
.r/4f9 g

AN OBJECT-ORIENTED APPROACH TOWARDS

ENHANCING LOGICAL CONNECTIVITY

IN A DISTRIBUTED DATABASE ENVIRONMENT

by
David Collins Horton III

B.A., Economics and Physics
Amherst College

(1982)

Submitted to the Sloan School of Management
in Partial Fulfillment of

the Requirements of the Degree of
Master of Science in Management

at the

Massachusetts Institute of Technology

May 1988

@ David C. Horton 1988
All Rights Reserved

The author hereby grants to M.I.T. permission to reproduce and to
distribute copies of this thesis document in whole or in part.

S ign atu re of A u th or ..
Alfred P. Sloan School of Management

May 13, 1988

Certified by
Y. Richard Wang

Assistant Professor, Management Science
Thesis Supervisor

Accepted by
Jeffrey A. Barks

Associate Dean, Master's and Bachelor's Programs

AN OBJECT-ORIENTED APPROACH TOWARDS
ENHANCING LOGICAL CONNECTIVITY

IN A DISTRIBUTED DATABASE ENVIRONMENT

by
David Collins Horton III

B.A., Economics and Physics
Amherst College

(1982)

Submitted to the Sloan School of Management
in Partial Fulfillment of

the Requirements of the Degree of
Master of Science in Management

ABSTRACT

The advent of distributed database systems brings with it the challenge of
making logical, as well as physical, connections between disparate systems.
Taking advantage of the "'information explosion" and lower hardware costs
means reconciling the semantics of different system environments and
administrators. Traditional database systems have no tools for capturing these
kinds of knowledge, while traditional AI systems don't feature flexible access to
"real-world" databases. This thesis presents the design of a Composite
Information System Tool Kit (CIS/TK) which is being developed to bridge this
gap. It is found that an object-oriented approach can successfully embed semantic
and heuristic knowledge in a distributed database environment to deal with
problems such as inferencing, mapping data between different domains and
assembling complete information about entities from extremely disjoint
distributed databases.

Thesis Supervisor: Dr. Y. Richard Wang
Title: Assistant Professor of Management Science

ACKNOWLEDGEMENTS

I'd like to express my gratitude to everyone who assisted me in this work,

and to all those who were working on related topics. First and foremost, thanks

to my advisor, Rich Wang, who always made himself available and was willing to

meet at any time to discuss new ideas. His help, and his determination that this

project should succeed, were the driving forces in my work, as well as many

others. In the same vein, I hasten to thank T.K. Wong for his effort, his time and

his code (of course); but most of all for his thought in our design sessions. Time

and again he was able to focus on the pertinent design aspects and prevent me

from pursuing directions that would have proved fruitless. I may never

understand why an undergraduate would work so hard, but I certainly won't

begrudge my good luck. I also owe a large debt of gratitude to Tammy Son,

without whom I couldn't have gotten anything done but who, more importantly,

was always fun to be around, even when we came up with new and exciting ways

to make her life sheer hell. Believe me Tammy, that landscape graphic wasn't

my idea!

Thanks also to Prof. Stuart Madnick, my reader, for his time and thought.

His criticisms and ideas frequently provided the force to develop the final, and

most critical, design elements. Many thanks to Larry Kooper, and his PAS team,

for their work which kept me cognizant of the needs of application users like the

Placement Office, and whose intensity forced me to try to keep up.

Finally, thanks to all who put up with me and tried to keep me sane during

this period, especially my parents, Sarah, and William Keefe Ltd.--may he one

day break out of his self-imposed existential cage.

And, of course, thanks most of all to the people at the Royal East.

CONTENTS

ABSTRACT

ACKNOWLEDGEMENTS

1. Introduction

2. A Tool Kit for Composite Information Systems (CIS/TK):
Research Overview

I. Introduction

II. The Tool Kit for Composite Information Systems (CIS/TK)

III. Applications of CIS/TK

IV. Summary

3. The design of the CIS/TK Query Processor Architecture

I. The CIS/TK Query Processors

II. Application Query Scenarios

III. A Closer Look at the GQP

4. Mapping Data Between Different Representation Schemes

in CIS/TK

I. Storing Translation Knowledge

II. Extensions to GS Entities and Attributes

III. Two Detailed Scenarios

5. Attribute Subsetting in CIS/TK

I. An Example of Attribute Subsetting

9

12

13

16

17

32

37

42

43

55

57

65

65

II. Attribute Subsetting in CIS/TK

III. A Detailed Scenario

6. Future Directions

Bibliography

69

77

82

83

Introduction

This thesis explores how an object-oriented platform can be used to develop

a set of tools designed to enhance logical connectivity in a distributed database

environment. A prototype, called the Composite Information System Tool Kit

(CIS/TK) is currently being developed to experiment and codify successful

approachs to the problem of logical connectivity. The thesis is organized into four

reports followed by a section of short concluding remarks. Each report focuses on

a separate aspect of CIS/TK. The first report presents an overview of the

applications of CIS systems and discusses the goals of the CIS/TK system, in

particular. The next report examines the specific nature of query processing in

CIS/TK, detailing the implementation of a layered approach towards query

processing. The third report examines the basic logical connectivity problem of

translating data values between different domains, as is frequently needed in

order to join data in a distributed environment. The fourth report details a

technique called attribute subsetting which is used to join information between

databases where no primary-foreign key join is available. Finally, a concluding

chapter examines the direction and focus of future work.

A Tool Kit for Composite Information Systems (CIS/TK):
Research Overview

I. Introduction

The rapidly increasing complexity, interdependence, and competition in the

global market over the last two decades has profoundly impacted how corporations

operate and how they (re)align their information technology and competitive

strategies in the marketplace. This alignment has accelerated demands for more

effective information management for both decision-making, operational efficiency,

and new product and services. To meet these demands, the information industry has

made significant advances in the price, speed performance, capacity, and capabilities

of database technology. Today, commercial Data Base Management System (DBMS)

products are widely installed by corporations. Homogeneous distributed DBMSs

such as Relational Technology's INGRES* and ORACLE's SQL*STAR are now

becoming commercially available. Furthermore, experimental heterogeneous

DBMSs such as CCA's MULTIBASE have also been introduced.

In exploiting the DBMS technology, it has become increasingly evident that

many important applications require multiple independent disparate databases to

work together within and/or across organizational boundaries in order to increase

productivity. We refer to this type of systems as Composite Information Systems

(CIS). Although many Composite Information Systems exist today, they are in

reality a combination of human operators and computer systems. The human

intervention required to interface multiple independent databases implies that it is

an expensive, time-consuming, and error-prone process. It would be advantageous if

the human operator component could be automated. In attempting to automate the

human operator component, we have identified three important techniques: table

A Tool Kit for Composite Information Systems (CIS/TK)

lookup, functional mapping, and heuristic reasoning. They are exemplified below

using a multiple tour guide case study [Madnick and Wang, Facilitating Connectivity

in Composite Information Systems, to appear in Database]:

(1) Table lookup: Many syntax problems can be resolved through table lookup. For

example, the entity "amenity" in the Massachusetts Spirit tour guide database is

called "facility" in the FODOR tour guide; similarly, the instance "A/C" in

FODOR is called "air conditioning" in the Massachusetts Spirit.

(2) Functional mapping: Procedures are useful to encode formulae and facts. For

example, in FODOR expensive means, among other criteria, "bath or shower in

each room, restaurants, TV, phone, attractive furnishings, heating, and AIC."

Since the meaning of expensive is not stored as part of the relations, a procedure is

needed to encode the information.

(3) Heuristic reasoning: There are many rules of thumb which do not fit either tables

or procedures very well. For example, if the lodging type is a motel, then it would

be reasonable to encode a heuristic rule stating that free parking is available.

Alternatively, if a lodging's location is in the Boston Back Bay area (from zip code

02116), and the lodging is rated as $$$, then valet parking is very likely to be

available.

Faced with these problems, we have found it effective to incorporate Artificial

Intelligence (AI) technology as part of the solution. AI technology developed over the

past 30 years has proven to be very useful in capturing rules of thumb and making

rule-based inferences. By integrating the information sharing capability of DBMS

technology and the knowledge processing power of AI technology, multiple

A Tool Kit for Composite Information Systems (CIS/TK)

independent disparate databases may be accessed in concert with minimum human

intervention.

In addressing the integration of AI and DBMS technologies, Albert, Chern, and

Sears [Forward of Topics in Information Systems On Knowledge Base Management

Systems, Brodie and Mylopoulos, ed., 1986] have suggested that:

"The time has come to face the complex research problems that must be solved before we

can design and implement real, large scale software systems that depend on knowledge-

based processing. In the long term, research is needed to find ways for knowledge-based

system technology to support database systems and vice versa. In the near term,

research is needed to develop tools that support the design and development of systems

that require an integrated set of knowledge base and database system tools."

The Tool Kit for Composite Information Systems (CIS/TK) is an innovative

research prototype being developed at the MIT Sloan School of Management for

providing such an integrated set of knowledge base and database system tools. It is

being implemented in the UNIX environment to take advantage of its portability

across disparate hardware and multi-programming capability for accessing multiple

disparate remote databases in concert.

II. The Tool Kit for Composite Information
Systems (CIS/TX)

The CIS/TK ensemble can be viewed as a Knowledge and Information Delivery

System (KIDS), as depicted in Figure 1, which has four functional components:

knowledge processing, information sharing, physical and logical connectivity, and

user interfaces. Specifically, it consists of the following four subsystems:

A Tool Kit for Composite Information Systems (CIS/TK)

Figure 1 Knowledge and Information Delivery Systems [KIDS]

(1) Knowledge Processing

An enhanced version of the Knowledge-Object REpresentation Language

[Levine, 1987] which facilitates an object-oriented approach and rule-based

inferencing mechanism. Implemented in Common Lisp, it forms the

underpinnings of CIS/TK. The significance of the subsystem is threefold: (1) it

gives us the capability to evolve the code for experimenting and developing

innovative concepts; (2) it provides the required knowledge representation and

reasoning capabilities for knowledge-based processing in the heterogeneous

distributed DBMS environment; and (3) it is very simple to interface the code

with off-the-shelf software products (e.g., EXPRESS, ORACLE, and INFORMIX)

A Tool Kit for Composite Information Systems (CIS/TK)

through the I/O redirection and piping capability inherent in the UNIX

environment. The reader is referred to Levine [Master's Thesis, Electrical

Engineering and Computer Science, MIT, May 1987] and Wong [Enhancing The

CIS/TK Rule Inferencing Capabilities, Sloan School of Management, MIT, May

1988 (expected)] for a detailed description of the knowledge processing

component.

(2) Information sharing & Physical Connectivity

A multi-layered query processing architecture for processing end-user queries.

This architecture will be examined in detail in chapter 2. The architecture

consists of an application query processor, a global query processor, and a local

query processor and a DBMS query processor for each DBMS in the CIS. The

query processors are key to the integration of disparate databases in a

heterogeneous environment where multiple-vendor hardware and DBMSs may

need to be accessed in concert. This subsystem corresponds to the shared

information component of KIDS with the exception that the local query

processors are also responsible for physical connectivity.

(3) User Interfaces

A set of user interfaces for building global schemata, application models, and

application model queries. The Global Schema Builder facilitates the database

designers and administrators to create global schemata for integrating disparate

databases. The Application Model Builder facilitates the application developer to

create application models. The User Query Builder facilitates the end-user to

build queries given an application model and its corresponding global schema.

The reader is referred to Levine [The Design and Implementation of the CISITK

A Tool Kit for Composite Information Systems (CIS/TK)

User Interface Builders, Sloan School of Management, MIT, May 1988 (expected)]

for the details.

(4) Logical Connectivity

A set of special facilities for achieving logical connectivity; for example, domain

value translation, for mapping values between different representation schemes,

and instance identification through attribute subsetting. Chapters 3 and 4 detail

how these facilities are implemented in CIS/TK.

Taken together, these four subsystems comprise a KIDS for delivering timely

knowledge and information in a diversity of situations. CIS/TK can be applied to a

diversity of situations, as discussed below.

III. Applications of CIS/TK

Four categories of situations where KIDS can be strategically advantageous are

summarized below:

(1) Inter-organizational - which involve two or more separate organizations (e.g.,

direct connection between production planning system in one company and order

entry system in another company).

(2) Inter-divisional - which involves two or more divisions within a firm (e.g.,

corporate-wide coordinated purchasing).

(3) Inter-product - which involves the development of sophisticated information

services by combining simpler services (e.g., a cash management account that

combines brokerage services, checks, credit card, and savings account features).

A Tool Kit for Composite Information Systems (CIS/TK)

(4) Inter-model - which involves combining separate models to make more

comprehensive models (e.g., combine economic forecasting model with optimal

distribution model to analyze the impact of economic conditions on distribution).

As an example, consider the Composite Information System for the Sloan

placement office, as illustrated in Figure 3. The CIS spans five systems in four

organizations: (1) the student database and the interview database are located in the

Sloan School; (2) the alumni database is available in the alumni office; (3) the recent

news is accessed by dialing into the Reuters' textline database; and (4) the recent

financial information is accessed through the I.P. Sharp's Disclosure II database. In

order to find companies interviewing at Sloan that are auto manufacturers,

alumni/students from these companies, and recent information about these

companies, all the five databases in the four organizations need to be accessed.

CIS/TK can be applied to facilitate this process through its query processor

subsystem. Moreover, its knowledge processing component can be employed to

perform complex heuristic reasoning. The reader is referred to Kooper [A Composite

Information System for the Sloan Placement Office, Master's Thesis, Sloan School of

Management, MIT, May 1988 (expected)] for the details.

IV. Summary

We have presented a broad overview of a Tool Kit for Composite Information

Systems (CIS/TK). The CIS/TK ensemble is a unique and innovative, unique,

cutting-edge system for delivering timcly knowledge and information in an inter-

organizational setting. In the rapidly changing, complex, and competitive global

market, the capability to dynamically (re)align corporate strategy with information

technology (IT) in the organizational context is a critical issue facing the IS

A Tool Kit for Composite Information Systems (CIS/TK)

(TCP/IP LAN)

SLOAN MIT
PLACFMENIT

DISCLOSURE 11 TEXTLINE

ALUMNI
OFFICE DATABASEI

SLOAN INTERVIEWS D-rBAS
STUDENT
DATABASE

SELECT QUERY: 4

I 4- FIND COMPANIES INTERVIEWING AT SLOAN FROM SPECIFIC
| |INDUSTRY AND ALUMVNI/STU DENTS FROM THESE COMPANIES

i i

I IENTER INDUSTRY SELECTED: AUTO MANUFACTURERS

ACHRYSLER - FEBRUARY 4, 1988

ALUMNI: THOMAS SMITH, SM 1973FO -
JIM JOSEPH, SM 1974
JANE SIMPSON, SM 1966

L - - - - - - I CURRENT STUDENTS:
BILL JONES

RECENT FINANCIALS (from .P. Sharp/Disclosure 1):
1986 1987 - - - - I

SALES (M) 300 340
REVENUES (M) 20 26

RECENT NEWS (from Reuters'TextLine): . - - - - - -.-

Chrysler Announces New Eagle
Line of Autos

Figure 3 A CIS for the Sloan Placement Office

A Tool Kit for Composite Information Systems (CIS/TK)

executive. The CIS/TK research is aimed at providing such a dynamic IT platform

for supporting knowledge and information intensive applications.

The Design of the CIS/TK Query Processor Architecture

The Tool Kit for Composite Information Systems (CIS/TK) is a research

prototype being developed at the MIT Sloan School of Management for providing

an integrated set of knowledge base and database system tools. Developed in the

UNIX environment to take advantage of its portability across disparate

hardware and multi-programming capability for accessing disparate remote

databases in concert, the CIS/TK ensemble consists of the following subsystems:

(1) An enhanced version of the Knowledge-Object REpresentation Language

(KOREL) [Levine, 1987] which facilitates a frame-based knowledge

representation and rule-based inferencing mechanism

(2) A query processor architecture for processing end-user queries. The

architecture consists of an application query processor, a global query

processor, and a pair of local query processor and DBMS query processor

for each DBMS in the CIS.

(3) A set of user interfaces for building global schemata, application models,
and application model queries. The Global Schema Builder facilitates the

Database administrator to create global schemata for integrating

disparate databases. The Application Model Builder facilitates the

application developer to create application models. The User Query
Builder facilitates the end-user to build queries given an application model

and its corresponding global schema.

(4) A set of special facilities for achieving logical connectivity; for example,
conflict resolution of incompatible information through credibility analysis

and concept inferencing, and instance identification through attribute

subsetting and name recognition.

Three classes of users will interact with the CIS/TK: (1) Database

administrators who create and implement global schemata based on the

underlying, distributed local schemata; (2) applications designers who create and

The Design of the CIS/TK Query Processor Architecture

implement application models based on an underlying global schema; and (3)

end-users who generate queries based on the application model.

End-users can generate queries in one of two fashions. Queries can be pre-

built by the application designer and stored directly into the application objects.

A user-friendly front-end then presents these queries to the end-user for easy

selection. This procedure allows even the most unsophisticated end-users to be

supported for commonly-occurring queries. Alternatively, the end-user can

generate ad-hoc queries by directly formulating the query himself. In the future,

an SQL-type parser will be implemented. Currently, the query must be

formulated in the application model query syntax.

The design decisions and implementation details of each of the subsystems

will be documented in a series of CIS/TK reports. We focus on the CIS/TK query

processor architecture in this report.

I. The CIS/TK Query Processors

Before discussing the query processor architecture it is necessary to define the

terminology used. End-user queries interact with a set of objects that make up

the Application Model (AM). The AM is one application designer's view of an

underlying Global Schema (GS). The AM will be described in traditional object-

oriented programming terms -- that is, as a set of objects having both slots and

methods. AM objects may have superiors and subtypes, but other types of

relations will be represented in these objects as well. For example, students and

transcripts are objects in a student AM. The GS, however, represents database

concepts. Thus, a GS will be described as a set of entities, each having attributes

The Design of the CIS/TK Query Processor Architecture

and relationships (1 to n, n to 1, and m to n) with other entities. Although the GS

entities will be implemented as objects, we will continue to refer to a GS in

database terminology of entities, attributes and relationships.

A layered architecture for processing end-user queries is proposed, consisting

of the following four query processors, as shown in Figure 1:

(1) Application Query Processor (AQP)

(2) Global Query Processor (GQP)

(3) Local Query Processors (LQPs)

(4) DBMS Query Processors (DQPs)

The architecture is presented as follows: first, the interfaces between each of

the four query processors are examined. For each query processor, the syntax for

inbound and outbound messages types is laid out. Moreover, the Global Schema

Manager (GSM) and the Application Model Manager (AMM) which support the

GQP and AQP respectively are also examined in the context of query processing.

Next, two specific application query scenarios are developed to further illustrate

how queries are decomposed and handled by each query processor. Finally, the

innards of the AQP and GQP are examined in light of a specific query. The

reader is referred to Champlin [1988] for the design decisions and

implementation details of the LQP.

The local schemata, related global schema and application model that are

shown in Figures 2, Figure 3, and Figure 4 will be used throughout to support the

query examples. These are the local and global schema for a student CIS system.

The Design of the CIS/TK Query Processor Architecture

Application
Model

Global
Schema

Dictionary

Executable
Local

Queries

Application
Instance

Application Objects
Model Query 1'

4.. Application
.4 CQuery Processor

-4-
Global
Schema

Manager

Abstract
Local

Query

Global
Schema
Query

4-- Global Query
_- Processor

Tables

Query
Resu Its

Joined
Table

The CIS/TK Query Processor ArchitectureFiue1

The Design of the CIS/TK Query Processor Architecture

Student db (STUDENTDB)

Grade tb Major tb

Student-ID Concentration

Course-hist db (COURSEHDB)

Course-hist tb

Course-info db (COURSEIDB)

Course-info tb

Course # Prof. Grade Course-num Credits Desc.

Club db (CLUBDB)

Club tb

Cname # members Fund*ng

Figure 2 Local Schemata of Four Separate Student Databases

The corresponding object specifications for the global schema and application

model are also shown in Figure 5 and Figure 6 respectively.

Sname Average Club Name

Name

The Design of the CIS/TK Query Processor Architecture

gname gmajor gGPA gprofessor

-.-~-.g # members

Figure 3 The Student Global Schema

Sname raduate Professor Grade Course #

. Cname

funding

members

Figure 4 A Student Application Model

credits

gdesc

The Design of the CIS/TK Query Processor Architecture

Global Schema

Object
mit-gschema

gstudent

gclub

gcourse-history

gcourse-info

Slot
DBloc
attribrmap
entity_list
joinkeys

gname

gmajor
ggpa
gid

join-m-to-n
join-1-to-n

gname
gfunding
g#members
join-m-to-n

gprofessor
ggrade
gcourse#
join-n-to-i

g#credits
gdesc
join-1-to-n

Value
(BOOT DBloctb)
(BOOT attribmaptb)
(gstudent gclub gcourse-history gcourse-info)
((STUDENTDB gradetb (gname gid))
(STUDENTDB majortb (gname gid)))

((STUDENTDB gradetb sname)
(STUDENTDB majortb name))
((STUDENTDB majortb concentration))
((STUDENTDB gradetb average))
((STUDENTDB gradetb id)
(STUDENTDB majortb student-id))
((gclub (gstudent gname)))
((gcourse-history (gstudent gname)))

((CLUBDB clubtb cname))
((CLUBDB clubtb funding))
((CLUBDB clubtb #members))
((gstudent (gstudent gname)))

((COURSEHDB course-listtb prof)
((COURSEHDB course-listtb grade))
((COURSEHDB course-listtb course#))
((gstudent (gstudent gname))
(gcourse-info (gcourse-history gcourse#)))

(COURSEIDB course-infotb credits))
(COURSEIDB course-infotb desc))
((gcourse-history (gcourse-history gcourse#)))

Figure 5 The Object Specification of the Student Global Schema

A few notes about these objects are in order. First, the DBloc and

attribmap slots of the global schema object are created and used by the builder

interface to the Global Schema (for details refer to Levine[1988]). They simply

The Design of the CIS/TK Query Processor Architecture

Application Model

Object

user-app-1

Slot

objects

gschema

app-model
sname

major

gpa
id

can-graduate
related-to

app-model
cname

funding

#members
related-to

Value

(student club course-history)

(mit-gschema)

(user-app-1)

(gstudent gname)

(gstudent gmajor)

(gstudent ggpa)

(gstudent gid)

(graduation-rule-set) ; in RULE facet

((club (student sname))

(course-history (student sname)))

(user-app1)

(gclub gname)

(gclub gfunding)

(gclub g#members)

((student (student sname)))

course-history app-model
professor
grade
course#
related-to

(user-app1)

(gcourse-history gprofessor)
(gcourse-history ggrade)
(gcourse-history gcourse#)
((student (student gname)))

Figure 6 The Object Specification of A Student Application Model

point to two tables stored on the local machine: one containing information on all

the databases in the system (i.e. DBMS type and machine location) and the other

containing information on the entities that constitute the global schema -- in

particular information concerning how each attribute is named in each of the

student

club

The Design of the CIS/TK Query Processor Architecture

local schemas. Tables provide the most logical structure for storing and updating

this information. At load time, the attribmap table is used to create objects for

each of the entities in the global schema. A slot is created for each attribute of

that entity and its value is a symbolic pointer to the LQPs which can satisfy data

requests for that attribute, along with the table and column name. the join-1-to-n,

n-to-1 and m-to-n slots are created as needed to model the joins reflected in the

global schema. The value of these join slots is the entity to which it is joined,

paired with the entity/attribute combination on which the join is made at the

local schema level. For instance, the local schema (Figure 2) shows that joins

between students and their course histories must be made on student name. The

value of the join-1-to-n slot in the gstudent object reflects both the relationship

between gstudent and gcourse-history, and the linking attribute. This

information must be stored in order to be able to link student instances with their

appropriate course histories at the application model level.

The objects in the application model are clearly similar to the objects in the

global schema. The application model object itself contains only information

about its related global schema and a list of objects which constitute the

application model. Each of the objects contains a slot which may point to an

entity/attribute combination in the global schema, or may contain a set of rules

for inferencing. The related-to slot indicates the relationships between objects, as

well as the slot value which joins them in the underlying local schema.

With the specifications in place, we now examine the interfaces between AQP,

GQP, LQP, and DQP as well as the corresponding GSM and AMM.

The Design of the CIS/TK Query Processor Architecture

The Application Query Processor (AQP)

The AQP is an object which has a query method that handles messages

referring to objects in the AM. These messages originate from the end-user,

either by selection from the list of pre-built queries stored in the AM or by direct

formulation by the end-user himself. This message is referred to as an

Application Model Query (AM query).

The task of the AQP is to instantiate applications objects as requested by the

AM query. It will do this by translating the AM query into appropriate Global

Schema queries (GS queries) and sending them on to the GQP as a message.

Upon return, it will translate the returned results (which are in LISP list

structure) from the global schema format to the application model format and

create instance objects. These instance objects will then be available to the end-

user for display and other types of manipulation, such as rule-based inferencing.

Thus, the AQP handles all mapping issues between the AM and the GS. The

knowledge needed to perform this mapping is encoded in the AM. It is provided to

the AQP by the Application Model Manager.

Message format accepted by the AQP:

(send-message 'AQP :query
((object1 (slot1 ... slotn)

((constraintl) .. (constraintn)))

(objectn (slot1 ... slotn)

((constraint1).. (constraintn)))))

The Design of the CIS/TK Query Processor Architecture

Where constraint is represented as:

(condition slot value)

i.e.:

(send-message 'AQP :query (student (name major gpa)

((= major "physics")

(> gpa 3.0)))

is equivalent to an SQL query:

select name, major,gpa

from global-schema

where major = "physics" and gpa> 3.0

Application Model Manager (AMM)

The job of the AMM is to provide information about an Application Model to

the AQP. The AMM accepts only one message type: get-GS-nomenclature. It is a

request for global schema information about a single object/slot combination in

the AM. For example, given an AM and GS as shown in Figures 2 and 3, if the

AM manager were passed the object /slot combination (student name) it would

return (gstudent gname) because that is where the information is referenced in

the GS.

Message format accepted by the AM Manager:

(send-message'AMM:get-GS-nomenclature (object slot))

26

The Design of the CIS/TK Query Processor Architecture

Global Query Processor (GQP)

The GQP accepts a message from the AQP which refers to entities and

attributes that are defined in the GS. It first decomposes the GS query into the

appropriate Abstract Local queries (AL queries) which use the local schema

nomenclature. One of its significant tasks, therefore, is to decide how the results

will be joined -- by a primary-foreign key join, or by attribute subsetting. Based

on this decision, the AL queries will be formed in such a way as to ensure that any

columns necessary for joining are requested along with those columns needed to

satisfy the original GS query. These AL queries are then sent as messages to the

appropriate LQP. Upon return local attribute names are re-mapped to the global

schema and all necessary joins are performed by the GQP. The resulting list

structure is then returned to the AQP. In order to perform these activities the

GQP will need to query the Global Schema Manager (GSM) about:

(1) Which DBs and tables contain data for a given attribute in the global

schema.

(2) How the attributes are represented in those tables in which they appear

(i.e. column names).

(3) Which attributes of an entity are candidate keys, and thus can be used to

perform primary-foreign key joins if entities are split across multiple

tables.

Message format accepted by the GQP:

(send-message 'GQP :query (entity (attribl attrib2..attribn)

((constraint1) .. (constraintn)))

Where constraints can be represented as:

The Design of the CIS/TK Query Processor Architecture

(condition (entity attribute) value)

i.e.(= (course-taken course#) 15.579)

If, however, the entity in the constraint is the same as the first argument to the

:query method then the constraint can simply be stated as:

(condition attribute value)

i.e.:

(send-message 'GQP (course-taken (course# course-name)

((= course# 15.579)
(> grade B)

(= (student name) "sam")))

Global Schema Manager

The GS manager provides the GQP with the information about the GS

attributes that is needed to send the appropriate LQP queries. The GS manager

accepts three types of messages from the GQP:

(1). get-LQP-location ((entity attribute) ... (entity attribute))

returns:
((entity attribute ((LQP tablename) ... (LQP tablename))) ...

(entity attribute ((LQP tablename) ... (LQP tablename))))

For each entity/attribute pair the get-LQP-location method will return the LQPs

which can access data for that pair. The GQP uses this information to determine

where to access data for a given attribute. For example,

(send-message'GSM:get-LQP-location'((gstudent gmajor)(gstudent gname)))

The Design of the CIS/TK Query Processor Architecture

would return

((gstudent gmajor ((studentdb majortb)))(gstudent gname

((studentdb majortb)(studentdb gradetb))))

(2). get-LQP-nomenclature (entity attribute LQP tablename)

returns:

column-name

For each GS attribute in the named table the GS manager returns the actual

column name in that table. For example,

(send-message 'GSM :get-LQP-nomenclature '(gstudent gmajor MAJOR

majortb))

would return:

concentration

(3). get-LQP-join-keys ((LQP-1 tablename) (LQP-2 tablename))

returns:

((entity attribute) ... (entity attribute))

Given the two database/table pairs, the GSM returns a list of the attributes which

could be used to join entities which are split between two tables. In relational

The Design of the CIS/TK Query Processor Architecture

database terminology, this is a list of the candidate keys which are common to

both tables. The list is returned in the GS nomenclature. For example,

(send-message 'GSM :get-join-keys '((GRADEDB gradetb) (MAJORDB

majortb)))

would return:

((gstudent gname) (gstudent gid))

since both student name and id could be used to uniquely identify entities in

gradetb and majortb.

We now turn our attention to the Local Query Processor.

Local Query Processor (LQP)

The LQP objects each accept a query on a single database-machine-DBMS

instance. It translates the query into an executable query for that DBMS,

establishes a connection with that machine and sends the query. The physical

retrieval of data is then performed by the DBMS query processor (i.e. ORACLE,

INFORMIX etc.). Upon return the LQP strips extraneous information from the

resulting output stream and translates the results into LISP list format which is

then passed back to the GQP. As mentioned earlier, the reader is referred to

Champlin [1988] for the design decisions and implementation details of the LQP.

The Design of the CIS/TK Query Processor Architecture

Message format accepted by the LQP to get data from the actual DBMS:

(send-message LQP :get-data '(table (coll ... col2)

((constraint1).. (constraintn))))

i.e.:

(send-message ORACLE 1 :get-data '(gradetb
(sname concentration)
((= concentration "physics"))))

(send-message ORACLE2:get-data '(majortb
(name average)

((> average 3.0))))

Note that the GQP needs to know the name of the LQP handler for a given

database, not the name of the database itself. How this information is made

available to the GQP will be covered later, however, in the examples to come

assume that the LQPs for the for the databases in the local schemas are named as

follows: STUDENTDB is the LQP for studentdb, CLUBDB is the LQP for clubdb,

COURSEHDB is the LQP for course-historydb and COURSEIDB is the LQP for

course-infodb.

DBMS Query Processor (DQP)

Little needs to be said about the DQPs. These are the specific DBMS's capable

of executing a DML command valid for that DBMS., i.e. ORACLE, INFORMIX

etc.. They receive a valid data request, physically retrieve the data and return it

to the requesting LQP.

The Design of the CIS/TK Query Processor Architecture

We have examined the interfaces between each of the four query processors.

Two application query scenarios are presented below to further illustrate how an

application query is decomposed and handled at each level of processing.

II. Application Query Scenarios

An end-user interacts with the system by first selecting an application model

to work with. This choice also implies a choice of a global schema since an

application model can only refer to a single global schema. The end-user can then

choose to execute any of the queries stored in that application model, or design

and execute his own ad-hoc queries. In either case, the query will be sent to the

AQP in the format specified earlier. As an example, assume the end-user chooses

the student application model (Figure 4) and wishes to get information on all

students majoring in physics and maintaining a certain grade point average. The

message sent to the AQP would be:

(send-message 'AQP :query '((student (name major gpa)
((= major "physics")

(> gpa 3.0))))

After performing the appropriate translation the AQP would then send the

following message on to the GQP:

(send-message 'GQP:query '((gstudent (gname gmajor ggpa)

((= gmajor "physics")

(> ggpa 3.0))))

The Design of the CIS/TK Query Processor Architecture

The GQP then send messages to the Global Schema Manager to find out which

tables contained data on the gname, gmajor and ggpa attributes. After finding

out that gname is both gradetb and majortb, gmajor is in majortb (called

concentration), and ggpa is in gradetb (called average) the GQP then asks the

GSM how to join tuples in gradetb to those in majortb. The GSM would respond

that joins could be done on the student name (gname). The GSM also provides the

information that the LQP handling messages for gradetb was called GRADE, and

that for majortb was called MAJOR. The GQP then sends the following messages

to the MAJOR and GRADE LQPs:

(send-message 'MAJOR :get-data '(majortb
(name concentration)

((concentration "physics"))))

(send-message 'GRADE :get-data '(gradetb
(sname average)

((> average 3.0))))

The GQP then remaps the column names to the global schema nomenclature (i.e.

sname -- > gname) and performs a join on gname. The resulting table is then sent

back to the AQP. The AQP remaps the table to the application model

nomenclature (i.e. gname -- > name) and instantiates application objects. For

instance, after re-mapping in the AQP the results of the initial query might look

like:

((name major gpa)

(tk 6 3.3)

(dave 15 3.2))

The Design of the CIS/TK Query Processor Architecture

and the following two instance objects would be created:

Dave 15 3.2 TK 6 3.3

Student-1 Student-2

A more complex query might be developed if a user were interested in looking

at all students flunking out of the physics department and the clubs they

belonged to see if there were any connection. This is a query that involves more

than one entity in the application schema. The query sent to the AQP would be:

(send-message 'AQP :query '((student (name gpa)

((= major "physics")

(< gpa 2.0)))

(club (name)

((> #members 3)))))

This query requests all the students in the physics department with a gpa

below 2.0, and, for each of those students, the clubs which they belong to which

have greater than 3 members. Let's look first at the final result the AQP should

return. If two students, sam and phil, satisfied the criteria then the AQP should

terminate by instantiating the following objects and relations:

sam phil
Student-1 Student-2

1.5 1.7

Club-1 hess Club-2 -acting

The Design of the CIS/TK Query Processor Architecture

The AQP would proceed by first breaking down the multiple entity query into

a set of single entity queries. The first message it would send to the GQP would

be:

(send-message 'GQP:query'(gstudent (gname ggpa)

((= gmajor "physics")

(< ggpa 2.0))))

The GQP would proceed as before, translating and sending queries on their

way to the appropriate LQPs and, eventually, DBMS. After the results were

returned to the AQP and re-mapped to the application model nomenclature, the

list might look like:

((gname ggpa) (sam 1.5) (phil 1.7))

The AQP would then instantiate the following two application objects:

sam phil
Student-1 Student-2

1.5 1.7

The AQP would then proceed to the second part of the query: finding the

appropriate club for each of the student objects and linking them appropriately.

One message would be sent to the GQP for each of the application object instances

created earlier. First, the AQP inquires about sam's club affiliations:

(send-message'GQP :query'(gclub (gname)

((> #members 3)
(= (student name) "sam"))))

The Design of the CIS/TK Query Processor Architecture

Note that in order to send this message the AQP has only to strip off the section of

the initial query referring to the club application object and add one condition

which refers to one of the student objects already created. The GQP will process

this message as before, eventually returning the re-mapped list:

((name) (chess))

A club application object will then be instantiated and linked to the appropriate

student object so that the application environment now looks like this:

sam phil
Student-1 Student-2

1.5 1.7

Club-1 chess

Likewise, a message would be sent to the GQP concerning phil's clubs:

(send-message 'GQP :query '(gclub (gname)

((> #members 3)
(= (student name) "phil"))))

After re-mapping, instantiating and linking the results the AQP would have

created the following objects, as initially desired:

sam phil
Student-1 Student-2

1.5 i.7

Club-i chess Club-2 cting

36

The Design of the CIS/TK Query Processor Architecture

The order of the application objects in the query that was initially presented to

the AQP is significant. An inquiry about a group of students, and the clubs which

they belong to, is quite different than an inquiry about a group of clubs and the

students that are members. In the first case, a set of students is first selected,

then the clubs which that set of students belong to and which meet the conditions

placed on clubs are selected. There are thus two sets of conditions placed on the

selection of clubs--indirectly, through the specification of the student members,

and directly, through conditions about the club that are specified. In the reverse

sequence the conditions placed on clubs are first applied to all clubs, then the

students belonging to those clubs and satisfying any additional student

conditions are selected. Thus, in this case, there is only one set of conditions

placed on the selection of clubs.Thus, the arrangement of the objects in the query

sent to the AQP is not interchangeable -- conditions applied to the first object will

affect the selection of objects which they are later linked to. This is not thought to

be a shortcoming since it is necessary to elicit this semantic information from the

end-user before a query can be successfully processed.

III. A Closer Look at the GQP

Clearly, the GQP is the crux of the CIS/TK query processor subsystem. It has

responsibilities for choosing where to retrieve the data from and how to join

entities that are split between multiple tables. It is here that logical connectivity

techniques such as attribute subsetting (a method of joining by employing

heuristics) and credibility (table choosing) will be employed. The best way to

The Design of the CIS/TK Query Processor Architecture

understand the workings of the GQP is to follow up the earlier example in greater

detail. That example only inferred the processes of the GQP by examining the

syntax of the incoming and outgoing messages. Now we are in a position to

examine those processes in detail.

Example: The GQP receives the following message from the AQP

(send-message 'GQP:query (gstudent (gname ggpa)

((= gmajor "physics")

(> ggpa 3.0))))

(1). The GQP parses the message, constructing a list of entities and attributes

that are specified in the query:

(setf eas ((gstudent gname) (gstudent ggpa) (gstudent gmajor)))

(2). The GQP sends a message to the GSM to find out which databases and tables

will be needed:

(send-message 'GSM :get-LQP-location '(eas))

The GSM returns the following list:

((gstudent gname ((STUDENTDB gradetb) (STUDENTDB majortb)))

(gstudent ggpa ((STUDENTDB gradetb)))

(gstudent gmajor ((STUDENTDB majortb))))

The Design of the CIS/TK Query Processor Architecture

(3). The GQP examines the result, sees that two tables will have to be accessed

(gradetb and majortb). It sends a message to the GSM in order to find out how to

join these two tables:

(send-message 'GSM:get-LQP-join-key

'((STUDENTDB gradetb) (STUDENTDB majortb))

Assuming now that student id is the only join key (i.e. student name is coded very

differently in the two tables), the GSM returns:

gid

(4). Now the GQP knows that in order to join entities from the two tables it needs

the student id, so that data will be requested as well. In order to formulate the

message for the LQP it must learn the column names of the desired attributes in

the desired tables. The following messages are sent to the GSM:

(send-message 'GSM :get-LQP-nomenclature '(gstudent gid STUDENTDB

gradetb))

--> id

(send-message 'GSM :get-LQP-nomenclature '(gstudent gid STUDENTDB

majortb))

-- > student-id

39

The Design of the CIS/TK Query Processor Architecture

(send-message 'GSM:get-LQP-nomenclature
'(gstudent ggpa STUDENTDB gradetb))

-- > average

(send-message 'GSM:get-LQP-nomenclature

'(gstudent gname STUDENTDB gradetb))

-- > sname

(send-message 'GSM:get-LQP-nomenclature
'(gstudent gmajor STUDENTDB majortb))

-- > concentration

(5). Now the GQP is ready to send a query to each table which has a part of the

information. First, the grade information is procured:

(send-message 'STUDENTDB :get-data'(gradetb (sname id average)

((> average 3.0))))

The LQP processes this query and sends an equivalent executable query to the

appropriate machine and database. Assume that two people in gradetb meet the

constraints. The STUDENTDB LQP returns:

-- > ((sname id average) (dave 011562530 3.2) (tk 034589221 3.5))

(6). The GQP re-maps the column names into the GS attribute names:

-- > ((gname gid ggpa) (dave 011562530 3.2) (tk 034589221 3.5))

The Design of the CIS/TK Query Processor Architecture

(7). The query for majortb is sent, again to the STUDENTDB LQP:

(send-message 'STUDENTDB:get-data'(majortb (student-id)

((= concentration "physics))))

The STUDENTDB LQP returns:

-- > ((student-id) ((011562530) (234847729) (002348614))

(8). The GQP re-maps student-id into the GS attribute name:

-- > ((gid) ((011562530) (234847729) (002348614))

(9). A join is performed on gid using the two re-mapped lists, and only the

originally requested information is retained:

-- > ((gname ggpa) (dave 3.2))

(10). Finally, this result is returned as the response to the AQP's initial message.

Mapping Data Between Different
Representation Schemes in CIS/TK

Part I of this report detailed the basic design of the CIS/TK system, using

several simple queries to illustrate the design approach. That approach was

driven by a desire to facilitate several aspects of logical connectivity that we can

now address more directly. In particular, this report will examine how the

CIS/TK system architecture is enhanced to deal with issues such as mapping data

between different representation schemes. A Placement Assistance System

(PAS) will be used to generate illustrative examples. Our goal is to

incrementally provide real, exciting, and non-trivial examples.

Knowledge, of course, can be communicated in many different fashions.

Accordingly, we typically find the same type of information represented in many

different ways in a distributed environment. The PAS application model in

Figure 1 provides us with an example. As shown in this figure, students have

relationships with the types of positions that they may apply for (i.e. course 15

students may apply for management positions, course 6 students for engineering

positions etc.). Each position, in turn, is related to the salary structure

information for that industry, and for the city in which that position is located. A

student entity in the PAS model also has a one-to-many relationship with a prior

degree entity, which contains grade information for that student's previous

degree courses. This grade information might be recorded in a variety of

fashions: a five point scale, a four point scale or a letter grade scale. However, an

application end-user will generally prefer to view all information in a consistent

representation. For example, officers in the MIT graduate admissions office

might prefer to view all applicant's transcripts using a five point grade scale since

this is what MIT uses and they wish to judge all applicants in a consistent

Mapping Data Between Different Representation Schemes in CISTTK

High-sal

Profit-growth

Company

Location

Salary

Rel-Sal

Course

Figure 1 A PAS APPLICATION MODEL

fashion. Furthermore, such consistency will be needed to join entities residing in

different tables. For example, students might be identified by an employee id in

one database and a student id in a second database. Combining information from

both sources requires translating from the one value representation scheme (or

domain) to the other. Providing this consistency in a flexible, user-driven

environment is a primary goal of our CIS system.

I. Storing Translation Knowledge

There are three types of information that must be captured by the system for

any information that can be represented by more than one domain:

43

Name GPA

School

Mapping Data Between Different Representation Schemes in CIS/TK

(1). What are the possible set of domains for this information (i.e. 5-pt 4-pt and
letter for grade) ?

(2). Which of these domains is utilized by each of the local DB's which contain

data for this attribute ?

(3). How are values from one domain translated to another?

If these three pieces of information are known, then any attribute can be

translated from any one domain to another in order to either satisfy the end-

user's desires or to automatically prepare for joins. The method of translating

from one domain to another (the answer to (3), above) may be defined in any of

three ways: by a procedural method, an Inter-Database Table (IDT) lookup, or

heuristics. A procedural method is a translation which is accomplished by simply

substituting the current domain value into a previously-defined function. An

example is the translation from a 4 point scale to a 5 point scale: it is done by

simply substituting the 4 point value (i.e. 3.3) into the equation 5-pt = 4-pt *

1.25 (result: 4.125). An IDT lookup is simply a table lookup request where the

lookup key is the current domain value, i.e. translating from a letter grade to a 5

point scale is easiest done by providing a table of letter grades and their

corresponding values in the 5 point scale, as shown in Figure 2. Finally,

heuristics is the method designed for less well-structured translations. While the

first two methods required only the current domain value to perform the

translation, some translations require additional information about associated

attribute values. As an example, consider again the PAS application model in

Figure 1. A student in that model has a relationship to all the possible positions

that he may interview for. One of the slots in the position object is, of course,

salary.

Mapping Data Between Different Representation Schemes in CIS/TK

BOOTDB

Letter 4-pt. 5-pt.

A 4.0 5.0

B 3.0 4.0

C 2.0 3.0

D 1.0 2.0

F 0.0 1.0

Figure 2 Grade Inter-Database Table (IDT)

A simplified global schema for the application model is shown in Figure 3.

The local STUDENTDB and DEGREEDB databases are exemplified in Figure

4a, and PASDB in Figure 4b. Salary data can be represented in one of three

domains: dollars/yr (i.e. 48,000), dollars/month (i.e. 4,000) or competitive-

description (i.e. less. competitive, competitive, highly competitive). Translating

from the competitive-description domain to the dollars domain requires

additional information: location, industry, etc.. This is because "competitive"

means one thing for a consulting position in New York and something different

for a marketing position in the Midwest. Thus, the heuristics method employs

rules and a broader set of data to translate between domains, as compared to

procedures and IDT lookups. We believe that these three methods (procedures,

IDT lookups and heuristics) provide a robust manner of mapping values from one

domain to another. The knowledge of how to translate from one domain to

another is stored in an object hierarchy,below the translate class, which is

depicted in Figure 5. After examining how these translate objects function, the

application model and global schema objects will be re-examined to see what

extensions need be made in order to represent the necessary domain knowledge.

Mapping Data Between Different Representation Schemes in CIS/TK

Finally, two detailed scenarios will be presented to see how translation is

accomplished in both simple and complex cases.

The translate object is a subtype of the CLASS class, the top-level object class

in KOREL. The translate object contains a method called :translate which

accepts a request for a translation from one domain to another. The translate

object also has slots called procedures, IDT-lookups, and heuristics. These slots

are not given values at this level.

gName gFunding g# Members

gProfessor gGrade

gProfit-growth

-gCompany

gLocation

. gSalary

gRel-Sal

g# Credits gDesc gCourse gDegree

Figure 3 A SIMPLIFIED GLOBAL SCHEMA FOR PAS

47

Mapping Data Between Different Representation Schemes in CIS/TK

There are subtypes of the translate class for each attribute which is represented

by more than one domain in the application model. For example, Figure 5 shows

STUDENTDB

Grade tb Major tb

DEGREEDB

Degree tb

ID I School _[Course IDegree [
011562530
056250023

Amherst
U. Texas

Economics
Physics

B.A.
B.S.

Fiqure 4a THE STUDENTDB AND DEGREEDB INTHE

GPA

3.3
4.0

LOCAL DATABASES

grade-tr and salary-tr as two subtypes of the translate class. Finally, there are

instances of each of these sub-classes which represent each of the possible domains.

For example, the grade-tr class has 4-pt, 5-pt and letter instances. These instances

also are given values for the procedures, IDT-lookups and heuristics slots. The

48

Sname sID Average

Dave 011562530 4.5
TK 013216309 2.0
Phil 029786133 5.0

Sname ID Concentration

Wong 011562530 6
Horton 011562530 15
Jones 029786133 6

Mapping Data Between Different Representation Schemes in CIS/TK

PASDB

Positiontb

Company Position Salary Location Indcode Course

IBM Salesperson Competitive N.Y. 42 15
Microsoft Program Manager Highly competitive Seattle 42 6
Microsoft Product Manager Highly competitive Seattle 42 15

Ford ProductPlanner Null Detroit 41 15

Salarytb

Industrytb

Indcode Profitgrowth

42 1.05
41 1.15

Locationtb

City Relative pay

N.Y. 1.25
Seattle .96
Seattle .82
Chicago 1.05

Figure 4b THE PASDB IN THE LOCAL DATABASES

values of these slots for the 4-pt, 5-pt and letter instances are shown in the Figure

below.

Indcode Org-salary High-range Low-range

42 38,000 48,00 34,000
41 42,000 50,000 38,000

Mapping Data Between Different Representation Schemes in CIS/TK

OBJECT SLOT VALUE

instance-of

procedures

IDT-lookups

heuristics

instance-of

procedures

IDT-lookups

heuristics

letter instance-of

procedures

IDT-lookups

heuristics

(grade-tr)

((5-pt chg4-to-5))

NIL

((letter 4-to-letter-rules)

(grade-tr)

((4-pt chg5-to-4))

NIL

((letter 5-to-letter-rules))

(grade-mk)

0

((4-pt BOOTDB letter-IDT letscale 4__scale)

(5-pt BOOTDB letterIDT let__scale 5_scale))

NIL

Each instance object (i.e 4-pt, 5-pt, letter) contains the knowledge for translating

from that domain to any other. If the mode of translation to a given domain is a

procedure, the applicable procedure is stored in the procedure slot along with the

domain name as an identifier. If the method of translation is an IDT-lookup then the

IDT database, table, and colum names are stored in the in the IDT-lookups slot with

the domain name. If the translation requires heuristics then the rule set identifier is

stored in the heuristics slot along with the domain name as an identifier. Thus, as

4-pt

5-pt

Mapping Data Between Different Representation Schemes in CIS/TK

VALUE

(translate)

(ann-sal mon-sal comp-sal)

instance-of

procedures

IDT-lookups

heuristics

instance-of

procedures

IDT-lookups

heuristics

(salary-tr)

((mon-sal ann-to-mon))

0

((comp-descript ann-to-comp-rules))

(salary-tr)

((ann-sal mon-to-ann))

0

((comp-descript mon-to-comp-rules))

comp-descript

instance-of

procedures

IDT-lookups

heuristics

(salary-tk)

0

0

((ann-sal comp-to-ann-rules)
(mon-sal comp-to-mon-rules))

the Figure above shows, translating from 4-pt to 5-pt requires a procedure while

translating from letter to 4-pt is done by an IDT lookup. The translate method,

defined in the superior object class translate, performs the actual translation. It

allows any of the instance objects to accept a message of the form:

OBJECT

salary-tr

SLOT

superiors
instances

ann-sal

mon-sal

Mapping Data Between Different Representation Schemes in CIS/TK

Subtype: :translate

Subtype:

mon-
Instances: 4-pt. ann-sal salO letter

5-pt. comp-
descript

Figure 5 THE TRANSLATE OBJECT HIERARCHY

(send-message 'rep-from :translate '(value rep-to))

i.e.
(send-message '4-pt :translate '(3.3 5-pt))

which, in this case, would return the value "4.125". The translate method works as

follows: It first examines the procedures, IDT-lookups and heuristics slots to see

where the knowledge of translating to the specified domain is kept. It is assumed

that there is only one encoded method of translating from one domain to another,

thus the order of search is not significant. If the appropriate knowledge is found in

the procedures slot then the associated procedure is called with a single argument--

the value which was passed to the translate method. For example, the translate

message above would result in the following procedure call:

Mapping Data Between Different Representation Schemes in CIS/TK

OBJECT

translate

grade-tr

SLOT

superiors

subtypes

procedures

IDT-lookups

heuristics

methods

superiors

instances

(chg4-to-5 3.3)

the value of which is then returned as the response to the initial translate request

message.

If the knowledge is found in the IDT-lookup slot then the translate method

generates the appropriate table lookup request by preparing the following message:

(send-message 'LQP :get-data '(table (rep-to)((= rep-from value))))

Note that the appropriate LQP, table and column names are known since they are

stored in the IDT-lookups slot of the instance object. For example, if the translate

method were requested to translate from a letter grade to a 4-point grade, i.e.

(send-message 'letter :translate '("B", 5-pt)

VALUE

(CLASS)
(grade-tr salary-tr)

0

0

0

(:translate trans)

(translate)

(4-pt 5-pt letter)

Mapping Data Between Different Representation Schemes in CIS/TK

Then the translate method would generate the following table lookup request:

(send-message 'BOOTDB :get-data '(grade-IDT (5_scale((= letscale "B"))))

which, in turn, would return the following table:

((5__scale)(4.0))

The translate method then strips the extraneous information from the list and

simply returns the value: "4.0" in response to the initial message.

If heuristics are needed to translate from one domain to another, as in the case of

salary (from competitive-description to dollars/yr), then things are a bit more

complicated because of the need to procure additional information. Frequently, that

information will need to be retrieved from the database since it need not have been

directly specified by the end-user query. For instance, the end-user may be

interested in a particular position and its salary, but not its location. The location

for that position will have to be retrieved, however, in order to translate the salary

information from "competitive" to a dollar amount since the rules for performing the

translation (Figure 6) use location to help infer a dollar value for salary. Note that

this database retrieval is quite a bit more complicated than in the IDT case: here

there is no way of identifying ahead of time where the appropriate information will

be found--it depends on the particular position identified by the end-user query.

For this reason, translations requiring heuristics are performed at a higher level

than those utilizing simple procedures or IDT lookups. The former are done by the

Mapping Data Between Different Representation Schemes in CIS/TK

AQP, while the latter are performed by the GQP. The preference is to try to perform

joins at as low a level as possible, in order to decouple the knowledge of physical data

location from the conceptual orientation of the AQP. Furthermore, the GQP was

designed to accept requests dealing with only a single global schema entity in order

to simplify the information exchange between itself and the AQP and to more clearly

define its role. Since heuristics may well require knowledge about diverse entities,

these translations and joins are performed at the AQP level.

A powerful feature of this design is that domains may be defined by the

application builder, as well as by a database designer. For example, there may be

only a single database which contains salary information for positions, where salary

is recorded by the competitive-description domain ("less competitive", "competitive",

"highly competitive"). However, the application builder may well decide that it's

valuable to view salary information in dollars per year as well. By defining this

domain, and the knowledge of how to translate between competitive-descriptive and

dollars per year (in this case that means heuristics), application users are presented

with two possible representations of salary information even though the databases

only contain the one. A more detailed look a precisely how heuristic translations are

accomplished will be presented later in this chapter.

II. Extensions to GS entities and AM objects

Now that we have established how the translate objects accept and act upon

translation requests, it is appropriate to investigate just how these requests are

generated. Previously, GS entities were defined to contain a mapping of attributes

to database, table and column name location. Now this implementation will be

further extended in order to indicate how the domain representation for each of these

Mapping Data Between Different Representation Schemes in CIS/TK

databases as well. As an example, the gposition entity is implemented as shown in

the Figure below. Note that the only change is that a domain identifier has been

OBJECT SLOT VALUE

gposition gsalary ((PASDB postitiontb salary comp-descript))

gname ((PASDB positiontb position NIL))

glocation ((PASDB positiontb location NIL))

added to the Database/Table/Colum-name information. Since there are three ways

of representing salary (comp-descrip, ann-sal, mon-sal) this kind of information is

needed. On the other hand, both name and location are only represented in one way,

thus there is no need to represent any translation knowledge and the domain is

specified as NIL.

The AM objects must be extended as well, in order to record the possible domains

that the end-user can choose from. This is done by simply including the specific

translate class object in the object slots, as below:

The salary slot now contains a symbolic pointer to the position-tr class object.

This allows the user to request a listing of possible domains for salary, which can

then be provided by listing the instances of the position-tr object. Again, since name

and location are only available in one domain there is no information about their

translation class objects recorded in the AM position object.

Mapping Data Between Different Representation Schemes in CIS/TK

OBJECT SLOT

position salary

name

location

VALUE

(pas-gschema gposition position-tr)

(pas-schema gname)

(pas-schema glocation)

III. Two detailed scenarios

Let's first examine a fairly straight-forward case of mapping between domains.

Assume that the end-user wants to see the names and grade-point averages of all

students above a certain level. The only catch is that he wants to view grade

averages on a 4-point scale, not the 5-point scale by which they are actually stored in

the database. (The applicable global schema is shown in Figure 4 and the local

schemas in Figure 4a). His query will result in the following message being sent to

the GQP:

(1) (send-message 'GQP :query '(gStudent (gName (gGpa 4-pt))
((> gGpa 3.5))))

Note that the query format has been slightly altered: now that we deal with multiple

domains we must specify, for any attribute which has more than one domain

representation, which of those domains is desired. In this case the desired domain, 4-

Mapping Data Between Different Representation Schemes in CIS/TK

pt, is now specified in the message as well as the desired attribute itself, gGpa. Note

also that the value on the condition for gGpa is also specified in terms of the desired

4-pt scale. This consistency is important: if the user wishes to view grades on a 4-

point basis then he should also be able to discuss any conditions he applies to grades

in the 4-point domain language.

(2). As before, the GQP must choose which databases and tables to get the data from.

In this case, data for both gName and gGpa can be retrieved from the gradetb table

in StudentDB. However, the grade information is in the 5-pt scale. This fact is

determined by the Global Schema Manager (GSM) by means of a new method called

:get-LQP-domain. Thus the condition on gGpa will have to be translated from the 4-

pt to the 5-pt scale before constructing the Abstract Local Queries. Accordingly, the

GQP sends the message:

(send-message '4-pt :translate '(3.5 5-pt))

which, in turn , results in the following procedure call:

(chg4-to-5 3.5)

which returns a value of 4.37 . At this stage the GQP also constructs for itself a list

of domain mapping requests that it will need to perform after the data is retrieved.

In this case, there is only one such mapping:

((gGpa (5-pt 4-pt)))

Mapping Data Between Different Representation Schemes in CIS/TK

(3). Now the GQP is ready to send the Abstract Local Query to the StudentDB LQP:

(send-message'StudentDB:get-data'(gradetb (sname average)
((> average 4.37))))

returns the following list:

-> ((sname average) (Dave 4.5) (Phil 5.0))

(4). As before, the column headings are mapped back into the GS attribute names:

--> ((gName gGpa) (Dave 4.5) (Phil 5.0))

(5). The next order of business is to perform the domain mapping request for gGpa

from the 5-pt scale to the 4-pt scale. The GQP sends the following message:

(send-message '5-pt :translate '(4.5 4-pt))

which, in turn, causes the following procedure to be called:

(chg5-to-4 4.5)

and the value 3.6 to be returned. Next, the same process is used to map Phil's grade

from a 5-point to a 4-point scale:

(send-message '5-pt :translate '(5.0 4-pt))

which returns the value 4.0.

Mapping Data Between Different Representation Schemes in CISFTK

(6). Finally, these values are replaced in the list. The GQP has now performed the

task requested of it.

(gName gGpa) (Dave 3.6) (Phil 4.0))

This was an example of a translation which required knowledge that was

represented in procedures (chg4-to-5 and chg5-to-4). If the translation knowledge

were embedded in a table (IDT), the process would have been identical except that

the :translate method would have generated a table lookup request rather than a

procedure call.

Now let's examine the more complex case of how a translation requiring

heuristics would be handled. Assume that the end-user wished to see all the

potential positions in New York and their salaries, in terms of dollars per year.

Figure 1 shows the Application Model, Figure 3 the applicable Global Schema and

Figure 4b the local databases. The following message would be sent to the AQP:

(1). (send-message 'AQP:query '(position(company-name pos-name salary

((= location "N.Y."))))

(2). The query is translated into the necessary GS query:

(send-message 'GQP :query '(gposition(gcomp-name gpos-name (gsalary

ann-sal))((= glocation "N.Y"))))

60

Mapping Data Between Different Representation Schemes in CIS/TK

Note that the requested domain for salary is now included in the query message to

the GQP. The GQP will attempt to return the salary information to the AQP in this

format if possible.

(3). The GQP performs the following tasks:

A. Find out where data for the attributes is stored.

B. Choose data sources, if possible using a DB which has the data in the

desired domain.

C. As in the previous case, if the domain for any attribute in a condition is

specified differently than in the underlying DB, then try to translate the

condition. This time, there are no such cases.

D. Construct a list of values to be translated upon return (in this case only

salary is included):

((gsalary (comp-descript ann-sal))

(4). Send out the Generic Local Queries to the LQPs:

(send-message 'PASDB :get-data '(positiontb (company position

salary)((= location "N.Y.")))

returns:

-- > ((company position salary)(IBM salesperson competitive))

(5). Re-map column names to GS attribute names:

-- > ((gcomp-name gpos-name gsalary)(IBM salesperson competitive))

(6). Try to fulfill all the translation requests--only procedures and IDT lookups can

be used at the GQP level, thus the gsalary mapping request fails.

Mapping Data Between Different Representation Schemes in CIS/TK

(7). Re-map GS attribute names to AM names, marking the unsatisfied translations

by including the current domain.

Returned to AQP:

-- > ((company name(salary comp-descript))(IBM salesperson competitive))

(8). The AQP instantiates the position objects from the returned list. The query is

done if no translation requests are outstanding.

(9). Since salary still must be translated (from comp-descript to ann-sal), the AQP

gets a list of the information necessary to perform the translation from the

translation object hierarchy:

(send-message 'comp-descript :info-needed'(ann-sal))
-- > ((position salary)(industry-salary average)(location-salary rel-salary)

(industry-salary profit-growth))

This is accomplished by reading the rules, as shown in Figure 6, for the translation

and finding out which pieces of information is needed

(10). Now the AQP must generate queries to procure the needed information. The

trick is to somehow ensure that we get the industry and location salary data

that is related to the specified position. This is done by including the previous

condition (i.e. "located in N.Y.") plus a condition for each slot value in the

instance. Thus we essentially re-specify the position, and then take the

industry and salary information which is linked to that position. (If there are

multiple instances proceed one at a time).

(send-message 'GQP :query '(gind-sal(gaverage gprof-growth)((= glocation "N.Y")
(= (gposition company) "IBM")(= (gposition gpos-name) "salesperson")
(= (gposition salary descriptive)"competitive"))))

Mapping Data Between Different Representation Schemes in CIS/TK

(IF (= (position salary) "less competitive")
(THEN ((position salary) = (Ind-Sal low-sal) * (Ind-Sal profit-growth)

* (Location-Sal Rel-Sal)))

(IF (= (position salary) "competitive")
(THEN ((position salary) = (Ind-Sal avg-sal) * (Ind-Sal profit-growth)

* (Location-Sal Rel-Sal)))

(IF (= (position salary) "highly competitive")
(THEN ((position salary) = (Ind-Sal high-sal) *

(Ind-Sal profit-growth) *
(Location-Sal Rel-Sal)))

Figure 6: Heuristics for translating salary from
comp-descript to ann-sal

-- > ((gaverage gprof-growth)(42,000 1.12))

(11). Instantiate the industry-salary object, and repeat the previous step for

location-salary object. After instantiation, we have values for average-sal,

profit-growth and rel-sal.

(12). Now we can translate from "competitive" to dollars per year.

(send-message 'descriptive :translate '("competitive", ann-sal))

Mapping Data Between Different Representation Schemes in CIS/TK

(13). Translate finds the knowledge for translating to ann-sal in the heuristics slot,

thus performs the following sequence of actions:

(take-knowledge pas-model)
(grab-rules descriptive-to-$)
(apply-rules)

(14). The result is that the value of the salary slot is set to:

salary = 42,000 * 1.05 * 1.12 = 49,392

Attribute Subsetting in CIS/TK

The ability to join information about a particular entity from disparate databases

is clearly a necessary feature of a CIS system. When possible, these joins are

performed using a primary-foreign key relationship. Sometimes, however, this type

ofjoin isn't possible, either because no common unique key exists (e.g. students coded

by id in DB #1 and name in DB #2) or because a common unique key does exist, but

is coded ambiguously (e.g. a corporation coded as "IBM Inc." in DB #1 and "IBM

Corp." in DB #2). In such cases a technique called attribute subsetting, employing

heuristics, may be used to join entities from the two databases and, optionally, retain

this mapping in an Inter-Database Instance Identification Table (IDIT) for later use

(see Figure 1 for an example IDIIT for corporation entities). This report will detail

the concepts involved in attribute subsetting and lay out a rough design for

implementing this functionality in the framework of the CIS/TK system.

CompanyDB ReutersDB

IBM Inc. IBM Corp.

British Petroleum BP Inc.

Ford Motor Co. Ford

Figure 1. An IDIIT for Two Company LQPs

I. An Example of Attribute Subsetting

Attribute Subsetting in CISITK

Imagine a professor and his teaching assistant (TA) discussing the performance

of one of their students. We can view each of them as maintaining a database

containing various types of information on the same group of students. A

conversation will typically begin by the professor identifying one of the students by

name, following which both will volunteer information about that student (i.e.

grades, performance, etc.). This is an example of joining information from two tables

by means of a primary-foreign key join--in this case, using student name as that key.

Now assume, however, that while the professor knows the students by name, the TA

identifies them by means of nicknames that he has attached to them (i.e. Sleepy,

Dopey etc.). Now they face a real problem of making sure that they are even talking

about the same person since there the mapping between names and nicknames isn't

captured--there is no longer a primary-foreign key relationship. However, they are

likely to pursue other ways of mutually identifying the student, as per the following

discussion:

(Professor): Do you know who TK Wong is?
(TA): No. Does he come to the morning class ?
(Professor): Yes, when he comes at all.
(TA): How well is he doing in the class ?
(Professor): Not well. He's always falling asleep.
(TA): Is he quiet ?
(Professor): No ! He keeps complaining about our LISP compiler.
(TA): Oh, sure ! I call that guy Big Mouth.

So, even though there is no common unique key, there may be a way of using

other shared (non-unique) attributes (i.e. attendance, performance etc.) which can be

used to eliminate all other possibilities. This approach we call attribute subsetting.

At first glance, this may seem like nothing more than searching for a common

multiple-key unique attribut. There are two reasons why attribute subsetting is

different. First, there may be no way to eliminate all the possibilities: the professor

Attribute Subsetting in CIS/TK

and TA may, for instance, at best reduce the possibilities to three. At that point they

may pick up the student directory and look at pictures of the three students for final

identification. However, this will be much less work than checking through the

pictures of each class member. Thus, in a database environment, while attribute

subsetting can help identify entities some (hopefully small) degree of user

interaction will be required as well.

The second reason is more interesting. As well as comparing shared attributes,

the professor and TA may also be able to infer values for other attributes which can

then be used in the subsetting process. As an example, consider the same type of

professor-TA example as above, this time as pictured as in Figure 2. Now the TA is

trying to identify someone the professor calls Jane Murphy. In this case, there is

only two shared attributes: attendance and performance. Comparing values for

these two attributes eliminates only two possibilities (Dopey and Dreamer) still

leaving five other possibilities. However, there are relationships between the other

attributes which allow the subsetting process to continue. For instance, a person's

age implies something about their grad/undergraduate status. Thus, even though

status isn't stored in the professor's database he is able to infer a value for it since he

does have age information. This allows the TA to eliminate the student he calls

Whiner from consideration, since Whiner is known to be a graduate student while

Jane's age infers that she is an undergraduate. Following along, we note that name

frequently implies a value for sex, which allows the TA to eliminate all the males

from consideration (Shifty). The student's address implies something about how

they are transported to school--the fact that Jane Murphy lives in Marblehead,

greater than 20 miles from school, means that walking and biking are unlikely

modes of transportation for her. This allows the TA to eliminate still more

candidates (Nerdy). Finally, the fact that Jane Murphy is registered in two MIS

Attribute Subsetting in CIS/TK

Q: How does Dave evaluate Jane?
Database #1 (Rich, Instructor for 564 and 579)

564 579 Sec564 Age Perform Address

Jane Murphy Yes Yes A.M. 19 Strong Marblehead

Database #2 (Dave, head TA for 564)

Nkname*

Excellency
Saavy
Nerdy
Shifty

Sec564 Perform

A.M.
A.M.
A.M.
A.M.

Strong
Strong
Strong
Strong

Whiner A.M. Strong
Dreamer
Dopey

A.M. Weak
P.M. Good

Sex Maj Status Trans

F MIS UG
F Mgt UG
F MIS UG
M MIS UG
F MIS G
M ? ?
M MIS G

car
train
bike
car
car

Evaluation

sharp cookie
Coordinator
hacker
wild card
tough cookie
discard

walk routine worker

* 564 section & performance only common attributes

* Reduces possibilities from entire database to 5.

* Other relationships in the data to take advantage
- age -- status (UG)
- name -- sex (F)
- location -- transport (not bike)
- course load -- major (MIS)

Figure 2: ATTRIBUTE SUBSETTING

Name*

Attribute Subsetting in CIS/TK

courses means that it is likely that she is an MIS concentrator. This allows the TA to

reduce the candidate set to one--Excellency.

Thus, even though only a few attributes are common to both databases, further

comparisons can be made because of the relationships between the data. These kinds

of relationships are likely to occur in a CIS system precisely because of the

heterogeneity: fragmentation of information is frequently caused by the fact that

separate organizations are interested in different attributes of the same entity. For

example, the registrar's office is likely to be concerned about a student's course

schedule and home address, the bursar's office is likely to be concerned about his

financial status (tuition and fines owed) while the campus police track whether he

has been issued a parking sticker. In such a system there may be little opportunity

to directly compare data between the different databases. Using heuristics, though,

may allow us to make further comparisons. For instance, whether or not a person

has a parking sticker implies whether he owes a parking fee to the bursar's office--if

he doesn't have a sticker then there can be no fee attributed to him at the bursar's

office.

II. Attribute Subsetting in CIS/TK

Attribute subsetting fits in with the CIS/TK system in the following way. When

a Global Schema (GS) query is processed which requires joining information about a

single entity from different databases, a primary-foreign key join will first be

attempted. If no join key is found then the IDIT for that entity is searched (if it

exists). If it doesn't exist, or no entry is found for that entity, then attribute

subsetting is performed. The selected entity in the one table must be compared

against all the entities in the other table. Ideally, all possibilities save one will be

Attribute Subsetting in CIS/TK

eliminated. If so, this entity will be presented to the user for confirmation and, if

confirmed, will be entered in the IDIIT. If more than one possibility exists the user

will choose between them. If no possibilities exist after all comparisons, the problem

is either a bad piece of data somewhere, or a heuristic that doesn't cover a special

case (i.e. a very young age usually, but not always, implies that the student is an

undergraduate). In this case the system will begin backtracking, presenting the list

of possibilities to the user in order of likelihood.

It is clear that the implementation of the subsetting process will require a few

different capabilities. First of all, the system must support heuristics--there must

exist a way to represent the relationships between attributes. Secondly, there must

be a way to represent the degree of uncertainty that we associate with attribute

values since we will be using the heuristics to infer less-than-certain values for

attributes. Finally, in the case where there are no perfect matches, there must be a

way of determining a ranking of possible matches so that the user can select a match

as efficiently as possible.

Name Sex Transport Name Distance

Student -4 Town

Figure 1

Heuristics, of course, will be represented by rules. The idea is that these rules

will define the set of possible values for one attribute, given a known set of values for

Attribute Subsetting in CIS/TK

some other attributes. For instance, in the example above, a student's address

(Marblehead) determines the type of transportation he uses to get to school. Let's

examine just how this happens. Figure 3 shows a global schema for such a student.

At the local level, there is a database of student information as well as a

geographical database of distances between towns. Thus, the student object is joined

to the town object, which has an attribute called distance, the value of which is the

distance between his home and Cambridge. However, through the transport slot, the

student object is also related to the mode-of-transportation object, which is listed

below. The mode-of-transportation class object has three instances: bike, car and

train. Note that these objects all display a new facet called DOMAIN. The DOMAIN

facet holds the information about which domain a slot can draw values from. The

information about domains is kept in the DOMAIN object, which is also shown

below.

Mode-Of-transport Class Object

Slot Facet

Type VALUE
DOMAIN

Distance-covers VALUE
DOMAIN

Fuel VALUE
DOMAIN

Mode-of-Transport Instances

Bike Car
NEAR NEAR, FAR
Muscle Gas

Value

dCarriers

dRange

dFuel

Train
FAR
Oil,Coal

Domain Object

Attribute Subsetting in CIS/TK

Facet

VALUE
CHOICES

VALUE
CHOICES

VALUE
CHOICES

Value

(Bike, Car, Train)

(NEAR, FAR)

(Muscle, Oil, Gas, Coal)

The student is linked to the mode-of-transportation object through the

DEFAULT facet of the transport slot. Thus, if no data on a student's transportation

is retrieved from the database, he is still linked to a set of choices beneath the mode-

of-transport object. Heuristics will be used to try to restrict his possibilities even

further.

Student Class Object

Slot Facet Value

Name

Sex

Transport

VALUE

VALUE

VALUE
DEFAULT mode-of-transport

Heuristic

(IF ((town distance) > 20)
(THEN (domain dRange) = "FAR")
(ELSE (domain dRange) = "NEAR")

The subsetting process works in the following manner. After data has been

retrieved from the database, a student object is instantiated (i.e. "dave", "male",

"Marblehead"). Next, the heuristic rule set is run. Heuristics can either set a value

for a slot in the domain object, as above, or they can directly set the VALUE or

Slot

dCarriers

dRange

dFuel

Attribute Subsetting in CIS/TK

CHOICES slot in a GS entity. In the case above, the VALUE facet of the dRange slot

in the the Domain object is set to "FAR". After running the rules, we try to restrict

the values for any slots in the student instance which has no value in the VALUE

facet, i.e. Transport. From the DEFAULT facet of the Transport slot, we see that the

possible choices are the mode-of-transport instances. Because of the DOMAIN facet

in the mode-of-transport objects, we are able to see that we can further restrict the

choices based on the fact that the dRange domain is one determinant of mode-of-

transport. Since the dRange value was set to "FAR", only car and train are possible

modes of transportation. Thus, the CHOICES slot of the transport object is set to the

value ("car", "train").

The power of this approach is that the rules are allowed to be quite general and

intuitive in scope. By avoiding having a rule for every town we make the rule set

smaller and much more accessible to the user. It also allows us the possibility of

leveraging several inferences with a single rule: for instance, the time a student sets

his alarm clock for may also be a function of how close to school he lives. No new

rules would be needed to implement this since the distance concept has already been

established in the domain object.

The harder question arises if, after attribute subsetting, none of the candidates

match on all slot values: then we would like to present them to the user in an order

starting with those most likely to be the match. If we can accomplish this we will be

able to converse knowledgeably with the user. Doing this, however, implies some

knowledge of which attribute value mismatches are more significant.

Understanding this, in turn, requires understanding how attribute values for the

Attribute Subsetting in CIS/TK

same entity can be recorded differently in different databases. There are four

reasons why this might be so:

(1). Data entered incorrectly.
(2). Data values change over time.
(3). Same data viewed differently by different database designers.
(4). Values for data only inferred, not certain.

We will not examine the first case in detail, since this type of data error is

idiosyncratic and generally occurs randomly across databases and attributes.

However, the framework that we present to handle cases 2-4 can be extended to

handle this type of data error if more is known about the specific error rates of

different databases.

An example of the second type of problem would be using a person's age to help

identify him in two different databases: age changes over time, thus, if the databases

are updated at different intervals, we may have the same person represented by two

different ages in two different databases. Thus, because of this, age is a poorer

measure by which to identify a person than, for example, birthdate which doesn't

change over time. Hence, we are less concerned about a mismatch on age than a

mismatch on birthdate--if in trying to find a match we were at best able to find two

possibilities which had only one mismatch each, one on age, one on birthdate, then

we would present the one that mismatched on age first.

An example of the third type of problem above is exemplified in using street

address to identify a university: two different people might view the meaning of

street address differently. A defense contractor views MIT's street address as the

address of the defense liason office, while the federal loan office views MIT's street

address as the address of the bursar's office. Thus, street address would be a poor

74

Attribute Subsetting in CIS/TK

attribute with which to try to identify university entities, as opposed to, for example,

state location, which has far fewer semantic possibilities.

Finally, the fourth type of problem mentioned above occurs when heuristics are

used to infer a value for an attribute. The pertinent example was given earlier in the

case of determining how a student gets to school based on the distance they must

traverse--the rule works frequently, but not always. Thus, we must be apprehensive,

to a degree, when trying to identify an entity by comparing values that were

generated by a heuristic rule. Of course, some rules are stronger in this sense than

others: the rules which determine whether a student graduates are always true, by

definition, so we would be quite confident in using an inferred value for graduation

status to identify a student entity.

If we can represent knowledge about this type of uncertainty we will be able to

understand which attribute mismatches we should be concerned about, and which

we shouldn't. This, in turn, will allow us to present the possibilities to the user in an

informed and efficient fashion. From the above analysis, it is clear that the

uncertainty associated with heuristics is only one of a set of similar types of

uncertainty associated with a distributed database environment. Thus, it is sensible

to treat all types of uncertainty in a consistent fashion. Therefore, we can use a new

facet, called a PROBABILITY facet, to represent the uncertainty associated with the

timing and semantic problems as well as heuristics. The value of the

PROBABILITY facet should be set to a value between 0 and 1 according to the

probability that data for the same entity will be recorded the same (absent domain

mapping problems) in two different databases given the consideration of the timing

and semantic problems. For example, the PROBABILITY facet for age might be set

to 0.90 because it changes over time and thus might be different in databases which

Attribute Subsetting in CIS/TK

are updated differently, while the PROBABILITY facet for birthdate might be set to

0.99 since this doesn't change over time and means the same thing to everybody (we

choose 0.99 instead of 1.00 only to allow for data problems such as people lying about

their age). After the values for the PROBABILITY facet have been set the heuristic

rule set is run to infer additional values. The rule set may also modify the values in

the PROBABILITY, but should do so in a multiplicative fashion so as not to mask

the uncertainty effects of timing and semantics.

Now that we have captured the knowledge about the uncertainty of the attribute

values, we can devise a method of ranking the possibilities from those most likely to

be the match to those least likely. First, we will check each slot which contains

values for attributes which are either in both databases, or in one and for which we

can infer a value in the other, based on data in that database. For each slot that we

check we will calculate a result: 1, if the slot values match, or (1 - PROBABILITY

facet value) if they don't match. The total score for that entity will be the product of

each slot result. The entities will then be ranked by score in descending order. All

scores will thus range between 0 and 1. If an entity matches on all attibute values it

will have a score of 1, and will be presented first to the user. If an entity mismatches

on an uncertain attribute like age it will have little effect on the score, whereas if it

mismatches on a significant attribute like birthdate it will lower the score greatly.

Thus, this procedure effectively incorporates the knowledge that we have elicited

about the concreteness of data values.

Now we can present the whole attribute subsetting process. First, a primary-

foreign key join is attempted. If unsuccessful, then we try to match unique keys in an

IDIIT. If that is unsuccessful, then we begin attribute subsetting. First, the values

for the PROBABILITY facets are set for all slots which will participate in the

76

Attribute Subsetting in CIS/TK

attribute subsetting process. Next, the heuristic rule set is run to infer additional

values for attributes which are not contained in one of the databases, as well as to

adjust the values of the PROBABILITY facets. Then, all the possibilities are

compared and ranked. The ranking is done on the basis of a score which is compiled

by multiplying the result of each slot comparison, where the slot result equals one if

the values matched, and one minus the PROBABILITY facet value if the slots didn't

match. Finally, the ordered list of possibilities can be presented to the user for

confirmation of the entity instance identification. If desired, this match can then be

placed in an IDIIT for ease of future access. This procedure will be exemplified in the

following scenario.

III. A Detailed Scenario

Figure 3 shows a CIS system which links the databases for a Bloodmobile and a

University. In this scenario, the Bloodmobile has recently completed a marketing

study which showed that college students were their strongest donors, and

frequently would return every few months, if contacted. As a result, the Bloodmobile

has engineered a partnership with local Universities in order to reach out to their

students. In particular, assume that the MIT hospital has made certain of its

databases available to the Bloodmobile. The Bloodmobile is interested in

ascertaining which of the MIT students have donated blood before. From the MIT

database they hope to get the student's current address as well as his health status--

they don't want to contact any students who have recently had a blood disease. The

problem is that there is no common key for the Bloodmobile to identify students in

the MIT database.

Attribute Subsetting in CIS/TK

BLOODMOBILE

MIT HOSPITAL

Student ID Status Blood Type Housing

012478430 U 0 + on-campus
261785980 U A- off
482947562 G 0 + off
874930193 G B- on-campus
364728903 G B- off

D.S. Jones

H EURISTICS

IF (age <21) THEN status = "U"
ELSE status ="G"

PROBABILITY = .90

IF (housing = "on-campus") THEN address = "Cambridge"

PROBABILITY = .95

IF (address # "Cambridge") THEN housing "off"

PROBABILITY = .95

Attribute Probability facet After heuristicsinitialized to

Status .95 .855
Blood Type .99 .990

Housing .90 .855

Figure 3.

Name Blood Type Age Address Weight

D.S. Jones 0+ 24 Somerville 133
K.C. Tierney B - 20 Cambridge 124

Score Ranking

(1-.855)(1-.855) 2
(1-.855)(1-.99) 4

1 1
(1-.99)(1-.855) 4

(1-.99) 3

Attribute Subsetting in CIS/TK

However, because there are other shared attributes, we can use the attribute

subsetting process. In particular, both databases have information on student's

blood type. Furthermore, from heuristics, we can infer values for

grad/undergraduate status, and, in certain cases, for housing and address. The

procedure is as detailed above. First, the values for the attributes that will be

compared are set. Blood type is an example of a very strong attribute to use for

comparisons: it doesn't change over time, and it is universally understood to mean

one thing. Thus, we initially set its PROBABILITY facet value to 0.99. Status is

also a fairly strong attribute, but it does change over time and people who are

simultaneously in grad and undergrad programs may be registered as either. Thus,

we assign a PROBABILITY facet value of 0.90, figuring that 90% of the time

different databases will represent a given student entity identically. Finally,

housing is a less desirable attribute to make comparisons on because people

frequently move, sometimes without updating MIT on their new address. Thus, the

PROBABILITY facet for housing is set to 0.90.

Next, the heuristic rule set is run. In this case we are first trying to match the

student known to the Bloodmobile as D.S. Jones. By using the heuristics we are able

to infer values for status and housing. Note that these heuristics also change the

values in the corresponding PROBABILITY facets in the multiplicative fashion

described above. Now we are able to compare and rank each of the students in the

MIT Hospital database. One instance of the student object is created for the D.S.

Jones entity in the Bloodmobile database, and another which will hold each of the

entities in the MIT database, one at a time. The first student in the MIT database

matches on blood type, but not on status or housing. The score is constructed as

noted above and recorded in the table to the right of the MIT Hospital table. The

79

Attribute Subsetting in CIS/TK

same procedure is followed for each of the other possibilities. After they are all

scored, they are given a ranking, also shown in the table to the right of the MIT

Hospital table.

In this case, the outcome is easy since there is only one candidate who matched on

all the comparison slots. The selected student (D.S. Jones) could then be placed in a

student IDIIT table with the corresponding ID (482947562). However, what if that

student id and corresponding information didn't exist? Which would be the most

likely candidate to return to the user ? In this case, there is only one which had just

one mismatch: however, this was on blood type which is strong evidence of a different

entity. Thus, his score was much lower than the others. In fact, one of the

possibilities which had two mismatches would be returned as our next choice. Even

though he mismatched on both status and housing, this was not thought to be as

significant since both had a fairly high degree of uncertainty associated with

comparisons between different databases.

Thus, this methodology allows us to evaluate different possibilities in a

knowledgeable fashion. We are even close to being in a position of being able to

answer the user's question of why certain entities seem more likely to match than

others. Beyond this, of course, is the possibility of allowing the user to adjust the

heuristics as he goes, so that the first few matches would fine-tune the rules for his

specific situation. Finally, although we have not addressed how to handle outright

data error, this framework could support approaches towards doing that. If, for

instance, it was known that certain databases were known to provide "bad" data for

certain attributes, then a set of rules could be designed to alter the PROBABILITY

facet value based on where the data was retrieved from. This set of rules would then

Attribute Subsetting in CIS/TK

be run after the heuristic rules and would alter the PROBABILITY facet value in the

same multiplicative fashion.

Future Directions

Work is currently underway to implement the design that has been laid

out in this document. The Local and Global Query Processors described in

Chapter 2 have already been built. The translation class objects and attribute

subsetting procedures will be next implemented in order to extend the logical

connectivity capabilities of the system.

This thesis has focused on the internals of the CIS/TK system. Equally

important, however, is the user interface to the system. Future work will be

aimed at enhancing the builder interface already designed by Levine[1988]. This

will allow system designers to create and view the objects which constitute a

Global Schema in a more user-friendly fashion. An SQL-type syntax parser will

also be implemented as a query interface for end-users experienced in traditional

relational database access. The query syntax presented in this thesis will be

retained as the internal query representation.

The design and implementation of CIS/TK will continue to be an iterative

process. One area that will be given more thought is how to more fully integrate

the rule system into CIS/TK. Currently, rules are used primarily to support

heuristics. In the future, rules should be able to more directly manage logical

connectivity processes of choosing databases, accessing data, handling credibility

issues, etc.. This implies beginning to define a more structured object framework

for referring to databases, concepts and rules themselves.

Bibliography

[BAT86] Batini, C., M. Lenzerini, and S.B. Navathe, "'A Comparative Analysis of

Methodologies for Database Schema Integration."

[BEN88] Benjamin, Robert I., et al. "'The Realities of Electronic Data

Interchange: How Much Competitive Advantage?"

[BR075] Brooks, Frederick P. The Mythical Man-Month: Essays on Software

Engineering. Reading, MA: Addison-Wesley, 1975.

[ELM87] Elmasri, R., J. Larson, and S. Navathe. "Schema Integration

Algorithms for Federated Databases and Logical Database Design," Submitted

for Publication, 1987.

[LEV87] Levine, Samuel P. "Interfacing Objects and Databases," Master's

Thesis, M.I.T. 1987.

[MAD88a] Madnick, Stuart E. and Y. Richard Wang. "Facilitating Connectivity

in Composite Information Systems."

[MAD88b] Madnick, Stuart E. and Y. Richard Wang. "A Framework of

Composite Information Systems for Strategic Advantage," in Proceedings of the

Twenty-first Annual Hawaii International Conference on System Sciences, Vol.

III, January 1988, pp. 35-43.

[MAD88c] Madnick, Stuart E. and Y. Richard Wang. "Integrating Disparate

Databases for Composite Answers, " in Proceedings of the Twenty-first Annual

Hawaii International Conference on System Sciences, Vol. II, January 1988, pp.

583-592.

[MAD88d] Madnick, Stuart E. and Y. Richard Wang. "A Tool Kit for Composite

Information Systems: Research Overview, Current Status, & Near-Term Plan,"

Sloan School of Management Working Paper

[MAS87a] Massachusetts Institute of Technology Sloan School of Management,
1987 Placement Manual.

[MAS87b] Massachusetts Institute of Technology Sloan School of Management,

1987 Placement Report.

[OSB87] Osborn, Charley. "Towards a CIS Model for Strategic Applications."

[TEN88] Tener, Lisa. (Title of report to be determined).

[TR187] Trice, Andrew, et al. "Placement Office Requirements."

[WEI76] Weick, Karl E.
Systems."

"Educational Organizations as Loosely Coupled

84

