
ADDITION OF A NEW RDBMS TO THE 'ACCESS FIELD'

OF THE CIS/TK SYSTEM

by

Gautam A. Gidwani

SUBMITED TO THE DEPARTMENT OF ELECTRICAL
ENGINEERING AND COMPUTER SCIENCE IN

PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1989

Copyright (c) 1989 Massachusetts Institute of Technology

Signature of Author

Certified by

Accepted by

Department of Electrical Engineering and Computer Science
June 5, 1989

Professor Stuart E. Madnick
Thesis Supervisor

Professor Leonard A. Gould
Chairman, Department Committee on Undergraduate Theses

ADDITION OF A NEW RDBMS TO THE 'ACCESS FIELD'

OF THE CIS/TK SYSTEM

by

Gautam A. Gidwani

Submitted to the Department of Electrical Engineering and Computer
Science on June 5, 1989 in partial fulfillment of the requirements for the

degree of Bachelor of Science.

Abstract

Large organizations often have many distinct divisions, each of which uses its own
independent Database Management System (DBMS). This does not allow one division to
access information electronically from the other divisions in the organisation. Thus,
inefficiency in the sharing of information among divisions, and consequently 'divisional
boundaries' are created within the organisation. Researchers in management systems have
therefore recognized the need for Composite Information Systems (CISs) that will eliminate
divisional boundaries by accessing and combining information stored in multiple, disparate
databases in remote divisions. Such a system, the 'Composite Information System/Tool Kit'
(CIS/TK) is currently in development at the MIT Sloan School of Management. An object-
oriented mechanism for data-retieval from multiple remote, disparate databases has been
developed as the lowest hierarchic level of the CIS/TK, and is referred to as the Local
Query Processor (LQP). This paper outlines the process by which a new remote, disparate,
Relational DBMS (RDBMS) can be added to the 'access field' (to be defined in this paper)
of the CISffK system.

Thesis Supervisor:
Title:

Professor Stuart E. Madnick
Professor of Management, M.I.T. Sloan School of Management

Dedication

To Prof. Stuart Madnick, who gave me his confidence and advice - despite my ignorance -
and agreed to be my thesis Supervisor.... many thanks.

To Prof. Richard Wang, who besides being the backbone of the LQP development process
in its early stages, was patient with me for my inexperience.

To Alec Champlin, who I never met, but who implemented the original LQP prototypes,
thereby laying the foundation for my own work.... I owe this dedication.

To John Maglio, the man who knows everything there is to know about the IBM 4381
mainframe, who always went out of his way to help, and without whose suggestions and
guidance I would never have got the job done... much gratitude.

To Ray Faith, the AT&T counterpart to John Maglio, who was also always there to point
me in the right direction when I had a problem.

To everyone who was a part of my life over the last four years - particularly the friends who
gave me their understanding and increased my own, and without whom I would not have
been able to suffer the MIT factory.

To my family, who have always shared their wisdom with me, for the worries I have caused
them, and for their love.

And specially... To my sister, Veena, who has not only made all this possible, but has been
my best friend.... my love and deepest gratitude.

Table of Contents

Abstract 2
Dedication 3
Table of Contents 4
List of Figures 6

1. INTRODUCTION 7

2. OVERVIEW OF A LOCAL QUERY PROCESSOR 11
2.1 THE LQP-OBJECT 11
2.2 THE LQP-DRIVER 15

2.2.1 The Query Translator Module 17
2.2.2 The Communication Server Module 18
2.2.3 The Data Filter 19
2.2.4 The Result Reader 19
2.2.5 Summary 20

3. ADDITION OF AN LQP FOR THE SQL/DS RDBMS ON 'SLOAN' 22
3.1 LQP PROBLEM DEFINITION 22

3.1.1 The Query Translator: Problem Definition 23
3.1.2 The Communication Server: Problem Definition 24
3.1.3 The Data Filter: Problem Definition 26
3.1.4 The Result Reader: Problem Definition 26
3.1.5 The LQP-object: Problem Definition 27

3.2 LQP IMPLEMENTATION 28
3.2.1 The Query Translator: Implementation 29
3.2.2 The Communication Server: Implementation 29
3.2.3 The Data Filter: Implementation 35
3.2.4 The Result Reader: Implementation 35
3.2.5 The LQP-object: Implementation 36

4. SAMPLE SESSION 39
4.1 The LQP-object and its Instance 40
4.2 The :SELF-INFO Message 41
4.3 The :GET-TABLES Message 42
4.4 The :GET-COLUMNS Message 51
4.5 The :GET-DATA Message 53

5. SYSTEM IDIOSYNCRACIES AND POSSIBLE PROBLEMS 58
5.1 SQL/DS LQP Idiosyncracy Check 58
5.2 SQL/DS SQL Format Idiosyncracies 59

6. CONCLUSION 61
6.1 Improvement of the SQL/DS RDBMS LQP 61

Appendix A. Common LISP Files 63
A.1 sqlds4381.lsp 63

-5-

A.2 sql.lsp 66
A.3 connect.lsp 70
A.4 read.lsp 72
A.5 demo-gg.lsp 74
A.6 korel.lsp 75

Appendix B. 'C' Program Files 84
B.1 filt4381.c 84
B.2 preREAD.c 89

Appendix C. UNIX Script Files 90
C.1 4381FILE 90
C.2 4381FTP 90

Appendix D. EXECutive Program File 91
D.1 4381SEL 91

-6-

List of Figures

Figure 1-1:
Figure 2-1:
Figure 3-1:

CIS/TK Hierarchy and LQP Interfaces
Internal Structure of LQP-driver and Module Functions
Communication Server Data Retrieval

Chapter 1

INTRODUCTION

Today, an increasingly high percentage of organizations use Database Management

Systems (DBMSs). DBMSs have greatly improved the efficiency - and thereby the

productivity/competitiveness - of organizations by eliminating the time-consuming process

of managing large volumes of information (data) manually. In addition, the use of DBMSs

has provided organizations greater flexibility in the storage, sorting and retrieval of data.

Optimization of information management, in an effort to further increase

productivity/competitiveness of organizations, continues to be an ongoing endeavor for

both Management Information Systems (MIS) managers as well as researchers of data

management systems.

A major drawback of contemporary information management systems is the

inevitable presence of 'information boundaries' among disparate systems. 1 Information

boundaries are manifest in the inability of divisions/organizations to access data from one

another. These boundaries may be 'intra-organizational' (divisional boundaries within an

organisation) or 'inter-organizational (boundaries between two or more organizations). MIS

managers and executives in business organizations are now becoming increasingly aware of

the potential revenue increases (through greater efficiency), and strategic opportunities that

can be harnessed by eliminating these information boundaries.

'Composite Information Systems' (CISs) have been recognized by researchers as the

future solution to eliminating - or at least reducing - information boundaries towards these

profitable ends. As is implied by the name, CISs are information systems capable of

IMadnick, S.E. and Wang, Y.R., Integrating Disparate Databases for Composite Answers, In Proceedings
of the 21st Hawaii International Conference on System Sciences, Kailu-Kona, Hawaii, January, 1988.

accessing and integrating data scattered among several remote, disparate DBMSs. The

'Composite Information SystemfTool Kit' (CIS/TK), currently in development at the MIT

Sloan School of Management is such a system.

The CIS/rK, being implemented in an object-oriented framework, intends to access

information from as many DBMSs as are included in its 'access field'. The access field, as

applied in this paper to the CIS/rK system, is defined as the entire range - or field - of

DBMSs that can be accessed by the CIS/TK system. The CIS/TK system allows the user to

make queries that would require information from one or any number of DBMSs in its

access field. The intelligent upper levels of the system's hierarchy, namely the 'Application

Query Processor' (AQP) and the 'Global Query Processor' (GQP) decide which DBMSs

are to be accessed to retrieve the required information. The GQP then creates sub-queries

from the user's query - known as 'Abstract Local Queries' (ALQs). These ALQs are sent

by the GQP to the lowest hierarchic level of the CIS/TK system, namely the 'Local Query

Processors' (LQPs). It is important to note that an LQP exists for each DBMS to be

accessed by the CIS/rK system. Each LQP receives a single ALQ which it addresses to the

distinct DBMS that it represents, and thus retrieves the requested data. Thus, the inclusion

of a new DBMS in the access field of the CIS/TK involves the implementation of a new

LQP that will access that DBMS.

Figure 1 provides a global view of the CIS/TK hierarchy and identifies the position of

each LQP as the interface between the higher levels of the CIS/TK and the distinct DBMS

that the LQP accesses. 2

2Horton, Dave, The Design and Implementation of the CISITK Query Processor Architecture, Master's
Thesis, Massachusetts Institute of Technology, May, 1988.

USER

AQP = Application Query Proce
GOP = Global Query Processor
LOP = Local Query Processor

DBMS 1 DBMS 2 DBMS 3

Figure 1-1: CIS/TK Hierarchy and LQP Interfaces

-10-

LQPs provide both 'physical' and 'logical'connectivity between the higher levels of

the CIS/TK and the respective DBMSs for which they are defined. 'Physical connectivity'

refers to the hardware and lower level communication software required to enable the

transfer of data between two computer systems. 'Logical connectivity', as applied to CIS

systems, refers to the process of relating the information in two seperate DBMSs when

there may be differences in syntax and semantics. Each LQP is a virtual driver; that is, it

reproduces the actions necessary to retrieve information from remote databases as if the

query were being processed by a human user. For a thorough understanding of the object-

oriented LQP-implementation methodology used herein, it is strongly recommended that

the reader study Alec R. Champlin's thesis, "Integrating Multiple Remote Databases in an

Object-oriented Framework".3 The paper provides a detailed description of the

specifications of an LQP, and an overview of the object-oriented framework used to

implement it.

This paper serves as a practical guide for adding a new remote, Relational DBMS

(RDBMS) to the access field of the CIS/TK system using Alec R. Champlin's object-

oriented framework. Chapter 2 provides an overview of the intemals of an LQP. Chapter 3

defines the problem of adding a new remote DBMS - specifically, the SQL/DS RDBMS on

MIT Sloan School of Management's IBM 4381 mainframe - to the CISfTK access field.

The step-by-step implementation procedure followed in the addition of the new LQP is also

elaborated in this chapter. Chapter 4 provides a sample session of the working LQP,

explaining its functions. Chapter 5 identifies possible future system-specific problems due

to the idiosyncracies of the systems involved. Finally, chapter 6 consists of a conclusion,

and discussion of future areas of work in the improvement of the LQP implemented herein.

3Champlin, Alec R., Integration of Remote Databases in an Object-oriented Framework, May, 1988.

-11-

Chapter 2

OVERVIEW OF A LOCAL QUERY PROCESSOR

This chapter presents an overview of the internal structure of a Local Query

Processor (LQP) that is to access a Relational DBMS (RDBMS). The reader is reminded

that a distinct LQP is required for each DBMS to be accessed by the CIS/TK system.

However, intelligent programming may allow the sharing of program files among several

LQPs. Alec R. Champlin uses this program-sharing scheme in the implementation of 3

LQPs in his thesis paper, "Integrating Multiple Remote Databases in an Object-oriented

Framework". The 3 LQPs implemented by Alec Champlin use common files to serve as

LQP modules that are referred to individually in this paper as LQP-driver modules, and

collectively as the LQP-driver.

An LQP may be thought of as 2 parts:
1. The LQP-object

2. The LQP-driver

The functions and internal structure of these two parts of the LQP shall be studied in this

chapter. It is imperative that the reader follows, where reference is made, the program files

in the appendices or the sample session of chapter 4.

2.1 THE LQP-OBJECT

The LQP object receives a message from the Global Query Processor (GQP), and

controls the LQP-driver modules in retrieving the information requested from a DBMS.

The LQP-object contains all the information - stored as attributes - regarding file

manipulation, and connectivity between the machine on which the 'local' CIS/IK system

resides and the 'remote' machine on which the DBMS is to be accessed. The attributes

-12-

typically include information such as the name of the remote machine, a user account and a

password on the remote machine,and the directories in which files may be accessed on both

machines.Also included in the LQP-object is a set of methods that are invoked by messages

that may be sent to (and are defined in) the LQP-object. It is specifically the methods that

control the LQP-driver modules and thereby perform the required data-retrieval functions.

There are currently 4 messages that can be supported by the LQP-object. These, along with

their respective functions are:

1. :SELF-INFO provides the CISITK user with information about the particular
DBMS with which the message is associated. The :SELF-INFO message
requires no arguments.

2. :GET-TABLES returns a list of all the tables which can be accessed within
the particular DBMS with which the message is associated. The :GET-
TABLES message requires no arguments.

3. :GET-COLUMNS returns a list of all the columns for a specified table
within the DBMS with which the message is associated. The :GET-
COLUMNS message require a valid 'table name' as its argument.

4. :GET-DATA returns a list of the requested data from the DBMS with which
the message is associated. The :GET-DATA message requires an 'Abstract
Local Query' - to be discussed below - as its argument.

It is important to understand the function of an LQP and how it receives messages

prior to discussing Abstract Local Queries (ALQs). The send-message function defined in

KOREL 4 (Knowledge-Object REpresentation Language) is used to pass messages to the

LQP(s) from the GQP. If data is required from more than one DBMS, then messages are

sent to all the respective LQPs representing distinct DBMSs. The format of the

send-message function is:

4Levine, Samuel P., Interfacing Objects and Databases, Master's Thesis, Massachusetts Institute of
Technology, May, 1987.

-13-

(send-message <message> '<qp-object or instance> <required arguments>)

1. <message> is one of the 4 messages acceptable by the LQP - :SELF-INFO,
:GET-TABLES, :GET-COLUMNS, or :GET-DATA.

2. <Iqp-object or instance> is either the name of the LQP-object or its instance,
and identifies an LQP. KOREL supports a hierarchic object definition. An
instance of an object inherits all the attributes of its superior, the LQP-
object. In addition the instance may also have its own set of unique attributes.
A message may be sent either to an object, or alternatively to its instance.

3. <required arguments> may be either a valid table name for the :GET-
COLUMNS message, or an ALQ for the :GET-DATA message.

Now the Abstract Local Query (ALQ) is studied. The format of ALQs is

predetermined, and is illustrated below. An ALQ received by an LQP is converted to a

query format - known as the 'DBMS Query' - that can be processed by the DBMS to which

the message (in this case a :GET-DATA message) is sent. The ALQ format is:

'(<table name> (<list of columns>) (<optional list

Possible Formats

.employee
"s.employee"
(s.employee)

Possible

of conditionals>))

Formats

(empname empnum phone)
("empname" "empnum" "phone")
'empname

Possible Formats

(> empnum "500 ")
(> "empnum" "500 ")
No conditionals

-14-

1. <table name> is the name of the table within the DBMS with which the LQP
is associated, from which data is to be retrieved.

2. <list of columns> is a list of columns within the specified table from which
rows of data are to be retrieved.

3. <optional list of conditionals> is an optional list of mathematical and/or
logical conditionals. These conditionals specify the rows of data required
from the specified columns within the specifed table. The conditionals
presently supported are: AND, OR, NOT, NULL, =, !=,>, <, >=, and <=.

Below are a few simple examples of ALQs:

EXAMPLE (1)
'(s.employee (empname empnum phone))

This ALQ represents a request for all the rows of information from the
'empname', 'empnum', and 'phone' columns in the 's.employee' table.

EXAMPLE (2)
' (s.employee (empname phone) (OR (= empname "namel")

(= empname "name2")))

This ALQ represents a request for the 'empname' and 'phone' informa-
tion where the 'empname' is either 'namel' or 'name2'.
This ALQ provides an illustration of the use of conditionals. Note the
mandatory use of double quotes for strings to be compared with data
entries in the DBMS.

EXAMPLE (3)
' ("s.employee" ("empname" "empnum" "phone") (< "empnum" "500"))

This example illustrates that column and table names in ALQs may
alternatively be formatted as character strings using double quotes -
a task otherwise performed by the 'Query Translator' module in the
LQP-driver (discussed later).

At this point, the reader is referred to the LQP-object definition in the file

sqlds4381.lsp (Appendix A.1). Note the attributes defined in the LQP-object "sqlds-4381",

its instance "sloandb", message definitions for :SELF-INFO, :GET-TABLES, :GET-

-15-

COLUMNS and :GET-DATA, and the respective methods invoked by these messages,

:display-sqlds4381-self-info, :get-sqlds4381 -tables, :get-sqlds4381 -tables and :get-

sqlds4381- data.

It should be noted that the methods invoked by the messages make calls to the LQP-

driver modules. Thus, the important observation should be made that the LQP-object of an

LQP 'controls' its LQP-driver. The automated LQP-driver is referred to as the virtual LQP-

driver.

The following section describes the internal functioning of the LQP-driver.

2.2 THE LQP-DRIVER

The LQP-driver consists of 4 modules which are controlled by the LQP-object. These

modules are:
1. The Query Translator Module

2. The Communication Server Module

3. The Data Filter Module

4. The Result Reader Module

The function of these modules is described in the following sections (2.2.1-2.2.4). In

order to acquire a better understanding of the functions of each LQP-driver module, the

reader should follow the sample session of chapter 4 after the discussion of this chapter.

The process of implementing new LQP-driver modules is studied in some depth in chapter

3.

Figure 2 - Internal Structure of LQP-driver and Module Functions - presents an

overview of the contents of this section (2.2).

-16-

ALL esut

AQP = Application Query Processor
GOP = Global Query Processor
LOP = Local Query Processor

Figure 2-1: Internal Structure of LQP-driver and Module Functions

-17-

2.2.1 The Query Translator Module

Each DBMS can only process a database query of a particular specified format. The

Query Translator performs the task of converting the ALQ received by the LQP (from the

GQP) to this format required by the DBMS to be queried. The query statement format

created by the Query Translator is referred to as the 'DBMS Query'. Presently all

Relational DBMSs use very similar - if not identical - query formats under the 'Structured

Query Language' (SQL) convention. Thus if the SQL statement required by one RDBMS is

identical to that required by another, it is possible to use a single Query Translator for the

two separate LQPs representing different DBMSs.

SQL provides a 'SELECT' database query statement. Most DBMSs support a

'SELECT' statement format that is identical or very similar to:

SELECT <columns> FROM <table> WHERE <conditionals>

1. <columns> is a list of column names, seperated by commas, within the table
from which rows of data are to be retrieved.

2. <table> is the table from which data is to be retrieved. A table consists of

several columns identified by column names, and rows of data within these
columns.

3. <conditionals> are qualifiers that specify which rows of data should be
retrieved from the specified columns within a table.

Recall, for illustrative purposes, the ALQs presented in section 2.1. The ALQs are to

be translated to SQL SELECT statements that are acceptable to the RDBMS with the LQP

is associated. Below are examples of Query Translator conversions of the ALQs presented

earlier, to their respective SQL SELECT statements for an ORACLE RDBMS:

-18-

EXAMPLE (1)
ALQ: '(s .eployee (empname empnum phone))
SQL: select ampname, empnum, phone from s.employee

EXAMPLE (2)
ALQ: '(s.employee (empname phone) (OR (= empname "namel")

(= empname "name2")))
SQL: select empname, phone from s .employee

where (empname = 'namel') OR (empname = 'name2)

EXAMPLE (3)
ALQ: ' ("s.employee" ("ezmpname " "empnum" "phone") (> "empname " "500"))
SQL: select empname, empnum, phone from s.employee

where empname > '500'

Note: The ALQ and SQL formats need not be broken up into more than one
line as they are above.

The DBMS Query created by the Query Translator is sent to the DBMS to be

accessed by the Communication Server Module.

2.2.2 The Communication Server Module

The Communication Server module provides the required connectivity between the

local machine and the machine in which the DBMS resides. It may therefore be considered

the heart of the LQP-driver.

This module must first connect to the machine from which data is to be retrieved.

Then, it needs to access the DBMS on that machine and provide it with the DBMS Query

(SQL statement if an RDBMS) created by the Query Translator. Once the DBMS has been

queried, the query result - referred to as the 'Result File' - must be retrieved to the machine

on which the CIS/TK system awaits information. This concludes the crucial responsibilities

of the Communication Server, and the Result File is then passed to the Data Filter for

further processing.

The querying of a remote DBMS involves connecting to the machine on which the

-19-

DBMS resides. Then, the DBMS is to be accessed. Depending on how the system is set up,

this may or may not involve logging into a user account on the remote machine, and

entering a particular directory from which the DBMS may be accessed. The DBMS Query

is then sent to the DBMS for processing. Thus, as a result of the idiosyncracies of the

systems involved in this process, the Communication Server's task is not always trivial.

The sample session of chapter 4 shows the DBMS query result - the Result File -

retrieved by the Communication Server for the new LQP implemented in chapter 3.

2.2.3 The Data Filter

Often, the Result File contains irrelevent communication information - for example,

the name of the DBMS, markers at the end of a query result output. The Data Filter is

responsible for filtering this irrelevent information from the Result File.

The second, more important function of the Data Filter is to parse the Result File to a

standard 'Table File' format. The Table File is standardized to a predetermined format that

is acceptable to the Result Reader module. In order to identify the function of the Data

Filter, both the Result File and the standardized Table File should be compared for the

:GET-TABLES message in the sample session of chapter 4.

The standardized Table File is processed further by the Result Reader module.

2.2.4 The Result Reader

The Result Reader module performs the final LQP task of parsing (reformatting) the

Table File returned by the Data Filter to another standardized format - the 'Result List' -

required by the Global Query Processor.

The Result List format defined for the CIS/TK LQP implementation methodology

used in this paper is:

-20-

RESULT LIST FORMAT:

((column-namel column-name2 column-name3 column-nameN)
(datall data12 data13data1N)
(data2l data22 data23data2N)
(data31 data32 data33data3N)

(dataM1 dataM2 dataM3 dataMN)f)

The Result List is actually a LISP-readable list of lists to be sent by the LQP to the

GQP. The first list within the Result List is a list of the names of the columns from which

data was requested. The row of data forms a separate sublist, and each entry within a sublist

- column-namel, datal2, data23, etc. - is of a string format. Above, the Result List format

was exemplified for M rows of data within N specified columns. <dataXY> refers to the

data entry in the Xth row of the Yth column.

2.2.5 Summary

1. The functioning if the entire LQP has been presented in this chapter.

2. The LQP is devided into 2 parts, the LQP-object and the LQP-driver.

3. The LQP-object contains all the information required by the LQP-driver in
processing data, and controls the LQP-driver.

4. The LQP-driver is made up of 4 modules: The Query Translaotor, the
Communication Server, the Data Filter, and the Result Reader.

5. The Query Translator converts an Abstract Local Query (ALQ) from the
Global Query Processor (GQP) to a format acceptable for processing by the
DBMS to be queried. The Query Translator output format is known as the
DBMS Query.

6. The Communication Server connects to the DBMS to be queried, queries the
DBMS with the DBMS Query, and retrieves the query result as the Result
File.

-21-

7. The Data Filter filters irrelevent information from the Result File and converts
it to a standardized format known as the Table File.

8. The Result Reader converts the Table File returned by the Data Filter to a
LISP-readable format that is acceptable to the GQP.

The reader should now be familiar enough with the structure of an LQP to understand

the specific task of adding the new SQL/DS RDBMS on the IBM 4381 mainframe, "sloan",

to the access field of the CIS/TK system. The process of defining this task and then

implementing the required LQP is discussed in the next chapter.

-22-

Chapter 3

ADDITION OF AN LQP FOR THE SQL/DS RDBMS ON 'SLOAN'

In chapter 1 the motivation for Composite Information Systems (CISs) was discussed

and the need for LQPs as the interface between remote DBMSs and the CISITK system was

identified. Chapter 2 presented an overview of the internal structure of an LQP, providing

the framework for the addition of a new DBMS to the access field of the CIS/TK system.

Specifically, an LQP is to be implemented as the interface between the CIS/TK system on

The AT&T machine, "mit2e", and the IBM SQL/DS RDBMS on "sloan".

Section 3.1 defines the problem of implementing the new LQP. In section 3.2, the

procedure followed in the implementation of the new LQP is outlined. Generic guidelines

for LQP implementation are provided where appropriate.

3.1 LQP PROBLEM DEFINITION

As discussed in chapter 2, the following modules are required in an LQP:
1. The LQP-object

2. The LQP-driver Query Translator Module

3. The LQP-driver Communication Server Module

4. The LQP-driver Data Filter Module

5. The LQP-driver Result Reader Module

Recall that the LQP-object contains all the attributes (information) required to enable

the LQP-driver to function as a virtual driver. Thus, it is logical that the conceptualization

of the LQP-driver should preceed the definition of the LQP-object. Following this logic, the

LQP-driver modules are visited first. Once the LQP-driver modules have been

conceptualized, the LQP-object may be implemented concurrently with the LQP-driver.

-23-

3.1.1 The Query Translator: Problem Definition

The Query Translator must convert the ALQ to the SQL SELECT statement required

by the SQL/DS RDBMS. The SQL format required by the SQL/DS RDBMS is identical to

that required by the ORACLE RDBMS discussed in section (2.2.1). A Query Translator

that converts an ALQ to the format required by an ORACLE RDBMS (and therefore the

SQL/DS RDBMS) already exists. This Query Translator was implemented by Alec

R. Champlin in his implementation of the first CIS/TK prototype LQPs. The existent Query

Translator may thus be used (shared) by the new LQP for the SQL/DS RDBMS, and this

problem is thus voided.

In this case a Query Translator that could perform the task of creating the

appropriately formatted SQL statement for the new LQP already existed. This may not be

true in general, in which case the implementor of a new LQP must implement a new Query

Translator. If an RDBMS's format does not differ from the SQL/DS or ORACLE RDBMS

formats by a great deal, it may be possible to use the existing Query Translator as the new

Query Translator simply by making minor modifications to its program code.

The reader is referred to the LISP file, sql.lsp (Appendix A.2), representing the

Query Translator used in the LQP for the SQL/DS RDBMS. The reader intending to

implement a new LQP with an SQL format differing from the SQL/DS or ORACLE

RDBMS SQL formats is urged to study the program code thoroughly. It is posiible that

simple modifications will allow a new LQP to share the Query Translator code in sql.lsp

with the existent LQPs.

Tasks For Query Translator Implementation
1. Check if any modifications are required to share the existing Query Translator

module with the new LQP.

-24-

3.1.2 The Communication Server: Problem Definition

The Communication Server is, as stated earlier, the heart of the LQP. The

Communication Server for the SQL/DS RDBMS LQP must provide the DBMS Query

(SQL statement) created by the Query Translator to the SQL/DS DBMS on the IBM 4381

mainframe, "sloan". This process entails connecting to the IBM machine "sloan", accessing

the SQL/DS RDBMS, and querying the RDBMS with the SELECT SQL statement. In

addition, the Communication Server must efficiently retrieve the query result - Result File -

returned by the SQL/DS RDBMS to the "mit2e", so that it may be processed further by the

LQP.

Considering first the problem of querying the remote SQL/DS RDBMS: It is found

that a UNIX script file (containing the required commands) may be used to access the

VMIS operating on the remote machine "sloan", thereby establishing the connection

between the two machines. Presently, the machine "sloan" may be accessed by using either

the telnet facility, or the cu (call up) facility provided by UNIX on the "mit2e". It is found

that the telnet facility takes sub-second times to establish connection between the "mit2e"

and "sloan", whereas the cu facility takes approximately 35 seconds, and has a success rate

of only about 75 percent. Therefore the telnet facility is chosen for this implementation.

Further tinkering with the systems reveals that once connection has been established

between the two machines, Oa robust method of accessing the SQL/DS RDBMS is by first

logging into a user account on "sloan", and then using the virtual CMS operating system's

EXECutive commands to directly access the RDBMS. Specifically the Sloan Information

System database, "slinfo", is to be queried using this procedure.

Assuming for now that such a script file can be implemented to access the SQL/DS's

"slinfo" database, the next problem is to retrieve the query result from "sloan" to the

"mit2e". It is found that a second script file may be used to perform this task.

-25-

A reasonable methodology in the implementation of the required script files

discussed above, is to first enter the commands to be embedded in the script files manually

(on a keyboard) from the "mit2e". Once the required commands have been identified, the

script files may be created. The information required by the Communication Server script

files as arguments may then be defined as attributes in the LQP-object. The Communication

Server can then be automated by providing the script files, along with their required

arguments, to the UNIX operating system on "mit2e" using KOREL's message-passing

facility. This entails the creation of a Communications Server template that is controlled by

the LQP-object and may then be used to control the script files being used to query the

RDBMS and retrieve the query result.

A template file for the Communication Server automation has already been

implemented by Alec R. Champlin, simplifying the task of implementing the new

Communication Server for the SQL/DS RDBMS LQP. This file, connect.Isp is found in

Appendix A, and the reader is urged to study it closely.

Tasks For Communication Server Implementation
1. Identify the sequence of commands to be automatically supplied by the

Communication Server to the remote SQL/DS RDBMS on "sloan". These
commands must perform the functions of accessing the SQL/DS RDBMS,
querying the "slinfo" database with the DBMS Query, and retrieving the
Result File to the local machine, "mit2e".

2. Implement the script file that accesses the remote SQL/DS RDBMS on
"sloan" and queries the resident database "slinfo".

3. Implement the script file that is to retrieve the query result from "sloan" to the
"mit2e" as the Result File.

4. Check if any modifications are required to share the existing Communication
Server template with the new LQP.

Note that the possibility of combining the two script files required here into a single

script file should be explored.

-26-

3.1.3 The Data Filter: Problem Definition

The Data Filter performs the tasks of filtering irrelevent Communications messages,

and parsing the Result File into a standardized Table File format which is readable by the

Result Reader.

This module may be implemented by writing a 'C' program that performs both the

required filtering and parsing functions. The functionality required of the C program is

dependent on two factors: (1) The method used by the Communication Server in accessing

the RDBMS and retrieving the Result File - Communications messages are dependent on

the sequence of commands used in data retrieval. (2) The format of the query result output

from the RDBMS - RDBMS output formats vary. The parsing functionality required

depends on the format returned by the SQL/DS RDBMS.

The standard Table File format is found in the sample session of chapter 4. The

reader intending to implement a new LQP using the scheme outlined in this paper should

study this format as a means of identifying the parsing requirements of his/her Data Filter.

Note that C has been chosen to implement the Data Filter by virtue of its speed, and

suitability for implementation of filtering and parsing functions.

Tasks For Data Filter Implementation
1. Write a 'C' program to convert the Result File returned by the

Communication Server to the standard Table File format that is readable by
the Result Reader.

3.1.4 The Result Reader: Problem Definition

The Result Reader, like the Data Filter, performs a parsing function. It converts the

standard Table File to a standard Result List that is LISP-readable by the Global Query

Processor (GQP).

The Result Reader too has already been implemented by Alec R. Champlin, and

performs the required task of converting the Table File to a Result List. Thus, this task is

rendered void under the present implementation scheme.

-27-

The reader is referred once again to the sample session of chapter 4 as a means of

identifying the parsing function performed by the Result Reader. The formats of both the

Table File and Result List should be studied closely. The Result Reader implemented by

Alec R. Champlin in the LISP file read.Isp (Appendix A.4), uses a C program - namely

preREAD.c (Appendix B.2) - to aid in its task of reformatting the Table File. If the reader

intending to implement a new is confident that his/her new Data Filter can return a Table

File of the specified format, then he/she can be assured that the existent Result Reader can

be shared by his/her new LQP. This is true because the Result Reader has standardized

formats both as its input and as its output.

Tasks For Result Reader Implementation
1. Check if any modifications are required to share the existing Result Reader

Module with the new LQP.

3.1.5 The LQP-object: Problem Definition

The LQP-driver having been conceptualized, it is now easy to identify the specific

requirements of the LQP-object. The LQP-object must control the four LQP-driver

modules, thereby creating a virtual LQP-driver.

The LQP-object for the SQL/DS RDBMS must contain as attributes all the

information required by the LQP-driver in accessing the SQL/DS RDBMS on "sloan",

querying its "slinfo" database, retrieving data to the local "mit2e" machine, and processing

data to the final Result List format required by the GQP. In addition, the LQP-object must

contain the four 'methods' discussed in section (2.1) that will control the LQP-driver

modules in performing the required task of retrieving the requested data from "slinfo" on

"sloan".

The reader is now advised to study closely the LQP-object in file sqlds4381.lsp

(Appendix A.1). The LQP-object definition, along with the sample session of chapter 4, is

helpful to the understanding of the LQP-object, and the inheritance of attributes of a

-28-

'superior' object by its 'inferior' instance. The reader will notice that the LQP-object has

been named "sqlds-4381" and contains all the information required by the LQP-driver

modules as attributes. In addition, the four methods alluded to above are also defined in

"sqlds-4381". The "sloandb" instance is created for the "sqlds-4381" LQP-object, and it

inherits all the attributes and methods defined for "sqlds-4381". The instance of an object

can have its own unique attributes and methods in addition to those inherited from its

superior object. Further, an examination of the procedures invoked by the messages (having

the same names as the methods) sent to the LQP-object will reveal exactly how the LQP-

object controls the LQP-driver.

Tasks For LQP-object Implementation
1. Define the LQP-object, with required attributes and methods. The LQP object

must contain all the required attributes required by the LQP-driver modules,
as well as the methods that may invoke defined procedures by the appropriate
messages to the LQP-object.

2. Define procedures (whose names are defined in the methods) that are invoked
by the methods when the appropriate message is passed to the LQP-object.

This concludes an identification of the LQP implementation tasks at hand for the

addition of the SQL/DS RDBMS to the access-field of the CIS/TK system. The next section

discusses the actual implementation procedure followed.

3.2 LQP IMPLEMENTATION

In this section, the procedure followed in the implementation of the LQP for the

SQL/DS RDBMS is outlined. Where appropriate, the idiosyncracies encountered during

implementation are identified, providing the reader with a realistic view of LQP

implementation. A step-by-step account of the actual implementation methodology used by

the author follows. Once again, the implementation of LQP-driver modules preceeds the

LQP-object implementation.

The implementation tasks identified for the LQP modules are considered one at a

time in sections (3.2.1- 3.2.5).

-29-

3.2.1 The Query Translator: Implementation

Query Translator File(s):
(1) sql.lsp (Appendix A.2)

TASK 1: Check the existing Query Translator file

The existing Query Translator module - file sql.Isp (Appendix A.2) - was to be tested

in order to determine whether any modifications were necessary to use it as the new Query

Translator for the SQL/DS RDBMS LQP.

The form-SQL LISP procedure defined in sql.Isp takes an Abstract Local Query

(ALQ) as its argument. It uses the parse-SQL-tname, parse-SQL-colmn and

parse-SQL-conds procedures respectively, to parse the table name, column list, and

conditionals list of the ALQ, and to create the SQL statement format required by SQL/DS.

These four procedures were tested thoroughly with appropriate arguments, and it was

determined that they flawlessly performed the task of converting the ALQ to the required

SQL/DS SQL SELECT statement.

The file sql.lsp, implemented by Alec R. Champlin, was thus used unmodified as the

Query Translator for the new LQP.

3.2.2 The Communication Server: Implementation

Communication Server File(s):
(1) connect.lsp (Appendix A.3)
(2) 4381FILE (Appendix C.1)
(3) 4381FTP (Appendix C2)
(4) 4381 SEL (Appendix D.1)

TASK 1: Identify all required data retrieval commands

This was found to be the sequence of commands required to access the SQL/DS

RDBMS on "sloan", query the "slinfo" database, and retrieve the query result to the local

machine, "mit2e":

1. Connect to the remote machine "sloan" by providing the command telnet

-30-

sloan. This command is provided form the UNIX operating system on the
"mit2e". Recall that the telnet facility was chosen over the cu facility, as
discussed in the problem definition of section (3.1.2)

2. Provide a logon <user-account> command to the VMIS operating system on
"sloan". <user-account> is the name of a user account on "sloan".

3. Similarly, provide the user's <password> at the password prompt.

4. Run the virtual CMS system on "sloan's" VM/IS operating system by
providing the command ipi cms.

5. Create a line mode I/O (input/output) environment by providing the
ac(noprof and sysprof3 commands to CMS. Typically, IBM machines use a
full-screen (block) mode I/O environment. However, the UNIX operating
system on the local AT&T 3B2 machine, "mit2e", is designed to handle
streams of data (line mode) as opposed to blocks of data (full-screen mode).
Specifically, the ac(noprof command accesses the hard disk when the user
account has been accessed, but disallows the running of the 'profile' EXEC
program which sets the terminal environment. It was found that the
environment that 'profile' sets is not appropriate for line mode I/O. The
sysprof3 command also sets environmental variables. Although this
command is not necessary, it is useful to ensure that the user (in this case the
virtual LQP-driver) is provided with all the 'standard' operating system
capabilities.

6. Initialize the SQL/DS database "slinfo" to be queried with the command
dbinit slinfo.

7. Provide the RXCASE String executive (EXEC) command to the virtual CMS
operating system to prepare it for a subsequent executive command with an
argument of the 'string' format. The RXSELECT executive command, in 8
below, takes an SQL statement of string format as its argument.

8. Query the database "slinfo" directly with the RXSELECT <SQL/DS SQL
statement> command. The RXSELECT EXEC takes the SQL statement to be
passed to the SQL/DS RDBMS as its argument. The SQL statement is of a
'string' format, and the RXCASE EXEC was therefore required above. The
RXSELECT provides a direct interface between the VM/CMS operating
system and the SQL/DS RDBMS on "sloan". It is therefore preferred over
alternative methods of querying the "slinfo" database. Alternative methods of
database access include the SQL interactive program, and the QMF (Query
Management Facility) interactive program.

9. Save the query result in a temporary file on the remote machine "sloan" with
the command ffile <remote temporary file>. The name chosen for the
remote temporary file is "43811qp temp". Thus the command ffile 43811qp
temp was issued. Note that this working directory requires a write password
for the storage of the query result in a temporary file. If a write password is
not provided, an error message will be returned, and the query result will not
be saved in the temporary file.

-31-

10. Logout of the remote "sloan" machine with the logoff command.

The above commands have succeeded in accessing the remote "slinfo" database,

querying it, and retrieving data to a remote file on "sloan". In general, UNIX's piping

feature enables the piping of the output of a session (such as the one discussed above) to a

file on the local machine. However, in this case, the communication level disparities

between the AT&T 3B2 and the IBM 4381 machines caused data losses as well as

inconsistent formats of retrived data. Specifically, it was found that rows of data were lost

in the pipe, or often rows were not seperated by newline characters causing inconsistencies

in the data format. Thus a scheme other than a UNIX pipe was considered as an alternative

in this process.

It was found that using the ftp file transfer protocol was a very robust way of

retrieving the data from the remote machine "sloan" to the local "mit2e". This scheme was

therefore used as an alternative to the UNIX pipe discussed above, despite the disadvantage

of having to use intermediary temporary storage files.

Below is the sequence of additional commands required to retrieve the remote

"43811qp temp" file on "sloan" to the local "mit2e" machine:

1. First, invoke the file transfer protocol facility by providing the ftp -n
command from the UNIX operating system. This starts up the ftp program,
enabling file transfers between the "mit2e" and "sloan". The -n (no prompt)
option was necessary in this case. The default 'prompt' mode being
interactive, it assumes that the <user-account> and <password> (see 3 below)
are being typed in by a human user at a keyboard, and therefore it does not
support scripted inputs. Thus, the 'no prompt' mode is used.

2. Provide the open sloan command to establish ftp connectivity to the remote
machine, "sloan".

3. Access the user account containing the temporary data file 43811qp temp by
providing the command user <user-account> <password> to the ftp
program. <user-account> and <password> here are the same as in 2 and 3
above.

4. Provide a working directory for the file transfer with the cd <user-account>

-32-

191. Once again <user-account> is the same account on which the remote
query result file had been stored. Note that this working directory needs to be
provided with a read password. Also, this is the same working directory as the
one provided with a write password in 9 above.

5. Provide the read password for the working directory on the user's account
with the quote acct <working directory password>. Although the read
password may differ from the write password, having the same password for
both read and write requires less information (one password instead of two) to
be carried as attributes in the LQP-object.

6. Now transfer the remote temporary file with the command get 43811qp.temp
<local temporary file> to ftp. This copies the remote temporary file to a local
temporary file <local temporary file>.

7. The task of retrieving the data to the local machine is now complete. Thus, the
remote temporary file 43811qp temp may now be deleted with the command
delete 43811qp temp to ftp.

8. Quit the ftp program with the quit command.

This completes an identification of the sequence of commands required to query and

retrieve data from the remote "slinfo" database on "sloan". Two script files are required to

automate these commands - one for the first group of 10 commands (telnet commands), and

one for the second group of 8 commands (ftp commands). The ftp commands are required

since piping can not be used in this case.

Figure 3 - Communication Server Data Retrieval - provides a clearer picture of how

the two script files, 4381FILE and 4381FTP respectively, are used. The first script file,

4381FILE, is responsible for connecting to "sloan", querying the "slinfo" database in the

SQL/DS RDBMS, and storing the query result (Result File) in the temporary file, 43811qp,

on the remote machine. The second script file, 4381FTP, then uses the ftp file transfer

protocol to retrieve the Result File to the local machine to be passed to the Data Filter.

TASK 2: Implement a script file to query "slinfo" on "sloan"

The script file 4381FILE (Appendix C.1) automates the process of accessing the

"slinfo" database on the SQL/DS RDBMS, querying the database, and storing the query

result in a remote temporary file on a user account on "sloan". Thus, the first group of 10

telnet commands is automated by 4381FILE.

-33-

DBMS Query
(From Query Translator)

Figure 3-1: Communication Server Data Retrieval

-34-

It is important to note that a modified version of the RXSELECT executive program

was used instead of the original version. This new version is named the 4381SEL executive

program and may be found in Appendix D. 1. The original version of RXSELECT truncated

data of more than 254 characters on a single line, and returned blocks of a maximum of 100

rows at a time. The modification to this program increased truncation length to 508

characters, and increased the maximum number of rows returned at one time to 10,000.

This was very useful in automating the data retrieval process, since if the original

RXSELECT was used, after every 100 rows of data were returned as a block, a MORE

command would have to be issued to the SQL/DS RDBMS in order to return the next 100

rows of the query result. This process would be very inefficient since only 100 rows of data

could be retrieved at a time.

Unlike RXSELECT, the 4381SEL executive program allows the query result to be

returned all at once as a block of no more than 10,000 rows. This is far more efficicient, in

terms of data retrieval speed, than issuing MORE commands between every 100 rows of

data. The modified 4381SEL is otherwise identical in performance to the RXSELECT

executive command.

An additional point to be noted about 4381SEL is that data will be lost for query

results of more than 508 characters on one row, and/or containing more than 10,000 rows of

data. These limits can be easily modified by changing the values for the maxlength and

maxins variables, which are presently set to 508 and 10,000 respectively.

TASK 3: Implement a script file to retrieve data to "mit2e"

Recall that this additional script file is required because UNIX's piping feature can

not be used in this case. The script file 4381FTP (Appendix C.2) uses the ftp file transfer

protocol to automate the process of retrieving the remote temporary file holding the query

result to the local "mit2e".

-35-

Although data is retrieved in a robust manner using this ftp script file, the data

retrieval process suffers an overhead of 15 seconds due to the sleep commands in the script

- a great disadvantage as compared with the piping scheme in terms of speed.

TASK 4: Check the existing Communication Server template file

The Communication Server template, connect.lsp (Appendix A.3), controls the script

files 4381FILE and 4381FTP. All the control information required by the Communication

Server template - file directories, remote machine name, database name, etc. - are stored as

attributes in the LQP-object.

Minor modifications were made to connect.lsp to accomodate the new LQP. The

new "SQL/DS" database type identifier was included, and the SQL/DS RDBMS invoker

was set to "dbinit".

This concludes the implementation of the Communication Server. It should now be

apparent, from the function performed by this module, why it is was called the heart of the

LQP-driver.

3.2.3 The Data Filter: Implementation

Data Filter File(s):
(1)fi1t4381.c (Appendix B.1)

TASK 1: Write a 'C' Program to convert the Result File to the Table File

The reader is referred to the Result File and standard Table File formats for the

:GET-TABLES message in the sample session (chapter 4).

A C program was written to perform the task of converting the Result File to the

Table File. This program, filt4381.c is found in Appendix B.1. This C program representing

the Data Filter module is controlled by the LQP-object (as are the other LQP-driver

modules.

-36-

3.2.4 The Result Reader: Implementation

Result Reader File(s):
(1) read.lsp (Appendix A.4)
(2) preREAD.c (Appendix B.2)

The Result Reader defined by Alec R. Champlin performs the task of parsing the

Table File to the required LISP-readable Result List format. These two formats are, once

again, exemplified in the sample session of chapter 4.

The Result Reader uses the 'C' program preREAD.c (Appendix B.2) - also

implemented by Alec R. Champlin - to aid in its task of creating the Result List from the

Table File.

TASK 1: Check the existing Result Reader file

On checking whether the existing Result Reader could be shared with the new LQP

for the SQL/DS RDBMS, it was found that a minor modification was needed:

The original Result Reader assumed that the standardized Table File was not to be

stored in a temporary file, but rather was passed to it intemally by LISP from the Data Filter

application. The data retrieval methodology used in the new LQP requires the Result

Reader to access the Table File from a temporary file in the 'communication server

directory' (refer to the LQP-object).

The Result Reader is thus modified to accomodate this new methodology. A

conditional statement has been added to the LISP file read.lsp (Appendix A.4) to determine

whether the LQP making the call to it is the new one being implemented here, or one of the

older LQPs. It accepts data from a temporary file in the event that the new LQP makes a

call to it, and uses the old methodology for the old LQPs. The modified version of the

Result Reader may thus be shared among the LQPs implemented by Alec Champlin and the

new LQP implemented here.

-37-

3.2.5 The LQP-object: Implementation

LQP-object File(s):
(1) sqlds4381 .lsp (Appendix A.1)

The definition of the LQP-object will complete the implementation of the new LQP

for the SQL/DS RDBMS on the remote IBM 4381 mainframe "sloan". The LQP-object is

defined using KOREL (Knowledge-Object REpresentation Language) developed by

Samuel P. Levine.

TASK 1: Define the LQP-object

The LQP-object for the SQL/DS RDBMS on "sloan" is defined using KOREL's

make-object function and is named "sqlds-4381". An instance, appropriately called

"sloandb" since the database to be accessed is on "sloan", is defined for the "sqlds-4381"

object using the create-instance function.

Since the "sloandb" instance inherits all the attributes of "sqlds-4381", messages for

the LQP may now be sent to either "sqlds-4381" or alternatively to "sloandb". Refer to the

attributes defined for "sqlds-4381" in the LQP-object file sqlds4381.lsp (Appendix A.1).

The reader will find that all the information required by the LQP-driver modules is stored in

these attributes. These attribute - machine-name, type-of-DBMS, etc. - should be studied in

order to understand where and how they are utilized by the LQP-driver.

Also included in the LQP-object definition are the :SELF-INFO, :GET-TABLES,

:GET-COLUMNS, and :GET-DATA messages. When these methods are sent to the LQP as

messages, they invoke the procedures display-sqlds4381-self-info, get-sqlds4381-tables,

get-sqlds4381 -columns, and get-sqlds4381 -data respectively.

TASK 2: Define the procedures invoked by the LQP messages

The procedures display-sqlds4381 -self-info, get-sqlds4381 -tables, get-sqlds4381-

columns, and get-sqlds4381-data are also defined in the file sqlds4381.lsp. These are the

-38-

procedures that control, and thereby automate, the four LQP-driver modules. These

procedures should be studied closely in conjunction with the LQP-driver modules that they

control.

This completes the implementation of the new LQP for the SQL/DS RDBMS on MIT

Sloan School's IBM 4381 mainframe, "sloan". The LQP-driver is now 'virtualized',

(automated) and the GQP of the CISf/K system on "mit2e" may now send data retrieval

messages to the LQP-object.

In the next chapter, a sample session of the working LQP is presented. The

processing of data from module to module is clearly illustrated for the four messages that

the LQP accepts.

-39-

Chapter 4

SAMPLE SESSION

This chapter provides a sample session of the working LQP implemented in the

previous chapter.

In section (4.1), KOREL's print-frame function is used to view the LQP-object

"sqlds-4381" and its instance "sloandb". Sections (4.2)-(4.5) describe the working of the

LQP in processing the 4 messages :SELF-INFO, :GET-TABLES, :GET-COLUMNS, and

:GET-DATA. User input is presented in bold typeface, and comments regarding the LQP

screen output are presented in text font.

First, the file demo-gg.lsp (Appendix A.5) is loaded on the IBCL system.

>(load "/usr/cistk/biggie/ibm4381/demo-gg.Isp")

Loading /usr/ciatk/biggie/ibm4381/frames.lsp
Finished loading /usr/cistk/biggie/ibm4381/frames . lap
Loading /usr/cistk/biggie/ibm4381/korel.lap
Finished loading /usr/ciatk/biggie/ibm4381/korel.lp
Loading /usr/cistk/biggie/ibm4381/sql.lsp
Finished loading /usr/ciatk/biggie/ibm4381/sql.lsp
Loading /usa/cistk/biggie/ibm4381/connect . lap
Finished loading /usr/ciatk/biggie/ibm4381/connect . lap
Loading /usr/ciatk/biggie/ibm4381/read.lap
Finished loading /usr/ciatk/biggie/ibm4381/read.lap
Loading /usr/ciatk/biggie/ibm4381/informix2a.lap
Finished loading /usr/ciatk/biggie/ibm4381/informix2a.lap
Loading /usr/cistk/biggie/ibm4381/infomix2c.lap
Finished loading /usr/ciatk/biggie/ibm4381/informix2c.lap
Loading /usr/cistk/biggie/ibm4381/oracle-rt . lap
Finished loading /usr/ciatk/biggie/ibm4381/oracle-rt . lap
Loading /usr/cistk/biggie/ibm4381/sqlds4381.lsp
Finished loading /usr/cistk/biggie/ibm4381/sqlds4381.lsp

What level of messages do you want printed?
-- > Quiet, Terse, Normal, or Verbose? verbose

OK... If you change your mind, use 'LQP-MODZ'. As in (lqp-mode 'quiet)
Finished loading demo-gg.lap
T

-40-

The VERBOSE message level is selected from the 4 possible options - QUIET,

TERSE, NORMAL and VERBOSE - for maximum screen display.

4.1 The LQP-object and its Instance

>(print-frame 'sqlds-4381)

SQLDS-4381:
MACHINE-NAME:

(VALUE sloan)
TYPE-OF-DBMS:

(VALUE sqlds)
LOCAL-DBMS?:

(VALUE NIL)
DATABASE:

(DEFAULT slinfo)
DATABASE-DIRECTORY:

(DEFAULT slinfo)
CObe-SERVER-DIRECTORY:

(DEFAULT /usr/citk/biggie/ibm4381)
COUNICATIONS-SCRIPT:

(VALUE 4381FILE)
EFFICIENT-CObM-SCRIPT:

(VALUE 4381FILE)
FTP-SCRIPT:

(VALUE 4381FTP)
TEMPORARY-FILE:

(VALUE connect1.tmp)
ACCOUNT:

(DEFAULT ggidwani)
PASSWORD:

(DEFAULT mohina)
METHODS:

(MULTIPLE-VALUE-F T)
(VALUE (SELF-INFO DISPLAY-SQLDS4381-SELF-INFO)

(GET-TABLES GET-SQLDS4381-TABLES)
(GET-COLUMNS GET-SQLDS4381-COLUMNS)
(GET-DATA GET-SQLDS4381-DATA))

INSTANCES:
(MULTIPLE-VALUE-F T)
(VALUE SLOANDB)

The LQP-object "sqlds-438 1" contains the required attributes and methods.

-41-

>(print-frame 'sloandb)

SLOANDB:
SUPERIORS:

(MULTIPLE-VALUE-F T)
(VALUE SQLDS-4381)

INSTANCE-OF:
(MULTIPLE-VALUE-F T)
(VALUE SQLDS-4381)

The "sloandb" instance inherits the attributes and methods of "sqlds-4381". Thus

sending messages to "sloandb" is equivalent to sending them to "sqlds-4381".

4.2 The :SELF-INFO Message

>(send-message 'sqlds-4381 :self-info)

The :SELF-INFO message is sent to the "sqlds-4381" object.

S Q L / D S O N S L O A N

The SQL/DS Relational Database Management System is a computer program
that manages pieces of information (data) stored in a computer. The data
is contained in tables made up of vertical columns and horizontal rows.
The SQL/DS database uses the SQL query language which is common among
many of today's RDBMS systems.

The :SELF-INFO message invokes the display-sqlds4381 -self-info procedure which

takes no arguments. display-sqlds4381-self-info simply displays the text defined within its

definition. No LQP-driver modules are used here.

-42-

4.3 The :GET-TABLES Message

>(send-message 'sloandb :get-tables)

The :GET-TABLES message is sent to the "sloandb" instance of "sqlds-4381". :GET-

TABLES takes no arguments.

DBMS Query to be sent to machine *loan....

SELECT TNAME, CREATOR, DBSPACENAME, NCOLS FROM SYSTEM.SYSCATALOG
ORDER BY TNAME, CREATOR

Fetching SQL/DS Table Data Requested
Connecting to slinfo on machine sloan ...
Done.

Transporting Result File to local machine....
Result File Retrieved.

The :GET-TABLES message does not use the Query Translator, but rather provides

an SQL statement (hard-coded within the procedure), requesting table information, to the

Communication Server as the DBMS Query. This is the same scheme used by the older

LQPs for the INFORMIX and ORACLE RDBMSs implemented by Alec R. Champlin.

The Communication Server has connected to "sloan", accessed the "slinfo" database,

queried it with the SQL statement for table information provided by get-sqlds4381 -tables,

and retrieved the Result File to the local machine "mit2e". The Result File contains data in

the same format as on the remote machine "sloan". Notice that communication messages -

the SQL SELECT statement and the 'end marker' - are also retrieved in this file. A list of

all the tables on the "slinfo" database has been returned:

select tname, creator, dbspacename, ncols from system. syscatalog order by
tname, creator

TNAME CREATOR DBSPACENAMZ NCOLS

ACCOUNTS EMILY PRODUCTION 8
ACTIVITY S 4
ACTIVITY SIS 1 SIS1 ACTIVITY 4

-43-

ACTLEVEL
ACTLEVEL
ACTTERM
ACTTERM
ACTTYPE
ACTTYPE
ACTNGT
ALLOC
APPEDUC
APPLICANT
APPLICATION
APPRDR
APPRDRCOM
AUTH LIST
BURDRPT
BURDTYPE
COLUMN LIST
COBEMANDSYNONYMS
CONCAREA
COST TABLE
COUNTRY
COUNTRY
COUNTRY 0
DBDTPNL1
DBDTPNL2
DEPT
DEPTENR
DEPTENR DETAIL
D42
EMPBURD
EMPHIST
EMPHIST
EMPLOYEE
EMPLOYEE
ENRCAT GR
ENRCAT UG
ENRPT
ENRPT
ENRSIZE
ENRSIZE
ENRWGT
ERROR LOG
FLOAD
FLOAD
FORM LIST
GR SUBJ
HJ ENR DETAIL
IDS
IDS DETAIL
IDS2
INVENTORY
MAJOR
MAJOR 0
MAP STYPE
MAPSUBJ GR

S
SIS 1
S
SIS 1
S
SIS 1
SIS7
ITZKOWIT
PHD

Q
PHD
PHD
PHD
Q
SIS
SIS
Q
Q
PHD
AMOULTON
PHD
SIS
SIS
DBE
DBE
EMILY
HJACOBY
HJACOBY
DBE
SIS
S
SIS 1
S
SIS 1
HJACOBY
HJACOBY
S
SIS 1
S
SIS 1
SIS7

Q
S
SIS 1

Q
HJACOBY
AMOULTON
HJACOBY
HJACOBY
HJACOBY
SQLDBA
SIS
SIS
HJACOBY
HJACOBY

SISi MISC

SIS1 ACTTERM

SISi MISC
MISCELLANEOUS
ALLOC TEST
PHD APPEDUC
DSQ2STBT
PHDAPPLICATION
PHDAPPRDR
PHDAPPRDRCOM

SIS BURDRPT
PRODUCTION

DSQTSSYN
PHD MISC
EXPLAIN TABS
PHDCOUNTRY

SISCOUNTRY
DBEDBoo
DBEDBOO
PRODUCTION
DEPTENR.
DEPTENR DETAIL

SIS EMPBURD

SIS1_EMPHIST

SIS1 EMPLOYEE
ENRCATGR
ENRCATUG

SIS1 ENRPT

SIS1 MISC
MISCELLANEOUS
DSQTSLOG

sis1 FLOAD

JACOBY
JACOBY
JACOBY
JACOBY
DSQTSDEF
SAMPLE

SIS STUDMISC
JACOBY
JACOBY

4
4
5
5
3
3
5
4
8
5

25
5
5

11
10

2
8
4
2
3
2
2
2

15
26

3
7
7
3
4
5
5

11
11

6
6

16
16
3
3
4
5
8
8
4
1
7
4
4
4
3
2
2
3
3

-44-

MAPSUBJ UG
MERGE
MITCOURSE
MITCOURSE
MITDEPT
MITDEPT
OBJECTDATA
OBJECTDIRECTORY
OBJECT REMARKS
OFFERING
OFFERING
ORDERS

ORG
ORG
PLAN TABLE
PLAYTBL3
POSITION
POSITION
POSTYPE
POSTYPE
PRIME1
PRIME2
PRIME4
PRIME5
PRIME 6
PRIME7
PROCLIST
PRODUCTS

PROFILES
PROG
PROG
PROGTYPE
PROGTYPE
PSETEACH
PSETEACH
PSEWGT
goF_PFKEYS
4FTABLE_LIST

QUERY_LIST
QUOTATIONS
REFERENCE TABLE
REFLIST
REGISTRATION
REGISTRATION
RESOURCE_TABLE
RESOURCE VIEW
ROUTINE
ROUTINE
ROUTINE
SALES
SAVE MAP STYPE
SCHOOLS
SCHOOLS_0
SECTEACH
SECTEACH

HJACOBY JACOBY
ITZKOWIT
S
SIS 1
S
SIS 1

Q
Q
Q

SIS 1
SQLDBA

DBE

Q
AMOULTON
DBE
S
SIS 1
S
SIS 1
sis
SIS
SIS
SIS
SIS
SIS

Q
Q
Q
S
SIS 1
S
SIS 1
S
SIS 1
SIS1
AMOULTON
Q
Q
SQLDBA
AMOULTON
DBE

SISi MISC

S1 MISC

DSQTSCT3
DSQTSCT1
DSQTSCT2

SISiOFFERING

DBEDBOO
DSQ2STBT
EXPLAIN TABS
DBEDBOO

SISi MISC

SISi MISC
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION
PRODUCTION

DSQ2STBT

DSQTSPRO

SISi MISC

S1 MISC

SIS1 PSETEACH
MISCELLANEOUS
PROFILE

SAMPLE
EXPLAINTABS
DBEDBOO

S
SIS 1 SIS1 REGISTRATION

Q DSQTSGOV

EXAMPLE

SLINFO
SQLDBA

Q
HJACOBY
SIS
SIS
S

ISQL
ISQL
ISQL
DSQ2STBT
DSQTSDEF

SIS3SCHOOLS

SIS 1 SIS1 SECTEACH

-45-

SECTION SIS
SSMAREA S
SSMAREA SIS 1
SSMGROUP S
SSMGROUP SIS 1
STAFF DBEE
STAFF Q
STORED QUERIES SQLDBA
STRUCTURETABLE AMOULTON
STUDADD SIS
STUDADD 0 SIS
STUDEDUC SIS
STUDEDUC_0 SIS
STUDENT SIS
STUDENT_0 SIS
STUDP SIS
SUBEVAL S
SUBEVAL SIS 1
SUBJECT S
SUBJECT SIS 1
SUPPLIERS SQLDBA
SYSACCESS SYSTEM
SYSCATALOG SYSTEM
SYSCHARSETS SYSTEM
SYSCOLAUTH SYSTEM
SYSCOLUMNS SYSTEM
SYSDBSPACES SYSTEM
SYSDROP SYSTEM
SYSINDEXES SYSTEM
SYSOPTIONS SYSTEM
SYSPROGAUTH SYSTEM
SYSSYNONYMS SYSTEM
SYSTABAUTH SYSTEM
SYSTEXT1 SQLDBA
SYSTEXT2 SQLDBA
SYSUSAGE SYSTEM
SYSUSERAUTH SYSTEM
SYSUSERLIST SQLDBA
SYSVIEWS SYSTEM
TABLELIST Q
TAPLAN S
TAPLAN SIS 1
TERM S
TERM SIS 1
THESACT SIS7
UG SUBJ HJACOBY

VPROFILE Q
WORKLOAD SIS
ZIP SIS
************* End-of-Data

PRODUCTION

SIS1 MISC

SISI MISC
DBEDB00
DSQ2STBT
ISQL
EXPLAINTABS

SISSTUDADD

SISSTUDEDUC

SIS STUDENT
PRODUCTION

S1S1_SUBEVAL

SIS1 SUBJECT
SAMPLE
SYSOO01
SYSOO01
SYSOO01
SYSOO01
SYS0001
SYSOO01
SYSOO01
SYSOO01
SYSOO01
SYSOO01
SYSOO01
SYSOO01
HELPTEXT
HELPTEXT
SYSOO01
SYSOO01

SYS0001

SIS1TAPLAN

SIS1 MISC
PRODUCTION
JACOBY

PRODUCTION
PRODUCTION

Note that the Result File is not actually visible on the screen, but is included for the

-46-

reader's understanding. All the other screen output presented in this chapter is in fact

visible in the VERBOSE mode.

The Data Filter filters the communication messages from the Result File, and

converts the Result File to the standard Table File format:

Converting Result File to 'standard' Table File ...
Done.
Result File after conversion to standard form ...

TNAMEICREATORIDBSPACENAME INCOLS|
ACCOUNTS|EMILYIPRODUCTION8|
ACTIVITYISI 141
ACTIVITYISIS_1|SIS1_ACTIVITY141
ACTLZVELISI 141
ACTLEVELISIS_1|SIS1 MISC141
ACTTERMISI 151
ACTTERMISIS 1|SIS1_ACTTERMI51
ACTTYPEISI 131
ACTTYPE SIS 11SIS1_MISC131
ACTNGT ISIS IMISCELIANEOUS 151
ALLOC IITZKOWIT I ALLOC TEST 141
APPEDUCIPHDIPHDAPPEDUCI8I
APPLICANTIQIDSQ2STBT 5I
APPLICATIONIPHD I PHDAPPLICATION1251
APPRDRI PHDIPHDAPPRDR1 51
APPRDRCOMIP HD PHDAPPRDRCOM 51
AUTHLISTQ l|111
BURDRPTISISISISBURDRPT1101
BURDTYPEIISI PRODUCTION121
COLUMNLISTJQ 181
COIGINDSYNONYMS I Q I DSQTSSYN 141
CONCAREAIPHD IPHDMISC 12
COST TABLE IAMOULTONI EXPLAINTABS 131
COUNTRY PHDI PHDCOUNTRY 121
COUNTRYISISi 121
COUNTRY_0 ISIS I SISCOUNTRY 121
DBDTPNL11DBE IDBEDBOO 1151
DBDTPNL21 DBE IDBEDBOO 1261
DEPT IEMILYIPRODUCTION1 31
DEPTENRIHJACOBYIDEPTENR171
DEPTENR DETAIL|HJACOBY|DEPTENR_DETAIL171
D421DBET 131
EMPBURD ISIS ISIS_EMPBURDI4|
EMPHISTISI 151
EMPHISTISIS_1|SIS1_EMPHIST51
EMPLOYKEESI |l1l
EMPLOYEEISISlISIS1_EMPLOYEEI11I
ENRCATGRIHJACOBYIENRCATGRI61
ENRCATUG|HJACOBYENRCATUG161

-47-

ENRPTISI 1161
ENRPTISIS_11SI1_ ENRPT1161
ENRSIZEIS 131
ENRSIZEZ8SI_11SIS1_MISC131
ENRWGT I SIS IMISCELLANOUS 141
ERROR LOGIQIDSQTSLOGI5I
FLoADISI 18
FLOADiSIS_18sis1_FLOAD18
FORM LISTIQI 141
GRSUBJ I HJACOBY I JACOBY111

JiNR_ DETAIL IAMOULTON I JACOBY171
IDSHEJACOBYIJACOBY 141
IDS DETAILj HJACOBY IJACOBY 141
IDs21 HJACOBYIDSQTSDEF 41
INVENTORYISQLDBAISAMPLE31
MAJORISISI 121
MAJOR OISISISISSTUDMISC121
MAPSTYPEIHJACOBYIJACOBY131
MAPSUBJ_GR I HJACOBY I JACOBY131
MAPSUBJ_UG|IHJACOBYIJACOBYI3I
MERGEIITZEOWITI 141
MITCOURSEISI 131
MITCOURSEISIS_11SIS1_MISC131
MITDEPTIS 121
MITDEPTISIS_11SIS1 MISC121
OBJECTDATAIQIDSQTSCT3151
OBJECT_DIRECTORYIQ1DSQTSCT1161
OBJECT_REMARKSIQIDSQTSCT2141
OrrERINGISI 181
OrrERINGISIS_1sis1_OFFERINGI8I
ORDERSISQLDBA 141
ORGIDBEIDBEDB00151
ORGIQIDSQ2STBT5
PLANTABLEIAMOULTONIEXPLAINTABS1121
PLAYTBL3|DBEIDBEDB00141
POSITIONISI 141
POSITIONISIS_1SIS1_MISC 1 41
POSTYPEISI 131
POSTYPEISIS_11SIS1 MISC131
PRIME1ISIS|PRODUCTION161
PRIME2|SISIPRODUCTION1 41
PRIME41SISIPRODUCTION121
PRIME51SISPRODUCTION121
PRIME61SISPRODUCTION121
PRIME7ISISIPRODUCTION 41
PROC LISTIQI 141
PRODUCTSIQ|DSQ2STBT141
PROFILESIQIDSQTSPROI141
PROGISI 141
PROGISIS 11SIS1 MISC141
PROGTYPEiSI 131
PROGTYPEISIS_11SIS1_MISC131
PSETEACHISI 131
PSETEACHISIS_11SIS1_PSETEACH3I
PSEWGT ISIS IMISCELLANEOUS 141

-48-

oFPFKEYS I AmoULTON I PROF ILE 141
MFTABLELIST QJ 151
QUERYLISTIQ 151
QUOTATIONSJ SQLDBAJ SAMPLE151
REFERENCE_TABLE IAMOULTON|EXPLAINTABS 181
REFLISTIDBEIDBEDBOO91
REGISTRATIONISI 181
REGISTRATIONISIS 11SS1_REGISTRATION18|
RESOURCE_TABLE IQIDSQTSGOV 151
RESOURCE_VIENIQ 151
ROUTINEIEXAMPLEIISQL131
ROUTINEISLINFOI ISQL 141
ROUTINE SQLDBAI ISQL 141
SALESIQIDSQ2STBT I5
SAVE_MAP_STYPEIHJACOBYIDSQTSDEFI3
SCHOOLS|SIS 131
SCHOOLS 0|SISISISSCHOOLS131
SECTEACH|SI 161
SECTEACHISIS_1ISIS1_SECTEACH6
SECTION I SISIPRODUCTION1101
SSMAREAISI 141
SSMAREAISIS_1|SIS1_MISC141
SSMGROUPIS 131
SSMGROUP ISIS_1|SIS1 MISCI31
STAFFIDBEIDBEDBED00 |7
STAIFFIQIDSQ2STBTI7
STORED QUERIESISQLDBAIISQL131
STRUCTURE TABLEIAMOULTON I EXPLAINTABS 161
STUDADDISISI J11
STUDADD _0SISISISSTUDADD1111
STUDEDUCISISI 151
STUDEDUC_0 1SISISIS _STUDEDUC151
STUDENT| ISI 1141
STUDENT_0ISISISIS STUDENT1141
STUDP 1sI1sPRODUCTION1161
SUBEVALISI 1141
SUBEVALISIS_11SIS1_SUBEVAL14
SUBJECTISI 1161
SUBJECTISIS_11SIS1_SUBJECT16
SUPPLIERSISQLDBAISAMPLE I31
SYSACCESS I SYSTEM I SYS0001 191
SYSCATALOGISYSTEMISYS00011191
SYSCHARSETS I SYSTEMISYS0001 131
SYSCOLAUTHI SYSTEMI SYS0001161
SYSCOLUMNS I SYSTEMI SYS00011151
SYSDBSPACESI SYSTEM I SYS00011121
SYSDROP I SYSTEM I SYS0001 131
SYSINDEXESI SYSTEMI SYS00011161
SYSOPTIONSI SYSTEM I SYS0001 131
SYSPROGAUTHI SYSTEM I SYS0001I 61
SYSSYNONYMS I SYSTEM I SYS0001 141
SYSTABAUTHISYSTEMI SYS00011151
SYSTEXT11SQLDBAI HELPTEXT121
SYSTEXT21SQLDBAI HELPTEXT 131
SYSUSAGE I SYSTEMISYS0001171

-49-

SYSUSERAUTHI SYSTEM I SYS0001161
SYSUSERLISTjSQLDBA I 151
SYSVIEWS I SYSTEM] SYSOO01141
TABLE LISTIQ 141
TAPLANISI 161
TAPLANISIS_11SIS1_TAPLAN6
TERMISI 18
TERMISIS_1|SIS1_MISC181
THESACT ISISIPRODUCTION 161
UG SUBJ HJACOBY JACOBY11l
VPROFILEIQI 1111
WORKLOADISIS IPRODUCTIONI8 I
ZIP ISIS IPRODUCTION131

Finally, the Result Reader converts the Table File to the Result List:

Table rile converted to Result List Done.

(("TNAME" "CREATOR' "DBSPACENAME" "NCOLS")

("ACCOUNTS" "EMILY" "PRODUCTION" "8") ("ACTIVITY" "S" " " "4")
("ACTIVITY" "SIS_1" "SIS1_ACTIVITY" "4") ("ACTLEVEL" "S" " " "4")

("ACTLEVEL" "SIS_1" "SIS1_MISC" "4") ("ACTTERM" "S" " " "5")
("ACTTERM" "SIS 1" "SIS1_ACTTERM" "5") ("ACTTYPE" "S" " " "3")
("ACTTYPE" "SIS_1" "I1_ MISC" "3")

("ACTNGT" "SIS" "MISCELLANEOUS" "5")
("ALLOC" "ITZKOWIT" "ALLOC TEST" "4")

("APPEDUC" "PHD" "PHD APPEDUC" "8") ("APPLICANT" "Q" "DSQ2STBT" "5")
("APPLICATION" "PHD" "PHDAPPLICATION" "25")

("APPRDR" "PHD" "PHDAPPRDR" "5")

("APPRDRCOM" "PHD" "PHDAPPRDRCOM" "5") ("AUTHLIST" "Q" " " "11")
("BURDRPT" "SIS" "SIS BURDRPT" "10")
("BURDTYPE" "SIS" "PRODUCTION" "2") ("COLUMNLIST" "Q" " " "8")

("COmE1ANDSYNONYMS" "Q" "DSQTSSYN" "4")

("CONCAREA" "PHD" "PHDMISC" "2")

("COST TABLE" "AIOULTON" "EXPLAIN TABS" "3")

("COUNTRY" "P1W" "P1W COUNTRY" "2") ("COUNTRY" "SIS" " " "2")

("COUNTRY 0" "SIS" "IS1_COUNTRY" "2")

("DBDTPNL1" "DBE" "DBEDB00" "15") ("DBDTPNL2" "DBE" "DBEDB00" "26")

("DEPT" "EMILY" "PRODUCTION" "3") ("DEPTENR" "HJACOBY" "DEPTENR" "7")
("DEPTENR_DETAIL" "HJACOBY" "DEPTENR DETAIL" "7")

("D42" "DBE" " " "3") ("EMPBURD" "SIS" "SISEMPBURD" "4")

("EIMHIST" "S" " " "5") ("EMPHIST" "SIS 1" "SIS1_EMPHIST" "5")

("EIPLOYEE" "S" " " "11") ("EMPLOYEE" "IS_1" "SIS1_EmpLOYEE" "11")
("ENRCAT GR" "HJACOBY" "ENRCAT GR" "6")
("ENRCATUG" "HJACOBY" "ENRCATUG" "6") ("ENRPT" "S" " " "16")
("ENRPT" "SIS 1" "SIS1 ENRPT" "16") ("ENRSIZE" "S" " " "3")
("ENRSIZE" "SIS 1" "IS1_MISC" "3")
("ENRWGT" "SIS" "MISCELLANEOUS" "4") ("ERROR LOG" "Q" "DSQTSLOG" "5")
("FLOAD" "S" " " "8") ("FLOAD" "SIS 1" "SIS1 FLOAD" "8")
("FORM LIST" "Q" " " "4") ("GR SUBJ" "HJACOBY" "JACOBY" "1")

("HJ ENR DETAIL" "AMOULTON" "JACOBY" "7")

-50-

("IDS" "AJACOBY" "JACOBY" "4") ("IDS_ DETAIL" "HJACOBY" "JACOBY" "4")

("IDS2" "HJACOBY" "DSQTSDEF" "4") ("INVENTORY" "SQLDBA" "SAMPLE" "3")

("MAJOR" "SIS" " " "2") ("MAJOR 0" "SIS" "SISSTUDMISC" "2")
("MAPSTYPE" "HJACOBY" "JACOBY" "3")

("MAPSUBJ GR" "HJACOBY" "JACOBY" "3")

("MAPSUBJUG" "HJACOBY" "JACOBY" "3") ("MERGE" "ITZKOWIT" " " "4")
("MITCOURSE" "S" " " "3") ("MITCOURSE" "SIS 1" "SIS1 MISC" "3")

("MITDEPT" "S" " " "2") ("MITDEPT" "SIS 1" "SIS1_MISC" "2")

("OBJECT DATA" "Q" "DSQTSCT3" "5")
("OBJECT_DIRECTORY" "Q" "DSQTSCT1" "6")
("OBJECT REMARKS" "Q" "DSQTSCT2" "4") ("OFFERING" "5" " " "8")

("OFFERING" "SIS1" "SIS1_OFFERING" "8") ("ORDERS" "SQLDBA" " " "4")

("ORG" "DBE" "DBEDBOO" "5") ("ORG" "Q" "DSQ2STBT" "5")

("PLAN TABLE" "AMOULTON" "EXPLAINTABS" "12")

("PLAYTBL3" "DBE" "DBEDB00" "4") ("POSITION" "5" " " "4")
("POSITION" "SIS 1" "SIS1 MISC" "4") ("POSTYPE" "S" " " "3")
("POSTYPE" "SIS_1" "SIS1 MISC" "3") ("PRIME1l" "SIS" "PRODUCTION" "6")

("PRIME2" "SIS" "PRODUCTION" "4") ("PRIME4" "SIS" "PRODUCTION" "2")

("PRIME5" "SIS" "PRODUCTION" "2") ("PRIME6" "SIS" "PRODUCTION" "2")

("PRIME7" "SIS" "PRODUCTION" "4") ("PROC LIST" "Q" " " "4")
("PRODUCTS" "Q" "DSQ2STBT" "4") ("PROFILES" "Q" "DSQTSPRO" "14")

("PROG" "S" " " "4") ("PROG" "SIS 1" "SIS1 MISC" "4")
("PROGTYPE" "5" " " "3") ("PROGTYPE" "SIS 1" "SIS1_MISC" "3")
("PSETEACH" "S" " " "3") ("PSETEACH" "SIS_1" "SIS1_PSETEACH" "3")
("PSEWGT" "SIS" "MISCELLANEOUS" "4")

("@aFPFKEYS" "AMOULTON" "PROFILE" "4") ("IFTABLE LIST" "Q" " " "5")
("QUERY LIST" "Q" " " "5") ("QUOTATIONS" "SQLDBA" "SAMPLE" "5")
("REFERENCE TABLE" "AMOULTON" "EXPLAIN TABS" "8")
("REFLIST" "DBE" "DBEDBOO" "9") ("REGISTRATION" "5" " ,"8")
("REGISTRATION" "SIS1" "SIS1_REGISTRATION" "8")

("RESOURCETABLE" "Q" "DSQTSGOV" "5") ("RESOURCE VIEW" "Q" " " "5")
("ROUTINE" "EXAMPLE" "ISQL" "3") ("ROUTINE" "SLINFO" "ISQL" "4")
("ROUTINE" "SQLDBA" "ISQL" "4") ("SALES" "Q" "DSQ2STBT" "5")

("SAVE MAP STYPE" "HJACOBY" "DSQTSDEF" "3") ("SCHOOLS" "SIS" " " "3")

("SCHOOLS 0" "SIS" "SIS SCHOOLS" "3") ("SECTEACH" "S" " " "6")
("SECTEACH" "SIS_1" "S1_ SECTEACH" "6")
("SECTION" "SIS" "PRODUCTION" "10") ("SSMAREA" "s" " " "4")
("SSMAREA" "SIS1" "SIS1 MISC" "4") ("SSMGROUP" "S" " " "3")
("SSMGROUP" "IS_ 1" "SIS1_MISC" "3") ("STAFF" "DBE" "DBEDBOO" "7")
("STAFF" "Q" "DSQ2STBT" "7") ("STORED QUERIES" "SQLDBA" "ISQL" "3")
("STRUCTURE TABLE" "AMOULTON" "EXPLAIN TABS" "6")

("STUDADD" "SIS" " " "11") ("STUDADD_0" "SIS" "SIS STUDADD" "11")
("STUDEDUC" "SIS" " " "5") ("STUDEDUC_0" "SI3" " SISSTUDEDUC" "5")

("STUDENT" "SIS" " " "14") ("STUDENT_0" "SIS" "SISSTUDENT" "14")

("STUDP" "SIS" "PRODUCTION" "16") ("SUBEVAL" "S" " " "14")
("SUBEVAL" "SIS 1" "SIS1_SUBEVAL" "14") ("SUBJECT" """ "16")
("SUBJECT" "SIS_1" "SIS1_SUBJECT" "16")

("SUPPLIERS" "SQLDBA" "SAMPLE" "3")

("SYSACCESS" "SYSTEM" "SYS0001" "9")
("SYSCATALOG" "SYSTEM" "SYS0001" "19")
("SYSCHARSETS" "SYSTEM" "SYS0001" "3")

("SYSCOLAUTH" "SYSTEM" "SYS0001" "6")
("SYSCOLUMNS" "SYSTEM" "SYS0001" "15")

("SYSDBSPACES" "SYSTEM" "SYS0001" "12")

("SYSDROP" "SYSTEM" "SYS0001" "3")

-51-

("SYSINDEXES" "SYSTEM" "SYS0001" "16")
("SYSOPTIONS" "SYSTEM" "SYS0001" "3")
("SYSPROGAUTH" "SYSTEM" "SYS0001" "6")
("SYSSYNONYMS" "SYSTEM" "SYS0001" "4")
("SYSTABAUTH" "SYSTEM" "SYS0001" "15")
("SYSTEXT1" "SQLDBA" "HELPTEXT" "2")
("SYSTEXT2" "SQLDBA" "HELPTEXT" "3")
("SYSUSAGE" "SYSTEM" "SYS0001" "7")
("SYSUSERAUTH" "SYSTEM" "SYS0001" "6")
("SYSUSERLIST" "SQLDBA" " " "5") ("SYSVIEWS" "SYSTEM" "SYS0001" "4")
("TABLE LIST" "Q" " " "4") ("TAPLAN" "S" " " "6")

"TAPLAN" "SIS 1" "SIS1 TAPLAN" "6") ("TERhM" "S" " " "8")
("TERM" "8s81" "SIS1 MISC" "8") ("THESACT" "SIS" "PRODUCTION" "6")
("UG SUBJ" "EJACOBY" "JACOBY" "1") ("VPROFILE" "Q" " " "11")
("WORKLOAD" "SIS" "PRODUCTION" "8") ("ZIP" "SIS" "PRODUCTION" "3"))

4.4 The :GET-COLUMNS Message

>(send-message 'sqlds-4381 :get-columns 'employee)

The :GET-COLUMNS message takes as its single argument a valid table name - here

the table named employee.

DBMS Query to be sent to machine sloan....

SELECT DISTINCT CNAME, COLTYPE, NULLS FROM SYSTEM.SYSCOLUMNS
WHERE THAN = 'EMPLOYEE' ORDER BY CNAME

Fetching SQL/DS Data Requested....
Connecting to slinfo on machine sloan...
Done.

Transporting Result File to local machine....
Result File Retrieved.

The :GET-COLUMNS message also does not use the Query Translator module, but

provides the Communication Server with a hard-coded SQL statement (DBMS Query)

representing a request for the column names on the specified table.

The Communication Server has connected to "sloan", accessed the "slinfo" database,

queried it with the SQL statement for column information provided by

get-sqlds4381-columns, and retrieved the Result File (not visible as screen output).

-52-

SELECT DISTINCT CNAME, COLTYPE, NULLS FROM SYSTEM.SYSCOLUMNS
WHERE TNAME = 'EMPLOYEE' ORDER BY CNAME

CNAME COLTYPE NULLS

AREAABB CHAR N
COMPID CHAR N
EFFTERM SMALLINT N
EMPABB CHAR N
EMPNAME CHAR N
EMPNUM CHAR N
EMPTYPE CHAR N
ENDTERM SMALLINT N
OFFICE CHAR N
PHONE CHAR N
POSABB CHAR N
************* End-of-Data **************

The Data Filter converts the Result File to the standard Table File:

Converting Result File to 'standard' Table File...
Done.
Result file after conversion to standard form..

CNAMEICOLTYPEINULLSI
AREAABBICHAR IN I
COMPID ICHAR I NI
EFFTERM I SMALLINT I NI
EMPABB I CHAR I N I
EMPNAME CHAR I NI
EMPNUMICHARINI
EMPTYPEICHARINI
ENDTERM I SMALLINT INI
OFFICEICHARINI
PHONEICHAR IN
POSABBICHAR INI

The Result Reader converts the Table File to the Result List:

Table rile converted to Result List .. .Done.

(("CNAM" "COLTYPE" "NULLS") ("AREAABB" "CHAR" "N")
("COMPID" "CHAR" "N") ("EFFTERM" "SMALLINT" "N") ("EMPABB" "CHAR" "N")

(EMPNAME" " CHAR" "N") (" EMPNUM" "CHAR" "N") (" EIMTYPE " " CHAR" "N ")
("ENDTERM" "SMALLINT" "N") ("OFFICE" "CHAR" "N") ("PHONE" "CHAR" "N")

-53-

("POSABB" "CHAR" "N"))

4.5 The:GET-DATA Message

>(send-message 'sloandb :get-data '(s.employee (empname empnum emptype)

(OR (= emptype "X") (= emptype "R"))))

The :GET-DATA message takes an Abstract Local Query (ALQ) as its argument.

PARSZ-SQL-TNAME -- Converting symbol S.DMPLOYUE into a string.
PARSE-SQL-COLM -- Converting symbol EMPTYPE into a string.
PARSZ-SQL-COLMN -- Converting symbol EPTYPE into a string.
PARSZ-SQL-COLMN -- Converting symbol ZMPNAM into a string.
PARSE-SQL-COLMN -- Converting symbol EMPNUM into a string.
PARSZ-SQL-COLMN -- Converting symbol EMPTYPE into a string.

DBMS Query to be sent to machine sloan....

SELECT EMPNAME, zMPNUM, EMPTYPE FROM S. EMPLOYEE NHERE (EMPTYPE = 'X')

OR (EMPTYPE = ' R')

It should now be clear how the :GET-DATA allows the user to create arbitrary SQL

statements, as opposed to the rigid, 'hard-coded' schemes utilized by the :GET-TABLES

and :GET-COLUMNS messages. :GET-DATA uses the Query Translator to convert an

ALQ to the SQL SELECT statement that it represents. This, in fact, is the only difference

between the :GET-DATA message and the :GET-TABLES and :GET-COLUMNS

messages. Note how the names of the column names, the table name, and the contents of

the conditionals are converted to 'strings'. Also note how the conditionals perform a

conditional search of the "X" and "R" employee types.

retching SQL/DS Data Requested....
Connecting to slinfo on machine sloan...
Done.

Transporting Result rile to local machine....

-54-

Result File Retrieved.

The Communication Server has connected to "sloan", accessed the "slinfo" database,

queried it with the SQL statement created by the Query Translator, and retrieved the

requested data as the Result File (not visible as screen output):

select empname, empnum, emptype from s. employee where (emptype = 'X')
OR (emptype = 'R')
EMPNAME EMPNUM EMPTYPE

Alexander, Sidney 0001 X
Robinson, Richard 0018 X
Bottiglia, William 0105 X
Hekimian, J. 0162 X
Shapiro, Eli 0236 X
Toong, oo-Min 0251 R
Senge, Peter 0264 R
Bowman, Edward 0302 X
Johnson, Howard 0417 X
Ahuja, Ravindra 0498 R
Bowles, Edward 0540 X
Brooks, E 0541 X
Durand, David 0542 X
Moore, Leo 0543 X
Myers, Charles 0544 X
Bullen, Christine 0546 R
Davidson, Frank 0547 R
Egan, Eleanor 0549 R
Gould, Janet 0551 R
Graham, Alan 0552 R
Gupta, Amar 0553 R
Hollinger, Peter 0554 R
Katz, Ralph 0556 R
Pugh, Alexander 0560 R
Quillard, Judith 0561 R
Samarov, Alexander 0562 R
Samuel, Roger 0563 R
White, Patricia 0565 R
Wilson, Diane 0566 R
Invernizzi, E 0569 X
Stevens, Chandler 0577 X
Benjamin, Robert 0578 X
Johansen, Robert 0579 R
Short, James 0631 R
Antrim, Lance 0639 R
Kaminka, Shlomit 0646 X
Luberto, Gaetano 0647 X
Martin, Andrew 0649 R
Yang, Shi-Shen 0654 X

-55-

Arino, Miguel 0686 X
Curley, Kathleen 0689 X
Esteban, Jesus 0690 X
Gardner, Margaret 0691 X
Lasserre, Pierre 0692 X
Triantis, Alexander 0694 X
Villager, Daniel 0695 X
Kirsch, John 0696 R
Martinez, Jon 0697 R
Patterson, Seymour 0698 R
Wolfson, A. Mark 0701 X
Various Faculty 9998 X
Out of Course Staff 9999 X
************* End-of-Data **************

The Data Filter converts the Result File to the standard Table File:

Converting Result File to 'standard' Table File...
Done.

ZMPNAME I EMPNUM I EMPTYPE|
Alexander, SidneyI00011 XI
Robinson, Richard00181X I
Bottiglia, William 0105|XI
Hekimian, J. 101621XI
Shapiro, ZliI02361XI
Toong, Hoo-MinI02511RI
Senge, PeterI0264IRI
Bowman, EdwardI0302IXI
Johnson, Howard04171X I
Ahuja, Ravindra|04981RI
Bowles, Edward10540IXI
Brooks, E105411XI
Durand, David105421XI
Moore, LeoI05431XI
Myers, Charles105441XI
Bullen, Christine105461RI
Davidson, Frank 105471 RI
Egan, Eleanor 105491 RI
Gould, Janet I05511 RI
Graham, AlanI05521RI
Gupta, AmarI05531RI
Hollinger, Peter 105541 RI
Katz, Ralph105561RI
Pugh, Alexander 105601 RI
Quillard, Judith105611 RI
Samarov, Alexander105621 RI
Samuel, Roger 05631RI
White, Patricia105651R I
Wilson, Diane|05661RI
Invernizzi, E105691XI

-56-

Stevens, Chandler105771XI
Benjamin, Robert 105781XI
Johansen, Robert|05791 RI
Short, JamesI0631|RI
Antrim, LanceI0639|RI
Kaminka, ShlomitI0646|XI
Luberto, Gaetanol06471XI
Martin, AndrewIO649lRI
Yang, Shi-Shen106541XI
Arino, MiguellO686|XI
Curley, KathleenI0689|XI
Esteban, Jesus106901XI
Gardner, Margaret I0691|XI
Lasserre, Pierre|06921XI
Triantis, Alexander|06941XI
Villager, Daniel 106951XI
Kirsch, JohnIO696IRI
Martinez, JonIO697IRI
Patterson, Seymour 106981 RI
Wolfson, A. MarkI07011XI
Various Faculty 199981XI
Out of Course StaffI9999IXI

The Result Reader converts the Table File to the Result List:

Table File converted to Result ListDone.

(("EMPNAME" "EMPNUM" "EMPTYPE") ("Alexander, Sidney" "0001" "X")
("Robinson, Richard" "0018" "X") ("Bottiglia, William" "0105" "X")
("Hekimian, J." "0162" "X") ("Shapiro, Eli" "0236" "X")
("Toong, Hoo-Min" "0251" "R") ("Senge, Peter" "0264" "R")
("Bowman, Edward" "0302" "X") ("Johnson, Howard" "0417" "X")
("Ahuja, Ravindra" "0498" "R") ("Bowles, Edward" "0540" "X")
("Brooks, E" "0541" "X") ("Durand, David" "0542" "x")
("Moore, Leo" "0543" "X") ("Myers, Charles" "0544" "X")
("Bullen, Christine" "0546" "R") ("Davidson, Frank" "0547" "R")
("Egan, Eleanor" "0549" "R") ("Gould, Janet" "0551" "R")
("Graham, Alan" "0552" "R") ("Gupta, Amar" "0553" "R")
("Hollinger, Peter" "0554" "R") ("Katz, Ralph" "0556" "R")
("Pugh, Alexander" "0560" "R") ("Quillard, Judith" "0561" "R")
("Samarov, Alexander" "0562" "R") ("Samuel, Roger" "0563" "R")

("White, Patricia" "0565" "R") ("Wilson, Diane" "0566" "R")
("Invernizzi, Z" "0569" "X") ("Stevens, Chandler" "0577" "X")
("Benjamin, Robert" "0578" "X") ("Johansen, Robert" "0579" "R")
("Short, James" "0631" "R") ("Antrim, Lance" "0639" "R")
("Kaminka, Shlomit" "0646" "X") ("Luberto, Gaetano" "0647" "X")
("Martin, Andrew" "0649" "R") ("Yang, Shi-Shen" "0654" "X")
("Arino, Miguel" "0686" "X") ("Curley, Kathleen" "0689" "X")
("Esteban, Jesus" "0690" "X") ("Gardner, Margaret" "0691" "X")
("Lasserre, Pierre" "0692" "X") ("Triantis, Alexander" "0694" "X")
("Villager, Daniel" "0695" "X") ("Kirsch, John" "0696" "R")

-57-

("Martinez, Jon" "0697" "R") ("Patterson, Seymour" "0698" "R")
("Wolfson, A. Mark" "0701" "X") ("Various Faculty" "9998" "X")
("Out of Course Staff" "9999" "X"))

This concludes the sample session.

-58-

Chapter 5

SYSTEM IDIOSYNCRACIES AND POSSIBLE PROBLEMS

A robust LQP has been implemented for the SQL/DS RDBMS on MIT Sloan

School's IBM 4381 mainframe. There are, however, idiosyncracies involved with the

retrieving of data from the remote IBM 4381 mainframe to the local AT&T 3B2 machine.

It is possible that outside parties - like Systems Administrators - may make

inadvertent changes to the systems being used by the new LQP, thereby rendering it non-

functional. It is therefore important that CIS/TK system developers take note of these

idiosyncracies.

Section (6.1) provides a list of idiosyncracies that could result in the breakdown of

the SQL/DS RDBMS LQP. These idiosyncracies are presented in the form of checks to be

made, under the assumption that section (5.1) will be particularly important in the event that

the LQP is found to fail. Section (5.2) is devoted to a particularly noteworthy idiosyncracy

of the SQL/DS SQL format. This section is intendedfor the use of developers of the higher

levels of the CISf/K system.

5.1 SQL/DS LQP Idiosyncracy Check

1. Make sure that a user account is defined on the remote IBM 4381 machine.
The <user-account> name and the <password> for the account should be the
same as those stored in the LQP-object as attributes. If it is found that an
account has been terminated, contact the IBM 4381 mainframe Systems
Administrator.

2. A working directory is required on the IBM 4381 user account. This working
directory must be provided with both read and write passwords that are
identical to the <password> for the user account. The working directories are
used by the Communication Server script files. (See section (3.2.2).)

3. The 4381SEL EXECutive program, a modified version of the RXSELECT
EXECutive program, needs to accomodate as many charecters in a line, and

-59-

as many rows of data, as are found in the query result output format. The
variable maxlength which truncates lines after a specified number of
charecters, is presently set at 508 charecters. The maxins variable that causes
a specified number of rows to be returned at a time, is presently set at 10,000.
These values may be changed accordingly if it is found that lines of data are
truncated or rows of data are lost. (See section (3.2.2).)

4. The UNIX operating system on the AT&T 3B2 machine can only handle I/O
streams. A line mode I/O environment should therefore be specified on the
otherwise full-screen (block) mode IBM machine. This is done by issuing the
ac(noprof and sysprof3 commands to the IBM 4381 mainframe from the
script file 4381FILE. (see section (3.2.2).)

5. The -n option must be used for ftp. This is critical to the correct functioning
of the 4381FTP script file, as described in section (3.2.2).)

6. Timing problems may also cause the LQP script files to fail, depending upon
the processing loads on the 2 machines being used. If timing problems are
suspected, the sleep commands in the script files 4381FILE and 4381FTP
should be provided with a larger sleep period between commands to be issued
to the remote IBM 4381 machine.

5.2 SQL/DS SQL Format Idiosyncracies

The SQL/DS RDBMS uses the concept of a 'creator'. Within the RDBMS, several

databases may be defined. Within each of these databases are defined a number of tables.

Each table in a database has a creator. Every table is referenced by its creator in an SQL/DS

SELECT statement. Specifically, a table <table> created by <creator> is referred to as

<creator>.<table> in a SELECT statement. It is, however, referred to simply as <table>

when the RDBMS uses it to retrieve a list of column names. Thus, for the :GET-DATA

message, when an ALQ is sent to the LQP, the table name should have the form

<creator>.<table>, but for the :GET-COLUMNS message, it should be left as <table>.

To illustrate, consider the usage of the table name employee created by the creator s,

for the :GET-COLUMNS and :GET-DATA messages respectively, below:

THE :GET-COLUbMiS MESSAGE:

(send-message 'sloandb :get-columns 'employee)

-60-

The table is referred to simply as employee for the :GET-COLUMNS message.

THE :GZT-DATA MESSAGE:

(send-mssage 'sloandb :get-data ' (s.mployee (ampname empnum)))

The table is referred to as s.employee in the :GET-DATA message's ALQ.

-61-

Chapter 6

CONCLUSION

The CISf/K system proposes to eliminate information boundaries by integrating

multiple, remote DBMSs. Local Query Processors (LQPs) provide the

connectivity/interface between the upper, intelligent levels of the CIS/TK system and the

remote DBMSs in its access field.

The object-oriented implementation of an LQP for the addition of a Relational

DBMS to the CISTK system's access field was studied closely. This involved

implementing a LQP-driver and an LQP-object that automates its functioning. Where it was

found that existing code performed the same function as that required by an LQP-driver

module, this code was shared with the new LQP. The idiosyncracies of the systems

exchanging data were studied closely in the implementation process.

In this paper, descriptive guidelines have been established for the inclusion of a new

RDBMS in the access field of the CIS/TK system.

6.1 Improvement of the SQL/DS RDBMS LQP

1. Presently, the ftp file transfer protocol is used to retrieve the query result
output from a temporary file on the remote machine to a temporary file on the
local machine. A more elegant approach would be to use UNIX's piping
feature to eliminate the need of temporary file storage of data. Although this
scheme was attempted in the present implementation, it was found that for
reasons indeterminate - buggy software or protocol discrepancies - data was
being lost in the pipe. If the reason for this occurence is determined and the
problem is solved, then piping can be used successfully.

2. Alternative network protocol may be a more efficient than the telnet and ftp
communication facilities used in the present implementation of the LQP. For
example, IBM's LU6.2 APPC (Advanced Program to Program
Communication) SNA protocol, being supported by an increasing number of
non-SNA architectures and UNIX-based machines, may be used for efficient
and flexible communication on a real-time basis.

-62-

3. The LQP would do well to automatically handle the idiosyncracies of the
SQL/DS SFLECT statement format. Specifically, for the ALQ in a :GET-
DATA message, a table name <table> created by <creator> should be
automatically converted to the format <creator>.<table> at the LQP level.
This would be very useful to the upper levels if the CIS/TK system.

4. Lastly, the LQP designed in this paper was only capable of querying a
database using the SQL/DS SELECT statement. The functionality of the LQP
could be greatly enhanced if the LQP is redesigned to perform updating and
alteration functions as well. It would be ideal if the user of the CISfIK could
use every feature of a remote DBMS. This problem must be tackled partially
at the LQP level.

6.2 Acessing Additional Databases on the SQLIDS RDBMS

Presently, the LQP-object "sqlds-4381" contains all the attributes and methods

required to retrieve data from the database "slinfo". This is a rather limited use of the

connectivity that has been established between "mit2e" and "sloan". It would seem

reasonable to expect the new LQP to access all the databases on the SQL/DS RDBMS. This

can, in fact, be achieved very easily by the procedure outlined below:

Notice that presently, "sloandb" is an instance of the "sqlds-4381" LQP-object. It has

not been given any unique attributes, since it intends to access the "slinfo" database, the

attributes and methods for which are all contained in "sqlds-438 1".

Now consider that we want the LQP to now access two databases - "slinfo", and

another database, "pinfo". It is found that the methods of accessing the two databases are

identical, except for the fact that the databases are referred to (in the LQP commands) as

"slinfo" and "pinfo" respectively. Thus, we can create two new objects, "slinfodb" and

"pinfodb". These objects are defined to be instances of "sqlds-4381". This means that

whenever required information is not found in these instance objects, the superior

"sqlds-438 1" will be referenced for the information. Thus, since the only thing unique about

the "slinfodb" and "pinfodb" objects are the names of their respective databases. Below are

the required instance object definitions:

-63-

(create-instance 'sqlds-4381 ' slinfodb)
(create-instance 'sqlds-4381 'pinfodb)

The create-instance KOREL function is used to create the "slinfodb" and "pinfodb"

instances of "sqlds-438 1".

These instances are now defined as objects using KOREL's make-object function,

and are provided with the unique attributes that they require:

(make-object 'slinfodb
('database-directory "slinfo")
('database " slinfo "))

(make-object 'pinfodb
(' database-directory "pinfo ")
('database "pinfo"))

Once these instance objects are defined, the LQP messages can be sent to them in

addition to the already defined "sqlds-4381" object and the "sloandb" instance.

The following should be noted:

1. If the method to access the "pinfo" database was different from that used to
access "slinfo", a new method could be included in the "pinfodb" object to use
the new database access procedure.

2. The 'database-directory and 'database attributes in "slinfo" and "pinfo" are
not default values as they are in "sqlds-438 1".

3. When a message is sent to an instance object, only if a required attribute is not
found in its body will the superior, "sqlds-438 1" be referenced.

4. The default database accessed by "sqlds-4381" is "slinfo".

5. The "sloandb" instance does not contain any attributes or methods, and thus is
simply another name by which "sqlds-4381" can be referenced. If,
hypothetically, attributes and methods were to be defined for "sloandb", it
would have to be defined as an object.

-64-

Appendix A

Common LISP Files

A.1 sqlds4381.Isp

** FILE: sqlds4381.lsp **

By Gautam A. Gidwani (July, 1908)
As part of MIT Undergrad. Thesis

; SQL/DS SPECIFIC QUERY PROCESSOR FOR MACRINE 'SLOAN' (AT MIT SLOAN SCHOOL)

; The SQL/DS-431 object can respond to the following messages:
=> :self-info
=> :get-tables
=> :get-columns <table-name>
=> :get-data <cis/tk-single-query>

The 'get-SQLDS4381-tables', 'get-SQLDS4381-colaans', and 'get-2QWD4301-data'
procedures all provide the 'FETCH-DATA' function with an SQL statement
to be sent to the remote SQL/DS RDBMS.

FETCH-DATA connects to the remote machine, "sloan", queries the SQL/DS RDBMS,
retrieves the required query result and parses it to the final Result
List format required.

(defun display-SQLD4381-slf-info ()
(lqp-print ' quiet "~'%

SQL /DS ON SLOAN
----------------------------------- ~%

The SQL/DS Relational Database Management System is a computer program
that manages pieces of information (data) stored in a computer. The data
is contained in tables made up of vertical colamns and horizontal rows.
The SQL/DS database uses the SQL query language which is comen among
many of today' s RDSMS systems.~%-%"))

(defun get-SQLDS4381-tables ()
(let* ((SQL (format nil

"SELECT TNAN, CREATOR, DBSPACENAM, NCOLS ~
FROM SYSTEM. SYSCATALOG ~
ORDER BY TNAE, CREATOR~%"))

(machine (get-self 'machine-name)))
(FETCH-DATA SQL machine)))

(defun get-SQLDS43B1-columns (table)
(let* ((SQL (format nil

"SELECT DISTINCT CNANE, COLTYPE, NULLS
FROM SYSTEM. SYSCOLUMIS ~
WHERE TNAE = I'~A'
ORDER BY CNAME~%"

-65-

(parse-SQL-tname table)))
(machine (get-self 'machine-name)))

(FETCU-DATA SQL machine)))

(defun get-SQLDS431-data (ALO)
(let* ((SQL (form-sql ALQ))

(machine (get-self 'machine-name)))
(FETCH-DATA SQL machine)))

(defun FETCH-DATA (SQL machine)
(lqp-print 'normal "-%DDM3 Query to be sent to machine " machine)

(lqp-print 'normal "~%-A-%" SQL)
(lqp-print 'terse "Fetching SQL/DS Data Requested... .- ~%")
(connect (get-current-object)

SQL)
(lqp-print 'verbose "-%Transporting Result File to local ma ..hin....~%)
(let* ((lqpdir (get-self 'com-server-directory))

(ooedir (get-self 'lqp-common-directory))
(ftpfile (get-self 'ftp-script))
(account (get-self 'account))
(passwrd (get-self 'password))
(machine (get-self 'machine-name))
(tupfile (get-self 'temporary-file)))

(system (format nil "-A/-A -A -A -A -A/-A I ftp -n"
lqpdir ftpfile account passwrd machine
lqpdir tapfile))

(lqp-print 'terse "Result File Retrieved.~%~%")
(lqp-print 'terse "Converting Result File to 'standard' Table File...-%")
(system (format nil "-A/FILT43S1 -A/-A" lqpdir lqpdir tapfile))
(lqp-print 'terse "Done.-%-%")
(lqp-print 'normal "Table File converted to Result List %-%")
(lqp-print-file 'normal (format nil "-A/-A" lqpdir tapfile))
(read-standard-table (format nil "-A/-A" lqpdir tpfile) comdir)))

DEFINITION OF LQP OBJECT CLASS SQLDS-4381

(make-object 'sqlds-431
('machine-name "sloan")
('type-of-DBMS "sqlds")
(' local-DMS? nil)
('database-directory "slinfo" 'default)
('database "slinfo" 'default)
('comm-server-directory "/usr/cistk/dmo/v2/lqp/im4381" ' default)
('lqp-camon-directory "/usr/cistk/demo/v2/lqp")
('C omnnications-script "43S1FILE ")
('efficient-comm-script "43s1FILE")
('ftp-script "43S1FTP")
('temporary-file "connectl.tmp") ;;*DATA PROCESSED HERZ*;;
('account "ggidwani" 'default)
('password "mohina" 'default)
('methods t 'multiple-value-f)
('methods '(:self-info display-SQLDS4381-self-info))
('methods '(:get-tables get-SQLDS4381-tables))
('methods '(:get-columns get-SQLDS4381-columns))
('methods '(:get-data get-SQLDS43S1-data)))

(create-instance 'sqlds-4381 ' sloandb)

-66-

;---D-O--D-- IN-TION---------------------------------

END Or DEFINITION FOR LQP SQWBS-4381 (BQLD243S1.L2P)

-67-

A.2 sql.Isp

** FILE: SQL.LSP **

By Alec R. Chaplin (April, 1988)
As part of MIT Undergrad. Thesis
Used UNMODIFIED by Gautam A. Gidwani for implementation of "sqlds-43S1"

; Local Query Processor (June, 1988)

;--;
PRINT CONTROL ROUTINES NOR ALL OF LQP CODE

;--;

FOUR PRINT NODES AVAILAnLE: QUIET TERSE NORMAL VERBOSE

(defvar *ou'rent-lqp-print-=ode* 'QUIET) ; DEFAULT MODE = QUIET

(defun lqp-mode (mode)
(cond ((and (not (equal mode 'QUIET)) (not (equal mode 'TERSE))

(not (equal mode 'NORMAL)) (not (equal mode 'VERBOSE)))
(write-string "VALID MODDES: 'quiet 'terse 'normal 'verbose .")
nil)

(t (setq *current-lqp-print-mode* mode))))

(defun lqp-print-controlled-apply (mode func &optional argo)
(cond ((and (not (equal mode 'VERBOSE)) (not (equal mode 'NORMAL))

(not (equal mode 'TERSE)) (not (equal mode 'QUIET)))
nil) ; --- May want to make this an error message.---

((equal *current-lqp-print-mode* 'VERBOSE)
(apply funo args))

((equal *current-lqp-print -mode* 'NORMAL)
(if (not (equal mode 'VERBOSE))

(apply func argo)))
((equal *current-lqp-print-mode* 'TERSE)

(if (or (equal mode 'TERSE) (equal mode 'QUIET))
(apply funo args)))

(t nil)))

(defun lqp-print (mode str &rest args)
(lqp-print-controlled-apply mode

*' format (cons *standard-output* (cons str args))))

(defun lqp-print-file (mode file)
(lqp-print-controlled-apply mode

*'system (list (format nil "cat -A" file))))

;--;
CIS/TK STANDARD LOCAL QUERY TO SQL QUERY STRING TRANSLATION ROUTINES ;

;--;

(defun form-SQL (query)
(let ((table (parse-SQL-tname (car query)))

(conds (if (not (null (caddr query)))
(parse-SQL-conds (caddr query))))

colmn_SQL column_LST)
(ultiple-value-setq (colmn SQL colmnLST) (parse-SQL-colmn (cadr query)))
(cond ((or (equal table 'ERROR)

(equal conds 'ERROR)

-68-

(equal colan_SQL 'ERROR))
(lqp-print 'verbose

"FORM-SQL -- Error detected. No query returned.~%")

(values nil nil))
((null condo)
(values (format nil "SELECT -A FROM -A" colanSQL table)

colan_LST))
(t (values (format nil "SELECT -A FROM -A WERE -A"

coln_SQL table conds)
colanLST)))))

; NOTE: SQL allows multiple tables, but the protocol doesn't.
(defun parse-SQL-tname (table)

(cond ((null table)
(lqp-print 'verbose

"PARSE-SQL-TNAM -- No table to parse? ABORTING.-%")
'ERROR)

((atom table)
(if (stringp table)

table
(progn (lqp-print 'verbose

"PARSE-SQL-TNAME -- Converting symbol -A into ~
a string.-%" table)

(format nil "-A" table))))
((listp table)
(lqp-print 'verbose

"PARSE-SQL-TNAM -- Recieved list -A as argument.-%" table)
(if (equal 1 (length table))

(progn (lqp-print 'verbose
"PARBE-SQL-TNAE -- Using sole element in list -

as table name.-%")
(parse-SQL-tname (car table)))

(progn (lqp-print 'verbose
"PARSE-SQL-TNAME -- Multiple tables not -

accepted. ABORTING.-%")
'ERROR)))

(t (lqp-print 'verbose
"PARSE-SQL-TNAME -- Couldn' t interpret table -A. -
ABORTING.-%" table)

'ERROR)))

; Note: This procedure returns multiple values.
1st => The SQL relevant column string; e.g., "NAME, ADDRESS, ZIP"
2nd -> A parsed list of columns; e.g., ("NAM" "ADDRZSSS" "ZIP")

(defun parse-SQL-colon (columns)
(oond ((null columns)

(lqp-print 'verbose
"PARSE-SQL-COL1e -- No columns to parse? ABORTING.-%")

'ERROR)
((or (equal columns 'all) (equal columns '*) (equal columns "all")

(equal columns "ALL") (equal columns "*"))
(lqp-print 'verbose

"PARSE-SQL-COLW -- ildcards not currently supported. -

ABORTING. ~%")
'ERROR)

((atom columns)
(if (stringp columns)

(values columns (list columns))
(progn (lqp-print 'verbose

"PARSE-SQL-COLM -- Converting symbol -A ~

-69-

into a string.-%" columns)
(values (format nil "-A" columns)

(list (format nil "-A" columns))))))
((listp columns)

(if (equal 1 (length columns))
(parse-SQL-colmn (car columns))
(let (carl cary adri adry)

(multiple-value-setq (oarx cary)
(parse-SQL-colmn (oar columns)))

(multiple-value-setq (cdrx adry)
(parse-SQL-colmn (adr columns)))

(values (format nil "-A, -A" carz adrx)
(append cary adry)))))

(t (lqp-print 'verbose
"PARSE-SQL-COLIM -- Couldn't interpret columns -A. ~

ABORTING. -% " columns)
'IRROR)))

(defun parse-SQL-conds (conds)
(cond ((null conds) (lqp-print 'verbose

"PARSE-SQL-CONDS -- No search condition.-%"))
((atom conds) (lqp-print 'verbose

"PARSZ-SQL-CONDS -- Search condition -A in ~
improper form. ABORTING.-%" conds)

'IRROR)
((listp conds)

(cond ((> (length condo) 3)
(lgp-print 'verbose

"PARSE-SQL-CONDS -- Search condition -A in ~
improper form. ABORTING.~%" conds)

'IRROR)
((or (equal (oar conds) 'and) (equal (car conds) "AND")

(equal (oar conds) "and") (equal (car conds) "And"))
(format nil "(-A) AND (-A)"

(parse-SQL-conds (second condo))
(parse-SQL-conds (third conds))))

((or (equal (oar conds) ' or) (equal (oar conds) "OR")
(equal (oar conds) "or") (equal (car conds) "Or"))

(format nil "(-A) OR (-A)"
(parse-SQL-conds (second conds))
(parse-SQL-conds (third conds))))

((or (equal (oar condo) 'null) (equal (oar conds) "NULL ")
(equal (oar conds) "null") (equal (car condo) "Null"))

(format nil "-A IS NULL" (parse-SQL-colmn (second conds))))
((or (equal (oar conds) 'not) (equal (car condo) "NOT")

(equal (oar conds) "not") (equal (oar conds) "Not"))
(format nil "NOT (-A)" (parse-SQL-conds (second conds))))

((relation-p (car conds))
(format nil "-A -A -A" (parse-SQL-colmn (second conds))

(parse-SQL-relation (first conds))
(parse-SQL-aol-or-lit (third conds))))

(t (lqp-print 'verbose
"PARSE-SQL-CONDS -- Incorrect form: -A ~
ABORTING.-%" conds)

'ERROR)))
(t (lqp-print 'verbose

"PARSZ-SQL-CONDS -- Couldn't interpret condition -A ~
ABORTING. -%" conds)

'ERROR)))

-70-

(defun parse-SQL-relation (relation)
(cond ((eq ' relation)

(format 'nil " !="))
; all the rest are the same
(t (format nil "-A" relation))))

(defun parse-SQL-col-or-lit (col-or-lit)
(if (stringp col-or-lit)

(format nil "'-A'" col-or-lit)
(format nil "-A" col-or-lit)))

(defun relation-p (relation)
(or

(eq relation '=)

(eq relation '>)
(eq relation '<)
(eq relation '>=)
(eq relation '<=)

(eq relation '<>)))

#1
; THIS FUNCTION IS NOT CURRZNTLY USED. MAY DE USEFUL FOR EFFICIENCY.
(defun parse-SQL-group-relation (relation)

(cond
((eq relation 'average)
(format nil "AVG"))

((eq relation 'sum)
(format nil "SUM"))

((eq relation 'minimum)
(format nil "KIN"))

((egq relation 'maximm)
(format nil "MIX"))

((eq relation 'cardinality)
(format nil "COUNT"))

((eq relation 'variance)
(format nil "VARIANCE"))

((eq relation 'standard deviation)
(format nil "STDDEV"))

((eq relation 'no-nulls)
(format nil "NVL"))

(t (lqp-print 'verbose
"PARSE-SQL-GROUP-RELATION -- -A isn't a valid relation t-I%"
relation))))

1#

END OF SQL TRANSLATION ROUTINES (SQL.LSP)

-71-

A.3 connect.Isp

** FILE: CONNECT.LSP **

; By Alec R. Chalin (April, 1988)
; As part of Undergrad. Thesis

MODIFIED: By Gautam A. Gidwani (September, 1988)
For use in implementation of the 'sqlds-4381' LQP ;

; MDIFICATION: Added the SQL/DS 'type-of-DES identifier "sqlds" ;
to the already present "informix" and "oracle" ;
conditional identifiers

;--;
ROUTINES FOR CONTROLLING TIE DBMS COWNICATION SCRIPTS

(defun connect (DBMS-obj SQL &optional (use-eff? nil))
(let* ((local (get-object DBMS-obj 'local-DBMS?))

(comdir (get-object DBMS-obj 'comm-server-directory))
(dbdir (get-object DBMS-obj 'database-directory))
(db (get-object DBMS-obj 'database))
(dbtype (get-object DBMS-obj 'type-of-DBMS))
(machine (get-object DBMS-obj 'machine-name))
(account (if (not local)

(get-object DBMS-obj 'account)
"IRRELEVANT "))

(passwrd (if (not local)
(get-object DBMS-obj 'password)
"IRRELEVANT"))

(script (if use-eff?
(get-object DBS-obj 'efficient-comm-script)
(get-object DBMS-obj 'communications-script)))

(tmpfilel (si: string-concatenate coodir " /connectl . tap"))
(tapfile2 (si:string-concatenate coadir "/connect2. tap"))
invoker)

(setq script (format nil "-A/-A" comdir script))
(cond ((or (equal dbtype ' INFORMIX) (equal dbtype "Informix")

(equal dbtype "INFORMIX") (equal dbtype "informix"))
(setq invoker (format nil "isql -A -" db)))

((or (equal dbtype 'ORACLE) (equal dbtype "Oracle")
(equal dbtype "ORACLE") (equal dbtype "oracle")
(equal dbtype "SQL/RT") (equal dbtype "sql/rt"))

(setq invoker "sqlcmd"))
((or (equal dbtype 'SQLDS) (equal dbtype "SQLDS")

(equal dbtype 'sqlds) (equal dbtype "sqlds"))
(setq invoker "dbinit"))

(t (lqp-print 'terse
"CONNECT -- Database type -A unrecognized.
Update CONNECT. LSP with new dbtype .~%" dbtype)

return))
(lqp-print 'terse "Connecting to -A on machine ~A. .. ~" db machine)
(if (not local)

(system (unix-format "-A -A -A -A -A -A I telnet -A 1> -A 2> -A"
script account passwrd dbdir invoker SQL
machine tapfilel tmpfile2))

-72-

(system (unix-format "-A -A -A -A -A -A 1> -A 2> -A"
script account passwrd dbdir invoker SQL
topfilel tapfile2)))

(lqp-print 'terse "Done.-%")
(values tpfilel tupfile2)))

(defun unix-format (str grest args)
(setq args (mapoar #' (lambda (x) (format nil "-C-A-C" #\" x #\"))

args))
(apply *'format (cons nil (cons str args))))

; EN OF COMMMIICATION2 9CRIPT CONTROL ROUTINES (CONECT.LSP)

;---

-73-

A.4 read.Isp

** FILE: read.lp **

; By Ale R. Cha plin (April, 1988)
As part of MIT Undergrad. Thesis

:ODIFICATIONS:
Modified by Gautam A. Gidwani for use in the new 'sqlds-4381'
LQP.
The second 'if' statement now checks (using 'probe-file') for
a file both in the current working directory or in a directory
specified by 'ocadir'. Previously, the function assumed that
the file was in the current directory.

--- ;
ROUTINE FOR READING "STANDARDIZED" DUMS OUTPUT FILES

;---;

(defun read-standard-table (file coadir Aaux tap info)
(if (not (probe-file (format nil "-A/preREAD" coadir)))

(lqp-print 'terse "READ-STANDARD-TABLE -- File '~A' needed and
not found I" (format nil "-A/preREAD ")))

;;; This 'if' statement modified - gg ;;;

(if (or (probe-file file) (probe-file (format nil
"~.A/~A"

comdir file)))
(progn (lqp-print 'terse "-%Reading DBMS output file...")

(if (probe-file file)
(system (format nil "-A/preREAD -A" coadir file)))

(if (probe-file (format nil
"~A/~A"
coadir file))

(system (format nil "-A/preREAD -A/-A" comdir comdir file)))
(with-open-file (data file :direction :input)

(loop (let ((line (read-line data nil '0rF)))
(cond ((equal line 'EOF)

(lqp-print 'terse "Done.-%-%")
(return (remove-if #'null (reverse info))))

((equal line "")

(setq info (cons (reverse top) info))
(setq tap ' ()))
(t (setq tsp (cons line tmp))))))))

(lqp-print 'terse "READ-STANDARD-TABLE -- File '-A' not found?" file)))

#l

THIS IS THE OLD SET OF ROUTINES FOR READING "STANDARD" TABLES

(defun read-standard-table (file Aaux info)
(if (probe-file file)

(with-open-file (data file :direction :input)
(inf2c-print "READ-STANDARD-TABLE -- Now reading table file...")
(loop (let* ((row (read-line data nil "EOF"))

(entries (get-entries row)))
(if (equal row "EOF")

-74-

(Progn
(inf2c-print "Don.~%~%")
(return (reverse (remove-if #'null info))))

(setq info (cons entries info)))))) '
(inf2o-print "READ-STANDARD-TABLI -- Error: No table to read-i~%")))

(defun get-entries (str)
(form-entries (coerce str 'list) NIL ""))

(defun form-entries (lot entry-lot temp-str)
(cond ((null lst)

(remove-if *' (lambda (x) (equal x ""))
(reverse (cons temp-str entry-lst))))

((equal (car lt) #\I)
(form-entries (cdc let) (cons temp-str entry-let) ""))

(t
(form-entries (odx let)

entry-lst
(si:string-concatenate temp-str (car 1st))))))

1#

--
; ND O7 "STANDARDIZED" TABLE READING ROUTINES (READ.LSP);

;--;

-75-

A.5 demo-gg.Isp

** FILE: DEMO.LSP **

By Gautam A. Gidwani (Feb., 1989)
As part of MIT Undergrad. Thesis

LOCAL QUERY PROCESSOR DEO LOADING COMOMNDS
;---;

(let* ((sqlds431-dir "/usr/cistk/biggio/ibm43S1"))

(if (not (probe-file (format nil "~A/4381FILE" sqlds4381-dir)))
(format t "43s1FILE missing? ~% -- > LOP object SQLDS-4381 will not

process messages 'GET-TABLES', ~% 'GET-COLUDMU' and ~
'GET-DATA' correctly .~%"))

(if (not (probe-file (format nil "~A/4381FTP" sqldo4381-dir)))
(format t "4381FTP missing ~% -- > LQP object SQLDS-4301 will not

process messages 'GET-TABLES', ~% 'GET-COLUNS' and ~
'GET-DATA' correctly. -%"))

(if (not (probe-file (format nil "-A/43813EL" sqlds43S1-dir)))
(format t "43819EL missing -% -- > LQP object SQLDS-4381 will not

process messages 'GET-TABLES', ~% 'GET-COLUMUS' and ~
'GET-DATA' correctly.-%"))

(if (not (probe-file (format nil "-A/preRZAD" sqlds4381-dir)))
(format t "preREAD missing? ~% -- > Most LQP messages will not work.~%"))

(if (not (probe-file (format nil "-A/filt43B1" sqlds431-dir)))
(format t "FILT43B1 missing? ~% -- > SQLDS-4381 messages will not work.~%"))

(load (format nil "-A/frames.lsp" sqld&4381-dir))
(load (format nil "-A/korel.lsp" sqlds43B1-dir))

(load (format nil "~A/sql.lsp" sqlds4381-dir))
(load (format nil "~A/connect.lsp" sqld*43S1-dir))
(load (format nil "'A/read.lsp" sqlda4381-dir))

(load (format nil "~A/sqlds43S1.lsp" sqlds43B1-dir)))

(defun get-users-lqp-print-preference ()
(format t "%

What level of messages do you want printed?
-- > Quiet, Terse, Normal, or Verbose? ")

(let ((input (read *terminal-io*)))
(cond ((and (not (equal input 'QUIET)) (not (equal input 'TERSE))

(not (equal input 'NORMAL)) (not (equal input 'VERBOSE)))
(get-users-lqp-print-preference))

(t (setq *current-lqp-print-mode* input)
(format t "~%0K... If you change your mind, use 'LQP-MODE'.

As in (lqp-mode 'quiet)~%")))))

(get-users-lqp-print-preference)

END OF LOAD INSTRUCTIONS

-76-

A.6 korel.lsp

;FILE: KOREL.LSP

Copyright (C) 1987 by Sam Levine

o Modified by Alec R. Champlin (May, 1988)
"Added the "send self" functionality to the MEZSAGE-

PASSING system, so that methods could make references
to the object instances that requested/invoked them."

; PACKAGE-NANE: KOREL.LSP by Sam Levine (SPL)
USES-PACKAGES: FRAMES.LSP
PACAGE-DESCRIPTION: Object-oriented Knowledge-representation Language

;OBJECTS, CLASSES, and INSTANCES

; An object is either a class or an instance.
; There is a heirarchy of classes, with the CLASS class being at the
; root of the tree. Every class is, directly or indirectly, a member
; of the CLASS class. Each object (except CLASS) has some non-zero number of
; superiors. An object inherits properties from its superiors.
; A class can spawn subordinate classes as well as instances.
; A subordinate class inherits all the properties of the superior, but

usually adds additional information.
; An instance represents a specific physical object. It inherits
; information from the hierarchy of classes above it.

; Here is what the system looks like now:
CLASS:

; SUPERIORS: Those classes of which the class is a specialization.
For eaple, mammal is a superior of human. list.

; SURORDINATES: Those classes of which the class is a parent. For
example, mammal is subordinate to living-things. list.

; METHODS: Contains pairs. The first of each pair is
a message to match against. The second of each pair is the
appropriate function to execute. list.

; INSTANCES: This contains a list of instances of this class. list.
SLOT1:

SLOTn:

INSTANCE:
; INSTANCE-OF: The class which created this instance.
; SLOT1:

SLOTn:

;FACETS

;SLOT-FACETS

-77-

VALUE: (values)
; the value for this slot. single or list

DEFADLT: (valdes)
; the default value for this slot. single or list

IF-NDEDED: (procedure-names)
a list of procedures to try if there is no value or default value
for this slot. list.

Ir-ADDED: (demons)
; a list of demons which are executed whenever a value is placed into
; the value facet of this slot. list.

Il-REZMVED: (demons)
; a list of demons which are executed whenever a value is removed from
; the value facet of this slot. list.
; VALUE-TYPE: (integer, string, fraction, real)
; Whenever a value is placed into choices, value, or default facets,
; it is first checked to ensure that it is of the appropriate value-type.

nil => no constraint on value-type. Single.
; CONSTRAIN-OTHERS: (rule-names)
; whenever a value is placed into the value or default facets, this
; rule set is executed sequentially. list.
; SELl-CONSTRAINTS: (constraints)
; whenever a value is placed into the value, or default facets, this
; set of constraints is checked to ensure that none are violated.

Whenever a new constraint is added to this list, the choices, value and
; default facets are checked to ensure consistency. Inconsistent defaults
; and choices are eliminated, while the user is asked how to resolve
; inconsistent values.
; Constraints are lisp procedures which take three arguments: a frame
; and slot name (usually the current frame and slot) and a value. list.
; CROICES: (values)

list of valid choices for this slot. list.
QUERY: (multi-query)

; executes the contained multi-query to return a value for this slot
from a database.

; These facets are flags
; MULTIPLE-VALUE-r: (t or nil)
; if T, signifies that the slot accepts multiple values and defaults.
; default is nil. (ie: single valued)
; NO-INHERIT-I: (t or nil)

if T, signifies that the the facets of the slot aren't inherited.
; otherwise, they can be. Default is nil. (ie: inheritence).

; These facets are extensions to allow a database interface
; RETRIEVAL-PATTERN: (database-retrieval-pattern) see
; DSMS.LSP for a specification of this pattern.

DBMS: (the name of a physical DBMS) contains the name of the
; database that the value for this slot may be found in.

;OBJECT rUNCTIONS:

; external:
PUT-OBJECT
GET-OBJECT
REMOVE-OBJECT

; internal:
GET-ALL-SUPERIORS
GET-ALL-SUBORDINATES

-78-

GET-ALL-INSTANCES

SLOT FUNCTIONS:

;external:
A consistent interface to the slots is provided by the following
3 functions. The facet defaults to 'VALUE. The facet is checked to

; ensure that it is one of the ones supported (see above). If it is, then
; the appropriate sequence of actions is performed. Otherwise, an error

is signalled.

; PUT-SLOT (frame slot VALUE &optional FACET)
; GET-SLOT (frame slot &optional FACET)

REMOVE-SLOT (frame slot VALUE &optional FACET)

; internal:
; CHECK-VALUE-TYPE (FRAME SLOT VALUE): returns t if value is of the type.

To be used before adding a value.
FIRE-CONSTRAIN-OTHERS (FRAME SLOT) :

To be used after adding a value
; CHECK-SELF-CONSTRAINTS (FRAME SLOT VALUE) : returns t if the value is

acceptable according to the set of self constraints, nil
otherwise.
To be used before adding a value.

; TEST-SELF-CONSTRAINTS (FRAME SLOT) : tries all the self constraints on
the value, asking the user to resolve inconsistencies.
Deletes entries from the default and choices facets to
make them consistent with the self constraints.
To be used before adding a constraint.

OBJECT PROCEDURES

; external

(defun put-object (frame slot value &optional facet)
(if (null facet) (setq facet 'value))
(case slot

(superiors
(freplace frame slot 'multiple-value-F t)
(fput frame slot facet value)
(fput value ' subordinates facet frame))

(subordinates
(freplace frame slot 'multiple-value-F t)
(fput frame slot facet value)
(fput value 'superiors facet frame))

(instances
(freplace frame slot 'multiple-value-F t)
(create-instance frame value))

(t (put-slot frame slot value facet))))

(defun get-object (frame slot &optional option)
(case slot

(superiors
(if (eq option ' all)

(cdr (reverse (get-all-superiors (list frame) nil)))
(fget frame slot 'value)))

(subordinates

-79-

(if (eq option ' all)
(adr (reverse (get-all-subordinates (list frame) nil)))
(fget frame slot 'value)))

(instances
(if (eq option 'all)

(reverse (get-all-instances (list frame) nil))
(fget frame slot 'value)))

(t (get-slot frame slot option))))

(defun remove-object (frame slot value &optional facet)
(if (null facet) (setq facet 'value))
(fremove frame slot facet value))

(defmacro make-object (object-name &rest slots)
(dolist (slot slots)

(eval
'(put-object ,object-name ,Bslot)))

t)

; internal

(defun get-all-superiors (queue classes)
(cond ((null queue) classes)

(t (get-all-superiors
(append (get-object (car queue) 'superiors)

(cdr queue))
(if (member (car queue) classes)

classes
(cons (car queue) classes))))))

(defun get-all-subordinates (queue classes)
(cond ((null queue) classes)

(t (get-all-subordinates
(append (get-object (car queue) 'subordinates)

(cdr queue))
(if (member (car queue) classes)

classes
(cons (car queue) classes))))))

(defun create-instance (class-frame-name new-instance-name)
(if (get-object class-frame-name 'instance-of)

(format t
"-%-A is not an appropriate class to create an instance of."
class-frame-name)

(progn
(freplace class-frame-name 'instances 'multiple-value-F t)
(freplace new-instance-name ' superiors 'multiple-value-F t)
(freplace new-instance-name 'instance-of 'multiple-value-F t)
(fput class-frame-name 'instances 'value new-instance-name)
(fput new-instance-name 'superiors 'value class-frame-name)
(fput new-instance-name 'instance-of 'value class-frame-name)
new-instance-name)))

(defun get-all-instances (queue instances)
(cond ((null queue) instances)

(t (get-all-instances
(append (get-object (car queue) 'subordinates)

(odr queue))

-80-

(if (member (get-object (car queue) 'subordinates) instances)
instances
(append (get-object (car queue) 'subordinates)

instances))))))

SLOT PROCEDURES

;external

(defun get-slot (frame slot &optional facet &aux ret-val)
(if (null facet) (setq facet 'value*))
(case facet

(value* ;uses -inheritance (breadth-first search)
(setq ret-val

(if (get-slot frame slot 'multiple-value-F)
(fget-s1 slot (cons frame (get-object frame 'superiors 'a

(car (fget-si
slot
(cons frame (get-object frame 'superiors 'all))))))

(if (and (null ret-val)
(get-slot frame slot 'query))

(setq ret-val (send-multi-query (get-slot frame slot 'query))))
ret-val)

((value default)
(if (get-slot frame slot 'multiple-value-F)

(fget-i frame slot facet)
(car (fget-i frame slot facet))))

((value-type multiple-value-F no-inherit-F query)
(car (fget-i frame slot facet)))

((if-needed if-added if-removed constrain-others self-constraints
choices)
(fget-i frame slot facet))

(t (format t "-%-A is not a valid facet for a slot." facet))))

11)))

(defun remove-slot (frame slot value &optional facet)
(if (null facet) (setq facet 'value))
(case facet

(value
(fremove-p frame slot facet value))

((default if-needed if-added if-removed value-type constrain-others
self-constraints choices internal-choices query)

(fremove frame slot facet value))
(t (format t "-%-A is not a valid facet for a slot." facet))))

(defun put-slot (frame slot value &optional facet)
(if (null facet) (setq facet 'value))
(case facet

((value default) ;single or multiple
(cond

((not (check-self-constraints frame slot value))
(format t "-%Self Constraints would be violated by adding -A to ~A."

value facet))
((not (check-value-type frame slot value))
(format t "-%-A is of wrong type." value))

((not (check-choices frame slot value))
(format t "-%~A is not a valid choice for slot." value))

((get-slot frame slot 'multiple-value-F)
(fput-p frame slot facet value)
(fire-constrain-others frame slot)

-81-

value)
(t (freplace-p frame slot facet value)

(fire'constrain-others frame slot)
value)))

((if-needed if-added if-removed) ;demons
(fput frame slot facet value))

((multiple-value-F no-inherit-r query)
(freplace frame slot facet value))

(value-type
(if (member value '(integer string real))

(freplace frame slot facet value)
(format t "~%-A is not a valid type.~

~%Valid types are: INTEGER STRING RZAL~%"
value)))

(constrain-others
(fput frame slot ' constrain-others value)
(fire-constrain-others frame slot)
value)

(self-constraints
(fput frame slot 'self-constraints value)
(test-self-constraints frame slot)) ; and checks to ensure consistent

(choices ; choices takes a list of choices
(let ((old-values (follow-path (list slot facet)

(fget-frame frame))))
(delete old-values old-values))

(if (atom value) (setq value (list value)))
(dolist
(choice value t)
(cond ((not (check-self-constraints frame slot choice))

(format t "-%~A doesn't satisfy self constraints."
choice))

((not (check-value-type frame slot choice))
(format t "-%-A is of wrong type." choice))
(t (fput frame slot facet choice))))

value)
(t (format t "~%-A is not a valid facet for a slot." facet))))

;internal

(defun check-value-type (frame slot value)
(let ((type (get-slot frame slot 'value-type)))
(cond ((null type))

((and (eq 'integer type) (integerp value)))
((and (eq 'string type) (stringp value)))
((and (eq 'real type)

(or (typep value 'single-float)
(typep value 'double-float)))))))

;this procedure sequentially fires the rules in the constrain-others facet
;it will use the Winston expert system shell for this.
(defun fire-constrain-others (frame slot)

(do ((rules-to-try
(get-slot frame slot 'constrain-others)
(adr rules-to-try)))

((null rules-to-try))
(cond ((use-rule (car rules-to-try))

(setq rules-to-try (get-slot frame slot 'constrain-others))))))

; returns t if all constraints check out okay for the value

-82-

(defun chock-self-constraints (frame slot values-list)
(let ((constraints-list (get-slot frame slot 'self-constraints)))

(if (not (lidtp values-list)) (setq values-list (list values-list)))
(dolist
(value values-list t)
(dolist

(constraint constraints-list t)
(if (not (funcall constraint frame slot value))

(return nil)))))) ; a test failed

; returns t if all constraints check out okay
(defun test-self-constraints (frame slot)

(let ((value-list (get-slot frame slot))
(default-list (get-slot frame slot 'default)))

(if (not (null value-list))
(check-self-constraints frame slot value-list))

(if (not (null default-list))
(check-self-constraints frame slot default-list))))

; returns t is the value is an acceptable choice for the slot, nil otherwise
(defun check-choices (frame slot value)

(or (null (get-slot frame slot 'choices))
(member value (get-slot frame slot 'choices) :test *'special-equal)))

(defun special-equal (z y)
(or (equal x y)

(equal x (and (listp y) (car y)))))

MSAGE PASSING SYSTEM

(defvar *korel-current-object-stack* '() ;Ale Champlin -- Added. 5/88

(defun push-current-object (object) ;Ale Champlin -- Added. 5/SB
(setq *korel-current-object-stack*

(cons object *korel-current-object-stack*)))

(defun get-current-object () ;Alec Chaoplin -- Added. 5/88
(car *korel-current-object-stack*))

(defun pop-urrent-object (Saux result) ;Alec Champlin -- Added. 5/88
(setq result (get-current-object))
(setq *korel-current-object-stack* (adr *korel-current-object-stack*))
result)

(defun get-self (slot &optional facet) ;Alec Champlin -- Added. 5/S8
(if (null facet)

(get-object (get-current-object) slot)
(get-object (get-ourrent-object) slot facet)))

(defun put-self (slot value &optional facet) ;Alec Champlin
(if (null facet)

(put-object (get-current-object) slot value)
(put-object (get-current-object) slot value facet)))

-- Added. 5/88

;Alec Champlin -- Modified to support "send self" concept. 5/88
(defun send-message (object message &rest arg-list &aux result)

(if (equal object 'self)
(if (not (null arg-list))

-83-

(send-message (get-current-object) message arg-list)
(send-message (get-current-object) message))

(progn
(push-current-object object)
(dolist (pair (fget-i object 'methods 'value))

(if (equal (first pair) message)
(return (progn (setq result (apply (second pair) arg-list))

(pop-current-object)
result)))))))

(defun message-exists-p (object message)
(dolist (pair (fget-i object 'methods))

(if (equal (first pair) message)
(return t))))

USER INTERFACE DEINITIONS

; (defvar *user-messages-window* t) ;here's where the error messages are sent.
(setq *user-messages-window* t) ;default is t.

DISPLAY UTILITIES

(defun display-classes ()
(format t "~%CLASS-%")
(do* ((classes-to-show (list 'class))

(current-class (first classes-to-show) (first classes-to-show))
(current-subs (get-object current-class 'subordinates)

(get-object current-class 'subordinates)))
((null classes-to-show))

(if current-subs
(format t "SUBS of ~A: -A~%" current-class current-subs))

(setq classes-to-show (append (cdr classes-to-show) current-subs))))

(defun remove-classes (&optional class-to-start-at)
(if (null class-to-start-at)

(setq class-to-start-at 'CLASS))
(do* ((classes-to-kill (list class-to-start-at))

(current-class (first classes-to-kill) (first classes-to-kill))
(subordinates (append (get-object current-class 'subordinates)

(get-object current-class 'instances))
(append (get-object current-class 'subordinates)

(get-object current-class 'instances))))
((null classes-to-kill))

(reset-frame current-class)
(setq classes-to-kill (append (odr classes-to-kill) subordinates)))

t)

(defun print-object (frame-name)
(let* ((frame (fget-frame frame-name))

(slots (cdr frame)))
(format t "~%~%~A:~%" frame-name)
(dolist (slot slots)

(cond ((or (eq (first slot) 'superiors)
(eq (first slot) 'subordinates)
(eq (first slot) 'instances)

-84-

(eq (first slot) 'queries)))
(t (format t " -A:-%" (car slot))

(dolist (facet (cdr slot))
(format t " ~A~%" facet))))

(terpri))))

(defun select-query (object &aux queries chosen-query)
(setq queries (get-object object 'queries))
(if queries

(Progn
(setq

chosen-query
(choose-list-with-prompt

"Choose a query to execute"
(mapoar #' (lambda (x)

(first X))
queries)

1))
(dolist (query queries)

(if (eq (first query)
(first chosen-query))

(Progn
(print-multi-query (second (second query)))
(return (send-multi-query (second (second query))))))))

(format t "-%A object has no associated class queries.~%"
object)))

-85-

Appendix B

'C' Program Files

B.1 filt4381.c

This program has been commented to help in understanding the conversion of the

Result File to the 'standard' Table File. Viewing the Result File and the Table File would

also be helpful.

The program code is in smaller, bold text while the comments have been italicized.

/ ***/

FILE: FILT4381.c By Gautam A. Gidwani (Feb., 1969)
As part of MIT Undergrad. Thesis

/** THIS ROUTINE CONVERTS THE DATA FILE FROM THE SQL/DS DATABASE ON
THE IDM-4381 MAINFRANE TO THE 'STANDARD' TABLE FILE TO BE

READ BY THE RESULT READER PROGRAM 'READ.L8P'*

/ ***/

*include <stdio .h

*def ine MAX COLS 200
#defin. DELIM 'I'

main (argo, argv)
int arga;
char *argv[];

int
int
int
char
static char
FILE

/* Allows a maximum of 200 data columns */

a, i1 - 0, i2 = 0, 13 - 0;

loop, colnnum, col_size, sise_ant;
col data [MAXCOLS];
tap [45] ;
end[] = ("************* End-of-Data **************\n"};
*in-file, *tmp_file, *out file;

if (argo I= 2) /* One argument, the file to be filtered, is reqd. *1
{ /* This file is the Result List */

printf ("FILT43B1 -- Expecting one argument, <FILENAME>.\n");
exit (1);

}
else if ((in-file - fopen (argv[1j, "r+")) = NULL)

{ /* This input file is called in file */
printf ("FILT431 -- Couldn't open file \"%s\".\n", argrv[1]);
exit (2);

-86-

also if ((tap_file = tapfiles() NULL)
{ /* A temporary file, tmpfile, is created */

printf ("1flaT4381 -- Couldn't open temporary file.\n");
exit (3);

}

rewind (in_ ile); /* Rewinds to the beginning of in_file *1

/* Loop = 0 skips the SQL SELECT statement *1
/* in the Result List *1

while (loop = 0)

if ((a = gete (infile)) I= E0F)/* Get a charecterfrom in file */
{ /* Check if char. is alphanumeric, *1

if (a > Ox20 &s a < 0x7F) /* space, tabor newline *1
i1 = 1;

if (i1 = 1 a - \

loop = 1;
il = 0;

rewind (in_file);
printf ("FILT4381 -- No data
exit (4);

}
}

/* Loop = 1 copies the column names to tmpfile *1

while (loop = 1)

if ((o - geto (in file)) i= 1o)

if (il - 0 a& a > 0x20 && a
if = 11;

if (il == 1)

/* Go to loop = 1 when newline *1
/* after the SQL statement found */

/* If no newline, then ERROR */
found in file \"%.\".\n");

/* Gets a char., c */

< 0=7)/* Checksfor alphanumeric,*/
/* space, tab or newline */

if ((fputa (o, tapfile)) - EOF) /* YES -> put a in tap file

printf ("UILT4381 --'IPUTC' Error.\n");
exit (5); /* Checks that c put in tmpfile correctly */

)
if (a - ' \n') /* Go to loop = 2 when newline after *1

{ /* column names found *1
loop - 2;
i1 = 0;

else

rewind (in_f ile) ; /* Otherwise rewind inifle and ERROR */
printf ("FILT4381 -- No data found in file \"%s\".\n");
exit (6);

else

-87-

col nun = 0
col size = 0;

/* col num => column number */
/* col size => size of a column */

/* Loop = 2 counts the dashes in the Result List. Determines */
/* number of columns and their respective sizes */

while (loop = 2)

if ((a = geta (in_file)) I 201F) /* Get the next char. c*/

if (il = 0 && a > 0x20 && a < Ox7F)
if = 1;

if (il == 1)

coldata [colnan]
colsize = 0;

++col nfun;
)

else if (a ' \n' I|

loop = 3;
coldata[aol_num]
col size = 0;

++aol_ num;
aol_data [col_num]

i1 = 0;

)
else

I

= colsize;/* YES => store size of */
/* present column in coldata array,*/
/* count the column, reset */
/* column size counter */
c - '\r') /* Check for newline at */

/* end of dashes */
/* YES => Go to loop = 3 */

= col size; /* Store size of last */
/* column, reset col size */
/* count the last column, */

= '\0'; /* end col data w/ '\O' */

/* Otherwise ERROR */

printf ("ILT4381 -- Unexpected input format in file..
\"%s\".\n", argv[1]);

exit (7);

rewind (in_file);
printf ("1FILT4381 -- No data found in file \"%s\".
exit (8);

}

12 = strlen (end); /* i2 = length of string array 'end' defined above */

/* Loop = 3 copies everything after the dashes and everything before the */
/* end offile marker (identical to 'end' is found.

for (loop - 3, il - 0; loop = 3 && il < i2;)

if ((a = geta (infile)) = EO) /* Check for end offile */

for (i1 = 0; tap[il] I= '\0'; ++il) /*Ifnot'\O',++il*/
if ((fputa (taplil], tupfile)) = 10)

printf ("1ILT4381 -- '1PUTC' Error.\n");

if (a = '-')

++aolsize;
else if (a =

/* Looks for a dash */
/* YES => increment size of present column */

') /* Looks for space between dashes */

)
else

\n", argv[1]);

-88-

exit (9) ; /* End marker not found here */
)

printf '("1ILT4381 -- End marker not found in file \"%s\".\n", argv[1]);

tapi1] = a;
taMp[i11+] = '\0
if (a = end il])

++el;
alseo

/* Puts c in tmp[ilj */
/* Ends 'tmp' string array with required '\O' *1
/* Compares char. c with end[il] */
/* YES => increment il (thus compares next char */
/* with the next element of 'end' *1

for (il - 0; tup[11] I- '\0' ; ++il) /* Otherwise, ERROR*/
if ((fputa (tap[il], tupfile)) - E0)

printf ("FILT43B1 -- ' FPUTC' Zrror.\n");
exit (10);

il - 0;

if ((outfile - freopen (argv[1], "V", infile)) = NULL)
{ /* opens an output file, out file */ .

printf ("IILT43B1 -- 'IREOPEN' Error.\n");
exit (11);

)

rewind (tap_f ile); /* Goes to the beginning of tmpfile, which should */
/* now contain column names and data only - no *1
/* SQL statement, dashes and end marker */

loop - 4; /* Goes to loop = 4 */
i1 = 0; 12 - 0; /* il = I for space, i2 = 1 for alphanumeric *1
13 = col num; /* Number of columns counted *1
col-num = 0; sime ant = 0; /* Resets col num and col size *1

/* Note that the first column is represented */
/* by col-data[0] */

/* Loop = 4 put delimiters between the columns and creates the required */
/* 'standard' Table File format

while (loop - 4)

if ((a = geta (tmp_file)) =3F) /* Gets characterfrom tmpjfle */
break; /* and checks for EOF *1

else if (a - ' \n') /* If newline, put a delimiter in outfle *1

if ((fputo (DELIM, outfile)) - E0F)

printf ("FILT4381 -- '1PUTC' Error.\n");
exit (12);

}
for (12 - col num; 12 < (13-1); ++12) /* Check if the newline *1

{ 1* was found before the last column */
if ((fputo (' ' , outfile)) - 1OF)

{ /* YES => put space in outfile *1
printf ("I'LT4381 -- '1FPUTC' Error.\n");

exit (13);
)

if ((fputa (DELIM, out_f ile)) Z0F) I*Also put a delimiter*/
{ /* in out file*/

-89-

printf ("FILT4381 -- 'FPUTC' Zrror.\n");
exit (14);

}
if ((fputa (a, outfile)) = 107) /* Put in the newline */

I
printf ("7ILT4381 -- '7PUTC' vror.\n");
exit (15);

)
0ol num - 0; size ant = 0; /* Reset for next row of data */

i1 = 0; i2 = 0;

)
else if (size ant < aol data[aol num])

{ /* Checks f not at end of column */
if (a > 0x20 a& a < Ox7) /* Checks for alphanumeric, space, */

/* tab or newline */
if (il = 1 a i2 = 1) /* Checks for space between words */

if ((fpute (' ', out_file)) == 1O) /* Puts in the space */

printf ("FILT4311 -- '7PUTC' Ezror.\n");
exit (16);

}
if ((fputa (a, outfile)) = EOF)/* Puts in present char.*/

printf ("7ILT4381 -- 'VPUTC' Error.\n");
exit (17);

)
++size ant;
il - 0; 12 - 1; /* i2 =1=> last char. alphanumeric */

)
else if (a = ' ') /* if space, then ignore it but flag il = 1 */

++size ant;
il = 1;

}
}

else if (size ant >= col data[aol_num])

{ /* Check if at end of a column */
if (12 = 0) /* Check if no characters found in column */

if ((fputa (' ', out file)) == 1) /* YES => put in space */

printf ("7I1LT4381 -- '7PUTC' Zror .\n");
exit (18);

if ((fputa (DELIM, out-file)) - 20) 1* Then put in delimiter */

printf ("ILT4381 -- '7PUTC' Error.\n");
exit (19);

++00l num; size ant - 0;

i1 - 0; 12 - 0; /* Reset for new column */

)

-90-

B.2 preREAD.c

/ **/
/*** */

/** FILE: preREAD.o By Ale R. Chaplin (April, 1908)

As part of MIT Undergrad. Thesis

/** TRIS ROUTINE AS WRITTEN TO TAKE SON OF THE BURDEN OFF OF THE **/

/** LISP "READ-STANDARD-TABLE" PROCEDURE, SINCE LISP COMPILER WAS **/

NOT AVAILABLE

#include <stdio.h>

main (argo, argv)
int arge;
char *argv[];

int c;
FILE *file, *tap file;

if (argo I= 2)

printf ("preREAD -- Expecting one argument, <FILENAME>.\n");

exit (1);

if ((file - fopen (argv[1], "r")) = NULL)

printf ("preREAD -- Couldn't open file \ "%s\ ".\n ", argv[1]);
exit (2);

}
if ((tmpfile - tmpfile ()) NULL)

{
printf ("preREAD -- Couldn't open temporary file .\n");
exit (3);

}
while ((a = fgeta (file)) I- EOF)

if (a - 'I') fputc ('\n', tap_ file);
else fputa (0, tmp_file);

}
rewind (tp_file);
if (freopen (argv[1], "w", file) = NULL)

printf ("preREAD -- Couldn't re-open file \"%s\".\n", argv[1]);
exit (4);

while ((a = fgeta (tamp_file)) ?= 30) fpute (a, file);

-91-

Appendix C

UNIX Script Files

C.1 4381FILE

sleep 1
echo
echo logon $1
sleep 1
ocho $2
sleep 1
echo ipl one
sleep 1
echo ' &a (noprof'
sleep 1
echo sysprof3
sleep I
echo "$4 $3"
sleep 1
ocho erase 43911qp temp
sleep 1
echo IXEC RXCASZ String
sleep 1
echo "EXEC 43812EL $5"
sleep 10
echo ffile 43811qp temp
sleep 2
echo logoff

C.2 4381FTP

echo "open $3"
sleep 1
echo "user $1 $2"
sleep 1
echo "ad $1 191"
sleep 1
echo "quote act $2"
sleep 1
echo "get 43811qp.tewp $4"
sleep 10
echo delete 43811qp.temp
sleep 1
echo quit

-92-

Appendix D

EXECutive Program File

D.1 4381SEL

This program is identical to the RXSELECT executive program except for the

modification of the values of the maxlength and maxins variables. These modifications have

been commented below. For a better understanding of the function of the program, refer to

IBM's EXEC manual.
/* 4381EL sql-stat : A modified version of the IBM RXSELECT exec */
/* 5798-DXT (C) COPYRIGHT IBM CORP. 1986
/* Licensed material - Program Property of IEN */
Address ' COMSND'
Parse Arg stat
If stat = " ' stat = '?' then Do

Say 'Format is: RXSELECT select-stat'
Say '
Say " Where: select-stat is any valid SQL/DS 'SELECT' statement."
Say ' See SQL/DS documentation for more information.'
Say 't

Say 'The rows returned by the SELECT will be displayed using XEDIT.'
Say 'A max4m- of 100 rows will be returned.'
Say 'If there are more rows in the result, the 3ORE eaumand can be'
Say 'used from within RXEELECT to display them.'
Say ''
Say 'All of the SELECT statement will be converted to upper case'
Say 'unless the RXCASE exec has been issued with the STRING option.'
Say 'See the RXCASE exec for information.'
Exit 100

End
iotype = 0
said - 0
writelog = 'EXECIO 1 DISKW SQL ELO$G A 0 V (STRING'
'QUERY CMSTYPE (LIFO
Parse Pull . . rt
open = 0
nextln = 0
lines = 0

NEWSEL:
'ERASE SQL ELO$G'
maxlength = 508 /*** Modified to truncate after 508 charecters ***/
mazlns = 10000 /*** Modified to hold a maximum of 10,000 rows
If " TRANSLATE" ("NORD" (stat, 1)) = 'SELECT' then selstat = stat
Else selstat = 'Select' stat
'GLOBALV SELECT $select GET CASE'
If case ^= 'STRING' then Upper selstmt
Call EXSQL 'PREP SELSTMT' selstmt
If ro > 4 then Signal 'N'INWRT'

-93-

Call EXSQL 'DESCRIDE SELSTNT ANY'
If ro ^ 0 then Signal 'FINmRT'
fields = sqldan.O
Do i = 1 to fields

/*Say ' Sqlda.'i "'"sqldan.i"'" sqldat.i*/
var.i - sqldan.i
If "INDEX"('SIFD',"LFT "(sqldat.i,1)) A 0 then lr.i M 'RIGHT'
Else 1r.i - 'LEFT'
nulls.i = "RIHT" (sqldat.i,1) = 'N'

End
Call EXSQL 'OPEN SELSTNT'
If cc > 4 then Signal 'rINlRT'
open = 1
nextln = 1
width. = 1
NORM:
umod = 0
If sqlaode = 0 then Do

Do ln- nextln to nextln+maxlns-1
Call EXSQL 'FETCR SELSTNT lnv.ln.'
If co > 4 then Signal 'FINnRT'
If sqloode = 100 then Do

open = 0
Call EXSQL 'CLOSE SELSTMT'
If CC ^= 0 then Signal 'FINRT'
Call EXSQL ' COMKIT'
If re ^= 0 then Signal 'FINRT'
Leave

End
Do j = 1 to fields

If nulls.j & "SYIDMOL"('lnv.ln.j') A then lnv.ln.J AR'
Else Do

iv - "LENGTH"(Lnv.ln.J)
If width.j < iv then Do

width.j - iv
wmod = 1

End
End

End
End
lines - ln - 1

End
Else lines - 0
If wiod then nextln = 1
If nextln = 1 then Do

lin =
ulin '
Do j - 1 to fields

If width.j < "LENGTH"(var.j) then Do
width.j - "LENGTH" (var.j)

End
If lr.J = 'LEFT' then

lin = lin "LEFT " (var. J, width. j)
Else

lin = lin "RIGHT" (var.j,width.j)
ulin = ulin "COPIES" ('-',width.j)

End
'ERASE SQL STM$T'
Call WRITE selstmt
Call WRITE "SUBSTR" (lin,2)

-94-

Call RITE "SUBSTR" (ulin, 2)
End
Do i = nextln to lines

uln = ''

Do j = 1 to fields
If lr.J = 'LEFT' then

Un = lin "LEFT " (lnv.i.j,width.j)
Else

lin = lin "RIGHT" (lnv.i.j,width.j)
End
Call WRITE "SUBSTR" (lin, 2)

End
If ^open then Call WRITE '************* End-of-Data **************'

FINNRT:
'FINIS SQL STM$T'
'1INIS SQL E*L*O$G'
XED:
'GLOBALV SELECT $select SET SELECT'
If open then Push 'COMMAND MSG Enter MORE to get more rows of data.'
'ESTATEW SQL ELO$G A'
If ro - 0 then Push 'XEDIT SQL ELO$G'
Push 'COMRND 'nextln+3
Push 'CO6mND SET CASE X I'
Push 'COBMND SET SYNONYM SELECT 6 MACRO RXSELECT'
Push ' CONMND SET SYNONYM NORE 4 MACRO RXMORE'
Push 'COMMAND SET SYNONYM SQL.ETL 7 MACRO RXSQLHLP'

'XEDIT SQL S$T$$T (WIDTH' aazlength
nextln = lines + 1
AFTHELP:
'GLOBALV SELECT $select GET SELECT'
If select ^= '' then Do

Parse Var select cad stat
Upper cod
If and - 'SELECT' then Do

'RXSQL PURGE SELSTMT'
Signal 'NEWSEL'

End
Else If cd = 'MORE' then Do

If stat = '' & "DATATYPE" (stat,'W') then mxlns stmt+0
If open then Signal 'MORE'
Else Signal 'XED'

End
Else If cud 'SQLHELP' then Do

Upper stat
' EXEC RXSQLRLP' stat
Signal 'AFTNELP'

End
End
If open then Do

Call EXSQL 'CLOSE SELSTMT'
Call EXSQL ' C0IT'

End
'ERASE SQL STM$T'
' GLOBALV SELECT $select SET SELECT'
'RXSQL PURGE SELSTMT'
Exit

EXSQL: Parse Arg cad
'RXSQL' cad
If r = 0 then Return

-95-

If r >w 100 then Do
r = ra
writelog 'RXQL' cad
writelog '+++('r')++' rzsqlmsg
r = r

Return
End
If re = S then Do

r = ra
writelog selstnt
writelog 'RXSQL' cad
writelog ' Sqlcode:' sqlcode
Do errd = 1 to 6

If sqlerrd.errd ^= 0 then
writelog ' Sqlerrd.'errd':' sqlerrd.orrd

End
If sqlerrp ^= '' then writelog ' Sqlerrp:' sqlerrp
If sqierra ^ '' then writelog ' Sqlerra:' sqlerra
If sqlwarn ' " then writelog ' Sqlwarn:' sqlwarn
If sqlcode ^= 0 then

Push 'COSSOND EMEG Enter RXSQLHLP' sqlcode,
'to get more information.'

If " INDEX" (' WS' , "LEFT" (sqlwarn, 1)) = 0 then ' RXSQL ROLLAM '
ra M r

End
Return

WRITE: Parse Arg wrtlin
linlen = "LENGTR" (wrtlin)
If iotype = 0 then Do

'SET CSTYPE NT'
'mCIO 1 DISKW SQL STM$T A 0 V (VAR WRTLIN'
r = ra
'SET CMSTYPE' rt
If r - 0 then Do

If linlen > maxlength then maxlength = linlen
Return

End
iotype = 1

End
If iotype - 1 then Do

If ^said a linlen > 254 then Do
said - 1
Say 'Line truncated' linlen-254 'characters by EXECIO'

End
'EXECIO 1 DISKW SQL STM$T A 0 V (STRING' "LEFT" (wrtlin,254)
maxlength = 254

End
Return

