
DESIGN AND IMPLEMENTATION OF

AN IBM ASSEMBLY LANGUAGE ASSEMBLER

™ \-

HONG KIEN ONG

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE
DEGREE OF

BACHELOR OF SCIENCE
COMPUTER SCIENCE AND ENGINEERING(N

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Tune 10807

© Hong Kien Ong 1930

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or
in part.

Signature of

~“ertified by

Accepted bv

Signature redacted
Department of Electrical Binet ind3 May 9, 19840

Signature redacted
Sfuart Eg Madnick

Signature redacted °

Author

Chairman, Departmental
David Adler

Committee on Theses

ARCHIVES
MASSACHUSETTS INSTITUTS

OF TECHNOLOGY

SEP 3 1980

 {BF i alFS

Design and Implementation of
an IBM Assembly Language Assembler

Hong
D
Alen Ong

Submitted to the Department of Electrical Engineering
on May 1980 in partial fulfillment of the requirements

for the degree of Bachelor of Science
in Computer Science and Engineering

ABSTRACT

ASSMBLR is an assembler for a subset of the IBM

System/370 assembly language. This assembler is coded in
PL/1. Rather than handling the complete instruction set of
the assembly language, ASSMBLR accepts a sufficiently large
subset to permit its use for teaching purposes. Since
ASSMBLR was designed in part to be used as a pedagogical tool
to demonstrate the workings of an assembler, emphasis was
placed on simplicity and clarity.

Thesis Supervisor: Prof. Stuart E. Madnick
Associate Professor of Management Science
M.I.T. Sloan School of Management

TABLE OF CONTENTS

CHAPTER

INTRODUCTION

NATURE AND FUNCTION OF AN ASSEMBLER

INSTRUCTION FORMATS AND TRANSFORMATIONS

DATA BASES1

i] DESCRIPTION OF PROGRAM

~

y CONSTRAINTS

7 CONCLUSION

APPENDIX

A IMPLEMENTED MACHINE INSTRUCTIONS

THE PROGRAM>]

~
ko EXEC USED TO EXECUTE ASSMBLR

J A USER'S GUIDE TO ASSMBLR

 BR A SAMPLE SESSION

PAGE

4

5

11

17

22

35

38

PAGE

40

43

4

25

~ 7

1 INTRODUCTION

ASSMBLR is an assembler designed to translate a subset

of the IBM System/370 Basic Assembly Language into machine

code. The program itself is written in PL/1. There are

several factors that provided the motivation for this

project. First, this mini-assembler could be used as an

example to illustrate the structure of assemblers in general.

Second, and more specifically, a working IBM machine language

simulator exists at M.I.T. Together with this simulator,

ASSMBLR could be used to actually run student programs in

assembly language on machines other than the IBM 360/374. In

fact, this assembler was written to be used on the Prime 400

minicomputer of the East Campus Computer Facility at M.I.T.

and was compiled using version 17.3 of the PL/1-G compiler on

the Prime machine.

In its current form, the program reads source assembly

language programs from a file and prints out the object deck,

a machine code listing in hexadecimal, on the user's

terminal. With slight modification, the output could be

diverted into a file and hence used as the source program for

the simulator.

2 NATURE AND FUNCTION OF AN ASSEMBLER

A machine language is a very low level language that

allows a programmer to work with the instructions that are

actually executed by the particular machine for which the

language was designed. Because of this, machine language

allows the programmer to control much of what he really wants

the machine to execute. At the same time, having to write in

a language that directly translates into a sequence of ones

and zeroes makes programming in machine language a very

tedious job. In machine language, the programmer could use

mnemonic names for the machine instructions, but he has to

explicitly compute all the addresses of the operands. This

is where the assembler becomes very useful.

An assembler is a program that accepts as input an

assembly language program, and converts it into the

corresponding program in machine language. The main benefit

of writing programs in assembly language is that the

programmer can now use symbolic labels and leave the

assembler to compute the actual addresses that correspond to

these labels. Yet, he does not have to sacrifice control

over the actual machine instructions to be executed,

something he would have to if he were to program in a higher

level language. Assembly language also permits the use of

symbolic constants which in machine language must be written

in the precise formats that directly correspond to their

representations in bits.

Besides converting programs from one language into

another, the assembler also recognizes certain instructions

that do not generate actual machine code. Rather, these

instructions provide control information to the assembler.

These instructions are called assembler instructions, as

distinct from machine instructions. There is a one-to-one

correspondence between machine instructions and the

operations that are executed by the machine. There is no

such correspondence for assembler instructions. Assembly

language also provides additional power to the programmer by

allowing him to refer to other program sections, the

addresses of which are not known to the programmer until

these programs have been loaded into the computer's memory.

2.1 Design Criteria

Throughout the design process, importance was placed on

producing a modular but compact assembler that could handle a

reasonably large set of instructions. The structure of this

assembler reflects that emphasis on modularity and clarity.

The costs and benefits of using table driven algorithms

were also considered. Because of the nature of an assembler,

a substantial amount of information was necessarily required

in one form or another, and it was decided that there was not

much benefit to be derived from trying to eliminate whatever

little additional table-stored information that is, strictly

speaking, redundant. For instance, eliminating the machine

length field in the machine Instruction Table could have

reduced the memory requirements for the table by about 300

bytes. However, it is uncertain that the additional

computation that would have had to be done, had this

information been deleted, would not have taken up that much

moamnY-vys ANIA
memory anyway.

As for the design of the overall structure and the

division of certain sections into separate routines, emphasis

was given to designing routines that were flexible and could

be applied to several similar but non-identical operations.

For instance, many of the the same routines were applied for

both literals implicitly defined as operands, and constants

defined through the DC and DS instructions. By paying

particular attention to modularity and functionality we have

attempted to make the program modular and readable but at the

same time avoid the proliferation of individual and

specialized routines.

2.2 Approach of Thesis

This thesis was arranged bearing in mind a reader who

has some familiarity with assembly languages and machine

languages in general, not necessarily those of IBM's System

360/378.

The section immediately following this briefly describes

the meanings of the assembler instructions that are accepted

by ASSMBLR. The various formats of the actual machine

instructions are described in Chapter 3. These descriptions

are not meant to be sufficiently detailed as to enable a

person to learn assembly language programming. Nonetheless,

they should provide enough detail to enable the reader to

read through the thesis without having to consult IBM

manuals. Next, in Chapter 4, we describe the databases that

are employed by ASSMBLR. These data bases contain both

static information such as those pertaining to the different

lengths and formats of the various instructions, and dynamic

information that is required to convert mnemonic addresses

into numerical values.

In Chapter 5 we come to the main body of the thesis.

This chapter describes the actual division of ASSMBLR into

the main procedure body and its internal and external

subroutines. The main actions taken by the ASSMBLR in both

passes are described. In Pass 1 the assembler primarily

collects all the symbolic definitions and stores them in the

appropriate tables, assigning numeric values whereever

necessary. In pass 2, ASSMBLR uses the tables to generate

the actual addresses in place of the symbolic references. It

also generates the actual object code in this pass. The

~

-

various subroutines perform various functions that can be

grouped as logical entities. The actual function of each of

the routines are described in this chapter. By Chapter 6 the

reader should have read enough to understand the operation of

this assembler. Hence this chapter describes the contraints

on the assembly language program that is to be given to

ASSMBLR as a source program. These contraints are by no

means exhaustive. They describe primarily the additional

contraints that are not imposed by the convention for the

full IBM Basic Assembly Language.

2.3 Scope of Thesis

Specifically, ASSMBLR accepts eight out of the full set

of assembler instructions permitted in IBM Basic Assembly

Language. These instructions are CSECT, USING, DROP, DC, DS,

EQU, LTORG, and END. CSECT and END are used to mark the

beginning and end of a program respectively. USING specifies

the use of a certain register as a base register, while drop

indicates that a particular register is no more available to

be used as a base register. EQU defines a correspondence

between a symbol and a value, that is, it defines the meaning

(or value) of a mnemonic symbol. DC instructions are used to

define various types of data that are to be included in the

object program, while DS instructions reserve storage space

in the object program. Finally, an LTORG instruction

instructs the assembler to generate data for all the literals

that have been used so far, or since the previous LTORG

instruction. Literals are similar to data defined by DC

instructions except that in this case the actual assignment

of memory for the data is handled by the assembler

10

3 INSTRUCTION FORMATS AND TRANSFORMATIONS

There are six different machine instruction formats in

the IBM Basic Assembly Language. Of these six, five are

implemented for (or recognized by) ASSMBLR. ASSMBLR also

accepts extended mnemonic instructions, but not floating

point instructions.

3.1 RR Format Instructions
Jed NR FULMGLLiiSbLULLLYLS

RR type instructions are instructions which take both

operands from registers. The machine instruction operand

format is R1,R2 and their bit representation is shown in

Figure 1. These instructions are two bytes long. In its

database, ASSMBLR encodes RR Type instructions as being of

type 1. There are two exceptions to this; they are the SPM

and SVC instructions. Although they both have RR Format,

their operand fields are slightly different from the other RR

instructions. The SVC instruction takes only one operand and

its bit representation is shown in Figure 2. This

instruction is encoded as type 2. The SPM instruction does

not have a second operand either. However, its sole operand

only takes up four bits, unlike the SVC instruction whose

operand takes up a whole byte. The SPM instruction is

recognized by ASSMBLR as a type 3 instruction and its bit

i 3

format is shown in Figure 3.

3.2 RX Format Instructions

RX machine instructions have the format R1,D2(X2,B2) or

M1,D2(X2,B2) in machine language. ASSMBLR recognizes these

instructions as being of type 4. The machine instruction for

RX format instructions is shown by Figure 4.

3.3 RS Format Instructions

RS format instructions have one of the following two

operand formats: R1,R3,D2(B2) or R1,M3,D2(B2). Both are

considered as type 5 instructions by our assembler. The

machine representation is shown in Figure 5. The RS format

instructions that are the exceptions to this rule are the

shift instructions, both the arithmetic shifts and the

logical shifts. These instructions are encoded as being of

type 6, and have the operand format R1,D2(B2) which is

represented in the machine as in Figure 6.

3.4 ST Format Instructions

SI format instructions are 4 bytes long and have the

operand fields D1(Bl),I2. Their actual machine

1 7

representation can been seen in Figure 7. They are Known as

type 7 instructions.

3.5 S Format Instructions

format instructions are not implemented for this

particular assembler. All instances of type S instructions

will be assembled as having '0@8' as their op-code.

S

3.6 SS Format Instructions

There are two different groups of SS instructions. One

group has the operand fields D1(L1,Bl),D2(L2,B2) and the

machine representation of Figure 8. The other has the

operand fields of type D1(L,Bl),D2(B2) and their machine

representation is shown in Figure 9. SS instructions are 6

bytes long. In ASSMBLR the first group is recognized as

being of type 8 and the second as being of type 9.

3.7 Illegal Instructions

Instructions whose mnemonics are not recognized by

ASSMBLR are treated as being illegal and they are assembled

as a series of zeroes.

13

3.8 Extended Mnemonics

These Instructions are mnemonics for conditional

branches and are actually equivalent to the BC or BCR

instructions. The various mnemonics correspond to different

branching conditions otherwise encoded as the first operand,

or mask value, of the BC or BCR instructions. ASSMBLR

converts these instructions into the full code for the BC or

BCR instructions, whichever happens to be appropriate.

[Op-Code] R1 | R2 |
3 7.8 11,12 15

Figure 1: RR Instructions

1l

[| svC 1 1 i
 71,8 71

Figure 2: SVC Instruction

[Op-Code RI [XXXXXXX]
J 7.8 11,12 15

Figure 3: SPM Instruction

|Op-Code| R1 | X2 | B2 | D2
J 7.8 11,12 15,16 19,20 31

Figure 4: RX Instructions

Op-Code] R1 [| R3/M3 | B2 | D2
3 7,8 11,12 15,16 19,20 31

Figure 5: RS Instructions

15

|Op-Code| R1 [XXXXXXX| B2 | D2
2 7,8 11,12 15,16 19,20 31

Figure 6: Shift Instructions

Top-Code] I 1T B2 TT D2]
2 7,8 15,16 19,20 31

Figure 7: SI Instructions

[Op-Code] L1 [| L2/I3 | B1 | D1 [B2 | D2
2 7,8 11,12 15,16 19,20 31,32 35,36 47

figure 8: SS1 Instructions

[Op-Code] Ll [B1 | D1 | B2 | D2 [
B 7.8 11,12 15,16 19,20 31,32 35,36 47rJ

Figure 9: SS2 Instructions

16

4 DATA BASES

The data bases used by the assembler can be roughly

jrouped into two separate types:

i) databases that contain information known before

execution of the assembler. These store information such as

the mnemonic names and op-codes of instructions. The values

stored in these data bases are done through the 'initial'

option of the declaration.

ii) databases that store information collected dynamically

during execution of ASSMBLR. Most of this information is

collected during Pass 1 of the assembler and used during Pass

2. An example of this is the information regarding the use

>f base registers and the contents of these registers.

1.1 Static Data Bases

A.1.1 Pseudo-Op Table (POT)

The Pseudo-0Op Table contains a list of pseudo-op

instructions recognised by ASSMBLR: DC, DS, LTORG, EQU,

CSECT, USING, DROP, END. This table is used to index into

the relevant blocks that contain the actions required for

cach of these pseudo-ops.

4.1 Zz Extended Mneumonic Table (EOT)

BOT (32)

17

2 NAME

2 TYPE

9 OP1

The Extended Op-code Table contains information on the

extended mnemonics for branching conditions: NAME has the

mnemonic names of the instructions. TYPE distinguishes

between the RR and RX format instructions. OPl contains the

values of the condition code masks corresponding to these

extended mnemonic instructions.

1.1 .3 Machine Instruction Table (MOT)

MOT (131)

) NAME

) TYPE

2 BIN CODE

MLEN

This table contains the name, type, binary code and

length of the relevant machine instructions. NAME uniquely

identifies the mnemonic name of the machine instruction. For

to each instruction, TYPE encodes the corresponding

instruction that enables us to form the actual machine

instruction. BIN CODE provides the corresponding binary

op-code for the machine instruction, while MLEN indicates its

length. This data base has some redundancy because the

instruction length could, in fact, be deduced from the

18

instruction type. However, we decided that it was worth

using a little more memory space in order to simplify the

process of computing the instruction length.

4.2 Dynamic Data Bases

4.2 4 Symbol Table (ST)

ST (100)

) SYMBOL

2 VALUE

2 RELOC

2 DEFN

SYMBOL NO

The symbol table maintains a list of the labels (SYMBOL)

used in the program, the location (VALUE) in which each label

is defined, its relocatability (RELOC), and the line where

the symbol was defined (DEFN). In addition, a variable

called SYMBOL NO is used to keep track of the total number of

labels in the symbol table.

4_) 5 Literal Table (LT)

1 LT (20)

/ LABEL

J VALUE

LT TOP

1 C

LT BOT

The Literal Table is similar to the Symbol Table except

it keeps track of the literals used (LABEL) and their

addresses (VALUE). Two variables, LT TOP and LT_BOT, are

also used to point to respectively the top and the bottom of

the Literal Table. The Literal Table is more complicated

than the Symbol Table in that literal definitions are not

explicit and hence the table has to be checked to ensure that

multiple references to the same literal do not result in

multiple entries unless a 'LTORG' pseudo-op separates the two

references. LT TOP keeps track of the top of the Literal

Table since the last 'LTORG' and LT BOT points to the bottom

of the table thus far.

4.2.6 LTORG Table (LTORG)

LTORG is an array that is used in conjunction with the

Literal Table. Each time an LTORG pseudo-op is executed, the

current index in the Literal Table is entered into LTORG.

This provides us with information on the relevant sections of

the Literal Table in between LTORG instructions. LTORGCis

used to indicate which entry of LTORG should be used at the

next LTORG pseudo-onp.

1.2.7 Base Register Table (BT)

BT(16)

D7

2

p

REGISTER

VALUE

BASE _NO

The entries in the Base Register Table are kept in

ascending order according to the contents of the registers.

Each structure entry has a register number and the contents

associated with the register. By having the registers sorted

in a linear order, it is easy for us to look for the

appropriate base register, i.e. the register which would

result in the smallest displacement for the instruction

operand address. BASE NO keeps track of the number of base

registers currently in use.

2°

5 DESCRIPTION OF PROGRAM

This section describes the actual working of the main

procedure, ASSMBLR, and its various external and internal

routines. Wherever possible, routines are made external.

This allows us to make changes in the main program without

having to recompile all the routines, thereby reducing

compilation time for the main program. The internal routines

are mostly those that make references to global variables.

5.1 Main Procedure

5.1 eo 1 Pass 1

The main function of Pass 1 is to build the Symbol

Table and the Literal Table, by associating numeric address

values to the mnemonic labels and literal definitions. The

value of a label defined in a machine instruction or a DS/DC

instruction is the value of the location counter at the point

the label appears in the name field. The location counter is

pre-adjusted for boundary alignment where necessary. For EQU

statements, the label value is the value of the expression in

the operand field. Therefore, the expression must only

contain constants, or symbols whose values have been

previously defined.

Literal definitions, on the other hand, are stored

DD)

without their address values until space is actually

allocated for them, either explicitly through a LTORG

instruction or implicitly upon execution of an END statement.

Multiple references to the same literal do not generate

multiple copies of that literal unless the references are

separated by LTORG instructions. In other words, literals

can only have address values that are greater than the

addresses of the instructions where these literals are

defined.

3. 1 .2 Pass 2

Pass 2 utilizes the tables formed in Pass 1 to

convert mnemonic labels and literal references into mnemonic

addresses relative to the start of the program. The other

primary function of Pass 2 is to generate the machine code.

Modularity is maintained in this section by having

separate routines perform the code generating functions.

MOTGEN is called when the instruction is a machine

instruction, EOTGEN is called for extended op-code

instructions, and LITGEN is called for literals and DC/DS

instructions.

When a USING instruction is executed, the particular

register referred to in the instruction is designated as a

base register, and its number is inserted into the Base

Register Table. The contents of the register is assumed to

23

be the value of the first operand in the USING instruction.

A DROP instruction does the exact opposite. It results in

the particular register being dropped from the Base Register

Table.

Execution of a LTORG statement or the END statement

causes ASSMBLR to call LITGEN to generate machine code for

all the literals, in the Literal Table, which have not been

generated into machine code by previous LTORG statements.

5.2 Internal Routines

5.2.1 EOTGEN

ROTGEN generates the output when the operator is an

axtended instruction.

5.2.2 MOTGEN

MOTGEN generates the output when the operator is a

nachine instruction.

5.2.3 LITGEN

LITGEN generates the output when the instruction is a DC

or DS pseudo-op. In the case of a DS pseudo-op, nothing is

really generated since only storage space is allocated.

LITGEN is also called when a LTORG or END pseudo-op is

executed. In this case LITGEN creates the output for all the

24

literals that have to be generated because of the LTORG or

END instruction.

5.2.4 EVAL

EVAL evaluates a given expression string and returns its

binary value. It also returns as a parameter the

relocatability of the expression and sets a flag if the

expression is illegal

5.2.5 MULTDIV

MULTDIV is primarily a routine that simplifies the task

of EVAL. It is called by EVAL to evaluate only expressions

that contain no '+' or '-' operators, and it returns the

value of the expression. It also checks for relocatability

2Yrors»

5.2.6 VAL

VAL is a routine that takes a character string and

passes back the value of the argument. If the argument

parameter is a character representation for a number, the

result parameter is set to the value of that number. If the

argument parameter is a symbol, the result is set to the

value of the symbol in the Symbol Table. If the argument

parameter is a '*', its value is the current value of the

location counter

25

5.2.7 SEPARATE FIELDS

SEPARATE FIELDS, as the name suggests, separates the

current instruction line into its label (LABEL FIELD),

instruction (INST FIELD), and operands (OP_FIELD). The

changes are done through global variables and no parameters

are passed.

5.2.8 LTGET

LTGET finds the entry of the given character string in

the Literal Table. It takes as a parameter the character

string representing the literal and returns the index to the

entry in the Literal Table. If the literal does not exist,

it returns a @.

5.2.92 LTSTO

LTSTO does the opposite of LTGET. Given a literal

string as parameter, it stores this literal in the Literal

Fable if no such entry exists since the last LTORG

instruction. If an identical literal is already stored in

the table, nothing is done.

5.2.10 STGET

STGET is very similar to LTGET, except it searches the

Symbol Table instead of the Literal Table. It takes as

parameter the character string representing the symbol and

276

returns the index of the entry in the Symbol Table. If the

symbol is not declared in the table, it returns a 0.

5.2.11 BRSET

BRSET is a routine that computes the base-displacement

format for a given address. The address could be an

expression or in base-displacement form. If the address is

already in base-~displacement form, all BRSET does is it takes

the base and displacement parameters which are passed to

BRSET as character strings, and converts them into their bit

string representations. If an expression is passed as the

argument, BRSET evaluates the expression, calls BRGET to find

the appropriate base register and converts both the base

register and displacement into the appropriate bit strings.

In addition, BRSET checks for relocatability errors.

5.3 External Routines

5.3.1 CVB

CVB 1s a general routine which converts a character

string that represents two hexadecimal digits into a bit

string that is eight bits long (a byte).

5.3 2 CHARGET

CHARGET is a utility routine that returns the EBCDIC

pr

8-bit representation for a given character argument. CHARGET

uses a table to find the representation that corresponds to

the given character.

Se 3.3 POTGET

POTGET is similar to LT GET and LTSTO, and returns the

index of its argument in the Pseudo-Op Table.

5.3.4 EOTGET

Like POTGET, EOTGET get searches a table, except in this

~ase the table searched is the Extended Instruction Table

(EOT) .

5.3.5 MOTGET

MOTGET searches the Machine Instruction Table for the

appropriate entry and returns the index corresponding to the

entry in the table. This routine uses a binary search

algorithm.

5 «3.6 BOUND

BOUND is a procedure that is used to align the location

counter to the appropriate address boundary. BOUND takes two

arguments: the location counter and the alignment count.

The location counter is set to the smallest value, larger

than or equal to the counter value, that is divisible by the

JR

alignment count.

5. 3,7 DLENGTH

The purpose of this routine is to calculate the

length of a literal or a constant. Given a character string

that represents a literal or a constant, DLENGTH will return

the length of the literal or constant, in bytes.

5.3.8 GET OPER

GET_OPER is used to separate the leftmost operand from a

list of operands. Given a parameter input of the operand

field, GET _OPER separates the first operand in the string and

truncates the input string to exclude the extracted operand

(and the following comma, if there is one). The resulting

operand is returned as a parameter.

5.3.9 GET LTRL

GET _LTRL is very similar to GET OPER except that it can

only be called when the leftmost operand in the input string

is a literal. GET LTRL then separates the leftmost literal

from the input string. The input string is truncated as is

the case with GET OPER.

5.3.10 PARSOP

PARSOP parses a string representing an address into

20

its base register, index register, and displacement fields if

these are explicitly stated in the operand. If the operand

is a simple expression without any parentheses, PARSOP does

not do anything to the string. If there are three components

in the input argument, they are broken up in A, B, and C

where A contains the displacement, B the index register, and

C the base register. If there are two compnents, C is

returned as a null string. If there is a comma within the

parentheses, indicating that a third argument is implicit,

that argument results in a null string being assigned to the

corresponding return parameter.

5.3.11 PARSLIT

PARSLIT parses a literal into its duplication

factor, type, modifier, and nominal value. Any missing

fields result in null strings being returned for the

corresponding fields.

he 3.12 NEXTOK

NEXTOK extricates that part of a given argument up

to but excluding the next operand. That is, it pulls out the

leftmost term in the expression. That term could be a

symbol, a self-defining term or a location counter reference

(*)

 MA

5.3.13 NEXTPLUS

This routine is only used by EVAL. Its function is

to separate the leftmost part of an expression, up to the

first '+' or '-' sign. The resulting expression is then

given to MULTDIV by EVAL.

5.3.14 REGDPNP

REGDROP performs most of what is required by the DROP

instruction. It removes the relevant base register from the

Base Register Table and makes the register no longer

available to be used as a base register. It is also used by

USING to clear the previous entry for a register that is

reassigned as a base register through the USING instruction.

5.3.15 BTSTO

In conjunction with REGDROP, BTSTO performs what is

required of a USING statement. It creates an entry in the

Base Register Table for the given register, and also stores

its value in the table. Note that this routine has nothing

to do with the actual contents of the register. All it takes

as the value of the contents is whatever value it is given in

the USING statement, regardless of whether the value is

correct or not.

21

5.3.16 BRGET

BRGET is the routine called by MOTGEN or EOTGEN

when either routine need to convert an address into

base-displacement format. BRGET does not actually compute

its base-displacement, it merely returns the number of the

register that should be used as a base register. If none are

available, it returns a 0

5.4 An Example

One of the major functions of an assembler is to compute

the value of expressions and convert these into numeric

addresses. In order to elucidate the process that ASSMBLR

goes through in this computation, let us now consider as an

example the instruction:

ST 4,HERE+A*6

where HERE is the label of an instruction, and A is a

constant defined through an EQU statement. Assume that in

this case HERE has a relative address of 30 and A has the

absolute value 4. Since there is neither a label nor a

literal definition, nothing much is done in Pass 1. In Pass

2, after this card is read, SEPARATE FIELDS is called, and it

sets LABEL FIELD to null, INST FIELD to 'ST', and OP FIELD to

 '"HERE+A*4!

39

After calling MOTGET to search the MOT, Pass 2

calls MOTGEN to generate the machine code. When MOTGEN is

called, it in turn callss GET OPER to separate the two

operands. Next MOTGEN calls EVAL to evaluate '4' and uses

its value, 4, as the first operand. Then MOTGEN goes on to

look at 'HERE+A*6'.

MOTGEN's first step in evaluating 'HERE+A*6' is to call

PARSOP to see if this is already in base-displacement format.

It is not, so PARSOP returns the whole expression to MOTGEN.

Next BRSET is called to convert the expression into

base-displacement format.

BRSET evaluates the expression by calling EVAL. EVAL

first calls VAL to get the value of 'HERE' and then calls

MULTDIV to get the value of 'A*6'., VAL is only called when

the term is an expression without any operators. MULTDIV is

called when the expression contains only '*' or '/!'

operators. VAL will return the address value 30 and MULTDIV

will return the value 24. EVAL adds the two and returns 54

to the calling procedure, BRSET.

BRSET uses this 54 and calls BRGET to select an

appropriate base register if there are any available. BRGET

returns the number of the base register to be used. Then

BRSET uses this to compute the displacement value and returns

both the base register and displacement values.

Finally, MOTGEN takes these values, arranges them in the

3

proper format, and prints out the machine code representation

that corresponds to this instruction. Part of the calling

sequence for this example is shown in Figure 10.

BESET

/ \
EVAL BRGET
/\

\
/ \

MULTDIV MULTDIV
JN

\

TAT,
/ \

VAL VAL

Figure 10: Calling Sequence

2A

6 CONSTRAINTS

ASSMBLR is implemented for a subset of the assembly

language for the IBM System 368/378. Therefore, there are

additional constraints imposed on programs meant to be

assembled by ASSMBLR.

6.1 General Program Structure

l. Only 1 control section is allowed and the first

instruction must be a CSECT.

2. Labels must start on column 1,

3. ASSMBLR implements the floating fields format. Hence the

various fields must be separated by 1 or more spaces between

fields.

4. There can be no spaces between operands or within

rperands.

5. No macros are allowed.

6.2 Instructions

Il. No floating point instructions are allowed.

2. No S format instructions are allowed.

3. Instruction op-codes must be mnemonic.

4. If an instruction operand field contains a literal, the

35

literal must be the last operand for the instruction.

5. Length attributes in SS instructions must be explicitly

inserted.

6.3 Expressions

l. Valid expressions are those in which constants (or

sel f-defining terms in IBM jargon) are written as decimal

integers. Signs are optional.

2. The allowed operators are +, / 2 1d Parentheses

are not allowed.

6.4 Constants and Literals

Le Only constants and literals of type C, X, B, F, H, A are

recognized.

2. Literals must start with the '=' symbol.

3. Symbol length attribute references are not allowed.

4. The duplication factor must be an unsigned decimal

integer, if one is used at all.

5. For type 'C' constants or literals, only a subset of the

full EBCDIC character set is implemented. Specifically,

quotes (') are not permitted.

6. Only one address can be specified within the parentheses

of an A type constant.

2A

/. For X type constants the number or characters enclosed in

quotes must be even. For B type constants, the number of

binary digits enclosed within the quotes must be an integral

multiple of 8.

8. Each constant must include a type attribute. For

example, DC F'7,8,9' should be written as

pc Fr'7',F'g!' F'O"!

37

7 CONCLUSION

ASSMBLR demonstrates that by using a high level language

it is possible to create a reasonably flexible machine

independent assembler. Planning in the form of careful

division of the program into highly utilized and highly

flexible modules is very important if complexity is to be

contained. Our approach was to design many of the modules

such that they were sufficiently flexible and they can handle

a reasonably large number of cases, yet care was taken to

ensure that these modules were not so generalized as to be

very complicated. This approach has enabled us to design and

implement an assembler that is reasonably flexible and yet

maintain program readability.

As a general rule, ASSMBLR can be used as an

example in the design of cross assemblers as well. The

target machine language and source assembly langauge need not

belong to the same machine. The necessary criterion that

will enable us to write a cross assembler is that we have a

table in which each valid assembler instruction in the source

language is mapped into a certain set of instructions in the

target machine language. No doubt such an assignment is

likely to be complicated by machine differences, such as

different numbers of registers, or different addressing

schemes. Yet, the same design principles applied to ASSMBLR

3R

~wvuld be extended to such a case in order to contain the

explosion of complexity.

AC

APPENDIX A

Implemented Machine Instructions

Instruction Name

Add
Add
add
Add
Add
Add
AND
AND
AND
AND
Branch and Link
Branch and Link
Branch on Condition
Branch on Condition
Branch on Count
Branch on Count

Branch on Index High
Branch on Index Low or Equal
Compare
Compare
Compare and Swap
Compare Decimal
Compare Double and Swap
Compare Halfword
Compare Logical
Compare Logical
Compare Logical
Compare Logical
Compare Logical Characters

Under Mask
Compare Logical Long
Convert to Binary
Convert to Decimal
Divide
Divide
Divide Decimal
Bdit
Edit and Mark
Exclusive OR
Exclusive OR
Exclusive OR
Exclusive OR
axXxecute

Mnemonic Type

A
AR
AP
AH
ALR
AL
NR
N
NI
NC
BALR
BAL
BCR
BC
BCTR
BCT
BXH
BXLE
CR
c
CS
CP
CDS
CH
CLR
CL
CLC
CLI
CLM

tl

CLCL
CvB
CVD
DR
D

DP
ED
EDMK
XR

X
XI
XC
EX

Fe

Insert Character
Insert Characters under Mask
Insert Storage Key
Load
Load
Load Address
Load and Test
Load Complement
Load Control
Load Hal fword
Load Multiple
Load Negative
Load Positive
oad Real Address
Monitor Call
Move
Move

Move Long
Move Numerics
Move with Offset
Move Zones

Multiply
Multiply
Multiply Decimal
Multiply Hal fword
OR
OR
OR
OR
Pack
Read Direct
Set Program Mask
Set Storage Key
Shift and Round Decimal
Shift Left Double
Shift Left Double Logical
Shift Left Single
Shift Left Single Logical
Shift Right Double
Shift Right Double Logical
Shift Right Single
Shift Right Single Logical
Signal Processor
Store
Store Character
Store Characters under Mask
Store Control
Store Halfword
Store Multiple

IC
ICM
ISK
LR
L
LA
LTR
LCR
LCTL
LH
LM
LNR
LPR
LRA
MC
MVI
MVC
MVCL
MVN
MVO
MVZ
MR
M
MP
MH
OR
0
OI
oC
PACK
RDD
SPM
SSK
SRP
SLDA
SLDL
SLA
SLL
SRDA
SRDL
SRA
SRL
SIGP
ST
STC
STCM
STCTL
STH
STM

x

4

»

.

y 1

Store then AND System
Mask

Store Then OR System Mask
Subtract
Subtract
Subtract Decimal
Subtract Hal fword
Subtract Logical
Subtract Logical
Supervisor Call
Test Under Mask
Translate
Translate and Test
Unpack
Nrite Direct
Zero and Add Decimal

STNSM

STOSM
SR
S
SP
SH
SLR
SL
SvC
™
TR
TRT
UNPK
WRD
ZAP

—y

:

42

APPENDIX B

B.l The Main Program

ASSMBLR: PROC OPTIONS (MAIN);

fhhkhhhhhhhkhhhkhhkhhhkhkhhkki Tt kk Fk kkkkkhhhhhkhkkk

* DATABASE DECLARATIONS *

khkhkhhdhdhhhhhhhhhhkhhhhhhkhhhkvrXrXrkXkhkhhhbFhhhdk"Fhkdhhkhhhk

DECLARE

POT (8) CHAR(5) VARYING STATIC EXTERNAL INIT(
'pc','Ds','LTORG' ,'EQU','CSECT','USING','DROP','END"),

OCL

1 EOT (32) STATIC EXTERNAL,
? NAME CHAR (5) VARYING INIT(

'B','BE','BER','BH','BHR"',
'BL','BLR','BM','BMR','BNE',
'BNER','BNH','BNHR','BNL','BNLR"
'BNM','BNMR','BNO','BNOR','BNP',
'BNPR','BNZ','BNZR','BO','BOR"',
'BP','BPR','BR','BZ','BZR"',
NOP','NOPR'),

'YPE BIT (1) ALIGNED INIT(
'1'B,'1'8,'0'B,'1'8,'0"'B,
'1'B,'9'B,'1'B,'8'B,'1'B,
'g'B,'1'B,'9'B,'1'B,'d"'B,
‘1'B,'9'B,'1'B,'2'B,'1'B,
'g'B,'1'B,'9'B,'1'B,'0"'B,
'1'B,'9'B,'0'B,"'1'B,'0"'B,
'1'B,'0'B),
OP1 BIT (4) INIT(
'1111'B,'1000'B,'1000'B,'0010'B,"'0010"'B,
'@g190'B,'0100'B,'0100'B,'0100'B,'4111"'B,
'g111'B,'1101'B,'1101'B,'1011'B,'1011"'B,
'1911'B,'1911'B,'111¢'B,'1110'B,'1101'B,
*11¢1'B,'9111'B,'9111'B,'0001'B,"'0001"'B,
'¢g010'B,'0010'B,'1111'B,'1000'B,'1000'B,
9000 'B,'0000'B) ;

J

| MOT (131) STATIC EXTERNAL,
NAME CHAR(5) INIT(
'A','AH','AL','ALR','AP"',
'AR','BAL','BALR','BC','BCR',
‘BCT','BCTR','BXH','BXLE','C’,
CDS','CH','CL','CLC','CLCL",

‘cL1','CLM','CLR','CLRIO','CP',

473

)

ICR! ’,'CS 1

DB IiDR! HED", |EDNK” yo!RE ED','EDMK' ' RIG K','EX'

Le! , LM! ", ch r LCR", {cir
‘LR! ,! LRA' Dg LIER ta i’
ot vin / LTR','M' Laat ’

GA Ele INC',! ' ,'MVO' YM ’ Ne
'NC','NI','NR'," JY'0I','0R',"P ol roc
TB is !'SIGP! ,! 510° 4 Mog je gySoa ie ,'SIOF' ‘SL os
$ ' LDL','SLL" {lp

| it ’ LL','SLR','SP'

SRA", {SRDA® | SRDL} , SRI onSSK! ,' SSM! ' ore SRL'STCK' , "STC ,'ST','STAP',' aoe?
'STIDC Joitkh ','STCM' 'S STSTPT'.'ST IDP','STM' ," Ton roa

'WRD','X" y} IRT! ,' TS! ro 738, |

ZAP'), XC', "XI" ar
TYPE FI |

XED B
De Lat IN(15) INIT (

EEE2 1, 5, 5, 4,

7,5,1,14,8
1,5,4 2,
3 rr 4, 4,
ort 9,9,4,,10,4,5,10

L,4,4,1,5,Lr 5,1,1,140,2818)21201: 9: 24
J12430%: 5s7,1,4,9,

113 8,14,7,
: ro 190,10,4

2s 010s 108s
is, 2,10,10,15,6,6,6,8,rte ,4,10,4,
La 19,5,5,4,
5 19,5,7,7,
; (10,3,10,107,9,9,18,8,112:9: 7424

3

12

J BIN CODE BIT (8) INIT(
'SATB4,'4A'B4,'5E'B4,'1E'B4, 'FA'B4,
'1A'B4,'45'B4,'@5'B4,'47'B4,'07" 'B4,
'46'B4,'06'B4,'86'B4,'87'B4,'59'B4,
'BB'B4,'49'B4,'55'B4,'D5'B4,"dF'B4,
'95'B4,'BD'B4,"'15'B4,'00'B4, 'F9'B4,
'19'B4,'BA'B4,'4F'B4,'AE'B4,5D'B4,
FD'B4,'1D'B4,'DE'B4,'DF'B4,'44'B4,

'g@'B4,'00'B4,'43'B4,'BF'B4,'00 'B4,
'g9'B4,'58'B4,'41'B4,'13'B4,'B7'B4,
'48'B4,'98'B4,'11'B4,'10'B4,'00'B4,
'18'B4,'B1'B4,'12'B4,'5C'B4,'AF'B4,
'4C'B4,'FC'B4,'1C'B4,'D2'B4,'OE'B4,
'92'B4,'D1'B4,'F1'B4,'D3'B4,'54'B4,
'D4'B4,'94'B4,'14'B4,'56'B4,'D6'B4,
'96'B4,'16'B4,'F2'B4,'00'B4,'85'B4,
'g@'B4,'5B'B4,'00'B4,'00'B4,AB'B4,
‘AE'B4,'00'B4,'00'B4,'5F'B4,'8B'B4,
'8F'B4,'SD'B4,'89'B4,'1F'B4, 'FB'B4,
'90'B4,'04'B4,'00'B4,'00'B4,"1B'B4,
'8A'B4,'S8E'B4,'8C'B4,'88'B4,'F@'B4,
'98'B4,'00'B4,'50'B4," 00 'B4, 42 'B4,
'@0'B4,'00'B4,'BE'B4,'B6'B4,40'B4,
'90'B4,'00'B4,'90'B4,'AC'B4,'AD'B4Y,
'9p'B4,'00'B4,'GA'B4,'00'B4,00'B4,
'91'B4,'DC'B4,'DD'B4,'0¢'B4, 'F3'B4,
'84'B4,'57'B4,'D7'B4,'97'B4,'17'B4,
'F8'B4),
MLEN FIXED BIN(15) INIT(
1,4,4,2,6,
2,4,2,4,2,
4,2,4,4,4,
1,4,4,6,2,
4,4,2,4,6,
2,4,4,4,4,
6,2,6,6,4,
4,4,4,4,4,
2,4,4,2,4,
4,4,2,2,4,
2,4,2,4,4,
1,6,2,6,2,
4,6,6,6,4,
5,4,2,4,6,
4,2,6,4,4,
4,4,4,4,4,
4,4,4,4,4,
4,4,4,2,6,
4,2,4,4,2,
4,4,4,4,6,
2,4,4,4,4,

)

15

4,4,4,i444,4,4,2,4,4,1,6,6,4,6,1,4,6,4,2,rr

5);

JCL

1 ST(109),
2 SYMBOL CHAR(8),
2 VALUE FIXED BIN (31),
2 RELOC BIT(1),

2 LEN FIXED BIN (15),
2 DEFN FIXED BIN (31),

SYMBOL NO FIXED BIN (15),

LT (20),

2 LABEL CHAR (1@) VARYING,
2 VALUE FIXED BIN (31),

LT TOP FIXED BIN (15),
LT BOT FIXED BIN (15);

SCL 1 BT(16) STATIC EXTERNAL,
2 REGISTER FIXED BIN(15),
2 VALUE FIXED BIN (31),

BASE NO FIXED BIN (15) STATIC EXTERNAL;

DCL LTORG (5) FIXED BIN (15),
LTORG C FIXED BIN (15);

JhhkkkhkkThhhhhkhkhkhhkxkkr
* OTHER DECLARATIONS
kkdkhkkhkhkhkhhhhhhhhhhkhdkhhkkks

- - Ae se

Tkkokokkkokkok
*

SEE BO

DCL CVX ENTRY (BIT (*) ,CHAR(*) VAR,FIXED BIN),
GET OPER ENTRY (CHAR (*) VAR,CHAR(*) VAR),
GET LTRL ENTRY (CHAR (*) VAR,CHAR(*) VAR),
BOUND ENTRY (FIXED BIN,FIXED BIN),
POTGET ENTRY (CHAR (*) VAR) RETURNS (FIXED BIN),
EOTGET ENTRY (CHAR (*) VAR) RETURNS (FIXED BIN),
MOTGET ENTRY (CHAR (*) VAR) RETURNS (FIXED BIN),
DLENGTH ENTRY (CHAR (*) VAR) RETURNS (FIXED BIN),
NEXTOK ENTRY (CHAR (*) VAR,CHAR(*) VAR),
NEXTPLUS ENTRY (CHAR (*) VAR,CHAR(*) VAR),
PARSLIT ENTRY (CHAR (*) VAR,CHAR(*) VAR,CHAR(*) VAR,

CHAR (*) VAR,CHAR(*) VAR),
PARSOP ENTRY (CHAR (*) VAR,CHAR(*) VAR,CHAR(*) VAR,

CHAR (*) VAR),
REGDROP ENTRY (FIXED BIN (15)),
BTSTO ENTRY (FIXED BIN(15),FIXED BIN(15)),
BRGET ENTRY (FIXED BIN(15) ,FIXED BIN (15))

14

RETURNS (FIXED BIN(4)),
CVB ENTRY (CHAR (*)) RETURNS (BIT (8)),
CHARGET ENTRY (CHAR (*)) RETURNS (BIT (8));

DCL INDATA EXTERNAL FILE;

DCL PS BIT (1),

INPUT (208) CHAR (80) VARYING,
CARD NO FIXED BIN(15),
CARD CHAR(80) VARYING,
LINE NO FIXED BIN(15),
LABEL FIELD CHAR(8) VARYING,
INST FIELD CHAR (5) VARYING,
OP FIELD CHAR(8#) VARYING,
(0P,0P1,0P2,0P3) CHAR(80) VARYING,
LIT CHAR (80) VARYING,
T CHAR (1) VARYING,
FLAG BIT(l),
TVAL FIXED BIN (15),

IND FIXED BIN(15),
(I,J) FIXED BIN(15),
LC FIXED BIN(15),
L FIXED BIN(15),
RELOC BIT (1),

(FOUND, FIRST) BIT(1l),
‘REGVAL,REGNO) FIXED BIN (15);

DCL LF CHAR(2) VARYING;

Jrhkhkkkhkkhhhhhhkkhhdhhdkhtba
* OTHER INITIALIZATIONS
khhkhhkhhkhkhhohhhhkkikhhkkds +" °°

Cr trek kkkRkhhkkk

*

TTT TT hdd ata de fede geo ek

ON ENDFILE (INDATA)
BEGIN;

CARD NO = 1 - 1;

I = 200;

END:

SYMBOL NO = @;
LT TOP = §;
LT BOT = 0;

BASE NO = 0;

PS = '0'B:

fhhhkkhkhhhkkhhkkt, +
* PASS 1
kkkkkkk+hs!

TTR kk kk Rh AkAkkhkhkhkhkhkhkkrhhhkhkhkhkhkhkhkkhkkrhkhkhhk

. - eg iF J Lo

*

.

a

DO I = 1 TO 200;
GET FILE (INDATA) EDIT(INPUT(I)) (A);

END

LC = 0;

DO LINE NO = 1 TO CARD NO;

CARD = INPUT (LINE NO);
IF SUBSTR(CARD,1,1)="'*' THEN GOTO NEXTI1;

CALL SEPARATE FIELDS;
I = POTGET (INST FIELD);
GOTO PLAB1(I);

PLAB1(@): /*MACHINE OR EXTENDED INSTRUCTION%*/

I = EOTGET (INST FIELD);
IF I"=@ THEN

IF (EOT(I).TYPE) THEN L=4;
ELSE L = 2;

ELSE DO;
I = MOTGET (INST FIELD);
IF I=@¢ THEN PUT SKIP LIST

ELSE L = MOT(I) .MLEN;
END;
CALL BOUND (LC, 2);

IF LABEL FIELD “= '' THEN DO;
SYMBOL NO = SYMBOL NO + 1;
ST (SYMBOL NO) .SYMBOL = LABEL FIELD;
ST (SYMBOL NO) .VALUE = LC;
ST (SYMBOLNO).RELOC='1'B;
ST (SYMBOLNO).DEFN=LINENO;

END:

OPl = '';
OP2 = ''.
OP3 = ''.

CALL GET OPER (OP_FIELD,OPl);
IF OP_FIELD "= '' THEN CALL GET OPER(OP _FIELD,OP2);
IF OP_FIELD "= '' THEN CALL GET OPER (OP_FIELD,OP3);
[F OP3 "= '' THEN —

IF SUBSTR(OP3,1,1)="=' THEN DO;
CALL LTSTO (OP3);
IF SUBSTR(OP2,1,1)='=' THEN PUT LIST('ERROR');

END;
ELSE:

48

ELSE IF OP2"='' THEN
IF SUBSTR(OP2,1,1)='=' THEN

CALL LTSTO (OP2);

LC = LC + L;

GOTO NEXT1;

PLAB1(l):; /*DC INSTRUCTION*/
PLAB1(2): /*DS INSTRUCTION*/

L = 0;

FIRST = '1'B;

DO WHILE (OP FIELD “='");
CALL GET LTRL(OP_FIELD,OP);
FOUND = '0'B;
DO I = 1 TO LENGTH (OP) WHILE ("FOUND);

T = SUBSTR(OP,I,1);
IF INDEX ('CFHXBA',T)=@¢THEN FOUND =

END;
IF (T='A'|T='F') THEN CALL BOUND (LC,4);
IF T='H' THEN CALL BOUND(LC,2);
[F (FIRST & (LABEL FIELD “"='')) THEN DO;

SYMBOL NO = SYMBOL _NO + 1;

ST (SYMBOL NO) .SYMBOL = LABEL_FIELD;
ST (SYMBOL NO) .VALUE = LC;
ST (SYMBOLNO).RELOC='l1'B;
ST (SYMBOLNO).DEFN=LINE_NO;
FIRST = '@'B;

END;
LC = LC + DLENGTH (OP);

END;

GOTO NEXT1;

PLAB1 (3): /*LTORG PSEUDO-OP*/

IF LT TOP<LT_BOT THEN
DO I = (LT TOP + 1) TO LT_BOT;

LIT = SUBSTR(LT(I).LABEL,2);

FOUND = '0'B;
DO J = 1 TO LENGTH(LIT) WHILE ("FOUND);

T = SUBSTR(LIT,J,1);
IF INDEX ('CFHXBA',T) "=@ THEN FOUND = '1'B;

END;
IF (T='A'|T='F') THEN CALL BOUND(LC,4);
[F T='H' THEN CALL BOUND (LC,2);
LT (I) .VALUE = LC;
LC = LC + DLENGTH(LIT);

TNT)

A0

LT TOP = LT BOT;
LTORG C = LTORG C + 1;

LTORG (LTORG_C) = LT TOP;
30TO NEXT1;

PLAB1 (4): /*EQU PSEUDO-OP*/

TVAL = EVAL (OP_FIELD,RELOC, FLAG);
I = STGET (LABEL FIELD);
IF I=¢ THEN DO;

SYMBOL NO = SYMBOL _NO + 1;
I = SYMBOL NO; -

ST (I) .SYMBOL = LABEL FIELD;
ST(I).VALUE = TVAL;
ST (I) .RELOC = RELOC;
ST(I).DEFN = LINE NO;

END;
ELSE PUT SKIP LIST('LABEL DUPLICATED:',LABEL FIELD);

GOTO NEXT];

PLAB1 (5): ; /*CSECT PSEUDO-OP*/
PLAB1 (5) :; /*USING PSEUDO-OP*/
PLAB1 (7): /*DROP PSEUDO-OP*/

GOTO NEXT];

PLAB1 (8): /*END PSEUDO-OP*/

IF LT _TOP<KLT BOT THEN
DO I = (LT _TOP + 1) TO LT BOT;

LIT = SUBSTR(LT(I).LABEL,2);

FOUND = '0'B;
DO J = 1 TO LENGTH(LIT) WHILE ("FOUND);

T = SUBSTR(LIT,J,1);

IF INDEX ('CFHXBA',T) "=¢ THEN FOUND =
END;
IF (T='A'|T='F') THEN CALL BOUND (LC, 4);
[F T='H' THEN CALL BOUND (LC,2);
LT (I).VALUE = LC;

LC = LC + DLENGTH(LIT);

END;
LT _TOP = LT BOT;

LTORGC= LTORG C + 1;
LTORG (LTORG_C) = LT TOP;

NEXT1:
END:

JrEEI KEE
* PASS 2

RhkT

'1'B:

Lhd hdhdhhdk &

50

kkkkkhkkkkhhkbddhkhhhhhhhhhkhhhhdhdhddhdddhhhhhhhhhhhhhkrkkdk /

PUT SKIP EDIT ('LOC','OBJECT CODE','STMT','SOURCE STATEMENT')
(X(2),A,X(2) A, X(8),A,X(3),A);

PUT SKIP;

LTORGC= 1;
LT TOP = 0;
LT BOT = LTORG(1l);

LT TOP = 0;
LC = 0;

DO LINE NO = 1 TO CARD _NO;

CARD = INPUT (LINE NO);
IF SUBSTR (CARD,1,1)='*' THEN DO;

PUT SKIP EDIT (LINE NO,CARD) (X (26) ,F(4),X(1),A);
GOTO NEXT2;

END:

CALL SEPARATE FIELDS;
I = POTGET (INST FIELD);
GOTO PLAB2(I);

PLAB2 (0): /*MACHINE OR EXTENDED INSTRUCTION®*/

I = EOTGET (INST FIELD);
IF I”=¢ THEN DO;

IF (EOT(I).TYPE) THEN L=4;
ELSE L = 2;

CALL BOUND (LC,2);
CALL EOTGEN(I,OP FIELD);

END;
ELSE DO;

I = MOTGET (INST FIELD);
LL = MOT (I) .MLEN;
CALL BOUND(LC,2);
CALL MOTGEN(I,OP FIELD);

END

LC = LC + L;

GOTO NEXT2;

PLAB2(1):; /*DC INSTRUCTION*/
PLAB2(2): /*DS INSTRUCTION?*/

IND = I;

L = @;
FIRST = '1'B:

x1

DO WHILE (OP FIELD "='');
CALL GET LTRL (OP FIELD,OP);
FOUND = "9 'B; —

DO I = 1 TO LENGTH (OP) WHILE ("FOUND);
T = SUBSTR(OP,I,1);
IF INDEX ('CFHXBA',T) "=0 THEN FOUND = '1'B;

END;
IF (T='A'|T='F') THEN CALL BOUND (LC,4);
[F T='H' THEN CALL BOUND (LC,2);
CALL LITGEN(OP,'@'B);
LC = LC + DLENGTH(OP);

END;

GOTO NEXT2;

PLAB2(3): /*LTORG PSEUDO-OP*/

PUT SKIP EDIT (LINE NO,CARD) (X (26) ,F(4),X(1),A);
IF LT TOP<KLT BOT THEN

DO I = (LT TOP + 1) TO LT_BOT;
LIT = SUBSTR(LT(I).LABEL,2);

FOUND = '0'B;
DO J = 1 TO LENGTH(LIT) WHILE (FOUND);

T = SUBSTR(LIT,J,1);

IF INDEX ('CFHXBA',T) "=@ THEN FOUND = 'l1'B;

END;
IF (T='A'|T='F') THEN CALL BOUND(LC,4);
[F T='H' THEN CALL BOUND (LC,2);
CALL LITGEN(LIT,'l'B);
LC = LC + DLENGTH(LIT);

END;
LT TOP = LT BOT;

LTORGC= LTORG_C + 1;
LT BOT = LTORG(LTORG_C);
GOTO NEXT2;

PLAB2(4):; /*EQU PSEUDO-OP*/
PLAB2(5): /*CSECT PSEUDO-OP*/

PUT SKIP EDIT (LINENO,CARD)(X(26),F(4),X(1),A);
GOTO NEXT?2;

PLAB2(6): /*USING PSEUDO-OP*/
CALL GET OPER (OP_FIELD,OPl);
CALL GET OPER (OP_FIELD,OP2);
REGVAL = EVAL (OP1,RELOC, FLAG);
REGNO = EVAL (OP2,RELOC, FLAG);
CALL BTSTO (REGNO,REGVAL);
PUT SKIP EDIT (LINE NO,CARD) (X (256) ,F(4),X(1) ,A);
GOTO NEXT2; -

PLAB2(7): /*DROP PSEUDO-OP*/
CALL GET OPER (OP _FIELD,OPl);

52

I = EVAL (OP1l,RELOC,FLAG);

CALL REGDROP (I);
PUT SKIP EDIT (LINE NO,CARD) (X (26) ,F(4),X(1) ,A);
GOTO NEXT2;

PLAB2(8): /*END PSEUDO-OP*/

PUT SKIP EDIT (LINE NO,CARD) (X (26) ,F(4),X(1),A);
IF LT TOP<LT_ BOT THEN
DO I = (LT TOP + 1) TO LT BOT;

LIT = SUBSTR(LT(I).LABEL,2);

FOUND = '0'B;
DO J = 1 TO LENGTH(LIT) WHILE ("FOUND);

T = SUBSTR(LIT,J,1);
IF INDEX ('CFHXBA',T) "=@ THEN FOUND = 'l1'B;

END;
IF (T='A'|T='F') THEN CALL BOUND(LC,4);
IF T='H' THEN CALL BOUND(LC,2);
CALL LITGEN(LIT,'1'B);
LC = LC + DLENGTH(LIT);

END;
LT TOP = LT_BOT;

NEXT 2:
END:

Jhhhhhhhhkhhh hhh hhh hhhhhhhkhhhhhhhhhhhhhhhhhhhkhhkhhhhkhhh
* SEPARATE FIELDS SEPARATE THE CURRENT INPUT IN 'CARD' INTO *
* THREE FIELDS: 'LABEL FIELD', 'INST FIELD', 'OP FIELD’ *
kkhhkhhkhhkhhhhkkkkkk+d+7bhhhhhhhhhkhhRKARRAhXkkkThhkhhhkhkhhrkk/

SEPARATE FIELDS: PROCEDURE;

DCL I FIXED BIN(15),
TCARD CHAR(80) VARYING;

LABEL FIELD = '';
INST FIELD = '';
OP FIELD = '';
TCARD = CARD;

[= INDEX (TCARD,' ');
IF I>9 THEN PUT SKIP LIST ('LABEL TOO LONG');
[F I>1 THEN DO;

LABEL FIELD = SUBSTR(TCARD,1,I-1);
TCARD = SUBSTR(TCARD,I);

END;
DO WHILE (SUBSTR(TCARD,1,1) = ' ");

TCARD = SUBSTR (TCARD, 2);
PND

<2

I = INDEX(TCARD,' '");
IF I>6 THEN PUT SKIP LIST ('INST TOO LONG');
IF I=¢ THEN DO;

INST FIELD = TCARD;
TCARD = '';

END;
ELSE DO;

INST FIELD= SUBSTR(TCARD,1,I-1);
TCARD = SUBSTR (TCARD, I);

END;

DO WHILE (INDEX (TCARD,' ')=1);
TCARD = SUBSTR (TCARD, 2);

END;
I = INDEX(TCARD,' ');
IF I=¢ THEN OP_FIELD = TCARD;

ELSE OP_FIELD = SUBSTR(TCARD,1,I-1);

END SEPARATE FIELDS;

 hhh kkk hhh kkk hhh hhh hhh hhh hhh hhh ARIA IRA RK III Ahhh hk hhh hhh kkk

* LTGET GETS THE INDEX OF CHAR STRING 'X' IN THE LITERAL ¥
* TABLE. *
khkhhkhkkhhkhdr

LTGET: PROCEDURE (X) RETURNS (FIXED BIN (15));

DCL X CHAR (*) VARYING,
I FIXED BIN(15),
FOUND BIT (1);

FOUND = '0'B:

IF LT BOT=@ THEN RETURN (9);
DO I = (LT _TOP+l) TO LT BOT;

IF LT(I).LABEL = X THEN RETURN(I);

END;
RETURN (0) ;

END LTGET;

frhkhhhhhkhdhhhhhhhhhhhhhhhhhkhhhhhhhhkhhhhhhhhhhhhhkkkhhhkhkk
* LTSTO STORES A NEW LITERAL IN THE LITERAL TABLE IF IT
* DOES NOT ALREADY EXIST WITHIN THE CURRENT SCOPE *

* (I.E. SINCE THE PREVIOUS LTORG INSTRUCTION).
kkkhkhhkhkhkhhAhkhkhkhkhhhkhkhhkhkkdrA RRA Rkhkkhhhkhhk i Co

5A

LTSTO: PROCEDURE (X);

DCL X CHAR(*) VARYING,
I FIXED BIN(15);

I = LTGET (X);
IF I = @ THEN DO;

LT BOT = LT BOT + 1;
LT (LT_BOT) .LABEL = X;

IND;
RETURN;

END LTSTO:;

frrkkkkhkkkkhkhkhkkkkkkhhhkhkkdhkkkkhkkkhkhhkhkhhirk~ Fhkhkkhkkhkhkkhkhkkkkkhk
* STGET GETS THE INDEX OF ITS ARGUMENT IN THE SYMBOL TABLE. *

* IF THE ARGUMENT IS NOT IN THE TABLE, IT RETURNS A 4. *
EEEEE EEELEREELEEEEEREEESEEEEEEEEE ESSE IEEREESEEEEELEEEEEESEI

STGET: PROCEDURE (ARG) RETURNS (FIXED BIN (15));

DCL ARG CHAR (*) VARYING,
PLACE FIXED BIN(15),
I FIXED BIN(15),
FOUND BIT (1):

FOUND = '@'B;

DO I = 1 TO SYMBOL NO WHILE ("FOUND) ;
IF ARG=ST (I) .SYMBOL THEN DO;

FOUND = '1'B;
PLACE = I;

END;
END;
[F FOUND THEN RETURN (PLACE);

ELSE RETURN (8);
END STGET;

fhhhhnkkhhhhhkhhhhhkhkhhhhkkhy k xhhkkkkkkhkhhhkhhhhhhhhhhrhkhhkhkk

* VAL CALCULATES THE VALUE OF A NUMBER OR VARIABLE. IF THE *
* VARIABLE IS ILLEGAL IT SETS FLAG TO 'l'B. *
kdkdkhkvhhhkhkhkd kddkhhhhhhhhhhhdhhbdidrhb“dtghhdd°°

VAL: PROCEDURE (ARG, RES, RELOC, FLAG);

DCL ARG CHAR (*) VARYING,
RES FIXED BIN (15),

RES8 BIT (8),
RELOC BIT (1),

5&

FLAG BIT (1),
TARG CHAR(8) VARYING,
T CHAR(l),
TEMP CHAR(2),

I FIXED BIN (15);

END

FLAG = '0'B;
RELOC = 'g'B;
TARG = ARG;

T = SUBSTR(TARG,1,1);

IF INDEX ('0123456789"',T)>0 THEN DO;
RES = TARG;

RETURN;
END;
[IF TARG='*' THEN DO;

RES = LC;

RELOC = '1'B;

RETURN;
END;
IF T='X' THEN

IF INDEX(TARG,'''')>@ THEN DO;
TEMP = SUBSTR(TARG, 3,2);
RES8 = CVB(TEMP);
RES = RESS8;

RETURN;
END;

T='B' THEN
IF INDEX (TARG,'''')>0 THEN DO;

RES8 = SUBSTR (TARG, 3,8);
RES = RESS;

RETURN;
END;

I = STGET (TARG);

IF I=@ THEN DO;
RES = 0;
FLAG = '1'B;

RETURN;
END;
RES = ST (I) .VALUE;
RELOC = ST(I) .RELOC;

RETURN;
VAL:

Jhhhkkhhhkhkhhhhrrkhhhhk
* MULTDIV IS CALLED TO EVALUATE ONLY EXPRESSIONS WITH *
x NO '+' OR '-' OPERATORS. IT RETURNS THE COMPUTED VALUE *
* AND ITS RELOCATABILITY. IF THE EXPRESSION IS *

* ILLEGAL, THE FLAG IS SET TO 'l'B AND @ IS RETURNED.
khkhkkdkkkhkkhkhkhkhhhhhhhhhkhkhkhhhhhhhkhhhhrhkhhhhhhhrkhhhkhhkhdtq

5A

MULTDIV: PROCEDURE (ARG,RELOC, FLAG) RETURNS (FIXED BIN (15));

DCL ARG CHAR (*) VARYING,
{(RELOC,RELOC2) BIT(1l),
FLAG BIT(1),
(RES, RES2) FIXED BIN(15),
(OP1,0P2) CHAR (80) VARYING,
TARG CHAR (80) VARYING,
T CHAR (1);

TARG = ARG;

RELOC = '§'B;
FLAG = '0'B;

CALL NEXTOK (TARG,OPl);
CALL VAL (OPl,RES,RELOC, FLAG);
IF FLAG THEN RETURN(Q);
DO WHILE (TARG ='");

T = SUBSTR(TARG,1,1);

TARG = SUBSTR (TARG, 2);
CALL NEXTOK (TARG,0P2);
CALL VAL(OP2,RES2,RELOC2,FLAG);
FLAG = FLAG | RELOC | RELOC2;
IF FLAG THEN RETURN(@);
IF T='*' THEN RES = RES* RES2;

ELSE RES = DIVIDE (RES,RES2,15);

END;
RETURN (RES);

END MULTDIV:

Jhikkhn bkhhkhhkhkhhhhhhhhh khkhhhhhhhhkx.. akkhkkkkkkkhk

* EVAL TAKES AN EXPRESSION AND RETURNS ITS VALUE AND *
* RELOCATABILITY. IF THE EXPRESSION IS NOT VALID, A @ IS *
* RETURNED AND FLAG IS SET TO 'l'B. *
kkkhkhhkhkhkhkhhkhhhkhhhhhhhkkds +o fa

EVAL: PROCEDURE (ARG,RELOC,FLAG) RETURNS (FIXED BIN (15));

DCL ARG CHAR(*) VARYING,
(RELOC, RELOC2) BIT(1),
FLAG BIT (1),

(RES, RES2) FIXED BIN (15),
RELCOUNT FIXED BIN (15),
(OP1,0P2) CHAR (80) VARYING,
T CHAR(1l),
I FIXED BIN (15),

TARG CHAR (80) VARYING,
FOUND BIT (1);

RELOC = '0'B;
FLAG = '0'B;

5 7

TARG = ARG;

CALL NEXTPLUS (TARG,OP1);
RES = MULTDIV(OP1l,RELOC, FLAG);
RELCOUNT = BINARY (RELOC) ;
IF FLAG THEN RETURN(@);
DO WHILE (LENGTH (TARG)>@);

T = SUBSTR(TARG,1,1);
TARG = SUBSTR (TARG, 2);
CALL NEXTPLUS (TARG,O0P2);
RES2 = MULTDIV(OP2,RELOC2,FLAG);

IF FLAG THEN RETURN(Q);
IF T='+' THEN DO;

RES = RES + RES2;
RELCOUNT = RELCOUNT + BINARY (RELOC2);

END;
ELSE DO;

RES = RES - RES2;

RELCOUNT = RELCOUNT - BINARY

END:

END;
[F (RELCOUNT=1) THEN RELOC = 'l1'B;

ELSE IF (RELCOUNT=@) THEN RELOC = '0'B;
ELSE FLAG = 'l1'B;

IF FLAG THEN RETURN(Q);
ELSE RETURN(RES);

END EVAL;

Jhhkkhhhhhkhhkhhkhhhhhhhhdhhhhhhhhhkhhhhhhhhhhhhhhhhhkhhkrddd
* EOTGEN GENERATES THE OUTPUT WHEN THE OPERAND IS AN *
x EXTENDED INSTRUCTION. ®
khkhhkhhkhkhdhhF+ bdhdhhdbbhhh +b 1°

EOTGEN: PROCEDURE(I,OPFIELD);

DCL I FIXED BIN (15),

OP FIELD CHAR(*) VARYING,
 JOP CODE BIT(8),
R1 BIT (4),
(DR2,DX2,DB2) FIXED BIN(4),
DD2 FIXED BIN (12),

(R2,X2,B2) BIT (4),
D2 BIT (12),

DLC FIXED BIN (24),

KLC BIT (24),

(A,B,C) CHAR(20) VARYING,
(RELOC, FLAG) BIT(1l),
BRVAL FIXED BIN (15),

TD2 FIXED BIN (15);

58

DLC = LC;

XLC = DLC;
TD2 = EOT(I).TYPE;

GOTO TYP (TD2);

TYP (@) :
OP CODE = '07'B4;
R1 = EOT(I).OP1l;

DR2 = EVAL (OP FIELD,RELOC, FLAG);
R2 = DR2; =

PUT SKIP EDIT (XLC,OP_CODE,R1l,R2)
(B4(6) ,X(1),B4(2),B4(1),B4(1));

GOTO NEXT;

TYP (1):
OP CODE = '47'B4;
R1 = EOT(I).OP1;
CALL PARSOP (OP FIELD,A,B,C);
IF B"='' THEN DX2 = EVAL (B,RELOC, FLAG);

ELSE DX2 = @;
X2 = DX2;

CALL BRSET(A,C,B2,D2,FLAG);
PUT SKIP EDIT (XLC,OP CODE,R1l,X2,B2,D2)

(B4(6),X(1),B4(2),B4(1),B4(1),X(1),B4(1) ,B4(3));

NEXT:
PUT EDIT (LINE NO,CARD) (COL (27) ,F(4) ,X(1) ,A):

END EOTGEN:

Jhhhkrhhhhhhhhhhkkhbhhd “Ahk khhkhhhkkhhhhhhhhhhhhhhkhdhhhhkhkkx
* MOTGEN GENERATES THE OUTPUT WHEN THE INSTRUCTION IS *
* A MACHINE INSTRUCTION. *
khkhkkhkhhhhkhkhkhkkhkkhhhkhhhhkhkkhxk=~ ~~ Crk kkhkkk

MOTGEN: PROCEDURE (I,OP FIELD);

DCL I FIXED BIN (15),

OP_FIELD CHAR(*) VARYING,
OP_CODE BIT (8),
(R1,R2,R3,X2,B1,B2) BIT(4),
(DR1,DR2,DR3,DX2,DB1,DB2) FIXED BIN (4),
(D1,D2) BIT (12),

(DD1,DD2) FIXED BIN(12),
BYTE BIT (8),

DBYTE FIXED BIN (8),
(L1,L2) BIT(4),
(DL1,DL2) FIXED BIN(4),
DLC FIXED BIN (24),
XLC BIT (24),

C0

(OP1,0P2,0P3) CHAR (32) VARYING,
(A,B,C) CHAR(20) VARYING,
(RELOC, FLAG) BIT(l),
TD2 FIXED BIN (15),
J FIXED BIN (15),

BRVAL FIXED BIN (15);

DLC = LC;

XLC = DLC;

OP CODE = MOT (I).BIN_CODE;
J = MOT(I) .TYPE;
30TO TYP (J);

TYP (1):

CALL GET_OPER (OP_FIELD,OPl);
CALL GET OPER (OP_FIELD,OP2);
DR1 = EVAL (OP1l,RELOC,FLAG);
R1 = DR1;
DR2 = EVAL (OP2,RELOC, FLAG);
R2 = DR2;

PUT SKIP EDIT (XLC,OP _CODE,R1,R2)
(B4(6) ,X(1),B4(2),B4(1),B4(1));

GOTO NEXT;

TYP (2):
OP1L = OP FIELD;
DR1 = EVAL (OP1l,RELOC,FLAG);
R1 = DR1;

DR2 = 0;
R2 = DR2;

PUT SKIP EDIT (XLC,0P_CODE,R1,R2)
(B4(6) ,X(1),B4(2) ,B4(1),B4(1));

GOTO NEXT;

TYP (3):
OP1 = OP FIELD;
DBYTE = EVAL(OP1l,RELOC, FLAG);
BYTE = DBYTE;

PUT SKIP EDIT (XLC,OP_CODE,BYTE)
(B4(6),X(1),B4(2),B4(2));

GOTO NEXT;

TYP (4) :
CALL GET OPER (OP_FIELD,OP1) 3
CALL GET OPER (OP_FIELD, OP2);

DR1 = EVAL (OP1l,RELOC,FLAG);
R1 = DR1l:

[F SUBSTR(OP2,1,1)='="' THEN DO;

S03

J = LTGET(OP2);

TD2 = LT (J) .VALUE;
DB2 = BRGET(TD2,BRVAL);
IF DB2=@ THEN DD2 = TD2;

ELSE DD2 = TD2 - BRVAL;

DX2 = 0;
B2 = DB2;

D2 = DD2;
X2 = DX2;

END;
ELSE DO;

CALL PARSOP(OP2,A,B,C);
IF B"=''" THEN DX2 = EVAL(B,RELOC, FLAG);

ELSE DX2 = 8;
X2 = DX2;

CALL BRSET(A,C,B2,D2,FLAG);
END;
PUT SKIP EDIT (XLC,OP_CODE,R1,X2,B2,D2)

(B4(6) ,X(1),B4(2),B4(1),B4(1),X(1),B4(1),B4(3));
GOTO NEXT;

TYP (5):
CALL GET_OPER (Op_FIELD,OPl);
CALL GET OPER (OP _FIELD,OP2);
CALL GET OPER (OP_FIELD,OP3);

DR1 = EVAL (OP1l,RELOC,FLAG);
R1 = DR1;

DR3 = EVAL (OP2,RELOC, FLAG);
R3 = DR3:

[F SUBSTR(OP3,1,1)='=' THEN DO;
J = LTGET (OP3);
TD2 = LT (J) .VALUE;
DB2 = BRGET(TD2,BRVAL);
IF DB2=¢ THEN DD2 = TD2;

ELSE DD2 = TD2 - BRVAL;

B2 = DB2;

D2 = DD2;

END;
ELSE DO;

CALL PARSOP(OP3,A,B,C);
CALL BRSET(A,B,B2,D2,FLAG);

END;
PUT SKIP EDIT (XLC,OP CODE,R1,R3,B2,D2)

(B4(6),X(1),B4(2),B4(1),B4(1),X(1),B4(1),B4(3));
GOTO NEXT:

TYP (6):

-

Yn

CALL GET_OPER (OP_FIELD,OP1);
CALL GET_OPER (OP_FIELD,OP2);
DR1 = EVAL (OP1l,RELOC,FLAG);
R1 = DR1;
DR3 = 0;

R3 = DR3;
DB2 = 0;
B2 = DB2;

TD2 = EVAL (OP2,RELOC, FLAG);
DD2 = TD2;

D2 = DD2;

PUT SKIP EDIT (XLC,OP CODE,R1,R3,B2,D2)
(B4(6) ,X(1),B4(2),B4(1),B4(1),X(1),B4(1),B4(3));

GOTO NEXT;

TYP (7):
CALL GET OPER (OP_FIELD,OPl);
CALL GET OPER (OP FIELD,OP2);
CALL PARSOP(OP1,A,B,C);
CALL BRSET(A,B,Bl,D1,FLAG);
DBYTE = EVAL (OP2,RELOC, FLAG);
BYTE = DBYTE;

PUT SKIP EDIT (XLC,OP CODE,BYTE,B1l,D1)
(B4(6) ,X(1),B4(2),B4(2) ,X(1),B4(1),B4(3));

GOTO NEXT;

TYP (8):
CALL GET OPER (OP _FIELD,OPl);
CALL GET OPER (OP _FIELD,OP2);
CALL PARSOP(OP1,A,B,C);
CALL BRSET(A,C,B1,D1,FLAG);
DL1 = EVAL (B,RELOC, FLAG);
LL1 = DL1:

CALL PARSOP(OP2,A,B,C);
CALL BRSET(A,C,B2,D2,FLAG);
DL2 = EVAL (B,RELOC, FLAG);
LZ = DL2:

PUT SKIP EDIT (XLC,OP CODE,L1,L2,B1,D1,B2,D2)
(B4(s),X(1),B4(2),B4(1),B4(1),X(1),B4(1),B4(3),
X(l),B4(1),B4(3));

GOTO NEXT;

TYP (9):
CALL GET OPER (OP_FIELD,OPl);
CALL GET OPER (OP_FIELD,OP2);
CALL PARSOP(OP1,A,B,C);

AD

CALL BRSET(A,C,B1,D1,FLAG);
DBYTE = EVAL (B,RELOC, FLAG);
BYTE = DBYTE;

[F SUBSTR(OP2,1,1)='=' THEN DO;
J = LTGET (0OP2);
TD2 = LT (J) .VALUE;
DB2 = BRGET(TD2,BRVAL);
IF DB2=0 THEN DD2 = TD2;

ELSE DD2 = TD2 - BRVAL;

B2 = DB2;

D2 = DD2;

END;
ELSE DO;

CALL PARSOP(OP2,A,B,C);
CALL BRSET(A,B,B2,D2,FLAG);

END;
PUT SKIP EDIT (XLC,OP CODE,BYTE,B1,D1,B2,D2)

(B4(6),X(1),B4(2),B4(2),X(1),B4(1),B4(3),
X(1),B4(1),B4(3));

GOTO NEXT;

TYP (10):
PUT SKIP EDIT (XLC,'0000 0000")

(B4(6) ,X(1) ,A):;

NE XT :
PUT EDIT (LINE NO, CARD) (CoOL (27) ,F(4) ,X(1) ,A);

END MOTGEN;:

fhik kD vhkkkkkhkkhhkkhrhhhkhhhhhhkhd+ poor A KR KK
* LITGEN GENERATES THE OUTPUT WHEN THE INSTRUCTION IS A DC *
x OR DS INSTRUCTION OR WHEN AN LTORG OR END STATEMENT *
* RESULTS IN LITERALS BEING GENERATED. :
kkd "Lh kRRA RK IRA kk hhh Pde © °C tAmdr CC se SERS

-

LITGEN: PROCEDURE (ARG,CODE);

DCL ARG CHAR (*) VARYING,
TARG CHAR (80) VARYING,
CODE BIT(1),

(DUPFAC,MOD,NOMVAL)CHAR(20)VARYING,
TYP CHAR(1) VARYING,
(DLEN, VDUPFAC) FIXED BIN (15),
IND FIXED BIN(15),

CHARSTR CHAR (20) VARYING,
DONE BIT (1),

(I,J) FIXED BIN(15),
T CHAR(l),
T2 CHAR(2),

A

BYTE BIT (8),
(LBYTE, LWORD) FIXED BIN (15),
FVALUE FIXED BIN (31),
BFVALUE BIT(32),
HVALUE FIXED BIN (16),
BHVALUE BIT (16),
DLC FIXED BIN (24),
XLC BIT (24),
(RELOC, FLAG) BIT (1);

TARG = ARG;

LBYTE = 0;

DONE = '@'B;

DLC = LC;

XLC = DLC;

CALL PARSLIT (TARG,DUPFAC, TYP,MOD,NOMVAL);
PUT SKIP EDIT (XLC,' ')(B4(6),A);
[F INST FIELD='DS' THEN GOTO NEXT;
IND = INDEX ('CFHXBA',TYP);
IF DUPFAC='' THEN VDUPFAC = 1;

ELSE VDUPFAC = DUPFAC;

GOTO TLAB (IND);

TLAB (1): /*CCCCcC*/
DLEN = LENGTH (NOMVAL)-2;
CHARSTR = SUBSTR (NOMVAL, 2,DLEN);
IF (MOD"='') THEN DO;

DLEN = SUBSTR (MOD,2);
IF DLEN<KLENGTH (CHARSTR) THEN

CHARSTR = SUBSTR (CHARSTR,1,DLEN);
ELSE DO;

DO WHILE (LENGTH (CHARSTR)<DLEN);
CHARSTR = CHARSTR || ' '-

END;
END;

END;
DONE = '@'B;
DO I = 1 TO VDUPFAC WHILE ("DONE);

DO J = 1 TO DLEN WHILE ("DONE);
T = SUBSTR (CHARSTR,J,1);
BYTE = CHARGET(T);
PUT EDIT (BYTE) (B4(2));
LBYTE = LBYTE + 1;
IF LBYTE>=8 THEN DONE = '1

END;
END;
30TO NEXT;

TLAB (2): /*FFTF wo

roAtad

LWORD = LENGTH (NOMVAL) - 2;

FVALUE = SUBSTR (NOMVAL, 2, LWORD);
BFVALUE = UNSPEC(FVALUE);
DO I = 1 TO VDUPFAC WHILE (DONE);

PUT EDIT (BFVALUE) (B4(8));
LBYTE = LBYTE + 4;
IF LBYTE>4 THEN DONE = 'l1'B;

END;
G0TO NEXT;

TLAB (3): /*HHHHH*/
LWORD = LENGTH (NOMVAL) - 2;

HVALUE = SUBSTR (NOMVAL, 2, LWORD);
BHVALUE = HVALUE;
DO I = 1 TO VDUPFAC WHILE ("DONE);

PUT EDIT (BHVALUE) (B4(4));
LBYTE = LBYTE + 2;
IF LBYTE>6 THEN DONE = '1'B;

END;
S0TO NEXT;

TLAB (4): /*XXXXX*/
DLEN = LENGTH (NOMVAL)-2;
CHARSTR = SUBSTR (NOMVAL, 2,DLEN);
DLEN = DIVIDE (DLEN, 2,15);
[F (MOD"='"') THEN DO;

DLEN = SUBSTR (MOD, 2);
IF (2*DLEN)<LENGTH (CHARSTR) THEN

CHARSTR = SUBSTR (CHARSTR,1,2*DLEN);
ELSE DO;

DO WHILE (LENGTH (CHARSTR)<DLEN)-
CHARSTR = CHARSTR || '00°';

END;
END;

END;
DO I = 1 TO VDUPFAC WHILE ("DONE);

DO J = 1 TO DLEN WHILE ("DONE);

T2 = SUBSTR (CHARSTR, 2*J-1,2);
BYTE = CVB(T2);

PUT EDIT (BYTE) (B4(2));
LBYTE = LBYTE + 1;
IF LBYTE>=8 THEN DONE = '1'B;

END;
END;
GOTO NEXT;

TLAB (5): /*BBBBB*/
DLEN = LENGTH (NOMVAL)-2;
BYTE = SUBSTR (NOMVAL,2,DLEN);
DO I = 1 TO VDUPFAC WHILE ("DONE);

PUT EDIT (BYTE) (B4(2));

ar

LBYTE = LBYTE + 1;

[F LBYTE >=8 THEN DONE = '1'B;

END;
GOTO NEXT;

TLAB (6): /* AAAAA*/
DLEN = LENGTH (NOMVAL)-2;
CHARSTR = SUBSTR (NOMVAL, 2,DLEN);
FVALUE = EVAL (CHARSTR,RELOC, FLAG);
BFVALUE = UNSPEC (FVALUE);

DO I = 1 TO VDUPFAC WHILE ("DONE);
PUT EDIT (BFVALUE) (B4(8));
LBYTE = LBYTE + 4;
IF LBYTE >4 THEN DONE = 'l1'B;

END-

NEXT:

PUT EDIT(' ') (COL (26),A);
IF CODE='Q'B THEN

PUT EDIT (LINE NO,CARD) (F(4),X(1),A);
ELSE DO; —

TARG = '=' || TARG;

PUT EDIT (TARG)(X(20),A);
END;

END LITGEN:

Jhhkhhkrhhhhhhhhhhhhhhhhhhhhhhhhhhhhrdrs
* BRSET GETS A BASE REGISTER IF ANY EXIST.
kkkhkdhkhkhhdtrrhohhthdbttbhbihtddtbdddnsidrhhhkhhhkhRhrdrdtttbdhhnh

~~ 4

khkkkhkkhkhkhkhkkkkkhx

4

BRSET: PROCEDURE (ARG1l,ARG2,BR,DISP, ERROR):

DCL (ARG1l,ARG2) CHAR(*) VARYING,
BR BIT (4),
DISP BIT (12),

ERROR BIT (1),
(RELOC, FLAG) BIT(l),
DBR FIXED BIN (4),

DDISP FIXED BIN (12),
TDISP FIXED BIN (15),

BRVAL FIXED BIN(15):

IF ARG2='"' THEN DO;
TDISP = EVAL (ARG1l,RELOC, FLAG);
ERROR = ("RELOC) |FLAG;
DBR = BRGET (TDISP,BRVAL);
IF DBR =f THEN DDISP = TDISP;

ELSE DDISP = TDISP - BRVAL;

END;
ELSE DO;

DBR = EVAL (ARG2,RELOC, FLAG);

~“C

ERROR = RELOC| FLAG;
DDISP = EVAL (ARG1l,RELOC, FLAG);
ERROR = ERROR |RELOC| FLAG;

END;
IF ERROR THEN DO;

DBR = 3;

DDISP = @;

END;
BR = DBR;

DISP = DDISP;

END BRSET;
END ASSMBLR;

C7

B.2 The External Subroutines

Jhrkkkhhhhhhhhhhhhhhkhhhkhhhkhrrhhhhhhhhhhhhhhhhddhhhhdkhhhkx
* CVB CONVERTS TWO HEXADECIMAL CHARACTERS INTO A BIT STRING *

* (BYTE). 1
kkkhkdhhhhkkkkkkhkhkkk* TTT ede he

CVB: PROCEDURE (ARG) RETURNS (BIT (8))

DCL ARG CHAR (*),
T(2) CHAR(1l),
NIB(2) BIT (4),
RES BIT (8),
(I,J) FIXED BIN(15),
FOUND BIN (1);

DCL 1 HEX TABLE (16) STATIC,
> TITS BIT (4) ALIGNED INIT(

'gP@Pe'B,'0001'B,'0010'8,'0011"'B,
'g1006'B,'0101'B,'0110'B,'0111"'B,
'1000'B,'1001'B,'1016'B,'1011"'B,
'11¢0'B,'1101'B,'1114'B,'1111'B),
HEX CHAR (1) INIT(
gr,vt1t,'2','3','4','5"','6"' "7",
'g','9','A' ,'B','C','D','E",'F");

T(l1) = SUBSTR (ARG, 1,1);
T(2) = SUBSTR(ARG,2,1);
NIB(l) = '@'B4;
NIB(2) = '0'B4;
DO I = 1 TO 2;

FOUND = '8'B;

DO J = 1 TO 16 WHILE (FOUND);
IF (T(I)=HEX TABLE (J).HEX) THEN DO;

NIB(I) = HEX TABLE(J).TITS;
FOUND = 'l'B;

END;
END;

END;
RES = NIB(1l) || NIB(2);

RETURN (RES);
END CVB:

fhokkhhkhhhhhhrhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhkhhhrkhhhhhhik
* GET _OPER TAKES THE GIVEN INPUT IN ‘OP FIELD' AND RETURNS *
* THE FIRST OPERAND IN 'RESULT'. 'OP FIELD' IS TRUNCATED TO *
x EXCLUDE THE FIRST OPERAND (AND THE FOLLOWING COMMA IF *
kx IT EXISTS). *
khkkkhkkkhkhkrhkhhhkhix?

AR

GET OPER: PROCEDURE (OP_FIELD,RESULT);

DCL OP FIELD CHAR (*) VARYING,
RESULT CHAR (*) VARYING,
(ICOM, ILP,IRP,IEQ) FIXED BIN (15),
TEMP CHAR (32) VARYING,
(TOPF, TRES) CHAR(88) VARYING;

TOPF = OP FIELD;
TRES = '';
ICOM = INDEX (TOPF,',"'):;

ILP = INDEX (TOPF,' (');
IRP = INDEX (TOPF,')'):
[EQ = INDEX(TOPF,'=");

IF ICOM = 9 THEN DO;
RESULT = TOPF;
OP FIELD = '';

RETURN;
END:

PUT
IF ((ICOM>IEQ)&(IEQ"=0)) THEN DO;
SKIP LIST('OH NO!');

CALL GET LTRL(TOPF,TRES);
OP FIELD = TOPF;
RESULT = TRES;

END:

(ICOM>ILP) &(ICOMKIRP) THEN DO;
RESULT = SUBSTR(TOPF,1,IRP);
IF IRP<LENGTH (TOPF) THEN

OP FIELD = SUBSTR(TOPF,IRP+2);
ELSE OP FIELD = '';

RETURN;
END;

RESULT = SUBSTR (TOPF,1,ICOM-1);
OP_FIELD = SUBSTR(TOPF,ICOM+1);

END GET OPER;

Jhikkhkkkhhhhhhhkrkrthkrhhddoan axkkkkkkhhhhhhhkrk~' askkk

* GET _LTRL TAKES GIVEN INPUT IN 'OP _FIELD' AND RETURNS THE *
* FIRST LITERAL IN 'RESULT'. 'OP FIELD' IS TRUNCATED TO *
* EXCLUDE THE LITERAL (AND THE FOLLOWING COMMA IF IT *
* EXISTS). *
kk “mrt vr bpkkhh

GET LTRL: PROCEDURE (OP FIELD,RESULT):

59

DCL OP _FIELD CHAR (*) VARYING,
RESULT CHAR (*) VARYING,
IND FIXED BIN (15),
I FIXED BIN(15),
T CHAR(1l),
FOUND BIT (1),
(TOPF,TRES) CHAR (8A) VARYING;

I = 1;

FOUND = '0'B;
TOPF = OP FIELD;
TRES = '';

DO WHILE (I<=LENGTH (TOPF) & FOUND);
T = SUBSTR(TOPF,I,1);

[F INDEX ('CFHXBA',T)>@ THEN FOUND = 'l1'B;
I =1 + 1;

BEND.

IF ("FOUND) THEN PUT SKIP LIST ('ERROR');
ELSE DO;

IND = INDEX (TOPF,'''");
IF ((IND>3)&(T='C')) THEN DO;

TRES = SUBSTR(TOPF,1, IND);
TOPF = SUBSTR (TOPF, IND+1);
IND = INDEX (TOPF,'''');
TRES = TRES || SUBSTR(TOPF,1l, IND);

IF LENGTH (TOPF)>IND
THEN TOPF = SUBSTR (TOPF, IND+2);
ELSE TOPF = '';

END;
ELSE DO;

IND = INDEX (TOPF,',');

IF IND=@ THEN DO;
TRES = TOPF;

TOPF = '';

END;
ELSE DO;

TRES = SUBSTR (TOPF,1,IND-1);
TOPF = SUBSTR (TOPF, IND+1);

END;
END;

END;
OP FIELD = TOPF;
RESULT = TRES;

END GET LTRL;

[hk kkk “kT” Tk 4 rT Tide

TR

* BOUND TAKES LC AND ALIGNS IT TO THE BOUNDARY SPECIFIED BY *
* COUNT. *

kkkkhkhhhkhhhhkhhhkhh®rs- Creat kkk kk kk kkk deh ddd rk khhhhk /

BOUND: PROCEDURE (LC,COUNT);

DCL (LC,COUNT) FIXED BIN (15),
TEMP FIXED BIN (15),
(TLC, TCOUNT) FIXED BIN (15),
DONE BIT (1);

DONE = 'g'B;

TLC = LC;

TCOUNT = COUNT;

DO WHILE ("DONE);
TEMP = DIVIDE(TLC,TCOUNT,15);
IF TLC=TEMP*TCOUNT THEN DONE = 'l'B;

ELSE TLC = TLC + 1;

END;
LC = TLC;

END BOUND:

Jhikhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhrhkhkhnhankhhhxk
* POTGET GETS THE INDEX OF ITS ARGUMENT IN POT. IF ITS #
* ARGUMENT IS NOT IN POT IT RETURNS A 4. *
khkkkkhhhhkhkhhhhkhkhhkhkhkhkhhkhhhkhhhkhkkhhhkdhs ~*~ “tr

POTGET: PROCEDURE (ARG) RETURNS (FIXED BIN (15));

DCL POT (8) CHAR(5) VARYING STATIC EXTERNAL INIT(
'DC','DS','LTORG','EQU','CSECT','USING','DROP','END");

DCL ARG CHAR (*) VARYING,
PLACE FIXED BIN(l15),
I FIXED BIN(15),
FOUND BIT (1);

FOUND = '0'B;
PLACE = 0:

END

DO I = 1 TO 8 WHILE (FOUND);
IF ARG = POT (I) THEN DO;

FOUND = '1'B;

PLACE = I;

END;
END;
RETURN (PLACE);
POTGET:

71

JhEkhhhhhhkhhhhhhhhhkhhhhhhhhhhkhhhhkhkhhhhhhhhhhhhhhhhhhhkkdkkkhk
* EOTGET GETS THE INDEX OF ITS ARGUMENT IN EOT. IF THE *
* ARGUMENT IS NOT IN EOT IT RETURNS A 4. *
khhdkhhkhhkhkhhdded2nbdhkhkhkkkhhkkkhdkhhhkhhtds"rrtikkhkdbhhhkhk/

EOTGET: PROCEDURE (ARG) RETURNS (FIXED BIN (15));

DCL 1 EOT (32) STATIC EXTERNAL,
2 NAME CHAR(5) VARYING INIT(

'B','BE','BER','BH','BHR',
'BL','BLR','BM','BMR',"'BNE",
'BNER','BNH','BNHR','BNL','BNLR',

STEr BNZ°, ’ ’ ’

'BP’ y' BPR’ ’ SR ,'BZ"','BZR"','NOP','NOPR"'),
I'YPE BIT (1) ALIGNED INIT(
‘1'B,'1'B,'9'B,'1'B,'0"'B,
'1'B,'9'B,'1'B,'0'B,'1"'B,
'g'B,'1'B,'0'B,'1'B,'0"'B,
'1'B,'#'B,'1'B,'9'B,'1'B,
'g'B,'1'B,'0'B,'1'B,'0'B,
'1'B,'9'B,'0'B,'1'B,'0'B,
'1'B,'d'B) '

OP1 BIT (4) INIT(
'1111'B,'1000'B,'1000'B,"'0010'B,'0010'B,
'glo0'B,'0l00'B,'0100'B,'0100'B,"'d111"'B,
‘gl111's,'1101'B,'1101'B,'1911'B,'10811"'B,
'1411'B,'1011'B,'1110'B,'1110'B,'1101'B,
'1191'B,'0111'B,'0111'B,"'0001'B,"'0001"'B,
'¢910'B,'0010'B,'1111'B,'1000'B,'1000"'B,
'0000'B,'0003"'B);

DCL ARG CHAR (*) VARYING,
PLACE FIXED BIN (15),
(TOP,BOT) FIXED BIN (15),
FOUND BIT (1);

TOP = 1;

BOT = 32;

FOUND = 'g'B:

)

DO WHILE ("FOUND&(TOP<=BOT));
PLACE = TOP + BOT;

PLACE = DIVIDE (PLACE,2,15);
IF ARG=EOT (PLACE) .NAME THEN FOUND = '1'B;
ELSE IF ARG>EOT (PLACE) .NAME THEN TOP = PLACE + 1;

ELSE BOT = PLACE - 1;

END;
[F FOUND THEN RETURN (PLACE);

79

ELSE RETURN(0);
END EOTGET;

fhhhhhkhkhhhkhhhhhhhhhhhhhhhhhhkhh+hvd» khkkkhhhhkkkkxxhkxkhhhdhkhk
* MOTGET GETS THE INDEX OF ITS ARGUMENT IN EOT. IF ITS *
* ARGUMENT IS NOT IN EOT IT RETURNS A 0. *
khkdkhkhkhkhkhhhhhhhhhhkhhhhhhkkhkhkhkhhkhkhhkhkhkhhhhhhhdkdhdh+"4 Fd kkkhkk,

MOTGET: PROCEDURE (ARG) RETURNS (FIXED BIN (15));

DCL 1 MOT (131) STATIC EXTERNAL,
2 NAME CHAR(5) INIT(

'A',"AH','AL','ALR','AP',
'AR','BAL','BALR','BC','BCR’,
'‘BCT','BCTR','BXH','BXLE','C",
'cpsS','CH','CL','CLC','CLCL",
'CLI','CLM','CLR','CLRIO','CP',
'CR','Cs!','cvB','CcvD','D"',
'DP','DR','ED','EDMK','EX"',
'HDV','HIO','IC','ICM','IPK',
"ISK','L','LA','LCR','LCTL',
'LH','LM','LNR','LPR','LPSW',
'LR','LRA','LTR','M','MC",
'MH','MP','MR','MVC','MVCL',
'MVI','MVN','MVO','MVZ','N',
‘NC','NI','NR','0','0C",
'0I','OR','PACK','PTLB','RDD’,
'RRB','S"','SCK','SCKC','sH",
'SIGP','SIO','SIOF','SL','SLA',
'SLDA','SLDL','SLL','SLR','SP',
'SPKA','sSPM','SPT','SPX','SR",
'SRA' ,'SRDA','SRDL','SRL','SRP',
'SSK','ssM','sT','STAP','STC',
'STCK','STCKC','STCM' ,'STCTL','STH',
'STIDC','STIDP','STM','STNSM','STOSM',
'STPT','STPX','SVC','TCH','TIO",
‘TM','TR',"TRT','TS',"UNPK',
‘"WRD','X!','XC"','XI','XR"',
ZAP'),

FYPE FIXED BIN(15) INIT(
4,4,4,1,8,
i,4,1,4,1,
4,1,5,5,4,
5,4,4,9,1,
7,5,1,10,8,
1,5,4,4,4,
8,1,9,9,4,
19,10,4,5,149,
1,4,4,1,5,
4,5,1,1,149,

/

7

1,4,1,4,7,
4,8,1,9,1
7,9.8,9,4,
9.71.4 9,
7.1.8.10,7
10,4,10,10,4
5,10,10,4,6,
5.6,6,1.8,
10,2,10,10, 1
5,6,6,6.8,
1,10,4,10, 4

10,16.5.7.7,
10,10.3.10, 17,9,9.10,8, Horr

2432503434
3IN CODSIN cop BIT (8) INIT('SATBA,4A'B4, SEBS ‘1gTarai as aa 05nd aT na 07m,
46134, 06° '186'R4,'87'B4, Hy4 ? T

'BB'B4, B4,'55'B4," opioa49184," 'D5'B4,'OF'BA4,
19'B4.'B 115184, 100 34, 5154D4," 150 'BA.'F9'BA4,

19184, "Vap'E4. ,'FO9'B41D'B4." 142184, 15D "84,
ED'B4, 1 ''DE'B4,'DF 'B4, hoaD'B4, 'DF'B4,'44'B4,
79°54. '58'04d 43'B4, 'BE 84, 7B4,143184, B4,'00"
48'B4. 19 131784, 113 134, >8154," '113'84,'B7'BA4,
48184, '9 "111'B4.'10'B4, os| 8134, 119'B4,'00"18184, 3 '112'B4,'5C'B4, oa1184," "\5C1B4.'AF'BA,
ees 112184, 5C 184, F'B4D1'B4," 102184, 1084,

92184, !D1'84, F1'B4.'D3'B4, DaB4 1 '

96'B4.'1 oa Paina’ | 1D810:4184," ''56'B4,'D6'B4,
6 24; 1 F21p4 ,'D6'B4

' 5B'BR4," G2 anes,0034, 58'84, 00'B4,'00'B4, ny4,4B"
AE'B4, 0 B4,'G0'B4,'SF'B4. b'Da8184,100'84, F'B4,'8B'B4,
SF 'B4, 18D B14, 89'B4,'1F'B4. na

\ ,'04'B4,'90" ' Be rEEne| 3'B4," 188134, 70'34,
08 184, 0 '15g'B4.'30'BA, My0184, "1 G@'B4,'42'BA4,
0054, 0 ''BE'B4,'B6'B4, oe084, ''B6'B4.'40'B4,
00'B4.'Q 190184, AC"B4, T0°84," ''AC'B4.'AD'B4,
00 84, "GABA. ’ D'B4,'DC'B4," 100'84,00°B4,91184,DC 24, DD B4, 10084, #84,04154 "iD71B4. , ' F3'B4
5 i '1971B4.,'17'B4,E |

gw 77 2D BIN (15) INIT(
204,2.4.2,
4.2.4.4.4,
1. 4.4.6.2.

)

7A

2:2.3,4,%,24,44,4,6,2, 4 "a
4 4,4, r2.440204,203: 220%

204,2,4,4,312,2:9%,1/6,6,6,4,514,2,4,6,2s 20008, 4

,4,4,4,4,14,444,HEA

AE4,4,4,4,6,SSS tr

14,444,1,4,4,4,4,1,4,2,4,,RAE4,4,6,4, rr
5).

DCL ARG CHAR (*) VARYING,
PLACE FIXED BIN (15),
(TOP,BOT) FIXED BIN(15),
FOUND BIT (1);

TOP = 1;

BOT = 131;

FOUND = '0'B;

DO WHILE ("FOUND&(TOP<=BOT));
PLACE = TOP + BOT;

PLACE = DIVIDE (PLACE, 2,15);
IF ARG=MOT (PLACE) .NAME THEN FOUND = 'l1'B;
ELSE IF ARG>MOT (PLACE) .NAME THEN TOP = PLACE + 1;

ELSE BOT = PLACE - 1;

END;
IF FOUND THEN RETURN (PLACE);

ELSE RETURN (Q);
END MOTGET;

[hhh hhhkkhkhhhhkhkhhhhhkkhhkkhhhhkthhkhhhhhhhhhhhkkhhhhrhhhhhhhkhd
* PARSLIT SEPARATES THE LITERAL IN ARG INTO ITS DUPLICATION *

* FACTOR, TYPE, MODIFIER, NOMINAL VALUE. A
khkkkhkkhkhkkhkhkhkhkkhkhkhkkhkhkkhkkhkkhkhhkhkkriddkhkhkhkhkhkkkhkhkdd a ~ = TE Ed .

PARSLIT: PROCEDURE (ARG, DUPFAC, TYP,MOD,NOMVAL):;

75

DCL (ARG,DUPFAC, TYP,MOD,NOMVAL) CHAR (*) VARYING,
TARG CHAR (80) VARYING,
T CHAR (1),
I FIXED BIN(15),
FOUND BIT (1);

TARG = ARG;
DUPFAC = '!';

TYP = '';
MOD = '';
NOMVAL = '*';
FOUND = '0'B;

DO WHILE ("FOUND);
T = SUBSTR (TARG,1,1);

IF INDEX ('CFHXBA',T)=0 THEN DO;
DUPFAC = DUPFAC || T;
TARG = SUBSTR(TARG, 2);

END;
ELSE FOUND = '1'B;

END;

TYP = T;

TARG = SUBSTR (TARG, 2);

IF LENGTH (TARG)>@ THEN DO;
IF INDEX ('XCB',T) =0 THEN DO;

I = INDEX(TARG,'''');

IF I>3@ THEN DO;
MOD = SUBSTR(TARG,1,I-1);

NOMVAL = SUBSTR (TARG,I);

END;
ELSE MOD = TARG;

END;
ELSE NOMVAL = TARG:

END:

END PARSLIT;

fhrhkhhkkkhhhhhkhhhhkhkhkhkhhhkhkkhkhhhhhhhhhdhhhhkkhdhhhhhhhddddd
* DLENGTH TAKES THE LITERAL IN 'ARG' AND RETURNS ITS *
* LENGTH, IN BYTES. *
Ahkhkkdhkhkhkkdtporns

DLENGTH: PROCEDURE (ARG) RETURNS (FIXED BIN (15));

DCL ARG CHAR (*) VARYING,
TARG CHAR (80) VARYING,

(DUPFAC,MOD,NOMVAL) CHAR (20) VARYING,

716

TYP CHAR (1) VARYING,
(DLEN,VDUPFAC) FIXED BIN (15),
IND FIXED BIN (15),
TEMP FLOAT BIN (23),

PARSLIT ENTRY (CHAR(*) VAR,CHAR(*) VAR,CHAR(*) VAR,
CHAR (*) VAR,CHAR(*) VAR);

TARG = ARG;
DLEN = @:

CALL PARSLIT (TARG,DUPFAC,TYP,MOD,NOMVAL);
IND = INDEX ('CFHXBA',TYP);
IF DUPFAC='"' THEN VDUPFAC = 1;

ELSE VDUPFAC = DUPFAC;

GOTO TLAB(IND);

TLAB(1): /*CCCCC*/

IF MOD = '' THEN

IF NOMVAL='' THEN DLEN = 1;
ELSE DLEN = LENGTH (NOMVAL)-2;

ELSE DLEN = SUBSTR (MOD, 2);

DLEN = VDUPFAC * DLEN;

S30TO NEXT1;

TLAB (2): /*FFFFF*/
DLEN = VDUPFAC * 4;

GOTO NEXT1;

TLAB (3): /*HHHHH*/
DLEN = VDUPFAC * 2;

GOTO NEXT1;

TLAB (4): /*XXXXX*/
IF MOD"='' THEN DO;

DLEN = SUBSTR (MOD,2);
DLEN = DLEN * VDUPFAC;

END;
ELSE IF NOMVAL='"' THEN DLEN = 1;

ELSE DO;
TEMP = LENGTH (NOMVAL)-2;
TEMP = TEMP/2;

DLEN = CEIL (TEMP);
DLEN = DLEN * VDUPFAC:

END;
30TO NEXT1:

7 7

TLAB (5): /*BBBBB*/
IF MOD"="'' THEN DO;

DLEN = SUBSTR (MOD, 2);
DLEN = DLEN * VDUPFAC;

END;
ELSE DO;

TEMP = LENGTH (NOMVAL)-2;
TEMP = TEMP/8;
DLEN = CEIL (TEMP);
DLEN = DLEN * VDUPFAC;

END;
GOTO NEXT1;

TLAB (6): /* AAAAA*/
DLEN = VDUPFAC * 4;

NEXT1:
RETURN (DLEN);
END DLENGTH;

Jhhkhhhkhkhhhhhhkkhhhhhhhhhhhhhhhhhhkkhhkkhkkk,
* NEXTOK SEPARATES THE NEXT OPERAND FROM ARG. *
khkkhkhhkhkhkhkhhhhkhhhhkhhkhhkhkhhkhhhhkhhkhhhhkdhhhhhhhkhkhhhhhdhhhkdhk

Ft khkhkhkkhkkkhkkkkk

NEXTOK: PROCEDURE (ARG,RES);

DCL (ARG,RES) CHAR(*) VARYING,
I FIXED BIN(15),
T CHAR(1),
TARG CHAR (80) VARYING,
FOUND BIT (1);

TARG = ARG;

FOUND = '@'B;

DO I = 2 TO LENGTH (ARG) WHILE ("FOUND);
T = SUBSTR (TARG,I,1);
IF INDEX('+-*/',T)>0 THEN DO;

FOUND = '1'B;
RES = SUBSTR(TARG,1,I-1);

TARG = SUBSTR (TARG, I);
END;

END;
IF ("FOUND) THEN

RES = TARG:

TARG = '';

END;
ARG = TARG;

END NEXTOK:

7

Jhhhkkhkhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhdhhdhhhhhhhkandahhhkhk
* NEXTPLUS SEPARATES A STRING UP TO THE FIRST '+' OR '-' *
* SIGN. THE INPUT STRING IS TRUNCATED. *
khkhkhkhhhhhhhhhhkhhhhdhhhhdhhkhhhhhhhrkhhhhhhhhhhkhkddt+4200d ky

NEXTPLUS: PROCEDURE (ARG, RES);

DCL (ARG,RES) CHAR (*) VARYING,
I FIXED BIN(15),
T CHAR(1l),
TARG CHAR (80) VARYING,
FOUND BIT (1);

TARG = ARG;
FOUND = '@'B;
DO I = 2 TO LENGTH (ARG) WHILE ("FOUND);

T = SUBSTR(TARG,I,1l);
IF INDEX('+-',T)>3 THEN DO;

FOUND = '1'B;

RES = SUBSTR (TARG,1,I-1);
TARG = SUBSTR(TARG, I);

END;
END;
IF ("FOUND) THEN DO;

RES = TARG;

TARG = '!';

END;
ARG = TARG:

END NEXTPLUS;

Jhhkkkhkhkhhhhhhhkhhhhhhhhhhhhhhhhhhrhhhhhhhhhhhhhhhhhkhkhhkk
* PARSOP PARSES AN OPERAND INTO THE R, X, AND D FIELDS. *
khkkkkhhhhkhhhkhhk+x+dhkhhkhhhhkhhhkhkhkhkhhhkhhhkhhhkhhhhkhhkhkhkhhkkhkhkk/

PARSOP: PROCEDURE (OP,A,B,C);

DCL (OP,A,B,C) CHAR(*) VARYING,
(ICOM, ILP,IRP) FIXED BIN(15),
TOPF CHAR (80) VARYING;

TOPF = OP;
A — 1 '.

B — rye.
r -— ve.
[COM = INDEX (TOPF,',');
ILP = INDEX (TOPF,' (');
IRP = INDEX(TOPF,')"');

IF ILP=0 THEN DO:

70

A = TOPF;

RETURN;
END;
A = SUBSTR(OP,1,ILP-1);

IF ICOM=@ THEN DO;
B = SUBSTR(TOPF,ILP+1,IRP-ILP-1);

RETURN;
END;
IF (ICOM=ILP+1) THEN DO;

C = SUBSTR (OP, ICOM+1l,IRP~-ICOM-1);
RETURN;

END;
B = SUBSTR (OP,ILP+1,ICOM-ILP-1);
C = SUBSTR (OP, ICOM+1,IRP-ICOM-1);

END PARSOP;

Jhhhhkhhkahhhhhhhhkhhhhkkhhhhhhhkhhh: bhrnbhhhkhhhhhhhkhhkhhhhhkhhkhkhk
* REGDROP DROPS THE USE OF 'REGNO' AS A BASE REGISTER. *
kkkhhhkkhhhkhkhhtd tat br vr ihdhkkhkkhhhkhhhkhhkhhhhhhhkkkkhkhhkdhkkdk/

REGDROP: PROCEDURE (REGNO);

DCL 1 BT (16) STATIC EXTERNAL,
2 REGISTER FIXED BIN (15),
2 VALUE FIXED BIN (31),

BASE NO FIXED BIN (15) STATIC EXTERNAL;

DCL REGNO FIXED BIN(15),
(I,J) FIXED BIN (15),

DONE BIT (1);

DONE = '@'B;

DO I = 1 TO BASE NO WHILE ("DONE);
IF REGNO = BT(I).REGISTER THEN DO;

DO J = I TO BASE NO-1;
BT(J) = BT(J+1);

END;
BASE NO = BASE NO - 1;
DONE = '"1'B:

END:
END;

END REGDROP;

[hhh hhhkhhhhkhhhhhhhhhhhohhkhhhhhkhhhhhhhhhhhdhhkhkhhhhkhhhhhkkhx
* BTSTO ADDS 'REGNO' AS A BASE REGISTER WITH CONTENTS *
* 'REGVAL'. THE BASE REGISTERS ARE SORTED SUCH THAT THE *
* FIRST ENTRY IN BT CONTAINS THE SMALLEST LC VALUE. *
khkkhkhkhkhhhhhhhkhhhkhhkhhhkhhhkhhhkhkhrhhhhkhrhkhrrkrrrrrrhkkxrhkxrk® ~~ bk tk

BTSTO: PROCEDURE (REGNO,REGVAL);

QA

DCL 1 BT(16) STATIC EXTERNAL,
2 REGISTER FIXED BIN (15),
2 VALUE FIXED BIN(31),

BASE NO FIXED BIN(15) STATIC EXTERNAL;

DCL (REGNO,REGVAL) FIXED BIN(15),
I FIXED BIN(1l5),
DONE BIT (1):

DCL REGDROP ENTRY (FIXED BIN (15));

BT (BASE NO+1) .REGISTER = REGNO;
BT (BASE NO+1) .VALUE = REGVAL;
DONE = '0'B;

CALL REGDROP (REGNO);

END

DO I = BASE NO TO 1 BY -1 WHILE ("DONE);
TF BT(I) .VALUE>REGVAL THEN DO;

BT(I+1l) = BT(I);
BT(I) .REGISTER = REGNO;
BT(I) . VALUE = REGVAL;

END;
ELSE DONE = '1'B;

END;
BASE NO = BASE NO + 1;
BTSTO:;

fhhkkkhkhhhhhhhhhhhhhhhhhhhnddadhhdbdhhhhhhrhhrhdhbhththhhhkdhhxk
* BRGET GETS THE BASE REGISTER AND ITS CONTENTS FOR A GIVEN *

kx SYMBOLIC ADDRESS. %
kkkkhkkhkkkkrhLthkkhkhhkkhkihrt blr . TT Tekhk

BRGET: PROCEDURE (REGVAL,BRVAL) RETURNS (FIXED BIN (4)):

DCL 1 BT (16) STATIC EXTERNAL,
2 REGISTER FIXED BIN (15),
2 VALUE FIXED BIN (31),

BASE NO FIXED BIN(15) STATIC EXTERNAL;

DCL (REGVAL,BRVAL) FIXED BIN (15),
REGNO FIXED BIN (4),
[FIXED BIN (15),

DONE BIT(1);

DONE = '0'B;
REGNO = @;

BRVAL = 0;

IF BASE NO=0 THEN RETURN(Q);

QQ"

DO I = BASE NO TO 1 BY -1 WHILE ("DONE);
IF REGVAL>=BT(I).VALUE THEN DO;

REGNO = BT (I) .REGISTER;
BRVAL = BT(I).VALUE;
DONE = '1'B;

END;
END;
RETURN (REGNO);

END BRGET;

JRAkhkhhhhhhhhhhhhhkhhhhhkhhhhhhhkkhhhhhhkhkrhhhkhhhhkdhhhhhddhx
* CHARGET GETS THE HEXADECIMAL BIT STRING REPRESENTATION *
* FOR A GIVEN CHARACTER ARGUMENT. *
Khkhkhhhkhhhkhhhkhhkhkhkhhhhkhhhhhhhhxrht+r"~~ Tt kkdekkkdhbk

CHARGET: PROCEDURE (ARG) RETURNS (BIT (8)) -

b

DCL ARG CHAR(¥*),
I FIXED BIN(15);

DCL 1
CT (63) DCRR) INIT (

SEYn CO FA
Onl MTT g','9",
2.6 ta ! ' ’ 'D','E"',

DtES Te
KL ' ML 7 st,'T!,
Pong ' 7,2, "1x voter,
Uv tet " (*,'+,
17 , ; Co ’ . 5 , aT

Ba "yaa! LAal

' 1~1

] : ' 4 , ! 5 3 AN
 he I ' GNED IN ‘5 4

Theisenelasres"F@'B4, 'B4,'F7'B4, fas!
P5'B4,1P6'E 1C3tBa, CAB," 5154Carat; 1CT 8d 1ca1B1 1a 34! DI nd.'C6 'B4, 1C7'84, 'D4'B4,'D5'B4, D° aa’D784,1D8131,D9"84. 152151, 8315454154, 1E5154, 18614, ET 1D, TE 4,59184, 45134,14C1B1, 4014, m3.(GA 1B4,150"D4, 5A 04,150 Ba, 13 4,'6A'B4,'50'B4, ot ions toeanual oe '17E'B4,'7F'B4,
'7A'B4," BBL ‘rg'na}'Cp'B4,'DO'B4,

Q9

END

DO I =1 TO 63;
IF CT(I).SYMBOL=ARG THEN RETURN(CT (I) .VALUE);

END;
RETURN ('20@'B4);
CHARGET;

Q

APPENDIX C

EXEC Used to Execute ASSMBLR

The following EXEC macro allows a user to call

ASSMBLR by typing the following instructions:

EXEC ASSEMBLE filename

where filename is the full name, including pathname, of the

file he wants assembled.

ASSEMBLE:

COPY &1 T1ONG>INDATA

SEG

VLOAD #ASSMBLR

LOAD B_ASSMBLR

LOAD B_ROUTINES

LI PLI1GLB

[.T

EXECUTE

QA

APPENDIX D

A User's Guide to ASSMBLR

This section was written specially for anyone intending
to use ASSMBLR.

D.1 Operating Instructions

ASSMBLR is implemented for a subset of the full IBM
assembly language. Therefore, in addition to the syntax
requirements of the full IBM assembly language, there are
additional constraints that you will have to observe. These
constraints are stated in section D.2 of this Appendix.

To assemble your program, you must first have your
assembly language program in a file. This can be done
directly at a terminal. Or, you can punch your program into
a deck of cards and use the Prime readcard facility to read
your deck into a file. Once you have your program in a file,
all you have to do is type the following sets of
instructions.

A T1ONG SGLP
EXEC ASSEMBLE loginid>filename

where loginid is your login id, and filename is the name of
the file where you have stored your assembly language
program. This will cause ASSMBLR to assemble your program,
and you will get the result printed out on your terminal.

D.2 Constraints

Only 1 control section is allowed and the
instruction must be a CSECT.

2. No macros are allowed.

3. Maximum length for the program is 208 lines.

4. No floating point instructions are allowed.

5. No S format instructions are allowed.

A If one of the operands of an instruction is a
literal, that literal must be the last operand
of the instruction.

QS

7

qQ.

J.

10.

Length attributes in SS instructions must be explicitly
stated.

Valid expressions are those in which constants (or self-
defining terms) are written as decimal integers. Signs
are optional.

The only legal operators are '+', '-', '/', and '*',
Parentheses are not permitted in expressions.

Only constants and literals of type C, X, B, F, H, A
are recognized.

11. Literals must start with the '=' symbol.

12. Symbol length attribute references are not permitted.

13. The duplication factor must be an unsigned decimal
integer, if one is used at all.

14.

15.

16.

17.

18.

For type C constants or literals, only a subset of the
full EBCDIC character set is implemented. Specifically,
quotes are not permitted.

Only one address can be specified within the
parentheses of an A type constant.

For X type constants the number or characters enclosed
in quotes (') must be even. For B type constants,
the number of binary digits must be an integral
multiple of 8.

Bach constant must include a type attribute. For
example, DC F'7,8,9' should be written as
DC F'7',F'8',F'O"

Only constants and literals of types C or
have length modifiers.

Zan

RA

APPENDIX E

A Sample Session

exec assemble indata?2
C>COPY INDATA2 INDATA
C>SEG
[SEG rev 17.0]
" VLOAD #ASSMBLR

LOAD B ASSMBLR
LOAD B ROUTINES
LI PL1GLB
LI
EXECUTEcl

LOC OBJECT “ODE

PO00BB 5C30 FO30
0330084 5930 F@34

030038
20000C
20000E
300012
Pe0314
2000618
300020
ABBR 2C

4110 7000
BA0C
951B 9010
PTFE
0000004
C8C5C8C5C8C5CBCS
C8C5C8C5DI9CS5F 1F 2
0003000938

00330 FFFFFFFQ
I00B334 00000024
C>ENDX TS0001
 oS

STMT SOURCE STATEMENT

1 MP1 CSECT
USING *,15
M INDEX, =F'-16"
C INDEX,=F'36"
USING *,9
LA 1,0 (0, ROMAN)
SVC ~~ COUNT
CLI SAVER+4,X'lB'
BR 14

DC A (END-NEXT)
DC ACL2'HERE'
DC C'HEHERE12?"'
DC A (END)
EQU 3
£QU /
EQU 12
END

NEXT

ENDJ

L7 SAVER
1

;
L 6
7

INDEX
ROMAN
COUNT

=F '-16'
=F'36"'

Q~

