
PC Front End and Network Back End

for the Composite Information System Tool Kit

by

Wilberto Martinez

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering

at the Massachusetts Institute of Technology

May 1989

Copyright Wilberto Martinez 1989

The author hereby grants to M.I.T permission to reproduce

and to distribute copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering and Computer Science

May 16,1989

Certified

Accepted

by
Professor Stuart Madnick

Thesis Supervisor

by
Leonard A. Gould

Chairman, Department Committee on Undergraduate Theses

PC Front End and Network Back End

for the Composite Information System Tool Kit

by

Wilberto Martinez

Submitted to the

Department of Electrical Engineering and Computer Science

May 16, 1989

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Electrical Science and Engineering.

ABSTRACT

A menu driven user interface was implemented to facilitate usage of the Composite

Information System/ Tool Kit (CIS/TK) currently being developed at the Sloan School

Management. CIS/TK capability inquiries can be handled efficiently and quickly with

minimal knowledge of the underlying system. The user is able to build, save, and

retrieve queries to request information from CIS/TK. Graphic and plotting capabilities

have been enhanced and facilities for transporting data to other graphics packages have

been provided.

Thesis Supervisor: Stuart Madnick

Title: Professor of Management Science

Table of Contents

1. Introduction 4
1.1 Background 4
1.2 Goals of Thesis 4
1.3 Approach and Presentation 5

2. Architecture 6
2.1 Description of Environment 6
2.2 Multi-User CIS/TK 8

2.2.1 Messages and Pipes 10
2.2.2 Invoking Startcistk and the Multi-user Interface 12

3. Implementation 13
3.1 User Interface 13

3.1.1 Fetching CIS/TK Entities and Attributes 14
3.1.2 Sample Session: Retrieving Entities and Attributes 17

3.2 Query Generation 18
3.2.1 Generating a Query 19
3.2.2 Saving/ Retrieving Queries 20
3.2.3 Sample Session: Building and Saving Queries 23

3.3 Information Retrieval 25
3.3.1 CIS/TK Generated Objects 25
3.3.2 Fetching Information Created by a Query 27

3.4 Output Facilities 30
3.4.1 Bargraph 30

3.4.1.1 Sample Session: Bargraph 31
3.4.2 Report 32

3.4.2.1 Sample Session: Reports 32
4. Conclusions and Recommendations 33
Appendix A - Source Code 34

Table of Contents 2

List of Figures

Figure 1. System Architecture 7
Figure 2. Message Mechanism 11
Figure 3. Initial Screen for User Interface 13
Figure 4. Flow chart of function to retrieve entities and attributes. 15
Figure 5. Sample Query 19
Figure 6. Query Saving Mechanism 21
Figure 7. Sample frame generated by CIS/TK 26
Figure 8. Flowchart of information retrieval module. 28

List of Tables

Table 1. Initialization of Multi-cistk 12
Table 2. CIS/TK Commands Used to Retrieve Entities and Attributes 14
Table 3. Scheme for Fetching Entities and Attribute 16
Table 4. Functions for Fetching Information From Frames 27
Table 5. Functions Used to Retrieve Information From Frames 29

Table of Contents

1. Introduction

1.1 Background

The Composite Information System/Tool Kit (CIS/TK) is a research prototype

being developed at the Massachusetts Institute of Technology to address the difficulties

in combining information from various sources. CIS/TK was initially developed as an

element to help the understanding of the issues surrounding the integration of

information systems.

Since CIS/TK was intended to serve as a research tool, the user interface that the

system possesses does not cater to a wide range of users. This thesis presents the changes

that have been implemented to the CIS/TK interface in order to serve a wider range of

computer literacy range of CIS/TK system users.

1.2 Goals of Thesis

One of the primary goals of the CIS/TK system is to ease the retrieval of data from

disparate databases. Some of the problems that novice users of the CIS/TK system face

are: lack of user friendliness, the need to know system semantics in order to retrieve

information, and the lack of graphics and plotting facilities to visualize query results.

The goals of this thesis are to produce an interface that: 1) facilitates the retrieval of data

from CIS/TK, 2) allows the usage of graphics packages on information retrieved from

CIS/TK, and 3) implements a multi-user coordinated system that allows multiple users

to share one CIS/TK application.

Chapter 1

1.3 Approach and Presentation

Chapter 2 describes the environment in which the user interface is built and how

the interface interacts with CIS/TK. It presents the implementation of the multi-user

CIS/TK, and discusses the Unix mechanisms used in the communication between

CIS/TK and the user interface.

Chapter 3 provides a detailed technical analysis of the implementation of the user

interface. It presents the problems faced in the implementation, and describes the

solutions developed to address those problems. Query generation, information retrieval

and graphics packages are the major topics discussed in the chapter. Sample sessions

have been provided to present the operation of the enhancements made to the user

interface

The conclusions in Chapter 4 suggest enhancements for future versions of the

user interface. It discusses some of the major problems that were faced, and suggests

possible new ways to confront them.

Chapter 1 5

2. Architecture

The purpose of this section is to describe the relationship between the user

interface, CIS/TK and the user environment. The section titled Description of

Environment presents the framework of the architecture. The section Multi-user

CIS/TK presents the implementation of the multi-user CIS/TK.

2.1 Description of Environment

One of the goals in the implementation of the user interface was its immunity

from the recurring changes to CIS/TK. The user interface has been implemented in the

AT&T 3B2 Unix environment. It has been developed as a module separate from CIS/TK,

and separate from the user environment. Figure 1 presents the architecture of the user

interface module, and its inter-connections to the CIS/TK system and to the user

environment. The left section of Figure 1 represents the user environment. The current

interface supports the AT&T 3B2 and the IBM PC user environments. The middle

section represents the user interface that has been developed. The rightmost section

describes the CIS/TK environment. CIS/TK has been developed on the IBUKI LISP

environment, which in turn is supported by the AT&T 3B2 Unix environment.

A close analysis of the figure shows that the interface has been developed as a

module that does not reside on the user environment or on the CIS/TK environment.

The only dependance of the interface on CIS/TK occurs in the formatting of the query

inquiries to the system, and in the way in which CIS/TK returns its output.

Chapter 2

User Interface
Environment

Output Queue #1

Input
Queue

CIS/TK
Environment

Output Queue #2 _ _ *Query Output

Query Input

Figure 1. System Architecture

Chapter 2

The majority of the user interface has been developed using the C language.

Some functions have been written in LISP in order to request and retrieve information

from CIS/TK. The communication between the different modules has been achieved by

some of the facilities provided by the AT&T 3B2 Unix environment. The next section

describes how the user interface communicates with the User environment and with

CIS/TK.

2.2 Multi-User CIS/TK

The purpose of the multi-user CIS/TK environment is to allow many users to

share the same CIS/TK application. The time it takes to load CIS/TK, and the limitation

to the number of CIS/TK applications that can be running concurrently, make it

desirable to implement a multi-user CIS/TK. In the multi-cistk environment, requests

from different terminals are processed in a first-in, first-out manner by a shared CIS/TK.

The Multi-User CIS/TK system implemented can be divided into three

components: 1) the user interface, named startcistk, 2) the CIS/TK application that is

shared, and 3) multi-cistk, the multi-user interface to CIS/TK. The communication

between the startcistk modules and the multi-cistk interface is achieved via a message

queue. Multi-cistk and CIS/TK communicate through pipes. The multi-user CIS/TK

system works the following way:

1) a startcistk module reads a request typed at the terminal by the user. The

request is sent to multi-cistk via the Input message queue.

2) Multi-cistk gets the message from the queue and sends it to CIS/TK to be

processed. Multi-cistk then waits for CIS/TK to send its response.

3) CIS/TK gets the request, processes it and sends the response multi-cistk.

4) Multi-cistk sends the response to the appropriate startcistk module output

message queue.

Chapter 2

5) Startcistk reads the output from the Output message queue and displays it at

the terminal.

Figure 1 in section 2.1 illustrates the flow of the requests in the system. Note that

the output from CIS/TK to the startcistk modules is directed to separate output queues.

All the startcistk interfaces share an input message queue, but each interface owns a

separate output queue. This feature is necessary to avoid having one startcistk module

affect the performance of others.

A sample scenario of such a case would be as follows: user 1 logs into CIS/TK

from his 1200 baud modem at home, while user 2 logs into the system through a

computer that is connected directly to CIS/TK, at approximately 4800 baud. User 2 can

retrieve information from CIS/TK four times as fast as user 1. However, the output

queue sends the information in a FIFO manner. If user 2 were to generate a query

immediately after user 1 had generated a query, the following events would take place:

-- CIS/TK would receive and process the request from User 1. CIS/TK would send

its response to Multi-cistk, which in turn would place the response in the output

queue.

-- CIS/TK would perform the task described above for the query from user 2. The

response would be placed in the Output queue in a FIFO manner. The data from

user 2 would be placed after the data for user 1.

-- User 2 would have to wait until User 1 retrieved all his data before he could

have access to the information he requested. This scheme is not favorable to User

2 because he can retrieve information faster than User 1.

Chapter 2

The implementation of separate output queues allows each user to retrieve his

information as soon as it is available from CIS/TK. The rate of data retrieval is limited by

the speed at which the user's terminal can retrieve the data, instead of the rate at which

other users can retrieve their data from the output queue.

The next section discusses the implementation of the messaging mechanism, and

communication between CIS/TK and multi-cistk.

2.2.1 Messages and Pipes

Messages and pipes allow the inter-process communication in Unix. A process in

Unix can be identified as a program that is being run by a user. Processes can be classified

as foreground processes - the user is interacting with the program- or as background

processes - the user is not interacting with the program. The three components of the

Multi-user cistk system can be classified as processes.

The message queues that communicate between the user interface and the multi-

cistk interface can be identified by the qnumber and the mqueue number. Qnumber is a

variable in a User's Unix path that can be set to different integer values. Mqueue is the

identification number that Unix assigns to an output queue for the purpose of sending

and receiving messages. The qnumber is assigned by the user while mqueue is a number

that the Unix system generates for a specific qnumber.

The messages that communicate the different processes are composed of three

fields: the message destination, the message text, and the message originator id. All the

messages that are originated at the startcistk modules and are intended for the Multi-

cistk application have a destination of 1. If the messages are originated by CIS/TK as a

Chapter 2

response to a request, the message destination will contain the process id of the startcistk

module that originated the message. Figure 2 illustrates the message mechanism used to

interchange information. The messaging mechanism discussed has been implemented

to interchange the information between the user interface and the multi-cistk interface.

However, multi-cistk and CIS/TK interchange information via pipes.

To: To:

From: From:

Message- Message'

Figure 2. Message Mechanism

A pipe allows the output of one program to be the input of another. Figure 1

shows the pipes between CIS/TK and multi-cistk. The input pipe from multi-cistk to

CIS/TK forces CIS/TK to read its input from the multi-cistk interface, instead of from the

terminal. The output pipe from CIS/TK to multi-cistk places the information that results

from the inquiries to CIS/TK in the multi-cistk instead of the terminal. Multi-cistk then

routes the message to the appropriate Output queue.

The piping and message mechanisms allow the Multi-user CIS/TK interface to be

established. The next section describes how to invoke the user interface, and how to

initialize the multi-user CIS/TK system.

Chapter 2

2.2.2 Invoking Startcistk and the Multi-User Interface

There are several ways in which the multi-user interface, and the user interface

can be initialized. Table 1 presents the different ways in which the multi-user interface

can be invoked, and presents the differences amongst them.

Instruction

multicistk

multicistk > filename &

startcistk

Result

The multi-user interface is started. The pipes

between multicistk and cis/tk are established.

Multicistk will display the messages passed between

the user interfaces and cis/tk on the terminal. This

prevents the use of the terminal for other tasks until

multicistk is stopped.

This call invokes multi-user in the background. The

messages passed between the user interface and cistk

are placed in the file 'filename'. Since multicistk is

running in the background, the user can use the

terminal for other tasks.

The user interface is invoked. It automatically checks

if a multicistk process is running. If multicistk does

not exist, startcistk invokes multicistk in the

background, and prompts the user for input.

Table 1. Initialization of Multi-cistk.

Once multicistk is running, many users can share the application. The problem

faced at this time is that multicistk will run until the user that initialized it logs off the

system. Currently, it takes approximately two minutes to load CIS/TK. Thus, it would be

advantageous to have multi-cistk running in the background at all times. This would

avoid the time that the users have to wait until CIS/TK is loaded.

Chapter 2

3. Implementation

This section describes the issues that were faced in the implementation, and

presents the solutions and trade-offs that were made in order to solve those problems.

3.1 User Interface

The user interface implemented is intended for users whose whose knowledge of

CIS/TK is not extensive. Its purpose is to avoid having the user worry about system

details. Interaction is provided by means of a menu driven system.

The initial screen is shown in figure 3.

**************************** CIS/TK MENU ****************************

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Display entities that are available
2) Display attributes of an entity
3) Construct query
4) Retrieve query
5) Exit

Figure 3. Initial Screen for User Interface

CIS/TK currently can retrieve information from four entities:

AM/FINANCIALINFO, AM/COMPANYDESC, AM/SIC and AM/INDUSTRY. Each

one of the entities possesses a set of attributes. The initial screen provides the user with

four options. Option 1 allows the user to view the entities that are available in the

system. Option 2 allows the user to view the attributes of the entities in the system. The

first two options essentially provide the user with the information categories in CIS/TK.

Chapter 3

The other two options allow the user to retrieve information that satisfies a

certain criterion. Option 3 enables the user to build his questions (construct queries). The

user is able to select and place constraints on a set of entities and attributes. Option 4

allows the user to retrieve any queries that have been generated previously. After the

query is fetched, it can either be displayed at the terminal, or sent to CIS/TK to generate a

response. Section 3.1.1 presents the steps followed in fetching the entities and attributes

from CIS/TK.

3.1.1 Fetching CIS/TK Entities and Attributes

The user interface needs to provide the user with the system's entities and

attributes. CIS/TK currently has some facilities that can be manipulated to retrieve the

entities and the attributes available in the system. Table 2 below shows the commands

used in the interface to retrieve the entities and the attributes from CIS/TK.

(get-object 'entity 'subordinates)
-- >> returns the entities that are available in the system

(length (get-object 'entity 'subordinates))
-- >> returns the number of entities in CIS/TK

(get-object (nth number (get-object 'entity 'subordinates)) 'attributes)
-- >> returns attributes of the entity indicated by number. That is, if
number is set to one, the attributes of the first entity would be returned.

Table 2. CIS/TK Commands Used to Retrieve Entities and Attributes

The user interface implemented interchanges information with CIS/TK through

files. All the requests to CIS/TK are placed in files. The requests usually ask CIS/TK for a

set of information, and instruct CIS/TK to place the information on a specific file that the

user interface will access. Figure 4 depicts the steps followed in process of retrieving the

Chapter 3

system entities from CIS/TK. The name of the function performed in each box has been

highlighted.

I

Initial Screen

Figure 4. Flow Chart of Function to Retrieve Entities.

The function in-display 0 puts up the initial screen. It reads the command that

the user wants to perform, and calls the appropriate function. Commjibcl() serves as the

communication link between the user interface and CIS/TK. Comm-ibcl() takes as an

argument the command that CIS/TK is going to perform. The command is sent to

Chapter 3

User c
view

in_d

Read file ent
[iooses to and print contents
entities to screen

isplay 0 getsmem ()

Message to
CIS/TK to
get entities

Commibcl("load ent.lsp")

Put entities
in file ent

ent.lsp

I

CIS/TK via multi-cistk. The file ent.lsp instructs CIS/TK to retrieve the entities of the

system and place them in the file ent. Att.lsp tells CIS/TK to retrieve the attributes of a

given entity and put them in the file att.

The scheme provided in Table 3 has been implemented in the files att and ent,

which provide the entities and attributes to the user interface:

Entities File -- ent Attributes File -- att

first line number of entities first line entity name
2nd line 1st entity 2nd line number of attributes
nth line nth - 1 entity 3rd line 1st attribute

nth line nth -2 attribute

Table 3. Scheme for Fetching Entities and Attributes

The format for the two files is almost identical. In fact it only differs because the

first member of the attribute file specifies the entity whose attributes are being retrieved.

Gets-memo, which is the function that retrieves and displays the information in the

files ent and att, takes advantage of the similarities. It takes as arguments a file name,

and a letter. The letter indicates whether the file is the entities file - 'e'- or the attributes

file - 'a'. If the letter is 'e', getsmem first retrieves the number of entities in the file, and

then proceeds to retrieve the entities and to display them on the terminal.

If the argument is the letter 'a', getsmem() first retrieves the name of the entity

whose and the number of attributes possessed by the entity. Then gets-mem 0 proceeds

to fetch the attributes of the entity, and to display them on the terminal. If the number of

elements to be retrieved by getsmem is greater than twenty, getsmem automatically

Chapter 3

divides the elements into two columns in order to fit as many elements as possible on a

single screen.

The next section presents a sample session depicting how to retrieve the entities

and attributes that are available in the system.

3.1.2 Sample Session: Retrieving Entities and Attributes

The first function that is performed in this sample session is the retrieval of the

entities from the system.

***************************** CIS/TK MENU ****************************

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Display entities that are available
2) Display attributes of an entity
3) Construct query
4) Retrieve query
5) Exit

CHOICE: 1

***************************** ENTITIES ******************************

1) AM/FINANCIAL INFO
2) AM/COMPANY DESC
3) AM/INDUSTRY
4) AM/SIC

The next option shown is the retrieval of the attributes of the entity AM/COMPANY_DESC. Please

note that the first two options return to the initial screen after providing the user with the data requested.

Chapter 3

**************************** CIS/TK MENU ****************************

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Display entities that are available
2) Display attributes of an entity
3) Construct query
4) Retrieve query
5) Exit

CHOICE: 2

PLEASE SELECT THE ENTITY:

***************************** ENTITIES ******************************

1) AM/FINANCIAL INFO
2) AM/COMPANY DESC
3) AM/INDUSTRY
4) AM/SIC

CHOICE: 2

**************************** ATTRIBUTES *****************************

For the entity selected the attributes are:
1) ACOMPANY CODE
2) ACOMPANY NAME
3) AINDUSTRY
4) AINCORPORATED
5) APRIMARYCODE

3.2 Ouery Generation

The user interface implemented allows the user to specify a query to retrieve

information from the system. This section describes how the user is helped in the

generation of queries, and describes the mechanism used to save queries that CIS/TK

users have generated.

Chapter 3

3.2.1 Generating a Query

The generation of a query is a three step process:

-- The user is presented with the entities in the system. He is first asked to select

the entities on which the constraints should be placed.

-- The user is presented with the attributes of each entity. Then he is asked to

select the attributes to place in the query.

-- The user is then asked to place constraints on each particular attribute.

The function formatattributes provides the user with the format that each

attribute constraint requires. The function looks up the attribute format in the file

sample-formats. The file sample-formats contains the sample formats for all the

attributes in the system. This file must be updated if new attributes are added to the

system.

At this point the user is asked if he would like to save his query. The query

saving mechanism that has been implemented is described in the next section. Should

the user decide not to save the query, the query will be placed in the file temp. The

reason for having the queries in files is that it simplifies the process of loading queries

into CIS/TK. Figure 5 presents a sample query which obtains financial information for

the Honda Motor Company.

(AQP '(JOIN (AM/COMPANY DESC
(((AM/COMPANY DESC ACOMPANY CODE)

(AM/COMPANY DESC ACOMPANY NAME))
(AND (= (AM/COMPANY DESC ACOMPANY NAME)

"HONDA MOTOR CO LTD"))))
(AM/FINANCIAL INFO

(((AM/FINANCIAL INFO AYEAR)
(AM/FINANCIAL INFO ANET INCOME)
(AM/FINANCIALINFO AREVENUE))))))

Figure 5. Sample Query

Chapter 3

Queries to CIS/TK follow a specific format. If a query contains more than one

entity, a join must be performed. The function format-query retrieves the constraints

selected by the user and organizes them in a format that is acceptable by CIS/TK. After

the formatting is done, the user can choose to load his query into the system, and

retrieve the information requested.

3.2.2 Saving/ Retrieving Queries

In case the user desires to save his query, a scheme that is represented by Figure 6

is followed. The queries are first organized by the user-name of the person that builds

them. The function qgetname() has been developed to retrieve the user-name of the

person that is building the query. Qgetname uses the Unix facility getenvo, to fetch the

environment variable LOGNAME. The function nsearchO is called to check if the user is

already in the User Table. NsearchO takes as arguments a name, and a character. The

name indicates the username to find in the table. The character indicates the disposition

of the entry if the name is found in the table. If the character is 'k', the entry is kept. If

the character is 'd', the first character in the name is changed to a '!', which indicates that

the name has been deleted from the table. Nsearch() either returns: -1 if the user is not

on the table, or the index of the location of the user in the table.

A user can be added to the User Table by calling the function ninsertO. Ninsert

uses a hash function to calculate the index in the table of the user. The index is

calculated by taking the product of the ascii value of the characters in the username,

dividing this number by the size of the table, and taking the remainder. If a user is

already at this location, ninsert() keeps on increasing index by one until an empty spot is

found on the table. If the table is full, ninserto returns -1.

Chapter 3

The current size of the User table is 25. The variable NUMBERUSERS in the file

global.h determines the size of the table. The file global.h contains the variables that

must be modified if the user interface is transferred to a new location.

Each user in the User Table owns an individual query list. The query list contains

the names of the queries that a user has created. The function addquery() adds a query

name to the end of the existing query list for a user. The names of the queries are placed

in the query list in their order of creation. For example the user wmartinez in Figure 6

has created the queries hondafinancial and alumniindustries.

Figure 6. Query Saving Mechanism

Chapter 3

The query names are preserved in the query list, but the actual queries are saved

to files. The naming scheme used to save the queries is as follows: the queries will be

saved as queryname.username. The queryname is the name assigned by the user, the

username represents the logname of the person that is creating the queries. The naming

scheme avoids the possible conflicts that could arise if two users name use the same

name for their queries.

Saving the queries in files has two advantages: queries are readily available for

loading into CIS/TK by a simple command e.g.. (load "filename"), and saving the queries

in files allows the user to easily transfer queries to other members of his group that have

access to CIS/TK.

The mechanism implemented to save queries, requires a process to intialize the

User table and the query tables. Startup() is called every time a user interface is loaded.

The names of the users that have created queries are kept in the file USERDATA while

the name of the queries that have been originated are preserved in the file

QUERYDATA. Queries in the QUERYDATA file are indexed by the name of the

username that created them. StartupO reads the contents of the USERDATA file, and

puts the names in the User Table. StartupO then fetches the contents of the file

QUERYDATA and places them in the appropriate query table.

When a user interface is shutdown, a similar house-keeping process must be

invoked. Shutdown() saves the names in the user table to the USERDATA file, and the

queries within the query table are to the QUERYDATA file. The functions startup() and

shutdown() are included in Appendix A.

Chapter 3

3.2.3 Sample Session: Building and Saving Queries

The session below provides a sample session in which the user builds, and then

saves a query. In the sample provided below, the user selects to save the query as

hondarevenue. After putting the query name in the appropriate file, the system

confirms that the query has been saved.

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Display entities that are available
2) Display attributes of an entity
3) Construct query
4) Retrieve query
5) Exit

CHOICE: 3

PLEASE SELECT AN ENTITY:
1) AM/COMPANY DESC
2) AM/FINANCIALINFO
3) AM/INDUSTRY
4) AM/SIC

CHOICE(type 'd' when done): 2

FOR ENTITY AM/COMPANY DESC, PLEASE SELECT AN ATTRIBUTE:
1) ACOMPANY CODE
2) ACOMPANYNAME
3) AINDUSTRY
4) AINCORPOPATED
5) APRIMARYCODE

CHOICE (type 'd' when done): 1
ATTRIBUTE: ACOMPANY NAME
FORMAT: COMPANY NAME (in CAPS)
CHOICE: HONDA.

FOR ENTITY AM/COMPANY DESC, PLEASE SELECT AN ATTRIBUTE:
1) ACOMPANY CODE
2) ACOMPANY NAME
3) AINDUSTRY
4) AINCORPORATED
5) APRIMARYCODE

CHOICE (type 'd' when done): d

Chapter 3

PLEASE SELECT AN ENTITY:
1) AM/COMPANY DESC
2) AM/FINANCIALINFO
3) AM/INDUSTRY
4) AM/SIC

CHOICE(type 'd' when done): 1

FOR ENTITY FINANCIAL INFO, PLEASE SELECT AN ATTRIBUTE:
1) ANET INCOME
2) ADATE
3) ACURRENCY FROM
4) ACURRENCY-TO
5) AREVENUE

CHOICE (type 'd' when done):
ATTRIBUTE: ADATE
FORMAT: DAY MONTH(FIRST 3

between day month and year.
CHOICE: 31DEC80

FOR ENTITY FINANCIAL INFO,
1) ANET INCOME
2) ADATE
3) ACURRENCY FROM
4) ACURRENCY TO
5) AREVENUE

CHOICE (type 'd' when done):
ATTRIBUTE: AREVENUE
FORMAT: INTEGER
CHOICE: d

2

CHRACTERS) YEAR(LAST TWO DIGITS) -- no space

PLEASE SELECT AN ATTRIBUTE:

5

PLEASE SELECT AN ENTITY:
1) AM/COMPANY DESC
2) AM/FINANCIAL_INFO
3) AM/INDUSTRY
4) AM/SIC

CHOICE(type 'd' when done): d

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Revise query
2) Save query
3) Display query output.

CHOICE:

PLEASE ENTER THE NAME OF THE QUERY:hondarevenue

FOR USER wmartinez QUERY honda revenue HAS BEEN SAVED.

Chapter 3

The next sample session demonstrates the retrieval of a saved query. For

demonstration purposes, the queries named hondafinancial and alumniindustries

have been pre-defined for the user WMARTINEZ.

PLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM
1) Display entities that are available
2) Display attributes of an entity
3) Construct query
4) Retrieve query
5) Exit

CHOICE: 4

THE QUERIES THAT CAN BE RETRIEVED ARE:
1) honda financial
2) alumni industries

CHOICE: 1

THE QUERY RETRIEVED WAS honda financial.

3.3 Information Retrieval

CIS/TK generates the solution to queries in the form of LISP frames. In order to

understand the mechanisms that have been implemented in the Information Retrieval

module, it is necessary to have some knowledge about the nature of the frames. This

section provides a brief description of their functionality, and presents the methodology

used to fetch the information that they contain.

3.3.1 CIS/TK Generated Objects

In order to generate the solution to a query that it has received, CIS/TK must

locate the data that satisfies the constraints placed by the query. Every time an instance

that meets the requirements is found, CIS/TK creates one or more frames. The number

of frames created for each instance equals the number of entities in the query.

Chapter 3

A frame can be described as a list of elements that characterizes an object. CIS/TK

puts in the frames the different values of the attributes that describe the query received.

Figure 7 provides a sample frame that was generated as a result of sending the query

created in section 3.1 to CIS/TK. Since the query places constraints on two entities, the

number of frames created for each instance will be equal to two. One frame will be

created for the AM/FINANCIALINFO entity, and another frame will be created for the

AM/COMPANYDESC. The frames can be traced to each other through the value of the

attribute RELATIONS within the frames.

(AM/FINANCIAL INFO8
(SUPERIORS (MULTIPLE-VALUE-F T) (VALUE AM/FINANCIAL INFO))
(INSTANCE-OF (MULTIPLE-VALUE-F T) (VALUE AM/FINANCIALINFO))
(RELATIONS (VALUE AM/COMPANYDESC7))
(AYEAR (VALUE "31-12-85"))
(ANEET INCOME (VALUE "146502.0"))
(AREVENUE (VALUE "2909574.0")))

Figure 7. Sample frame generated by CIS/TK

The name of frames are of the form entityXX, where XX is number that is unused

by other frames. The number is generated by the LISP function Gensym. The name of

the frame provided in Figure 7 is AM/FINANCIALINFO8. This classifies the frame as

satisfying the constraints placed by the query on the AM/FINANCIALINFO entity . The

attribute RELATIONS points out that AM/COMPANYDESC7 complements the values

that have been placed in AM/FINANCIALINFO8.

The values within the frame are indexed by means of keys. Each key represents

an attribute of the query. It is possible to access the value of the attribute by retrieving the

list that is indexed by the key. The next section describes the mechanism employed by the

user interface to retrieve the values within the frames.

Chapter 3

3.3.2 Fetching Information Created by a Query

LISP provides some facilities that facilitate the process of fetching information

from frames. The functions that have been used are provided in Table 4.

(get-object entity 'instances) return a list of the instances for the
entity

(assoc key frame) returns the list in frame that is
indexed by key

(nthcdr number frame) returns a list of the frame members
starting at the location indicated by
number.

Table 4. Functions for Fetching Information From Frames

The steps followed in the process of fetching the information created by a query is

depicted in Figure 8, which is provided in the next page. Start-query retrieves the

number of instances that exist for the entities present in the query and creates the file,

currentent. Currentent contains the entities that are present in the query, and the

attributes and number of instances for each entity.

After the query has been loaded into the system, the actual information retrieval

takes place. The function readframes is invoked to retrieve the information from the

instances that have been created. Readframes works the following way:

-- read the entities that are present in the query from the file currentent.

-- for each entity: retrieve the current list of the instances. Call the function

nthcdr, provided in Table 4, with number set equal to the number of instances for

the entity before the query was loaded. This number was recorded in the file

current ent.

Chapter 3

query has been created Graphics Facilities

Figure 8. Flowchart of information retrieval module.

- for each attribute in that entity: go through the new instances list and

using the function assoc retrieve the lists indexed by the attribute. From these

new lists retrieve the attribute values and write them to a file. The name of the

file will be the same as that of the attribute.

Chapter 3

get number of Go into graphics
instances for each facilities
entity being used

startquery ()

___________ I
Load the query

Create file for each
attribute. Get

information from
instances

The functions fetch and fetch-attribute-range provided in Table 5 accomplish the

task described.

(defun fetch (key a-list)
(cadadr (assoc key (cdr (get a-list 'frame)))))

(defun fetch-attribute-range (key entity start)
(with-open-file (will stream key :direction :output)

(let ((newlist
(nthcdr start (get-object entity 'instances))))

(dolist (instance newlist)
(print (fetch key instance) will-stream)))))

Table 5. Functions Used to Retrieve Information From Frames

Fetch takes an attribute and a frame as arguments, and returns the value of the

attribute within that frame. Fetch-attribute-range takes as arguments an attribute, an

entity and a number. The function retrieves the value of the attribute in the instances of

the entity that start after 'number', and puts them in a file of the same name as the

attribute provided. For example, if 'number' provided equals twenty and the number of

instances is twenty-five, fetch-attribute-range will retrieve the values of the attribute in

instances twenty-one through twenty-five.

After the information is placed in the files, the output facilities can be invoked on

the information retrieved. The next section describes the output facilities that are

available in the user interface that has been implemented.

Chapter 3

3.4 Output Facilities

This section describes the graphics packages that the user interface provides to

CIS/TK. These packages aid the system user visualize the result of the query that has

been sent to CIS/TK. Section 3.4.3 discusses the problems faced in finding graphics

packages suitable to the CIS/TK environment.

3.4.1 Bargraph

The bargraph facility provides a two-dimensional plot of a set of data. Bargraph

follows the following convention: the first column of data is plotted in the vertical axis,

while the second column of data is displayed in the horizontal axis. The data obtained

from CIS/TK by the information retrieval module needs to be modified in order to be

used by Bargraph.

The first problem with the data is that values retrieved from LISP frames are

enclosed in double quotes. The function parse() removes the double quotes. that

surround the data. Another problem faced with the data is that some of the attributes do

not have a value for a specific instance that satisfies the query constrains. The parsing

module senses the value of the attributes, and removes the instances for which an

attribute value equals nil.

Once the modifications describes above have been performed, the data is placed

in the file graph. Graph serves as the intermediary between the information retrieval

module and Bargraph. The system command 'cat graph I bargraph' is issued to graph the

contents of the graph file in bargraph format. A sample session showing the use of

bargraph is provided in the next section.

Chapter 3

3.4.1.1 Sample Session: Bargraph

This section provides a sample session depicting the use of the bargraph facility.

Please note that the user is given the option to chose the data to put in each axis of the

plot.

PLEASE CHOOSE THE FORMAT OF THE DATA
1) Reports format
2) Bar graph format
3) Exit

CHOICE: 2

THE QUERY CONTAINS DATA FROM THE FOLLOWING ENTITES:
A) ACOMPANY NAME
B) ANET INCOME
C) ADATE

PLEASE ENTER THE ORDER OF THE DATA
-- > PLEASE ENTER THE HORIZONTAL AXIS: B
-- > PLEASE ENTER THE VERTICAL AXIS: C

HONDA Motor Company

3602344.00

3381529.00

3160714.00

2939899.00

2719084.00

3602344
%%%%%%%
%%%%%%%
%%%%%%%
%%%%%%%
%%%%%%%
%%%%%%%

3498000
%%%%%%%
%%%%%%%
%%%%%%%
%%%%%%%

+

%%%%%%% %%%%%%% 3240983
+ %%%%%%% %%%%%%% %%%%%%%

%%%%%%% %%%%%%% %%%%%%%
3098585 %%%%%%% %%%%%%% %%%%%%%
%%%%%%% %%%%%%% %%%%%%% %%%%%%%

+%%%%%%% %%%%%%% %%%%%%% %%%%%%%
2907473 %%%%%%% %%%%%%% %%%%%%% %%%%%%%
%%%%%%% %%%%%%% 00 0 %%%%%%%

%%%%%%% 2804809 %%%%%%% %%%%%%% %%%%%%% %%%%%%%
+ 2719084 %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%
I %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%% %%%%%%%

1980 1981 1982 1983 1984 1985 1986

Chapter 3

3.4.2 Report

The report facility provides a tabulated output of the information contained in

the instances generated by a query. This facility allows the user to view the values of

more than two attributes at the same time. The values of the attributes are separated in

columns, with each the name of the attribute serving as the heading for the column.

The report facility allows the user the flexibility of specifying the ordering of the

attributes in the report. It also gives the user the capability of saving the report to a file.

The next section provides a sample session of the reports facility.

3.4.2.1 Sample Session: Reports

This section presents a sample session in which the reports facility is used. The

query displayed is hondafinancial. Please note that the user has the ability to write the

report to a file for further modification.

PLEASE CHOOSE THE FORMAT OF THE DATA
1) Reports format
2) Bar graph format
3) Exit

CHOICE: 1

THE QUERY CONTAINS DATA FROM THE FOLLOWING ENTITES:
A) ACOMPANY NAME
B) ANET INCOME
C) ADATE

PLEASE ENTER THE ORDER OF THE DATA (DELIMITER IS "

A C B

SAVE THE REPORT TO A FILE (Y/N): Y

NAME OF THE FILE: REPORTS.TXT

ACOMPANY NAME ADATE ANETINCOME

Honda Motor Co. 1980 2719084
Honda Motor Co. 1981 2907473
Honda Motor Co. 1982 2804809
Honda Motor Co. 1983 3098585
Honda Motor Co. 1984 3498000
Honda Motor Co. 1985 3602344
Honda Motor Co. 1986 3240983

Chapter 3

4. Conclusions and Recommendations

The work described in this thesis presents the first user interface developed for CIS/TK. One of

the most important problems faced in the development of the interface was the lack of a graphics

package based on the AT&T 3B2 environment that would work properly for many terminals. Bargraph

was the only facility found that can display its output in a variety of terminals.

The feasibility of providing a file with information from CIS/TK that could readily be loaded

into Lotus was examined. However, the file format used by Lotus is very complex and the amount of

time left to implement this feature is insufficient. The output graphics facilities of the interface should be

enhanced in future versions.

One of the goals of the system built was to have the module reside in the AT&T environment,

independent of the CIS/TK and of the user environment. However, building a system that does not

utilize some of the enhanced resources offered by the user environment has its setbacks. One possibility

in the future is to develop separate interfaces that work for a specific user environment.

The rest of the user interface has been built in a systematic manner. This document provided an

explanation of the module implemented. The rest of the interface can be adapted to other user

environments with very little change.

Chapter 4

Appendix A

This section contains the source code developed for the user interface. This page

provides an introduction to the files, and a brief explanation of the task performed by

each function.

File
global.h

startcistk.c

check-multi

Function
external declarations

startcistk

Task Performed
values and locations of external
variables for the user interface.

startcistk is invoked to start a user
interface.

check to see if multicistk is
the background. If it is not,
check-multi invokes it.

running in

startup.c

shutdown.c

multicistk.c

tableutils.c

tableutils.c

table utils.c

screens.c

screens.c

Appendix A

startup()

shutdownO

multicistkO

add-query()

ninsert()

nsearchO

ent-dpy()

att-dpy()

initialize the user table. Read the user
from USERDATA and the queries
from QUERYDATA.

called to save the values in the User
table and the query tables to the files
USERDATA and QUERYDATA.

starts the multi-user cistk interface,
and the CIS/TK. Opens the pipes
necessary for the multi-user interface.

adds a query to the querytable of a
CIS/TK user.

adds a user to the existing User Table
for CIS/TK. Returns -999999 if the user
is not found.

locates the index of a user in the User
Table. Returns -999999 if the user is
not found.

gets the entities in CIS/TK.

gets the attributes of an entity.

puts up initial screen.

Appendix A

in-display()screens.c

File
screens.c

query-utils.c

query-utils.c

query-utils.c

query-utils.c

graph-utils.c

graph-utils.c

comm ibcl.c

commibcl.c

commibcl.c

commibcl.c

screenutils.c

screenutils.c

screenutils.c

screenutils.c

Appendix A

Function
query-display()

loadquery()

retrievequeriesO

view-query()

removequeryO

formatfileO

parse()

strtointO

gets-mem()

commibclO

selectatt()

qgetnameo

makeboldO

unmake boldO

startscreensO

Task Performed
puts up the query retrieve/delete
menu.

loads a query into CIS/TK.

displays the names of the queries of a
user on the terminal.

displays an actual query on the screen.

remove a query from the querytable of
a user.

reads two files, and combines them in
the format needed by Bargraph.

removes the double quotes that
surround the data retrieved from
CIS/TK

converts a string to its integer value.

gets the members of the att and ent
files and displays them on the
terminal.

sends commands to multi-cistk for
CIS/TK to process.

sends multi-cistk a message indicating
which entity's attributes to load into
the file att

gets the user name of the person that
is using CIS/TK.

The text put up on the screen after this
call will be bold and will blink.

undoes the effects of the call to
makeboldO.
takes a string as an argument. Centers
the string and surrounds it with bold
and blinking stars to indicate the
beginning of a screen.

36

screenutils.c

File
utils.c

utils.c

utils.c

utils.c

utils.c

utils.c

att.lsp

ent.lsp

fetch.1sp

fetch.1sp

top-level.1sp

endscreenO

Function
getsf()

qgetnum()

qopen()

qget()

qput()

qremove()

fetch()

fetch-attribute-range()

Appendix A

puts up a row of bold and blinking
stars on the screen to indicate the end
of a screen.

Task Performed
gets a line from a file. Ends when a
newline, or the prompt from CIS/TK --

cistk> -- is received.

gets the Queue number for a user.

opens a message queue.

gets a message from the message
queue.

puts a message in the message queue
for multi-cistk.

removes a message queue and utility
pipes.

instructs CIS/TK to create the file att
and place the attributes of an entity in
the file.

directs CIS/TK to retrieve the entities
in the system and put them in the file
ent

fetch returns the list in frame that has
the indicated attribute as a key

fetch-attribute-range opens a file. It
searches the frames in a specified
range for occurrences of the attribute,
and puts the values found in the file
created.

function that changes the prompt in
CISTK from '>' to 'cistk'.

/*** GLOBAL.H FILE ***/
#define NUMBER USERS 100 /* users in the customer table */
#define MAXPATH 128
#include <stdio.h>

/* location of new prompt for cistk */
char loadprompt [MAXPATH] = "/usr/cistk/wmartine/thesis";

/* loation of cistk demo */
char demo location[MAXPATH) = "/usr/cistk/demo/v2/fin-demo";

/* directory where files will be created and read */
char myhome[MAXPATH] = "/usr/cistk/wmartine/thesis";

STARTCISTK ***/
#include "global.h"
struct customer

char name[10);
int numqueries;
struct querytable *querylist;

struct customer custbl[NUMBER USERS];

main()
{
/* invoke the initializing functions
chdir(myhome);
startup();

/* check if multicistk is running in
system("check multi");
in displayo;
shutdown();

the background */

Appendix A

CHECK MULTI FILE
checks if multicistk is running in the background
if multicistk is not running, the program calls it
if multicistk is running, the program checks to see if
multicistk is ready for input

BOLD='tput smso' # reverse screen
OFF='tput sgrO' # normal screen
BLINK='tput blink' # blinking
export BOLD OFF BLINK status
ibcl run='ps -e I egrep 'multicis' I wc -l'
if ["$ibcl run" -eq "o"] # check if multicistk is running in background

then
echo "$BLINK" ; echo "$BOLD"
echo

echo "************** NOW LOADING CIS/TK
* ***** **"T

echo "*************** IT WILL TAKE ABOUT 2 MINUTES

echo "*************** PLEASE WAIT UNTIL MENU SCREEN APPEARS

echo
"********** ****** ************* **********************

echo "$OFF" ; echo " \c" ; date

multicistk > multilog & # invoke multiibcl in background

while true
do

multi loaded='tail multi log I egrep 'waiting ' I wc -l'
if ["$multi loaded" -eq ""] # check if multicistk is loaded
then sleep 10
else exit
fi

done
else # multicistk is running in the background
echo "$BLINK" ; echo "$BOLD"
echo

echo "*************** WELCOME TO CIS/TK

echo "*************** PLEASE WAIT UNTIL MENU SCREEN APPEARS

echo

echo "$OFF" ; echo " \c" ; date

while true
do

multi loaded='tail multi-log | egrep 'waiting ' I wc -l'
if ["$multi loaded" -eq "O"] # make sure it is ready for input

then sleep 5
else exit
fi

done
fi

Appendix A 39

/*** STARTUP.C ****/
/** function called to initialize the tables that hold the users that
have created queries, and the names of the queries that they have created

#include "global.h"
struct customer /* structure that holds the user */

char name[10];
int numqueries;
struct querytable *querylist;

struct querytable /* structure for queries */

char qname[12];
struct querytable *nextquery;

extern struct customer custbl[100];
startup()

int i;
char line[200], name[10],qname[], *getsf(;
FILE *fc, *fi, *fopen(), *test;
setbuf (stdout, 0);
for(i=0;i<NUMBER USERS;i++) /* initialize tables to blanks */

custbl[i].name[0) = '\0';
custbl[i].numqueries = 0;
custbl [i] .querylist = NULL;

fc = fopen("USERDATA", "r"); /* open file USERDATA for reading */
if (fc == NULL) /* file does not exist */

{
printf("Could not open the file USERDATA!!\n\n");
return;

}
while (fgets(line, 200, fc) != NULL)

sscanf(line, "%s",name);
i = ninsert(name);

}
fclose(fc);
fi = fopen("QUERYDATA", "r");
if (fi == NULL)

/* get name */
/* insert it in the table */

/* close file pointer */
/* open QUERYDATA pointer */
/* no queries created */

printf("Could not open the file QUERYDATA!!\n\n");
return;

while (fgets(line, 200, fi) != NULL)
{
sscanf(line,"%s %s", name,qname);/* get name of user and queryname */
add_query(name, qname); /* add the query */

}
fclose (fi);

Appendix A

/*** SHUTDOWN PROGRAM -- ***/
/* called to update the files that contain the users that have created

queries and the queries that they have created */
#include "global.h"

struct customer
{
char name[10];
int numqueries;
struct querytable *querylist;

struct querytable
{

char qname[l12);
struct querytable *nextquery;

};

extern struct customer custbl[100];
shutdown()
{

int i;
struct querytable *ptr;
FILE *fi, *fc;
/* open data files for writing */
fc = fopen("USERDATA","r+"); /* open USERDATA file for writing */
if (fc == NULL) /* if error return */

{
return(-1);

}
fi = fopen ("QUERYDATA", "r+"); /* open QUERYDATA for writing */
if (fi == NULL) /* if error return */

{
fclose(fc); /* close the opened USERDATA file */
return(-1);

}
/* start to loop through custbl */
for(i=O;i<NUMBER USERS;i=i+l)

if (custbl[i].name[O] != '\0' && custbl[i].name[O] != '!')
{

/* write one line from custbl to USERDATA */
fprintf(fc,"%s\n",custbl[i).name);
/* write each querytable for a customer to QUERYDATA */
ptr = custbl [i].querylist;
while(ptr != NULL)

{
fprintf(fi,"%s %s\n",custbl[i].nameptr->qname);
ptr = ptr -> nextquery;

}
}

/* close them files */
fclose(fc);
fclose(fi);
return;

}

Appendix A

/*** Multicistk.c FILE *
#include "global.h"

main()
{

int qnumber, mqueue; /* queue number and queue identifier*/
int from pid; /* process id of user that sent command */
FILE *pipefromibcl, *pipetoibcl; /* file ids for named pipes */
char line[80); /* line returned from CISTK */
char msg[80]; /* the message typed by the user(from stcistk) */
char command[25], arg[25]; /*to hold command and first argument */
char message[50]; /* to hold message for another user */
extern char loadyprompt[MAXPATH]; /* to hold load command */
extern char demo location[MAXPATH]; /* to hold demo location */

char senddemo[MAXPATH], send_prompt[MAXPATH];
struct user

{
char name[10];
int pid;

int index;
int true;
setbuf(stdout, 0); /* set stdout buffer size to 0 */
printf("multicistk: started......\n");
qnumber=qgetnumo; /* get the queue number */
printf ("multicistk: using queue number %d\n", qnumber);
qremove(qnumber); /* remove queue & pipes if they already exist */
mqueue=qopen(qnumber); /* open the queue */
system("/etc/mknod pipetoibcl p"); /* create the named pipes */
system("/etc/mknod pipefromibcl p");
/* start cistk in background */
system("ibcl <pipetoibcl >pipefromibcl &");

pipetoibcl=fopen ("pipetoibcl", "w");/* open pipe from multicistk to cistk */
setbuf(pipetoibcl, 0); /* no buffering in this pipe */
/* pipe from cistk to multicistk */
pipefromibcl=fopen ("pipefromibcl", "r");
/* read startup messages from CISTK until > prompt received */
while (strcmp(getst(line,pipefromibcl),">") != 0)

{
printf("%s\n", line);

}

strcpy(senddemo, " (load \" "
strcat(send demo, demo location);
strcat(send demo, " \") ");

strcpy(senddemo, "(load \"/usr/cistk/demo/v2/fin-demo\") ");
/* send message to ibcl directly */
fprintf(pipetoibcl,1"%s\n", senddemo);
while (strcmp(getst(line,pipefromibcl),">") != 0)

{
printf("%s\n", line);

}

Appendix A

/* place where reset prompt routine is located */
strcpy(sendprompt, "(load \" ");
strcat (sendprompt, loadyprompt);
strcat(sendprompt, " \") ");
strcpy(sendprompt, " (load \"/usr/cistk/wmartine/thesis/top-level\") ");

/* send message to ibcl directly */
fprintf (pipetoibcl, "%s\n", sendyprompt);
/* wait til next prompt */
while (strcmp(getst(line,pipefromibcl), ">") != 0)

{
printf ("%s\n", line);

}

/* send reset prompt command */
fprintf(pipetoibcl,"%s\n", "(system:top-level)");

/* wait until new prompt */
while (strcmp(getsf(line, pipefromibcl), "cistk>") !=0)

{
printf("%s\n", line);

}

true=l;

/* Loop forever, until shutdown is read from CISTK */
while(true==l) /* start of big while loop */

{
printf("multicistk: waiting for msg from startcistk\n\n");
from pid=qget(mqueue,l,msg) /* read msg from queue from startcistk */
/* dest=l gets mesages for multicistk */
printf("multicistk: msg from startcistk %d is -- %s --\n",

from_pid, msg);

/* send message (received from startcistk) to CISTK */
fprintf (pipetoibcl, "%s\n",msg);

do /* Keep receiving from CISTK until it has sent all its output */
{ /* The output will be terminated by cistk> or
printf ("multicistk:waiting for output from CISTK\n");
getsf(line,pipefromibcl); /* read line from CISTK */
printf("multicistk: msg from CISTK is ..%s\n",line);
qput (mqueue, from pid, line);

}
while(strcmp(line,"cistk>") !=0 && strcmp(line, " ->") !=O);

/* if not ? next line */
} /* end of big while loop */

qremove(qnumber);
return;

}

Appendix A

ADD QUERY ***/

/* function that takes adds a query of name tqueryname
to the queries that the user tname has. */

#include "global.h"

addquery (tname, tquery.name)
char tname[10] ,tquery.name[];

{
struct customer

{
char name[10];
int numqueries;
struct querytable *querylist;

struct querytable
{

char qname[12];
struct querytable *nextquery;

extern struct customer custbl[100);
struct querytable *thisquery, *queryptr;
int index;

index = nsearch(tname,'k'); /* find user in customer table */
if (index < 0) return (-999999);

queryptr = (struct querytable *) malloc(sizeof(struct querytable));
/* if name is found allocate a querytable */
strcpy (queryptr->qname, tqueryname);
queryptr -> nextquery = NULL; /* structure and fill it in */

custbl[index].numqueries++; /* update number if queries */
/* if first query just add directly */
if (custbl[index].querylist == NULL)

custbl[index].querylist queryptr; /* to the customer table */

else
{
/* otherwise chain to the end of the querylist */
thisquery = custbl[index].querylist;
/* find end of the linked list */
while (thisquery -> nextquery != NULL)

{
thisquery = thisquery -> nextquery;

}
thisquery -> nextquery = queryptr;

}
return(custbl[index].numqueries); /* return number of queries */

}

Appendix A

NINSERT.C
/* function used to place a user in the Usertable */

#include "global.h"

ninsert (tname)
char tname[10];

{
int index,i, len, product;
struct customer

{
char name[10];
int numqueries;
struct querytable *querylist;

extern struct customer custbl[NUMBER USERS];

/* COMPUTE HASH FUNCTION */
len = strlen(tname);
for(product=l, i=O; i<len-1; i++)

product *= len *tname[i];
i=index = product%NUMBERUSERS;

/* SEARCH FOR EMPTY SPOT OR END OF TABLE */
while (i<NUMBER USERS && custbl[i].name[0]!='\0'

{ i = i + 1; }

/* TEST IF EMPTY SPOT FOUND IN TABLE */
if (i<NUMBER USERS)

{
/* INSERT NAME INTO TABLE */
strcpy(custbl[i].name,tname);
custbl[i].numqueries = 0;
return(i);

}

/* OTHERWISE INDICATE NO ROOM FOR INSERT */
return(-1);

}

Appendix A

/*** NSEARCH.C ***/
/** search for a customer and return his index number in the USERTABLE

A hash function is used to place the user in the table, and to retrieve
the user from the table. If tdidp is equal to 'd', user will be deleted
from the table **/

#include "global.h"

nsearch (tname, tdisp)
char tname[lO],tdisp;

{
struct customer

{
char name[l0];
int numqueries;
struct querytable *querylist;

};
extern struct customer custbl[NUMBER USERS];

int index, entries searched; /*** index provided by hash function ***/
int flag=O; /*** index used in loop ***/
entries searched=O; /** upper limit on loop ***/

index = (tname[O] * tname[l]) % NUMBERUSERS ; /* compute hash index */

for(index; entriessearched < NUMBERUSERS; index++, entries-searched++)
{
/* check if name are equal */
if (strcmp(tname, custbl[index].name) == 0)

{
if (tdisp == 'd') /* check disposition */

custbl[index].name[0] =

return(index); /* return index number */

}
if (index == NUMBER USERS) /* for wraparound in the table */

index = 0; /* go to zero location and keep searching */
if (custbl[index].name[0] == '\0')
break;

}
if (flag!= 1) /* customer not found */

return(-999999);
}

Appendix A

/*** ATT DPY() ***/
#include <stdio.h>
attdpy ()
{

int att choice, number-entities;
char current entity;
printf("\n\nPLEASE SELECT THE ENTITY:\n\n");
numberentities = ent_dpy();

printf("CHOICE: ");
while (1)

{
scanf("%d", &att choice);
if (att choice > 0 && att choice <= number-entities)
break;

else

printf ("INVALID SELECTION.PLEASE");
printf (" ENTER A NUMBER FROM 1 TO %d\n",
printf("\nCHOICE: ");

}
}

printf ("\n\n");
/* call function that inquires for attributes */
select att(att choice);
start screen("ATTRIBUTES");

gets mem("att", 'a');
printf ("\n\n");
end screen();
printf ("\n\n");
return;

/*** ENT DPY() ***/
entdpy ()
{ /* load function that re

int i, number entities;
comm ibcl (" (load \"ent. l
printf ("\n\n");
start screen ("ENTITIES");

number-entities);

/* get the attributes from file att */

quests entities */

sp\") ") ;

/* get entities from file ent */
number-entities = gets mem("ent", 'e');
printf ("\n\n");
end screen();
printf ("\n\n");
return(number entities);

Appendix A

/*** In Display ***/
indisplay()
{
int in choice;

while(1)
{
printf("\n\n");
end screen();
start screen("CIS/TK MENU");
end screen();
printf ("\nPLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFORM\n");
printf("\tl) Display entities that are available\n");
printf("\t2) Display attributes of an entity\n");
printf("\t3) Construct query\n");
printf("\t4) Retrieve query\n");
printf("\t5) Exit\n");
printf("\nCHOICE: ");
scanf("%d", &in choice);
if (in choice > 0 && in choice < 6)
break;

else
printf ("INVALID SELECTION.PLEASE ENTER A NUMBER FROM 1 to 5\n");

}

switch(in choice)

case 1:
entdpy();
in displayo;
break;

case 2: att_dpy();
in displayo;
break;

case 3: querymakeo;
break;

case 4: query_displayo;
break;

case 5: printf ("Have a nice day\n");
printf("CIS/TK version 2\n");
return;

}
return;

}

Appendix A

/*** QUERY DISPLAY ***/

void querydisplay ()
{

int in choice;
while (1)

{
printf("\n\n");
start screen ("QUERY RETRIEVE/DELETE MENU");
printf("\nPLEASE SELECT THE FUNCTION THAT YOU WANT TO PERFOPM\n");
printf("\tl) View a query\n");
printf("\t2) Delete a query\n");
printf ("\t3) Load query\n");
printf("\t4) Return to Main Screen\n");
printf("\nCHOICE: ");
scanf("%d", &in choice);
if (in choice > 0 && in-choice < 5)
break;

else
printf ("INVALID SELECTION.PLEASE ENTER A NUMBER FROM 1 to 4\n");

}

switch(in choice)
{
case 1: retrievequerieso;
querydisplay();
break;

case 2:retrieve_querieso;
querydisplay();
break;

case 3:
loadquery();
in display(;
break;

case 4: in display(;
return;
break;

}
return;

}

Appendix A

/*** TABLE UTILS.C
#include <stdio.h>
retrievequeries()
{

FILE ***/

int i, in choice;
char *name, *qgetnameo,
name = qgetnameo;
i = nsearch(name, 'k');
if (i == -999999)

choice;
/* get username */
/* check if user has queries */
/* user does not have queries */

{
printf ("USER %s HAS NOT CREATED ANY QUERIES\n", name);
printf("Would you like to access the queries of another user?

while(l)

getcharo; /* to get return */
choice = getchar(); /* get user's choice */
if (choice == 'y' 1| choice = 'n')

break; /* if valid choice, continue */
else /* otherwise, loop until valid choice */
printf("\nINVALID SELECTION. PLEASE ENTER A 'y' or 'n': ");

(choice == 'y')

while(l)

printf("\nPlease enter
scanf ("%s", name);
if (strcmp(name, "q")

return;
else
break;

}
i=nsearch(name, 'k');
if (i < 0)

the name of the user, or q to exit: ");
/* user can view other users queries */
== 0) /* quit option */

/* see if other user has queries */
/* if not break */

printf("User does not exist in the table\n");
printf(". ..Returning to the main menu\n\n\n");
return;

else
{

/* otherwise display that users queries */

i = display queries(name);
while(l)

printf("\nCHOICE: ");
scanf("%d", &in choice);
if (in choice > 0 && in-choice <= i)

{
viewquery (in-choice);
break;

}
else
{
printf("Invalid choice.");

Appendix A

(y/n): ");

if
{

printf("Please enter a number between 1 and %d\n", i);
}

}
return;

}
}

else
{
printf("No queries retrieved. Return to main menu\n\n\n");
return;

}
}

else
{

i= display queries (name);
while(l)

{
printf("\nCHOICE: ");
scanf("%d", &in choice);
if (inchoice > 0 && in-choice <= i)

{
viewquery (in-choice);
break;

else

printf("Invalid choice.");
printf("Please enter a number between 1 and %d\n", i);

}
return;

Appendix A

display-queries (name)
char name[];

{
int i, choice;
char header[];
int index = nsearch(name, 'k');
struct customer
{
char name[10];
int numqueries;
struct querytable *querylist;

struct querytable
{

char qname[12];
struct querytable *nextquery;

};
extern struct customer custbl[100];
struct querytable *thisptr;
thisptr = custbl[index].querylist;
if (thisptr != NULL)
{
printf("\n\n");
make bold();
printf("************************* USER %s name);

printf ("*************\n");

unmake boldo;
i = 1;

while (thisptr != NULL)
{
printf("\t%d) %s\n", i, thisptr->qname);
i++;
thisptr = thisptr->nextquery;

}
}

else
printf("User %s has not created any queries\n\n", name);

return(i);
}

Appendix A

#include <stdio.h>
/* function that takes two files as arguments, and produces the

file file graph, which can readily be used to load into bargraph */
format file (filel, file2, number)

char filel[80], file2[80];
int number;

{
int i, flag;
char first mem[12], second mem[12], *parse(;
FILE *fpl, *fp2, *new;
fpl=fopen(filel, "r"); /* open the files for reading */
fp2=fopen(file2, "r");
new=fopen("graph", "w"); /* open graph to hold values of both files */
i=l;
flag=0; /* set if any value is NIL */
while(i <= number) /* loop until all strings are received */

{
fscanf(fpl, "%s", first mem); /* get string from first file */
fscanf(fp2, "%s", second_mem); /* get second from second file */

/*if either one is equal to NIL, set flag, do not write values*/
if (strcmp(first mem, "NIL")==O |1 strcmp(secondmem, "NIL")==O)

flag=l;
else

{
fprintf(new, "%s\t", parse(firstmem));
fprintf(new, "%s\n", parse(second_mem));

/* write the values */

i++; /* keep looping */
}

if(flag) /* flag is set ?? */
printf ("Some of the values have been ommitted from the graph\n");

}

/* data received from CIS/TK is enclosed in double qoutes. This program
removes the double quotes. After the data is 'parsed' it can be used
by the graphics packages */

char *parse(old)
char old[];

{
char tmp[];
int i, j;
int len=strlen(old);

for (i=O; i<len; i++) /* parse out the " and the - fro data */

if (old[i] == '"' || old[i] =
old[i] = '

strcpy(tmp, old + 1); /* remove unnecesary first space */
return(tmp);

Appendix A

/*** COMM IBCL.C FILE ***/
#include <stdio.h>

/*** String to Integer Conversion
*** developed 3/31/89 wmartinez *

strtoint(alpha)
char alpha[]; /* string to be converted */

{
int beta; /* variable that will hold integer value */
int j; /* counter */
beta=0;
for (j=0; alpha[j] >= '0' && alpha[j] <= '9'; j++)
beta=10 * beta + (alpha[j] - '0'); /* convert from ascii to integer */

return(beta); /* return integer value */

}

/*** function that gets from a file a number of strings. The first
string in the file specifies the number of strings to retrieve ***/

getsmem(filename, select)
char filename[20); /* name of the file that contains strings */
char select; /* entity or attribute file */

{
char current mem[80],current mem2[80] , nb_mem[], entitysel[];
int i, number members;
FILE *fp;
fp=fopen (filename, "r") ;
printf("\n\n");

if (select == 'a')
{ /* get the entity selected and the number of attributes*/

fscanf(fp, "%s", entitysel);
fscanf (fp, "%s", nb mem) ;
number members = strtoint(nb mem); /* convert to an integer */
printf("\For the entity selected the attributes are:\n");

}

if (select == 'e')
{

fscanf(fp, "%s", nb mem);
number members = strtoint(nb mem); /* convert to an integer */

}

if (number members > 10)
{

for (i=0; i< (number members-2); i+=2)
{
fscanf(fp, "%s %s", current mem, currentmem2);
if (strlen(current mem) >10)
printf("\t%d) %s \t\t%d) %s\n", i+l, currentmem,

i+2, current mem2);
else
printf("\t%d) %s \t\t\t%d) %s\n", i+l, currentmem,

Appendix A

i+2, current mem2);
}

if(number members%2 ==O)
printf("\t%d) %s \t\t\t%d) %s\n", i+1, current mem,

i+2, current mem2);
else
printf("\t%d) %s\n", i+1, currentmem);

}

else
{

for (i=0; i< number members; i++)
{
fscanf(fp, "%s", currentmem);
printf("\t%d) %s\n", i+1, currentmem);

}
}

fclose(fp);

if (select=='e')
system("rm -r ent");

if (select=='a')
system('rm -r att");

/* return number of entities or attributes that were retrieved */
return(number members);

}

Appendix A

/*** This function serves as the message sender between
the cis/tk system and the user interface
Modified version of startcids **/

comm ibcl (line)
char line[];

{

int qnumber, mqueue; /* the queue number and queue identifier */
int pid, multi_pid; /* process ids of this process and multicistk */
char msg[80]; /* the message from multicistk */
char command[25], arg[25]; /* for tasks 10 & 11 */
FILE *fp; /* for task 11 */
fp = NULL; /* for task 11 */

setbuf(stdout, 0); /* set stdout buffer size to 0 */
qnumber=qgetnumo; /* get the queue number */
mqueue=qopen(qnumber); /* open the queue */

pid=getpid(); /* get process id for this process */

/* Loop to read CISTK commands and send the to multicistk to process */

/* invoke a new shell -- task 8 */
if (strcmp (line, "!")==0)

{
system("sh -i");
printf("\ncistk>"); /*print prompt to the user

}

/* check for quit password -- task 10 */
command[0]=arg[0]='\0'; /* initialize both the '/0' */
sscanf(line,"%s %s",commandarg);
if (strcmp (command, "quit")==0 && strcmp (arg, "foobar") !=0)

{
printf("\nsorry your quit password is invalid.\n");
printf("\ncistk>");

}

/* check for redirection of output command -- task 11 */
if (strcmp (command, ">")==0)

{
if (fp != NULL) fclose(fp); /* close file */
/* if file given, open it for writing */
if (strcmp (arg, "") !=0) fp=fopen (arg, "w");

}

qput(mqueue,l,line); /* send command to multicistk (dest=1) */

/* check for disconnect command -- task 16 */
if (strcmp(line,"disconnect")==0)

{
printf("\nstartcistk: startcistk is disconnected.\n");
return; /* return to Unix */

}

Appendix A

do /* keep receiving from multicistk until "cistk>" is received */
{

/* receive a message from multicistk with dest=pid */
multi_pid=qget (mqueue, pid, msg);
if (strcmp (msg, "shutdown") ==O)

{
printf("\nstartcistk: multicistk has been shutdown.\n");
return; /* return to Unix */

}
/* redirect output -- task 11 */
if (fp != NULL)

{
fprintf (fp, "\n%s",msg);

}
} while (strcmp(msg, "cistk>")!=O && strcmp(msg," ->")!=O);

/* if not cistk> or ->, get next msg */
} /* end of big while loop */

/*** SELECT ATT ***/

select att(selection)
imt selection; /* entity that user selects */

{
FILE *fp;
fp=fopen ("att.lsp", "w") ;
fprintf(fp, "%s %d %s",

"(with-open-file (will stream \"att\" :direction :output)
(let* ((entity sel (nth", selection-l, "(get-object 'entity

'subordinates))) (atts (get-object entitysel 'attributes))
(nb-attributes (length atts))) (print entitysel will stream)
(print nb-attributes willstream) (dolist (entity atts)

(print entity will-stream))))");
fclose(fp);
comm ibcl("(load \"att.lsp\")");

}

/* QGETNAME Function that gets the username to be used from the
shell variable LOGNAME */

char *qgetname()
{
char *c; /* pointer to the first character of the logname */
char *getenv();
c=getenv("LOGNAME"); /* the value of the shell variable LOGNAME */
if (c==NULL)

{
printf("qgetnum: the shell variable LOGNAME must be set.\n");
printf("Program exits.\n");
exit(0);

}

return (c);
}~

Appendix A

/*** SCREEN UTILS ***/
make bold()

system(" tput blink ");
system(" tput smso ");

unmake bold()
{

system(" tput sgrO ");

/* blinking cursor
/* reverse screen */

/* turn bold & blink off */

/* function that takes a string as an argument and enters it, surrounded
by starts. It also makes the heades bold and blink */

start screen(header)
char header[];

{
int i;
int len = strlen(header);

make boldo;
for(i=0; i <= (65 - len)/2; i++)
printf("*");

printf(" %s ", header);

i = (65 - len)/2 + len + 4;
for(i; i < 69; i++)
printf("*");

printf("*\n");
unmake boldo;

end screen()
{
int i;
make boldo;
for(i = 0; i

printf(11*11)

printf("I*\n"I)

unmake bold()

<69; i++)

Appendix A

/* GETSF: reads a line from a file */
/* returns when a newline or the prompt cistk> is read */

#include <stdio.h>

char *getsf (buf, fp)
char *buf;
FILE *fp;
{

int bytes, fd;
int i=O;

fd = fileno(fp);
while(i<640)

{
bytes=read(fd,buf+i,1);
if (bytes == -1)

return (NULL);
if (buf[i] == '\n') break;
i++;
if (i==6 && strncmp(buf,"cistk>",6) == 0) break;
if (i==3 && strncmp(buf," ->", 3) == 0) break;

}
buf[i]='\0';

return(buf);
}

Appendix A

/* UTILS.C - entered 2/15/89 */

/* message queue utility routines */

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

struct qmessage /* what each message looks like */
{
long mdest; /* the message destination */
char mtext[80]; /* the text of this message */
int mpid; /* the process id of the sender */

} ;

/* QGETNUM */
/* This routine qgetnum gets the queue number to be used from the */
/* shell variable QUEUE. */
/* It returns the queue number to the calling program. */

qgetnum()
{
char *c; /* pointer to the first character of the queue number */
char *getenv();
c=getenv("QUEUE"); /* the value of the shell variable QUEUE */
if (c==NULL)

{
printf("qgetnum: the shell variable QUEUE must be set.\n");
printf("Program exits.\n");
exit(0);

}
return atoi(c);

}

/* QOPEN */
/* The routine qopen establishes access to the message queue */
/* It returns the queue identifier, mqueue */

qopen(qnumber)
int qnumber; /* the number for the queue to access */
{

int msgflg=0001666;
int mqueue; /* the message queue identifier */
mqueue= msgget(qnumber,msgflg); /* get the id for this queue */
if (mqueue ==-1)

{
printf("qopen: message queue number %d cannot be opened.\n",

qnumber);
printf("Program exits.\n");
exit(0);

}
return mqueue;

}

Appendix A

/* QGET */

/* The routine qget read a message from the message queue */
/* It returns the process id of the sender */

qget (mqueue, dest, msg)
int mqueue; /* the message queue to read from */
int dest; /* only messages with specified destination will be read */
char msg[80]; /* the message read will be placed here by qget */
{

int retcode;
struct qmessage mbuf; /* the queue message buffer */
retcode=msgrcv (mqueue, &mbuf, sizeof (mbuf) , dest,MSGRWAIT); /* get msg */
if (retcode == -1)

{
printf("qget: messsage was not received\n");
printf("Program exits.\n");
exit(0);

}
strcpy(msg,mbuf.mtext); /* copy the message text */
return mbuf.mpid; /* return the process id of the sender */

}

/* QPUT */
/* The routine qput puts a message into the message queue */
qput (mqueue, dest, msg)
int mqueue; /* the message queue to write to */
int dest; /* thes destination of the message */
char msg[80];
{

int retcode;
struct qmessage mbuf; /* the queue message buffer */
mbuf.mpid=getpido; /* get the process id of this process */
mbuf.mdest=dest; /* establish the destination */
strcpy(mbuf.mtext,msg); /* copy msg text into message buffer */
retcode=msgsnd(mqueue,&mbuf,sizeof(mbuf),MSGWWAIT); /* send msg */
if (retcode == -1)

{
printf("qput: message was not send\n");
printf("Program exits.\n");
exit(0);

}
return;

}

Appendix A

/* QREMOVE */
/* The routine qremove removes the message queue and the named pipes */
qremove(qnumber)
int qnumber; /* the number of the queue to remove */
{

struct msqid ds buf;
int retcode, mqueue;
mqueue=qopen (qnumber);
retcode=msgctl (mqueue, IPCRMID, &buf);
if (retcode==-l)

{
printf("gremove: queue was not removed\n");
printf("Program exits.\n");
exit(0);

}

/* remove the named pipes */
system("rm -f pipetoibcl");
system("rm -f pipefromibcl");
return;

}

Appendix A

;;; ATT.LSP
Returns the attibutes of an entity. By changing the first argument

;;; to nth we select the specific entity.
(with-open-file (will stream "att" :direction :output)

(let* ((entity sel
(nth 1 (get-object 'entity 'subordinates)))

(atts (get-object entitysel 'attributes))
(nb-attributes (length atts)))

(print entitysel willstream)
(print nb-attributes willstream)
(dolist (entity atts)

(print entity will-stream))))

;;; ENT.LSP FILE
;; file that retrieves the entities that are available in the system

;;; the entities will be placed in the file ent
(with-open-file (will _stream "ent" :direction :output)

(let* ((entities (get-object 'entity 'subordinates))
(nb-entities (length entities)))

(print nb-entities willstream)
(dolist (entity entities)

(print entity will-stream))))

Appendix A

FETCH.LSP FILE
;; functions to retrive information from frames

;;; fetch returns the list in 'a-list' that has attribute as a key
(defun fetch (attribute a-list)

(cadadr (assoc attribute (cdr (get a-list 'frame)))))

;; fetch-attribute range creates a file of name 'attribute'.
;;; The frames after location 'start' in frames' list are searched
;; for occurences of 'attribute'. The values of 'attribute'
;; are placed in the file
(defun fetch-attribute-range (attribute entity start)
(with-open-file (will-stream attribute :direction :output)

(let ((newlist
(nthcdr start (get-object entity 'instances))))

(dolist (instance newlist)
(print (fetch attribute instance)

will stream)))))

Appendix A

;;; Top-level.lsp
;; Function to change the prompt of the IBCL system

;;; After loading this function, the command (system :top-level)
;; must be invoked to get the new prompt
;; Developed by Mia Paget
(in-package 'system)
(defun top-level ()

(let ((+ nil) (++ nil) (+++ nil)
(- nil)
(* nil) (** nil) (*** nil)
(/ nil) (// nil) (/// nil)
(back-p nil))

(setq cond::*restart-clusters* nil
ihs-top (ihs-top))

(setq *lisp-initialized* t)
(cond:with-simple-restart (cond:abort "Lisp Top Level")

(when (probe-file "init.lsp") (load
"linit.lsp"l)))

(loop
(setq +++ ++ ++ ++ -)
(when back-p

(format t "-% Back to Lisp Top Level...
(setq back-p t)
(reset-stack-limits)
(when (cond:with-simple-restart

(cond:abort "Lisp Top Level")
(format t "-%-acistk>"

(if (eq *package* (find-package 'user)) ""
(package-name *package*)))

(setq - (locally (declare (notinline read))
(read *standard-input* nil *eof*)))

(when (eq - *eof*) (bye))
(let ((values (multiple-value-list

(locally (declare (notinline eval))
(eval -)))))

(setq // // // / / values *** ** ** * * (car /))
(fresh-line)
(dolist (val /)

(locally (declare (notinline prinl)) (prinl
(terpri))

nil)
(setq back-p nil))

(terpri *error-output*)))))

Appendix A

val))

