ADDITION OF A NEW RDBMS TO THE ‘ACCESS FIELD’

OF THE CIS/TK SYSTEM

by

Gautam A. Gidwani

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

Copyright (c) 1989 Massachusetts Institute of Technology

Signature of Author

Department of Electrical Engineering and Computer Science

n
{\/,,
>

June 5, 1989

Professor Stuart E. Madnick

Thesis Supervisor

Accepted by

Professor Leonard A. Gould
Chairmman, Department Committee on Undergraduate Theses

ADDITION OF A NEW RDBMS TO THE ‘ACCESS FIELD’
) OF THE CIS/TK SYSTEM

by

Gautam A. Gidwani

Submitted to the Department of Electrical Engineering and Computer
Science on June 5, 1989 in partial fulfillment of the requirements for the
degree of Bachelor of Science.

Abstract

Large organizations often have many distinct divisions, each of which uses its own
independent Database Management System (DBMS). This does not allow one division to
access information electronically from the other divisions in the organisation. Thus,
inefficiency in the sharing of information among divisions, and consequently ‘divisional
boundaries’ are created within the organisation. Researchers in management systems have
therefore recognized the need for Composite Information Systems (CISs) that will eliminate
divisional boundaries by accessing and combining information stored in multiple, disparate
databases in remote divisions. Such a system, the ‘Composite Information System/Tool Kit’
(CIS/TK) is currently in development at the MIT Sloan School of Management. An object-
oriented mechanism for data-retieval from multiple remote, disparate databases has been
developed as the lowest hierarchic level of the CIS/TK, and is referred to as the Local
Query Processor (LQP). This paper outlines the process by which a new remote, disparate,
Relational DBMS (RDBMS) can be added to the ‘access field’ (to be defined in this paper)
of the CIS/TK system.

Thesis Supervisor: Professor Stuart E. Madnick
Title: Professor of Management, M.I.T. Sloan School of Management

23-

. Dedication

To Prof. Stuart Madnick, who gave me his confidence and advice - despite my ignorance -
and agreed to be my thesis Supervisor.... many thanks.

To Prof. Richard Wang, who besides being the backbone of the LQP development process
in its early stages, was patient with me for my inexperience.

To Alec Champlin, who I never met, but who implemented the original LQP prototypes,
thereby laying the foundation for my own work.... I owe this dedication.

To John Maglio, the man who knows everything there is to know about the IBM 4381
mainframe, who always went out of his way to help, and without whose suggestions and
guidance I would never have got the job done... much gratitude.

To Ray Faith, the AT&T counterpart to John Maglio, who was also always there to point
me in the right direction when I had a problem.

To everyone who was a part of my life over the last four years - particularly the friends who
gave me their understanding and increased my own, and without whom I would not have
been able to suffer the MIT factory.

To my family, who have always shared their wisdom with me, for the worries I have caused
them, and for their love.

And specially... To my sister, Veena, who has not only made all this possible, but has been
my best friend.... my love and deepest gratitude.

-4-

- Table of Contents

Abstract
Dedication

Table of Contents
List of Figures

1. INTRODUCTION

2. OVERVIEW OF A LOCAL QUERY PROCESSOR

2.1 THE LQP-OBJECT
2.2 THE LQP-DRIVER
2.2.1 The Query Translator Module
2.2.2 The Communication Server Module
2.2.3 The Data Filter
2.2.4 The Result Reader
2.2.5 Summary

3. ADDITION OF AN LQP FOR THE SQL/DS RDBMS ON ‘SLOAN’

3.1 LQP PROBLEM DEFINITION
3.1.1 The Query Translator: Problem Definition
.2 The Communication Server: Problem Definition
.3 The Data Filter: Problem Definition
.4 The Result Reader: Problem Definition
.5 The LQP-object: Problem Definition
OP IMPLEMENTATION
.1 The Query Translator: Implementation
.2 The Communication Server: Implementation
.3 The Data Filter: Implementation
3.2.4 The Result Reader: Implementation
3.2.5 The LQP-object: Implementation

4. SAMPLE SESSION

4.1 The LQP-object and its Instance
4.2 The :SELF-INFO Message
4.3 The :GET-TABLES Message
4.4 The :GET-COLUMNS Message
4.5 The :GET-DATA Message
5. SYSTEM IDIOSYNCRACIES AND POSSIBLE PROBLEMS

5.1 SQL/DS LQP Idiosyncracy Check
5.2 SQL/DS SQL Format Idiosyncracies

6. CONCLUSION
6.1 Improvement of the SQL/DS RDBMS LQP

Appendix A. Common LISP Files
A.1 sqlds4381.1sp

w
&)

CTwwww
or—r—‘r-ar—

wWww
NNN

A.2 sqllsp
A.3 connect.lsp

A.4 read.lsp
A.5 demo-gg.lsp
A.6 korel.lsp
Appendix B. ‘C’ Program Files
B.1 filt4381.c
B.2 preREAD.c
Appendix C. UNIX Script Files

C.1 4381FILE
C.2 4381FTP

Appendix D. EXECutive Program File
D.1 4381SEL

66

72
74
75
84

84
89

91
91

. List of Figures

Figure 1-1: CIS/TK Hierarchy and LQP Interfaces
Figure 2-1: Internal Structure of LQP-driver and Module Functions
Figure 3-1: Communication Server Data Retrieval

16
33

-7-

- Chapter 1

INTRODUCTION

Today, an increasingly high percentage of organizations use Database Management
Systems (DBMSs). DBMSs have greatly improved the efficiency - and thereby the
productivity/competitiveness - of organizations by eliminating the time-consuming process
of managing large volumes of information (data) manually. In addition, the use of DBMSs
has provided organizations greater flexibility in the storage, sorting and retrieval of data.
Optimization of information management, in an effort to further increase
productivity/competitiveness of organizations, continues to be an ongoing endeavor for
both Management Information Systems (MIS) managers as well as researchers of data

management systems.

A major drawback of contemporary information management systems is the
inevitable presence of ‘information boundaries’ among disparate systems.! Information
boundaries are manifest in the inability of divisions/organizations to access data from one
another. These boundaries may be ‘intra-organizational’ (divisional boundaries within an
organisation) or ‘inter-organizational (boundaries between two or more organizations). MIS
managers and executives in business organizations are now becoming increasingly aware of
the potential revenue increases (through greater efficiency), and strategic opportunities that

can be hamessed by eliminating these information boundaries.

‘Composite Information Systems’ (CISs) have been recognized by researchers as the
future solution to eliminating - or at least reducing - information boundaries towards these

profitable ends. As is implied by the name, CISs are information systems capable of

!Madnick, S.E. and Wang, Y.R., Integrating Disparate Databases for Composite Answers, In Proceedings
of the 21st Hawaii International Conference on System Sciences, Kailu-Kona, Hawaii, January, 1988.

-8-
accessing and integrating data scattered among several remote, disparate DBMSs. The
‘Composite Information System/Tool Kit* (CIS/TK), currently in development at the MIT

Sloan School of Management is such a system.

The CIS/TK, being implemented in an object-oriented framework, intends to access
information from as many DBMSs as are included in its ‘access field’. The access field, as
applied in this paper to the CIS/TK system, is defined as the entire range - or field - of
DBMSs that can be accessed by the CIS/TK system. The CIS/TK system allows the user to
make queries that would require information from one or any number of DBMSs in its
access field. The intelligent upper levels of the system’s hierarchy, namely the ‘Application
Query Processor’ (AQP) and the ‘Global Query Processor’ (GQP) decide which DBMSs
are to be accessed to retrieve the required information. The GQP then creates sub-queries
from the user’s query - known as ‘Abstract Local Queries’ (ALQs). These ALQs are sent
by the GQP to the lowest hierarchic level of the CIS/TK system, namely the ‘Local Query
Processors’ (LQPs). It is important to note that an LQP exists for each DBMS to be
accessed by the CIS/TK system. Each LQP receives a single ALQ which it addresses to the
distinct DBMS that it represents, and thus retrieves the requested data. Thus, the inclusion
of a new DBMS in the access field of the CIS/TK involves the implementation of a new

LQP that will access that DBMS.

Figure 1 provides a global view of the CIS/TK hierarchy and identifies the position of
each LQP as the interface between the higher levels of the CIS/TK and the distinct DBMS
that the LQP accesses.?

2Horton, Dave, The Design and Implementation of the CISITK Query Processor Architecture, Master’s
Thesis, Massachusetts Institute of Technology, May, 1988.

CIS/TK SYSTEM

USER

AQP

GQP

LQP 1

LQP 2

AQP = Application Query Proces
GQP = Global Query Processor
LQP = Local Query Processor

LQP 3

OBMS 3

Figure 1-1: CIS/TK Hierarchy and LQP Interfaces

-10-

LQPs provide both ‘physical’ and ‘logical’connectivity between the higher levels of
the CIS/TK and thé respective DBMSs for which they are defined. ‘Physical connectivity’
refers to the hardware and lower level communication software required to enable the
transfer of data between two computer systems. ‘Logical connectivity’, as applied to CIS
systems, refers to the process of relating the information in two seperate DBMSs when
there may be differences in syntax and semantics. Each LQP is a virtual driver; that is, it
reproduces the actions necessary to retrieve information from remote databases as if the
query were being processed by a human user. For a thorough understanding of the object-
oriented LQP-implementation methodology used herein, it is strongly recommended that
the reader study Alec R. Champlin’s thesis, "Integrating Multiple Remote Databases in an
Object-oriented Framework"3 The paper provides a detailed description of the
specifications of an LQP, and an overview of the object-oriented framework used to

implement it.

This paper serves as a practical guide for adding a new remote, Relational DBMS
(RDBMS) to the access field of the CIS/TK system using Alec R. Champlin’s object-
oriented framework. Chapter 2 provides an overview of the intemnals of an LQP. Chapter 3
defines the problem of adding a new remote DBMS - specifically, the SQL/DS RDBMS on
MIT Sloan School of Management’s IBM 4381 mainframe - to the CIS/TK access field.
The step-by-step implementation procedure followed in the addition of the new LQP is also
elaborated in this chapter. Chapter 4 provides a sample session of the working LQP,
explaining its functions. Chapter 5 identifies possible future system-specific problems due
to the idiosyncracies of the systems involved. Finally, chapter 6 consists of a conclusion,

and discussion of future areas of work in the improvement of the LQP implemented herein.

3Cha,mplin, Alec R., Integration of Remote Databases in an Object-oriented Framework, May, 1988.

-11-

- Chapter 2

OVERVIEW OF A LOCAL QUERY PROCESSOR

This chapter presents an overview of the internal structure of a Local Query
Processor (LQP) that is to access a Relational DBMS (RDBMS). The reader is reminded
that a distinct LQP is required for each DBMS to be accessed by the CIS/TK system.
However, intelligent programming may allow the sharing of program files among several
LQPs. Alec R. Champlin uses this program-sharing scheme in the implementation of 3
LQPs in his thesis paper, "Integrating Multiple Remote Databases in an Object-oriented
Framework". The 3 LQPs implemented by Alec Champlin use common files to serve as
LQP modules that are referred to individually in this paper as LQP-driver modules, and
collectively as the LQP-driver.

An LQP may be thought of as 2 parts:
1. The LQP-object

2. The LQP-driver
The functions and intemal structure of these two parts of the LQP shall be studied in this
chapter. It is imperative that the reader follows, where reference is made, the program files

in the appendices or the sample session of chapter 4.

2.1 THE LQP-OBJECT

The LQP object receives a message from the Global Query Processor (GQP), and

controls the LQP-driver modules in retrieving the information requested from a DBMS.

The LQP-object contains all the information - stored as artributes - regarding file
manipulation, and connectivity between the machine on which the ‘local’ CIS/TK system

resides and the ‘remote’ machine on which the DBMS is to be accessed. The attributes

12

typically include information such as the name of the remote machine, a user account and a
password on the remote machine,and the directories in which files may be accessed on both
machines.Also included in the LQP-object is a set of methods that are invoked by messages
that may be sent to (and are defined in) the LQP-object. It is specifically the methods that
control the LQP-driver modules and thereby perform the required data-retrieval functions.
There are currently 4 messages that can be supported by the LQP-object. These, along with

their respective functions are:

1. :SELF-INFO provides the CIS/TK user with information about the particular
DBMS with which the message is associated. The :SELF-INFO message
requires no arguments.

2. :GET-TABLES returns a list of all the tables which can be accessed within
the particular DBMS with which the message is associated. The :GET-
TABLES message requires no arguments.

3. :GET-COLUMNS returns a list of all the columns for a specified table
within the DBMS with which the message is associated. The :GET-
COLUMNS message require a valid ‘table name’ as its argument.

4. :GET-DATA returns a list of the requested data from the DBMS with which
the message is associated. The :GET-DATA message requires an ‘Abstract
Local Query’ - to be discussed below - as its argument.

It is important to understand the function of an LQP and how it receives messages
prior to discussing Abstract Local Queries (ALQs). The send-message function defined in
KOREL* (Knowledge-Object REpresentation Language) is used to pass messages to the
LQP(s) from the GQP. If data is required from more than one DBMS, then messages are
sent to all the respective LQPs representing distinct DBMSs. The format of the

send-message function is:

4Levine, Samuel P., Interfacing Objects and Databases, Master’s Thesis, Massachusetts Institute of
Technology, May, 1987.

-13-

(send-message <message> ’<lgp-object or instance> <required arguments>)

1. <message> is one of the 4 messages acceptable by the LQP - :SELF-INFO,
!GET-TABLES, :GET-COLUMNS, or :GET-DATA.

2. <lqp-object or instance> is either the name of the LQP-object or its instance,
and identifies an LQP. KOREL supports a hierarchic object definition. An
instance of an object inherits all the attributes of its superior, the LQP-
object. In addition the instance may also have its own set of unique attributes.
A message may be sent either to an object, or alternatively to its instance.

3. <required arguments> may be either a valid table name for the :GET-
COLUMNS message, or an ALQ for the :GET-DATA message.

Now the Abstract Local Query (ALQ) is studied. The format of ALQs is
predetermined, and is illustrated below. An ALQ received by an LQP is converted to a
query format - known as the ‘DBMS Query’ - that can be processed by the DBMS to which
the message (in this case a :GET-DATA message) is sent. The ALQ format is:

! (<table name> (<list of columns>) (<optional list of conditionals>))

Possible Formats

|
|
|
s.employee |
"s.employee" |
(s.eamployee) |

Possible Formats

(empname empnum phone)
(” mnm " " ’mpn‘m" " phone L])
! empname

Possible Formats

(> empnum "500")
(> llmn‘m" "500“)
No conditionals

-14-

1. <table name> is the name of the table within the DBMS with which the LQP
is associated, from which data is to be retrieved.

2. <list of columns> is a list of columns within the specified table from which
rows of data are to be retrieved.

3. <optional list of conditionals> is an optional list of mathematical and/or
logical conditionals. These conditionals specify the rows of data required
from the specified columns within the specified table. The conditionals
presently supported are: AND, OR, NOT, NULL, =, !=, >, <, >=, and <=.

Below are a few simple examples of ALQs:

EXAMPLE (1)
’ (s.employee (empname empnum phone))

This ALQ represents a request for all the rows of information from the
‘empname’, ‘empnum’, and ‘phone’ columns in the ‘s.employee’ table.

EXAMPLE (2)
' (s.employee (empname phone) (OR (= empname "namel")
(= empname "name2")))

This ALQ represents a request for the ‘empname’ and ‘phone’ informa-
tion where the ‘empname’ is either ‘namel’ or ‘name2’.

This ALQ provides an illustration of the use of conditionals. Note the
mandatory use of double quotes for strings to be compared with data
entries in the DBMS.

EXAMPLE (3)

' ("s.employee" ("empname" "empnum" "phone") (< "empnum" "500"))
This example illustrates that column and table names in ALQs may
alternatively be formatted as character strings using double quotes -

a task otherwise performed by the ’'Query Translator’ module in the
LQP~driver (discussed later).

At this point, the reader is referred to the LQP-object definition in the file
sqlds4381.1sp (Appendix A.1). Note the attributes defined in the LQP-object "sqlds-4381",
its instance "sloandb", message definitions for :SELF-INFO, :GET-TABLES, :GET-

-15-
COLUMNS and :GET-DATA, and the respective methods invoked by these messages,
:display-sqlds438i -self-info, :get-sqlds4381-tables, :get-sqlds4381-tables and :get-
sqlds4381- data.

It should be noted that the methods invoked by the messages make calls to the LQP-
driver modules. Thus, the important observation should be made that the LQP-object of an
LQP ‘controls’ its LQP-driver. The automated LQP-driver is referred to as the virtual LQP-

driver.

The following section describes the internal functioning of the LQP-driver.

2.2 THE LQP-DRIVER

The LQP-driver consists of 4 modules which are controlled by the LQP-object. These

modules are:
1. The Query Translator Module

2. The Communication Server Module
3. The Data Filter Module
4. The Result Reader Module

The function of these modules is described in the following sections (2.2.1-2.2.4). In
order to acquire a better understanding of the functions of each LQP-driver module, the
reader should follow the sample session of chapter 4 after the discussion of this chapter.

The process of impleménting new LQP-driver modules is studied in some depth in chapter

3.

Figure 2 - Internal Structure of LQP-driver and Module Functions - presents an

overview of the contents of this section (2.2).

-16-

GQP
ALQ Re§ult
LQP List
Query Result
Translator Reader
S
Quer
Hery File
y
Communication - D‘ata
Server Result Filter
File

DBMS Result
Query File

OBMS

AQP = Application Query Processor
GQP = Global Query Processor
LQP = Local Query Processor

Figure 2-1: Internal Structure of LQP-driver and Module Functions

-17-

2.2.1 The Query Translator Module

Each DBMS can only process a database query of a particular specified format. The
Query Translator performs the task of converting the ALQ received by the LQP (from the
GQP) to this format required by the DBMS to be queried. The query statement format
created by the Query Translator is referred to as the ‘DBMS Query’. Presently all
Relational DBMSs use very similar - if not identical - query formats under the ‘Structured
Query Language’ (SQL) convention. Thus if the SQL statement required by one RDBMS is
identical to that required by another, it is possible to use a single Query Translator for the

two separate LQPs representing different DBMSs.

SQL provides a ‘SELECT’ database query statement. Most DBMSs support a

*SELECT’ statement format that is identical or very similar to:

SELECT <columns> FROM <table> WHERE <conditionals>

1. <columns> is a list of column names, seperated by commas, within the table
from which rows of data are to be retrieved.

2. <table> is the table from which data is to be retrieved. A table consists of
several columns identified by column names, and rows of data within these
columns.

3. <conditionals> are qualifiers that specify which rows of data should be
retrieved from the specified columns within a table.

Recall, for illustrative purposes, the ALQs presented in section 2.1. The ALQs are to
be translated to SQL SELECT statements that are acceptable to the RDBMS with the LQP
is associated. Below are examples of Query Translator conversions of the ALQs presented

earlier, to their respective SQL SELECT statements for an ORACLE RDBMS:

-18-
EXAMPLE (1)
ALQ: ' (s.employee (empname empnum phone))
SQL: select empname, empnum, phone from s.employee
EXAMPLE (2)
ALQ: ' (s.employee (empname phone) (OR (= empname "namel")
(= empname "name2")))
SQL: select empname, phone from s.employee
where (empname = 'namel’) OR (empname = ’'name2)
EXAMPLE (3)
ALQ: ' ("s.employee" ("empname" "empnum" "phone") (> "empname" "500"))

SQL: select empname, empnum, phone from s.employee
where empname > ’'500'

Note: The ALQ and SQL formats need not be broken up into more than one
line as they are above.

The DBMS Query created by the Query Translator is sent to the DBMS to be

accessed by the Communication Server Module.

2.2.2 The Communication Server Module

The Communication Server module provides the required connectivity between the
local machine and the machine in which the DBMS resides. It may therefore be considered
the heart of the LQP-driver.

This module must first connect to the machine from which data is to be retrieved.
Then, it needs to access the DBMS on that machine and provide it with the DBMS Query
(SQL statement if an RDBMS) created by the Query Translator. Once the DBMS has been
queried, the query result - referred to as the ‘Result File’ - must be retrieved to the machine
on which the CIS/TK system awaits information. This concludes the crucial responsibilities
of the Communication Server, and the Result File is then passed to the Data Filter for

further processing.

The querying of a remote DBMS involves connecting to the machine on which the

-19-
DBMS resides. Then, the DBMS is to be accessed. Depending on how the system is set up,
this may or may ‘not involve logging into a user account on the remote machine, and
entering a particular directory from which the DBMS may be accessed. The DBMS Query
is then sent to the DBMS for processing. Thus, as a result of the idiosyncracies of the

systems involved in this process, the Communication Server’s task is not always trivial.

The sample session of chapter 4 shows the DBMS query result - the Result File -

retrieved by the Communication Server for the new LQP implemented in chapter 3.

2.2.3 The Data Fiiter

Often, the Result File contains irrelevent communication information - for example,
the name of the DBMS, markers at the end of a query result output. The Data Filter is

responsible for filtering this irrelevent information from the Result File.

The second, more important function of the Data Filter is to parse the Result File to a
standard ‘Table File’ format. The Table File is standardized to a predetermined format that
is acceptable to the Result Reader module. In order to identify the function of the Data
Filter, both the Result File and the standardized Table File should be compared for the

:GET-TABLES message in the sample session of chapter 4.

The standardized Table File is processed further by the Result Reader module.

2.2.4 The Result Reader

The Result Reader module performs the final LQP task of parsing (reformatting) the
Table File returned by the Data Filter to another standardized format - the ‘Result List’ -

required by the Global Query Processor.

The Result List format defined for the CIS/TK LQP implementation methodology

used in this paper is:

RESULT LIST FORMAT:

((column-namel column-name2 column-name3 column-nameN)
(datall datal2 datal3d datalN)
(data2l data22 data23 data2N)
(data3l data32 data33 data3N)
(dataMl dataM2 dataM3 dataMN))

The Result List is actually a LISP-readable list of lists to be sent by the LQP to the
GQP. The first list within the Result List is a list of the names of the columns from which
data was requested. The row of data forms a separate sublist, and each entry within a sublist
- column-namel, datal2, data23, etc. - is of a string format. Above, the Result List format
was exemplified for M rows of data within N specified columns. <dataXY> refers to the

data entry in the Xth row of the Yth column.

2.2.5 Summary

1. The functioning if the entire LQP has been presented in this chapter.
2. The LQP is devided into 2 parts, the LQP-object and the LQP-driver.

3. The LQP-object contains all the information required by the LQP-driver in
processing data, and controls the LQP-driver.

4. The LQP-driver is made up of 4 modules: The Query Translaotor, the
Communication Server, the Data Filter, and the Result Reader.

5. The Query Translator converts an Abstract Local Query (ALQ) from the
Global Query Processor (GQP) to a format acceptable for processing by the
DBMS to be queried. The Query Translator output format is known as the
DBMS Query.

6. The Communication Server connects to the DBMS to be queried, queries the
DBMS with the DBMS Query, and retrieves the query result as the Result
File.

21-

7. The Data Filter filters irrelevent information from the Result File and converts
it to a standardized format known as the Table File.

8. The Result Reader converts the Table File returned by the Data Filter to a
LISP-readable format that is acceptable to the GQP.

The reader should now be familiar enough with the structure of an LQP to understand
the specific task of adding the new SQL/DS RDBMS on the IBM 4381 mainframe, "sloan",
to the access field of the CIS/TK system. The process of defining this task and then

implementing the required LQP is discussed in the next chapter.

-22-

- Chapter 3

ADDITION OF AN LQP FOR THE SQL/DS RDBMS ON ‘SLOAN’

In chapter 1 the motivation for Composite Information Systems (CISs) was discussed
and the need for LQPs as the interface between remote DBMSs and the CIS/TK system was
identified. Chapter 2 presented an overview of the internal structure of an LQP, providing
the framework for the addition of a new DBMS to the access field of the CIS/TK system.
Specifically, an LQP is to be implemented as the interface between the CIS/TK system on
The AT&T machine, "mit2e", and the IBM SQL/DS RDBMS on "sloan".

Section 3.1 defines the problem of implementing the new LQP. In section 3.2, the
procedure followed in the implementation of the new LQP is outlined. Generic guidelines

for LQP implementation are provided where appropriate.

3.1 LQP PROBLEM DEFINITION

As discussed in chapter 2, the following modules are required in an LQP:
1. The LQP-object

2. The LQP-driver Query Translator Module

3. The LQP-driver Communication Server Module

4. The LQP-driver Data Filter Module

5. The LQP-driver Result Reader Module

Recall that the LQP-object contains all the attributes (information) required to enable

the LQP-driver to function as a virtual driver. Thus, it is logical that the conceptualization
of the LQP-driver should preceed the definition of the LQP-object. Following this logic, the
LQP-driver modules are visited first. Once the LQP-driver modules have been

conceptualized, the LQP-object may be implemented concurrently with the LQP-driver.

-23-

3.1.1 The Query Translator: Problem Definition

The Query Translator must convert the ALQ to the SQL SELECT statement required
by the SQL/DS RDBMS. The SQL format required by the SQL/DS RDBMS is identical to
that required by the ORACLE RDBMS discussed in section (2.2.1). A Query Translator
that converts an ALQ to the format required by an ORACLE RDBMS (and therefore the
SQL/DS RDBMS) already exists. This Query Translator was implemented by Alec
R. Champlin in his implementation of the first CIS/TK prototype LQPs. The existent Query
Translator may thus be used (shared) by the new LQP for the SQL/DS RDBMS, and this

problem is thus voided.

In this case a Query Translator that could perform the task of creating the
appropriately formatted SQL statement for the new LQP already existed. This may not be
true in general, in which case the implementor of a new LQP must implement a new Query
Translator. If an RDBMS’s format does not differ from the SQL/DS or ORACLE RDBMS
formats by a great deal, it may be possible to use the existing Query Translator as the new

Query Translator simply by making minor modifications to its program code.

The reader is referred to the LISP file, sql.lsp (Appendix A.2), representing the
Query Translator used in the LQP for the SQL/DS RDBMS. The reader intending to
implement a new LQP with an SQL format differing from the SQL/DS or ORACLE
RDBMS SQL formats is urged to study the program code thoroughly. It is posiible that
simple modifications will allow a new LQP to share the Query Translator code in sql.lsp

with the existent LQPs.

Tasks For Query Translator Implementation

1. Check if any modifications are required to share the existing Query Translator
module with the new LQP.

-24-

3.1.2 The Communication Server: Problem Definition

The Communication Server is, as stated earlier, the heart of the LQP. The
Communication Server for the SQL/DS RDBMS LQP must provide the DBMS Query
(SQL statement) created by the Query Translator to the SQL/DS DBMS on the IBM 4381
mainframe, "sloan". This process entails connecting to the IBM machine "sloan", accessing
the SQL/DS RDBMS, and querying the RDBMS with the SELECT SQL statement. In
addition, the Communication Server must efficiently retrieve the query result - Result File -
retumed by the SQL/DS RDBMS to the "mit2e", so that it may be processed further by the
LQP.

Considering first the problem of querying the remote SQL/DS RDBMS: It is found
that a UNIX script file (containing the required commands) may be used to access the
VM/IS operating on the remote machine "sloan", thereby establishing the connection
between the two machines. Presently, the machine "sloan" may be accessed by using either
the telnet facility, or the cu (call up) facility provided by UNIX on the "mit2e". It is found
that the telnet facility takes sub-second times to establish connection between the "mit2e"
and "sloan", whereas the cu facility takes approximately 35 seconds, and has a success rate
of only about 75 percent. Therefore the telnet facility is chosen for this implementation.
Further tinkering with the systems reveals that once connection has been established
between the two machines, (a robust method of accessing the SQL/DS RDBMS is by first
logging into a user account on "sloan", and then using the virtual CMS operating system’s
EXECutive commands to directly access the RDBMS. Specifically the Sloan Information

System database, "slinfo", is to be queried using this procedure.

Assuming for now that such a script file can be implemented to access the SQL/DS’s
"slinfo" database, the next problem is to retrieve the query result from "sloan" to the

"mit2e". It is found that a second script file may be used to perform this task.

-25-

A reasonable methodology in the implementation of the required script files
discussed above, i; to first enter the commands to be embedded in the script files manually
(on a keyboard) from the "mit2e". Once the required commands have been identified, the
script files may be created. The information required by the Communication Server script
files as arguments may then be defined as attributes in the LQP-object. The Communication
Server can then be automated by providing the script files, along with their required
arguments, to the UNIX operating system on "mit2e" using KOREL’s message-passing
facility. This entails the creation of a Communications Server template that is controlled by
the LQP-object and may then be used to control the script files being used to query the
RDBMS and retrieve the query result.

A template file for the Communication Server automation has already been
implemented by Alec R. Champlin, simplifying the task of implementing the new
Communication Server for the SQL/DS RDBMS LQP. This file, connect.lsp is found in

Appendix A, and the reader is urged to study it closely.

Tasks For Communication Server Implementation

1. Identify the sequence of commands to be automatically supplied by the
Communication Server to the remote SQL/DS RDBMS on "sloan". These
commands must perform the functions of accessing the SQL/DS RDBMS,
querying the "slinfo" database with the DBMS Query, and retrieving the
Result File to the local machine, "mit2e".

2. Implement the script file that accesses the remote SQL/DS RDBMS on
"sloan" and queries the resident database "slinfo".

3. Implement the script file that is to retrieve the query result from "sloan” to the
"mit2e" as the Result File.

4. Check if any modifications are required to share the existing Communication
Server template with the new LQP.

Note that the possibility of combining the two script files required here into a single

script file should be explored.

-26-

3.1.3 The Data Filter: Problem Definition

The Data Filter performs the tasks of filtering irrelevent Communications messages,
and parsing the Result File into a standardized Table File format which is readable by the
Result Reader.

This module may be implemented by writing a ‘C’ program that performs both the
required filtering and parsing functions. The functionality required of the C program is
dependent on two factors: (1) The method used by the Communication Server in accessing
the RDBMS and retrieving the Result File - Communications messages are dependent on
the sequence of commands used in data retrieval. (2) The format of the query result output
from the RDBMS - RDBMS output formats vary. The parsing functionality required
depends on the format returned by the SQL/DS RDBMS.

The standard Table File format is found in the sample session of chapter 4. The
reader intending to implement a new LQP using the scheme outlined in this paper should
study this format as a means of identifying the parsing requirements of his/her Data Filter.
Note that C has been chosen to implement the Data Filter by virtue of its speed, and

suitability for implementation of filtering and parsing functions.

Tasks For Data Filter Implementation

1. Write a ‘C’ program to convert the Result File returned by the
Communication Server to the standard Table File format that is readable by
the Result Reader.

3.1.4 The Result Reader: Problem Definition

The Result Reader, like the Data Filter, performs a parsing function. It converts the
standard Table File to a standard Result List that is LISP-readable by the Global Query
Processor (GQP).

The Result Reader too has already been implemented by Alec R. Champlin, and
performs the required task of converting the Table File to a Result List. Thus, this task is

rendered void under the present implementation scheme.

227-

The reader is referred once again to the sample session of chapter 4 as a means of
identifying the parsing function performed by the Result Reader. The formats of both the
Table File and Result List should be studied closely. The Result Reader implemented by
Alec R. Champlin in the LISP file read.lIsp (Appendix A.4), uses a C program - namely
preREAD.c (Appendix B.2) - to aid in its task of reformatting the Table File. If the reader
intending to implement a new is confident that his/her new Data Filter can return a Table
File of the specified format, then he/she can be assured that the existent Result Reader can
be shared by his/her new LQP. This is true because the Result Reader has standardized

formats both as its input and as its output.

Tasks For Result Reader Implementation

1. Check if any modifications are required to share the existing Result Reader
Module with the new LQP.

3.1.5 The LQP-object: Problem Definition

The LQP-driver having been conceptualized, it is now easy to identify the specific
requirements of the LQP-object. The LQP-object must control the four LQP-driver

modules, thereby creating a virtual LQP-driver.

The LQP-object for the SQL/DS RDBMS must contain as attributes all the
information required by the LQP-driver in accessing the SQL/DS RDBMS on "sloan",
querying its "slinfo" database, retrieving data to the local "mit2e" machine, and processing
data to the final Result List format required by the GQP. In addition, the LQP-object must
contain the four ‘methods’ discussed in section (2.1) that will control the LQP-driver
modules in performing the required task of retrieving the requested data from "slinfo" on

"sloan".

The reader is now advised to study closely the LQP-object in file sqlds4381.Isp
(Appendix A.1). The LQP-object definition, along with the sample session of chapter 4, is

helpful to the understanding of the LQP-object, and the inheritance of attributes of a

-28-

‘superior’ object by its ‘inferior’ instance. The reader will notice that the LQP-object has
been named "sql(is—4381" and contains all the information required by the LQP-driver
modules as attributes. In addition, the four methods alluded to above are also defined in
"sqlds-4381". The "sloandb" instance is created for the "sqlds-4381" LQP-object, and it
inherits all the attributes and methods defined for "sqlds-4381". The instance of an object
can have its own unique attributes and methods in addition to those inherited from its
superior object. Further, an examination of the procedures invoked by the messages (having
the same names as the methods) sent to the LQP-object will reveal exactly how the LQP-

object controls the LQP-driver.

Tasks For LQP-object Implementation

1. Define the LQP-object, with required attributes and methods. The LQP object
must contain all the required attributes required by the LQP-driver modules,
as well as the methods that may invoke defined procedures by the appropriate
messages to the LQP-object.

2. Define procedures (whose names are defined in the methods) that are invoked
by the methods when the appropriate message is passed to the LQP-object.

This concludes an identification of the LQP implementation tasks at hand for the
addition of the SQL/DS RDBMS to the access-field of the CIS/TK system. The next section

discusses the actual implementation procedure followed.

3.2 LQP IMPLEMENTATION

In this section, the procedure followed in the implementation of the LQP for the
SQL/DS RDBMS is outlined. Where appropriate, the idiosyncracies encountered during
implementation are identified, providing the reader with a realistic view of LQP
implementation. A step-by-step account of the actual implementation methodology used by
the author follows. Once again, the implementation of LQP-driver modules preceeds the

LQP-object implementation.

The implementation tasks identified for the LQP modules are considered one at a

time in sections (3.2.1- 3.2.5).

-29.

3.2.1 The Query Translator: Implementation

Query Translator File(s):
(1)sqllsp (Appendix A2)

TASK 1: Check the existing Query Translator file

The existing Query Translator module - file sql.Isp (Appendix A.2) - was to be tested
in order to determine whether any modifications were necessary to use it as the new Query

Translator for the SQL/DS RDBMS LQP.

The form-SQL LISP procedure defined in sql.Isp takes an Abstract Local Query
(ALQ) as its argument. It uses the parse-SQL-tname, parse-SQL-colmn and
parse-SQL-conds procedures respectively, to parse the table name, column list, and
conditionals list of the ALQ, and to create the SQL statement format required by SQL/DS.
These four procedures were tested thoroughly with appropriate arguments, and it was
determined that they flawlessly performed the task of converting the ALQ to the required
SQL/DS SQL SELECT statement.

The file sql.Isp, implemented by Alec R. Champlin, was thus used unmodified as the
Query Translator for the new LQP.

3.2.2 The Communication Server: Implementation

Communication Server File(s):
(1) connect.lsp (Appendix A3)
(2)4381FILE (Appendix C.1)
(3) 4381FTP (Appendix C 2)
(4) 4381SEL (Appendix D 1)

TASK 1: Identify all required data retrieval commands

This was found to be the sequence of commands required to access the SQL/DS
RDBMS on "sloan", query the "slinfo" database, and retrieve the query result to the local

machine, "mit2e":

1. Connect to the remote machine "sloan" by providing the command telnet

-30-

sloan. This command is provided form the UNIX operating system on the
"mit2e". Recall that the telnet facility was chosen over the cu facility, as
discussed in the problem definition of section (3.1.2)

2. Provide a logon <user-account> command to the VM/IS operating system on
"sloan". <user-account> is the name of a user account on "sloan".

3. Similarly, provide the user’s <password> at the password prompt.

4.Run the virtual CMS system on "sloan’s" VM/IS operating system by
providing the command ipl cms.

5.Create a line mode I/O (input/output) environment by providing the
ac(noprof and sysprof3 commands to CMS. Typically, IBM machines use a
full-screen (block) mode I/O environment. However, the UNIX operating
system on the local AT&T 3B2 machine, "mit2e", is designed to handle
streams of data (line mode) as opposed to blocks of data (full-screen mode).
Specifically, the ac(noprof command accesses the hard disk when the user
account has been accessed, but disallows the running of the ‘profile’ EXEC
program which sets the terminal environment. It was found that the
environment that ‘profile’ sets is not appropriate for line mode I/O. The
sysprof3 command also sets environmental variables. Although this
command is not necessary, it is useful to ensure that the user (in this case the
virtual LQP-driver) is provided with all the ‘standard’ operating system
capabilities.

6. Initialize the SQL/DS database "slinfo" to be queried with the command
dbinit slinfo.

7. Provide the RXCASE String executive (EXEC) command to the virtual CMS
operating system to prepare it for a subsequent executive command with an
argument of the ‘string’ format. The RXSELECT executive command, in 8
below, takes an SQL statement of string format as its argument.

8. Query the database "slinfo" directly with the RXSELECT <SQL/DS SQL
statement> command. The RXSELECT EXEC takes the SQL statement to be
passed to the SQL/DS RDBMS as its argument. The SQL statement is of a
‘string’ format, and the RXCASE EXEC was therefore required above. The
RXSELECT provides a direct interface between the VM/CMS operating
system and the SQL/DS RDBMS on "sloan". It is therefore preferred over
alternative methods of querying the "slinfo" database. Alternative methods of
database access include the SQL interactive program, and the QMF (Query
Management Facility) interactive program.

9. Save the query result in a temporary file on the remote machine "sloan" with
the command ffile <remote temporary file>. The name chosen for the
remote temporary file is "4381lqp temp". Thus the command ffile 4381iqp
temp was issued. Note that this working directory requires a write password
for the storage of the query result in a temporary file. If a write password is
not provided, an error message will be returned, and the query result will not
be saved in the temporary file.

231-
10. Logout of the remote "sloan" machine with the logoff command.

The above commands have succeeded in accessing the remote "slinfo" database,
querying it, and retrieving data to a remote file on "sloan". In general, UNIX’s piping
feature enables the piping of the output of a session (such as the one discussed above) to a
file on the local machine. However, in this case, the communication level disparities
between the AT&T 3B2 and the IBM 4381 machines caused data losses as well as
inconsistent formats of retrived data. Specifically, it was found that rows of data were lost
in the pipe, or often rows were not seperated by newline characters causing inconsistencies
in the data format. Thus a scheme other than a UNIX pipe was considered as an alternative

in this process.

It was found that using the ftp file transfer protocol was a very robust way of
retrieving the data from the remote machine "sloan" to the local "mit2e". This scheme was
therefore used as an alterative to the UNIX pipe discussed above, despite the disadvantage

of having to use intermediary temporary storage files.

Below is the sequence of additional commands required to retrieve the remote

"4381lqp temp" file on "sloan" to the local "mit2e" machine:

1. First, invoke the file transfer protocol facility by providing the ftp -n
command from the UNIX operating system. This starts up the ftp program,
enabling file transfers between the "mit2e" and "sloan". The -n (no prompt)
option was necessary in this case. The default ‘prompt’ mode being
interactive, it assumes that the <user-account> and <password> (see 3 below)
are being typed in by a human user at a keyboard, and therefore it does not
support scripted inputs. Thus, the ‘no prompt’ mode is used.

2. Provide the open sloan command to establish ftp connectivity to the remote
machine, "sloan".

3. Access the user account containing the temporary data file 4381lgp temp by
providing the command user <user-account> <password> to the ftp
program. <user-account> and <password> here are the same as in 2 and 3
above.

4. Provide a working directory for the file transfer with the c¢d <user-account>

-32-

191. Once again <user-account> is the same account on which the remote
query result file had been stored. Note that this working directory needs to be
provided with a read password. Also, this is the same working directory as the
one provided with a write password in 9 above.

5. Provide the read password for the working directory on the user’s account
with the quote acct <working directory password>. Although the read
password may differ from the write password, having the same password for
both read and write requires less information (one password instead of two) to
be carried as attributes in the LQP-object.

6. Now transfer the remote temporary file with the command get 43811qp.temp
<local temporary file> to ftp. This copies the remote temporary file to a local
temporary file <local temporary file>.

7. The task of retrieving the data to the local machine is now complete. Thus, the
remote temporary file 43811qp temp may now be deleted with the command
delete 4381iqp temp to ftp.

8. Quit the ftp program with the quit command.
This completes an identification of the sequence of commands required to query and
retrieve data from the remote "slinfo" database on "sloan". Two script files are required to
automate these commands - one for the first group of 10 commands (telnet commands), and

one for the second group of 8 commands (ftp commands). The ftp commands are required

since piping can not be used in this case.

Figure 3 - Communication Server Data Retrieval - provides a clearer picture of how
the two script files, 4381FILE and 4381FTP respectively, are used. The first script file,
4381FILE, is responsible for connecting to "sloan”, querying the "slinfo" database in the
SQL/DS RDBMS, and storing the query result (Result File) in the temporary file, 4381lqp,
on the remote machine. The second script file, 4381FTP, then uses the ftp file transfer

protocol to retrieve the Result File to the local machine to be passed to the Data Filter.
TASK 2: Implement a script file to query "slinfo" on "sloan"

The script file 4381FILE (Appendix C.1) automates the process of accessing the
"slinfo" database on the SQL/DS RDBMS, querying the database, and storing the query
result in a remote temporary file on a user account on "sloan". Thus, the first group of 10

telnet commands is automated by 4381FILE.

33-

DBMS Query
(From Query Translator)

438 1FILE 438 1FTP

Result File
-
(To Data Filter)
"mit2e”
DBMS Query Result File
"sloan”
SQL/DS RDBMS)
438 11qgp
Result File
. =
"slinfo"
database

temporary file

J

Figure 3-1: Communication Server Data Retrieval

-34-

It is important to note that a modified version of the RXSELECT executive program
was used instead of the original version. This new version is named the 4381SEL executive
program and may be found in Appendix D.1. The original version of RXSELECT truncated
data of more than 254 characters on a single line, and retured blocks of a maximum of 100
rows at a time. The modification to this program increased truncation length to 508
characters, and increased the maximum number of rows returned at one time to 10,000.
This was very useful in automating the data retrieval process, since if the original
RXSELECT was used, after every 100 rows of data were returned as a block, a MORE
command would have to be issued to the SQL/DS RDBMS in order to return the next 100
rows of the query result. This process would be very inefficient since only 100 rows of data

could be retrieved at a time.

Unlike RXSELECT, the 4381SEL executive program allows the query result to be
returned all at once as a block of no more than 10,000 rows. This is far more efficicient, in
terms of data retrieval speed, than issuing MORE commands between every 100 rows of
data. The modified 4381SEL is otherwise identical in performance to the RXSELECT

executive command.

An additional point to be noted about 4381SEL is that data will be lost for query
results of more than 508 characters on one row, and/or containing more than 10,000 rows of
data. These limits can be easily modified by changing the values for the maxlength and

maxins variables, which are presently set to 508 and 10,000 respectively.
TASK 3: Implement a script file to retrieve data to "mit2e"

Recall that this additional script file is required because UNIX’s piping feature can
not be used in this case. The script file 4381FTP (Appendix C.2) uses the ftp file transfer
protocol to automate the process of retrieving the remote temporary file holding the query

result to the local "mit2e".

-35-
Although data is retrieved in a robust manner using this ftp script file, the data
retrieval process suffers an overhead of 15 seconds due to the sleep commands in the script

- a great disadvantage as compared with the piping scheme in terms of speed.
TASK 4: Check the existing Communication Server template file

The Communication Server template, connect.lsp (Appendix A.3), controls the script
files 4381FILE and 4381FTP. All the control information required by the Communication
Server template - file directories, remote machine name, database name, etc. - are stored as

attributes in the LQP-object.

Minor modifications were made to connect.Isp to accomodate the new LQP. The
new "SQL/DS" database type identifier was included, and the SQL/DS RDBMS invoker

was set to "dbinit".

This concludes the implementation of the Communication Server. It should now be
apparent, from the function performed by this module, why it is was called the heart of the

LQP-driver.

3.2.3 The Data Filter: Implementation

Data Filter File(s):
(1) filt4381.c (Appendix B.1)

TASK 1: Write a ’C’ Program to convert the Result File to the Table File

The reader is réferred to the Result File and standard Table File formats for the

:GET-TABLES message in the sample session (chapter 4).

A C program was written to perform the task of converting the Result File to the
Table File. This program, filt4381.c is found in Appendix B.1. This C program representing
the Data Filter module is controlled by the LQP-object (as are the other LQP-driver

modules.

-36-

3.2.4 The Result Reader: Implementation

Result Reader File(s):
(1) read.lsp (Appendix A4)
(2) preREAD.c (Appendix B.2)
The Result Reader defined by Alec R. Champlin performs the task of parsing the
Table File to the required LISP-readable Result List format. These two formats are, once

again, exemplified in the sample session of chapter 4.

The Result Reader uses the 'C’ program preREAD.c (Appendix B.2) - also
implemented by Alec R. Champlin - to aid in its task of creating the Result List from the

Table File.
TASK 1: Check the existing Result Reader file

On checking whether the existing Result Reader could be shared with the new LQP
for the SQL/DS RDBMS, it was found that a minor modification was needed:

The original Result Reader assumed that the standardized Table File was not to be
stored in a temporary file, but rather was passed to it intemally by LISP from the Data Filter
application. The data retrieval methodology used in the new LQP requires the Result
Reader to access the Table File from a temporary file in the ‘communication server

directory’ (refer to the LQP-object).

The Result Reader is thus modified to accomodate this new methodology. A
conditional statement has been added to the LISP file read.lsp (Appendix A .4) to determine
whether the LQP making the call to it is the new one being implemented here, or one of the
older LQPs. It accepts data from a temporary file in the event that the new LQP makes a
call to it, and uses the old methodology for the old LQPs. The modified version of the
Result Reader may thus be shared among the LQPs implemented by Alec Champlin and the

new LQP implemented here.

-37-

3.2.5 The LQP-object: Implementation

LQP-oI;ject File(s):
(1) sqlds4381.1sp (Appendix A.1)
The definition of the LQP-object will complete the implementation of the new LQP
for the SQL/DS RDBMS on the remote IBM 4381 mainframe "sloan". The LQP-object is
defined using KOREL (Knowledge-Object REpresentation Language) developed by

Samuel P. Levine.
TASK 1: Define the LQP-object

The LQP-object for the SQL/DS RDBMS on "sloan” is defined using KOREL’s
make-object function and is named "sqlds-4381". An instance, appropriately called
"sloandb" since the database to be accessed is on "sloan", is defined for the "sqlds-4381"

object using the create-instance function.

Since the "sloandb" instance inherits all the attributes of "sqlds-4381", messages for
the LQP may now be sent to either "sqlds-4381" or altematively to "sloandb". Refer to the
attributes defined for "sqlds-4381" in the LQP-object file sqlds4381.Isp (Appendix A.1).
The reader will find that all the information required by the LQP-driver modules is stored in
these attributes. These attribute - machine-name, type-of-DBMS, etc. - should be studied in

order to understand where and how they are utilized by the LQP-driver.

Also included in the LQP-object definition are the :SELF-INFO, :GET-TABLES,
:GET-COLUMNS, and :GET-DATA messages. When these methods are sent to the LQP as
messages, they invoke the procedures display-sqlds4381-self-info, get-sqlds4381-tables,
get-sqlds4381-columns, and get-sqlds4381-data respectively.

TASK 2: Define the procedures invoked by the LQP messages

The procedures display-sqlds4381-self-info, get-sqlds4381-tables, get-sqlds4381-
columns, and get-sqlds4381-data are also defined in the file sqlds4381.Isp. These are the

-38-
procedures that control, and thereby automate, the four LQP-driver modules. These
procedures should be studied closely in conjunction with the LQP-driver modules that they

control.

This completes the implementation of the new LQP for the SQL/DS RDBMS on MIT
Sloan School’s IBM 4381 mainframe, "sloan". The LQP-driver is now ‘virtualized’,
(automated) and the GQP of the CIS/TK system on "mit2e" may now send data retrieval

messages to the LQP-object.

In the next chapter, a sample session of the working LQP is presented. The
processing of data from module to module is clearly illustrated for the four messages that

the LQP accepts.

-39.

. Chapter 4

SAMPLE SESSION

This chapter provides a sample session of the working LQP implemented in the

previous chapter.

In section (4.1), KOREL’s print-frame function is used to view the LQP-object
"sqlds-4381" and its instance "sloandb". Sections (4.2)-(4.5) describe the working of the
LQP in processing the 4 messages :SELF-INFO, :GET-TABLES, :GET-COLUMNS, and
:GET-DATA. User input is presented in bold typeface, and comments regarding the LQP

screen output are presented in text font.
First, the file demo-gg.Isp (Appendix A.5) is loaded on the IBCL system.

>(load "/usr/cistk/biggie/ibm4381/demo-gg.Isp")

Loading /usr/cistk/biggie/ibm4381/frames.lsp

Finished loading /usr/cistk/biggie/ibm4381/frames.lsp
Loading /usr/cistk/biggie/ibm4381/korel.lsp

Finished loading /usr/cistk/biggie/ibmd381/korel.lsp
Loading /usr/cistk/biggie/ibm4381/sql.lsp

Finished loading /usr/cistk/biggie/ibm4381/sql.lsp
Loading /usr/cistk/biggie/ibm4381/connect.lsp

Finished loading /usr/cistk/biggie/ibm4381/connect.lsp
Loading /usr/cistk/biggie/ibm4381/read.lsp

Finished loading /usr/cistk/biggie/ibmd4381/read.lsp
Loading /usr/cistk/biggie/ibmd381/informix2a.lsp
Finished loading /usr/cistk/biggie/ibmd4381/informix2a.lsp
Loading /usr/cistk/biggie/ibmd381/informix2c.lsp
Finished loading /usr/cistk/biggie/ibmd4381/informix2c.lsp
Loading /usr/cistk/biggie/ibm4381/oracle-xt.lsp

Finished loading /usr/cistk/biggie/ibm4381/oracle-rt.lsp
Loading /usr/cistk/biggie/ibm4381/sqlds4381.1sp

Finished loading /usr/cistk/biggie/ibm4381/sqlds4381.1sp

What level of messages do you want printed?
-=> Quiet, Terse, Normal, or Verbose? verbose

OK...If you change your mind, use 'LQP-MODE’. As in (lgp-mode ’'quiet)
Finished loading demo-gg.lsp
T

-40-
The VERBOSE message level is selected from the 4 possible options - QUIET,
TERSE, NORMAL and VERBOSE - for maximum screen display.

4.1 The LQP-object and its Instance

>(print-frame ’sqlds-4381)

SQLDS-4381:

MACHINE-NAME :

(VALUE sloan)
TYPE-OF-DBMS :

(VALUE sqlds)
LOCAL-DBMS?:

(VALUE NIL)
DATABASE:

(DEFAULT slinfo)
DATABASE-DIRECTORY:

(DEFAULT slinfo)
COMM—-SERVER-DIRECTORY:

(DEFAULT /usr/cistk/biggie/ibm4381)
COMMUNICATIONS-~-SCRIPT:

(VALUE 4381FILE)
EFFICIENT-COMM~-SCRIPT:

(VALUE 4381FILE)
FTP-SCRIPT:

(VALUE 4381rTP)
TEMPORARY-FILE:

(VALUE connectl.tmp)
ACCOUNT:

(DEFAULT ggidwani)
PASSWORD :

(DEFAULT mohina)
METHODS :

(MULTIPLE-VALUE-F T)

(VALUE (SELF-INFO DISPLAY-SQLDS4381-SELF-INFO)
(GET-TABLES GET-SQLDS4381-TABLES)
(GET-COLUMNS GET-SQLDS4381-COLUMNS)
(GET-DATA GET-SQLDS4381-DATA))

INSTANCES:

(MULTIPLE-VALUE-F T)

(VALUE SLOANDB)

The LQP-object "sqlds-4381" contains the required attributes and methods.

-41-

>(print-frame ’sloandb)

SLOANDB:
SUPERIORS:
(MULTIPLE-VALUE-F T)
(VALUE SQLDS-4381)
INSTANCE-Or:
(MULTIPLE-VALUE-F T)
(VALUE SQLDS-4381)

The "sloandb" instance inherits the attributes and methods of "sqlds-4381". Thus

sending messages to "sloandb" is equivalent to sending them to "sqlds-4381".

4.2 The :SELF-INFO Message

>(send-message ’sqlds-4381 :self-info)

The :SELF-INFO message is sent to the "sqlds-4381" object.

SQL /DS ON SLOAN

The SQL/DS Relational Database Management System is a computer program
that manages pieces of information (data) stored in a computer. The data
is contained in tables made up of vertical columns and horizontal rows.
The SQL/DS database uses the SQL query language which is common among
many of today’s RDBMS systems.

The :SELF-INFO message invokes the display-sqlds4381-self-info procedure which
takes no arguments. display-sqlds4381-self-info simply displays the text defined within its

definition. No LQP-driver modules are used here.

-42-

4.3 The :GET-TABLES Message

>(send-message ’sloandb :get-tables)

The :GET-TABLES message is sent to the "sloandb" instance of "sqlds-4381".

TABLES takes no arguments.

DBMS Query to be sent to machine sloan....

SELECT TNAME, CREATOR, DBSPACENAME, NCOLS FROM SYSTEM.SYSCATALOG
ORDER BY TNAME, CREATOR

Fetching SQL/DS Table Data Requested....
Connecting to slinfo on machine sloan...
Done.

Transporting Result File to local machine....
Result File Retrieved.

:GET-

The :GET-TABLES message does not use the Query Translator, but rather provides

an SQL statement (hard-coded within the procedure), requesting table information, to the

Communication Server as the DBMS Query. This is the same scheme used by the older

LQPs for the INFORMIX and ORACLE RDBMSs implemented by Alec R. Champlin.

The Communication Server has connected to "sloan", accessed the "slinfo" database,

queried it with the SQL statement for table information provided by get-sqlds4381-tables,

and retrieved the Result File to the local machine "mit2e". The Result File contains data in

the same format as on the remote machine "sloan". Notice that communication messages -

the SQL SELECT statement and the ‘end marker’ - are also retrieved in this file. A list of

all the tables on the "slinfo" database has been returned:

select tname, creator, dbspacename, ncols from system.syscatalog order by

tname, creator

TNAME CREATOR DBSPACENAME NCOLS
ACCOUNTS EMILY PRODUCTION 8
ACTIVITY] 4

ACTIVITY SIS_1 SIS1_ACTIVITY 4

ACTLEVEL
ACTLEVEL
ACTTERM
ACTTERM
ACTTYPE
ACTTYPE
ACTWGT
ALLOC
APPEDUC
APPLICANT
APPLICATION
APPRDR
APPRDRCOM
AUTH_LIST
BURDRPT
BURDTYPE
COLUMN_LIST

COMMAND_SYNONYMS

CONCAREA
COST_TABLE
COUNTRY
COUNTRY
COUNTRY_0
DBDTPNL1
DBDTPNL2
DEPT
DEPTENR
DEPTENR_DETAIL
D42
EMPBURD
EMPHIST
EMPHIST
EMPLOYEE
EMPLOYEE
ENRCAT_GR
ENRCAT_UG
ENRPT
ENRPT
ENRSIZE
ENRSIZE
ENRWGT
ERROR_LOG
FLOAD
FLOAD
FORM_LIST
GR_SUBJ
HJ_ENR_DETAIL
D8
IDS_DETAIL
IDS2
INVENTORY
MAJOR
MAJOR_0
MAP_STYPE
MAPSUBJ_GR

8
sI1s_1

s

sI1S_1

s

s1s_1
s1s
ITZKOWIT
PHD

Q

PHD

PHD

PHD

Q

s1s

s1s

Q

Q
PHD

AMOULTON
PHD

s1s

s1s

DBE

DBE
EMILY
HJACOBY
HJACOBY
DBE

s1s

s

SIS 1

s

s1s_1
HJACOBY
HJACOBY
s

s1s_1

s

SIS 1
s1s

Q

s

SIS _1

Q
HJIACOBY
AMOULTON
HJACOBY
HIACOBY
HJACOBY
SQLDBA
s1s

s1s
HIACOBY
HJACOBY

-43.

SIS1_MISC
SIS1_ACTTERM

SIS1_MISC
MISCELLANEOUS
ALLOC_TEST
PHD_APPEDUC
DSQ2STBT

PHD_APPLICATION

PHD_APPRDR
PHD_APPRDRCOM

SIS_BURDRPT
PRODUCTION

DSQTSSYN
PHD_MISC
EXPLAIN_TABS
PHD_COUNTRY

SIS_COUNTRY
DBEDBOO
DBEDBOO
PRODUCTION
DEPTENR
DEPTENR_DETAIL

SIS_EMPBURD
SIS1_EMPHIST

SIS1_EMPLOYEE
ENRCAT_GR
ENRCAT_UG

SIS1_ENRPT

SIS1_MISC
MISCELLANEOUS
DSQTSLOG

SIS1_FLOAD

JACOBY
JACOBY
JACOBY
JACOBY
DSQTSDEF
SAMPLE

SIS_STUDMISC
JACOBY
JACOBY

N

o
AR RPN AWLNIWAULNNNWNAOGNOHROM VMUV WWUO & &

N =

- e

e
WWNNWEEEIHAODOUAWWOAO®N

MAPSUBJ_UG
MERGE
MITCOURSE
MITCOURSE
MITDEPT
MITDEPT
OBJECT_DATA
OBJECT_DIRECTORY
OBJECT_REMARKS
OFFERING
OFFERING
ORDERS

ORG

ORG
PLAN_TABLE
PLAYTBL3
POSITION
POSITION
POSTYPE
POSTYPE
PRIME1

PRIME2

PRIME4

PRIMES

PRIMEG6

PRIME?
PROC_LIST
PRODUCTS
PROFILES

PROG

PROG

PROGTYPE
PROGTYPE
PSETEACH
PSETEACH
PSEWGT
QMF_PFKEYS
QMFTABLE_LIST
QUERY_LIST
QUOTATIONS
REFERENCE_TABLE
REFLIST
REGISTRATION
REGISTRATION
RESOURCE_TABLE
RESOURCE_VIEW
ROUTINE
ROUTINE
ROUTINE

SALES
SAVE_MAP_STYPE
SCHOOLS
SCHOOLS_0
SECTEACH
SECTEACH

HIACOBY
ITZKOWIT
s

s1s 1

s

s1s_1

Q

Q

Q
L

s1s_1
SQLDBA
DBE

Q
AMOULTON
DBE

s
sIs_1
s
s1s_1
s1s
s1s
s18
8IS
s18
s1s

s1s_1
Q

Q
EXAMPLE
SLINFO
SQLDBA
Q
HJACOBY
s1s

s1s

s

s1s_1

JACOBY

SIS1_MISC

SIS1_MISC
DSQTSCT3
DSQTSCT1
DSQTSCT2

8IS1_OFrERING

DBEDBOO
DSQ2STBT
EXPLAIN_TABS
DBEDBO0

SIS1_MISC

SIS1_MISC

PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION

DSQ2STBT
DSQTSPRO

SIS1_MISC
SIS1_MISC

SIS1_PSETEACH
MISCELLANEOUS
PROFILE

SAMPLE
EXPLAIN TABS
DBEDBOO

SIS1_REGISTRATION
DSQTSGOV

ISQL
ISQL
ISQL
DSQ2STBT
DSQTSDEF

SIS_SCHOOLS

SIS1_SECTEACH

[

ARAWWWOEaELEWLHULVLODOVWOEOMULUULAAEWWWWREEELAEAEBNNMNNMNAAWWARMAMANUVLUAOIOGAAMANAORBNDMDDMDMWW AW

-45.

SECTION s1s PRODUCTION 10
SSMAREA 8 4
SSMAREA T os1s 1 SIS1_MISC 4
SSMGROUP s 3
SSMGROUP SIS_1 SISl MISC 3
STAFY DBE DBEDBO0 7
STAFY Q DSQ2STBT 7
STORED QUERIES SQLDBA ISQL 3
STRUCTURE_TABLE AMOULTON EXPLAIN TABS 6
STUDADD s1s 11
STUDADD_0 s1s S1S_STUDADD 11
STUDEDUC s1s 5
STUDEDUC_0 s1s SIS_STUDEDUC 5
STUDENT s1s 14
STUDENT_0 s1s SIS_STUDENT 14
STUDP s1s PRODUCTION 16
SUBEVAL s 14
SUBEVAL SIS 1 SISl_SUBEVAL 14
SUBJECT s 16
SUBJECT SIS 1 SIS1_SUBJECT 16
SUPPLIERS SQLDBA SAMPLE 3
SYSACCESS SYSTEM SYS0001 9
SYSCATALOG SYSTEM SYS0001 19
SYSCHARSETS SYSTEM S¥YS0001 3
SYSCOLAUTH SYSTEM SYS0001 6
SYSCOLUMNS SYSTEM S¥S0001 15
SYSDBSPACES SYSTEM SYS0001 12
SYSDROP SYSTEM S¥S0001 3
SYSINDEXES SYSTEM S¥YS0001 16
SYSOPTIONS SYSTEM SYS0001 3
SYSPROGAUTH SYSTEM SYS0001 6
SYSSYNONYMS SYSTEM SYS0001 4
SYSTABAUTH SYSTEM SYS0001 15
SYSTEXT1 SQLDBA HELPTEXT 2
SYSTEXT2 SQLDBA HELPTEXT 3
SYSUSAGE SYSTEM SYS0001 7
SYSUSERAUTH SYSTEM SYS0001 6
SYSUSERLIST SQLDBA 5
SYSVIEWS SYSTEM SYS0001 4
TABLE_LIST Q 4
TAPLAN s 6
TAPLAN SIS 1 SIS1_TAPLAN 6
TERM s 8
TERM SIS_1 SIS1_MISC 8
THESACT s1s PRODUCTION 6
UG_SUBJ HJACOBY JACOBY 1
VPROFILE Q 11
WORKLOAD s1s PRODUCTION 8
zIP s1s PRODUCTION 3

ARRARRRRAXRANX End-of-Data NAARRANRAAAX*K

Note that the Result File is not actually visible on the screen, but is included for the

-46-
reader’s understanding. All the other screen output presented in this chapter is in fact

visible in the VERBOSE mode.

The Data Filter filters the communication messages from the Result File, and

converts the Result File to the standard Table File format:

Converting Result File to ‘standard’ Table File...
Done.
Result File after conversion to standard form...

TNAME | CREATOR | DBSPACENAME | NCOLS |
ACCOUNTS | EMILY | PRODUCTION | 8 |
ACTIVITY|S| |4]|
ACTIVITY|SIS_1|SIS1_ACTIVITY|4]|
ACTLEVEL|S| |4|
ACTLEVEL|SIS_1|SIS1_MISC|4|
ACTTERM|S| |5]

ACTTERM|SIS 1|SIS1_ACTTERM|5|
ACTTYPE|S| |3|
ACTTYPE|SIS_1|SIS1_MISC|3|
ACTNGT | SIS |MISCELLANEOUS |5 |
ALLOC | ITZKOWIT | ALLOC_TEST |4 |
APPEDUC | PHD | PHD_APPEDUC | 8|
APPLICANT |Q|DSQ2STBT|5 |
APPLICATION | PHD | PHD_APPLICATION| 25 |
APPRDR | PHD | PHD_APPRDR |5 |
APPRDRCOM | PHD | PHD_APPRDRCOM| 5 |
AUTH_LIST|Q| |11}

BURDRPT | SIS|SIS_BURDRPT|10]
BURDTYPE | SIS | PRODUCTION| 2|
COLUMN_LIST|Q| |8]
COMMAND_SYNONYMS | Q| DSQTSSYN | 4 |
CONCAREA | PHD | PHD_MISC| 2|
COST_TABLE | AMOULTON | EXPLAIN_TABS| 3|
COUNTRY | PHD | PHD_COUNTRY | 2 |
COUNTRY | SIS| |2}
COUNTRY_0|SIS|SIS_COUNTRY|}2]
DBDTPNL1 | DBE | DBEDBOO | 15|
DBDTPNL2 | DBE | DBEDBOO | 26|

DEPT | EMILY | PRODUCTION| 3
DEPTENR | HJACOBY | DEPTENR | 7|
DEPTENR_DETAIL|HJACOBY | DEPTENR_DETAIL|7|
D42|DBE| |3|
EMPBURD | SIS |SIS_EMPBURD | 4|
EMPHIST|S| |5]|
EMPHIST|SIS_1|SIS1_EMPHIST|5]|
EMPLOYEE|S| |11]

EMPLOYEE |SIS_1|SIS1_EMPLOYEE|11|
ENRCAT_GR | HJACOBY | ENRCAT _GR| 6|
ENRCAT_UG | HJACOBY | ENRCAT_UG| 6|

-47-

ENRPT|S| [|16]
ENRPT|SIS_1({SIS1_ENRPT|16|
ENRSIZE|S| |3]
ENRSIZE|SIS_1|SIS1_MISC|3|
ENRWGT | SIS | MISCELLANEOUS | 4 |
ERROR_LOG | Q| DSQTSLOG | 5|
FLOAD|S| |8]

FLOAD | SIS_1|SIS1_FLOAD|8|
TORM_LIST|Q| (4]
GR_SUBJ | HJACOBY | JACOBY | 1]
HJ_ENR_DETAIL | AMOULTON | JACOBY | 7 |
IDS | HJACOBY | JACOBY | 4 |
IDS_DETAIL|HJACOBY | JACOBY | 4 |
IDS2| HJACOBY | DSQTSDET | 4|
INVENTORY | SQLDBA | SAMPLE | 3|
MAJOR|SIS| |2]

MAJOR_0 | SIS |SIS_STUDMISC|2|
MAP_STYPE | HJACOBY | JACOBY | 3 |
MAPSUBJ_GR | HJACOBY | JACOBY | 3|
MAPSUBJ_UG | HJACOBY | JACOBY | 3 |
MERGE | ITZKONIT| |4]
MITCOURSE|S| |3|

MITCOURSE |SIS_1|SIS1 MISC|3|
MITDEPT|S| |2]
MITDEPT|SIS_1|SIS1_MISC|2|
OBJECT DATA|Q|DSQTSCT3|5]|
OBJECT_DIRECTORY |Q|DSQTSCT1| 6|
OBJECT_ REMARKS |Q|DSQTSCT2| 4|
OFFERING|{S| |8]
OFFERING|SIS_1|SIS1_OFFERING|S8|
ORDERS | SQLDBA| | 4|

ORG |DBE | DBEDBOO | 5 |
ORG|Q|DSQ2STBT|5 |
PLAN_TABLE | AMOULTON | EXPLAIN TABS|12|
PLAYTBL3 | DBE | DBEDBOO | 4|
POSITION|S| [4]
POSITION|SIS_1|SIS1_MISC|4|
POSTYPE|S| |3|
POSTYPE | SIS_1|SIS1_MISC|3|
PRIME1 | SIS|PRODUCTION| 6|
PRIME2 | SIS | PRODUCTION| 4 |
PRIME4 | SIS | PRODUCTION|2|
PRIMES | SIS |PRODUCTION|2]|
PRIMEG | SIS |PRODUCTION|2|
PRIME7|SIS|PRODUCTION|4|
PROC_LIST|Q| |4]
PRODUCTS | Q | DSQ2STBT | 4 |
PROFILES|Q|DSQTSPRO| 14|
PROG|S| |4|
PROG|SIS_1|SIS1_MISC|4|
PROGTYPE(|S| |3]

PROGTYPE |SIS_1|SIS1_MISC|3|
PSETEACH|S| |3|
PSETEACH|SIS_1|SIS1_PSETEACH|3|
PSENGT | SIS |MISCELLANEOUS | 4 |

QMF_PFKEYS | AMOULTON | PROFILE |4 |
QMFTABLE_LIST|Q) |5]
QUERY_LIST|Q| |5]
QUOTATIONS | SQLDBA | SAMPLE |5 |
REFERENCE_TABLE | AMOULTON | EXPLAIN_TABS |8 |
REFLIST|DBE | DBEDBOO | 9|
REGISTRATION|S| |8]
REGISTRATION|SIS_1|SIS1_REGISTRATION|8|
RESOURCE_TABLE |Q|DSQTSGOV | 5|
RESOURCE_VIEW|Q| |5]
ROUTINE | EXAMPLE | ISQL| 3|
ROUTINE | SLINFO|ISQL| 4]
ROUTINE | SQLDBA | ISQL| 4|

SALES |Q[DSQ2STBT|5]|
SAVE_MAP_STYPE | HJACOBY | DSQTSDEF | 3 |
SCHOOLS|SIS| |3}
SCHOOLS_0|SIS|SIS_SCHOOLS| 3|
SECTEACH|S| |6|
SECTEACH|SIS_1|SIS1_SECTEACH| 6|
SECTION|SIS|PRODUCTION|10]|
SSMAREA|S| |4
SSMAREA | SIS_1|SIS1_MISC|4|
SSMGROUP S| |3]
SSMGROUP | SIS_1|SIS1_MISC| 3|
STATFT | DBE | DBEDBOO | 7 |

STAFT |Q|DSQ2STBT|7)

STORED QUERIES |SQLDBA|ISQL|3}
STRUCTURE_TABLE | AMOULTON | EXPLAIN TABS| 6|
STUDADD | SIS| (11|
STUDADD_0 | SIS|SIS_STUDADD|11|
STUDEDUC|SIS| |5|
STUDEDUC_0 | SIS |SIS_STUDEDUC|5 |
STUDENT | SIS| |14|
STUDENT_0 | SIS|SIS_STUDENT|14|
STUDP | SIS | PRODUCTION|16]|
SUBEVAL|S| |14)

SUBEVAL |SIS_1|SIS1_SUBEVAL|14|
SUBJECT|S| |16]|

SUBJECT | SIS_1|SIS1_SUBJECT|16]|
SUPPLIERS | SQLDBA | SAMPLE | 3 |
SYSACCESS | SYSTEM | SYS0001 9]
SYSCATALOG | SYSTEM| SYS0001 |19}
SYSCHARSETS | SYSTEM | SYS0001 3|
SYSCOLAUTH | SYSTEM | SYS0001(6|
SYSCOLUMNS | SYSTEM| SYS0001|15]
SYSDBSPACES | SYSTEM | SYS0001)12
SYSDROP | SYSTEM| SYS0001 | 3|
SYSINDEXES | SYSTEM|SYS0001|16]|
SYSOPTIONS |SYSTEM|SYS0001 (3|
SYSPROGAUTH | SYSTEM | SYS0001|6|
SYSSYNONYMS | SYSTEM | SYS0001 |4
SYSTABAUTH | SYSTEM| SYS0001 15|
SYSTEXT1 | SQLDBA | HELPTEXT | 2 |
SYSTEXT2 | SQLDBA | HELPTEXT | 3|
SYSUSAGE | SYSTEM| SYS0001]7|

-49.

SYSUSERAUTH | SYSTEM| SYS0001 | 6|
SYSUSERLIST|SQLDBA| |5]
SYSVIEWS| SYSTEM) SYS0001 4|
TABLE_LIST|Q| |4|
TAPLAN|S| |6]

TAPLAN | SIS_1|SIS1_TAPLAN| 6|
TERM|S| |8]
TERM|SIS_1|SIS1_MISC|8|
THRSACT | SIS | PRODUCTION]| 6]
UG_SUBJ | HJACOBY | JACOBY | 1|
VPROFILE|Q| (11|

WORKLOAD | SIS | PRODUCTION |8 |
ZIP | SIS|PRODUCTION|3|

Finally, the Result Reader converts the Table File to the Result List:

Table rile converted to Result List....Done.

(("TNAME" "CREATOR" "DBSPACENAME" "NCOLS")

(" mcoms " n mILY " " PRODUCTION " " 8 ”) (“ACTIVITY" ” s " " ” " ‘ ")

(" ACTIVIT!’ " " s:s-l " Ll s:sl—ACTIVITY " " ‘ ") (" mmv‘L " ” s " " " " ‘ ")
(" ACTLML L] " SIs—l " " SISI—MISC " " ‘ L]) ("Acmm" " s " " " " 5 ”)

(" Acn‘m" ” 818-1 ” " s:sl_‘cnlm" " 5 ") (" Acml ” n s ” " " ” 3 ”)

("ACTTYPE" "SIS_1" "SIS1_MISC" "3")

("ACTWGT" "SIS" "MISCELLANEOUS" "5")

("ALLOC" "ITZKOWIT" "ALLOC_TEST" "4")

("APP‘DUC " " Pm " ” P!m_u?nnuc L " 8 ”) ("u’LIm " "Q" "DSQZSTBT ” " 5 ")
("APPLICATION" "PHD" "PHD_APPLICATION" "25")

("”PRDR" " Pm A\l " le_upmn" L] 5 ")

("npmncw" "?m n ” PKD—APPRDRcw“ L 5 ") (L AUTH—LIST L IIQ" " LU " 11 ")
(" Bm”T " " SIs ” " sIs_BURDRPT" " 10 ")
(" Bmml " " SIs " " PRODUCTIO“ " " 2 ") (" COLM—LIST ” "Q" " " L 8 ")

("COMMAND_SYNONYMS" "Q" "DSQTSSYN" "4")

(" co“cAm " " P!m ” " P}m-m sc " " 2 ")

("COST_TABLE" "AMOULTON" "EXPLAIN_TABS" "3")

(” COUN-T-RY ” ll?!m ” L] ?m_coma! ” " 21—') (" comRY " ” SIS " " " " 2 ")
("COUNTRY_0" "SIS" "SIS_COUNTRY" "2")

("DBDTPNL1" "DBE" "DBEDBOO" "15") ("DBDTPNL2" "DBE" "DBEDBOO" "26")
("DEPT" "EMILY" "PRODUCTION" "3") ("DEPTENR" "HJACOBY" "DEPTENR" "7")
("DEPTENR_DETAIL" "HJACOBY" "DEPTENR DETAIL" "7")

(I'D‘z ”" "DB‘" " " "3") ("mamll " SI§" "sIs-mBm " "4")

(HMHISTII l|s" " ” "5") (HMHIST" llsIs_l" I'SIsl-mnIsT" "5")

("MI‘OYI‘" "s" " ” "11 ") ("MLOYEE" " SIs-l ” “sIsl-wm“‘" "11")
("ENRCAT GR" "HJACOBY" "ENRCAT GR" "6")

(" ENRCAT—UG " " HJACOBY ”" ” ‘NRCAT-UG " " 6 ") (" ‘mT " " s ” " " L] 1 6 ")
("lmlr" "sIs—l " " SISI_INRPT" "16") ("Emlz!" "8" " " "3")

("ENRSIZE" "SIS_1" "SIS1_MISC" "3")

(" INR"GT " " sIs " "msc:LmoUs " " ‘ ") (" IRROR_Im n L] Q" 1" Dsmsm" " 5 ”)
(” rm L " s " " L ” 8 ") (" rLOAD " ” SIs-l " A\ SISI—FLOAD " " 8 ”")

(" rom LIST " "Q" L " " ‘ ") (" GR-SUBJ " " HJACOB‘! " " JACOBY " " 1 L)

(" HJ_EER_DITAIL " "AMOULTON" "JACOBY" "7")

-50-

("IDS" "HJACOBY" "JACOBY" "4") ("IDS_DETAIL" "HJACOBY" "JACOBY" "4")
(nIDszn nancopyn "DSQTSDI!'" n‘") ("IMMOR " nsomun "SAMPLE" n3n)
(l|w°n" " SIS "non o nwon 2 ”) ("WOR_O n " SIS " on sIs—smuIsc " " 2 ")
("MAP_STYPE" "HJACOBY" "JACOBY" "3")

("MAPSUBJ_GR" "HJACOBY" "JACOBY" "3")

("WSUBJ_UG" "HIACOBY" "JACOBY" "3n) (nmmln "ITZKONIT" " © n‘n)
(HMITcomxu ngn non l'3") (umlrcomn" "sxs_l" nsIsl-uIscn 113")
("MITDIPT" ngn non uzn) ("MITDEPT" "818_1" nszsl_mscn nzn)
("OBJlCT_DATA" "Q" "DSQTSCTS" 1!5")

("OBJECT_DIRECTORY" "Q" "DSQTSCT1" "6")

("OBJ‘CT_MS" "Q" "DSQTSCTZ" "‘ll) ("O""RI“G" ngn non ns")
("OFFERING" "SIS 1" "SIS1_OFFERING" "8") ("ORDERS" "SQLDBA" " " "4")
("ORG" "DBE" "DBEDBOO" "5") (“om" "Q" "DSQZS“T" "5")

("PLAN TABLE" "AMOULTON" "EXPLAIN_TABS" "12")

(nPumL3" "DBE" "DBEDBOO" "‘u) ("POSITION" ngn n n n‘")
("POSITION" "SIS_I" nszsl—msc“ lv‘u) (uyosml" ngn n " n3n)
("POSTYPE" "SIS 1" "SIS1 MISC" "3") ("PRIME1l" "SIS" "PRODUCTION" "6")
("ym:u "STS" "PRODUCTION" n‘n) (nram‘" "SIS" "PRODUCTION" "2")
("PRIME5S" "SIS" "PRODUCTION" "2") ("PRIME6" "SIS" "PRODUCTION" "2")
("PRM7" "gIS" "PRODUCTION" n‘n) ("’ROC_LIST" "Q" non "‘n)
("PRODUCTS" "Q" "DSstTBT" n‘n) ("PROFILES" uQu "Dsqrs’m" "1‘")
("?ROG" ngn non n‘") (upnocu "818-1" ns!sl-msc" |l4n)

("PROGTYPI" ngn non "3"’ (npmm‘" us:s—ln usxsl-mscn n3n)
("Ps'mcnn ngn non "3") ("PSITHCH" "sxs-ln "SISI_PSITIACH" n3")
("PSEWGT" "SIS" "MISCELLANEOUS" "4")

(nw—.’rnysn "AMOULTON" "PROFILE" n‘n) ("WTABLE_LIST" "Qn non "5")
("QU‘RY_LIST“ IIQ“ (LI 1] "5") ("QUOTATIONS" "SQLDBA" "SAMPLE" "5")
("REFERENCE_TABLE" "AMOULTON" "EXPLAIN_TABS" "8")

("REI'LIST" "DB‘" "DB‘DBOO" "9") ("REGISTMTION" ngn n on "a")
("REGISTRATION" "SIS_1" "SIS1l_REGISTRATION" "8")

(ﬂusouncn_rnLl" "Q" "DSQTSGOV" "5") ("“souncz-vzl"" I|Q" " on "5")
("ROUTI“" "EXAMPLE" "ISQL" "3n) ("ROUTINI" "SLINFO" "ISQL" "‘")
(nnowx“u nsqmnn "ISQL" n‘n) ("SALES" IIQ" nDstsnT" "5")
(us“v‘_m—.sm'u "HIACOBY" "DSQTSD!!'" n3n) (uscnwl‘sn ngIg" " " "3")
("scmLs-on "gIs" "SIS_SCHOOLS“ "3!!) (lvsncmcnn ngn v 116")
("SECTEACH" "SIS_1" "SIS1_SECTEACH" "6")

("S‘CTIO n ngTg" "PRODUCTION" "10n) (nssmn ngn non u‘u)
(nsmu "SIS_l" "SISI_MISC" n‘n) (ussmno n ongn n o "3n)
("ssmnomn ns:s—ln "SISI_MISC" n3n) (HST“'-" "DBE" "DBEDBOO" "7")
("slrur" "Q" "DSQZSTBT" "7") ("smun QU'RIIS" "sqmuu "ISQL" l|3n)
("STRUCTURE_TABLE" "AMOULTON" "EXPLAIN_TABS" "6")

(nsmmnu ngIg" " " "11") ("STUDADD_O" "gIg" "SIS__STUDADD" "11")
("smmucn ngIg" " n nsu) (nsmnbuc—o" "gIs" ns:s_smtnucn "5|v)
("STUDENT" "SIS" " " "14") ("STUDENT 0" "SIS" "SIS_ STUDENT" "14")
(nsmrn "gIS" "PRODUCTION" "16") ("SUBIVAL" ngn non "14n)
("SUBIVAL" "SIS_l" "SISl_SUBEVAL" n14n) ("SUBJECT" ngn n on "16")
("SUBJECT" "SIS_1" "SIS1_SUBJECT" "16")

("SUPPLIERS" "SQLDBA" "SAMPLE" "3")

("SYSACCESS" "SYSTEM" "SYS0001" "9")

("SYSCATALOG" "SYSTEM" "SYS0001" "19")

("SYSCHARSETS" "SYSTEM" "SYS0001" "3")

("SYSCOLAUTH" "SYSTEM" "SYS0001" "6")

("SYSCOLUMNS" "SYSTEM" "SYS0001" "15")

("SYSDBSPACES" "SYSTEM" "SYS0001" "12")

("SYSDROP" "SYSTEM" "SYS0001" "3")

-51-

("SYSINDEXES" "SYSTEM" "SYS0001" "16")
("SYSOPTIONS" "SYSTEM" "SYS0001" "3")
("SYSPROGAUTH" "SYSTEM" "SYS0001" "6")
("SYSSYNONYMS" "SYSTEM" "SYSO0001" "4")
("SYSTABAUTH" "SYSTEM" "S¥YS0001" "15")
("SYSTEXT1" " sann "HELPTEXT" "2")

("SYSTEXT2" " SQLDBA " YHELPTEXT" "3")
("SYSUSAGE" "SYSTEM" "SYS0001" "7")
("SYSUSERAUTH" "SYSTEM" "SYS0001" "6")

("SYSUSERLIST" "SQLDBA" " " "5") ("SYSVIEWS" "SYSTEM" "SYS0001" "4")
(" TuLl—LIST " "Q" " " n ‘ ”) (" Tnm " " s " ” " " 6 ”)

("Tnmll "s:s-.l " "s:sl-T”m" "6") ("nm" "s'l " on "8")

(" T‘m" " sIs—l " " sIsl—msc " " 8") (" T“SACT LU " sIs" ” PRODUCTIO' " " 6“)

(" UG—SUBJ" " mcoa‘! " " JACOBY L " 1 ") ("v’nor!u L "Q" " ” " 11 ")

(""omom L ” sIs ” " PRODUCTION " ” 8 ") (" z:r " " 818 " " PRODUCTION ” ” 3 "))

4.4 The :GET-COLUMNS Message

>(send-message ’sqlds-4381 :get-columns ’employee)

The :GET-COLUMNS message takes as its single argument a valid table name - here

the table named employee.

DEMS Query to be sent to machine slcan....

SELECT DiSTINCT CNAME, COLTYPE, NULLS FROM SYSTEM.SYSCOLUMNS
WHERE TNAME = ’'EMPLOYEE’ ORDER BY CNAME

Fetching SQL/DS Data Requested....
Connecting to slinfo on machine sloan...
Done.

Transporting Result File to local machine....
Result File Retrieved.

The :GET-COLUMNS message also does not use the Query Translator module, but
provides the Communication Server with a hard-coded SQL statement (DBMS Query)

representing a request for the column names on the specified table.

The Communication Server has connected to "sloan", accessed the "slinfo" database,
queried it with the SQL statement for column information provided by

get-sqlds4381-columns, and retrieved the Result File (not visible as screen output).

-52-

SELECT DISTINCT CNAME, COLTYPE, NULLS FROM SYSTEM.SYSCOLUMNS
WHERE TNAME = ’'EMPLOYEE’ ORDER BY CNAME
CNAME COLTYPE NULLS

EMPNUM CHAR
EMPTYPE CHAR
ENDTERM SMALLINT
OFFICE CHAR
PHONE CHAR

POSABB CHAR
RRRRRRRRARRARY End-of-Data *AAXXRRARARAAR

ZZXZXZ2ZZZZ2

The Data Filter converts the Result File to the standard Table File:

Converting Result File to ‘standard’ Table File...
Done.
Rasult file after conversion to standard form..

CNAME | COLTYPE | NULLS |
AREAABB | CHAR|N|
COMPID |CHAR|N|
EFFTERM|SMALLINT |N|
EMPABB | CHAR | N |
EMPNAME | CHAR | N |
EMPNUM | CHAR |N|
EMPTYPE | CHAR|N|
ENDTERM | SMALLINT |N|
OFFICE|CHAR|N|
PHONE | CHAR | N |
POSABB | CHAR | N |

The Result Reader converts the Table File to the Result List;

Table File converted to Result List...Done.

(("cm" "collm‘" llmLs ") ("mB" "Cm" I'N")
(" cm ID L] " cm ” “N ") (L ‘rrum" " SMALLINT " I|Nl ") (”" mua ” L cm ” " N ")
("MM" "cm" “N“) (“mm" "cm" "N") ("mmlﬂ llcm" "Nl')
(” l“DTlm" L] smLLINT " l'“ ") (" orrIc! " n cm" "N‘") (n ?Hom n " Cm" " N")

-53.

(L ’osua L " cm " L N "))

4.5 The :GET-DATA Message

>(send-message ’sloandb :get-data ’(s.employee (empname empnum emptype)

(OR (= emptype "X") (= emptype "R"))))

The :GET-DATA message takes an Abstract Local Query (ALQ) as its argument.

PARSE-SQL~-TNAME -- Converting symbol S.EMPLOYEE into a string.
PARSE-SQL-COLMN -- Converting symbol EMPTYPE into a string.
PARSE-SQL-COLMN -- Converting symbol EMPTYPE into a string.
PARSE-SQL-COLMN -- Converting symbol EMPNAME into a string.
PARSE-SQL-COLMN -- Converting symbol EMPNUM into a string.
PARSE-SQL-COLMN -- Converting symbol EMPTYPE into a string.
DBMS Query to be sent to machine sloan....

SELECT EMPNAME, EMPNUM, EMPTYPE FROM S.EMPLOYEE WHERE (EMPTYPE = 'X’)
OR (EMPTYPE = 'R’)

It should now be clear how the :GET-DATA allows the user to create arbitrary SQL
statements, as opposed to the rigid, ‘hard-coded’ schemes utilized by the :GET-TABLES
and :GET-COLUMNS messages. :GET-DATA uses the Query Translator to convert an
ALQ to the SQL SELECT statement that it represents. This, in fact, is the only difference
between the :GET-DATA message and the :GET-TABLES and :GET-COLUMNS
messages. Note how the names of the column names, the table name, and the contents of
the conditionals are converted to ‘strings’. Also note how the conditionals perform a

conditional search of the "X" and "R" employee types.

Fetching SQL/DS Data Requested....
Connecting to slinfo on machine sloan...
Done.

Transporting Result File to local machine....

Result File Retrieved.

The Communication Server has connected to "sloan", accessed the "slinfo" database,
queried it with the SQL statement created by the Query Translator, and retrieved the

requested data as the Result File (not visible as screen output):

select empname, empnum, emptype from s.employee where (emptype = 'X’)
OR (emptype = 'R’)

EMPNAME EMPNUM EMPTYPE
Alexander, Sidney 0001 X
Robinson, Richard 0018 b 4
Bottiglia, William 0105 X
Hekimian, J. 0162 X
Shapiro, Eli 0236 X
Toong, Hoo-Min 0251 R
Senge, Peter 0264 R
Bowman, Edward 0302 X
Johnson, Howard 0417 X
Ahuja, Ravindra 0498 R
Bowles, Edward 0540 X
Brooks, E 0541 X
Durand, David ' 0542 X
Moore, Leo 0543 X
Myers, Charles 0544 X
Bullen, Christine 0546 R
Davidson, Frank 0547 R
Egan, Eleanor 0549 R
Gould, Janet 0551 R
Graham, Alan 0552 R
Gupta, Amar 0553 R
Hollinger, Peter 0554 R
Katz, Ralph 0556 R
Pugh, Alexander 0560 R
Quillard, Judith 0561 R
Samarov, Alexander 0562 R
Samuel, Roger 0563 R
White, Patricia 0565 R
Wilson, Diane 0566 R
Invernizzi, E 0569 X
Stevens, Chandler 0577 X
Benjamin, Robert 0578 X
Johansen, Robert 0579 R
Short, James 0631 R
Antrim, Lance 0639 R
Kaminka, Shlomit 0646 X
Luberto, Gaetano 0647 X
Martin, Andrew 0649 R
Yang, Shi-Shen 0654 X

-55-

Arino, Miguel 0686 X
Curley, Kathleen 0689 X
Esteban, Jesus 0690 X
Gardner, Margaret 0691 X
Lasserre, Pierre 0692 X
Triantis, Alexander 0694 X
Villager, Daniel 0695 X
Kirsch, John 0696 R
Martinez, Jon 0697 R
Patterson, Seymour 0698 R
Wolfson, A. Mark 0701 X
Various Faculty 9998 X
Out of Course Staff 9999 X

ARRRRRRRRARARR End-of-Data ARARKXRARNARAR

The Data Filter converts the Result File to the standard Table File:

Converting Result File to ‘standard’ Table File...
Done.

EMPNAME | EMPNUM | EMPTYPE |
Alexander, Sidney|0001{X|
Robinson, Richard|{0018|X|
Bottiglia, William|0105|X|
Hekimian, J.(0162|X|
Shapiro, Bli|0236(X|
Toong, Hoo-Min|0251|R|
Senge, Peter|0264(|R|
Bowman, Edward|0302|X|
Johnson, Howard|0417|X|
Ahuja, Ravindra|0498|R|
Bowles, Edward|0540(X|
Brooks, E|0541|X|

Durand, David|0542|X|
Moore, Leo|0543(X|

Myers, Charles|0544(X|
Bullen, Christine|0546(|R|
Davidson, Frank|{0547|R|
Egan, Eleanor|0549|R|
Gould, Janet|0551|R{
Graham, Alan|0552|R|
Gupta, Amar|0553|R|
Hollinger, Peter|0554|R|
Katz, Ralph|0556|R|

Pugh, Alexandex|0560|R|
Quillard, Judith|0561(|R|
Samarov, Alexander|0562|R|
Samuel, Roger|0563|R|
White, Patricia|0565|R|
Wilson, Diane|0566|R]
Invernizzi, E|0569|X]|

Stevens, Chandler|0577|X|
Benjamin, Robert|0578|X|
Johansen, Robert|0579|R|
Short, James|0631|R|
Antrim, Lance|0639|R|
Kaminka, Shlomit |0646|X|
Luberto, Gaetano|0647|X]|
Martin, Andrew|0649|R|
Yang, Shi-Shen|0654|X|
Arino, Miguel|0686|X|
Curley, Kathleen|0689|X|
Esteban, Jesus|0690|X|
Gardner, Margaret|0691|X|
Lasserre, Pierre|0692|X|
Triantis, Alexander|0694|X|
Villager, Daniel|0695|X|
Kirsch, John{0696|R|
Martinex, Jon|0697|R|
Patterson, Seymour|0698|R|
Wolfson, A. Mark|0701}X|
Various Faculty|9998|X]|
Out of Course Staff|9999}X]

The Result Reader converts the Table File to the Result List:

Table File converted to Result List....Done.

(("EMPNAME" "EMPNUM" "EMPTYPE") ("Alexander, Sidney" "0001" "X")
("Robinson, Richard" "0018" "X") ("Bottiglia, William" "0105" "X")
("Hekimian, J." "0162" "X") ("Shapiro, Eli" "0236" "X")
("Toong, Hoo-Min" "0251" "R") ("Senge, Peter" "0264" "R")
("Bowman, Edward" "0302" "X") ("Johnson, Howard" "0417" "X")
{("Ahuja, Ravindra" "0498" "R") ("Bowles, Edward" "0540" "X")
("Brooks, E" "0541" "X") ("Durand, David" "0542" "X")

("Moore, Leo" "0543" "X") ("Myers, Charles" "0544" "X")
{"Bullen, Christine" "0546" "R") ("Davidson, Frank" "0547" "R")
("Egan, Eleanox" "0549" "R") ("Gould, Janet"” "0551" "R")

("G:.m’ u‘n" " 0552 " "R") (" G“pt.' mrﬂ n 0553 " "R")
("Hollinger, Petexr" "0554" "R") ("Katz, Ralph" "0556" "R")
("Pugh, Alexander" "0560" "R") ("Quillard, Judith" "0561" "R")
("Samarov, Alexander" "0562" "R") ("Samuel, Roger" "0563" "R")
("White, Patricia" "0565" "R") ("Wilson, Diane" "0566" "R")
("Invernizzi, E" "0569" "X") ("Stevens, Chandler" "0577" "X")
("Benjamin, Robert" "0578" "X") ("Johansen, Robert" "0579" "R")
("Short, James" "0631" "R") ("Antrim, Lance" "0639" "R")
("Kaminka, Shlomit" "0646" "X") ("Luberto, Gaetano" "0647" "X")
("Martin, Andrew" "0649" "R") ("Yang, Shi-Shen" "0654" "X")
("Arino, Miguel" "0686" "X") ("Curley, Kathleen" "0689" "X")
("Esteban, Jesus" "0690" "X") ("Gardner, Margaret" "0691" "X")
("Lasserre, Pierre" "0692" "X") ("Triantis, Alexander" "0694" "X")
("Villager, Daniel” "0695" "X") ("Kirsch, John" "0696" "R")

-57-
("Martinez, Jon" "0697" "R") ("Patterson, Seymour" "0698" "R")

("Wolfson, A. Mark" "0701" "X") ("Various Faculty" "9998" "X")
("Out of Course Staff" "9999" "X"))

This concludes the sample session.

-58-

- Chapter 5

SYSTEM IDIOSYNCRACIES AND POSSIBLE PROBLEMS

A robust LQP has been implemented for the SQL/DS RDBMS on MIT Sloan
School’s IBM 4381 mainframe. There are, however, idiosyncracies involved with the

retrieving of data from the remote IBM 4381 mainframe to the local AT&T 3B2 machine.

It is possible that outside parties - like Systems Administrators - may make
inadvertent changes to the systems being used by the new LQP, thereby rendering it non-
functional. It is therefore important that CIS/TK system developers take note of these

idiosyncracies.

Section (6.1) provides a list of idiosyncracies that could result in the breakdown of
the SQL/DS RDBMS LQP. These idiosyncracies are presented in the form of checks to be
made, under the assumption that section (5.1) will be particularly important in the event that
the LQP is found to fail. Section (5.2) is devoted to a particularly noteworthy idiosyncracy
of the SQL/DS SQL format. This section is intendedfor the use of developers of the higher
levels of the CIS/TK system.

5.1 SQL/DS LQP Idiosyncracy Check

1. Make sure that a user account is defined on the remote IBM 4381 machine.
The <user-account> name and the <password> for the account should be the
same as those stored in the LQP-object as attributes. If it is found that an
account has been terminated, contact the IBM 4381 mainframe Systems
Administrator.

2. A working directory is required on the IBM 4381 user account. This working
directory must be provided with both read and write passwords that are
identical to the <password> for the user account. The working directories are
used by the Communication Server script files. (See section (3.2.2).)

3. The 4381SEL EXECutive program, a modified version of the RXSELECT
EXECutive program, needs to accomodate as many charecters in a line, and

-59-

as many rows of data, as are found in the query result output format. The
variable maxlength which truncates lines after a specified number of
charecters, is presently set at 508 charecters. The maxins variable that causes
a specified number of rows to be returned at a time, is presently set at 10,000.
These values may be changed accordingly if it is found that lines of data are
truncated or rows of data are lost. (See section (3.2.2).)

4. The UNIX operating system on the AT&T 3B2 machine can only handle I/O
streams. A line mode I/O environment should therefore be specified on the
otherwise full-screen (block) mode IBM machine. This is done by issuing the
ac(noprof and sysprof3 commands to the IBM 4381 mainframe from the
script file 4381FILE. (see section (3.2.2).)

5. The -n option must be used for ftp. This is critical to the correct functioning
of the 4381FTP script file, as described in section (3.2.2).)

6. Timing problems may also cause the LQP script files to fail, depending upon
the processing loads on the 2 machines being used. If timing problems are
suspected, the sleep commands in the script files 4381FILE and 4381FTP
should be provided with a larger sleep period between commands to be issued
to the remote IBM 4381 machine.

5.2 SQL/DS SQL Format Idiosyncracies

The SQL/DS RDBMS uses the concept of a ‘creator’. Within the RDBMS, several
databases may be defined. Within each of these databases are defined a number of tables.
Each table in a database has a creator. Every table is referenced by its creator in an SQL/DS
SELECT statement. Specifically, a table <table> created by <creator> is referred to as
<creator>.<table> in a SELECT statement. It is, however, referred to simply as <table>
when the RDBMS uses it to retrieve a list of column names. Thus, for the :GET-DATA
message, when an ALQ is sent to the LQP, the table name should have the form

<creator>.<table>, but for the :GET-COLUMNS message, it should be left as <table>.

To illustrate, consider the usage of the table name employee created by the creator s,
for the :GET-COLUMNS and :GET-DATA messages respectively, below:
THE :GET-COLUMNS MESSAGE:

(send-message ’'sloandb :get-columns ’'employee)

-60-

The table is referred to simply as employee for the :GET-COLUMNS message.

THE :GET-DATA MESSAGE:

(send-message ’'sloandb :get-data ' (s.employee (empname empnum)))

The table is referred to as s.employee in the :GET-DATA message’s ALQ.

-61-

- Chapter 6

CONCLUSION

The CIS/TK system proposes to eliminate information boundaries by intégrating
multiple, remote DBMSs. Local Query Processors (LQPs) provide the
connectivity/interface between the upper, intelligent levels of the CIS/TK system and the

remote DBMSs in its access field.

The object-oriented implementation of an LQP for the addition of a Relational
DBMS to the CIS/TK system’s access field was studied closely. This involved
implementing a LQP-driver and an LQP-object that automates its functioning. Where it was
found that existing code performed the same function as that required by an LQP-driver
module, this code was shared with the new LQP. The idiosyncracies of the systems

exchanging data were studied closely in the implementation process.

In this paper, descriptive guidelines have been established for the inclusion of a new

RDBMS in the access field of the CIS/TK system.

6.1 Improvement of the SQL/DS RDBMS LQP

1. Presently, the ftp file transfer protocol is used to retrieve the query result
output from a temporary file on the remote machine to a temporary file on the
local machine. A more elegant approach would be to use UNIX’s piping
feature to eliminate the need of temporary file storage of data. Although this
scheme was attempted in the present implementation, it was found that for
reasons indeterminate - buggy software or protocol discrepancies - data was
being lost in the pipe. If the reason for this occurence is determined and the
problem is solved, then piping can be used successfully.

2. Alternative network protocol may be a more efficient than the telnet and ftp
communication facilities used in the present implementation of the LQP. For
example, IBM’s LU6.2 APPC (Advanced Program to Program
Communication) SNA protocol, being supported by an increasing number of
non-SNA architectures and UNIX-based machines, may be used for efficient
and flexible communication on a real-time basis.

-62-

3. The LQP would do well to automatically handle the idiosyncracies of the
SQL/DS SELECT statement format. Specifically, for the ALQ in a :GET-
DATA message, a table name <table> created by <creator> should be
automatically converted to the format <creator>.<table> at the LQP level.
This would be very useful to the upper levels if the CIS/TK system.

4. Lastly, the LQP designed in this paper was only capable of querying a
database using the SQL/DS SELECT statement. The functionality of the LQP
could be greatly enhanced if the LQP is redesigned to perform updating and
alteration functions as well. It would be ideal if the user of the CIS/TK could
use every feature of a remote DBMS. This problem must be tackled partially
at the LQP level.

6.2 Acessing Additional Databases on the SQL/DS RDBMS

Presently, the LQP-object "sqlds-4381" contains all the attributes and methods
required to retrieve data from the database "slinfo". This is a rather limited use of the
connectivity that has been established between "mit2e" and "sloan". It would seem
reasonable to expect the new LQP to access all the databases on the SQL/DS RDBMS. This

can, in fact, be achieved very easily by the procedure outlined below:

Notice that presently, "sloandb” is an instance of the "sqlds-4381" LQP-object. It has
not been given any unique attributes, since it intends to access the "slinfo" database, the

attributes and methods for which are all contained in "sqlds-4381".

Now consider that we want the LQP to now access two databases - "slinfo", and
another database, "pinfo”. It is found that the methods of accessing the two databases are
identical, except for the fact that the databases are referred to (in the LQP commands) as
"slinfo" and "pinfo" respectively. Thus, we can create two new objects, "slinfodb"” and
"pinfodb". These objects are defined to be instances of "sqlds-4381". This means that
whenever required information is not found in these instance objects, the superior
"sqlds-4381" will be referenced for the information. Thus, since the only thing unique about
the "slinfodb" and "pinfodb" objects are the names of their respective databases. Below are

the required instance object definitions:

-63-

(create-instance 'sqlds-4381 ’‘'slinfodb)
{(create-instance ’'sqlds-4381 'pinfodb)

The create-instance KOREL function is used to create the "slinfodb" and "pinfodb"

instances of "sqlds-4381".

These instances are now defined as objects using KOREL’s make-object function,

and are provided with the unique attributes that they require:

{(make-object ’'slinfodb
(' database-directory "slinfo")
(' database "slinfo"))

(make-object ’'pinfodb
(' database-directory "pinfo")
(' database "pinfo"))

Once these instance objects are defined, the LQP messages can be sent to them in

addition to the already defined "sqlds-4381" object and the "sloandb" instance.

The following should be noted:

1. If the method to access the "pinfo” database was different from that used to
access "slinfo", a new method could be included in the "pinfodb" object to use
the new database access procedure.

2. The 'database-directory and ’'database attributes in "slinfo" and "pinfo" are
not default values as they are in "sqlds-4381".

3. When a message is sent to an instance object, only if a required attribute is not
found in its body will the superior, "sqlds-4381" be referenced.

4. The default database accessed by "sqlds-4381" is "slinfo".

5. The "sloandb" instance does not contain any attributes or methods, and thus is
simply another name by which "sqlds-4381" can be referenced. If,
hypothetically, attributes and methods were to be defined for "sloandb", it
would have to be defined as an object.

Appendix A
Common LISP Files

A.1 sqlds4381.1sp

ARRRRNRANRARNARRNRAARRRAARRAR
** PFILE: sqldsd38l.lesp **
AARRAERRARRRAARRRNRARRRANRAR
By Gautam A. Gidwani (July, 1988)
As part of MIT Undexrgrad. Thesis

e “e “o

~o e

SQL/DS SPECIFIC QUERY PROCESSOR FOR MACHINE ’'SLOAM' (AT MIT SLOAM SCHOOL)

The SQL/D8-4381 cbject can respond to the following messages:

Ne Ne Ne Se “o N

=> :self-info
=> :get-tables
=> :get-columns <table-name>
H -> :get-data <cis/tk-single-query>

The ‘get-SQLDS438l-tables’, ‘get-8QLDS438l-columns’, and ‘get-8QLDS4361-data’
procedures all provide the ‘FRTCH-DATA’ function with an SQL statement
to be sent to the remote SQL/DS RDBMS.

FRETCH-DATA connects to the remote machine, "sloan", queries the SQL/DS RDBMS,
retrieves the required query result and parses it to the final Result
List format required.

Ne Se Ne Se Ne v

(defun display-8SQLDS438l-self-info ()
(lgp-print ’'quiet "~%
sSQL/DS ON SLOAN

The SQL/DS Relational Database Management System is a computer program
that manages pieces of information (data) stored in a computer. The data
is contained in tables made up of vertical columns and horizxontal rows.
The SQL/DS database uses the SQL query language which is common among
many of today’s RDEBMS systems.~%~%"))

(defun get-8QLDS43681-tables ()
(let* ((SQL (format nil
"SELECT TNAMR, CREATOR, DBSPACERAME, NCOLS ~
FROM SYSTEM.SYSCATALOG ~
ORDER BY TNAME, CREATOR~%"))
(machine (get-self 'machine-name)))
(FETCH-DATA SQL machine)))

(defun get-8SQLDS438l-columns (table)
(let* ((SQL (format nil
"SELECT DISTINCT CNAME, COLTYPE, NULLS ~
FROM SYSTEM.SYSCOLUMNS ~
WHERE TNAME = '~A’ ~
ORDER BY CHAME~%"

-65-

(parse-8SQL-tname table)))
(machine (get-self 'machine-name)))
(FETCH-DATA SQL machine)))

(defun get-SQLDS4381-data (ALQ)
(let* ((SQL (form-sql ALQ))
(machine (get-self 'machine-name)))
(FETCH-DATA SQL machine)))

\

(defun FETCH-DATA (SQL machine)
(lgp-print 'normal "~ADBMS Query to be sent to machine ~A...." machine)
(lqp-print 'normal "~%~A~%" 8QL)
{(1qp-print ’'terse "Fetching $QL/DS Data Requested....~%~%")
(connect (get-current-object)
8QL)
(lqp-print 'verbose "~iTransporting Result File to local machine....~%")
(let* ((lgpdir (get-self ’'comm-server-directory))
(comdir (get-self ’'lgp-common-directory))
(ftpfile (get-self 'ftp-script))
(acocount (get-self ’'account))
(passwzd (get-self ’'passwoxd))
(machine (get-self ’'machine-name))
(tmpfile (get-self ’'temporary-file)))
(system (format nil "~A/~A ~A ~A ~A ~A/~A | ftp -n"
lgpdir ftpfile account passwrd machine
lgpdir tmpfile))
(lgp-print ’'terse "Result File Retrieved.~%~%")
(lgp-print 'terse "Converting Result File to ‘standard’ Table File...~%")
(system (format nil "~A/FILT4381 ~A/~A" lqpdir lgpdir tmpfile))
(lgp-print ’'terse "Done.~%~%")
(lqp-print 'normal "Table File converted to Result List....~%~%")
(lgp-print-file 'normal (format nil "~A/~A" lqpdir tmpfile))
(read-standard-table (format nil "~A/~A" lqpdir tmpfile) comdir)))

——————— T o T ——— —— — — = — - - — -~ -

(make-cbject ’'sqlds-4381
(' machine-name "sloan")
(' type-of-DBMS "sqlds")
(' local-DBMS? nil)
(' database-directory "slinfo" ’'default)
(' database "slinfo" ’'default)
(' comm-sexrver-directory "/usr/cistk/democ/v2/1qp/ibm4381" ’'default)
(' lqp-common-directory "/usz/cistk/demo/v2/lqp")
(' communications-script "4381FILR")
(' efficient-comm-script "4381FILE")
(' etp-saript "4381FTP")
(' temporary-file "connectl.tmp") ;;*DATA PROCESSED HRRE*;;
(' account "ggidwani" 'default)
(' password "mohina" ’default)
('methods t 'multiple-value-f)
('methods ’ (:self-info display-SQLDS438l-self-info))
('methods ' (:get-tables get-SQLDS438l1-tables))
('methods ' (:get-columns get-SQLDS4381-columns))
('methods ' (:get-data get-SQLDS4381-data)))

(create-instance ’'sqlds-4381 ’'sloandb)

; END OF DEFINITION FOR LQP SQLDS-4381 (SQLDS4381.LSP)

jmm—————————————— B e e o o e e o A o o e S H

-67-

A.2 sql.lsp

-

3 RRRARRRRARARRRRRARRR AR AR
7 W% FILE: SQL.LSP dd

] RRRARAEARARARRRRRARRRRR AN

; By Alec R. Champlin (April, 1988)

; As part of MIT Undergrad. Thesis

; Used UNMODIFIED by Gautam A. Gidwani for implementation of "sqlds-4381"
; Local Query Processor (June, 1988)

@ o - - — " " = o - - > — - - — - — -

® e e e e — - - o i~ - ————

FOUR PRINT MODES AVAILABLE: QUIET TERSE MORMAL VERBOSE
{(defvar *current-lgp-print-mode* ’'QUIET) ; DEFAULT MODE = QUIRT

(defun lgp-mode (mode)
(cond ((and (not (equal mode 'QUIRT)) (not (equal mode ’'TERSE))
(not (equal mode 'NORMAL)) (net (equal mode ’'VERBOSE)))
(write—string "VALID MODES: ’'quiet ’'terse 'normal ’'verbose .")
nil)
(t (setq *ocurrent-lgp-print-mode* mode))))

(defun lgp-print-controlled-apply (mode func &optional args)
(cond ((and (not (equal mode ’'VERBOSE)) (not (equal mode ’'NORMAL))

(not (equal mode 'TERSE)) (not (equal mode ’'QUIERT)))

nil) ; ---May want to make this an error message.---

((equal *current-lgp-print-mode* ’'VERBOSE)

(apply func args))

((equal *ocurrent-lgp-print-mode* 'NORMAL)

(if (not (equal mode 'VERBOSE))
(apply func args)))

((equal *current-lgp-print-mode* 'TERSE)

(i€ (or (equal mode ’'TERSE) (equal mode ’'QUIET))
(apply func args)))

(t nil)))

(defun lgp-print (mode str &rest args)
(lgp-print-controlled-apply mode
#’ format (cons *standard-output* (cons str args))))

(defun lgp-print-file (mode file)
(lqp-print-controlled-apply mode
#’ system (list (format nil "cat ~A" file))))

(defun form-SQL (querxy)
(let ((table (parse-SQL-tname (car query)))
(conds (if (not (null (caddr query)))
(parse-3SQL-conds (caddr query))))
colmn SQL colmn LST)

(mlt:l.plo:nluo-.otq (colmn SQL colmn_LST) (parse-SQL-ocolmn (cadr query)))

(cond ((or (equal table ’'ERROR)
(equal conds ’'ERROR)

-68-

(equal colmn SQL ’'ERROR))
(lgqp-print ’verbose
N "FORM-SQL -- EBrror detected. No query returned.~%")

(values nil nil))
((null conds)
(values (format nil "SELECT ~A FROM ~A" colmn_ SQL table)

colmn_ LST))
(t (values (format nil "SELRCT ~A FROM ~A WHERE ~A"

colmn_SQL table conds)

colmn_LST)))))

; NOTE: 8QL allows multiple tables, but the protocol doesn’t.
(defun parse-SQL-tname (table)
(cond ((null table)
(lgp-print ’verbose
"PARSRE-SQL-TNAME -- No table to parse! ABORTING.~%")
' BRROR)
((atom table)
(if (stringp table)
table
(progn (lqp-print ’verbose
"PARSE-SQL-TMAME -- Converting symbol ~A into ~
a string.~%" table)
(format nil "~A" table))))
((listp table)
(lqp-print ’'verbose
"PARSE-SQL-TNAME -- Recieved list ~A as argument.~%" table)
(if (equal 1 (length table))
(progn (lgp-print ’'verbose
"PARSE-SQL-TNAME -- Using sole element in list ~
as table name.~%")
(parse-SQL-tname (car table)))
(progn (lgp-print ’'verbose
"PARSE-SQL-TNHAME -- Multiple tables not ~
acocepted. ABORTING.~%")
'ERROR)))
(t (lqp-print ’'verbose
"PARSE-SQL-THAME -- Couldn’t interpret table ~A. ~
ABORTING.~%" table)

"ERROR)))

Note: This procedure returns multiple values.

1st => The SQL relevant column string; e.g., "NAME, ADDRESS, ZIP"
; 2nd => A parsed list of columns; e.g., ("NAME" "ADDRESSS" "ZIP")
(defun parse-$SQL-colmn (columns)
(cond ((null columns)

(lgp-print ’'verbose
"PARSE-SQL-COLMN -- No columns to parse! ABORTING.~%")

Ne o

’ BRROR)
((or (equal columns ’'all) (equal columns ’'*) (equal columns "all")
(equal columns "ALL") (equal columns "*"))
(lgp-print ’'verbose
"PARSE-SQL-COLMN -- Wildcards not currently supported. ~
ABORTING. ~%")
' ERROR)
((atom columns)
(if (stringp columns)
(values columns (list columns))
(progn (lqp-print ’verbose
"PARSE-SQL-COLMM -- Converting symbol ~A ~

-69-

into a string.~%" columns)
(values (format nil "~A" columns)
(list (format nil "~A" columns))))))
((1istp columns) '
(if (equal 1 (length columns))
(parse-SQL-colmn (car columns))
(let (carx cary cdrx odry)
(multiple-value-setq (carx cary)
(parse-8SQL-colmn (car columns)))
(multiple-value-setq (cdrx odry)
(parse-SQL-colmn (cdr columns)))
(values (format nil "~A, ~A" ocarx cdrx)
(append cary edry)))))
(t (lqp-print ’verbose
"PARSE-SQL-COLMN -- Couldn’t interpret columns ~A. ~
ABORTING.~%" columns)
' RRROR)))

(defun parse-8QL-conds (conds)
(cond ((null conds) (lgp-print ’'verbose
"PARSE-SQL-CONDS -- No search condition.~%"))
((atom conds) (lgp-print ’verbose
"PARSE-SQL-CONDS -- Search condition ~A in ~
improper form. ABORTING.~%" oconds)
' RRROR)
((listp conds)
(cond ((> (length conds) 3)
(lqp-print ’'verbose
"PARSE-SQL-CONDS -- Search condition ~A in ~
improper form. ABORTING.~%" conds)
' ERROR)
((or (equal (car conds) ’'and) (equal (car conds) "AND")
(equal (car conds) "and") (equal (car conds) "And"))
(format nil "(~A) AND (~A)"
(parse-8QL-conds (second conds))
(parse-8QL-conds (third conds))))
((or (equal (car conds) ’'or) (equal (caxr conds) "OR")
(equal (car conds) "oxr") (equal (car conds) "Ox"))
(format nil " (~A) OR (~A)"
(parse-SQL-conds (second conds))
(parse-8QL-conds (third conds))))
((or (equal (car conds) ’'null) (equal (car conds) "NULL")
(equal (car conds) "null") (equal (car conds) "Null"))
(format nil "~A IS NULL" (parse-SQL-colmn (second conds))))
((ox (equal (car conds) 'not) (equal (car conds) "NOT")
(equal (car conds) "not") (equal (car conds) "Net"))
(format nil "NOT (~A)" (parse-SQL-conds (second conds))))
((relation-p (car conds))
(format nil "~A ~A ~A" (parse-SQL-colmn (second conds))
(parse-SQL-relation (first conds))
(parse-8QL-col-oxr-1lit (third conds))))
(t (lgp-print 'verbose
"PARSE-SQL-CONDS -- Incorrect form: ~A ~
ABORTING.~%" conds)
'ERROR)))
(t (lgp-print ’'verbose
"PARSE-SQL-CONDS -- Couldn’'t interpret condition ~A ~
ABORTING. ~%" conds)
' ERROR)))

-70-

(defun parse-SQL-relation (relation)
(cond ((eq '< relation)
(format nil "I="))
; all the rest are the same
(t (format nil "~A" relatien))))

(defun parse-8QL-col-or-lit (col-or-lit)
(if (stzringp ocol-oz-lit)
(format nil "'~A’'" col-or-lit)
(format nil "~A" col-or-1lit)))

(defun relation-p (relation)
(ox
(eq relation '=)
(eq relation '>)
(eq relation ’'<)
(eq relation '>=)
(eq relation ’'<=)
(eq relatien '<>)))

#1
;THIS FUNCTIOM I8 NOT CURRENTLY USED. MAY BE USEFUL FOR EFFICIENCY.
(defun parse-SQL-group-relation (relation)
{(cond
((eq relation 'average)
(format nil "AVG"))
((eq relation ’'sum)
(format nil "SUM"))
((eq relation 'minimum)
(format nil "MIN"))
((eq relation 'maximum)
(format nil "MAX"))
((eq relation 'cardinality)
(format nil "COUNT"))
((eq relation ’'variance)
(format nil "VARIANCE"))
((eq relation 'standard deviation)
(format nil "STDDEV"))
((eq relation 'no_nulls)
(format nil "NVL"))
(t (lgp-print 'verbose
"PARSE-SQL-GROUP-RELATION -- ~A isn’t a valid relation!~%"
relation))))

@ o o e . ——— " —— " - -

-71-

A.3 connect.lsp

-

RERKARRRRRANRRKARRARRRAK A
** PFILE: CONMECT.LSP **
RRARRRARRRRRRRRRARRRRRARKN

By Alec R. Champlin (April, 1988)
As part of Undergrad. Thesis

~e

Ne N Ne N

~e
Ne ~e

MODIFIED: By Gautam A. Gidwani (September, 1968)
For use in implementation of the 'sqlds-4381’ LQP
MODIFICATION: Added the SQL/DS 'type-of-DEBMS identifier "sqlds"
to the already present "informix" and "oracle"
aonditional identifiers

Se Ne Nu N
Ne Yo N Se Sy

~e ~e

@ e - —— - ——— — — —————— - = " - - — - — - ¢

(defun connect (DBMS-obj SQL &optional (use-—-ef£? nil))
(let* ((local (get-ocbject DBMS-cbj 'local-DBMS?))
(comdir (get-object DBMS-obj ’'comm-server-directory))
(dbdir (get-object DBMS-obj ’database-directory))
(db (get-object DBMS-obj ’'database))
(dbtype (get-object DBMS-obj ’'type-of-DBMS))
(machine (get-object DBMS-cbj ’'machine-name))
(account (if (not local)
(get-object DBMS-obj ’account)
"IRRELRVANT"))
(passwrd (if (not local)
(get-object DBMS-obj ’'password)
"IRRELEVANT"))
(scxipt (if use-eff?
(get-object DBMS-obj ’'efficient-comm-saript)
(get-object DBMS-obj ’'communications-soript)))
{tmpfilel (si:string-concatenate comdir "/connectl.tmp"))
(tmpfile2 (si:string-concatenate comdir "/connect2.tmp"))
invoker)
(setq script (format nil "~A/~A" comdir soript))
(cond ((or (equal dbtype ’' INFORMIX) (equal dbtype "Informix")
(equal dbtype "INFORMIX") (equal dbtype "informix"))
(setq invoker (format nil "isql ~A -" db)))
((or (equal dbtype ’'ORACLE) (equal dbtype "Oracle")
(equal dbtype "ORACLE") (equal dbtype "oracle")
(equal dbtype "SQL/RT") (equal dbtype "sql/rt"))
(setq invoker "sqlamd"))
((or (equal dbtype 'SQLDS) (equal dbtype "SQLDS")
(equal dbtype ’'sqlds) (equal dbtype "sqlds"))
(setq invoker "dbinit"))
(t (lgp-print 'terse
"CONNECT -- Database type ~A unrecognized, ~
Update CONNECT.LSP with new dbtype.~%" dbtype)
retuzrn))
(lqp-print 'terse "Connecting to ~A on machine ~A...~%" db machine)
(i£ (not local)
(system (unix-format "~A ~A ~A ~A ~A ~A | telnet ~A 1> ~A 2> ~A"
script account passwrd dbdir invoker SQL
machine tmpfilel tmpfile2))

-72-

(system (unix-format "~A ~A ~A ~A ~A ~A 1> ~A 2> ~A"
soript account passwrd dbdir inveker SQL
- tmpfilel tmpfile2)))
(lgp-print 'terse "Done.~%")
(values tmpfilel tmpfile2)))

(defun unix-format (str &rest args)
(setq args (mapcar #’ (lambda (x) (format nil "~C~A~C" #\" x #\"))
args))
(apply #' format (cons nil (cons str args))))

-73-

A.4 read.lsp

RRRRNRRARRRNRRNANA NN

*% PFILE: read.lsp **
RARRRRRRARARRARRRRRARNR
By Alec R. Champlin (April, 1988)
As part of MIT Undergrad. Thesis

~e

Ne Se Ne Ne

MODIFICATIONS:
Modified by Gautam A. Gidwani for use in the new ‘sqlds-4381’
1QP.
The second 'if’ statement now checks (using ’'probe-file’) for
a file both in the current working directory or in a directory
specified by 'comdir’. Previcusly, the function assumed that
the file was in the current directory.

Ne Yo Ne No Ne “e e

(defun read-standard-table (file comdir &aux tmp info)
(if (not (probe-file (format nil "~A/preRRAD" comdir)))
(lqp-print ’'terse "READ-STANDARD-TABLE -- File ’'~A’' needed and ~
not found!" (format nil "~A/preREAD")))

;;: This 'if’ statement modified - gg ;;;

(if (or (probe-file file) (probe-file (format nil
""'k/‘““"
comdir file)))
(progn (lqp-print ’'terse "~%Reading DBMS8 output file...")
(if (probe-file file)
(system (format nil "~A/preREAD ~A" comdir file)))
(if (probe-file (format nil
""'h/“'h"
comdir file))
(system (format nil "~A/preREAD ~A/~A" comdir comdir file)))
(with-open-£file (data file :direction :input)
(loop (let ((line (read-line data nil 'EOF)))
(cond ((equal line ’'EOF)
(lgp-print 'terse "Done.~%~%")
(return (remove-if #' null (reverse info))))
((equal line "")
(setq info (cons (reverse tmp) info))
(setq tmp ' ()))

(t (setq tmp (cons line tmp))))))))
(lgp-pxint ’'texse "READ-STANDARD-TABLE -- File '~A’ not found!" file)))

#

THIS IS THE OLD SET OF ROUTINES FOR RRADING "STANDARD" TABLES

(defun read-standard-table (file &aux info)
(if (probe-file file)
(with-open-file (data file :direction :input)
(inf2c-print "READ-STANDARD-TABLR -- Now reading table file...")
(loop (let* ((row (read-line data nil "EOF"))
(entries (get-entries row)))
(1f (equal xrow "EOF")

-74-

(progn
(inf2¢c-print "Done.~%~%")

~ (return (reverse (remove-if #' null info))))
(setq info (cons entries info))))))
(inf2c-print "READ-STANDARD-TABLE -- Error: No table to read!~%")))

(defun get-entries (str)
(form-entries (coerce str 'list) NIL ""))

(defun form-entries (lst entry-lst temp-str)
(cond ((null lst)
(remove-if #’' (lambda (x) (equal x ""))
(reverse (cons temp-str entry-lst))))
((equal (car 1lst) #\|)
(form-entries (cdr lst) (cons temp-str entry-lst) ""))
(t
(form-entries (cdr lst)
entry-lst
(si:string-concatenate temp-str (car lst))))))

H END OF "STANDARDIZED" TABLE READING ROUTINES (READ.LSP) ;

P o - " ——— T " " T —— - —— " - = = - ==

-75-

A.5 demo-gg.lsp

ARRRRRRRRRRARRARRRRNAN
** FILR: DEMO.LSP **
ARRANARRARARRARNRRRA RN
By Gautam A. Gidwani (Feb., 1989)
As part of MIT Underxgrad. Thesis

Ne Ne e No N

(let* ((sqlds438l-dir "/usr/cistk/biggie/ibm4381"))

(if (not (probe-file (format nil "~A/4381FILE" sqlds4381-dir)))
(format t "4381FILE missing! ~% --> LQP object SQLDS-4381 will not ~
process messages 'GET-TABLES', ~% 'GET-COLUMMS’' and ~
' GRT-DATA’ correctly.~%"))
(if (not (probe-file (format nil "~A/4381FTP" sqlds4381-dir)))
(format t "4381FTP missing! ~% --> IQP cbject SQLDS-4381 will not ~
process messages ’'GET-TABLES’', ~% 'GET-COLUMNS’' and ~
! GET-DATA’ correctly.~%"))
(if (not (probe-file (format nil "~A/4381SEL" sqlds4381-dir)))
(format t "4381SEL missing! ~% --> LQP object SQLDS-4381 will not ~
process messages ’'GET-TABLRES', ~% 'GET-COLUMNS’' and ~
'GET-DATA’ correctly.~%"))

(if (not (probe-file (format nil "~A/preREAD" sqlds4381-dir)))

(format t "preREAD missing! ~% --> Most IQP messages will not work.~%"))
(if (not (probe-file (format nil "~A/£ilt4381" sqlds4381-dir)))

(format t "FILT4381 missing! ~% --> SQLDS-4381 messages will not work.~%"))

(load (format nil "~A/frames.lsp" sqlds4381-dir))
(load (format nil "~A/korel.lsp" sqldsd38l-dir))

(load (format nil "~A/sql.lsp" sqlds438l-dir))
(load (format nil "~A/connect.lsp" sqlds438l-dir))
(load (format nil "~A/read.lsp" sqlds438l-dir))

(load (format nil "~A/sqlds438l.lsp" sqldsd38l1-dir)))

(defun get-users-lgp-print-preference ()
(format t "~%
What level of messages do you want printed?
-=-> Quiet, Terse, Normal, or Verbose? ")
(let ({(input (read *terminal-io*)))
(cond ((and (not (equal input ’'QUIET)) (not (equal input ’'TERSE))
(not (equal input 'NORMAL)) (not (equal input ’'VRRBOSE)))
(get-users-lqp-print-preference))
(t (setq *ocurrent-lgp-print-mode* input)
(format t "~%0K...If you change your mind, use ’'LQP-MODE’. ~
As in (lgp-mode ’'quiet)~%")))))

(get-users-lqp-print-preference)

A.6 korel.lsp

;FILE: KOREL.LSP

Copyright (C) 1987 by Sam Levine

~e “o e

; © Modified by Alec R. Champlin (May, 1908)

; "Added the "send self" functionality to the MESSAGE-
PASSING system, so that methods could make references
to the cbject instances that requested/invoked them."

~e

RRRRRRNRRR R AR RN AR RNARRRARNRANRNRRRNRRANRRRRRANRNRRARRRRRNRANAARRR AR ARNRRN

Ne Ne Ng N

PACKAGE-NAME: KOREL.LSP by Sam Levine (SPL)
USES-PACKAGES: FRAMES.LSP

PACKAGE-DESCRIPTION: Object-oriented Knowledge-representation Language
AR AR AR RRRANARERNR AR AN RARRRANAR AR RARRRRRRNARRRNAANRRNRANRARRNRRS

Ne Yo Ne N

;****t*'**'*ﬁ**'*t**t****t*t*******t********i****t**ti*#*'***t***ﬁ**ﬁ

;OBJECTS, CLASSES, and INSTANCES
SERRRRRRARAARARRARRR AR ARAR AR RRRRRRRRARARRKARARAA AR AR AR AR RARRRNANAN RN

An object is either a class or an instance.

There is a heirarchy of classes, with the CLASS class being at the

root of the tree. Every class is, directly or indirectly, a member

of the CLASS class. Each ocbject (except CLASS) has some non-xero number of
superiors. An object inherits properties from its superiors.

A class can spawn subordinate classes as well as instances.

A subordinate class inherits all the properties of the superior, but
usually adds additional information.

An instance represents a specific physical cbject. It inherits

information from the hierarchy of classes above it.

Se No N

~e

~e

Here is what the system loocks like now:
CLASS:
SUPERIORS: Those classes of which the class is a specialization.
For example, mammal is a superior of human. list.
SUBORDINATES: Those classes of which the class is a parent. For
example, mammal is subordinate to living-things. list.
METHODS: Contains pairs. The first of each pair is
a message to match against. The second of each pair is the
appropriate function to execute. 1list.
INSTANCES: This contains a list of instances of this class. list.
SLOT1:

8LOTn:

Se Ne Ve N Ne Ne Ne N N

Ne Ne S Ne

Ne Ne Se N

~.

~e

INSTANCE:
INSTANCE-OF: The class which created this instance.
SLOT1:

SLOTn:

Ne Ne Ne Se N

~

;*******ﬁt*****************t**ﬁiiti****ﬁ*t*t***ﬁ****ﬁ***i************

:FACETS
IR 3322322222222 2R 2 22282 02 2222 R0 22 Rttt 22 22223 22%]

SLOT-FACRTS

’
.
’
.
’

Ne Yo Se N Ne Ne Ne Ne Ne Ne Ne

Se Ve Ns N

Ne Ne Ne Ne Ne N

Ns Ne Ns Ve Ne Ne N

~e

N8 Ne Nu Ye Na Ne Ne “e Ne e Yo Na Ne Vs “e

Ne Se Ne v

-7-

VALUE: (values)
the value for this slot. single or list

DEFAULT: {valdes)
the default value for this slot. single or list

IF-NEEDED: {procedure-names)
a list of procedures to try if there is no value or default value
for this slot. 1list.

IF-ADDED: (demons}
a list of demons which are executed whenever a value is placed inte
the value facet of this slot. 1list.

IF-REMOVED: (demons)
a list of demons which are executed whenever a value is removed from
the value facet of this slot. 1list.

VALUE-TYPE: (integer, string, fraction, real}
Whenever a value is placed into choices, value, or default facets,
it is first checked to ensure that it is of the appropriate value-type.
nil => no constraint on value-type. Single.

CONSTRAIN-OTHERS: {rule-names)
whenever a value is placed into the value or default facets, this
rule set is executed sequentially. list.

SELF-CONSTRAINTS: {constraints)
whenever a value is placed into the value, or default facets, this
set of constraints is checked to ensure that none are violated.
Whenever a new constraint is added to this list, the choices, value and
default facets are checked to ensure consistency. Inconsistent defaults
and choices are eliminated, while the user is asked how to resolve
inconsistent values.
Constraints are lisp procedures which take three arguments: a frame
and slot name (usually the current frame and slot) and a value. list.

CHOICES: {values)
list of valid choices for this slot. list.

QUERY: (multi-query}
executes the contained multi-query to return a value for this slot
from a database.

These facets are flags

MULTIPLE-VALUR-F: {t or nil}
i£ T, signifies that the slot accepts multiple values and defaults.
default is nil. (ie: single valued)

NO-INHERIT-F: (t or nil}
if T, signifies that the the facets of the slot aren’'t inherited.
otherwise, they can be. Default is nil. (ie: inheritence).

These facets are extensions to allow a database interface
RETRIEVAL-PATTERN: {database-retrieval-pattern} see
DBMS .LSP for a specification of this pattezn.
DBMS: {the name of a physical DBMS} contains the name of the
database that the value for this slot may be found in.

; (2222332322222 2222222222 2R3 2222222 23R it st 2 sl adsdds)

;OBJECT FUNCTIONS:
FRRRARARRRAR AR RRRRRRRRARRRARRRRRARARRRNARARRNRNRANRRRANARANRRNRNRRRRRRR R AR

;external:

.
’
.
’
.
’
.
’

.
’

.
’

PUT-OBJECT
GET-ORJECT
REMOVE-OBJECT

internal:

GET-ALL-SUPERIORS
GET-ALL-SUBORDINATES

-78-

GET-ALL-INSTANCES

ARRARRARRANNNRRARRNRRNRRRRRARN AR RRANRARRNRRNRRARRRRARNNANANRRANANARRNARRRNR

*
SLOT FUNCTIONS:
T L Y T P T T T T
external:
A consistent interface to the slots is provided by the following
3 functions. The facet defaults to 'VALUE. The facet is checked to
ensure that it is one of the ones supported (see above). 1If it is, then
the appropriate sequence of actions is performed. Otherwise, an exror
is signalled.

Ne Ne Ne Ne Ne Ne “e “e N

~

~e

e~

PUT-SLOT (frame slot VALUE &optional FACET)
GET-SLOT (frame slot &optional FACET)
REMOVE-SLOT (frame slot VALUR &optional FACET)

internal:

CHECK-VALUR-TYPE (FRAME SLOT VALUE): returns t if value is of the type.
To be used before adding a value.

FIRE-CONSTRAIN-OTHERS (FRAME SLOT) :
To be used after adding a value

CHECK-SELF-CONSTRAINTS (FRAME SIOT VALUR) : returns t if the value is
acceptable acocording to the set of self constraints, nil
otherwise.
To be used before adding a value.

TEST-SELF-CONSTRAINTS (FRAME SLOT) : tries all the self constraints on
the value, asking the user to resolve inconsistencies.
Deletes entries from the default and choices facets to
make them consistent with the self constraints.
To be used before adding a constraint.

Ne Ne Ne Se s s e Se Ne Ne Ne

e N

Ne Se Ne

~e

LA 22222222 22222222222 222222 iR 2R 2R 2Rt 2 222228222822 22 d2dg]d]

;
; OBJECT PROCEDURRES

AR RARRRRRARRRRR AR R AR NNARRNR AR RARNRANERARARRR RN RARRNRANRAAN
;

external

(defun put-object (frame slot value &optional facet)
(1f (null facet) (setq facet ’'wvalue))
(case slot
(superiors
(freplace frame slot 'multiple-value-F t)
(fput frame slot facet value)
(fput value ’'subordinates facet frame))
(subordinates
(freplace frame slot 'multiple-value-F t)
(fput frame slot facet value)
(fput value ’'superiors facet frame))
(instances
(freplace frame slot 'multiple-value-F t)
(create-instance frame value))
(t (put-slot frame slot value facet))))

(defun get-ocbject (frame slot &optional optien)
(case slot
(superiors
(i (eq option 'all)
(cdr (reverse (get-all-superiors (list frame) nil)))
(£get frame slot ’'value)))
(subozrdinates

-79-

(1f (eq option ’'all)
(odr (reverse (get-all-subordinates (list frame) nil)))
(fget frame slot 'value)))
(instances
(if (eq option ’'all)
(reverse (get-all-instances (list frame) nil))
(£get frame slot ’'value)))
(t (get-slot frame slot option))))

(defun remove-object (frame slot value &optional facet)
(1f (null facet) (setq facet ’'wvalue))
(fremove frame slot facet value))

(defmacro make-object (object-name &rest slots)
(dolist (slot slots)
(eval
‘(put-object ,cbject-name ,@slot)))
t)

;internal

(defun get-all-superiors (queue classes)
(cond ((null queue) classes)
(t (get-all-superiors
(append (get-cbject (car queue) ’superiors)

(cdr queue))
(if (member (car queue) classes)
classes

(cons (car queue) classes))))))

(defun get-all-subordinates (queue classes)
(cond ((null queue) classes)
(t (get-all-subordinates
(append (get-object (car queue) ’subordinates)

(ecdx queue))
(if (member (car queue) classes)
classes

(cons (car queue) classes))))))

(defun create-instance (class-frame-name new-instance-name)
(1f (get-object class-frame-name ’instance-of)
(format t
"~%~A is not an appropriate class to create an instance of."
class-frame-name)
(progn
(freplace class-frame-name 'instances 'multiple-value-F t)
(freplace new-instance-name 'superiors 'multiple-value-F t)
(fxreplace new-instance-name ’'instance-of 'multiple-value-¥ t)
(fput class-frame-name ’'instances ’'value new-instance-name)
(fput new-instance-name ’'superiors ’'value class-frame-name)
(fput new-instance-name ’'instance-of ’'value class-frame-name)
new-instance-name)))

(defun get-all-instances (queue instances)
(cond ((null queue) instances)
(t (get-all-instances
(append (get-object (car queue) ’subordinates)
(edr queue))

-80-

(if (member (get-obiject (car queue) 'subordinates) instances)

instances
"(append (get-cbject (car queue) ’subordinates)

instances))))))
IS IEITISIE SRR 2 22222222 2222222322323 322322222223 282223 222222 %]

;
SLOT PROCEDURES
TRARRRRRARRNAARRRAERRNNARNNRARRRNRARRRRARRRRNRARRANRANRNRANNNRRARRRRNA

~

;external

(defun get-slot (frame slot &optional facet &aux ret-val)
(if (null facet) (setq facet ’'value?*))
(case facet
(value* ;uses Z-inheritance (breadth-first search)
(setq xet-val
(if (get-slot frame slot 'multiple-value-T)
(fget-2l1 slot (cons frame (get-object frame ’'superiors ’all)))
(car (fget-xl
slot
(cons frame (get-cbject frame ’'superiors ‘all))))))
(if (and (null ret-val)
(get-slot frame slot ’'querxy))
(setq ret-val (send-multi-query (get-slot frame slot ’query))))
ret-val)
((value default)
(if (get-slot frame slot 'multiple-value-F)
(fget-i frame slot facet)
(car (fget-i frame slot facet))))
({value-type multiple-value-F no-inherit-F query)
(car (fget-i frame slot facet)))
((if-needed if-added if-removed constrain-others self-constraints
choices)

(fget-i frame slot facet))
(t (format t "~%~A is not a valid facet for a slot." facet))))

(defun remove-slot (frame slot value &optional facet)
(if (null facet) (setq facet ’'wvalue))
(case facet
(value
(fremove-p frame slot facet value))
((default if-needed if-added if-removed value-type constrain-others

self-constraints choices internal-choices query)

(fremove frame slot facet value))
(t (format t "~%~A is not a valid facet for a slot." facet))))

(defun put-slot (frame slot value &optional facet)
(if (null facet) (setg facet ’'value))
(case facet
((value default) ;single or multiple
(cond
((not (check-self-constraints frame slot value))
(format t "~%Self Constraints would be violated by adding ~A to ~A."
value facet))
((not (check-value-type frame slot value))
(format t "~%~A is of wrong type." value))
((not (check-choices frame slot value))
(format t "~%~A is not a valid choice for slot." value))
((get-slot frame slot 'multiple-value-F)
{(fput-p frame slot facet value)
(fire-constrain-others frame slot)

-81-

value)
(t (freplace-p frame slot facet value)
(fire-constrain-others frame slot)
value)))
((if-needed if-added if-removed) ;demons
(fput frame slot facet value))
((multiple-value-F no-inherit-F query)
(freplace frame slot facet value))
(value-type
(if (member value ' (integer string real))
(fxeplace frame slot facet value)
(foxrmat t "~%~A is not a valid type.~
~%Valid types are: INTEGER STRING REAL~%"
value)))
(constrain-othezs
(fput frame slot 'constrain-others value)
(fire-constrain-othexrs frame slot)
value)
(self-constraints
(fput frame slot 'self-constraints value)
(test-self-constraints frame slot)) ; and checks to ensure consistent
(choices ;choices takes a list of choices
(let ((old-values (follow-path (list slot facet)
(fget-frame frame))))
(delete ocld-values old-values))
(1f (atom value) (setq value (list value)))
(dolist
(choice value t)
(cond ((not (check-self-constraints frame slot choice))
(format t "~%~A doesn’t satisfy self constraints."
choice))
((not (check-value-type frame slot choice))
(format t "~%~A is of wrong type." choice))
(t (fput frame slot facet choice))))
value)
(t (format t "~%~A is not a valid facet for a slot." facet))))

;internal

(defun check-value-type (frame slot value)
(let ((type (get-slot frame slot ’'value-type)))
(cond ((null type))
((and (eq 'integer type) (integerp value)))
((and (eq ’'string type) (stringp value)))
((and (eq 'real type)
(or (typep value ’'single-float)
(typep value 'double-float)))))))

;this procedure sequentially fires the rules in the constrain-others facet
;it will use the Winston expert system shell for this.
(defun fire-constrain-others (frame slot)
(do ((rules-to-try
(get-slot frame slot ’'constrain-others)
(cdr rules-to-try)))
((null rules-to-try))
(cond ((use-rule (car rules-to-try))
(setq rules-to-try (get-slot frame slot ’'constrain-others))))))

; returns t if all constraints check out okay for the value

-82-

(defun check-self-constraints (frame slot values-list)
(let ((constraints-list (get-slot frame slot 'self-constraints)))
(1f (not (lidtp values-list)) (setq values-list (list values-list)))
(dolist
(value values-list t)
(dolist
(constraint constraints-list t)
(if (not (funcall constraint frame slot value))
(xreturn nil)))))) ; a test failed

; returns t if all constraints check out okay
(defun test-self-constraints (frame slot)
(let ((value-list (get-slot frame slot))
(default-list (get-slot frame slot ’'default)))
(if (not (null value-list))
(check-self-constraints frame slot value-list))
(£ (not (null default-list))
(check-self-constraints frame slot default-list))))

; returns t is the value is an acceptable choice for the slot, nil otherwise
(defun check-choices (frame slot value)
(or (null (get-slot frame slot ’'choices))
(member value (get-slot frame slot ’'choices) :test #'special-equal)))

(defun special-equal (x y)
(oxr (equal x y)
(equal x (and (listp y) (car y)))))

SRERRERRERREARAARRRARRARRRRARRRARRAARARRARRRRRRRRRRRARRAARRRRRNRA RN R
; MESSAGE PASSING SYSTEM
TRRRARRIRRRRERRERRARNEREARERRNRRARRRARRNRRARRRANRRRRRRNAARRRRNRAAR

(defvar *korel-current-cbject-stack* ' ()) ;Alec Champlin -- Added. 5/88

(defun push-current-cbject (cbject) ;Alec Champlin -~ Added. 5/68
(setq *korel-current-object-stack*
(cons object *korel-current-object-stack*)))

(defun get-current-object () ;Alec Champlin -- Added. 5/88
(car *korel-current-object-stack?))

(defun pop-current-object (&aux result) ;Alec Champlin -- Added. 5/88
(setq result (get-current-ocbject))
(setq *korel-current-object-stack* (cdr *korel-current-object-stack*))
result) ‘

(defun get-self (slot &optional facet) ;Alec Champlin -- Added. 5/88
(1f (null facet)
(get-object (get-current-object) slot)
(get-object (get-current-object) slot facet)))

(defun put-self (slot value &optional facet) ;Alec Champlin -- Added. 3/88
(if (null facet)
(put-object (get-current-cbject) slot value)
(put-object (get-current-object) slot value facet)))

;Alec Champlin -- Modified to support "send self" concept. 5/88
(defun send-message (ocbject message &rest arg-list &aux result)
(if (equal object ’'self)
(1f (not (null arg-list))

-83-

(send-message (get-current-cbject) message arg-list)
(send-message (get-current-cbject) message))
(progn -
(push-current-object object)
(dolist (pair (fget-i cbject 'methods 'value))
(if (equal (first pair) message)
(return (progn (setq result (apply (second pair) arg-list))
(pop-current-cbject)
result)))))))

(defun message-exists-p (object message)
(dolist (pair (fget-i object 'methods))
(if (equal (first pair) message)
(return t))))

ARARRERRRRERANARA AR AT AN RRRRNARARRNRAARRNRARNRNANANRNARNARRARARARARARARNRNRARNRNNNRARARNNRN

USER INTERFACE DEFINITIONS
ARARRRRRNRRRARRRR AR RARRARRARRRRARRRAR AR RARRR AR RARRRRARRARRARRRRANARRNRRAR

Se Se ~e

; (defvar *user-messages-window* t) ;here’s where the error messages are sent.
; (setq *user-messages-window* t) ;default is t.

RRANRARRRRRERRRARARARARARRAARRAN RN AARARRARRRRARARRANRNRARRANRARRNRRAARNNRAREARRNRNANRN

DISPLAY UTILITIES
PR RRARERRRRNRARRRRRRARRRRRERRRARANRRAERRRRAAARRRNRRANRANRRAAANRA AR AR

’

.
’
.
’

(defun display-classes ()
(format t "~%CLASS~%")
(do* ((classes-to-show (list ’'class))
(current-class (first classes-to-show) (first classes-to-show))
(current-subs (get-object current-class ’'subordinates)
(get-object current-class 'subordinates)))
((null classes-to-show))
(1£ current-subs
(format t "SUBS of ~A: ~A~%" current-class current-subs))
(setq classes-to-show (append (cdr classes-to-show) current-subs))))

(defun remove-classes (&optiocnal class-to-start-at)
(if (null class-to-start-at)
(setq class-to-start-at 'CLASS))
(do* ((classes-to-kill (list class-to-start-at))
(current-class (first classes-to-kill) (first classes-to-kill))
(subordinates (append (get-object current-class 'subordinates)
(get-object current-class 'instances))
(append (get-ocbject current-class ’'subordinates)
(get-object current-class 'instances))))
((null classes-to-kill))
(reset-£fzrame current-class)
(setq classes-to-kill (append (cdxr classes-to-kill) subordinates)))
t)

(defun print-object (frame-name)
(let* ((frame (fget-frame frame-name))
(slots (cdr frame)))
(format £t "~%~%~A:~%" frame-name)
(dolist (slot slots)
(cond ((or (eq (fixst slot) ’'superiors)

(eq (first slot) ’'subordinates)
(eq (first slot) 'instances)

-84-

(eq (first slot) ’'queries)))

(t (format t " ~A:~%" (car slot))
(dolist (facet (cdr slot))
(format £t " ~A~%" facet))))

(texpri))))

(defun select-query (object &aux queries chosen-query)
(setq queries (get-object object 'queries))
(if queries
(progn
(setq

chosen-query

(choose-list-with-prompt
"Choose a query to execute"
(mapcar §' (lambda (x)

(£izrst x))
queries)
1))
(dolist (query queries)
(if (eq (first query)
(£irst chosen-query))
(progn
(print-multi-query (second (second query)))
(return (send-multi-query (second (second query))))))))
(format t "~%~A object has no associated class queries.~%"

cbject)))

-85-

- Appendix B

‘C’ Program Files

B.1 filt4381.c

This program has been commented to help in understanding the conversion of the
Result File to the ‘standard’ Table File. Viewing the Result File and the Table File would
also be helpful.

The program code is in smaller, bold text while the comments have been italicized.

/*********t***********ﬂ****************i*******ﬁ*****ﬁ***********t*t*****t**/

/xn "/
/** TFILE: FILT438l.c By Gautam A. Gidwani (Feb., 1989) wn/
/** As part of MIT Undergrad. Thesis *n/
/e *x/
/** THIS ROUTINR CONVERTS THE DATA FILE FROM THE SQL/DS DATABASE ON wx/
/** THE IBM-4381 MAINFRAME TO THE ’'STANDARD’ TABLE FILE TO BE "k /
/** READ BY THRE RESULT READER PROGRAM ’'READ.LSP’ *x/
/** : wn/

/********t*i*******ﬂ*ﬁtﬁ*************t*****ﬂ*****i***********tﬁ******t****ﬂt/

#include <stdio.h>

#define MAX COLS 200 1* Allows a maximum of 200 data columns */
f§define DELIM ' |’

main (arge, argv)
int arge;
char *argv[];

{
int e, i1 =0, i2 = 0, i3 = O;
int loop, col_num, col_sixze, size_ont;
int col_data[MAX COLS8]:
char tmp [45];
static char end[] m {"ARAXAXKNKARNY Bnd-of-Data NANKXRAXRXAXA®\n");
FILE *in file, *tmp file, *out file;
if (argo I= 2) /* One argument, the file to be filtered, is reqd. */
{ /* This file is the Result List */
printf ("FILT4381 -- Expecting one argument, <FILENAME>.\n"):
exit (1)

)
else if ((in_file = fopen (argv[l], "r+")) == NULL)

{ /* This input file is called in_file */
printf ("FILT4381 -- Couldn’t open file \"%s\".\n", argv[l]):;
exit (2);
} .

-86-

else if ((tmp file = tmpfile()) == NULL)

{ /* A temporary file, tmp_file, is created */
printf ("FILT4381 -- Couldn’t open temporary file.\n");
exit (3);

}
rewind (in_file); /* Rewinds to the beginning of in_file */

/* Loop = 0 skips the SQL SELECT statement */
/* in the Result List */

while (loop == 0)

{ ,
if ((c = getc (in_file)) = EOF)/* Geta charecter fromin_file */
{ /* Check if char. is alphanumeric, */
if (¢ > 0x20 && o < Ox7r) /* space, tab or newline */
i1 = 1;
if (i1 == 1 g6 c == '\n’') /* Go to loop = 1 when newline */
{ /* after the SQL statement found */
loop = 1;
i1 = 0;
}
}
else
{
rewind (in_file); /* If no newline, then ERROR */
printf ("FILT4381 -- No data found in file \"%s\".\n"):;
exit (4);
}
}

* Loop = I copies the column names to tmp_file */

while (loop == 1)

{
if ((c = geto (in_file)) != EOF) /* Gets a char., c ¥/
{
if (i1 == 0 && © > 0x20 && o < Ox7F)/* Checks for alphanumeric */
i1 = 1; /* space, tab or newline */
it (i1 == 1)
{
if ((fputc (o, tmp_file)) == EOF)/* YES => put ¢ in tmp file
{
printf ("FILT4381 --'FPUTC’ Error.\a");
exit (5); /* Checks thatc putintmp file correctly */
}
if (c == ’'\n’') /*Gotoloop =2 when newline after */
{ /* column names found */
loop = 2;
il = 0;
}
}
}
else
{

rewind (in_file); I* Otherwise rewind in_file and ERROR */
printf ("FILT4381 -- No data found in file \"%s\".\n");
exit (6);

}

-87-

col num = 0 /* col_num => column number */

col size = 0; /* col_size => size of a column */
/* Loop = 2 counts the dashes in the Result List. Determines */
I* number of columns and their respective sizes */

while (loocp == 2)
{
if ((c = getc (in_file)) != EOF) /* Get the next char. c ¥/
{
if (11 == 0 && c > 0x20 && ¢ < 0x7r)
il = 1;
i1f (i1 == 1)
{
if (c =m ' ~') /¥ Looks for adash*/
++col_sixe; /*YES => increment size of present column */
else if (o == ' ') /*Looksfor space between dashes */
{
ool _data[col_num] = col_size;/* YES => store size of */
col size = O; I* present column in col_data array, */
++col_num; /* count the column, reset */
} /* column size counter */
else if (o == '\n’ || o =m '\x’) /* Check for newline at */
{ /* end of dashes */
locp = 3; /* YES => Go to loop = 3 */
col_data[col_num] = col size; /* Store size of last*/
col size = 0; I* column, reset col_size */
++col_num; /* count the last column, */
col_datafcol_num] = '\0’; /* end col_datawl’\O" */
i1 = 0;
}
else /* Otherwise ERROR */
{
printf ("FILT4381 -- Unexpected input format in file..
\"ss\".\n", argv(1]):
exit (7);
}

}

else
{
rewind (in_file);
printf ("FILT4381 -- No data found in file \"$s\".\n", argv[1]):
exit (8);
}
}

i2 = strlen (end); /*i2 =length of string array’end’ defined above */

/* Loop = 3 copies everything dafter the dashes and everything before the */

/* end of file marker (identical to'end is found. */)
for (loop = 3, il = 0; loop == 3 &6 il < i2;)
{
if ((c = getc (in_file)) == EOF) /* Check for end of file */

{
for (i1 = 0; tmp[il] != '\O’ ; 4+44il) /*Ifnot’\O', ++il ¥/
if ((fputc (tmp([il], tmp_file)) == EOF)
{
printf ("FILT4381 -- ’'FPUTC’ Error.\n");

-88-

exit (9): /* End marker not found here */

}
printf ("FILT4381 -- End marker not found in file \"%s\".\n", argv[1]);

}
tmp[il] = o; /* Puts ¢ in tmp[il] */
tmp[i141]) = '\O’; /* Ends'tmp’ string array with required '\0’ */
if (c == end[il1]) /* Compares char. c with end[il] */

++i1; /* YES => increment il (thus compares next char */
else /* with the next element of ’end’ */
{
for (i1l = O; tmp[il] != '\0’'; ++il) /* Otherwise, ERROR */
if ((fputc (tmp[il], tmp_file)) == EOF)
{
printf ("FILT4381 -- 'FPUTC’ Error.\n");
exit (10);
}
i1 = 0;
}

if ((out_file = frecpen (argv[l], "w", in file)) == NULL)

{ /* opens an owtput file, out_file */
printf ("FILT4381 -- ’'FRROPEN’' Rrror.\n"):;
exit (11);

}

rewind (tmp file); /* Goes o the beginning of tmp_file, which should */
/* now contain column names and data only - no */

/* SQL statement, dashes and end marker */
loop = 4; /* Goes to loop = 4 */
il = 0; i2 = O; /* il = 1 for space, i2 = 1 for alphanumeric */
i3 = col num; /* Number of columns counted */

col num = 0; size_ont = 0; /* Resets col_numand col_size */
/* Note that the first column is represented */
/* by col_dataf0] */

/* Loop = 4 put delimiters between the columns and creates the required */
/* ‘standard’ Table File format */

while (loop == 4)
{
if ((c = getc (tmp file)) == ROF) /* Gefs character from tmp_file */
break; /* and checks for EOF */
else if (c == '\n’) * If newline, put a delimiter in out_file */
{
if ((fputc (DELIM, out_file)) == EOF)
{
printf ("FILT4381 -- ’'FPUTC’ Error \n");
exit (12);
}
for (i2 = col num; 12 < (i3-1); ++i2) /* Check if the newline */
{ /* was found before the last column */
if ((fputc (' ', out_file)) == EOF)
{ /* YES => put space in out_file */
printf ("FILT4381 -- 'FPUTC’ Error.\n");
exit (13);
}
if ((fputc (DELIM, out_ file)) == EOF)/*Also put a delimiter*/
{ * in out_file*/

-89-

printf ("FILT4381 -- 'FPUTC’ Erroxr.\n");

exit (14);
Y
}
if ((fputc (¢, out_file)) == EOF) /* Put in the newline */
{
printf ("FILT4381 -- 'FPUTC’ Error.\an");
exit (15);
}
col num = 0; size_ont = 0; /* Reset for next row of data */
i1 = 0; i2 = O;
}
else if (size_ont < col_data [col_num])
{ /* Checks if not at end of column */
if (o > 0x20 && o < OxTF¥) /* Checks for alphanumeric, space, */
{ /* tab or newline */
if (i1 == 1 && 12 == 1) /* Checks for space between words */
if ((fpute (' ', out_file)) == EOF) /* Puts in the space */
{
printf ("FILT4381 -- 'FPUTC’ Bxroxr.\n");
exit (16);
}
if ((fpute (o, out_file)) == ROF) /* Puts in present char.*/
{
printf ("FILT4381 -- 'FPUTC’ Errox.\n");
exit (17);
}
++sixe_cnt;
i1 = 0; i2 = 1; /*i2 =1 => last char. alphanumeric */
}
else if (c == ' ') /[*ifspace, thenignoreitbutflagil = 1%
{
++size_ont;
i1 = 1;
}
}
else if (size_cnt >= col_data[col_num])
{ /* Check if at end of a column */

i€ (i2 == 0) /* Check if no characters found in column */
if ((fputc (' ', out_file)) == EOF) /* YES => put in space */

{
printf ("FILT4381 -- 'FPUTC’ Brror.\n");
exit (18);
}
if ((fputc (DELIM, ocut_file)) == EOF) /* Then put in delimiter */
{
printf ("FILT4381 -- 'FPUTC’ Error.\n"):
exit (19):;
}
Hoel_num; size ont = 0;
il = 0; i2 = O; /* Reset for new column */

B.2 preREAD.c

/**i**'******************ﬁ*t*t*tﬁ******ﬁ**i***t******t**'********t*****/

/*i
/*t
/*t
/’*
/*i
/**
/**
/ﬁ*

FILE: preREAD.c By Alec R. Champlin (April, 1968)
As part of MIT Undergrad. Thesis

THIS ROUTINE WAS WRITTEN TO TAKE SOME OF THE BURDEN OFF OF THE
LISP "READ-STAMNDARD-TABLE" PROCEDURE, SINCE LISP COMPILER WAS
HOT AVAILABLE

**/
**/
**/
**/
*t/
**/
**/
t*/

/****ﬁ***tﬁ*****t*'****t*t*'ﬁ*'*t*ﬁ**************iﬂ'**t*t***tt*tt*****t/

#include <stdio.h>

main (argc, argv)

int

int arge;
char *argv{]:;

CH

FILE *file, *tmp file;

if (argc != 2)

printf ("preREAD -- Expecting one argument, <FILERNAMR>.\n"):
exit (1)

if ((file = fopen (argv[l], "r")) == NULL)

printf ("preREAD -- Couldn’t open file \"%s\".\n", axgv[l]):;
exit (2):;

if ((tmp file = tmpfile ()) == NULL)

printf ("preREAD -- Couldn’t open temporary file.\n"):;
exit (3);

while ((c = fgetc (file)) != EOF)

if (o == ’|’) fpute ('\n’, tmp_file);
else fputc (o, tmp_file);

}
rewind (tmp_file);
if (freopen (argv[l], "w", file) == NULL)
{
printf ("preREAD -- Couldn’t re-open file \"%s\".\n", argvil]):
exit (4):
}
while ((c = fgetc (tmp_file)) != ROF) fputc (c, file);

C.1 4381FILE

sleep 1

echo

echo logon $1

sleep 1

echo $§2

sleep 1

echo ipl oms

sleep 1

echo ’ac(noprof’

sleep 1

echo sysprof3

sleep 1

m "3‘ 33"

sleep 1

echo erase 438llgp temp
sleep 1

echo EXEC RXCASE String
sleep 1

echo "EXEC 43818SEL §5"
sleep 10

echo f£file 438llgp temp
sleep 2

echo logoff

C.2 4381FTP

echo "open §3"

sleep 1

echo "user $1 82"

sleep 1

echo "od $§1 191"

sleep 1

echo "quote acct $2"
sleep 1

echo "get 438llgp.temp $4"
sleep 10

echo delete 4381llqgp.temp
sleep 1

echo quit

-91-

Appendix C
UNIX Script Files

- Appendix D
EXECutive Program File

D.1 4381SEL

This program is identical to the RXSELECT executive program except for the
modification of the values of the maxlength and maxins variables. These modifications have
been commented below. For a better understanding of the function of the program, refer to

IBM’s EXEC manual.

/* 4381SEL sql-stmt : A modified version of the IRBM RXSELECT exec */
/* 5798-DXT (C) COPYRIGHT IBM CORP. 1986 */

/* Licensed material - Program Property of IBM */

Address ' COMMAND'

Parse Axrg stmt

If stmt = '/ | stmt = '?’ then Do
Say 'Format is: RXSELECT select-stmt’
s‘y rr
Say " Where: select-stmt is any valid SQL/DS ’'SELECT’ statement."
Say '/ See 8QL/DS8 documentation for more information.’
s.y rs

Say 'The rows returned by the SELECT will be displayed using XERDIT.'
Say 'A maximum of 100 rows will be returned.’
Say 'If there are more rows in the result, the MORE command can be’
Say 'used from within RXSELECT to display them.’
Say '’
Say 'All of the SRLECT statement will be converted to upper case’
Say 'unless the RXCASE exec has been issued with the STRING option.’
Say ’'See the RXCASE exec for information.’
Exit 100

End

iotype = 0

said = 0

writelog = 'EXECIO 1 DISKW S$QSL ESLSOSG A O V (STRING'

'QUERY CMSTYPE (LIFO’

Parse Pull . . rt .

open = 0

nextln = 0

lines = 0

NEWSEL:

'ERASE SQSL RSLSOSG’

maxlength = 508 /*** Modified to truncate after 508 charecters ***/
maxlns = 10000 /*** Modified to hold a maximum of 10,000 rows ***/
If "TRANSLATE" ("WORD" (stmt, 1)) = 'SELECT’' then selstmt = stmt

Else selstmt = 'Select’ stmt

' GLOBALV SRLECT $select GET CASE’

If case “= 'STRING’ then Upper selstmt

Call EXSQL ’'PREP SELSTMT' selstmt

If rc > 4 then Signal 'FINWRT'

-93-

Call EXSQL 'DRSCRIBE SELSTMT ANY'’
If rc “= 0 then Signal ’'FINWRT'
fields = sqldan.0
Do i = 1 to fields
/*Say ' Sqlda.’i "’/ "sqldan.i"’'" sqldat.i*/
var.i = sqldan.i
If "INDERX" (’'SIFD’, "LEFT" (sqldat.i,l)) “= 0 then lr.i = 'RIGHT’
BElse lr.i = ’'LEPFT’
nulls.i = "RIGHT" (sqldat.i,l) = 'N’
End
Call EXSQL ’'OPEN SELSTMT'
If rc > 4 then Signal 'FINWRT’
open = 1
nextln = 1
width. = 1
MORE :
wmod = 0
If sqlcode = 0 then Do
Do ln= nextln to nextlnimaxlins-1
Call EXSQL 'FETCH SELSTNT lnv.ln.’
If ra > 4 then Signal ’'FINWRT'
If sqlcode = 100 then Do
open = 0
Call EXSQL ‘'CLOSE SELSTMT’
If ro “= 0 then Signal 'FINWRT'
Call EXSQL ’'COMMIT’
If rc “= 0 then Signal ’'FINWRT’
Leave
End
Do j = 1 to fields
If nulls.j & "SYMBOL" ('1lnv.ln.j’) “= 'VAR’ then lav.ln.j = ’?/
Else Do
iv = "LENGTH" (1lnv.1ln.Jj)
If width.j < iv then Do
width.j = iv
wmod = 1

lines = ln - 1
End
Else lines = 0
If wmod then nextln = 1
If nextln = 1 then Do
lm-ll
ulin = '’
Do j = 1 to fields
If width.j < "LENGTH" (var.j) then Do
width.j = "LENGTH" (var.j)
End
If lr.j = 'LEFT' then
lin = lin "LRFT" (var.j,width.j)
Else
lin = lin "RIGHT" (var.j,width.j)
ulin = ulin "COPIES" (' -’ ,width.j)
End
'ERASE S$QSL SSTSMST'
Call WRITE selstmt
Call WRITE "SUBSTR" (lin,2)

Call WRITE "SUBSTR" (ulin, 2)
End
Do i = nextln to lines
lin - 7!
Do j = 1 to fields
If lr.j = 'LEFT’ then
lin = lin "LRFT" (lnv.i.j,width.j)
Rlse
lin = lin "RIGHT" (lnv.i.j,width.3j)
End
Call WRITE "SUBSTR'" (lin,2)
End
If “open then Call WRITE ' **axwkawsaws* End-of-Data FANEAXRARANNKR/
FINWRT:
'PINIS SSQSL SSTSMST’
'FINIS S$QSL ESLSOSG’
XED:
' GLOBALV SELECT $select SRET SELECT’
If open then Push 'COMMAND MSG Enter MORE to get more rows of data.’
'RSTATEW S$QSL ES$LSOSG A’
If ro = 0 then Push 'XEDIT SSQSL RSLSOSG’
Push ’'COMMAND :’'nextln+3
Push 'COMMAND SET CASE M I’
Push ’'COMMAND SET SYNONYM SELECT 6 MACRO RXSELECT'
Push 'COMMAND SET SYNONYM MORE 4 MACRO RXMORE’
Push 'COMMAND SET SYNONYM SQLHELP 7 MACRO RXSQLHLP’
'XEDIT SQSL SSTSMST (WIDTH' maxlength
nextln = lines + 1
AFTHRLP:
' GLOBALV SELECT $select GET SELECT’
If select *= '’ then Do
Parse Var select cmd stmt
Upper omd
If omd = ’'SELECT’ then Do
'RXSQL PURGR SELSTMT’
Signal 'NEWSEL'
End
Else If omd = 'MORR’ then Do
If stmt “= '’ & "DATATYPE" (stmt, 'W’') then maxlns = stmt+0
If cpen then Signal ’'MORE’
Else Signal ’'XRED’
End
Else If omd = 'SQLHELP’ then Do
Upper stmt
'EXEC RXSQLHLP’' stmt
Signal ’'AFTHELP'
End
End
If open then Do
Call EXSQL ’'CLOSE SELSTMT’
Call EXSQL ’'COMMIT’
End
"ERASE S$QSL SSTSMST’
' GLOBALV SELECT S$select SET SELECT’
"RXSQL PURGE SELSTNT’
Bxit

EXSQL: Parse Arg omd
'RXSQL’ omd
If re = 0 then Return

-05.

If ro >= 100 then Do

r = re N
writelog 'RXSQL’' omd
writelog '+++(’'x’)+++' rxsqlmsg
o = ¢
Retuzrn

End

If rc = 8 then Do
r = roc
writelog selstmt
writelog 'RXSQL’' omd
writelog ' Sqlcode:’ sqlcode
Do exxd = 1 to 6
If sqlerxd.errxd “= 0 then
writelog ' Sqlerrd.’errd’:’ sqlerrd.errd
End
If sqlerrp “= '’ then writelog ' S8qlerxrp:’' sqlerrp
If sqlerzm “= '’ then writelog ' Sqlerrm:’' sqlerrm
If sqlwarn “= '’ then writelog ' Sqlwarn:’ sqlwarn
If sqlocode “= 0 then
Push 'COMMAND EMSG Entexr RXSQLHLP' sqlcode,
'to get more information.’

If "INDEX" ('W8',6 "LEFT" (sqlwazrn,l)) = O then ’'RXSQL ROLLRBACK'
ra=r

End

Return

WRITE: Parse Arg wrtlin
linlen = "LENGTH" (wxtlin)
If iotype = 0 then Do
' SET CMSTYPE HT’ :
'EXECIO 1 DISKW S$QSL SSTSMST A O V (VAR WRTLIN’
r = ro
' SET CMSTYPE' =rt
If r = 0 then Do
If linlen > maxlength then maxlength = linlen
Return
End
iotype = 1
End
If iotype = 1 then Do
If “said & linlen > 254 then Do
said = 1
Say ’'Line truncated’ linlen-254 ’'characters by EBXECIO’
End
'BEXECIO 1 DISKN S$QSL SSTSMST A O V (STRING' "LRFT" (wrtlin, 254)
maxlength = 254
End
Return

