
Data Connectivity for the Composite
Information System/Tool Kit

by

Toon King Wong

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

at the Massachusetts Institute of Technology

May 1989

Q Toon King Wong 1989

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part.

Author_ _

Certified by

Accepted by

artment of Electrical Engineering and Computer Science
[May 12, 1989

ofessor Stuart E. Madnick
Thesis Supervisor

Leonard A. Gould
Chairman, Department Committee on Undergraduate Theses

DATA CONNECTIVITY FOR THE COMPOSITE
INFORMATION SYSTEM/ TOOL KIT

by

Toon King Wong

Submitted to the

Department of Electrical Engineering and Computer Science

May 12, 1989

In Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science in Computer Science and Engineering

ABSTRACT

The Composite Information System / Tool Kit (CIS/TK) is a prototype being developed at
the MIT Sloan School of Management for providing connectivity among information
systems. At the core of CIS/TK is a distributed database management system called
MERGE.

MERGE provides a uniform interface for retrieving and combining data from pre-existing,
heterogeneous databases. This is achieved without any additions to the databases or its
related programs. Through a global schema, the user is presented with an integrated view
of the data. Data is referenced using a common query language called the Global Retrieval
Language (GRL). A global query processor executes GRL, and is responsible for
retrieving data from local databases and merging data. MERGE also provides facilities for
interfacing with modules which can handle data reconciliation.

This thesis describes the design and implementation of MERGE. An application for
demonstrating MERGE, the Placement Assistant System, is also presented.

Thesis Supervisor: Stuart E. Madnick
Title: Professor of Management Science

ACKNOWLEDGMENTS

I owe my many thanks to Stuart Madnick, whom as my advisor, guided and inspired me

through this often turbulent but exciting year and a half. It was truly an enriching

experience to work with Stu; the best I ever had at MIT. His articulate and enlightening

comments often helped me to focus on the right issues, and gave me insight into the

solutions presented in this thesis.

Working on the CIS/TK project was a lot of fun, and I attribute this to the wonderful group

of people we had. Special mention goes to Mia, our group coordinator, who was dedicated

to the task of making everything run smoothly. Her professional touch to all aspects of the

project will be a hard act to follow. Bon Voyage, Mia.

Finally, my sincere gratitude goes to Rich Wang, who introduced me to this rich and

intriguing area of research. Rich took me under his wings, and spent lots of Sunday

afternoons teaching me all about databases, and expert systems.

The work reported herein has been supported, in part, by AT&T, Reuters, and the MIT

International Financial Services Center.

CONTENTS

1 Introduction .. 1
1.1 Background - The CIS/TK Project .. 2
1.2 Data Connectivity for CIS/TK .. 3
1.3 G oals of Thesis .. 3
1.4 Overview of Thesis.. 5

2 Related Research .. 6
2.1 Approaches to Integration ... 6
2.2 Issues in Heterogeneous Distributed Systems 7
2.3 MERGE as a Foundation for Semantic Connectivity..........................9

3 Overview of MERGE.. 10
3.1 Data Connectivity for CIS/TK .. 11

3.1.1 The Local Query Processor .. 11
3.1.2 The Global Query Processor... 11
3.1.3 The Application Query Processor ... 11

3.2 Structure and Data Representation...13
3.3 Data Reconciliation ... 14

3.3.1 Types of Data Conflicts... 14
3.3.2 Resolving Conflicts in MERGE ... 15

3.4 Implementation Environment.. 16
3.5 Improvement to Prototype..16

4 Local Query Processing...18
4.1 Retrieving Data Through the LQP .. 18

5 The MERGE Data Model... 20
5.1 The Global Schema...20

5.1.1 Issues in Schema Integration...21
5.1.2 An Overview of the Schema Definition Language.................. 28

5.2 The Data Catalog... 31
5.2.1 Representing Synonyms... 31

5.3 The Global Retrieval Language .. 34
5.3.1 GRL Design Issues ... 34
5.3.2 An Overview of GRL..35

6 Global Query Processing ... 38
6.1 Overview of the GQP Architecture .. 38
6.2 Issues in Global Query Processing..41

6.2.1 Automatic Database Selection...41
6.2.2 Join Strategy ... 43
6.2.3 Local DBMS Optimizations .. 44
6.2.4 Interfacing for Data Reconciliation 45

6.3 The Query Parser: How it Works..48
6.3.1 Stage 1: Error Checking .. 48
6.3.2 Stage 2: Query Expansion..48
6.3.3 Stage 3: Creating an Access Plan.......................................50
6.3.4 Stage 4: Query Enhancing..55

6.4 Query Router: How it Works..57
6.3.1 The Access Path Router .. 61
6.3.2 Global Convert......................... 61
6.3.3 Insert Constraints...62
6.3.4 Combine...63
6.3.5 Format..64

7 Application: Placement Assistant System..65
7.1 Implementation Scenario.. 65
7.2 Sample Session..67

8 Conclusion.. 75
8.1 Insights ... 75
8.2 Future Work...77

R eferen ces 78

Appendices
Appendix A.1 - Schema Definition for PAS... 80
Appendix B. 1 - Global Retrieval Language .. 82
Appendix B.2 - Schema Definition Language...83

To this great
institution and

Stu.

Chapter 1

Introduction

The Composite Information System / Tool Kit (CIS/TK) is a prototype being developed at

the MIT Sloan School of Management for providing connectivity among information

systems. At the core of CIS/TK is a distributed database management system called

MERGE.

MERGE provides a uniform interface for retrieving and combining data from pre-existing,

heterogeneous databases as if the data came from a single virtual database. This is achieved

without any additions to the databases or its related programs. Through a global schema,

the user is presented with an integrated view of the data. Data is referenced using a

common query language called the Global Retrieval Language (GRL-- pronounced girl). A

global query processor executes GRL, and is responsible for retrieving data from local

databases and merging data. In addition, MERGE provides facilities for interfacing with

modules which can handle data reconciliation.

This thesis describes the design and implementation of MERGE. An application for

demonstrating MERGE, the Placement Assistant System, is also presented.

- 1 -

1.1 Background - The CIS/TK Project

With the increasing use of computer-based information systems, the difficulty of

combining information and data from various sources is becoming more apparent and has

triggered large research efforts toward integrating information systems. We refer to this

class of studies and systems as Composite Information Systems.

The CIS/TK project includes a prototype system being developed at MIT using a

combination of artificial intelligence, networking and database technology to support

connectivity among information systems.

Several issues in realizing connectivity were identified in previous work [MAD 88-1], the

technical issues being divided into three levels: physical connectivity, data connectivity and

semantic connectivity as represented in Figure 1.1

Semantic Connectivity

Data Connectivity

Physical Connectivity

Figure 1.1 Three Levels of Connectivity

Physical connectivity refers to the ability to physically link and access information systems.

However, getting the data is only the first step. In order to be useful, the data has to be

merged and formatted into a manageable form. This ability is referred to as data

connectivity. Data from multiple and different sources often have data conflicts such as

contradiction, ambiguity and incompleteness. Semantic connectivity refers to the ability to

reconcile these inconsistencies using knowledge captured from the user about the

assumptions underlying the data.

- 2 -

The goal of CIS/TK is to develop tools and techniques to support the entire spectrum of

connectivity, with a focus on semantic connectivity. The CISfIK approach [MAD 88-2]

explicitly allows for the coexistence and usage of a variety of information systems while

preserving their local autonomy. These information systems are typically independently

developed, hard to modify, and contain data that is dynamically changing.

1.2 Data Connectivity for CIS/TK

Recent developments in CIS/TK have aimed at developing an integrated system for the MIT

Sloan School Student Placement Office, allowing integrated access to several databases as

Figure 1.2 shows [WAN 88-1]. This thesis focuses on providing data connectivity

among the databases; allowing users to access and combine data from the various dissimilar

databases as if the data came from a single virtual database. In addition, although this

thesis does not explicitly address issues involved in providing application development

mechanisms like expert systems, and knowledge base management systems for resolving

semantic conflicts, one of the major objectives is to provide an environment and

foundation with which research in semantic connectivity can be investigated.

1.3 Goals of Thesis

In order to provide data connectivity for CIS/TK, MERGE must achieve the following

goals:

(a) Provide a common data model for viewing the underlying data,

(b) Provide facilities for processing a common query language, and

(c) Serve as a foundation for semantic connectivity research.

In addition, an application called the Placement Assistant System was developed to

demonstrate the feasibility of MERGE.

- 3 -

MIT
MANAGEMENT
. SCHOOL'S

STUDENT
DATABASE

SELECT QUERY: 4

4-FIND COMPANIES INTERVIEWING A T SLOAN FROM SPECIFIC
INDUSTRY AND ALUIMNI/STUIDENTS FROM THESE COMPANIES

ENTER INDUSTRY SELECTED: AUTO MANUFACTURERS

IC IA

-I

I
I

I

"" - CHRYSLER - FEBRUARY 4, 1988

ALUMNI: THOMAS SMITH, SM 1973 *
JIM JOSEPH, SM 1974
JANE SIMPSON, SM 1966

L... CURRENT STUDENTS:
BILL JONES

RECENT FINANCIALS (from I.P. SharplDsclosure 1): 4- ---

1986 1987
SALES ($1OOM) 226 263
PROFITS($M) 3,951 4,975

RECENT NEWS (from Reuters'TextLlne): 4 - -

Chrysler Announces New Eagle
Line of Autos

LINEI

I i

I i

I g

I g

I i
-Ii

.. I. .

Figure 1.2 Connectivity for the MIT Management School's Placement Office

- 4-

DA

I

1.4 Overview of Thesis

The focus of this thesis is in the design of a distributed database management system for

CIS/TK.

In Chapter 2, we present some related work in distributed database management systems,

and present the approach we adopted in developing MERGE.

In Chapter 3, we present an overview of the MERGE architecture and also some of the

major design considerations in developing the system.

In Chapter 4, we present an overview of the Local Query Processor, which provides a

uniform method of retrieving data from dissimilar databases.

In Chapter 5, we present the MERGE Data Model, which presents a single, integrated view

of the underlying data.

In Chapter 6, we present the Global Query Processor, a facility for processing the common

query language GRL.

In Chapter 7, we describe an application, called the Placement Assistant System, to

demonstrate the feasibility of MERGE.

Finally, in Chapter 8, we present our conclusions about the design of MERGE and

suggests some future work.

- 5 -

Chapter 2

Related
Research

Systems that provide data connectivity between databases are generally categorized as

distributed database management systems. A large part of this thesis draws upon work

done in this area, in particular the Multibase system [ROS 82].

2.1 Approaches to Integration

Depending on the application and the constraints, there are several approaches to the

development of distributed database systems. However, most of these systems can be

broadly distinguished on two aspects: heterogenuity and control [DEE 82].

Heterogeneous Vs Homogeneous

Homogeneous systems support one data model and one manipulation language.

Unfortunately, these systems cannot meet the objectives of most organizations who use

many types of computers with different data models and multiple data manipulation

languages.

To meet such objectives, it is necessary to use a heterogeneous system. Heterogeneous

distributed databases access and manipulate information maintained in existing, distributed,

- 6 -

heterogeneous DBMSs through a single uniform interface. This is accomplished without

changing existing database systems and without disturbing local operations.

Centralized vs Decentralized

In a centralized system, all global processing is controlled by a central computer. The

disadvantage of this approach is that it creates a bottleneck and reduces the stability of the

system, since the failure of the central computer disables the distributed database system.

In a decentralized system, each node keeps a copy of the distributed database system, each

supervising the global transactions submitted from it. The system is more stable, since the

breakdown of a single node does not disable the whole distributed system. However, the

exercise of controls and the preservation of consistency is more difficult.

For MERGE, we opted for a centralized, heterogeneous system. The main reason is

because Merge is designed to support different databases which are not wholly under the

control of any one organization. In MERGE, all components of the distributed DBMS

reside on the central computer. No additions or changes to the local databases or their host

systems are required.

2.2 Issues in Heterogeneous Distributed Systems

The major issues faced in developing Distributed Heterogeneous Database Management

Systems (DHDBMS) include [BHA 87]:

(a) Developing a Common Data Model,

(b) Providing facilities for Query Processing,

(c) Incorporating Distributed Transaction Management Routines, and

(d) Developing Authorization and Control Data Security Procedures.

Since MERGE is presently designed to perform retrieval-only operations, the problems of

transaction control, and data security are not major factors. Instead, this thesis only

- 7 -

focuses on the issues of developing a common data model and providing facilities for query

processing.

(a) Common Data Model

The goal of a common data model is to capture the entire meaning of the underlying data.

In order to achieve this, it has to resolve data conflicts resulting from the integration of

different systems and dissimilar data models.

Data conflicts can be distinguished into two types: structural and semantic. Structural

conflicts include differences in data models and differences in implementation of the local

databases. Semantic conflicts include differences in naming, data representation, and data

scaling. Most work in DHDBMS address the resolution of structural conflicts. However,

very few aim at resolving semantic conflicts.

As with most DHDBMS, MERGE adopts a three schema approach in data integration: a

conceptual schema, an internal schema, and an external schema. A conceptual schema

defines all the data in the environment, which is mapped to many underlying file and

DBMS structures; referred to as the internal schema. The conceptual schema is also

mapped to many user views; which is referred to as the external schema. The use of

multiple schemas and the mappings between them serves as the mechanism for providing

transparency across dissimilar systems and architectures.

(b) Query Processing

Query processing and optimization are complicated by the following factors:

(a) Multiple sources for data,

(b) Different local processing capabilities at the local database management systems,

(c) Different communication costs, and

(d) Variable speeds of communication links.

Most DHDBMS have optimizations for more efficient query processing. These strategies

include various join strategies, submitting subqueries to DBMS in parallel, parcelling out as

- 8 -

much computation to individual DBMS, and selecting access paths which provide optimal

returns in communication costs and speed.

In MERGE, the query processing facilities provide a uniform interface for retrieving data

from various DBMS. Presently, optimizations in the query processor are relatively simple

and are focused only on retrieving data in a reasonable space of time. Optimizations

include the automatic creation and selection of access paths using a changeable set of rules,

and a join strategy aimed at narrowing the search space.

2.3 MERGE as a Foundation for Semantic Connectivity

As described in the previous sections, the issues involved in designing MERGE are similar

to the problems found in developing distributed database management systems. However,

what distinguishes MERGE from these systems is the fact that it is intended to serve as the

foundation for further work in semantic connectivity.

This major objective has influenced us in the various stages in the design of MERGE and

CIS/TK. MERGE must be extensible and provide interfaces to tools that can resolve

semantic conflicts in the data. Several such tools proposed include inter-database instance

identification [HOR 88], translation facilities for resolving scale conflicts [MCC 88] and

concept inferencing [WAN 88-2]. In contrast, most work in distributed database

management systems ends at the data connectivity level [NEU 82] [LIN87].

- 9 -

Chapter 3

Overview of
MERGE

This chapter provides an overall view of the MERGE architecture and also discusses some

of the major design considerations in the development of MERGE. The intent of MERGE

is to lay the foundation for further research in connectivity, in particular, research in

semantic connectivity. Through a global query, MERGE will provide the ability to retrieve

data from disparate databases as if the data came from a single database, and thus allow

researchers to concentrate on the more challenging issues found in data reconciliation. As

the CIS/TK project is one that is continuously evolving, the ability to extend the

components within CIS/TK without major modifications is a critical design goal. This key

goal strongly influenced us at all stages in the development of MERGE.

In this chapter, we first present the overall architecture of CISfK and its relation to

MERGE. Then we address some of the problems faced in representing a single, integrated

view of the data. In Section 3.3, we describe some of the different types of problems in

data reconciliation. Then in Section 3.4, we describe the implementation environment of

CIS/TK and MERGE. Lastly, we describe some of the major problems found in the

previous prototype of CIS/TK, and how MERGE intends to solve these problems.

- 10 -

3.1 Data Connectivity for CIS/TK

A key component within the CIS/TK system is the query processing facility which controls

the execution of queries. The query processing architecture [HOR 88-2] is divided into

three levels, each level providing some aspect of connectivity. Figure 3.1 shows the query

processing architecture of CIS/TK and how MERGE is related to the various components

within CIS/TK. In the following sections, we briefly describe the various levels of the

query processing architecture.

3.1.1 The Local Query Processor

The lowest level of the query processing architecture is the Local Query Processors (LQP),

which provide physical connectivity to various local DBMS. Each LQP handles

communications to a single local database and with the computer on which the database

resides. The LQP provides a uniform interface for the GQP to access dissimilar databases,

handling the particularities of each local DBMS and its host system.

3.1.2 The Global Query Processor

The middle level is the Global Query Processor (GQP), which provides data connectivity

through a global query language and a common data model. The GQP is responsible for

parsing a global query and routing the subqueries to the appropriate LQPs' for data

retrieval. After the LQPs return the data, it is combined and returned to the AQP level.

A major component of MERGE is the GQP. In our version of MERGE, the GQP is

further divided into a parser module and a router module.

3.1.3 The Application Query Processor

The top level is the Application Query Processor (AQP), which provides for semantic

connectivity by using the domain of the application to resolve conflicts found in the data.

The AQP is responsible for mapping the application query into an equivalent global query

- 11

CIS/TK

APPLICA- I
TION

MODEL

MERGE
DATA Acs

MODEL Pa Q
ILca Gloal ergd

Abstract omte\ Asrc

Query

LQP Q

L~ocalLoa
DBMS Bt

QueryQuery

LPAR SE

PRSUER

Ioratted bEtac

I Plan LQP I

IRaw

Foratta bsrc

DBMSaDBM

Figure 3.1 The CIS/TK Architecture and MERGE

- 12 -

for retrieving data. Presently, the AQP level is still a subject of initial research, so we will

not describe it further.

Of these three levels of query processing, MERGE implements the middle level which

includes a global query processor and its associated data model. These components will be

further described in Chapters 5 and 6.

3.2 Structure and Data Representation

Representating a single, integrated view of all the data in a distributed database system is

especially challenging because of the dissimilar structures adopted by each local DBMS.

As with most other DDBMS, CIS/TK adopts a three-schema architecture for representing

data, as shown in Figure 3.2. The internal schemas are created by the local DBMS and are

assumed to be pre-existing. Merge implements the middle schema, that is the data model,

which represents a single, integrated view of the data. The application model is

implemented at the AQP level, and represents a subset of the data necessary for a particular

Figure 3.2 The CIS/TK Three-schema Architecture

- 13 -

application. The application model may also represent data not explicitly available in the

underlying databases, but which may be derived or deduced from that data.

In MERGE, the structural properties of the data are distinguished from the semantic

properties of the data. In the data model, the structural properties of data including

attribute names and relationship between tables are represented by a global schema. On the

other hand, the semantic properties of data including synonyms and translations between

different data representations are a data catalog.

The main reason for separating the structural properties from the semantic properties is

because in the near future, we would like to extend and enhance the semantic representation

capabilities of our data model to incorporate schemes to represent conflicts in inter-database

identification and better schemes for representing synonyms and translations. An

integrated representation scheme would make these extensions harder to achieve.

3.3 Data Reconciliation

Combining data from disparate sources is difficult because the data are often found in

different formats, and different representations and is usually contradictory and

incomplete. In order to combine data, MERGE provides certain necessary data

reconciliations.

3.3.1 Types of Data Conflicts

Conflicts in data can be distinguished as two types: syntax conflicts and semantic conflicts.

Syntax conflicts are obvious conflicts like differences in naming, formats, and scale

representations. For example, in a recruitment database shown in Figure 3.3, the same

company may be called several different names, like "Ford Motors" and "The Ford Motor

Company". We refer to these similar names as synonyms. Although they represent the

same concept, they are spelled differently in the data. In contrast, semantic conflicts are

more subtle.

- 14 -

join on company nar
not possible since diff

naming conventior

comp..

Ford
Motors

Figure 3.3 An Example of

N.k Recruitdtb

company position industry city

The Ford
Motor
Company

Difference in Naming

Semantic conflicts include differences like contradiction, incompleteness and ambiguity

which arise because the local databases were independently developed, and often carry

quite different assumptions about the data. A good example is financial databases.

Financial data like a company's revenue or net income are often calculated based on the

practices of the country where the company is located or incorporated. Thus, to match the

performance of two companies based on the revenue data may be misleading because of

these different assumptions for calculating revenue.

Unfortunatlely, it is not within the scope of this thesis to detail the different data conflicts

found in the real world, and the reader is referred to the works of [WAN 88-3], [PAG 89],

which present interesting examples found in the hotel and financial industry. Nevertheless,

MERGE has been designed as a basis for future more detailed research on semantic

conflicts.

- 15 -

Alumnidtb

3.3.2 Resolving Conflicts in MERGE

Resolving syntax conflicts, although tedious, is not as difficult as resolving semantic

conflicts. Resolving semantic conflicts require an in-depth knowledge of the domain of the

application and requires special tools and techniques for the representation of the domain

knowledge and for applying this knowledge to data reconciliation. These issues are

addressed at the AQP level with tools like the application model and concept inferencing.

At the GQP level, only syntactic conflicts are addressed like differences in naming, formats

and scale representations. In this version, we will only handle differences in naming.

MERGE provides a data catalog system to represent synonyms, and interfaces to modules

which make use of the catalog for data reconciliation. The data catalog is further described

in Chapter 5, and the interfaces are described in Chapter 6.

By considering data reconciliation in the development of MERGE, it is possible to design

an architecture that can accomodate future extensions of facilities for data reconciliation.

3.4 Implementation Environment

CIS/TK is being developed on a UNIX platform to take advantage of its portability across

disparate hardware, its multi-tasking environment, and its communication capabilities to

enable access to multiple remote databases in concert. The kernel of CIS/TK is being

developed using KOREL [LEV 87], an object-oriented programming language developed

in the Common Lisp environment.

Using KOREL, we are able to benefit from the features of the object-oriented paradigm

[WEG 86] -- modularity, consistent interfaces and conceptual clarity. Because MERGE is

designed to work within CIS/TK, it is also developed using the object-oriented paradigm.

However, for efficiency reasons, only the major interfaces in MERGE use KOREL, the

other components are developed in LISP, which unlike KOREL, does not incur the extra

cost of message-passing.

- 16 -

3.5 Improvement to Prototype

A preliminary prototype of CIS/TK was developed in previous work [WON 88]. Insights

gained from the prototype and from a financial application [PAG 89] were helpful in the

design of MERGE.

At the global query processing level of the earlier prototype, there was general

dissatisfaction with the query language in its readability. In addition, selection of the

numerous databases to satisfy a global query had to be manually performed. This proved

to be frustrating to users who were unfamiliar with the underlying database configuration.

In MERGE, an improved SQL-like query language was developed. Since SQL [DAT 87]

is fast emerging as the de-facto standard for database query languages, users are likely to

be more receptive to the new query language. Also, an innovative database selection

mechanism that automatically selects the databases for a global query was developed.

Another feature of the selection mechanism is that it relies on a set of changeable parameters

for determining the criteria for database selection, in contrast to most other optimized

mechanisms [ROS 82], where the criterias are imbedded within the mechanism itself,

making it difficult to change. These improvements are described further in Chapter 6.

At the conceptual schema level, several inconsistencies in the data model detracted users

from a clear understanding of the model. Some of these inconsistencies included

differences in the representation of relations and fragments. In the design of MERGE,

these issues were addressed and are discussed in Chapter 5.

This chapter provided an overview of MERGE and the major design considerations in

developing MERGE. In the next chapter, before presenting the main components of

MERGE, we provide an overview of how the GQP can retrieve data through a Local Query

Processor. Although the LQPs are not a focus of this thesis, they provide the ability for

MERGE to retrieve data from dissimilar databases on various host machines through a

common interface.

- 17 -

Chapter 4

Local Query
Processing

To access a database, the Global Query Processor relies on the Local Query Processor

(LQP) to perform the actual physical connection, and retrieval of data from the database

host machine. Each database that is to be accessed by CISfTK must have an LQP. These

LQPs reside on the CIS/TK host machine and not on the database host machines. In this

chapter, we provide a brief overview of how data retrievals can be accomplished through

the LQP. For a detailed description of how the various LQPs work, please refer to [CHA

88], [GAN 89], [GER 89].

4.1 Retrieving Data Through the LQP

The LQP provides a uniform method of connecting and retrieving data from various

databases using a query language called the Abstract Query Language. The basic structure

of an AQL query is:

(send-message lqp :get-data (table (attl att2 ... attn)) conditions)

Figure 4.1 shows an LQP processing an AQL query to a SQL-based DBMS. The AQL

query is translated by the LQP into an SQL query and executed at the local DBMS. The

- 18 -

raw data from the DBMS is typically returned as a file, which the LQP reformats into a

data list with the following format:

((atti att2 ... attn)

("vall" "val2" ... "val3") ... ("vall" "val2" "val3"))

where the first list contains the attribute names, and the rest of the list contains the values

corresponding to those attributes.

AQL QUERY:

(SEND-MESSAGE
LQP1 :GET-DATA
COMPANYTBL (..

SQL QUERY:

SELECT COMPNAME
POSITION .. FROM..

DATA LIST:

((compjiame position ..)
("AT&T" "manager" ..)

RAW DATA:

Figure 4.1 Retrieving Data Through The LQP

Presently, the databases supported by LQPs include several SQL databases on AT&T

3B2 UNIX machines, and an IBM/RT XENIX machine. Also planned in the near future is

the completion of two LQPs to support retrievals from commercial financial databases,

which are menu-based systems rather than SQL-based systems.

- 19 -

Chapter 5

The MERGE
Data Model

The MERGE Data Model (MDM) serves as the conceptual basis for viewing the distributed

database system -- it provides a single, integrated view of the underlying data. The data

model is implemented through three components: a global schema, a data catalog, and a

query language called the Global Retrieval Language (GRL). These components are used

by the Global Query Processor for processing a global query. For the reasons mentioned

in Chapter 2, data representation in the MDM distinguishes between the structural

properties and the semantic properties; the structural properties are represented by a global

schema and the semantic properties by a data catalog.

In this chapter, we discuss the problems in representing a single, integrated view of data in

a multi-database environment, and present how the global schema, the data catalog and the

GRL address these issues.

5.1 The Global Schema

The objective of a global schema is to represent the structures and relationships in the

underlying data. The global schema uses an extended version of the Entity-Relationship

- 20 -

(E-R) model [CHE 76] to describe these structures, chosen because it is widely accepted in

database design and simple to understand.

Figure 5.1(a) shows a simple global schema created to represent data available from two

sources: a recruiting company database and an alumni database. The underlYing databases

are shown in Figure 5.1(b). The global schema has two entities: the alumni entity and the

company entity. The alumni entity represents all the data about alumni, and the company

entity representes all the data about companies that are recruiting. The entities are related on

the relationship worksJor, which represents the fact that the alumni information can be

joined to the company infonnation using the company names found in both the recruit and

alumni databases. We will describe this global schema further when we address the

problems in schema integration.

To provide a single integrated view of the data, the dissimilar schemas of the local

databases have to be integrated. In Section 5.1.1, we discuss the major issues that are

faced in schema integration, and present how the global schema addresses these problems.

To implement a global schema, we found it necessary to develop a schema definition

language to describe the global schema. This is outlined in Section 5.1.2.

5.1.1 Issues in Schema Integration

Some of the major issues in schema integration include resolving problems in:

(a) attribute naming,

(b) attribute organization,

(c) fragmentation,

(d) multiple relations, and

(e) complex relations.

- 21 -

Global
Schema:

Local
Schema:

position
industry
date

Works for

1 : n

East-
ocompanytb

Figure 5.1(a) Simple Placement Global Schema

Databases:
Recruitdb

company position industry date

comp-name position indus date

West-
companytb

East
companytb

Companytb

Schooltb

Alumnidb

Figure 5.1(b) Underlying Databases

- 22 -

socialsec
last-name
first-name
company
degree
position

(a) Attribute Naming

In a multi-database environment, similar attributes are often found with different names. In

order to present a unified view of the data, similar attributes with different names have to be

resolved.

In the global schema, this is handled by assigning a global attribute name to local attributes

that represent the same thing. For example, the company entity in our example has a

global attribute called name. This actually represents two local attributes found in the tables

east companytb and west companytb, called company and compname respectively.

As a convention, we will address global attributes and local attribute in the following

manner

(entity attribute) - unique identifier for global attribute

(lqp table attribute) - unique identifier for a local attribute

Note that for the unique identifier for a local attribute, the LQP name is used instead of the

database name. This is because since each LQP is responsible for accessing one database,

it is equivalent to the database name for identification purposes. In addition, within

MERGE, accessing data is through the LQPs, so this provides a means of invoking the

appropriate LQP for a local attribute. In our examples, we will assume that the LQPs have

the same names as the databases.

(b) Attribute Organization

Attribute organization refers to the grouping of attributes in entities. Attribute organization

is mostly subjective; attributes are grouped into an entity because they represent a common

concept. However, there is one constraint in the global schema that has to be adhered to.

For example, in the simple-placement global schema, the entity alumni has attributes like

major, degree and position; which are attributes commonly associated with an alumni. One

attribute that is not so clearly defined is (alumni company). This attribute could also be

placed in the company entity, since it is directly related to information about companies. In

fact, within the company entity, there is an equivalent attribute called (company name).

- 23 -

However, in our global schema, a decision was made not to merge these two attributes.

There are two main reasons for this choice.

In the global schema, in order to express a relationship between two entities, they must

have at least one similar attribute. In the relationship between the alumni and company

entities this relationship is expressed as:

(= (alumni company) (company name))

Another more important reason is that it provides a better view of the underlying data

structures. The fact that company name is represented in both entities implies that this

attribute can be found in at least two databases; the alumni and the recruiting database.

This affords us a conceptually clearer view of the underlying data.

(c) Fragmentation

There are basically two types of fragmentation found in databases: horizontal

fragmentation and vertical fragmentation. Vertical fragmentation is the separation of data

by domain, for example in the recruiting database, data about recruiting companies is

divided into companies that are from the West Coast, and companies that are from the East

Coast. On the other hand, horizontal fragmentation is the separation of data by attribute

values, for example in the alumni database, the attributes for an alumni are divided between

two tables: school information like degree is found in schooltb, and the alumni's company

information is found in companytb.

In reality, resolving fragmentation is difficult because data is typically overlapped with

both horizontal and vertical fragments even within a single table. Most integration schemes

do not addresss the issue of overlapping fragments. In the global schema, we will address

only non-overlapping fragmentation, leaving the issue of overlapping fragmentation as

future work.

In the global schema, the purpose is to integrate these fragments. We integrate fragments

by expressing the relationships that exist amongst the fragments. Vertical fragments are

- 24 -

expressed as a merge, and horizontal fragments are expressed as a concatenation. For

example, to integrate the fragments in the alumni database into a single entity called alumni,

we have to express the following relationship between the tables found in the alumni

database:

(merge (alumnidb schooltb) (alumnidb companytb)

on (= (alumnidb schooltb ss) (alumnidb companytb ss)))

which means that in order to get data that spans across the tables (fragments) schooltb and

companytb, we need to merge those two tables on the social security local attribute, since

the social security is the common attribute between those two tables. In the above relation,

the table schooltb is represented as (alumnidb schooltb) so that we can uniquely identify

the table that we are refering to.

To represent a vertical fragment, we use the idea of a concatenate. For example, to

integrate the tables in the recruiting database into a single entity called company, we express

the following relationship:

(concatenate (recruitdb west companytb)

(recruitdb east companytb))

which means that in order to get all the companies represented by the company entity, we

have to concatenate the data found in westcompanytb to the data found in

east companytb.

(d) Multiple Relationships

There is usually more than one way to draw relations between data. For example, in the

company and alumni entities, the worksfor relationship expresses a join between the

company names. However, there is yet another possible join between those two entities;

between (company position) and (alumni position). A good representation scheme must

be flexible enough to allow for the expression of multiple relationships.

- 25 -

In the global schema, multiple relationships between entities can be expressed in a rather
straightforward manner. To express the join:

(= (company position) (alumni position)

we can draw another relation, sameposition between the entities as shown in Figure 5.2.

Same-position

1 : n

Figure 5.2 Expressing Multiple Relations in the Global Schema

(d) Complex Relationships

In some cases, the relationship between two tables is not simply a join between 2 attributes,

but instead involves several attributes. For example, consider a database containing the

phone bills and the addresses of telephone owners as shown in Figure 5.3. Each table is

uniguely identified by the telephone number, which is separated into two fields: area-code

and 7digits. In order to join between the two tables to get all information about a phone

owner, the tables have to be joined on both the area-code and 7digits attributes.

In previous prototypes of the global schema, complex relationships were not supported.

However, in the financial application built by [PAG 89], we found that such complex

relationships commonly exist. In this version, we have designed the global schema to

support complex relationships between entities by using the following predicate syntax:

- 26 -

Need to Join on
2 Attributes fron

Each Table

billtb o

area-code 7digits bill

617 2258262 20.00

addresstb

area-code 7digits address

617 2258262 545 Tech
Square

Figure 5.3 Complex Relation Between Tables

(and condi cond2)

For example, to represent the relationship between the two tables in the phone database, the

following expression is used:

(and (= (billtb area-code) (addresstb area-code))

(= (billtb 7digits) (addresstb 7digits))

Our solution for handling complex relationships touches only the surface of the problems

found in representing relationships. Other possible predicates could include the operator

"or" and condition predicates like ">" and "<". We leave the idea of creating a general set

of relation operators that can accomodate different types of relations as future work.

- 27 -

5.1.2 An Overview of the Schema Definition Language

In the previous section, we have presented the global schema and how it addresses some of

the major issues in schema integration. In this chapter, we describe the language used to

implement a global schema, called the schema definition language. The E-R model has

traditionally been used for conceptual schema design. Presently, no standard language for

implementing an E-R model schema exists. In MERGE, a schema definition language has

been developed for implementing the E-R model.

Using an object-oriented paradigm, entities and relationships may be viewed as objects.

The schema definition language allows for the creation of these entity and relationship

objects. The schema definition of the simple-placement global schema is shown in Figure

5.4 The following sections give an overview of how to create entity and relation objects.

Creating a Global Schema

To create a global schema, the create-schema statement must be placed at the beginning of

the file before creating any entity or relation objects. The format used is:

(create-schema name)

Creating Entities

To create an entity, the create-entity statement is used. This statement has the following

syntax:

(create-entity name
:attributes ((gatt loc ... locn) ;; gattn - global attribute name

;;locn - (lqp tb col)
(gattn loc) ... locn))

:table-relations ((merge source) source2 ;; sourcen - (lqp tb)

on cond)
(concatenate source) source2)

...))

- 28 -

;; This file implements the simple-placement global schema

place at beginning
creates schema

(create-schema simple-placement)

;;; create company entity
(create-entity company

:attributes ((name (recruitdb westcoastb company)
(recruitdb eastcoasttb compname))

(position (recruitdb westcoasttb position)
(recruitdb eastcoasttb position))

(industry (recruitdb westcoasttb industry)
(recruitdb eastcoasttb industry))

(date (recruitdb west coasttb date)
(recruitdb east coasttb date)))

:table-relations ((concatenate (recruitdb west coasttb)
(recruitdb east coasttb))))

create alumni entity
(create-entity alumni

:attributes ((socialsec (alumnidb companytb ss)
(alumnidb schooltb ss))

(last-name (alumnidb schooltb last-name))
(first-name (alumnidb schooltb first-name))
(company (alumnidb companytb comp))
(degree (alumnidb schooltb degree))
(position (alumnidb companytb position)))

:table-relations ((merge (alumnidb companytb)
(alumnitb schooltb)

on (= (alumnidb companytb ss)
(alumnidb schooltb ss))))

;; create works for relation
(create-relation worksfor

:entity-from alumni
:entity-to company
:join (= (alumni company) (company name)))

Figure 5.4 Schema Definition for simple-placement Global Schema

- 29 -

The statement has two slots. The :attributes slot is used to assign global names for similar

attributes found in the local databases. The :table-relations slot is used to express

relationships between various fragments (tables) represented by the entity.

Creating Relations

To create a relation, the create-relation statement is used. Before creating relations between

entities, the entities must be created first because the create-relation statement checks for the

existence of these entities before creating a relation object. The basic syntax of the create-

relation statement is:

(create-relation name
:entity-from entity
:entity-to entity
:join (= (entity att) (entity att))

The :entity-from and :entity-to slots specify which entities are being joined. The :join slot

specifies the attributes that are being joined on between the two entities.

This section has given a brief overview of the schema definition language. Please refer to

Appendix B for a specification of the schema definition language.

- 30 -

5.2 The Data Catalog

The previous section presented how MERGE represents the structural properties found in

the underlying data. In this section, we introduce the data catalog, used to express the

semantic properties of the data. In this impementation, only one kind of semantic property

is represented: synonyms.

5.2.1 Representing Synonyms

The Idea

Synonyms are represented using a catalog that keeps a list of all synonyms for an attribute.

For example, the basic structure of a synonym catalog for the (company name) attribute is

shown in Figure 5.5. The first column contains the main attribute value, which serves as

the unique identifier for the synonyms in each row. For example, a main attribute is

"IBM", which is a unique identifier for "I.B.M." and "International Business Machines".

main attribute syni syn2 syn3 ...

IBM I.B.M ... International
Business
Machines

DEC DEC ... Digital

Inc. Equipment
Corporation

Figure 5.5 A Synonym Catalog for Company Names

Problems with One-level Scheme

However, there is a problem with this basic scheme. By representing synonyms at the

global attribute level, we assume that the synonyms are shared across all the local attributes

- 31 -

represented by that global attribute. For example, the global attribute (company name)

represents two actual local attributes: (recruitdb west conpanytb company) and (recruitdb

east companytb comp_name). By using the above scheme for representing synonyms,

both these local attributes are assumed to have, for example, "IBM" as the main attribute

for "International Business Machines" and "I.B.M." In some cases, this assumption is not

correct.

Suppose "IBM" represents a different company in each table. Refering to Figure 5.4,

"IBM" in east companytb represents "Itsy-Bitsy Machines" and "IBM" in the

west companytb represents "International Business Machines." The one-level scheme

does not allow us to represent this difference of names at the local database level. In order

to represent these differences, we have developed a two-level scheme for representing

synonyms.

A Two-Level Scheme

As shown in Figure 5.6, the synonym catalog consists of a single global synonym table

and several local synonym tables. The global synonym table contains local attributes that

have synonyms, and for each local attribute also contains a pointer to the local synonym

table. For example, in the global synonym table *global syntb*, the attribute (recruitdb

west companytb name) has a pointer to the local synonym table *westsyntb*. Each

local synonym table contains the actual synonyms for each local attrinute. For example, the

synonym *west syntb* contains synonyms for the attribute (recruitdb westcompanytb

name).

- 32 -

GLOBAL SYNONYM TABL

west syntabi

Main attribute syni syn2 synr

I.BM I.B.M Intemational Bus.

LOCAL SYNONYM
TABLE

east-syntabl

Figure 5.6 Two-Level Scheme for Synonym Catalogs

- 33 -

5.3 The Global Retrieval Language

The third component of the MERGE Data Model is the language used for querying the

global schema. The Global Retrieval Language (GRL) provides a common query

language for retrieving and joining data expressed in the global schema. GRL is very

simple to undertand and supports retrieval-only capabilities.

5.3.1 GRL Design Issues

The objective of GRL is to provide a common language for querying different database

systems. Since the query capabilities of each database system varies widely, the choice of

the query capabilties that GRL should provide is an important issue.

Presently, CISJTK is targeted for decision support applications where retrieving data from

separate systems is more common than updates. Global updates is not only a difficult

technical issue but is also hard to implement in reality due to the autonomy of the various

databases. We thus do not focus on update capabilities.

Some of the databases that MERGE intend to support do not have any manipulation

capabilities, for example, Reuters, an on-line financial database is a retrieval-only system.

In contrast, database systems like ORACLE SQL not only have retrieval capabilities, but

they also have data manipulation capabilities like max, min, and group. In order to

provide for a common language that can access disparate systems, several options were

available to us.

The first option is for GRL to provide for most types of query capabilties, and when a local

database does not have a GRL supported capability, for example max, MERGE can

provide for a global implementation of the capability. However we decided not to

implement any manipulation type capabilities to keep the GRL simple and general. Instead

manipulation capabilties will be provided at the AQP level, where the manipulation

capabilities can be custom built according to the application.

- 34 -

Having decided on retrieval-type operations, there was still the issue of what kinds of

retrieval-type capabilities we should support. A key thing that MERGE intends to support

is the merging of data from different sources, thus a join capability was necessary.

Another issue in the design of GRL was in the design of the syntax. In the previous

prototype, the query language was very LISP oriented, which was hard to undertsand for

most users, but more efficient to process within a LISP environment. For the current

version of GRL, we compromised on a SQL-like, LISP-like language. The SQL-like

syntax will make GRL more easy to understand. Ultimately, a font-end SQL language

could be developed as future work to serve as the common query language.

5.3.2 An Overview of GRL

A typical GRL query and the format which it returns data is shown in Figure 5.8. In the

next section, we describe how to use some of the features of GRL.

"Find the AT&T company's recruiting dates, positions, and alumni who
work for that company."

GRL:
(join (select company (position date)

where (= name "AT&T"))
(select alumni (last-name first-name degree)
on works-for)

Data-
(((company position) (company date) (alumni last-name)

(alumni first-name) (alumni degree))
("accountant" "3 March" "Hotchkiss" "George" "MS 79")
("engineer" "4 March" "Hotchkiss George" "MS 79")

...)

Figure 5.8 A Typical Global Query in GRL

- 35 -

Selecting an Entity

To select a single entity and its attributes in a global schema, the select statement is used.

For example, to query the entity alumni for the attributes last-name,first-name , and

position with a condition that the degree is equal to "SB 79", the following query is used:

(select alumni (last-name first-name position)
where (= degree "SB 79"))

The data returned looks like:

(((alumni last-name) (alumni first-name) (alumni position))

("Smith" "John" "manager")
("Hopkins" "John" "physician")

If all the attributes within an entity are to be selected, then the *-option can be used:

(select alumni * where (= degree "SB 79"))

which is equivalent to the following query:

(select alumni (last-name first-name degree position)
where (= degree "SB 79"))

Complicated conditions can also be expressed within a select statement. For example, to

find all the alumni who have a degree equal to "SB 79" and is working in the position of

"manager", the following query is used:

(select alumni (last-name first-name)
where (and (= degree "SB 79")

(= position "manager")))

Similarly, an or condition can be expressed in a similar fashion.

Joining Entities

To join multiple entities, the join statement is used. For example, to join the two entities

alumni and company, we can use the following query:

(join (select company (position date)
where (= name "AT&T"))

(select alumni (last-name first-name degree)

- 36 -

on works-for)

When there is only one relationship between two entities, the query can be specified

without the on clause. In addition, the join statement supports multiple nested join

statements with the following format:

(join (select entity] (atti ... attn) where ...)
(join (select entity2 (attl ... attn) where ...)

(join (select entity3 (attl ... attn) where ...)
(...))))

For a more detailed description of the GRL syntax, please refer to Appendix B.

- 37 -

Chapter 6

Global Query
Processing

In the last chapter, we presented the data model and its associated components. The

Global Query Processor (GQP) is the basic engine for executing a global query, using the

components of the data model for attribute mapping and data reconciliation. The GQP is

part of the CIS/ITK query processing architecture and acts as the interface between the local

query processors and the application query processor.

Section 6.1 provides an overview of the GQP architecture, and Section 6.2 addresses some

of the main issues in developing the GQP. In Sections 6.3 and 6.4, the two main

components of the GQP -- the Query Parser and Query Router are described in further

detail.

6.1 Overview of the GQP Architecture

The GQP architecture is divided into two main parts: query parsing and query routing.

Figure 6.1 summarizes the main subcomponents in the GQP and their interaction. The

partitioning of the GQP reflects the two main tasks that happen during query processing:

determining the subtasks that need to be done and executing these subtasks. In addition,

by separating the parser from the router, we can in the future change the routing algorithm

without requiring modifications to the entire GQP. In the previous prototypes, the router

was imbedded in the parser. This scheme made it hard to extend the system. Furthermore,

- 38 -

1 4
Global GLOBAL QUERY Merged
Query PROCESSOR Da

PARSER

SYNTAX
CHECKER

t ROUTER
SQUERY - - - - - - - - -

EXPANSION e

I Ii

CREATE R
ACCESS
PLAN

4 COMBINE

I Ii

RUE RONUERT

EXPANSNONRAI I

PAT Is. CO V R
RATER I

LQP Formatted
Query Data

F 6

Fiur PLANeGPArhtetr

- 39 -

it made the system hard to understand and debug. The partitioned parser-router design

offers a better alternative.

The Ouery Parser

The query parser accepts a global query specified in the GRL syntax. It creates a parse tree

that maps out all the subtasks that need to be done to satisfy the query. The parser tree is

created through four subcomponents in the parser.

The syntax checker module catches any syntax errors in the query before any further

processing is done. After syntax checking, the query is sent to the query expansion

module, which expands the query into an internal form that is easier to manipulate. In

addition, attributes not specified in the global query but are necessary for joining tables is

inserted into the expanded query. After expansion, the query is sent to the create access

plan module, which creates all possible access paths by mapping the global attributes to its

equivalent local names, and then filters the choices based on a set of selection rules. The

module then creates a parse tree based on the access paths chosen. A typical parse tree is

shown in Figure 6.2. Finally, the query enhancer module inserts into the parse tree any

semantic information found in the data catalog. Presently, only synonyms and translation

enhancements are planned.

join

merge

get-table alumnidb alumnitb ... get-table alumnidb schooltb ...

Figure 6.2 Example of Parse Tree

- 40 -

The Quy Route

The query router accepts the parse tree. The router is responsible for executing the parse

tree and combining the data into a format that reflects the initial global query, for example,

removing attributes inserted for joining purposes but not specified in the global query, and

converting the local attribute names back into its equivalent global names. The router has

four submodules that accomplish the above mentioned tasks.

The access plan router module executes each leaf of the parse tree, and is responsible for

invoking the many subqueries to the LQPs. After the execution of each leaf, the data

returned is sent to the global convert module, which maps the local attribute names into the

equivalent global names. The insert module then builds a set of constraints that is inserted

into the next leaf of the parse tree. The execute-convert-insert loop is completed when the

entire parse tree is executed. All the data is then sent to the combine module where it is

combined. Finally, the combined data is formatted by theformat module into a form that

reflects the initial global query.

The previous section has presented an overall view of the main components of the GQP

and their interactions. In the following section, we will present how the GQP tackles some

interesting issues posed by query processing in a distributed database environment.

6.2 Issues in Global Query Processing

6.2.1 Automatic Database Selection

In a distibuted database system, data can usually be retrieved from several sources. The

problems faced in database selection are mainly due to (1) overlapping data, and (2)

replicated data. When the number of underlying databases is large, it is infeasible to expect

the user to manually select the databases that correspond to a global query -- some

mechanism that aids or automates the selection process is required.

The Problem - Many Combinations To Choose From

- 41 -

Figure 6.3 shows a global query fragment that is mapped to several fragments in the

underlying data. For the global attribute att1, there are two possible fragments (or sources)

where the data can be retrieved, i.e., d1 or db2. For att2, .the data can be retrieved from

either fragments db3 or db4, which are overlapped. However, at3 can only be retrieved

from db4.

Glob:
Attribul
Selecte< att1 att2 att3

I I I
? I II ~. I \ I

/
/

/
/

/
/

Replicated Fragments Overlapping Fragments

Figure 6.3 Mapping of Global Attributes To Possible Fragments

Thus to satisfy the global query, the possible combination of fragments to select include the

following:

(db1 db3 db4),

(db1 db4),

(db2 db3 db4), or

(db2 db4)

- 42 -

Faced with several choices, a combination can be selected on a number of possible

criterions, for example, on the least number of fragments, on the lowest communication

costs or on the least communication time delay. For example, if we want to optimize on

the number of sources accessed, we would either choose combinations 2 or 3 since they

require access to only two fragments.

A Changeable Set of Selection Rules

Choosing a particular combination of sources is based on factors that are usually dependent

on the application and the requirements of the user. For example, in financial applications,

knowledge and the ability to choose the source of the data is an important criterion stressed

by many users [PAG 89]. In most DDBMS, the selection mechanism is fixed and

imbedded within the routing algorithm. In MERGE, we recognise the fact that the criterias

for source selection often change and have accordingly developed a selection mechanism

that utilizes a set of changeable rules for source selection. In addition, options for both

automatic selection, manual selection or a mixture of both are possible.

Currently, we have developed a default set of simple rules to automatically select an access

path. It is based on the criteria of accessing the least number of fragments, and if possible

within one database, or table. These rules are detailed in section 6.3.3. The current set of

rules is intended only to show the feasibility of such a selection mechanism and it ignores

factors like communication costs and delays. However, by choosing a rule scheme, we

will be able to accomodate future extensions.

6.2.2 Join Strategy

The GQP has to join data from multiple databases. One strategy for joining data is to

separately query each database and join the data at the global level. In this strategy, the

results from a database query are not used in subsequent queries to other databases. The

search space for each query is thus rather large.

The other strategy is to use the results from one database query as constraints for the next

subquery. This has the advantage of narrowing the search space in the subqueries.

- 43

In our GQP, the second strategy is adopted. The MERGE system is targeted for decision

support applications where the amount of data retrieved is usually small but involves

several databases. Compared to the second strategy, the first strategy results in large

amounts of data being retrieved from each database. This significantly lengthens the total

retrieval time.

join

Data from left-leaf
used to constrain queries in

right-leaf

Figure 6.4 GQP Join Strategy

The retrieval time for the first strategy can be significantly improved if each query can be

executed in parallel. However, our present communications server cannot handle multiple

tasks. A new communications server that can handle multiple tasks is currently being

implemented [GAN 89].

6.2.3 Local DBMS Optimizations

Most DBMS have capabilities for joining and manipulating data. In a distributed database

system, a major issue is whether the system should make use of the local DBMS's

- 44 -

capabilities. Using the capabilities of local DBMS has the advantage of relieving the global

query processor from extra processing.

In our version of the GQP, we chose not to make this local DBMS optimization. The main

reason being that such a feature would require a more complex GQP, since Merge is

designed to retrieve data from heterogeneous databases with varying capabilties. For

example in Multibase, a catalog is used to keep track of the capabilities supported by each

database. If a query to Multibase uses a capability that is not found in the local database, it

wil augment such a capability at the global level. However, this incurs the cost of extra

checks and augmentation, making the global query processor much more complicated. At

presently, we do not intend to implement optimize the GQP for using the local DBMS

capabilities, although it serves as an interesting piece of future work, especially in

applications where speed is more critical.

6.2.4 Interfacing for Data Reconciliation

One of the most complex parts of query processing is performing data reconciliation. In

Chapter 2, we discussed the needs for reconciling certain types of data conflicts at the GQP

level, namely resolving syntax type conflicts so that data from separate sources can be

combined. For the reasons of extensibility, data reconciliation in the GQP is actually done

by tools that are not imbedded within the GQP. For example, a translation facility [MCC

88] is a tool currently being used in the preliminary version of the GQP for performing

translations between different data formats and different scale units. As new tools like

instance identification and domain mapping are developed for reconciling data, the GQP

should be able to accomodate them. In MERGE, we have developed a consistent interface

within GQP for accomodating new tools.

Data reconciliation during query processing can basically happen at two places: (1) before

getting the data and (2) after getting the data. For example, consider the following global

query:

(select company (position date industry) where (= name "AT&T"))

- 45 -

(1) Before Getting the Data

The previous query is asking for the "AT&T" company's recruiting positions and dates.

However, "AT&T" is also represented as several other names in the underlying data, for

example "AT&T Corp.", and "American Telephone + Telegraph". Thus before getting the

data, the equivalent synonyms for "AT&T" should be inserted into the query in order to get

all "AT&T" company's recuiting information. In the GQP, insertion of synonyms is

performed in the query enhancer module.

(2) After Getting the Data

After getting the data, the data from different sources have to combined. However, as

discussed in Chapter 2, in order to combine the data, the data has first to be resolved for

conflicts in naming, formats and scales. For example, if the previous query retrieved data

from two tables, as shown in Figure 6.5, in order to get all the information regarding the

"AT&T" company, the company names returned from each database have to be

standardized before combining the data returned. Data reconciliation after gettting data is

done in the combine module of the router.

In the GQP, data reconciliations before getting the data are done in the query enhancer

module of the parser. Data reconciliations after getting the data are done in the combine

module of the router. In this way, as new tools are developed to support data

reconciliation, there is a consistent way within the GQP to accomodate them. Any other

method, like imbedding data reconciliation within the query processor, has the

disadvantage of not being easily extendable.

- 46 -

table2

company position date city

American managei April 3
Telephon

Telegraph

AT&T progr April 4
Corp. mer

company name
standardized

("AT&T" "communications" ...) ("AT&T" "manager" "April 3" ...)

("AT&T" "programmer" "April 4" ...)

data combined

("AT&T" "communications" "manager" "April 3" ...)

("AT&T" "communications" "programmer" "April 4" ...)

Figure 6.5 Data Reconciling before Combination

- 47 -

tablel

industry

comrnmu
nications

comp .

AT&T

6.3 The Query Parser: How it Works

In this section, we provide a detailed description of how the parser works. Recalling the

simple-placement global schema described in Chapter 5, a typical GRL query based on that

schema is:

"Find the AT&T company's recruiting dates, positions, and alumni who
work for that company."

(join (select company (position date)
where (= name "AT&T"))

(select alumni (last-name first-name degree position)

on worksfor) --- Query (1)

This query is accepted by the parser and is transformed into a parse tree. The

transformation stages are described next, and they include error checking, query

expansion, creating an access plan, and query enhancing.

6.3.1 Stage 1: Error Checking

In the error checking stage, the query is both checked for syntax and lexical errors. Syntax

checking involving checking the correctness of the query syntax. In lexical checking, the

entities, attributes and relations specified in the query are checked against the current global

schema, and an error signalled if an entity, attribute or relation is not found in the global

schema.

6.3.2 Stage 2: Query Expansion

In the query expansion stage, the global query is expanded into a form that is easier to

manipulate within the GQP. Several types of expansions are involved:

Relation Expansion

First, the join relationship is expanded. The join relationship is the on clause of the GRL

query. For example in query (1), the join relationship is works-for. The join relationship

- 48 -

is expanded into the actual join condition. For example, the relationship worksJor would

be expanded into:

(= (company name) (alumni company))

This join information is obtained from the global schema. For our example, this would be

the :join slot of theworksjor relation object.

* Expansion

Secondly, the * option is expanded. The * option is used to select all the attributes in an

entity. For example, to get all the attributes within the alumni entity, the following query

can be used:

(select alumni * where (= name "Sam"))

which is expanded into:

(select alumni (name social security degree major position company)
where (= name "Sam"))

Join-Key Expansion

Thirdly, the attributes are expanded to include the join-key attributes. For example, we

found earlier that query (1) has the join condition:

(= (company name) (alumni company))

The join-key attributes are (company name) and (alumni company), i.e., these two

attributes are used these entities. However, query 1 does not specify either of these join-

key attributes. A join cannot be performed if data for that attribute is not retrieved. The

expanded query for query (1) is:

(join (select company (position date name)
where (= name "AT&T"))

- 49 -

(select alumni (last-name first-name degree position company)
on (= (company name) (alumni company)) --- Query (1.2)

Attribute Expansion

The last step in the expansion is to expand each attribute in a GRL statement into a form

that is more easier to manipulate. Each attribute is expanded into a list (entity attribute).

After query expansion, query (1.2) looks like the following:

(join (select company ((company position) (company date) (company name))

where (= (company name) "AT&T"))

(select alumni ((alumni last-name) (alumni first-name)

(alumni degree) (alumni position) (alumni company)))

on (= (company name) (alumni company))) --- Query (1.3)

Next, the expanded query is passed to the create access plan stage.

6.3.3 Stage 3: Creating an Access Plan

In this stage, an access plan is created that maps out all the subtasks that need to be done to

satisfy the query. Creating an access plan involves (1) find all possible access paths, and

(2) selecting an access path, and (3) creating an access plan (parse tree) based on (2).

These steps are summarized in Figure 6.6, and are further elaborated next.

(1) Find Access Paths

To find the access paths for a query, each select statement of a query is applied the

procedure described next. For our examples, we will use the first select statement of

query (1.3).

Procedure:

(i) Map Global Attributes to Local Names. Each global attribute is mapped to all

the possible local names. For example, the attribute (company name), is mapped to the

following local names:

- 50 -

((recruitdb west-companytb company)
(recruitdb eastcompanytb comp-name))

After all the global attributes have been mapped into the local names, this map information

is stored in a local cache to facilitate quick lookups.

EXPANDED
QUERY

ACCESS PLAN

Figure 6.6 Creating an Access Plan

(ii) Joins between Sources. To find the possible access paths, all joins between the

sources have to be first enumerated. All the join relationships between the sources can be

obtained from the global schema, from the :table-relations of the entity object. These

relationships are then used to find all possible source combinations. For example, in order

to satisfy query (1.3), the sources found previously in (i) which include:

- 51 -

For the company entity:

1.1 (recruitdb westcompanytbl)

1.2 (recruitdb eastcompanytbl) , and

For the alumni entity:

2.1 (alumnidb alumnitb)

2.2 (alumnidb schooltb)

have relations of a concatenate and merge respectively. In other words, in order to satisfy

the global query that involves the entity company, the two sources 1.1 and 1.2 need to be

concatenated together. Similarly, to satfisfy the global query for the alumni entity, the two

sources 2.1 and 2.2 need to be merged.

Step 2: Select Access Path

The selection of an access path is by default done automatically. The default rule set is

shown in Figure 6.7. The goal of the default rule set is to determine the least number of

sources needed to satisfy a query.

In our example query (1.3), the selection rule applied is very simple because there is only

one combination of sources required to satisfy the query, that is, the only combination?

near the top of the flow chart in Figure 6.6 is found to be true, and the rule selection

process ends.

- 52 -

Figure 6.7 Default Selection Rules

- 53 -

Step 3: Create a Parse Tree

The last step is to create the parse tree using the access path selected from step (2). The

parse tree created for query 1.3 is shown in Figure 6.8. The parse tree is specified in an

intermediate query language for which the router understands.

join

concatenate merge

get-table recruitdb
eastcoastdb ---

get-table recruitdb get-table alumnidb
westcoasttb ... alumnitb (last-name ...

Figure 6.8 Parse Tree for Query 1.3

get-table alumnidb
schooltb (degree ...

The parse tree for query (1.3) is the following intermediate query:

(join (concatenate (get-table recruitdb westcompanytb (position date company)

where (= company "AT&T"))

(get-table recruitdb eastcompanytb (position date compname)

where (= compname "AT&T"))

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss))

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

on (= (company name) (alumni company)))

This parse tree is then sent to the query enhancement stage.

- 54 -

6.3.4 Stage 4: Query Enhancing

The two types of query enhancement include synonym identification and translations.

These enhancements are described next.

Synonym Identification

The first type of query enhancement is synonym identification. All attributes in a query are

checked against the synonym catalog for synonyms. For example, to check whether

(recruitdb west companytb company) has synonyms, the following command is used:

(getsyntb 'recruitdb 'west companytb 'company)

If synonyms exist, the local synonym table for that attribute is returned, else nothing is

returned. Recall our example in Figure 5.5 from Section 5.2.1 on the two-level scheme

representation for synonym catalogs. The local synonym table for (recruitdb

west companytb company) from that example would be:

west_syntb

Each synonym table is inserted into the parse tree at the leaf (get-table statement) where the

synonym occurred in the following format:

(get-table lqp tb (atti ... attn) where conds

syns ((attl synjtablel) ... (attn synjablen))

where attn is the name of the local attribute that corresponds to the synonym table

syn-tablen. For example *west_syntb* would be inserted as:

(get-table recruitdb west_companytb (position date name)
where (= name "AT&T")
syns ((name *west_syntb*)))

- 55 -

After all the attributes are checked, the parse tree is augmented to include these synonym

table names. The actual insertion of synonyms does not take place until query routing.

After query enhancements, the parse tree for query (1.3) is the following:

(join (concatenate (get-table recruitdb westscompanytb (position date company)

where (= company "AT&T")

syns ((company *west-syntb*)))

(get-table recruitdb east-companytb (position date compname)

where (= comp-name "AT&T")

syns ((compname *east-syntb)))

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss))

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

on (= (company name) (alumni company))) --- Parse Tree (1.3)

- 56 -

6.4 Query Router: How it Works

The query router accepts a parse tree which it then executes. Before going into the details

of how each module of the router works, we will run through an example using the parse

tree created for query (1.3). From hereon, we will refer to that parse tree as parse tree

(1.3). The numbers in bold in the following example correspond to where the parse tree

are being processed within the router, as shown in Figure 6.1. For convenenience, we

reproduce parse tree (1.3):

(join (concatenate (get-table recruitdb westscompanytb (position date company)
where (= company "AT&T")
syns ((company *west-syntb*)))

(get-table recruitdb east-companytb (position date comp.name)
where (= comp-name "AT&T")
syns ((compname *east-syntb*)))

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss))

(get-table alumnidb schooltb (degree ss)
on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

on (= (company name) (alumni company)))

The router traverses the parse tree in a left to right, depth-first mode. For parse tree (1.3),

the first left branch:

5(a):
(concatenate (get-table recruitdb westcompanytb (position date company)

where (= name "AT&T")

syns ((company *west-syntb*)))

(get-table recruitdb eastcompanytb (position date comp-name)

where (= compname "AT&T")

syns ((comp_name *east-syntb*)))

- 57 -

would be first executed. The access path module executes this branch by generating

subqueries to the appropriate LQPs. The data returned from the LQPs is combined:

6(a):
(((recruitdb westscompanytb position) (recruitdb west-companytb date)

(recruitdb westscompanytb company))

("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

This data is sent to the global convert module which converts the header list (the first list

in the data) into the equivalent global attribute names:

7(a):
(((company position) (company date) (company name)

("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

This is processed by the insert constraints module which takes the data and builds

constraints for the right branch of parse tree (1.3). These constraints are inserted into the

right branch:

5(b):
(merge (get-table alumnidb alumnitb (last-name first-name position

company ss)
where (= company "AT&T")) ;; constraint inserted

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

This right branch of parse tree (1.3) is then executed by the access router module. The

data returned from the LQPs are combined and sent to the global convert module:

- 58 -

6(b):

(((alumnidb alumnitb last-name) (alumnidb alumnitb first-name)

(alumnidb alumnitb position) (alumnidb alumnitb company) (alumnidb alumnitb ss))

("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

The converted data is sent to the insert constraints module:

7(b):

(((alumni last-name) (alumni first-name) (alumni position)

(alumni company) (alumni ss))

("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

However, no constraints are built because all the branches of the parse tree have been

executed. The next stage involves combining all the data returned from the left and right

branches:

8:

(join ((company position) (company date) (company name)

("manager" "February 5" "AT&T")

("programmer" "February 6" "AT&T"))

(((alumni last-name) (alumni first-name) (alumni position)

(alumni company) (alumni ss))

("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

on (= (company name) (alumni company)))

This data is joined into one big list:

- 59 -

9:
(((company position) (company date) (company name)

(alumni last-name) (alumni first-name) (alumni position)
(alumni company) (alumni ss))

("manager" "February 5" "AT&T" "Ernest" "George" "accountant" "AT&T"
"888002147")

("programmer" "February 6" "AT&T" "Horton" "Dave" "engineer" "AT&T"

"214700888")))

This is processed by theformat module which removes any attributes not specified in the

original query. Refering to the orginal query (1.3), this includes removing (alumni

company) and (alunmi ss), which were necessary in joining the data but not specified in

query (1.3):

RETURNS:

(((company position) (company date) (company name)

(alumni last-name) (alumni first-name) (alumni position)
("manager" "February 5" "AT&T" "Ernest" "George" "accountant")

("programmer" "February 6" "AT&T" "Horton" "Dave" "engineer"))

This section has provided a run-through of how the modules in the router interact. In the

next section, we describe how each module works.

- 60 -

6.3.1 The Access Path Router

The intermediate query router recognizes four operators, which in its basic form are the

following:

GET-TABLE lqp table (attl ... attn) WHERE conds. Selects the attributes attl,..

attn from the table table on the restriction conds.

MERGE get-table get-table ON conditions. Merges two sets of data returned from the

get-table statements using the conditions as restrictions. All duplicate entries in the data

are eliminated.

CONCATENATE get-table get-table. Concatenates two sets of data returned from the

get-table statements. Does not eliminate any duplicates.

The access path router accepts a parse tree which it then proceeds in a left-to-right depth

first manner to break down into the subqueries consisting of the intermediate queries. The

intermediate quries are then executed. When the access path router encounters a get-table

statement, the appropriate LQP specified in the statement is invoked in the following

manner

(send-message lqp :get-data (table (atti ... attn)) conds)

After executing all the get-table statements within a subquery, the data returned from the

LQPs are combined with the either the merge or concatenate operator.

6.3.2 Global Convert

The global convert accepts a list of data from the access path router and converts the header

of that list into the global attribute names. For example in 6(a), the header list is:

- 61

((recruitdb west companytb position) (recruitdb west companytb date)
(recruitdb westcompanytb company))

Each of these local attributes is converted into its equivalent global attributes by looking up

in a temporary cache, created during the parsing of the query. For example, to look up the

global attribute for the first local attribute in the header list shown above, the following

command is used:

(lookup-3map 'recruitdb 'westcompanytb 'position *Ioc->gs*)

where *loc->gs* is the name of the local cache. The local attribute name returned is:

((company position))

This is done for all the elements in the header list, which is then appended to the rest of the

data into the following:

(((alumni last-name) (alumni first-name) (alumni position)

(alumni company) (alumni ss))

("Ernest" "George" "accountant" "AT&T" "888002147")

("Horton" "Dave" "engineer" "AT&T" "214700888"))

6.3.3 Insert Constraints

This module takes the data returned from one branch of the parse tree and uses it to

constrain the next query found in the right branch. For example in 7(a), the data returned

from the left branch of parse tree (1.3):

(((company position) (company date) (company name)

("manager" "February 5" "AT&T")

- 62 -

("programmer" "February 6" "AT&T"))

is matched with the on part of the join statement, the condition being:

(= (company name) (alumni company))

A match is found when one of the attributes in the header list of the data match with an

attribute in the condition list. In this case, a match is found for (alumni company). The

data for the match is found from the data and used as constraints:

(= (alumni company) "AT&T")

which is converted into the local attribute name:

(= (alumniidb alumnitb company) "AT&T")

and inserted into the left-most leaf in the right branch of the parse tree:

(merge (get-table alumnidb alumnitb (last-name first-name position

company ss)
where (= company "AT&T")) ;; constraint inserted

(get-table alumnidb schooltb (degree ss)

on (= (alumnidb alumnitb ss)

(alumnidb schooltb ss))

6.3.4 Combine

The combine module takes the data returned from each branch of the parse tree and

combines it on the join operator. The joining process involves a cartesian product of the

data and then a restriction is performed on the resulting data list.

In the future, when data reconciliation facilities like translations are implemented, they can

be interfaced to the GQP in the combine module.

- 63 -

6.3.5 Format

The format module takes the combined data and strips off attributes that were not specified

in the initial query but were used in the the joining process. The data is then returned to the

to the caller of the GQP, completing the query processing process.

The last two chapters described the data model and the global query processor. In the next

chapter, we test these components with an application called the Placement Assistant

System.

- 64 -

Chapter 7

Application:
Placement Assistant
System

This chapter describes a simplified version of the Placement Assistant System (PAS) being

implemented by the CIS/TK project. It is used to demonstrate the MERGE system

operating within the CIS/TK environment, which currently supports access to several SQL-

based DBMS. In the next section, we describe the operational scenario of the simplified

PAS, and in section 7.2, show a sample session with the system.

7.1 Implementation Scenario

The following describes the scenario of the PAS system:

As a student, it would be nice to have a Placement Assistant System (PAS) to help plan and

prepare you for your job interviews. This task normally involves selecting a set of

companies on any several criteria, such as industry, location, economic performance,

position. You will then want to check which companies will be sending recruiters to your

school, resolve any conflicts, and define your schedule of interviews. In order to focus

your energies and improve your chances, you will want to gather relevant information from

- 65 -

- -: -:: :::-::::::::I.P. SH ARP,
FINSBURY

CIS/TKFINAN- DOWNLOAE
CIAL

ODEM
MIT2E MIT2C ... O..M

ETHERNET

ALUMNI RECRUT:

MIT2A DONNER

AT&T 3B2
B

Figure 7.1 Machine Configuration for PAS

both external and internal sources (if it happens that an alumnus works for any of the

companies). This would allow you to be knowledgeable about the company, prepare you

to ask questions, and solicit support for your application.

The Placement Assistant System is to be an on-line system that helps you in the various

phases of the placement process. There are several databases, shown in Figure 7.1, at

your disposal:

1- ALUMNI (on an AT&T 3B2 computer). This will give you access to data

regarding alumni and the corporations which employ them,

2- RECRUIT (on an IBM PC/RT computer). The RECRUIT database, maintained by

the Placement Office at SLOAN, provides information as to which companies are

recuiting, the positions for which they are hiring, and whn they will be coming.

- 66 -

3- FINSBURY and I.P. SHARP (external databases). Commercial data banks

such as Finsbury or I.P. Sharp provide general information about location, industry,

products, financial situation of major corporations.

Presently, this version of PAS does not have the capability to access the external databases

through CIS/TK, so the data from the external databases is downloaded onto an SQL

database (Financial on MIT2C) which is then accessed by the CIS/TK system. Efforts to

provide on-line connection to the external databases are near completion and are further

described in [GER 89] [Gan 89].

In the next section, we describe a sample session with MERGE.

7.2 Sample Session

MERGE provides a common query language for retrieving, and combining data from the

various databases described in the last section. A global schema that represents the

underlying data is shown in Figures 7.2(a) and 7.2(b) The following is a session that a

student might go through with MERGE to find out more about recruiting companies:

1. "Find all companies recruiting in the communications industry". This

query involves accessing two databases (alumni and recruit). The first access is to the

alumni database, which gets the standard industry code (SIC) for the communications

industry, and then the recruit database is accessed to get companies with that stardard

industry code.

;;;; Query to Global Query Processor:

(GQP (SELECT COMPANY (DATE POSITION NAME)
WHERE (= INDUSTRY "Communications")))

- 67 -

sic
position
industry
date

Works for

Finance-info

code
compno
revenue
profit
currency
mult
period

Figure 7.2(a) Global Schema for PAS

- 68 -

Global
Schema:

last-name
first-name
company
deg=e

MIT2C (AT&T 3B2) MIT2C (AT&T 3B2)

MIT2C (AT&T 3B2)
DATALINE

DATA I

periodending
sales
efo
code
companyname

__ I

MIT2A (AT&T 3B2)
MIT2A (AT&T 3B12)
ALUMNIDB

ALUMNITB
- firstname
- lastname
- degree
- birthdate
- prefix
- zipcode
- sequencenum
- positioncode
- company name
- address_1l1
- address_12
- address_13

MIT2C (AT&T 3B12)
DISCL_2

DESCRIBE

- compno
- sc (siccode)
- PC

POSITION]

- position code
- position name

GENINFO
- compno
- co

-ad1
- cy

- st

- zp
- ts

SICNUMTB

- sequence-num
- siccode

SICCODETB

- sic code
- industry

-I

-.

er

coQ
(A

0n

GENNUMI

- compno
- rd

- rdns
- ef

- ns

- ni

DONNER (IBM RT)
IBM-RT

COMPANYTBI

- company name
- position
- state
- Sc

- status
- visit day

;;;; This query is sent to the parser which returns the following parse tree:

<2 (PARSER (MERGE (GET-TABLE LOCAL2E SICCODETB
(INDUSTRY SICCODE) WHERE

(= INDUSTRY "Communications"))
(GET-TABLE ORACLE2E COMPANYTBL

(VISITDAY POSITION COMPANYNAME
SICCODE))

ON
(= (ORACLE2E COMPANYTBL SICCODE)

(LOCAL2E SICCODETB SIC_CODE)))

;;;; The parse tree is then passed to the router which routes each subquery to the appropriate

LQP:

2> (QUERYROUTER
(MERGE (GET-TABLE

(GET-TABLE

LOCAL2E SICCODETB (INDUSTRY SICCODE)
WHERE (= INDUSTRY "Communications"))

ORACLE2E COMPANYTBL
(VISITDAY POSITION COMPANYNAME

SICCODE))

(= (ORACLE2E COMPANYTBL SICCODE)
(LOCAL2E SICCODETB SIC_CODE))))

;;;; The first subquery is to the alumni database to get the SIC for "communications":

3> (SEND-MESSAGE LOCAL2E :GET-DATA
(SICCODETB (INDUSTRY SICCODE)

(= INDUSTRY "Communications")))

SQL query to be
SELECT INDUSTRY,
'Communications'

sent to DBMS
SICCODE FROM SICCODETB WHERE

Connecting to localdb on machine mit2e.. .Done.

;;;; The LQP returns the following data:

<3 (SEND-MESSAGE
(("INDUSTRY" "SICCODE")

("Communications " "48")))

Next, the router executes the right branch (recruiting information) with the newly

found information on SIC as a constraint:

3> (QUERYROUTER
(GET-TABLE ORACLE2E COMPANYTBL

(VISITDAY POSITION COMPANY NAME
(= SICCODE "48")))

SICCODE)

- 70 -

INDUSTRY =

WHERE

;;;; Get data from about recruiting information:

4> (SEND-MESSAGE
(COMPANYTBL

ORACLE2E :GET-DATA
(VISITDAY POSITION COMPANYNAME SICCODE)

(= SICCODE "48")))

SQL query to be sent to DBMS

SELECT VISITDAY, POSITION, COMPANYNAME, SICCODE

COMPANYTBL WHERE SICCODE = '48'

Connecting to oracldb on machine mit2e.. .Done.

FROM

<4 (SEND-MESSAGE
(("VISIT DAY" "POSITION" "COMPANYNAME" "SICCODE")

("February 5" "investment mgmt" "AT&T" "48")

("January 28" "finance" "AT&T" "48")

("January 29" "marketing" "AT&T" "48")

("February 9" "international" "AT&T" "48")))

The data is combined with the previous data and returned:

<1 (GQP (((COMPANY DATE) (COMPANY POSITION) (COMPANY

("February 5" "investment mgmt" "AT&T")

("January 28" "finance" "AT&T")

("January 29" "marketing" "AT&T")

("February 9" "international" "AT&T")))

NAME))

2. "Find the alumni who work at AT&T, and the company's financial

information for the year 1987". This query involves access to three databases: the

alumni, recruit, and financial databases. First the alumni database is accessed to retrieve

data about the alumni, and then the recuit database is accessed to retrieve tha states. Finally,

the IPSHARP database is accessed to retrieve AT&T's financial data for the year 1987.

This data is then combines together.

;;;; Query to Global Query Processor:

1> (GQP (JOIN (SELECT ALUMNI (LAST-NAME FIRST-NAME DEGREE)

WHERE (= COMPANY "AT&T"))

(JOIN (SELECT COMPANY (STATE))
(SELECT FINANCE (PROFIT CURRENCY MULT)

WHERE (PERIOD "19871231")))))

;;;; This query is sent to the parser which returns:

- 71 -

<2 (PARSER (JOIN (GET-TABLE LOCAL2E ALUMNITB
(COMPANYNAME LASTNAME FIRSTNAME

DEGREE)
WHERE (= COMPANYNAME "AT&T"))

(JOIN (GET-TABLE ORACLE2E COMPANYTBL
(COMPANYNAME STATE))

(MERGE (GET-TABLE DISCLOSURE2E GENINFO
(CO CURR COMPNO))

(GET-TABLE DISCLOSURE2E GENNUM
(CF NS MULT COMPNO)

WHERE (CF "19871231"))
ON

(= (DISCLOSURE2E GENINFO
COMPNO)

(DISCLOSURE2E GENNUM
COMPNO)))

ON (= (COMPANY NAME)
(FINANCE COMPANY)))

ON ((ALUMNI COMPANY) (COMPANY NAME)))

;;;; This parse tree is sent to the router:

2> (QUERYROUTER (GET-TABLE LOCAL2E ALUMNITB
(COMPANYNAME LAST NAME FIRST NAME DEGREE)

WHERE (COMPANYNAME "AT&T")))

;;;; invoke LQP

3> (SEND-MESSAGE LOCAL2E :GET-DATA
(ALUMNITB (COMPANYNAME LASTNAME FIRSTNAME

DEGREE)

(= COMPANYNAME "AT&T")))

SQL query to be sent to DBMS
SELECT COMPANYNAME, LASTNAME, FIRSTNAME, DEGREE FROM
ALUMNITB WHERE COMPANYNAME = 'AT&T'

Connecting to localdb on machine mit2e.. .Done.

;;;; data returned from LQP

<3 (SEND-MESSAGE
(("COMPANY NAME" "LAST NAME "

"FIRST NAME""DEGREE")

("AT&T" "George" "Ernest" "SM 1979")))

;;;; routes next leaf in parse tree, which gets the state information

2> (QUERYROUTER
(GET-TABLE ORACLE2E COMPANYTBL

(COMPANYNAME STATE) WHERE
(= COMPANYNAME "AT&T")))

;;;; invokes the lqp for the recruiting database

3> (SEND-MESSAGE ORACLE2E :GET-DATA
(COMPANYTBL (COMPANYNAME STATE)

72 -

(= COMPANYNAME "AT&T")))

;;;; which returns

<3 (SEND-MESSAGE
(("COMPANY NAME" "STATE") ("AT&T" "MA")

("AT&T" "NJ") ("AT&T" "MA") ("AT&T" "MA")))

;;;; routes next leaf

2> (QUERYROUTER
(MERGE (GET-TABLE DISCLOSURE2E GENINFO (CO CURR

COMPNO)
WHERE (= CO "AT&T"))

(GET-TABLE DISCLOSURE2E GENNUM
(CF NS MULT COMPNO)

WHERE (= CF "19871231"))
ON

(= (DISCLOSURE2E GENINFO COMPNO)
(DISCLOSURE2E GENNUM COMPNO))))

;;; invokes LQP

3> (SEND-MESSAGE DISCLOSURE2E :GET-DATA
(GENINFO (CO CURR COMPNO) (= CO "AT&T")))

SQL query to be sent to DBMS
SELECT CO, CURR, COMPNO FROM GENINFO WHERE CO = 'AT&T'

Connecting to disc1_2 on machine mit2e .. .Done.

;;;; data returned

<3 (SEND-MESSAGE (("CO" "CURR" "COMPNO") ("AT&T" "$-US"
"470")))

;;;; route next last leaf

3> (QUERYROUTER
(GET-TABLE DISCLOSURE2E GENNUM

(CF NS MULT COMPNO) WHERE
(AND (= CF "19871231") (= COMPNO "470"))))

invokes the LQP for financial data

4> (SEND-MESSAGE DISCLOSURE2E :GET-DATA
(GENNUM (CF NS MULT COMPNO)

(AND (= CF "19871231")
(= COMPNO "4701"))))

SQL query to be sent to DBMS
SELECT CF, NS, MULT, COMPNO FROM GENNUM
WHERE (CF = '19871231') AND (COMPNO = '470')

- 73 -

Connecting to discl_2 on machine mit2e.. .Done.

;;;; data returned by LQP

<4 (SEND-MESSAGE
(("CF" "NS" "MULT" "COMPNO")

;;;; data is formatted and returned to GQP

<1 (GQP
DEGREE)

(((ALUMNI LAST-NAME) (ALUMNI FIRST-NAME) (ALUMNI

(COMPANY STATE) (FINANCE PROFIT) (FINANCE CURS
(FINANCE MULT))

("George" "Ernest" "SM 1979" "NJ" "33598.0" "
"million")
("George" "Ernest" "SM 1979" "MA" "33598.0" "

"million")))

RENCY)

$-US"V

$-US"

In this chapter, we demonstrated the feasibility of MERGE for providing data connectivity

for CIS/TK. Unfortunattely, due to time constraints and problems in the data reconciliation

facilities, we could not show these tools in action. In the next chapter, we present the

conclusion of our work, and point towards some possible future work in developing

MERGE.

- 74 -

Chapter 8

Conclusion

In this thesis, the design of a distributed database management system for providing data

connectivity for CIS/TK was presented. This was motivated by the goal of providing a

single, integrated environment to access and combine data from various heterogeneous,

pre-existing databases. The key difference between MERGE and other Distributed DBMS

is that MERGE is designed with the intent of serving as a foundation for further work in

semantic connectivity. In order to achieve this, it was necessary to design MERGE to be

extensible, and to define interfaces for the addition of tools for semantic data reconciliation.

In this chapter, we first discuss how the design of MERGE faired in satisying these goals.

Then, we present some possible future work for extending MERGE.

8.1 Insights

Several insights about the design of MERGE were gained during the implementation of the

system as well as during the development of the PAS application for testing the system.

The separation of the GQP into two parts: the query parser and the query router proved to

be a very effective design choice. It provided a very clear way to describe the system --

something which was found to be lacking in the preliminary prototype. This was mainly

because the MERGE GQP design corresponded well to the tasks involved in global query

processing, that is, planning all the subtasks that need to be done and actually executing

- 75 -

these tasks. This separation of the GQP will allow future developers to change the router

without affecting the parser, if such a need arises due to particular needs of the application.

The facility for automatically selecting databases for a global query proved to be a big

relieve for both casual users and developers of the system. In addition, the use of a

changeable set of rules for performing database selection allowed one to change the criteria

for determing an access path depending on the application and the requirements of the user.

When testing the system with the PAS application, there were several times when we had

to change the rules because of the type of data we wished to retrieve. By separating the

criterias for database selection from the selection mechanism itself, we can in the future

expand upon the current default rules without modifications to the system, something that

is not possible with systems that imbed the selection rules in the selection mechanism.

On the other hand, creating interfaces for data reconciliation within the GQP proved to be a

harder issue than at first thought, especially when the range of possible tools and their

implementations for data reconciliation are unknown. Nevertheless, the two basic ideas

about performing data reconciliation before data is retrieved and after data is retrieved

proved to be useful guidelines for interfacing to such tools. Difficulties arise when data

reconciliation required the coordination of both pre-data retrieval and post-data retrieval

enhancements.

Focusing on the other component of MERGE, that is the data model, we found that the

distinction of the structural properties and the semantic properties of data allowed us to

tackle each problem separately with considerable success. This was because the structural

properties remained fairly stable and once a global schema was created, there was rarely

any need to modify it. As for the semantic properties, even with the simple PAS

application, we were constantly finding examples of different types of semantic conflicts.

This convinced us that the MERGE data model, with its goal of extensibility, was an

appropriate representation scheme.

During the implementation of this thesis, we attempted to build some simple data

reconciliation tools for resolving synonyms and translations. However, we found that

- 76 -

without a domain mapping system, that is, a facility that allows one to express the

properties of the underlying data, like integer, string or character, we were really hampered

in our attempts to build such tools.

8.2 Future Work

The insights gained point to some possible future work for developing MERGE. Firstly,

we think at least some form of domain mapping support is needed to express the basic

properties of the data, perhaps like integers, and string identification. Other areas include

the development of a wider range of selection rules to optimize access time or costs. Also,

the development of a query language that can provide more operations would be useful, for

example an extended version of the SQL language.

Other possible areas of future work that are not directly within MERGE but relevant,

include the development of data reconciliation tools, with which we can test the GQP for its

data reconciliation interfacing abilities.

Work in this thesis on providing data connectivity for CISITK and serving as a foundation

for semantic connectivity has only scratched the surface of many interesting issues.

Nevertheless, we feel that the contribution of this thesis will allow researchers to explore

the intriguing problems in semantic connectivity without having to be burdened with the

tasks of getting the data from various dissimilar machines.

- 77 -

REFERENCES

[BHA 87] Bhalla S., Prasad B., Gupta A., and Madnick S., "A Technical Comparison of
Distributed Heterogeneous Database Management Systems," 1987.

[BRO 84] Brodie, M.L., "On the Development of Data Models," On Conceptual
Modelling: Perspectives from Artificial Intelligence, Databases, and Programming
Languages, 1984.

[CHA 88] Champlin, A., "Interfacing Mutiple Remote Databases in an Object-Oriented
Framework", Bachelor's Thesis, MIT, May 1988.

[CHE 76] Chen, P. "The entity-relationship model: Towards a unified view of data,"
ACM Trans. Database Syst. 1, 1 March, 1976.

[DAT 87] Date, C.J., The SQL Standard, 1987.

[DEE 82] Deen, S.M. "Distributed Databases - An Introduction," Distributed Data Bases,
1982.

[GAN 89] Gan, F. "An Intelligent Communications Server." B.S.Thesis, MIT, 1989.

[GER 89] Gerber, H. "Optimizing Information Retrieval For Disparate Menu Driven
Database Systems." B.S. Thesis, MIT, 1989.

[HOR 88] Horton, D.C., Madnick, S.E., Wang, Y.R., "Inter-Database Instance
Identification in Composite Information Systems, "Proceedings of the Twenty-Second
Annual Hawaii International Conference on Systems Sciences, January, 1989.

[HOR 88-2] Horton, D.C., "An Object-Oriented Approach Towards Enhancing Logical
Connectivity in a Distributed Database Environment," M.S. Thesis, MIT Sloan School,
1988.

IKIN 84] King, R., McLeod D., "A Unified Model and Methodology for Conceptual
Database Design" On Conceptual Modelling: Perspectives from Artificial Intelligence,
Databases, and Programming Languages, 1984.

[LEV 87] Levine S., "Interfacing Objects and Databases", M.S. Thesis, MIT, 1987.

[LIN 87] Lindsay B., "A Retrospective of R*": A Distributed Database Management
System," Proceedings of the IEEE, Vol 75, No5, May 1987.

[MAD 88-1] Madnick, S.E., Wang, Y.R., "A Framework of Composite Information
Systems for Strategic Advantage," Proceedings of the Twenty-First Annual Hawaii
International Conference on Systems Sciences, January 1988.

[MAD 88-2] Madnick, S.E., Wang Y.T., "Evolution Towards Strategic Applications of
Databases Through Composite Information Systems," Connectivity Among Information
Systems, Vol 1, MIT, Cambridge MA, 1988.

[MCC 88] McCay, B.C., "Translation Facility of the Composite Information System Tool
Kit, Version 1.0," Technical Report CIS-88-10, MIT, Aug. 1988.

- 78

[NEU 82] Neuhold, E. J., Walter, B., "An Overview of the Architecture of the Distributed
Data Base System "POREL"", Distributed Data Bases, September 1982.

[PAG 89] Paget, M.L., "A Knowledge-Based Approach toward Integrating International
On-line Databases", M.S. Thesis, MIT, 1989.

[ROS 82] Rosenberg, R.L, Landers, T., "An Overview of Multibase", Distributed
Databases., September 1982.

[SCH 82] Schneider, H.J., Distributed Data Bases, September 1982.

[SHA 84] Shaw, M., "The Impact of Modelling and Abstraction Concerns on Moderm
Programming Languages" On Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases, and Programming Languages, 1984.

[STO 84] Stonebraker, M., "Adding Semantic Knowledge to a Relational Database
System," On Conceptual Modelling: Perspectives from Artificial Intelligence, Databases,
and Programming Languages, 1984.

LWAN 88-1] Wang, Y.T., Madnick, S.E., "Logical Connectivity: Applications,
Requirements, and An Architecture," MIT, 1988.

[WAN 88-2] Wang, Y.T., Madnick, S.E., Horton D.C., and Wong, T.K. "Concept
Agents in CIS/TK: A Tool Kit for Composite Information Systems," Proceedings of the
International Computer Symposium, Taiwan, December 1988.

[WEG 86] Weger, P., "Perspectives on Object-Oriented Programming," Technical Report
No. CS-86-25, Brown University, December 1986.

[WON 88] Wong, T.K., Alford, M. "The CIS/TK Implementation V1.0," Technical
Report CIS-88-11, MIT, August 1988.

- 79 -

APPENDIX A.1 - Schema Definition for PAS

;; MIT PLACEMENT OFFICE GLOBAL SCHEMA
This file tests the schema definition language
3 entities: alumni, company and finance
2 relationships: worksfor, finance-info

(create-schema mit-placement)

(create-entity alumni
:attributes ((first-name (local2e alumnitb first name))

(last-name (local2e alumnitb last name))
(degree (local2e alumnitb degree))
(company (local2e alumnitb companyname)))

(create-entity company
:attributes ((name (oracle2e companytbl companyname))

(position (oracle2e companytbl position))
(date (oracle2e companytbl visit day))
(sic (oracle2e companytbl siccode)

(local2e siccodetb sic code))
(industry (local2e siccodetb industry)))

:table-relations ((merge (oracle2e companytbl)
(local2e siccodetb)
on (= (oracle2e companytbl siccode)

(local2e siccodetb sic-code))))

(create-entity finance
:attributes ((company (disclosure2e geninfo co)

(dataline2e data company name))
(code (dataline2e data code))
(compno (disclosure2e geninfo compno)

(disclosure2e gennum compno))
(revenue (disclosure2e gennum ni)

(dataline2e data efo))
(profit (disclosure2e gennum ns)

(dataline2e data sales))
(currency (disclosure2e geninfo curr)

(dataline2e data currency))
(mult (disclosure2e gennum mult))
(period (disclosure2e gennum cf)

(dataline2e data periodending)))
:table-relations ((merge (disclosure2e geninfo)

(disclosure2e gennum)
on (= (disclosure2e geninfo compno)

(disclosure2e gennum compno))))

(create-relation worksfor
:entity-from alumni
:entity-to company
:join (= (alumni company)

(company name)))

- 80 -

(create-relation financeinfo
:entity-from company
:entity-to finance
:join (= (company name)

(finance company)))

- 81 -

APPENDIX BA - GLOBAL RETRIEVAL LANGUAGE

jomn-query
joiq(JOTrN select-query join-query

(ON label)

select-query

(SELECT entity [(att... att) I

(WHERE select-condition))

label

name of relation object

entity

entity object

attribute

select-condition

(binary-op select-condition select-condition) I

(= (entity att) val)

binary-op

::= AND I OR

val

value surrounded by double quotes

- 82 -

- GLOBAL RETRIEVAL LANGUAGEAPPENDIX B.1

--- P-N--- X -- -- -SH M ---- N-T-ON IA GT (

create-schema

(CREATE-SCHEMA schema)

create-entity

(CREATE-ENTITY entity

:ATTRIBUTES (map ... map)

{:TABLE-RELATIONS (tb-rel ... tb-ret))

create-relation

(CREATE-RELATION relation

:ENTITY-FROM entity

:ENTITY-TO entity

:JOIN join-rel)

schema

name of global schema

entity

entity object

map

(att [(lqp tb col) .. (lqp tb cot)])

lqp

local query processor object

table

- 83 -

L ANGU TAGEIF

column

tb-rel

(MERGE source source

ON merge-cond)

source

(lqp tb)

merge-cond

(AND (= (lqp tb cot) (lqp tb co))

merge-cond) I

(= (lqp tb col) (lqp tb co))

join-rel

(AND (= (entity att) (entity att))

join-rel) I

(=(entity att) (entity att)

- 84 -

