of reads and writes per second) with good response
time (less than a millisecond) using the DSH-11 storage

hierarchy and the read-through and store-behind algorithms.

A GPSS/368 simulation model is developed for a DSH-11
configuration with one processor and three storage levels.
The results obtained from this model are very interesting.

It is found that, at very high locality levels, when most of

the references are satisfied by the highest performance sto-

rage level, the store-behind algorithm interacts with the

DSH-11 buffer mandgement algorithms to create a system dead-
lock. This has not been anticipated in the design of
DSH-11, and has led to a redesign of the DSH-11l buffer man-

agement scheme.
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Another GPSS/360 simulation model is developed for a
DSH-11 configuretion with five processors and four storage
levels. This model makes use of deadlock-free buffer man-
agement algorithms. Results from this model reveal further

interesting properties of the store-behind algorithm and of

the DSH-11 design. It is found that at high locality lev-

els, the store-behind requests form a pipeline. Thus the

rate of write operations that can be serviced is limited by
the slowest stage in the pipeline, i.e., the slowest storage
device. It is also found that a bottleneck may be developed

at the lowest level when the block size of that level is too

large.

A well-balanced system is obtained by increasing the
degree of parallelism in the lower storage levels and by
decreasing the block sizes used by these storage levels.
This system is then used as a basis to compare the perfor-
mance of the DSH-11 architecture under different technology
assumptions. It is found that using 1979 technologies, a
throughput of .7 million operations per second with mean
response time of 66 microseconds are obtained for a mix of
storage references consisting of 30 percent read requests.
Usihg 1985 technologies, the same storage reference mix pro-

duces a throughput of 4 million operations per second with

19 microseconds mean response time.
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6.2 A SIMULATION MODEL OF DSH-11 : THE P1L3 MODEL

The P1L3 model of DSH-11 is a GPSS/360 model of a DSH-11
configuration with one brocessor and three storage levels.
It represents a basic structure from which extensions to
include more processors and storage levels can be made. The
structure of P1L3 is illustrated in Figure 6.1(a). Each
module in Figure 6.1(a) actually consists of four queues and
a facility (Figure 6.1(b)). The facility is referred to as
the request processor (RP). There are two input queues, one
for transactions with data (the XQ), and one for transac-
tions with messages (the IQ). The two corresponding output
queues are named YQ and OQ respectively. The XQs and ¥Qs
have limited capacity, since they are the data buffers.
There is no limit on the lengths of the IQs and the 0Qs.

The following example illustrates the naming conventions
used in the model. The K2 module actually consists of the
KRP2, KIQ2, KOQ2, KXQ2 and KYQ2. The current length of KXQ2

is denoted as KXL2 and the maximum allowable length of KXQ2

is denoted as KXM2.

6.2.1 An Illustration of the DSH-11 Algorithms

A listing of the P1L3 model is presented in Appendix A.
To illustrate the model logic, the following is a brief des-
cription of the path followed by a read-through transaction.

A read request (TXN) is queued in KIQ3 (the input message
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DEGREE OF MULTIPROGRAMING OF A cPu = 20

SI1ZES OF DATA QUEUES (x@ AND va) = 10

DIRECTORY SEARCH TIME = 200 NANOSEC,

READ/WRITE TIME OF A L(1) sTorAGE DEvice = 100 NANOSEC.
READ/WRITE TIME OF A L(2) DEvice = 1000 NANOSEC.

READ/WRITE TIME OF A L(3) pevice = 10000 naNosEC.
BUS SPEED = 10 MHZ | |

BUS WIDTH = 8 BYTES

SIZE OF A TRANSACTION WITHOUT DATA = 8 BYTES
BLock sI1ze AT L(1) = 8 BYTES

BLOCK SIZE AT L(2 = 128 ByTEs

BLock s1ze AT L(3) = 1024 ByTES

% READ REQUESTS = 70%

% WRITE REQUESTS = 30%

CONDITIONAL PROB. OF FINDING DATA IN A LEVEL
GIVEN THAT THE DATA IS NOT IN ANY UPPER LEVEL = P

Figure 6.2 1Input Parameters to PlL3
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gueue of the storage level controller at level 3). When
KRP3 is free, TXN is serviced and put into KOQ3. When LBUS3
is available, TXN is sent to RIQ3 (the input message gueue
of the memory request processor at level 3) where it waits
for RRP3, the request processor. RRP3 then searches its
directory to obtain the real address for TXN. TXN is put
into ROQ3 to be sent to a storage device, say, D31l. When
LBUS3 is free, TXN is sent to DIQ31 (the input message gueue
for device D31). TXN waits in DIQ31 fcr DRP31 to be free
and also for a slot in DYQ3l (the output data gueue for D21)
to hold the retrieved data. When both conditions are met,
DRP31 retrieves the data and puts it in DYQ31l where it waits
for the LBUS3 ©n be free and for there to be a slot in KXQ3
(the input data queue of the storage level controller at
level 3) to hold the data. When both conditions are met,
the data is sent to KXQ3. Then the data is put in KY(Q3
waiting for the GBUS and for all the upper storage levels tro

be free to receive the broadcast...

6.2.2 The P1L3 Model Parameters

The model is highly parametized. Parameters for the PIL3
model are chosen to reflect current (1979) processor and
storage technology. A key parameter that characterizes the

references made to DSH-11 is the locality level. The local-

ity level (P) is the condition probability that a reference
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is satisfied at a given storage level given that the
reference is not satisfied in all upper storage levels.

Figure 6.2 summarizes all the model parameters.

6.3 SIMULATION RESULTS OF THE PlL3 MODEL

Three different locality levels are used for the PIL3
model. The simulated time is one milisecond (one million
time units in the model). Some unusual phenomena are uncov-
ered during the analysis of these preliminary results. This
leads to more extensive simulation studies to obtain more
data points. A plausible theory is then proposed to explain
these phenomena. Detail traces of the model is used to ver-

ify the theory. The findings are discussed in the following

subsections.

6.3.1 Preliminary Studies Using the P1lL3 Model

A series of three simulation studies are carried out with
three locality levels : high (P=.85), medium (P=.5), and iow
(P=.2). Throughputs, mean response times and utilizations

of the facilities are summarized in Figure 6.3.

Throughput in millions transactions per second are plot-
ted against the locality levels in Figure 6.4. From Figure
6.4, it seems that a throughput of .6 million transactions

per second is the maximum that one could obtain with this

configuration.
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Figure 6.6 Utilization Vs. Locality Level

(P1L3 Preliminary Results)
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Mean response time per transaction are plotted against
locality levels in Figure 6.5. This shows that a mean res-
ponse time of 5 micro seconds is obtainable at high locality
levels. Furthermore, as the locality level increases, there
will be more references being satisfied in the high perfor-

mance storage levels, thus the mean response time will

decrease.

Utilizations of the various facilities are plotted
against locality levels in Figure 6.6. It can be seen from
these plots that at low locality levels, the slowest storage
level becomes a system bottleneck. At higher locality lev-
els, bus utilizations drop because most references are
satisfied by the data cache, DRP11l, making the use of the

buses unnecessary except for store-behind operations.

At high locality levels, one would also expect the utili-
zation of the data cache, DRP1ll, to ke very high. However,
this is not supported by the data. 1In fact, even though the
throughput at the P=.85 locality level is larger than that .

at the P=.50 locality level, the DRP11l utilization actually

drops.

Examine the data more closely, another puzzle is discov-

ered. If one multiply throughput by the mean response time

divided by the maximum dégree of multiprogramming, one
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should obtain a number closed to the simulated time
(1,000,000). For the P=.20 case, this number comes out to
be 915657. For the P=.50 case, this number comes out to be
858277. But for the P=.85 case, this number is only 180827.
It is suspected that either the data is wrong or there are

some unusual blocking phenomena in the system in the P=.85

case.

6.3.2 More Extensive Studies Usihg the PlL3 Model

Since it is not difficult to obtain more data points by
varying the locality levels, a second series of simulations
is carried out. The results of these simulations are pre-

sented in Figure 6.7.

Throughputs are plo;ted against locality levels in Figure
6.8. This shows that as the locality level increases,
throughput also increases. A throughput of closed to one
million transactions per second is obtainable at about P=.80
locality level. However, after the P=.80 point, throughput
drops sharply as the locality level increases. This

requires some explaination.

In Figure 6;9, mean responsevtime is plotted against
locality lévels. This shows that as locality level
increases, mean response time decreases. This plot does not
seem to provide insight as to why throughput decrease shar—
ply after the P=.80 locality level.
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6.3.3 A Plausible Theory of Operation

One theory to explain the sharp drop in throughput at
very high locality levels is that at such high locality lev-
els, the rate of write operations being generated is very
high. Since a write will not proceed until DRP1ll is free
(to write the data), and DRPll's YQ has a buffer slot (for
holding the store-behind operation), the write operation may
hold up other transactions in their use of DRPll. Since the
utilization of DRP11 is very low, the blocking must be due
to the YQ being full often. Many store-behind transactions
closed togther will tend to make the YQ full often. These
blocking transactions will tend to hold up other transac-

tions hence resulting in low system throughput.

If the YQ is full often, it must be because transactions
in it cannot move on to the next facility. This will happen
if the bus LBUS1 is busy or the XQ buffer of K1 is full, or
both. From the data, we see that all the bus utilizations
are very low, hence the blocking must be due to the fact
that the XQ buffer of K1 is full often. Proceeding in this
manner, one could argue that at high locality levels, the
rate of store-behind operations is very high, which results
in store-behind transactions being backed up from a storage
device. This backing up of store-behind operations causes

long queueing delays for other transactions as well, result-
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ing in low system throughput. This blocking situaticn also
prevents DRP11l to be kept busy as evident from its low uti-

lization.

We can now explain why the utilization of DRPll &t the
P=,85 locality level is lower than that at the P=.50 local-
ity level. At P=.85, due to the store-behind transactions
being backed up, very few acknowledgements to the store-be-
hind transactions ever return to DRP1ll. 1In the P=.,50 case,
most acknowledgements to store-behind transactions return to
DRP11. Thus, even though the number of reads and writes
handled by DRPll in the P=.50 case is lower than that han-
dled by the DRP1ll in the P=.85 case, there are many more
acknowledgements serviced by DRP11l in the P=.58 case, hence

the corresponding utilization is higher.

There are no backing up of store-behind transactions in
the low locality level cases because the rate at which they
are generated is low. Since the store-behind transactions
are separated from one another there is enough time for a

device to service a previous store-behind transaction before

another one comes along.
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6.3.4 Verification of Theory with Data

The above theory seems to explain the phenomena well and
agrees well with the observed data. To verify the theory,
detail model traces are examined to determine the status of

the system at the time of simulation termination.

It is found that for low locality levels, there is indeed
no backing up of the store-behind transactions. There is a
backlog of requests to be processed by the lowest storage
level devices due to their large service times. For high
locality levels, starting from P=.85, store-behind transac-
tions begin to be backed up, from storage level 2. However,
the back up is due to a system deadlock developed at storage
level 2, and not due to the slower speeds of the devices, as

hypothesized above.

The deadlock at storage level 2 is illustrated in Figure
6.10. All the XQs and YQs are full. A store-behind tran-
saction in DYQ21 is waiting for LBUS2 and a KXQ2 buffer
slot. LBUS2 is free but KXQ2 buffer is full. KXQ2 will not
be cleared because KYQ2 is full. KYQ2 cannot be cleared
because both buffer of R2 are full. These buffers cannot be
cleared because DXQ21 and DYQ21 are full. DYQ21l cannot be
cleared because it is waiting for KXQ2 to be cleared. Thus
a deadlock is developed. This deadlock causes the XQs and

YQs in the upper storage levels to be gradually filled as
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more store-behind transactions are generated. When YQ at
DRP11 is full, the system will be held up when the next

write transaction arrives.

It is interesting to note that this deadlock only occurs
at very high locality levels. This is beacuse at high
locality levels, the rate of store-behind transactions gen-
erated is very high. Comparing the P=.95 case and the P=.50
case, even though the éame number of store-behind transac-
tions are generated to lower storage levels in both cases,
the rate at which they are generated in the P=.95 case is 30
times that of the P=.50 case. Store-behind transactions
sparsely separated from one another give chance for the dev-
ice to service them, therefore avoiding a deadlock. This
deadlock situation is not too different from a traffic jam

at a Boston rotary during rush hour.

In retrospect, the causes of the deadlock are due to the
rate of store-behind transactions and the use of one single
buffer for data coming into a storage level as well as for
data going out of a storage level. The potential for dead-
lock of using a common buffer was not discovered during the
design cf DSH-11 due to the complex interactions of the var-
ious protocols for store-behind, read-through, and overflow

handling operations.
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6.4 DEADLOCK-FREE BUFFER MANAGEMENT SCHEMES

In the DSH-11 simulation model, there are five types of

transactions supporting the read-through and store-behind

operations. These transactions are : read-through-request
(RR), read-through-result (RT), overflow (OV), store-behind-
request (SB), and acknowledgement (AK). Each typé of tran-
saction is handled differently. Furthermore, the same type
of transactidn is handled differently depending on whether
the transaction is going into or out of a storage level. A
potential deadlock exists when different transactions share
the same zuffer and their paths form a closed loop. We have
seen an example of such deadlock in the P1L3 model where SB
transactions coming into a storage level and SB transactions
going out of a storage level form a closed loop. Other
potential deadlocks exists in the PlL3 model. This section

is focused on developing deadlock-free buffer management

algorithms.

Potential deadlocks exist beacause different transaction
types share the same buffer and that the First Come First
Serve (FCFS) strategy is used for allécating buffer slots.

A simple strategy to avoid deadlock is not to allow buffer
sharing among different transaction types. No path crossing
can occur thus no loop can exist. Although this strategy is

easy to implement, it does not make optimal use of the buf-
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fer space. Another strategy to avoid deadlock is to allow
buffer sharing, but to make use of more sophisticated buffer

allocation algorithms. One such algorithm is discussed

below.

6.4.1 A Deadlock-free Buffer Allocation Algorithm

Two types of buffers are used at each storage level, the
IN buffers and the OUT buffers. Transactions coming into
the storage level use the IN buffers and transactions going
out of the storage level use the OUT buffers. Transaction
coming into a storage level from a higher storage level are
the RR, SB, and OV transactions. Transactions coming into a
storage level from a lower storage level are the RT and AK
transactions. Similarly, transactions going out of a sto-
rage level to the next lower storage level are the RR, SB,
and OV transactions. Transactions going out of a storage
level to a higher storage level are the RT and AK transac-
tions. Each component in a storage level has an IN buffer

and an OUT buffer. This is illustrated in Figure 6.11.

The general idea of this buffer allocation scheme is not
to allow the buffers to be completely filled. When the buf-
fers are filled up to a certain level, only those transac-
tions that can be processed to completion and resulting in

freeing up buffer slots are accepted. The precise algorithm

is as follows.

- 211 -



(SB,0V,RR)

storage device

(RR,SB)

controller
> IN
ouT

(AK,RT)
A
storage level memory request
controller processor
Ly
IN IN
¥ >
(SB,0V,RR)
l ouT - OUT
e
(RR,SB,0V)
N l\
(SB,AK,RT)
\
(SB,0V,RR)
(AK,RT)

Figure 6.11 A Deadlock-free Buffer Scheme

-212-



1. The size of OUT is always greater than the size of

IN.

2. Always maintain at least one empty slot in an IN

buffer.

3. Buffer-full (BF) condition is raised when the num-
ber of transactions in IN plus the number of tran-

sactions in OUT is equal to the size of OUT.

4. If BF then do not accept any RR or SB into a sto-
rage level. Only process OV, RT, and AK transac-

tions.

We now provide an informal argument to show that the
scheme described above is indeed deadlock-free. First we
have to show that the RR and SB transactions are not the
only transactions in the system when all the buffer pairs
have their BF conditions raised. Then we héve to show that
processing each of the OV, AK and RT transactions will free

up some buffer slots thus lowering some BF conditions.

Suppose that all the BF conditions are raised. Examine
the OUT buffers of the lowest storage level. Since the size
of OUT is greater than that of IN, BF implieé that there is
at least one transaction in OUT. This transaction must be
going out of the storage level to a higher storage level,

hence cannot be a RR or a SB transaction.
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Consider a RT transaction at level i+l (Figure 6.12).
(1) All upper storage level, level i and level i-1 can
receive this transaction since there is always one empty
slot in each IN buffer. The departure of the RT transaction
creates an empty slot in the OUT buffer of the sender (level
i+l). (2) Level i can now send a transaction to level i+l
which creates a slot in level i. The RT transaction can now
be serviced in level i. (3) Handling the RT transaction may
create an OV transaction in lével i. Luckily there is a
buffer slot for the OV transaction in level i. (4) The OV
tfansaction can be sent to level i+l because there is always
a free slot in the IN buffer at level i+l. (5) The OV tran-
saction will be serviced to completion in level i+l. Hence,
there is a free slot in level i as result of these opera-
tions. (6) Now a transaction from level i-1l can be sent to
level i. (7) The RT transaction can be handled in level i-1
which may create an OV transaction. (8) The OV transaction
can be sent to level i. (9) Finally, the OV trénsaction is
handled and terminated in level i. Thus, there is a free
buffer slot created in level i-1 as a result of processing

the RT transaction.

Handling an AK transaction may generate another AK to be
sent to the immediate upper storage level. The same argu-

ment for the RT transaction can be applied to show that a
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buffer slot will be freed up as a result of handling the AK

transaction.

It is clear from the above discussion that this buffer
management scheme requires more complex protocols among sto-
rage levels and a complex priority scheme for the transac-
tions. A key advantage of this scheme is that it makes
efficient use of buffer space since different transactions

with varying buffer space requirements can share a common

buffer pool.

6.5 ANOTHER SIMULATION MODEL OF DSH-11 : THE P5L4 MODEL

A GPSS/360 simulation model of another DSH-11 configura-
tion with five processors and four storage levels is devel-
oped. This model is referred to as the P5L4 model. This
model revised the basic logic used in the P1lL3 model to use
a deadlock-free buffer management scheme and to accomodate
four additional processors and an additional.storage.level.
The simple scheme of using separate buffers for different

transactions is used for the P5L4 model.

The first series of studies provides further insights to
the operation of the store-behind algorithms. It also shows
that level 4 storage may be too slow and its local bus may
not have engough bandwidth to support the amount of data

transfer activities at that level.
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The second series of studies is aimed at obtaining a
well-balanced system. The degree of parallelism in the
lower storage levels are increased and the demand on the
buses is lowered by reducing the block sizes. A well-ba-
lanced system is obtained which is then used as the basic
system to study the effect of using projected 1985 technolo-
gies for DSH-11. Results of these studies and their analy-
sis are présented in the following sections, after a brief

introduction to the P5L4 model and its parameters.

6.5.1 The P5L4 Model and its Parameters

The structure of the P5L4 model is very similar to that
of the PlL3 model. However, the basic componen£ of the
model is quite different. The basic component of the P5L4
model is a facility and a number of data buffers, one for
each type of transaction comming into the storage level and
going out of the storage level. Figure 6.13(a) illustrates
the DSH-11 configuration that P5L4 is modelling, and Figure
6.13(b) illustrates the basic component of the model. A
flow chart of the P5L4 model logic is presented in Appendic

B. A listing of the P5L4 model is presented in Appendix C.

The parameters used in the P5L4 model are the same as
those used in the P1L3 model with the following exceptions.

(1) There are five processors, each with 1€ degrees of mul-

- 217 -



218-

Figure 6.13(a)

request
processo

Figure 6.13(b)

IN

ouT

-

JUNEE——

data buffers

D11 D12 D13 D14 D15
Lbus]1
—— K]
o Lbus?2
|
r .
K2 R2 D21 D22
Lbus3
K3 j R3 D31 D3?
T Lbus4
K4 i R4 D41 D42
Gbus

The P5L4 Configuration

IN

l«—— OUT

=

A Module in PS5L4



DEGREE OF MULTIPROGRAMING OF A cpu =10

SIZES OF DATA BUFFERS = 10

DIRECTORY SEARCH TIME = 200 NANOSEC,

READ/WRITE TIME OF A L(1) sToraGE DEvice = 100 NANOSEC.
READ/WRITE TIME OF A L(2) DEvice = 1000 NANOSEC.

READ/WRITE TIME OF A L(3) DEVICE = 10000 NANoSEC,
BUS SPEED = 10 MHZ

BUS WIDTH = 8 BYTES

SIZE OF A TRANSACTION WITHOUT DATA = 8 BYTES
BLOCK S1ZE AT L(1) = 8 ByTES

BLOCK SIZE AT L(2 = 128 ByTES

BLock s1ze AT L(3) = 1024 BYTES

% READ REQUESTS = 70

7 WRITE REQUESTS = 30

CONDITIONAL PRCB. OF FINDING DATA IN A LEVEL
GIVEN THAT THE DATA IS NOT IN ANY UPPER LEVEL = P

Figure 6.14 Input Parameters to the P5L4 Model
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tiprogramming (as opposed to 20 in the P1L3 model). (2)
There is a new storage level with 2 storage devices having
access times 10 times higher than those of the devices in
level 3. The parameters used in the P5L4 model are summar-

ized in Figure 6.14.

6.5.2 Preliminary Studies Using the P5L4 Model

A preliminary study using thé P5L4 model is carried out
using several different locality levels and using the param-
eters listed in Figure 6.14. The simulated time is one mil-
lisecond (one million model time units). Results from these
studies are summarized in Figure 6.15. Figure 6.15(a) is a
table listing the throughput, mean response time, total
transaction wait time, total transaction execution time, and
'system utilization'. System utilization is defined as the
ratio of the product of the total number of transactions
completed and the mean response time to the product of the
simulated time and the maximum number of active requests
pending at all the processors. It indicates the percentage

time that DSH-11 is busy.

Figure 6.15(b) tabulates the utilizations of the buses
and the utilizations of typical storage devices at each sto-
rage level. The utilizations of all the memory request pro-

cessors and all the the storage level controllers are very
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Pigure 6,15 Preliminary Results of P5L4 Model
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low. Figure 6.15(b) chows that the devices and the local
bus at level 4 are satuarated for all locality levels. The
local bus at level 3 is saturated but the devices at level 3
are only 59 percent utilized. Saturation of level 4 at low
locality ievels is due to the large number of read-through
requests that nas to be handled at that level. For example,
at a locality level of .5, one-fouth of all r=ad requests
will be serviced by level 4. This creates a heavy burden on
the level 4 devices and on its bus. At high locality lev-
els, however, the number of read-through requests directed
to level 4 is rather small. For example, at a locality
level of .9, only .8 percent ¢of all read requests are ser-
viced by level i. The saturation of level 4 at high local~
ity levels is due to the store-bebind reqguests. At high
locality levels, the number of write requests are much
higher, thus there is a hignh demand on ievel 4 to service
the corresponding store-bshind requests. Tt seems that
level 3 storage devices have the capacity to handle the
read-through and store-behind requests at all locality lev-
els. However, the local bus at level 3 is saturated at all
locality levels. The bus saturation at level 3 is possibly
due to the store-behind requests. We shall discuss ways to

eliminate these performance bottlenecks in a later section.
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Throughput data presented in Figure 6.15(a) is plotted as
a graph in Figure 6.16. Figure 6.16 shows that throughput
rises sharply starting from the .5 locality level, then its
follows a much slower rate of increase after the .7 locality
level. At a low locality level, throughput is low since a
large‘proportion of the read requests has to go to the
slower storage devices. As the locality level increases, a
large proportion of requests can be handled by the higher
storage levels. The higher storage levels are not heavily
utilized, thus they can complete the requests quickly. The
faster transactions can be completed, the faster new tran-
sactions can arrive since the model is a closed one. This
explains the sharp increase in throughput between .5 and .7

locality levels.

When the locality level is high, fhe rate of store-behind
transactions coming into the model becomes high.‘ Since
there is a fixed proportion of reads and writes in the
request stream, the throughput at high locality levels
becomes limited by how fast the store-behind requests can be
serviced. Thus, at high locality levels, increasing the

locality level further will not produce a dramatic increase

in throughput.

The plot of mean response time in Figure 6.17 provides

further insights to the store-behind operations. Figure
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6.17 shows that thete is a discentinuity in the mean
response time curve hetween .6 and .7 locality levels. The
discontinuity may be explained as follows. As tie locality
level increases, the rate of store-behind transactions com-
ing into the model also increases. Read operations become a
less dominart factor of system performance. There is a
pipeline of buffer slots for store-benind transactions. A
write reguest is completed as soon as it has completed &
write to its data cache and has riaced a store-behind tran-
saction in the store-behind pipeline. The store-behind
transaction flows along the pipeline until it is serviced

and terminated by a levzl 4 storage dJdevice., Tf a write

request capcot find a silct in the store-behind pipeline, it

has o waibt. At hiul Iocality levelus, the store-behind
pipeline is full, hence, write operations tend to incurz a
larger wait time waiting €for pipeline slots. It seems that
the store?behind pipeline is full after the .7 locality
level, causing long wait times by transactions, hence larger
mean response times for all locality levels higher than .7.
The store-behind pipeline is rot full for all locality lev-
els below .7. Thus transactions have smaller mean response

time in these cases. This expains the difference in behav-

ior of the two mean response time curves.
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The data seéms to support this theory. Outputs from the
simulation runs shows that the pipeline is full for all
locality levels greater than and equal to .7. The total
transaction time column in Figure 6.15(a) shows that there
is a dramatic increase in the transaction wait time for all
cases with locality level above .7. The figure also shows
that the transaction wait time is a dominant portion of the
total transaction time. Since.mean response time is the
ratio of totai transaction time to total number of completed
transactions, the more than doubling of the wait time going
from .6 to .7 locality level is the key factor in the sudden
increase in mean response time. The sudden increase in wait
time is due to the fact that the pipeline is just filled up,
new transactions begin_to experience prolonged delays.

These preliminary studies have provided valuable insights to
the dynamics of the store-behind operation. We now have
gained enough understanding of the model to tune it for bet-

ter per formance.

6.5.3 Tuning the P5L4 Model

Our‘quective in this next series of studies is to try to
obtain a well—balanced system. From the preliminary stu-
dies, we know that to reduce mean response time we have to
increase the efficiency of the store-behind pipeline. One

approach to increase the efficiency of the pipeline is to



increase the paralielism c¢f the lower storage levels, so
that the service times of the stages of the pipeline are.
better balanced. The preliminary studies also reveal that

our initial choice of block sizes may not be appropriate for

the system.

The approach that is taken to obtain a well-balanced sys-
tem is as follows. The locality level is fixed at .9. Then
the degree of parallelism in level 3 is increased by a fac-
tor of 5 and that of level 4 is increased by a factor of 10.
This is accomplished by decreasing the effective service
times of the devices at these levels appropriately.

Finally, th+ model is run for several choices of block sizes
for the storage levels. The simulated time for these runs
are much longer than in the preliminary studies to ensure
that steady state behavior is observed. The results

obtained are summarized in Figure 6.18.

The first study uses the same block sizes as those used
in the preliminary studies. The results of this study are
summarized in column one which clearly shows that level 4 is
the bottleneck causing the very low throughput and high mean
response time. Note that the devices are not saturated.
This indicates that the block sizes are too large thus tie-

ing up the bus at level 4 during data transfer.
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In the nex™ study, the size of data transfer between
level 2 and level 3 and that between level 3 and level 4 are
reduced by one half. The results of this study are summar-
ized in column 2. The bus at level 4 is still a bottleneck.
There is significant improvement in the utilizations of

level 4 storage devices.

Next, the size of data transfer between level 3 and level
4 is haived. This produces a fairly well-balanced system.
The results are summarized in column 3. A throughput of .7
million operations per second with mean . response time of 60
microseccnds is obtained. The utilizations across storage

levels are weli-balanced comparatively.

6.5.4 Comparing the Performance of DSH-11 using 1979
and 1985 Technologies

The well—balanbed system obtained from the previous stu-
dies will be used as a basis for comparing the performance
of DSH-11 under 1979 and 1985 technology assumptions. The
parameters used in the 1979 case are exactly those used in
the well-balanced system of the previous studies. For the
1985 case, we will use a bus speed that is 5 times faster
than that used in the 1979 case. 1In general, the speeds of
the storage devices in the 1985 case will be faster. We
estimate that the level 1 storage devices will be twice as

fast in 1985 as in 1979. All other devices are estimated to
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be 10 times faster ih 1985 than in 1979. Lastly, we expect
1985 to produce better associative processors for directory
searching thus the directory search time will be reduced gy
one half in 1985. These estimates will be incorproated in

the parameters for the 1985 case.

The model using 1979 technology assumptions is run for 4
different request streams with different proportions of
reads and writes. The model using 1985 technology assump-
tions is then run with the same 4 different request streams.
The locaiity level is fixed at .9 in both cases. The

results are summarized in Figure 6.19.

The throughputs for the two cases are plotted on the same
graph in Figure 6.20. lIn general, for both cases, through-
put increases.as the proportion of read requests increases.
It can be inferred from the results that the throughput of
DSH-11 using 1985 technology is between 5 to 10 times better
than using 1979 technology. For a reqﬁest stream with 70
percent read requests and 30 percent write requests, DSH-11
using 1979 technology can support a thfoughput of .7 million
requests per secpnd with a mean response time of 60 micfose—
conds. For the same mix‘of requests, DSH-11] using 1985
technology can support a throughput of 4 million requests

per second with a mean response time of 10 microseconds.
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6.6 SUMMARY

Two simulation models cf the DSH~1l storace hierarchy
system are developed and used to understand the performance
characteristics of DSH-11 and its algorithms. The first
model is developed for a DSH-11 configurztion with one pro-
cessor and three storzage levels. Results from this model
uncovers an unsuspected deadiock potential in the DSH-11
buffer management scheme. This leads tc the development of
new buffer management schemes for DSH-11. A second mcdel is
developed for a DSH-11 configuration with five processors
and four storage levels. This model also makes use of a
deadlock~free buffer management scheme. Results from this
model provides much insights to the performance implications
of the read-through and store-ktshind algorithms. After suf-
ficient understanding of the model is obtained, the model is
tuned for better performance. The resulting system is then
used as a basis for comparing the performance implication of

using different technology for DSH-11.

Results from these simulation studies not only provide
valuable insights to the important dynamic behavior of
store-behind and read-through algorithms, they also provide
assurance that the DSH-11 is capable of supporting the

memory requirements of the INFOPLEX functional hierarchy.
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Chapter VII

DISCUSSIONS AND CONCLUSIONS

7.1 INTRODUCTION

Database management is a major component of computer
usage. Adapting conventional computer architectures to sup-
port database management functions has several disadvan-
tages. Two major disadvantages have been recognized for
some time. These are : (1) processor power limitation of
the conventional computer, and (2) the 'access gap' that
exists between main memory and secondary storage devices of

conventional computers.

Various approaches have been proposed to develop special-
ized architectures for database management. These
approaches have been discussed in Chapter 1. One of these
approaches is the INFOPLEX data base computer effort. INFO-
PLEX eliminates the processor power limitation by using mul-
tiple specialized functional processors and makes use of a
generalized storage hierarchy specifically designed for man-
aging very large databhases. A major obstacle to realize
effective storage hierarchy systems has been the lack of

understanding of these systems and their algorithms. Previ-
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ous studies of storage hierarchy systems have been focused
on systems with two or th{ee storage levels, and usually for
program storage. This thesis is focused on the study of
generalized storage hierarchy systems for data storage,
referred to as data storage hierarchy svstems. Theories and
models of data storage hierérchy systems are develioped.
Formal definitions of data management algorithms for data
storage hierarchy systems are defined. Important properties
of data storage hierarchy systems have been analyzed in
detail to provide valuable insight for design of practical
data storage hierarchy systems. Designs for the INFOPLEX
data storage hierarchy are developed and protocols for real-
izing the read and write operations are specified. Finally,
simulation modelz fcor these designs are developed to assess
the feasibility of these designs for supporting the very
high transaction rates of INFOPLEX and to obtain better
understanding of the read-through and store-behind opera-=

tions from a practical point of view.

7.2 SUMMARY OF THESIS

Chapter 1 of the thesis provides a framework for under-
standing the rationale behind various approaches to develop
specialized machines for data management. Major contribu-

tions of this thesis are also listed.
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The background and motivation for this research is the
INFOPLEX data base computer project. Concepts of the INFO-
PLEX data base computer are presented in Chapter 2. An
example functional hierarchy and an example storage hier-

archy for INFOPLEX are used to illustrate some of these con-

cepts.

A preliminary design of the INFOPLEX data storage hier-
archy is proposed in Chapter 3. Design objectives and the
structure of the system are presented. Further design

issues that need to be resolved are also identified.

Formal modelling and analysis of data storage hierarchy
systems are presentéd in Chapter 4. It contains formal
proofs of the multi-level inclusion (MLI), the multi-level
overflow inclusion (MLOI), and multi-level paging anomaly

(MLPA) properties of data storage hierarchy systems.

The preliminary design of the INFOPLEX data storage hier-
archy system presented in Cha?ter 2 is'simplified'in Chapter
5. This simplified design is then used to develop protocols
for supporting the read and write operations. Specifica-

tions for these protocols are presented in Chapter 5.

A simulation model of the INFOPLEX data storage hierarchy
system with one functional processor and three storage lev-

els is developed in Chapter 6. Results from this simulation

- 237 -



model are analyzed. Insights from these analysis lead to
some design changes. Another simulation model of the INFO-
PLEX data storage hierarchy is then developed. This model
incorporates five functional processors and four storage
levels. Results from this model are analyzed and reveal
further interesting properties of the design and of the data
management algorithms. The impacts of using projected 1985

technology are also assessed.

7.3 DIRECTIONS FOR FURTHER RESEARCH

This thesis has provided a theoretic framework for formal
analysis of data storage hierarchy systems. Using this
framework, several important properties of data storage
hierarchy systems that have performance and reliability
implicatidns are studied in detail. This work also opens up
many areas for further investigation. Do the properties of
data storage hierarchy systems proved in this thesis hold
for systems using any stack algorithm (Mattson et. al.,
1976)? What are the effects of introducing the two-level
store-behind algorithm into the system? Are the conditions
for avoiding the multi-level paging anomaly (MLPA) also
necessary conditions, i.e., what are the causes of MLPA?
These are interesting and important questions. The formal
basis developed in this thesis will be a major steping stone

toward resolving these open guestions.
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The preliminary design of the INFOPLEX data storage
hierarchy can be used to develop algorithms that improve the
efficiency and reliability of the data storage hierarchy.
The automatic data repair algorithms introduced in Chapter 3
are particularly interesting and promising. A number of
other design issues are discussed but left as open issues.
For example, the multi-cache consistency problem by itself

is a subject of great importance but still quite lacking of

theoretic basis for analysis.

The simulation results reveal several important proper-
ties of the design and of the algorithms that are quite
unexpected. The deadlock potential in the initial design
can be corrected quite easily. The fact that the store-be-
hind operation can be a system bottleneck is not anticipated
before. It has been érgued in the past that store-behind
operations take place during system slack periods thus do
not adversly impact system performance. A number of alter-
native schemes can be developed to improve the efficiency of
the store-behind operation. May be we can separate the read
only data from the réad/write data and keep the read/write
data higher up in the data storage hierarchy system. This
would reduce the store-behind traffic to lower storage lev-

els. The implications of this type of data management stra-

tegy remain uncharted.
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Some of these issues are currently being addressed as

part of the INFOPLEX research effort (Abraham, 1979).
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//LANY JOU LAM, HPROFILE=*RETURN',

// PROFILE='HIGH',

// TIME=2

//7¥PASSHCRD

//GPBSS PRCC

//C  EXEC PGK=DAGO1,TINE=2

//STEPLIB DD DSN=ECTLUCK.LIBRARY.GPSS.LOAD,DISP=SHR

//DOUTPUT DD SYSOUT=PHUFILE=RETURN,DCB=BLKSIZE=931

//DINTERO DD UNIT=SCEATCH,SPACE={(CYL, (1, 1)) ,DCB=BLKSIZE=1880
//DSYETAB DD UNIT=SCRATCH,SPACE=(CYL, {1,1)),DCB=BLKSIZE=7112
//DREPTGEN DD UNIT=SCRATCH, SPACE=(CYL, (1,1)),DCB=BLKSIZE=8C0
//DINTRGRK DD UNIT=SCRATCH,SPACE=(CYL, (1,1)),DCB=BLKSIZE=2680
// PEND :

//STEP1 EXEC GPSS, PARM=C

//DINPUT1 DD *

WE R A R bk g o ek ook ok kR R kR Kk kol o o o i ok ok e ok ok ok ok O Kok ok sk ok okok Rk kK

* *
* TRANSACTION PARAMETER USAGE *
* *
* P1 CPU IDENTIFIER €
* P2 ARRIVAL TIME *
* P3 COMPLETION TIME *
* Py TOTAL EXECUTICN TIME *
* PS TOTAL ELAPSED TIME *
* Pé6 TOTAL WAIT TIME *
¥ P7 SERVICE TIME * -
* P11 DUMMY *
& ]
WRR K Rk Rk Kok ok ok ko ok ROk Rk R Rkt R Rk kR Rk F Rk kR kR k kR ok kR Rk R Rk
*

NTXN EQU 01,Xx NUMBER OF TXNS PROCESSED

SUMX EQU 02,X EXECUTICN TIME OF ALL TXNS

SaMQ LQu 03,X QUEUE TIME OF ALL TXNS

SUMW EQU 04,Xx ELAPSED TIME OF ALL TXNS
*

MAXINP EQU 05,X DEGREE OF CPU MULTIPLROGRAMMING

NREAD EQU 06,X PARTS IN THOUSAND OF READ TXNS

NWRIT EQU 07,X PARTS IN THOUSAND OF HWRITE TXNS

*

PINY EQU 08,X PROB OF FINDING READ DATA IN L(1)

PIN2 EQU 09,X PROB OF FINDING READ DATA IN L({2)

PIN3 EQU 10 ,X PROB OF FINDING READ DATA IN L(3)
*

POV1 EQU 11,X PROB OF OVERFLO¥ FROM L (1)

POV2 EQU 12,X PRCB OF OVERFLOW FEROM L (2)

POV3 EQU 13,X PROB OF OVERFLOR FROM L (3)
*

kR Rokk ok kR ok Rk kR Rk R Rk ARk kR ok Rk ok Rk Rk kR kAR kR KRRk Rk R R Rk
* MAXI¥NUM DATA QUEUE LENGTHS *

ok ORI KRR R KRR ok Rk R Rk kR kR R Rk kR Rk kR kKR kR kR kR kR kR Rk
*

DxM11 EQU 14,
DYN11 EQU 15,X
DXMV2 EQU 16,X
DYN12 EQU 17.,X
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DXM13 EQU 18,.X
DY M13 EQU 19,X
*
DXM21 EQU , 20,X
DY®21 EQU 21,X
DXM22 EQU 22,X
DI N22 EQU 23,X
‘ N
DXM31 EQU 24,X
DYN31 EQU 25,X
DXM32 EQU 26,X
"DYK32 EQU © 27.X%
* .
KX41 EQU 28,X
KYN1 EQU 29,X
x
KXM2 EQU 30,X
KYN2 “EQU 31,X
* . .
KXM3 EQU 32,
KYM3 EQU 33,X
*
RXM2 EQU 34,%
RYN2 EQU ) 35,X
*
RXM3 EQU 36,X
RYM3 EQU 37.X
*® .
REEER KRR R R R R Rk kR ko KRR TR KRR RR R Rk Rk Rk Rk kR kR kR R kR
. CURBENT LENGTHS OF DATA QUEUES *

HEERE RO R R R KRR N R R RE AR RN RN RRR AR kR Rk G Rk Rk bk doRkR R Rk R
*

DXL11 EQU 38,X
DYL11 EQU 39,X
DXL12 EQU 40,X
DYL12 EQU 41,x
DXL113 EQU 42,%
DYL13 EQU 43,%
*
DXL21 EQU 44,
DYL21 EQU 45,x
DXL22 EQU 46 ,X
DYL22 EQT 47,X
*
DXL31 EQU 48,X
DYL31 EQU 49,X
DXL32 EQU 50,X
DYL32 EQU 51,X
3
KXL1 EQU 52,X
KYL1 EQU 53,X
= .
KXL2 EQU - 84,X
KYL2 EQU 55,X
® .
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KXL3 EQU 56,X

KIL3 EQU 57,X

RXL2 EQU 58,X

RYL2 EQU 59,X
L

RXL3 EQU 60,X

KYL3 EQU 61,X
*
e e kK e o e Kk kol iR o ol o 8K ok s e okl ok oK ke ke Rk ROK Rk Rk ok ok R okok ko ROk K Kk Rk ok K
* SERVICE TIMES OF DEVICES, BUSES, PROCESSORS *
e e e e e ek kK R R NOR ok Kk Ao RO o ok ok ok 30k 3 ke ok Xk ok ok ok ko ko ROk SRk Rk ioOR ok ko R ok
DEX11 EQU 62,X L(1) STORAGE SERVICE TINE

DEX12 EQU 63,X

DEX 13 EQU 64,X

DEX21 EQU 65,X L(2) STORAGE SERVICE TIMES

DEX22 EQU 66,X

DEX31 EQU 67,X L(3) STORAGE SERVICE TIMES

DEX32 EQU 68,X

BEXD1 EQU 69,X BUS SERV TINME L(1)

BEXD2 EQU 70 X BUS SERV. TIHE L (2)

BXD3 EQU 71,X BUS SERV, TIME L (3)

BEXYM EQU 72,X BUS SZRV. TIKE FOR XSG

KEX  EQU 73,X LEVEL CONTROLLER (K) SERVICE TIME
FEX  EQU 74,X MEMORY REQUEST PROCESSOR (R) SERVICE TIME
TIMER EQU 75,X ‘
BN RNk Rk ek kR kR Rk R R KRRk Rk ke kR kR kK%
* *
* VARAIBLE DEFINITIONS *
* *

e kol o ek ok & ok ok ok e K ok ok bl Nk il ok o itk ol s ke ok e kol o e Bk K kR ok Ok Yok Rk ok

MRESP FVARIABLE (X3SUMW/XSNTXN) . MEAN RESPONSE TINME
TXNW VARIABLE p3-p2 TXN ELAPSED TIME
TXNQ VARIABLE pP3-p2-P4 TXN WAIT TIME

TXHX VARIABLE P4

RTOK BVARIABLE (X3KXL1'L'X$KXM1)*(XSKXL2'L'X$SKX¥2) *PNUSGBUS
BYA1 BVAPIABLE (X$DYL11'L'X$DYN11) *FNUSDRP11
BVA2 BVARIABLE (XSKXL1'L'X3KX41)*FNUSLBUS1
BVA3 BVARIABLE (X3DYL21'L*'X$DYN21) *FNUSDRP21
BVA21 BVARIABLE (X3DYL22'L'X$SDYM22) *FPNUSDRP22
BVA4 BVARIABLE (XJSKXL2'L'X$KXM2)*FNUSLBUS2
BVA5 BVARIABLE (XJKYL2'L*X$KYM2)*FNUSKXRP2
BVA6 BVARIABLE (XSKXL1'L'X3KXM1)*FNUSGBUS
BVA7 BVARIABLE (X$DXL11'L'X$DXM11)*FNUSLBUSY
BVAS BVARIABLE (X$DYL31'L'X3DYM31) *FNUSDRP31
BVA22 BVARIABLE (X5DYL32'L'X5DYM32) *FNUSDRP32
BVAY BVARIABLE (X SKXL3'L'X$KXM3)+FNUSLBUS3
BYA10 BVARIABLE (XFKYL3*L'XSKYM3)*FNUSKRP3
BVA11 BVARIABLE (X3RXL2'L'X3SRXHM2)*FNUSLBUS2
BYA12 BVARIABLE (XPRYL2'L'X$KRYM2)*FNUSRRP2
BVA13 BVARIABLE (X$DXL21'LfX3DXM21)*FNUSLBUS2
oVA23 BVARIABLE (X$3DXL22'L'X3DXM22) *FNUSLBUS2
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BVA14 BVARIABLE (X$KYLI'L'XSKYM 1) *FNUSKKPA
BYA15 BVARIABLE (X3KXL2'L®X3KXM2)*FNUSGBUS
BVA16 BVARIABLE (XSKXL3'L'X$KXM3)*FNUSGBUS
BYA17 BVARIABLE (X3RXL3'L*'XSRXM3)*FNUSLBUS3
BYA18 BVARIABLE (XSRYL3'L*X3RYM3)*FNUSRRP3J
BVA19 BVARIABLE (X$DXL31'L*X3DXM31)*FNUSLBUS3
BVA24 BVARIABLE (X$DXL32'L'X$DXM32) *PNUSLBUS3
BVA20 BVARIABLE (XSKYL1'L'X3KYM1)*FNUSKRP1

SEREERRRR kB R RE bRk h g Rk kkoR Rk kR ok kR kR ok ki ok kkk Rk kkRk kb kR Rkk R

L *
* QTABLE DEPINITIONS - DISTRIBUTIGNS OF QUEUE LENGTHS *
% : ' *

222 RS2 RS PRS2 2R RS R A2 22 R RS2 R R 22 R A bl

Rk e o ek ok etk Rk R ok R R ok kokkok ok ok Aok R kok ok gk ko kR oR kR kook R Rk ok

. , *
* PUNCTION DEFINITIONS L]
* »

SERER A CR R Rk ok ko gk gk ok kg ko kR ok Rk kg Rk kR kR kK Rk Ek

WICHW FUNCTION P1,D3
2,WEN11/3,80H12/4 ,WHU13

WICHA FUNCTION P1,D3
20AAAT1/3,AAN12/74,ARA13 .

T e T T R R e e T e P P T

* *
* TABLE DEFINITIONS - DISTRIBUTIONS OF TXN ELAPSED TIME, *
* WAIT TIME ' *
* *

Bkl oo o ok ok o e ok deokok A ok ek ok oK Kook ok koo ekl gokaokok ok kR ok Rk Kok

TXNd TABLE VETXNR, 100,100,100
TXNO TABLE VSTXNQ, 100,100, 100
TXNX TABLE VSTXNX, 100,100,100

EREERE ko ghkk Rk dok ko kok kR kR kR ook kR kR Rk Rk fRkk ko kg kR kR

* *
® JINITIALIZE CONSTANTS ! *
] *®

kR bk kR Rk kbR kR kR gk bk kkk Rk Ak kR kR kR Rk kg

IRITIAL XS NAXMP,20 DEGREE CF MULTIPROGRAMMING OF A CPU
INITIAL XSNREAD,700 % READ TXN

INITIAL X3NWRIT, 300 % WRITE TXN

INITIAL X$PIN1,400 PROB OF PINDING READ DATA IN L (1)
INITIAL X3PIN2,400 PROB OF NCT IN L{(1) AND IN L(2)
INITIAL X$PIN3, 1000 PKCB OF FINDING DATA IN L(3)
INITIAL X3pPcv1,500- PROB OF OVERFLOW PROY L (1)

INITIAL X$pPoOv2,500 PROB OF OVERFLOW PROM L(2)

INITIAL I$pxn11,10 MAXIMUM DATA QUEUE LENGTH
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INITIAL X5DYN11,10

INITIAL X$DXM12,10

INITIAL X5DIM12,10

INITIAL X3DXM13,10

INITIAL X$DY®13,10

INITIAL X35DXM21,10

INITIAL Xx$DYN21, 10

INITIAL X$DX 422,10

INITIAL X$DYN22,10

INITIAL X5DXM31,10

INITIAL X$DYM31,10

INITIAL X3DX 432,10

INITIAL X3DYN32,10°

INITIAL X5KXHM1,10

INITIAL XEKYM1,10

INITIAL XEKXH2,10

INITIAL X$KYN2, 10

INITIAL X$KAM3, 10

INITIAL X$KYN3, 10

INITIAL XERXM2,10

INITIAL X5RYN2, 10

INITIAL X3RX 43,10

INITIAL X5RYN3,10 ,

INITIAL X3DEX 11,100 ACCESS TIME OF D11 IN NANOSEC
INITIAL X$DEX12, 100 ' .
INITIAL X$DEX 13,100 . -
INITIAL XA DEX21, 1000 ACCESS TIME OF D21 IN NANOSEC
INITIAL X3DEX22,1C00

INITIAL XEDEX31, 10000 ACCES5 TIME OF D31 IN NANOSEC
INITIAL X$DEX32,10C00

INITIAL X$BEXD1, 100 BUS SERV., TINE IN NANOSEC
INITIAL X3BEXD2, 1600

INITIAL X$BEXM, 100

INITIAL X$KEX,100 L(I) CONTR. P. SERV. TIME IN NANOS
INITIAL X3REX,200 REQ. P, SERVICE TINE IK NANOS
INITIAL X$TIMER, 100000  SINMULATION TIME

AR ok o g e o o e o ok K ok ok ok ok ok ok o

* * \
* MACRO -UTX *
*® *

IR 2 PRS2SR R R R RIS RS 2L L

UTXx STARTMACRO

SEIZE A
DEPART ¢B
ASSIGN 4+,%C
ASSIGHN 7,&C

ADVANCE P7
RELEASE A
ENDMACEO

SRR be bk a bk KRk Rk Rk kk Rk hd k&
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MACRO - UQTQ

*® % *
® % * ®

S RO OR R fRR IOR ok aOR R ROR R ok Ok ok kR

UQTQ STARTHMACRO

QUEUZ BA
SEIZE ¢B
DEPART ¥A
ASSIGN 4+, 8D
ASSIGN . 7,#D
ADVANCE p7
. RELEASE 'y
QUEUE #C
ENDMACRO
ook o ke ok ok ok ok ke o o o ok ok koK e ok ok X
* *
*# MACRO - UQT *
*

ek ok e oo e A ok kK K OROK K K R OR K Rk K

UQT STARTMACRO

QUEYU= 3
SEIZE #B
DEPART #A
ASSIGN 4+ ,%C
ASSIGN 7.,%C

ADVANCE P7
RELEASE B

ENDMACKO
R R AR RO RO K OB KR
% *
* MACRO - UQDQ *
* *

EEERE R hok kR ko ok Rk ok okkok ok Kok ok ok Rk

UQDO STARTYACRO

QUEDE L
TEST E $G,1
SAVEVALUE €D,;1
SIIZE tE
DEPART A
SAVEVALUE #B,1
ASSIGN 4+ ,8F
ASSIGYN 7.,4F
ADVANCE P7
RELEASE $E
QUEUE #C
ENDMACRO

ke 2 e o o e o i o Kok
* *
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* MACRO - UQD *
* *
B hokok ok ok &k ok ok ok okok Rk koK fokok

uQD STARTMACRO

QUEUE $A
TEST E £G,1
SAVEVALUE ¢D,1
SEIZE ¢E
DEPART #A
SAVEVALUE #B,1
ASSIGN U+, 4F
ASSIGN T, 4F
ADVANCE P7
RELEASE tE
ENDK ACRO

ek o kA o o ok ok g 4 o e o AN ol ol ok ok ok kol ke ok ok K Ok K

*

*  MACRO - PINI

*

FINI STARTHMACRO
HARK 3
SAVEVALUE NTXN+,1

*
*
*
TR AR AR Rk ok kR kAR Aok Rk kR Rk K

SAVEVALUE SUMX+,VETANX
SAVEVALUE SUXC+,VETXNQ
SAVEVALUE SUMW+,VSTXNW
SAYEVALUE MEESP,V$MREISE

TABULATE TXNW
TABULATE TXNQ
TABULATE TXNX

ASSIGN 1,0
ASSIGN 2,0

« ..~ .~ ASSIGN 3,0
ASSIGN 4,0
ASSIGHN 5,0
ASSIGN 6,0
ENDMACRO
SIMULATE

SRRk ok ok kR R Rk Kk Rk ok ok Rk

*

* cpu #1

x

*
*
-
W ko ok Kk ok ok ok K ko sk ko kK ok gk Ok ok ok ok ok

CPU1 GENERATE e e XSNAYNP,, . F

B AR AR O YR KKK ok KKK K
* START FOR CPU1 TXNS *
A AR 0K K OR K R OR HOK KRR KRR K
STAR1 PRIORITY 9
MARK 2
ASSIGN 1.1
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TRANSFER
P T L L LT e
* READ TXN PROM CPU1 *
AR AR OO A AR RO K KR

RRR1 (QUEUE DIQ11
SEILZE DRP11
DEPART DIQ1Y
PRIORITY 0
ASSIGN 4+,XSREX
ASSIGR 7.XSKEX
ADVANCE P7
RELEASE DRP11
TRANSFER «X$PINT,

SR ek ik Rk Rk Rk Rk
* READ TXN FROM CPU1 *
% IS SATISFIED IN L (1} *
Al AR AR O RO R R K
IND11 ASSIGHN 11,0

RERRR R R R Rk R kR R
% READ DATA FROM D11 *

Rkl ot ek kR ok ok ROk koK

uoT MACRO

SRR SRR ERE ke Rk kA GRA KK KRR

* USE PINI MACRO *
* THE TXN IS COMPLETED *
Shdgkdkh b ke kR kR k kR

FINI MACEO

_ TERANSPER ,STAR1
T ey
* RPEAD TXN FROM CPU1 1S *
# NOT SATISFIED IN L(1) *
SEeRk kR Rk Rk Rkok kKK

NIN11 QUEUE DpoQ11

A s ok ke e ke ok ek okl ok SO Kok
* USE UTX TO USE *
* THE LCCAL BUS LBUSH1
SRRk Rk KRk xR kR ok ke Rk
uTX MACRO
TRANSFER sCONR
RERRRREREERRESR KRR E KRR KRR

* WRITE TXN FROM CPU1 *
EERRR SRR R ER R ERRAE KRR EEE

WWW1 QUEUE DIQ1
TEST E BY$BVA1,
"SAVEVALUE DYL11+,1
SEIZE DRP11
PRIORITY 0
DEPART pIQ

D8

«XSNREAD,WHW1,RER1

CONVERSATIONAL MONITOR SYSTEM

READ OR WRITE TXN2
READ TXN
RESET PRIORITY

TIME FOR DIRECTORY SEARCH

KIN11,IND11 IS DATA IN L(1)?

DIQ11,DRP11,X$DEXIN

THE TXN BECOMES A NEW TXN

*

LBGSY,D0Q11,XSBEXM

GO TO COMMON CODE FOR READ

1 D11 OUT QUEUE AND DRP FREE?
SAVE SPACE IN OUT Q

RESET PRICRITY
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ASSIGN 4+ ,X$DEX 11
ASSIGN 7.,X$DEX 11
ADVANCE P7
RELEASE DRP11
SPLIT 1,STB1

A A K ORI RO ROK K R
* RREITE TXN IS COMPLETED*
TR KRRk kR Rk kR R
FINI MACRO
TRANSFER +STAR1
T I TT T LT ]
* STORE-BEHIND TXN *
e RO K RO RO Ok R

STB1 QUEUR DYQ11

TEST E
SAVEVALUE KXL1+,1

SRRk Rk ok Rk ok R Aok Rk Rk

BV$BVAZ2,

1

CONVERSATIONAL MONITOR SYSTEM

TIEE FOR WRITING DATA

CREATE A STORE-BEHIND TXN

BECOMES A NEW TXN FROM CPU1

PUT TXN IN DATA QUEUE

K1 IN-Q AND LBUS1 FREE ?
RESERVE SPACE IN IN-Q

* USE LBUS1 TO SEND TXN #
* FPOM D11 TO K1 *
o0 e 2 o ok 2 e ko ok e ke a3 ofe o gk o 3k kK ok ook ko
UTX  MACRO 18US1,DYQ11,XSBEXD1 ,
SAVEVALUE DYL11-,1 RELEASE SPACE IN DU
TRANSFER  ,CONN TO COMMON CCDE FOR WRITE

S RAORK ok K Rk ok ok R KRR Ok
* COMMON COLE FOR *

* READ TO LOWER LEVELS =
* JOINED BY ALL CPUS *
ok o ok ok Aok olokoR ok Kk Kk

COMR ASSIGH 11,0
Rk Rhk Rk Rk Rk k Rk
* USE K1 *

BRE Rk Rk R Rk Rk kR ok
UQ0TO MACRO
AR R ACK K R R AR O R R ok
* USE GLO3AL BUS GBUS *
s 4 M A K K Aok A K WO AR AR

oTx MACRO
AR RO Rk Rk Kok ok Xk ROk

* USE K2 x
ok Rk ROk Rk R Rk KRRk
UQTQ MACRO

T T T T T YT T T 1
* USE LOCAL BUS 1BUS2
Ak ok ok ok R K Ok kR Rk kR KR
oTX MACRO
ook K AR Ok KK kR KKk Kk
* USE R2 TO SEE IF DATA *
* IS IN L(2) *
A e el e Rk koK Rk kR R

UQT  MACRO

GBUS,K0Q1,X$BEXM

*

LBUS2,K0Q2, X$ BEXH

RIQ2,RRP2,X$REX
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TRANSFER JXSPIN2,NIN2,INL2 IS DATA IN L(2)?
AR R R AR REE RNk Rk RN
* DATA IS NOT POUND IN =
* 1(2) *
SAk Rk Rk R Rk kKR kR

NINZ2 QUEUE ROQ2

R AR ROk K Aok Rk ok R R

* OUSE LBUS2 SEND TXN TO L

* K2 *
e T P P

UTX MACRO LBUS2,R0Q2,X$BEXM
BER R R e R R KRRk K

% SERVICED BY K2 *

TR AR KRR R RO

Tug@TO MACRO KI102,KRP2,K0Q2, X$KEX
SRR kR kAR Rk KRR AR

* USE GBUS SEND TXN TO *

* K3 *

s o 2 A o e age o o e ol ool o e ok e e e ook ok R

UTX MACRO GBUS,K0Q2,X$BEXN
o e o0 o ok ok e ok ofe o e ok ok ok ko ok ok ek ok ek )
* SERVICED BY K3 *
e o o ok ook ok ok o ok ol ok ko ook ok kKoK

UQTO MACRO KIQ3,KrRP3,K0Q3,XSKEX

Rk ok kR ok Rk kR Rk Rk
* USE LBUS3 SEND TXN TO  *

* R3 *
sfeafe dhe ale e ele e o o e ok e de e ook i ok Kk ok
UTX  MACRO LDUS3,K0Q3,X$BEXN

L AL P LIS RS IR IR PR L
* SEARCH DIRECTORY IN ¥

* R3 FOR DATA *
SEERSERRERRERR MRk AR Rk

uQrT MACRO RIQ3,RRP3,X$SREX
TPANSFER »INL3 DATA IS IN L(3)
A o ook o o o o ko R o
* DATA IS FOUND IN L(2), READ THE =%
* DATA AND SEND IT UP TO L (1) %
aeoo ok e o o N AR O et sk ARk ok

INL2 QUBUE ROQ2

Rk Rk KRR R Rk kR R
* SEND TXK TO DEVICE *

* VIA LBUS2 *
ik ok kR Rk kR kR Rk Rk
UTX  MACRO LBUS2,R00Q2,XSBEXH

B e ook ok e o o ok o ok ok ok ok eokakok K el ok

* IS DATA IN D11 OR D127 *
SRRBRCRERRR R AR R R AR RR Rk R Kk
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TRANSFER +5,RRR21,RRR22

Rk kk kg ok kdorkk shokkkk

* DATA IS IN D11 *
ERERR ARk Rk &

RRR21 QUEUE DI021 QUEUEZ TO RETRIEVE DATA
TEST E BYSBVA3, 1 D21 GUT-Q AND DRP21 FREE?
SAVEVALUE DYL21+,1 SAVE SPACE IN D21 OUT-Q

ok o sk kR Rk doR Rk kR
* USE D21 TO RETRIEVE *

# THE DATA *

SRR Rk kR Rk Rk k K kK wkk

UTX  MACRO DRP21,DIQ21,X$DEX21 RETRIEVE THE DATA
QUEUE DYQ21 PUT DATA IN SLOT
TEST E BYSBVAL,1 K2 IN-Q AND LBUS2 FREE?
SAVEVALUE KXL2+,1 RESERVE K2 IN-Q SLOT

Ao AR ROk ROk R ORIk R
* USE LBUS2 SEND DATA TO %

* K2 . *
Aok AR K A RO A R K R Rk kKK
uTX MACRO LBUS2,DYQ21,X$BEXD1
SAVEVALUE DYL21-,1 RELEASE SLOT IN D21 OUT-QUEUE
TRANSFER +RTF2 TO CODE FOR READ-THROUGH FROM L (2)

(2 A2 222 S R L R L2

¥ DATA IS IN D22 *
L IIII RS L PR E S R LD

BRE22 QUEUE DIQ22
TEST E BVSBVA21,1
SAVEVALUE DYL22+,1

uTX MACRO DRP22,DIQ22,X3DEX22
QUEUE DYQ22
TEST E BVSBVA4,1

SAVEVALUE KXL2+,1
UTX MACRO LBUS2,DYQ22,X3BEXD1

SAVEVALUE DYL22-,1
TRANSFER «RTF2

A AR e R AR R K K OK kR Ok
* RERD THROUGH FRCM LEVEL L(2) *
FRR R kR A Ok R R R R Rk ROk Rk Rk kR

RTP2 ASSIGN 11,0

-260-



FILE: GPSS1 VS 1JOB Di2 CONVERSATIONAL MONITOR SYSTEXM

.

(TS SRR LSS 23S Lt ]

* SERVICED BY K2 *

ol afe e e ol e oge ol ol ol e e e e ook sk e e e e e ik ok

UQDQ MACRO KX02,KXL2-,KYQ2,KYL2+,KRP2,X$KEX,BV$BVAS
TEST E _BVYSBVA6,1 K1 IN-Q AND GBUS PREE?
SAVEVALUE KXL1+,1 RESERVE K1 IN-Q SLOT

AR Aok R RO OR AR R Rk
* USE GBUS TO SEND DATA TO*

* K1 *
SRR ERERR B R R Rk Bk ek kR Egk
UTX  MACRO GBUS, KYQ2,X$BEXD1
SAVEVALUE KYL2-,1 RELEASE SLOT IN K2

kR ke ek d v o ok e ok ok ek ik e ok e kokook ek ok ko

* STORE DATA INTO L(1) AS A RESULT*
* OF READ-THROUGH *
SRR RRREE SRR RNk Rk kR Rk ok

STOR1 ASSIGN 11,0

SRk Rk Rk kok ko kk kkokkkkkk

* SERVICED BY K1 *
SAE AR ERARERRFRA R AR R AR KKK

uQD HACRO KXQ1,KXL1~, KYL1+,KRP1,X$KEX,BVSBVA20

seofe age e e Aok o e e e e o e el ek e e ofe gk ek ok ok ok

* SEND TO D11 OR D12 »
Fdak ok ok ok AR OR R RO R R

SPLIT 1,FNSWICHN,? WHICH DATA CACHE TO GO?
TERMINATE

ookl ko ok ok ek ok oKk

* STORE TO D11 *
RERER kR kX R Rk kKX

WNH11 ASSIGN 11,0 WRITE TO D11
QUEUE KYQ1 _
TEST E BVSBVAT, 1 SPACE IN D11 IN-Q AND LBUS1 PREE?
SAVEVALUE DXL11¢,1 YES, RESERVE A SLOT

A el et ook e o Ak €6 o e s o o o ok ook oK ok

* SEND TXN TO D11 VIA *
* LBUSH *
SREEARRERE R ARk B R AR R

UTX MACRO LBUS1,KYQ1,X$BEXD?
SAVEVALUE KYL1-,1 RELEASE K1 SLOT

ST RIS RS 22 IR 2 22t s )
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* WRITE DATA TO D1V} *
Wk Rk ek kR kKRR Rd kR E

uQT MACRO DXQ11,DRP11,X$SDEX11

SAVEVALUE DXL11-,1
TRANSFER «X3POV1,NOV11,0VL11 ANY OVERFLOW FROM L(1)?

SERPEBR D Eh Rk RE Ok pkk kKR

* NO OVERFLOW FROM L (1) *
P I R e IR T e L

NOV11 ASSIGN 11,0

SRk ok dokok ok ok ok ok ok Rk ok kol Rk

* THE READ TXN HAS ENDED*
EFSREPLRRRKRRRERARRERRRER

FPINI MACRO
TRANSFER :STAR1

e T IR I s it it
* THERE IS OVERFLOW FRCH*
* L(1}, END THE READ *
* TXN, AT THE SAME TIME %

® HANDLE THE OVERFLOW * . -
IS PLI ST A PEREE S L L

OVL1t1 SPLIT 1,0VF11 GOT . OVERFLOW HANDLING :
FINI MACRO AT T'E SAME TIME END THE TXN
TRANSFER +STARY

AR AR ok RO Ok ok ok
* OVERPLOW HANDLING FOR ¥
* D11 *
LRI LRI AT RIS SIS L RS L L 2

OVF11 ASSIGN 11,0
gQT MACRO DOQ11,LBUS1, X$SBEXM
TRANSFER «OVL1 GOTO COMMON CODE FOR OVERFLOW®

A e Aok ek ook e ke ook o Ak e Ok gk ok o sk ok
*  WWW12 *
ek o ok Aok o o ok ok ok Rk ok ok ok ok kK ko

Wl ok o o ok ok e ok ok R o o o K Ok ok ok Kol ok & ok

* WWW13 *
R AOK RO KA R AR R IR R Rk R oKk kR ko

WAW12 ASSIGN 11,0

HHH13 ASSIGN 11,0

AR KRR R KKk kR kR SRRk Kk hh kR k
* COMMON CODE FOR OVERPLOW FRONM *
* L(1) *
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LA RS AR LRSS RIS SRR AR RS R 222 2 3

OVL1  ASSIGN 1,0

Sk kR Rk Rk Rk Rk ok ok SRRk ok

« USE K1, THEN GBUS, THEN K2  *

¢ THEN LBUS2, THEN USE R2 X .
FRE RO Rk R kR ook Rk Rk

UQTQ MACRO K1Q1,KRP1,K0Q1, X$KEX
UTX  MACRO GBUS,K0Q1,X$BEXY
UQTQ MACRO K1Q2,KRP2,K0Q2, X$KEX
UTX  MACRO LBUS2,K0Q2,X$BEXM
QUEUE RIQ2
UTX  MACEO RRP2,BIQ2,X$REX | 4!
TERMINATE :

koo ok gk ok sk ok ok K ok ok ok Kokok

* DATA IS FOUND IN L(3) *
ool ke ook A o e o e e e o o ok ok ok ki

INL3 CQUEUE © EKO0Q3

R ok kR KKKk kK ko Kok

% USE LBUS3 SEND TXN TO *
* D31 *
Sk Rk R o ok ok ok kK

oTX MACRO LBUS3,R0Q3,X$BEXHM

. wr

ShERR Rk R kh ke E kkkkkk R hKk

* READ FROM D31 OR D32? *
ERERERERAER KR KR AR ARA RO RN

TRANSFER «5,RRR31,RRR32

EhkkkREkkE R kR kkk kX

* READ FROM D31 *
BEERR RN R R R Rk«

BRRR31 QUEUE DIQ31 .
TEST E BVSBVAS, 1 SPACE IN D31 OUT-Q AND DRP31 FREE?
SAVEVALUE DYL31+,1

Aol e ook ok e o e ok ke ol ek ok ke ek

* READ DATA FROM D31 *
SEERE RS AR RN ERRREEERAR
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.

UTX  MACRO DRP31,DIQ31,X$DEX 31
QUEUE DYQ31 ' .
TEST E BVS3VA9, 1 ' SPACE IN K3 IN-Q AND LBUS3 FREE?
SAVEVALUE KXL3+,1 YES, RESERVE SLOT

Atk e ok K o 3 o el 2 R R K ok ke
* USE LBUS3 SEND DATA TO *
* K3 *
AR R AR R AR Rk KRk

UTX MACRO LBUS3,DYQ31,X$BEXD2

SAVEVALUE DYL31-,1
TRANSFER +RTF3 GO TO READ-THROUGH FROM L(3)

BafE ki oKk KRk

* READ FLOM D32 *
AR RO OR O RORSOk %k

RRR32 QUEUE DI1032
TEST E BVSEVA22, 1
SAVEVALUE DYL32+,1

UTX  MACRO DRP32,DI032,X$DEX32
QUEUE DYQ32 )
TEST E BVSTVAY, 1

SAVEVALUE KXL3+,1
UuTX MACRO LBUS3,DYQ32,X$BEXD2

SAVEVALUE DYL32-,1
TRANSFER +«RTF3

okl ok sk o ok ke ook o gk ok ok ok 3ok Kok okok R ok ok Kk ok kK K

- % RBAD-THROUGH FROM L(3) DATA IS *
* SENT TO L(2) AND L(1) AT THE *
* SAME TIME *
Ak ok ok oKk RO ok AR ok kR oK Aok doR ok

RTP3 ASSIGHN 11,0
A e ol o o ok o e ok e e ok o e o K ok R kK

* SERVICED BY K3 *
R K R K R R kol kR

UQDO MACRO KXQ3,KXL3~,KYQ3,KYL3+,KRP3,X$KEX,BVSBVA10
TEST E BVSRTOK, 1 - L(1) & L(2) READY & GBUS FREE?
SAVEVALUE KXL1+,1
SAVEVALUE KXL2+,1

I T P T I e L S e e E
* BOTH L({1) AND L(2) *
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® READY TO ACCEPT DATA *

* PROM GBUS *
FEREE R AR R AR R Rk

uTXx MACRO

SAVEVALUE KYL3-,1
SPLIT 1,STOR1

PREAp R aoRRk kR ko kg

* READ-THROUGH TO L (2) *
SRR FRRRRRRRRRRR KRR kRN

STOR2 ASSIGN 1.0

SRR SRR BRR KRR kR KRR kR SRR

* SERVICED BY K2 *
SESRERRERRENERRRRRRRRE RN

UQDQ HMACRO

TEST E BY$BYA11,1
SAVEVALUE RXL2+,1

SRERE KRR AR Rl Wkl Rk kR

* USE LBUS2 SEND TO R2 - *
PEEERRAERRBEERNRERRE F KRR

U7X MACRO
SAVEVALUE KYL2-,1

CREREEFRRBERERER kR EERKREDR

* SERVICED BY R2 .
SERESRERERE S ARRRRBRRRRRRK

UQD  MACRO

SPLIT 1,0VH2

SPEBBERRABERE Rk Rk kR fRRkk kR

¢ STORE INTO D21 OR D222 *
SESEERRRERAR AR AR AR AR RENRRRRRS

TRANSFER «5,85521,58822

SEESE FERE R R SRR NENKKoRkkR

# STOEE INTO D21 *
BEREREERERE SRS ERRRER RN NRA

§S§521 QUEUE RYQ2
TEST E BY$BVA13,1
SAVEVALUE DXL21+,1

SHEEESE Ak Ak b S S aB R RN Rk Bk B ERRg

CONVERSATIONAL MONITOR SYSTEM

GBUS,KYQ3,X$BEXD2

READ-THROUGH TO L(1)

KXQ2,KXL2-,KYQ2,KYL 2+ ,KRP2,XS$SKEX,BVSBVAS

SPACE IN R2 IN-Q AND LBUS2 PREE?
YES, RESERVE SLOT

LBUS2,KYQ2, X$BEXD2

FREE SLOT IN K2

RXQ2,RXL2~-,,RYL2+,RRP2,X$REX,BV$BVA12
HANDLE ANY OVERFLOW

D21 IN-Q AND LBUS2 FREE?

YES, RESEBRVE THE SPACE
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v

¥ SEND DATA TO D21 VIA BUS *
B KRR R K R ROON Bk Ok R kR

CONVERSATIONAL HMOHNITON STSTEY

oTxX MACRO LBUS2,RY(Q2,X3BEXD2

SAVEVALUE RYL2-,1 RELEASE SPACE IN k2
uQn MACRO DXQ21,DRP21,X$DEX 21

SAVEVALUE DXL21-,1

TERMINATE

T

* STORE INTO D22
AR RO R R RO B RN

*

§5522 QUEUR RYQ2
TEST E BY$BVA23, 1 .
SAVEVALUE DXL22+,1
UTX  MACRO LBUS2,RYQ2,X$BEXD2
SAVEVALUE RYL2~,1 '
UQT  MACRO DXQZ2,DRP22,X$DEX22
SAVEVALUE DXL22-,1
TERMINATE

SIS SRR RS R SR 02l

* HAND.

ANY OVERF.

FROM L (2) *

O R K R kOl R i OR R R ROK K

Ovi 2
OvVL2

TRANSFER
QUEBUE

«X5POV2,NOV2,0VL2
ROQ2

T sy

* USE LBUS2, USE K2, USE *
USE K3, USZ LBUS3, *

* THEN USE R3 *

Atk KK 3K o e Ak K R R

% GBUS,

UTX = MACRO LBUS2, FOQ2,X$BEXM

UQTQ MACRO KIQ2,KEP2,K002,X$KEX

UTX  MACRO GDUS ,KOQ2,X$BEXH

UQTQ MACRO KIQ3,KRP3,K0Q3,X$KEX

UTX  KACRO LBUS3, K003, X$BEXY

UQT  MACRO RIQ3,RKP3,X$REX ‘
_NOV2  TERMINATE

~266~



FILE:? GPsSS1 vs1Jos D/g CONVERSATIONAL HONIfOB SYSTEM

SHERRARE SRR SRR RRERRKR A
% COHNNMCN CODE FOR WRITE *

* TO LOWER LEVELS *
R kR Rk Ko b ok KK
COMW ASSIGH 11,C , DUMMY STATEMENT

SEpRRRkkkRE kKR k kR Rkkkk KKk

* SERVICED BY K1 *
SRR RRARERARKERARRRERRE KR

‘UQDQ _MACRO KXQ1,KXL1-,KYQ1,KYL1*,KRP1,X$KEX,BV$BVA1Q

TEST E BVEBVA15,1 K2 IN-Q AND GBUS PREE?
SAVEVALUE KXL2+,9

Wl ok ook e Kok ok ok o g ok ok ok ok kR K

® USE GBUS *
ook ok el e ok ok ok ok okl ok ko ok ok ok ok

UTX MACRO GBUS,KYQ1,X$BEXD1
SAVEVALUE KYL1-,1

SRR SRRk kg ko kR Rk

*# SERVICED BY K2 *
Sxg bk Rk kR kR Rk KR

UODQ MACRO KXQ2,KXL2-,KYQ2,KYL2+,KRP2,X$KEX,BVSBVAS

TEST E BV$BVA11,1 B2 IN-Q AND LBUS2 FREE?
SAVEVALUE RXL2+,1

e kool e o ek ek ol o e ke ok ok ok de e e Rl

* USE LBUS2 *
Kok Ak Aok K KK koK ok

UTX MACRO LBUS2,KYQ2,X$BEXD1
SAVEVALOE KYL2-,1

ARk kRR ARk kkR Rk ok hkkkE

* SERVICED BY R2 *
ok kR Rk gk R kR Rk kk &

UQD  MACRO RX02,RXL2-,,RYL2¢,RRP2,X$REX, BV $BVA12
Ak ok bk ok ook Rk ok ok kR A X ok

* SERVED BY D21 OR D227 *
BERREARRARERRKRE LR RR KRR R Rk Rk

TRANSPER «5,5W521,5%s522

ok i ook ook ok kR ok okeok ek R kok

* SEKVICED BY D21 *
whkkE R Rk kR Rk kR Rk kb
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S¥S21 QUEUE RYQ2

TEST E BV$BVA13,1
SAVEVALUE DXL21+,1
UTX MACRO LBUS2,RY02,X$BEXD1
SAVEVALUE RYL2-,1 -
UQDQ MACRO DXQ21,DXL2%~,DY¥Q21,DYL21+,DRP21,X$DEX21,BV$BVA3
TEST E BVSBVAU,1 K2 IN-Q AND LBUS2 FREE?

SAVEVALUE KXL2+,1

e e o s e Aok ok Kok ol ok ok ok ok

* USE LBUS2 SEND TO K2 =*
Skd kR ok kA kR Rk KRk

01X MACRO LBUS2,DYQ21, X$BEXD2
SAVEVALUE DYL21-,1 '
SPLIT 1,ACK2 PREPARE TO SEND ACK TO L(1)
TRANSFER +STB23 GO TO STORE-BEHIND TO L(3)

SERER AR Rk ARk Rk KRRk
¥ SEND ACK TO L (1) *
Sk Rk e Ok ok RO R kR
ACK2 QUEUE D0Q21
UTX MACRO LBUS2,D0Q21,X$BEXM
TRANSFER +ACK21
AR R AR R OOk ko Rk ok ok
* SERVICED BY D22 *
Aok ok ok ek ook Rk Ok ok ok ok ok Rk
SWS22 QUEUE RYQ2
TEST E BYSBVA23,1
SAVEVALUE DXL22+,1
UTX MACEKO LBUS2,RYQ2,X3BEXD1
SAVEVALUE RYL2-,1 '
UQDQ MACRO DXQ22,DXL22~,DYQ22,DYL22+,DRP22,X$DEX22,BVSBVA21

TEST E BVSBVA4, 1
SAVEVALUE KXL2+,1

uTXx KACRO LBUS2,DYQ22,X$BEXD2

SAVEVALUE DYL22-,1
SPLIT 1, ACK3
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TRANSFER «STB23
ACK3 OQUEUE D0Q22
uTx MACRO LBUS2,D0Q22,X$BEXY

TRANSFER «ACK21

AR RS2 SRS RS R RS RS L2 2]

* STORE-BEHIND FROM *

* L(2) TO L(3) T

ook e o ok o ko o ok ok ok ok g itk ok ok ook

STB23 ASSIGN 11,0

UQDQ MACRO KKQZ,KXLZ-,KYQZ,KYL20,KRPZ,X$KEX,EV$BVA5
TEST E BV38VA16,1 K3 IN-Q AKD GBUS PREE?

SAVEVALUE KXL3+4,1
UTXx MACRO GBUS,KY02,X$BEXD2
SAVEVALUE KYL?-,1
UQDQ MACRO KXQ3, KXL3-,KYQ3,KYL3+,KRP3,XSKEX,BV$BVYA10

TEST E BVEBVA1T7,1 ®3 IN-Q AND LBUS3 FREE?
SAVEVALUE RXL3+,1

OTX MACRO LBUS3,KYQ3,X3BEXD2
SAVEVALUE KYL3-,1

uQp MACRO RXQ3, RXL3-,,RYL3+,RRP3, X$REX,BV$BVA 18

BRR KRR KRR KR AR RE PR RR kR KB R R Ry

* SERVICED BY D31 OR D322 *
Ty I Y s T )

TRANSFER 25,5¥S31,5Ws32

e PP PRI ER 2 SRS 2 D s
* SERV. BY D31 *
T EII PR PR ST RS 1
SUS31 QUEUE RYQ3
TEST E BV$BVA19,1
SAVEVALUE DXL31+,1
uTX MACRO LBUS3,RYQ3,X$BEXD2

SAVEVALUE RYL3-,1
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uQT HACRO
SAVEVALUE

uQT MACRO
‘TRANSFER

DX(031,DRP31,X3DEX31
DXL31=-,1

DOQ31,LBUS3,X$BEXNM
«ACK22

BEE SRR kAR R AR KR NR KKK

* SERV, BY D32 *

ke ok ok ok Kook kR kK&

SWS32 QUEUE
TEST E
SAVEVALUE

UTX  MACRO
SAVEVALUE

UQT  MACRO

SAVEVALUE
UQT  HMACRO

TRANSFER

RYQ3

BVSBVA24,1

DXL32+,1
LBUS3,RYQ3,X3BEXD2
RYL3-,1
DXQ32,DRP32,X$DEX32
DXL32-,1
D0Q32,LBUS3,X$BEXM

+ACK22

ok ek ok ok ok keokokok ok ok ok ok ok dekok ok ok Aok kokox

* ACK FEOM L(2) TO L{3) *
Ll Rt S R R L P PR s E eIt 2T PR e

ACK22 ASSIGN

UQTQ MACRO

leX MACRO

UQTQ MACRO

UTX MACRO

UQTQ MACRO

- uTX MACRO
TKA NSFER

1,0

KIQ3, KRP3, KOQ3, X$KEX
GBUS ,K0Q3, X$BEXM
KIQZ,KRPé,KOQZ.X$KEX
LBUS2,K0Q2,X3BEXN
R1Q2,RRP2, ROQ2, X$REX

LBUS2,R0Q2,X$BEXN
+ACK21

seaterfe e ko e ek ok sk ok ok Rk ok ek R ok ke ek b ok R Rk

* ACK FROM L(2) TO L(1) *
L RERER AR ER R R AR Rk R

XCK21 ASSIGN

0QTQ MACRO

11,0

KIQ2,KRP2,K0Q2,X$KEX
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.

uTX BACRO GBUS,KOQ2,X$BEXM
UQTQ MACRO KIQ1,KRP1,K0Q1, XSKEX
urXx MACRO LBUS1,K0Q1,X$DEXN
SPLIT 1,FUSHICHA,
TERMINATE
AMA11 ASSIGH 11,0
AAA12 ASSIGN - 11,0
AAA13 ASSIGN 1,0
. QUEUE DIQ11
SEIZE DRP11
DEPART DIQ1
ASSIGN 4+ ,X$REX
ASSIGN 7,XSREX

ADVANCE  P7
RELEASE  DRP11
TERMINATE

ehkkkkkkkk ki Rk

* AAAI2 _ *
SRR ERRRREER R ER R E

Hekak ok & ook ok ok o o kK KOk

*  AAAI3 *
BERRERERERRAEERERS

RBARRAREKEEREB AR EERRE AR R R RS
* : »
* TIMER SEGMENT - TIME UNIT IS *

* ONE NANOSECOND *
KRB R Rk R R kR kR kR

GENERATE XSTIMER
TERMINATE

START 1

END
/7%

-271-

CONVERSATIONAL MONITOR SYSTENM



Appendix B

FLOW CHART OF THE P5L4 MODEL
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read from
D11

A

yes

write to

D11

search

directory

ﬂ

in
D11?
no

send
store-behind
to K1 via
Tbus1

send to
K1 via
1bus1

.

(comr)
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(star?)

> cPu2 v

write to
D12
ji
read from search
] send
D12 directory store-behind
to K1 via 1budl

a

yes in \\:>
™~ D122

\\\\ . | '
no (comw)

K1 via 1busl

(comr)
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write to

read from

D13

D13
search ﬂ
directory send store-
behind to

K1 via 1busl

yes in
_ D137
no

send to Kl
via 1busl

e

(comr)
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write to
D14

read from h ‘ﬂ
searc Send
D14 1 directory, tore-behind
o Ki via lbus

yes

(comw)

send to Kl
via 1busl

(comr)
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read from

D15

1 directory

(starb)

search

in
D157
no

write to
D15

JI

send
store-behind

to K1 via lbus

send to Kl

via Tbus1

(comr)

(comw)



(- comr)

K1

R3

y

send to
K2 via
gbus

no}

!

send to R3

via 1bus3

send to
K3 via 1bus3

K2

]

l

K3

K3

v

send to R?

via 1bus?2

|

send to K3
via gbus

send to K4

via gbus

v

T

K4

R2

K2

4

(in12)

T

send to R4
via lbuséd

!

send fo K2
via 1bus?

R4
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(in14)

yes

(in13)



(in12)

send to
device via
Tbus?2
l(rw.z] ) 1 (rrr22)
D21 D22
send to K2 send to K2
via 1bus2 via 1bus2
> K2 ¢—

l

send to KI
via gbus

(storl)
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(storl

K1

T T T

send to (ww1d) (ww13) (wwwld) (wwwd 5)
D11 via ' | ‘
Tbus1 ‘ |
| | |
| |
' |
write to | '
D11 | |
|
| l
send to Kl : :
| via Tbusl |
no yes | ‘
. | ]
l l
ovll) | '
(star"l) K1 : '
< = e

v

send to K2 R2
via gbus
send to R2
K2 ———P
via 1bus?2
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(in13)

l

send to
device via
Tbus3
l(rrr3]) | l(rrr32)
D31 D32
:;Elm—j | send to K3
via Tbus3
via 1bus3
K3
E—

send to Kl
and K2 via
gbus

(storl) (stor2)
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(stor2)

K2

4

send to R?
via 1bus?

l(sssZ])

yes send to D21
sed to K2 via lbus2
via Tbus?2
i
! store into
K2 D21
¥
send to K3 g
via gbus
¥
K3
v
send to R3
via lbus3 R3

-282-~
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(in14)

send to>device
via 1busé4

:

(rrral) l (rrr42)
D41 D42
send to K4 send to K4
via lbus4 via lbusé4
SN K4 ¢
send to Kl
K2 and K3
via gbus

O

(storl)

(stor2) (stor3)
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(stor3)

K3

¥

send to R2

via 1bus3

¥

R3

—al

ﬂ

(sss31)
y
send to D31
send to K3 via 1bus3
via 1bus3
!
N
_ D31
K3
v
send to K4 terminate
via gbus
-
K4
¥
send to R4
via lbusé4 R4
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(sss32)
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(comw)

K1
¥
send to K2
via gbus
¥
K2
¥
send to R2?
via 1bus2
¥
R2
(sws21) 1 (sws22)
send to D21 I
via lbus2 |
l {
D21
send to K2 send ack to
V.ia ]bUSZ ¥ K2 Via ]bus

(stb23)

ack?1
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(stb23)

K2
o
send to K3 -
via gbus
)
K3
¥
send to R3
via lbus3
v
\
R3
{sws31) ) (sws31 ,
send to D31 +
via 1bus3 |
l I
D31
send to K3 send ack to
via 1bus3

K3 via lbus3 |

(stb34)
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(stb34)

K3
<
send to K4
via gbus
)
K4
<
send to R4
via lbuséd
¥
R4
(sws41) ! (swsd2)
send to D41 |
via lbus4 |
1 I
D41
send ack to

(do nothing)

K4 via 1bus4‘
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(ack21)

K2

K S
send to K1

via gbus

v

K1

!

send to cach

via lbusl

1 ,
S N

(aaall) (aaal2) (aaal4) (aaals)

D13
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(ack32)

K3

R

send to K2

via gbus

[}

K2

v

send to R2

via Tbus2

)

R2

!

send to K2

via 1bus?2

(ack21)
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(ack43)

K4

v

send to K3
via gbus

!

K3

Y

send to R3

via 1bus3

)

R3

E)

send to K3

via 1bus3

1

L/

(ack32)




Appendix C

LISTING OF THE P5L4 MODEL
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FILE: GPSS54 vS1J0B DI CONVERSATIONAL MONITOR SYSTENM

Z/7LAYMY JOB LAM,MPROFILF=°*RETURN',

// PROFILE='LOK?',

/7 TIME=9

//7¥PASSHCOED

//G PSS 2ROC 4

//C EXEC PGM=DAGO1,TIME=ETLIMIT.

//STEPLIB DD DSN=POTLUCK.LIBEAKY,GPSS,LOAD,DISP=SHR

. //DOUTPUT DD SYSOUT=PROFILE=RETURN,DCB=BLKSIZE=931

//DINTERO DD UNIT=SCRATCH, SPACE=(CYL, (1,1)),DCB=BLKSIZE=1880

//DSYNTAB DD UNIT=SCRATCH,SPACE=(CYL, (1,1)),DCB=BLKSIZE=7112

//DREPTGEN DD UNIT=SCKATCI,SPACE={CYL,{1,1)),DCB=BLKSIZE=800

//DINTHORK DD UNIT=SCRATCH, SPACE'(CYL {1,1)) (DCB=BLKSIZE=2680

/7 PEND

//STEPY EXEC GPSS, PARH-C,TLIHIT—9-

//D1NPUTY DD *
EEALLOCATE FUN,S,QUE,10,FAC,50,BVR,200,BLO 2000,VAR 50 .

* © * - REALLOCATE FSV 50 HSV,10, con.uoooo

CER R R Rk X R kG &Kk kk ok kokkkk
L ] *
* TXN PARN USAGE *
* *
®« Pl CPU ID *
* P2 TXN ARRIVAL TIME®
¢ P3 TXN COMPL TIME =
* P4 TXN EXEC TIME *
* P11 DuUMMNY *

* *
SRk xRk ke godokk kakkokkkokk

SESREEE SRR PR RRRRERKERKE

HMODEL COMPONENTS

*®

*

L]

¢ BUSES: GBUS, LBUS1,..
&« CACHES: D11,...D15

® LEVEL CONTRL: K1,...K4*¥
* REQ PKOCS: R2, .. R4 =*

® DEVICES: D21, ...D42
®

*

L

*

L

'Y

x

* % X N #

*
STORAGE RI, RO *
STORAGE SI, SO *
STORAGE
STOEAGE
STORAGE

TI, TO *
AI, AO *
o1, 00 *
*
s

€0 ge ¢ ge b0

KRk Rk kg gk Rk ok Rkkk

.#*#tt*t#tt*#*#t**#**t**t

L B
‘ MODEL PARAMETERS *
*

.***ttt***tt*###*t###**#t !

INITIAL XSMAXNP,10 DEGREE OF XULTIPROG PER CPU
INITIAL X$NREAD,50C - % READ REQ
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FILE: GPSS54 VS1J0B D2

INITIAL
INITIAL
INITIAL
INTTIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
IRITIAL
INITIAL
INITIAL
INITIAL
“ IRITIAL
INITIAL
INITIAL
INITIAL

f$NWRTT, 500
X$PIN1,900
X3P1N2,900

- X§PIN3,900

X$P1ING, 1000
X$pPov1,500
xspov2,500
X$POV3,50C0
X3DEX1,10

X$DEX2, 100
X3DEX3,200
X3DEXY, 1000
X3BEXM,10

X$BEX1,10

"X3BEX2,80

X$BEX3,320
X3REX,20
X$KEX,10
X$RDEX 1,30

CONVERSATIONAL MONITOR SYSTEN

% BRITE KEQ

CONDITIONAL PROB OF FINDING DATA
IN A LEVEL GIVEN THAT THE

DATA IS NOT FOUND IN ANY UPPEB
LEVEL

PROB OF OVERFLOW

DEVICE SERVICE TIME

BUS SERVICE TIME

DIRECTORY LOOK UP
CONTROLLER SERV TIME
LOOKGP PLUS READ TIME OF CACHE

X$TIﬂBR 200000 SIMULATION TIME

##*‘###t‘#ti‘t#‘#&##t#*tt

SAVEVALUES

NTXN TOTAL TXN PROC.

*
*
*
»

SUMW TOTAL WAIT TIMES *
SUMT TOTAL ELAPSED TIN®
*

"®
«
[ ]
Py
# SUMX TOTAL EXEC TINES *
*
E ]
*
*

SRR AREERR AR R TRk kR KRR

whgkp ko kokokk Rk Rk kkRokkkRkE

[ ]

* VARIABLES

*
*
*

ltt‘***#*###*#*##***#ﬁ‘t#

MRESP FVARIABLE
TXNT VARIABLE
TXNW VARIADLE
TXNX VARIABLE

(XSSUMT/XSNTXN)

P3-P2
P3~P2-PU4

P4

bk bk hkkkkk bRk R kok R kkokkk

*

* TABLES
*

P
*
*

Wh kR Rk ok kR aoR koK K ok Kok ok R

TXNT TABLE
TINW TABLE
TINX TABLE

MEAN RESP TIME
TXN ELAPSED TIME
TIN WAIT TIME
TXN EXEC TIME

VS$TXNT, 100,100, 100
V$TXNW, 100,100,100
V$TXNX, 100, 100, 100

WA Ok kR ek ko el ook ook dkkok ke

*
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FILE: GPS3SS4 vsi1Jos D3 CONVERSATIONAL MONITOR SYSTEM

* PUNCTIONS *
L ] *
PR MEE R Rk koo Rk KRk

WICHW FUNCTION P1,D5S
2,WNWI1/3,WWW12/4 ,4WW13/5,WWHI4/6,WWT 15

WICHA PUNCTION P1,D5 :
2,MARAV1/3,ARR12/4 ,AAR13/5,ARA14,76 ,AAA 1S

(232232222 R 2232222 22 L)

* *
* STORAGE FOR L (1) *
* CACHES *
* *

LRI R RSS2 2R 2222 S )

-

STORAGE S$RID11,10/5$S1D11,2/5$TID11,10/S3AID11,10
STORAGE S$RID12,10/5351D12,2/58T1ID12,10/S3AID12,10
STORAGE S$RID13,10/55S1D13,2/S$5T1ID13,10/S5AID13,10
STORAGE S3RID14,10/S5SID14,2/SSTID14, 10/55AID14,10
STORAGE S$RID15,10/58S1ID15,2/58T1ID1S, 10/58A1D15,10

(2232 RIS RS2 S22 R )

* ¥
* STORAGE FOR DEVICES *
* *

e ke 2ok e ok Rk deOk ok Ok ok ok Kok

STORAGE S$RID21,10/S851D21, 10,/ 33TID21,10
STORAGE S$RID22,10/5%3s51022, 10, 38TID22,10
STORAGE S3RID31,10/5551D31,10/53TID31,10
STORAGE S$RID32,10/S$SID32, 10/5S$TID32,10
STORAGE SPRID4Y,10/55SILU1,10/S3TIDY,10

STORAGE S$RIDY42,10/5851D42, 10/S$TID42,10
SRk kR kA AOROR kR Rk Kk

= *
* STORAGE FOR REQ PROC *
* *

Bl o ok R ok K K ok Rk ok ok Kok Kok K

STORAGE S$RIR2,10/S$SIR2, 10/S$TIR2, 10/S$A1R2,10/530IR2,10
STORAGE S$RIR3,10/S$SIR3, 10/S$TIR3, 10/5$AIR3, 10/5$OIR3, 10
STORAGE S$RIR4, 10/S$SIRY, 10/SSTIRL, 10/SSATRY, 10/S$0IRY , 10

kg ok kR ko ROk ok KRR kKR

* *
* STORAGE FOR K1 * .
* *

Aok Ak koo gk R RoKOR K R OR R

STORAGE S$ROK1,10/5850K1, 10/5$TIK1,10/5$41X1,10/5800K1,10

s ok ok ok ok ok ok ko Kok
& *
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PILE: GPSS54 vs1JoB D4 CONVERSATIONAL MONITOR SYSTEMN

® STORAGE FOR K2,K3,K4 =*
* *
KRR RERRRER BN Rk KRR

STORAGE S$R1K2,10/S$SIK2, 10/S3TIK2,10/S$5AIK2,10/5301K2,10
STORAGE S3RIK3,10/5851K3,10/S53$7T1K3,10/S$AIK3,10/5S$01K3,10
STORAGFE SHRIK4,10/5F8SIKU, 10/S3TIKH, 10/SEATKY, 10/SSO 1KY, 10
STORAGE S$ROK2,10/5$S0K2,10/S$T0K2,10/5$A0K2,10/5500K2,10
STORAGL SBRCK3, 10/5$s50k3, 10/5S3T0K3, 10/5$A0K3, 10/S500K3, 10
STORAGE S$ROK4, 10/S$SOK4,10/5$TOK4,10/5 $AOKY ,10/S300KY , 10

ke ok o e e ok e ok oK ok ok ok KRk

* *
* BOOLEAN VARIABLES *
* *

ko koo k ok kkkoxkkkkkkk kR

ERERE Rk Rk kxR koK Rk KR

* *
* BY POR READ-THROUGH *
* &

A o kK ok ok ok K kR ok

RTOK2 BVAKIABLE FNUSGBUS*SNFSTIK1
RTOK3 BVARIABLE FNUSGBUS*SNF3TIK1*SNFSTIK2 }
RTOK4 BVARIABLE FNUSGBUS*SNFSTIKI*SNFSTIK2*SNF3TIK3

e e ko e s s o e sk e g o Rl ook ok ok ok

* *
* BY FOR L (1) *
* *

Rk Rokk kR koK Rk ok ok koK kK

DKRY DBVARIABLE FNUSLBUS1*SNF$ROK1

DKS1 BVARIABLY FNUSLBUS1*SNP3SOK1

DKO1 BVARIABLE FNUJBLBUS1*SNF$OOK1

KDT11 BVARIABLE FNUSLBUSI*SNFHTIDA
KDT12 BVARIABLE FNUSLBUST*SNF3TID12
KDT13 BVARIABLE FNUZLBUSI*SNF3TID13
XDT14 BVARIABLE FNUSLBUS1®SNFSTID1U
KDT15 BVARIABLE FNUSLBUS1*SNFHTID15
XKDA11 BVARIABLE FNUBLBUS1*SNFS$AID11
KDA12 BVARIABLE FNUSLBUSI*SNF3AIDI2
KDA13 BVARIABLE FNUSLBUS1®SNF$AID13
KDA14 BVARIABLE TFHNUSLBUS1*SNF3AID14
KDA15 BVARIABLE FNUSLBUS1*SNF$SAID15

e e de ok R e ok ke ok oROR K KOOk ok ok ok k

* *
* BV POR INTER LEVEL COM*
* x*

Wl ok Ak KRR R Rk R Rk ok kKR R Rk

KKR12 BVAKIABLE FNUSGBUS*SNFSRIKZ
KKS12 BVARIABLE PNU$SGBUS*SNP$SIK2
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PILE: GPSSSU

KKO012
KKT21
KKA21
KKE23
. KRs23
KK023
KKT232
KKA32
KKR34
KKS34
KKO34
KKT43
KKA43

BVARIABLE
BVARIABLE
BVAFIABLE
BVARIABLE

BVARIABLE

EVARIABLE
BVAPIABLE
BVARIABLE
BVARIABLE
BYARIABLE
BVARIABLE
BVARIABLE
BVARIABLE

vs1JoB DS

PNUSGBUS*SNP$SOK2
PNUSGBUS*SNFPSTIK
FNUSGUUS*SNFSAIK1
FNU$SGBUS*SNFSRIK3
FNUSGDUS*SNF$SIK3
FNUSGDUS*SNFS0IK3
FNUSGBUS*SHF$TIK2
FNU BGBUS*SNFSAIK2
FNUSGBUS*SNPSRIKY -
FNU3SGBUS*SNP$SIKUY
FNUFGBUS*SNF$OIKY
PNUSGBU S*SNP$STIK3
FNUSGBUS*SNFSAIK3

kkkkk kR kR kR kR Rk kR Rk

*

+ BV FOR L(2) OPS

]

*
x®
*

SRR RRERRERRE R R R KRR kKRR kKK

KRR2
KRS2
KET2
KRA2
KRO2
RDR21
EDS21
RDT21
RDR22
RDS22
RDT22
DKS2
DKT2
DK A2
RKR2
RKO2
RKA2

. ®

* BV FOR L(3) OPs

*

BVARIABLE
BVARIABLZE
BVARIABLE
BVARIABLE
BYARIABLE
BVARIABLE
BYAEIABLE
BYARIABLE
BVARIABLE
BYARIABLE
BVARIABLE

. BVARIABLE

BVARIABLE
BYARIABLE
BVARIABLE

. BVARIABLE

BVARIABLE

FNUSLBUS2*SNFIRIR2
FNUSLBUS2*SNFSSIR2
FNUSLBUS2*SNFS$TIR2
FNUSLBUS2*SNF$SAIR2
FNUSLDUS2*#SNFJOIR2
PNUSLBUS2*%SUFSKID21
FNUSLBUS2*SNF$SID21
FPNU$LBUS2%SNFSTID21
FNUSLBUS2*SNFSRID22
FNUSLBUS2*SNF3SID22
PNUILBUOS2#SNF$TID22
FNUSLBUS2*SNF$S0K2
FNUSLDUS2*SNF$TOK2
FNUSLBUS2%SNFHAOK2
PNUSLBUS2#SNFSROK2
FNU$SLBUS 2*SNF300K2
FNUSLBUS2*SNPSAOK2

L2 22X R 2 2L R 22222 2L ]

*
*
*

BEEERES R SRR SR e RFRRERREEK

KRR3
KRS3
KRT3
KRA3
KRO3
RDR31
RDS31
RDT31
RDR32
BDS32
"RDT32

BVARIABLE
BVARIABLE
BVARIABLE
BVARIABLE
BVARIADLE
BVARIABLE

*BVARIABLE

BVARIABLE
BVARIABLE
BVARIABLE
BYARIABLE

FNUSLBUSI#SNFSRIR3
FNUSLBUS3*SNFFSIR3
PNUSLBUS3#SNFSTIR3
FNUSLBUS3*SNFSAIR3
FNUSLBUS3*SNFSOIR3
FNUSLBUS3*SNFSRID31
FNUSLBUS3%SNPSSID31
FNUSLBUS3*SNPSTID31
FNUSLBUS3*SNFSRID32
FNUSLBUS3%SNPSSID32
FNUSLBUS3*SNFSTID32
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FILE: GPSS54

DKS 3
DKT 3
DKA3
PKR3
RKA3
RKO3

BVARIADLE
BVARIABLE

BVARIABLE

BVARIABLE
BVARIABLE
BVARIABLE

VS1J0B D6

FNUSLBUS3*SNF$SOK3
FNUSLDUS3*SNFSTOK3
FNU$SLBUS3*SNF$AOK3
FRXUSLBUS3*SNF$KOK3
FNUSLBUS3#SNFSAOK3
FNUBLBUS3*SNF$00K3

sk o A 10K o 0K K 0Ok dok ok o e Kok Kok Kok

™

® BY POR L(u4) OPS
*- .

*
*
*

a0k e o e ok ok ok koK % koK ik ok okokok

FNUSLBUSU*SNPSRIRY

KRRY4 BVARIABLE
KRS4 BVARIABLE FNUSLBUSU*SNFISIRY
KRO4 DVARIABLE FNUSLBUSU*SNFSOIRY
DDR41 BVARIABLE FNUSLBUS4%SNFSRIDU1
BEDS41 BVARIABLE FNUPSLBUSU*SNFSSIDU1
RDR42 BVARIABLE FNUSLBUSUXSNFSRID42
RDS42 BVARIABLE FNUBLBUS4*SNF3SSIDL2
DKT4 BVARIABLE FNUSLBUSU*SNF$TOKY
DKAY BVAFIABLE FNUSLBUSU*SNFSAOKY
e o o e o o e e o e ok A e e ook sk ok Kook
* *
* MACROS * .
* *

AUERRRKAR SRR RAR R RN

A e Ak KRR O R Rk Nk

* *
* MACRO -USE *
* §A PFACILITY *
* ¢B USAGE TINME *
* *
P TTI ILITIISE T T IR 2 22 Y]
USE STARTMACRO

SEIZE $#A

ADVANCE 4B

ASSIGN 4+ ,#B

RELZASE $A

ENDM ACRO
LRk kR Ak ROk R Rk ko kK
* *
* MACRO - SEND *
* *
« $§A FROM *
¥ B TO *
* $C VIA x
* §D TRANSIT TIME *
« $§E BV FOR SEND OP *
* *
e o ok o ok ok ok Ok R
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FILE: 6PSSS54 vs1JoB D7

SEND STARTMACRO

TEST E $E,1
ENTER B
SEIZE &C
ADVANCE #D
ASSIGN  U4+,8D :
RELEASE i
LEAVE "n
ENDNACRO

SR RERkRkk kkE kR R kR kkkRE

® *

* MACRO - FINI o

* *

AP TAPE

FINI STARTMACRO
MARK -3
SAVEVALUE NTXN+,1
SAVEVALUE SUNX+,VSTXNX
SAVEVALUE SUHW+,VSTXNW
SAVEVALUE SUHT+,VSTXNT
SAVEVALUE MRESP,VSMBESP

CONVERSATIONAL MONITOR SYSTEM

ASSIGN 1,0
ASSIGN 2,00
ASSIGN 3,0
ASSIGN 4,0
ENDMACRO
L 2 4 -8
* *
* BEGIN SIMULATION *
* s
$hemcocnncnnanccenrccceen- - ——— - *
SIMULATE
dedeak ok s e o o ok ook e o e e ke ook ok ek
3 : ®
*  CPU #1 *
* *

ks ads ok e ok o e ko o o e e ok ok ok ok ok
RHOLT 3,5,7,9,11,13,15,17

CPOY GENERATE oo e XSMAXNP,,,F
STAR1 PRIORITY 9
MARK 2

TRANSFER «X$NREAD, WWW1,RRR1
RRR1 TRANSFER +«X$PIN1,NINT1,RINTY

SepRE bbbk Rkk kkRkkkkkEk
® *

# DATA IS IN DATA CACHE *

¢ e
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FILE: GPSS54

.

vsigos D8 CONVERSATIONAL MONITOR SYSTEH

*

ol gk ok KoR kR ok R kok ook Rk ok

PIN11 ENTER

USE MACRO
LEAVE

FINI MACRO
TRANSFER

RID11 PUT TXK IN READ REQ BUFPER
DRP11,X$RDEX1 SEARCH AND READ CACHE
RID11 FREE BUPPER

+STAR1 A NEW TXN

SEd bk Rk kk kR Rk KRRk kbR

«

*

* DATA IS NOT IN CACHE *

*

»

SR KK Rk Rk kkokkok ok ok ok koK kkk

NIN11 ENTER

-0USE. MACKO
PRIORITY

SERD MACRO

'TRANSFER

RID11 PUT IN READ REQ BUFFER
DRP11,X$REX SEARCH DIRECTORY
0 BESET PRIORITY

RID11,R0K1,LBUS1,X$BEXY,BVSDKR]

,COMR TO COMMON CODE FOR READ

AR ARk ok kR kR Rk

*

*

* WRITE REQUEST TO CACHE*

*

®

SRR kb kR kR kR Rk R kg

WWW¥1  ENTER

USE MACRO
PRIOPITY

SEND MACRO
SPLIT

PINI MACRO

TRANSPER

SRR kR E ke kkE Rk kR k F Rk Kk

*

* CPU &2
L

SIDV1 , PUT 14N IN WRITE REQ BUFFER -
DRP11,XSRDEX1 - WBI'E DATA IN CACHE
0 RESET TXN PRIORITY
SID11,SOK1,LBUS1, X$BEX 1, BVSDKS1
1, COM¥
,STAR1 A NEW TXN

*

*

*

(22 E 2223 2SR RS A 22l

CPU2 GENERATE

STAR2 PRIORITY
MARK
ASSIGN
TRANSFER

RRR2 TRANSFER

2es XEMAXMP,,,F -
9 SET HIGH P FOR NEW TXN
2 ARRIVAL TIME

1,2 CPU 1D
«X$SNREAD,WWW2,RRR2

.XBPIN1,NIN12,RIN12

SRRk Nk R R Rk
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FiLLB: GPSS54 VS1J0B D9 CONVERSATIONAL MONITOR SYSTEM

* *
* DATA IS IN DATA CACHE *
» *

L T T T 2T T

RIN12 ENTER RID12 PUT TXN IN READ REQ BUFFER
USE MACRO ~ DRP12,X3RDEX1 SEARCH AND READ CACHE
LEAVE RID12 FREE BUFFER
FINI MACRO
TRANSFER +STAR2 A NEW TXN
SARBRRERRER R KRR R kR k&
* *
* DATA IS NOT IN CACHE *
* *

ek Rk kkkkkkkkkk kR kkkkk

HIN12 ENTER RID12 PUT IN READ REQ BUFFER
USE MACRO DRP12,X3REX SEARCH DIRECTORY
PRIORITY 0 RESET PRIORITY
SEND HMACRO RID12,ROK1,LBUS1,X$BEXM,BV$DKR1
TRANSPER +CONR TO COMMON CODE FOR READ
ek RNk ROk RO OR R ROk K Ko kR
* ’ *
* WRITE KEQUEST TO CACHE¥
* ’ *

22223222 22 222222 22222 T

WWH2 ENTER SID12 PUT TXN 1IN HRITE REQ BUPFER
USE MACRO DRP12,XSRDEX1 HRI?E DATA IN CACHE
PRICRITY 0 RESET TXN PRIORITY
SEND MACERO SIp12,S0K1,LBUS1,X$BEX1,BV$DKS1
SPLIT 1,COMW
FINI MACRO
TRANSFER «STAR2 A NEW TXN
RE SRRk kR Rk kR kR kR
* _ *
* CPU 3 *
* *

L IG 2 SE2 2 R RSEE L2 S S 2T

CPU3 GENERATE eo s XKENAXHP, ,,F

STAR3 PRIORITY 9 SET HIGH P FOR NEW TXN
MARK 2 ARRIVAL TIME
ASSIGN 1,3 CPU ID

TRANSFER «XSNREAD,WWW3,RRR3
BRR3 TRANSFER «X$PIN1,NIN13,RIN13

v are ~
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PILE: GPSS54 vs51J0B DIo CONVERSATIONAL MONITOR SYSTENM

et dok ok ke ok ke aokok g0k Kk kokok Kok

* L%
* DATA IS IN DATA CACHE ¥
* »®

ERERKRE ARG R SRRk Rk k o

RIN13 ENTER RID13  PUT TXN IN READ REQ BUFFER
USE ¥ACRO DRP13,X$SRDEX1 SEARCH AND READ CACHE
LEAVE RID13 FREE BUFFER
PINI ¥ACRO
- TRANSFER ¢+STAR3 A NEW TXN
REERkRE Rk bk kERkEk Rk kkE
L ' *
* DATA IS NOT IN CACHE *
L .

SRRk kR Rk kok okdoRRok kR kR Rk

RIN13 ENTER RID13 PUT IN READ REQ BUFFER
USE = MACEO DRP13,X$REX SEARCH DIRECTORY
PRIGRITY C KESET PRIORITY
SEND MACRO RID13,ROK1,LBUS1, XS BEXM,BVSDKR1
TRANSFER ,COMR TO COMMON CODE FOR READ

A AR AROR R kRO A
* *
* WRITE REQUIST TO CACHE*
* ' *

REERERREERC AR R Rk ok Rk

WWW3 ENTER SID13 | PUT TXN IN WRITE REQ BUFFER
USE  HACRO DRP13,X$RDEX1  WRITE DATA IN CACHE
) PRIORITY O : RESET TXN PRIORITY
SEFD KACRO  SID13,SOK1,LBUS1,X$BEX1, BVSDKS1
SPLIT T;COHH
FINI MACRO

TRANSFER +STAR3

W e R o o ok ke g ook o ok ok ok ok ok

* * .
* CPU #& *
* *

L e R LI IR PR RS L
CPU4 GENERATE 0 s XSMAXNMP,,,P

STAR4 PRIORITY 9 SET HIGH P FOR NEW TXN
MARK 2 o ARRIVAL TIME
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ASSIGN 1.4 CPU ID
TRANSPER + XSNREAD, WW¥W4 ,RRRY
RRR4 TRANSFER X$PINT,NIN14,BRINTH

Rk kkkhkk Rk kR RR kR kR ER

*® . *
® DATA IS IN DATA CACHE *
] . L.
B Re ek p Rk sk kb rkk Rk kS
RIN1U ENTER RID14 _ PUT TXN IN READ REQ BUPFER
USE  MACRO DRP14,XSRDEX1 SEARCH AND READ CACHE
‘LEAVE RID14 FREE BUFFER
PINI MACRO
TRANSPER  ,STARY A NEW TXM
Sk gk ok bk ko ko gk S Rk
. *
" % DATA IS NOT IN CACHE *
3 *

SRRkt Sk kr ke kkkkRkRRkERkE _ '

NIX14 ENTER RID1Y - POT IN READ REQ BUFFER
USE NACRO DRP14,X$REX SEARCH DIRECTORY
PRIORITY 0 . RESET PRIORITY
SEND MACRO RID1“,EOK1,LBUS1,X$BEXH,BV$DKR1'
TRANSPER +COMR T0 COMMON CODE FOR READ
T T P P T T T ’
* *
¢ WRITE REQUEST TO CACHE®
* *
aaaad il i i L Is S S R
_E?iu ENTER SID1Y PUT TXN IN RRITE REQ BUFFER
USE MACRO DRP14 ,XSRDEX1 WRITE DATA IN CACHE
PRIORITY 0 RESET TXN PRIORITY
SEND MACRO SID14,S0K1,LBUSY ,X$BEX1,BVSDKS1
SPLIT 1,CoHV
FINI HMACRO
TRANSPFER +STARY A NEW TXN
SEREEAENRR KRR ER LB RRRBR S
* o
® CPO #5 . *
*® *

(22131222 2222322 i 2222
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CPUS GENERATE e e XSHAXHP,,,F

STAR5 PRIORITY 9 © SET HIGH P FOR NER TXN
MARK 2 ARRIVAL TINME
ASSIGN 1,5 CPU ID

‘TRANSFER « XSNEEAD, WWW5,RRRS
RRKS TKANSFER <X3PIN1,NIN15,RINTS

N e s ok ok koK OOK R ROk R oK Rk K

* *
* DATA IS IN DATA CACHE *
* *

LIS 2222222222 222222322

RIN15 ENTEER RID15 PUT TXN IN READ REQ BUFFER
USE MACRO DRP15,X$RDEX1 SEARCH AND READ CACHE
LEAVE RID1S FREE BUFFER
FINI MACRO
TRANSFER. ,STARS A NEW TXN
ek ok ok ook ok sk G dokoR ok AOKOR Kok K
* x
* DATA IS NOT IN CACHE *
* *

CER kR Rk kT R R KRR R RN AR KKK

¥IN15 ENTER RID15 PUT IN READ REQ BOUFFPER
USE MACRO DRP15, X$REX SEARCH DIRECTORY
PRIORITY 0 RESET PRIORITY
SEND MACRO RID15,ROK1,LBUS1,X3BEXN,BVSDKRY
TRANSFER «COMR TO COMMON CODE FOR READ

SRE Rk kK kk kR kKR kR kK kK
« *
* WRITE REQUEST TO CACHE#*
* *
CRRERE ARG ER RN AR R Rk Rk Rk

SWW5 ENTER SID15 PUT TXN IN WRITE REQ EUPFER
USE MiCRO DRP15,XSRDEX1 WRITE DATA IN CACHE
PRIOBITY 0 RESET TXN PRIORITY
SEND MACRO SID15,S0K1,LBUS1,X$BEX1,BV$DKS1
SPLIT 1,C0MW

FINI MACRO

TRANSFER +STARS A NER TXN

Fomem e —————— ————— ——— ————— -—

*
" 8 ®

* CONMNON CODE FOR READ REQUEST
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Ememmcccna—- - ————————— - - ——— ———

COMR ASSIGN
USE YACRO
SEND MACRO
Use MACRO
‘SEND MACRO
Use MACRO

TRANSFER
-JXIH2 -ASSIGN

SEND MACRO
USE MACRO
SEND NMACRO
USE KACRO
SEND MACRO
USE MACRO

TRANSFER
BIN3 ASSIGH

SEND MACRO
USE MACRO
SEND MACRO
USE _ MACRO
SEND HMACRO
USE MACRO

TRANSFER

11,0

KRP1, XSKEX
ROK1,RIK2,GBUS, X$BEXH, BVSKKR 12
KRP2,X$KEX
RIK2,RIR2,LBUS2, X$BEXH, BV $KRR2
KRP2, X$REX

«X$PIN2,NIN2,RIN2
11,0 '

RIR2,ROK2,LBUS2, X$SBEXY, BYSRKR2
KRP2,X $KEX
ROK2,RIK3,GBUS, X$BEXH, BV SKKR23
KRP3, X$KEX '
RIK3,RIR3,LBUS3, X$BEXN, BVSKRR3
RRP3, X$REX

«X$PIN3,NIN3,RIN3
11,0

RIR3,ROK3,LBUS3,XSBEXM,BVSRKR3
KRP3,X$KEX |
ROK3,RIK,GBUS, XSBEXN,BVSKKR 34
KRP4, XSKEX
BIKY4,RIRY, LBUSYL, X SBEXH, BYSKRRY
RRP4,X$REX

+«RINY

P, -——

*

CONVERSATIONAL MONITOR SYSTEM

*

e ———

- - B L T R T T T L

* READ DATA IS FOUND IN L(2)

*

B or ram e o o o e ———

RIN2 TRANSPER

.5,RRR21,RRR22
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SRk kk ke kb k ko

* *
* DATA IS IN D21 *
* *

SEARERRRRER R AR RRR TR RE R KR

BRR21 ASSIGN 11,0

SEND MACRO RIR2,RID21,LBUS2,X$BEXY,BVSEDR21
.USE MACRO DRP21,X$DEX2

SEND MACRO RID21,TOK2,LB0S2,X$BEX1, BVSDKT2

TRANSPER oRTF2

Sukk KRk kkk Rk kk kR Rk kR

* *
& DATA IS IN D22 *
* *
e e e ke e ofe ke e e ofe e e afe e ol ool e afe o ook g
BRR22 ASSIGN 11,0
SEND MACRO RIR2,RID22,LBUS2, X$BEXM, BVSRDR22
USE  MACRO DRP22,X$DEX2
SEND MACRO RID22,T0K2,LBUS2, X$BEX1,BV$DKT2

TRANSFER +RTF2

R Ar RAAOR A R ok

* *
* READ-THROUGH TO L (1) *
L] *

ek kb kR kR kR Rk Rk KRk

RTF2 ASSIGN 11,0
USE MACRO KRP2,X$KEX
SEND MACRO TOK2,TIK1,G6GBUS, X$BEX1,BVSRTOK2

CONVERSATIONAL MONITOR SYSTEXA

P —— - ————
]

* STORE DATA INTO L(1) AS RESULT OF A READ-THROUGH
*

Kevcmmnnm e e e —enr e e c e ream e e —-—————

STOR1 ASSIGN 11,0
USE MACRO KRP1,X$KEX
SPLIT T,FNSWICHNE,1
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TERMINATE
e e e e ok K OB BOR AR A Rk
* *
* RT STORE INTO DN *
* *
AR e ke Ok ARt ook o e K
WAR1Y NSSIGN 11,0
‘SEND MACRO TIKY,TID11,LBUS1,X$BEX1,BV3KDT11
USE MACRO DRP11,X$DEX1

TRANSPER « X$POVI,NOV11,0VL1Y
ROV11 LEAVE TID11

FINI MACRO

TRANSFER  ,STAR1
OVL11 SPLIT 1, 0VF11 , |
PINI NMACRO

TRANSPER  ,STAR1 . _ -
OVF11 ASSIGN 11,0

SEND MACRO fID11,00K1,LBUS1,X$BEXH,BV$DKO1

TRANSFER sOVL1

ek o K ke 4Ok Kk ok Aok oK B gokok kR

* *
* RT STORE INTO D12 *
* *

BRkR kR kKRR R kR R kR Rk kR

NWW12 ASSIGN 11,0
SEND HMACRO TIK1,TID12,LBUS1, X$BEX1,BVSKDT12
USE MACRO DRP12,X 3DEX1

TRANSFER «X3POVi,NOV12,0VL12
NOV12 LEAVE TID12 i

PINI MACRO
TRANSFER +STAR2
OVL12 SPLIT 1,0VF12

FINI BACRO
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TRANSFER +STAR2
OVF12 ASSIGN 11,0

SEND MACRO TID12,00K1,LBUS1,X$BEXM,BVSDKO1
TRANSFER  ,OVL1

ok ok ok ok kR Kok kR KRk kR

* *
* RT STORE INTO D13 *
x *

AR ok AR K R OR Rk ok ok

WHW13 ASSIGN 11,0
SEND MACRO TIK1,TID13,LBUS1,X$BEX1,BVEKDTI3
USE MACRO DRP13,X3DEX1
TRANSFER «X$POV1,NOV13,0VL13
NOV13 LEAVE TID13
FINI MACRO

TRANSFER +STAR3

OVL13 SPLIT 1,0VE13
FINI MACRO
TRANSFER  ,STAR3
OVF13 ASSIGN 1,0
SEND MACRO TID13,00K1,LBUS1,X$BEXN,BVSDKOI

__TKANSPER  ,OVL1

el el K e K ok e ROK Ok OK o Rk

* *
* RT STORE INTO D14 *
* x*

Rk kR kR kR kR kKR Rk Rk kR

WWH14 ASSIGN 11,0
SEND MACRO TIK1,T1D14,LBUS1, X3BEX1,BVSKDT14
USE MACRO DRP14,X$DEX
TRANSFER -X$POV1,NOV14,0VL 14
NOV14 LEAVE TID14
FINI MACRO

TRANSFPER +STARY
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.

OVL14 SPLIT 1,0VF 14
FINI MACRO
TKANSFER «STARU
OVF14 ASSIGN 11,0
SEND MACRO TID14,00K1,LBUS1,X$BEXM, BVSDKO1

TRANSFER OVL

e a8k ok o g ok %k ok ok ok i ok ook

* *
* RT STORE INTO D15 *
* *

Aok ek ok kK RO ROK ROk ok 0K ROk ok

WWH15 ASSIGN 11,0
SEND HMACRO TIKY,TID15,LBUS1,X$BEX1, BYSKDTIS
USE MACRO DRP15,X3DEX1

TEANSFER «X$POV1,NOVIS5,0VL1S
NOV1S LEAVE TID15

PINI MACRO

TRANSFER +STARS
OVL15 SPLIT 1,0VE1S
FINI MACKO

TRANSPER +STARS
OVP15 ASSIGN 11,0

SEND MACRO TID15,00K1,LBUS1,X$BEXH,BV$DKO1
TRANSFER ,OVL1

o RO K RO R K AOK ¥OK K okok dok ok

* *
* HANDLE OVF FROM L(1) *
* *

ok koo dk ok o e o ok ok ok ok ok ok ok ok kR ok

OVL1 ASSIGN 11,0

USE MACRO KRP1,X$KEX -

SEND MACRO 00K1,0IK2,GBUS,X3BEXM,BVSKKO 12
USE HACRO KRP2,X$KEX
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SERD MACRO ‘0IK2,0IR2,LBUS2,X$BEXM,BV$KRO2
USE MACRO | RRP2,X$REX

LEAVE 0IR2

TERMINATE
e n e r e oo e e e e e R E TN e P EC e e NRN CeE B EEe S ene®es s
* : L ]
*. BEAD DATA IS FOUND IN L(3) . L%
* *
. ‘ o

RIN3 TRANSFER  .5,RRR3%,RRR32

RERRBREEEKE R ERRRERRR TR EKE

* *
* DATA IS IN D31 *
* * .

IS R P P T Y

RRR31 ASSIGN 11,0

SEND MACRO RIR3,RID31,LBUS3,X$BEXM,BVSRDR3 1
~USE MACRO DRP31,X$DEXI

SEND MXCRO RID31, TOK3,LBUS3,X$BEX2,BVSDKT3

TRANSFER +RTF3

RREEE FRE Rk R R Rk PR xRk Rk kK

*® . *
* DATA IS IN D32 *
* *
e feae fese e afeofe afe e e o ¢ ofe e ot e ofe ol sjofe e e ofe

BRR32 ASSIGHN 11,0

SEED MACRC RIR3,RID32, LBUS3, X$BEXM, BVSRDR32
USE  MACRO DRP32,X$DEX3

SEND MACRO RiD32,TOK3,LBUS3,X$BEX2,BVSDKT3

TRANSPER +RTF3

e o a2l e ol e e e e e e e ok ok ok ke Kok ek
* *
* RT T0 L(1) AND L(2) =*

*® *

‘***t##ttt*##****##***###

RTP3 ASSIGN 11,0
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USE  MACRO KRP3,X$ KEX

TEST B BVS$ETOK3,1
ENTER T1K1
ENTER - TIK2 -
SEIZE G8USs -
ADVANCE X$BEX2
ASSIGY 4+,XEBEX2
RELEASE GBUS
LEAVE TOK3
SPLIT 1,STOR1
SPLIT 1,STOR2
TERMINATE :
t-------;;:-----------;-----------------4---------s-------------i
8 - L]
* STORE DATA INTO L(2) AS RESULT OF A READ-THROUGH *
* *
* - - .
STOR2 ASSIGN 11,0
USE  MACRO KRP2,X$KEX
SEND MACRO . TIK2,TIR2,LBUS2,X$BEX2,BVSKRT2

USE MACRO " RBP2,X3REX

SPLIT 1,0Vi2
TRANSFER  .5,55521,55522

3T PRI S PRI E AR S LD L2

* *
* STORE INTO D21 *
» *
SRR KRR E Rk RR KRRk R Rk
$5521 ASSIGN 11,0
SEND MACRO TIHé.TIDZ1,LBUSZ,X$BE!2,BV$RDT21
USE MACRO DRP21,X$DEX2
LEAVE TID21 i
TERMINATE
SESHERRE Rk R hR kR R AR RRRER h .
* *
® STORE INTO D22 »
* *

SRk kR Rk ke kdk kR

§8522 ASSIGHN 1,0
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SEND MACRO TIR2,TID22,LDUS2,X$BEX2,BVSRDT22
USE  MACRO DRP22,X$DEX2

LEAVE TID22
TERMNINATE

ERREE Rk kk kR kR Rkk
* *
* OVERPLOW HANDLING *
* : *
gk ok ok ok ok ok ok ok ok ok ok ok kokok

OVH2 TRANSPER .X$POV2,NOVL2,0V12

OVL2 TEST B BVSRKO2, 1 :
ENTER  OOK2 ,
SEIZE LBUS2
ADVANCE X$BEXN
ASSIGN 4+,XSUEXN
RELEASE  LBUS2
SEND NACRO 00K2,0IK3,GBUS, XSBEXN,BVSKKO23
USE  HACRO KRP3,X$KEX
SEND HMACRO 0IK3,0IR3,LBUS3,X$BEXM,BV$KRO3
USE  MACRO RRP3, X$REX
LEAVE OIR3

NOVL2 TERMINATE

B m e r e w e nc r Rt e e . SRR EENe Ceaen e aese ——-
*

% READ DATA IS FOUND IN L ()
*

* - ———

RIN4 TRANSFER «5,RRR41,RRRU2

LT R R e T T e Y P

* *

* DATA IS IN D41 *

x ) *

Bl e o oe sl ol e ae o e e e e sode e ok ek ke
RRR41 ASSIGN 11,0

SEND MACRO RIR4,RIDG 1, LBUSY, XSBEXM, BYSRDRY 1 )
USE  MACRO DRPY41,X$DEXY

SEND MACRO RID41,TOKY,LBUSY, X$BEX3,BVSDKTY

TRANSFER +RTFY
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T

. *
* DATA IS IN D42 ' *
* *

T T T Cos

|

RRR42 ASSIGN 11,0 ‘
L§END MACRO . RIRﬂ,RIDQZ,LBUS‘,X$BE!H,BV$BDRQ2
OSE MACRO DRP42,XSDEXY

SEND MACRO RID42,TOK4,LBUSY4,X$SBEX3,BVSDKTY

TRANSFER +RTFY

;tiit’#tt***##*####*t*tt#
. *
* RT TO L(1),L(2),L(3) *
% *

ESEREERERK KR REFRR e ek be R kR

RTF4  ASSIGH 11,0 .
USE MACRO KRPU,XSKEX . ' , ' -
TEST E BVSRTOKY, 1
ENTER TIK1
ENTER TIK2
ENTER TIK3
SELZE GBUS
ADVANCE X$BEX3
ASSIGN 4+,X$BEX3
RELEASE GBUS
LEAVE TOKY
SPLIT 1,STOR1
SPLIT 1,STCR2
SPLIT 1,STOR3
TERMINATE -
[ T T T T T T T T cme - cSoaeaes E
% . ]
¢ STORE INTO L(3) AS A RESULT OF READ-THROUGH ' .
* *
D e LT
STOR3 ASSIGN " 11,0 - .
USE  MACRO KRP3,X$KEX
SEND MACRO TIK3,TIR3,LBUS3,X$BEX3,BVSKET3
USE  MACRO ERP3,X$REX’
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.

SPLIT 1,0vi3
TRANSPER «5,55531,58832

AR R R RO R R Rk

* L]
* STORE INTO D31 *
* *

PREBE KRR KRR RRRERR R R R R kK&

55531 ASSIGN 11,0
SEND MACRO TIR3,TID31,LBUS3,X$BEX3,BVSRDT31
USE BACRO DRP31,X$DEX3
LEAVE TID31
- =--TERMINATE
okt Rk kA ok kR Rk Rk Rk Rk
* *
* STORE INTO D32 *
* *

kb k kA kg ke kR kk kkk kK kk

$SS32 ASSIGN n,0
SEND MACRO TIR3,TID32,L§US3,XSBEX3,BV$RDT32
USE MACRO DRP32,X$DEX3
LEAVE TID32
TERMINATE
L2222 R R S22 R a2 2 L]
E OVERFLOW HANDLING E

ke ko kk bk kR kkk kR kK

OVH3 TRANSFER «X$PCV3,NOVL3,0VL3

OVL3 TEST E BVSRKO3, 1
ENTER OCK3
SEIZE LBUS3
ADVANCE X$BE XM
ASSIGH 4+ ,X$BEXY
RELEASE LBUS3
SEND MACRO 00K3,0IK4,GBUS, XSBEXM, BVSKKO 34
USE  MACRO KRP4,X$KEX
" SEND MACRO OIK4,0IRU,LBUSY,X$BEXN,BYSKROU
USE MACRO RRPU,XSREX
LEAVE OIRY4
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HOVL3 TERMINATE

- *
* . ~ ‘ .
% COMMON CODE FOR STORE=-BEHIND *
COM¥ ASSIGN 11,0
USE MACRO kRP1.X¥KEX
SEND MNACRO SOK1,SIK2,GBUS, X$BEX1, BVSKKS 12
USE  HACRO KRP2,X$KEX |
SEND-- MACERO 51x2,sinz,nausz.xsanx1,avsxasz:
USE  MACRO RRP2,X$REX

TRANSFER +5,SWS21,5%Ws22

ERERE PR AR R Rk kokoh ok ke

*® x
® SB WRITE INTO D21 *
] *

L2222 1L R 2 i S PR LR L2 4

SKS21 ASSIGN 11,0
SEND MACRO SIR2,SID21,LBUS2, X$BEX1,BVSRDS2 1
USE  MACRO DRP21,X$DEX2
SEND MNACRO S1D21,S0K2,LBUS2,X$BEX2, BVSDKS2
' SPLIT 1,5TB23

ENTER AOK2

TRANSFER +ACK21

‘*#fﬁ#t**#**********##*#*

* *
* SB KRITE INTO D22 *
* *

SRE X SR e Rk Rk PR ERE R R kK KK

SWS22 ASSIGN 1,0

SEND MACRO SIR2;SIDZZ,LBUS2,X$BEX1,BV$R§SZZ

Use YACRO DRP22,X$DEX2

SEND MACRO $1D22,S0K2,LBUS2,X$BEX2,BVEDKS2
SPLIT 1,STB23
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ENTER AOK2
TRANSFER +ACK21

’
[ P PN Rppes SRS P e L L T T T PR

: STORE-BEHIND TO L (3) :
* : *
L e e L L DR cwa i
STB23 ASSIGN 1n,o

USE MACRO KBRP2,X$KEX

SEND MACRO SOK2,5SIK3,GBUS, X$BEX2,BVSKKS23

USE MACRO KRP3,X$KEX

S;;; MACRO SIK3,SIR3,LBUS3,X$BEX2,BVSKRS3

USE 'HACRO RRP3,X$REX

TRANSFER «5,5WS31,5Ws32

kR koK o ok o o ok i koK okok ok ok

* *
* SB WRITE INTO D31 *
* *

e e e el g ke ok ek ko okl koK ok K

SWS31 ASSIGN 11,0
SEND MACRO SIR3,SID31,LBUS3,X$BEX2, BVSRDS31
USE HACRO DRP31,X$BEX3
SEND MACRO SID31,S0K3,LBUS3,X$BEX3,BVSDKS3
SPLIT 1,STB34
ENTER AOK3

TRANSFER +ACK32

R A Ak R ORORK K AOK R R R

* *
% SB WRITE INTO D32 *
* *

SEERE KRR KRR R AR AR R ERRKE

SWS32 ASSIGN 11,0

SENRD MACRO SIK3,SID32,LBUS3,X$BEX2,BVSRDS32
ﬁSE MACRO DRP32,X$DEX3

SEND MACRO SID32,S0K3,LBUS3,X$BEX3, BYSDKS3
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SPLIT 1,STB3Y
ENTER AOK3
TRANSPER  ,ACK32

g;-;-,--_-,-__-_---------------------_---------------.-----.-.&-i

. STORE-BEHIND TO L (4) .
. *
P - - *
$TB34 ASSIGN 1,0

USE  HACRO KRP3 , X $KEX

SEND MACRO SOK3,SIK4,GBUS, X$BEX3,BVSKKS34

USE  MACRO KRPU, XSKEX |

SEND MACRO SIK4,SIR4,LBUSY,XSBEX3,BVSKRSH

USE  MACRO 'anpu.xsazx '

TRANSPER «5,5WS41,s0Ws42

SR EEREEEREEE R R RR Rk kKK

* *
* SB RRITE INTO D41 *
. ¥

(i3IS E2 222 R 242 L2

SHS41 ASSIGN 11,0

SEND MACRO SIR4,SIDU1,LBUSY, X$BEX3 ,BVSRDSH 1
USE  MACRO DRP41,X$DEXY \

"SEND MACRO SID41,A0K4,LBUS4, XSBEXM, BVSDKAY

TRANSFER +RCKU3

ok ol ok ok ok o o ok ok ki avkokokok kR ok

* *
¢ SB WRITE INTO D42 .
* *

ek ok ok e ke e e ok ol o s kok ek koK ok

SWS42 ASSIGN 11,0

SEND MACRO SIB“,SIDQé,LBUS“,X$BEX3,BV$BDS“2
USE M ACRO DRPQZ,X$DBXQA

SEND MACRO SIDQ2,AOK4.LBUS“.XSBBXH.PVSDKAQ

TEANSPER +ACK43
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® - cmowme -ee - ®
& R
* ACK PROM L(4) TO L(3) : .
3 »
L S L L L L L L T L Ty R L L T T e P Y L Y

ACK43 ASSIGN 11,0

USE  MACRO KRP4 ,X$KEX N

SEND MACRO AOK4,AIK3,GBUS, X$BEXM,BVSKKAL3

USE  MACRO KRP3,X$KEX

SEND MACRO AIK3,AIR3,LBUS3,X$DEXM,BVSKRA3

USE  MACRO REP3,X$SREX

BB Gk kb o &gkl ook o ook % kok
* *
* PORWARD THE ACK UP *
& *
‘tl’t*ﬁ**tt*tt*#*********.*

SEND MACRO AIR3,AOK3,LBUS3,X$BEXM,BVSRKA3 _ -

USE MACRO KRP3,X$KEX

SEND MACRO AOK3,AIK2,GBUS, XSBEXM, BVSKKA32

USE  HACRO KRP2,X$KEX

SEND MACRO AIK2,AIR2,LBUS2,X$BEXM,BVSKRA2

USE  MACRO RRP2, X$REX

LEAVE AIR2
TERMINATE

- -— — P
* &
* ACK FROM L(3) TO L (2) .«
] L ]
e L L L L L L L T L L T T T T P P e PRy, *x

ACK32 ASSIGN 11,0

USE  MACRO KRP3,X$KEX

SEND MACRO AOK3,AIK2,GBUS,X$BEXH,BVSKKA32

USE  HACRO KRP2, X$KEX

SEND MACRO AIK2,AIR2,LBUS2, X$BEXM,BVSKRA2
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RRP2,X$REX

AIR2,A0K2,LBUS2, X$BEXH,BVSRKA2

" ,ACK21

SO ——— ceccal

USE  MACRO
SEND MACRO

TRANSFER
*

* ACK PROM L(2) TO L(1)
®

% % "%

*

ACK21 ASSIGN

USE

SEND

USE

MACRO
MACRO
HACRO

SPLIT
TERMINATE

11,0

KRP2, X$KEX :
AOK2,AIK1,GBUS, X$BEXM, BVSKKA21

KRP1,XSKEX

1,FNSWICHA,1

PP

]

*

% ACK HANDLED BY D11 *

*

*

SRR A RN AR AR ERERR R SRRk KRk

" AAA11 ASSIGN

SEND

USE

MACRO
MACRO

LEAVE
TERMINATE

11,0
AIK1,AID11,LBUS1, XSBEXN,BYSKDA1 1
DRP11,X$REX

AID11

FEEREAREREAE AR R AR

-

*

* ACK HANDLED BY D12 %

L

*

SEREEEERERER R Rk SRR AR

AAA12 ASSIGN

SEND

USE

MACRO
¥ACRO

LEAVE
TERMINATE

11(0 N
AIK1,AID12,1BUS1,X$BEXN, BVSKDA12
DRP12,X$REX

‘AID12

SOBREREEKERESSERE SRR SR RER

* an
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* *
* ACK HANDLED BY D13 *
* *

RO o ok ok o ok ok ok o ok ok ok K ok

AAA13 ASSIGN 11,0
SEND MACRO AIK1,AID13,LBUS1,X$BEXM,BVEKDA13
USE MACRO DRP13, X$REX
- LEAVE AID13
TERMINATE
REERR O Rk Rk Kok oK Rk kKK
E ACK HANDLED BY D14 E

ook e ok ok e e e ok ok ok oo ok okok ok k

AARTY4 ASSIGHN 11,0
SEND MACRO AIK1,AID14,LBUS 1, X$ BEXH,BVYSKDALY
USE MACRO DRP14,XSREX '
LEAVE AID14
TERMINATE
N O ok o ok ok ok kR ko ok ok R Kok
; ACK HANDLED BY D15 3

Sk kkk ok kk xRk kkokokk koK

AAA15 ASSIGN 11,0
SEND MACRO AIK1,AID15,LBUS1,X$BEXN,BVSKDA1IS
USE MACRO DRP15,X$REX

LEAVE AID1S

TERMINATE
‘--- ............. - e B b e eb un & - A O G S-S G0 U S Gh 4D D WD P OP G5 U ED 4B Ok 5D a8 & - 5O b OB OB SR O aB . A W > W *
* *
* SIMULATION CONTROL *
x *

GENERATE X$TIMER
TERMINATE 1

START 1

END
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